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Abstract 
 

Computational Methods and Epidemiologic Approaches for Revealing the Etiology of 
Autoimmune Diseases 

 
By 

 
Brooke Rhead 

 
Doctor of Philosophy in Computational Biology 

 
University of California, Berkeley 

 
Professor Lisa F. Barcellos, Chair 

 
Autoimmune diseases, in which normal tissues are inappropriately attacked by the 
immune system, are complex diseases driven by a combination of genetic and 
environmental factors. Most are chronic inflammatory diseases with some treatments 
available but no known cures, and the disease mechanisms are not completely 
understood. Epigenetic factors, such as DNA methylation and microRNAs, are affected 
by genetic and environmental exposures and in turn affect gene expression and thus may 
play a role in autoimmune disease pathogenesis. In this dissertation, I employ a 
combination of computational, bioinformatic, statistical, and epidemiologic methods to 
study the role of epigenetics in autoimmune diseases in humans, and to characterize 
inflammatory changes in human cell lines. 
 
Chapter one introduces some complexities of studying autoimmune diseases in humans 
and introduces concepts of epigenetics. Chapter two shows that naïve T cells from 
rheumatoid arthritis patients share DNA methylation sites with fibroblast-like 
synoviocytes, cells that line joints and are involved in joint inflammation. Chapter three 
shows that there are differences in DNA methylation in CD4+ and CD8+ T cells from 
multiple sclerosis patients compared to cells from healthy controls. Chapter four uses 
genome-wide association study results to implicate specific microRNAs and tissues in 
pediatric-onset multiple sclerosis. Chapter five shows that the inflammatory cytokine 
tumor necrosis factor alpha drives DNA methylation and transcriptional changes and 
activates autoimmune disease genes in endothelial cells. Chapter six is a summary of 
conclusions and key findings. 
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Chapter 1 - Introduction 
 
Complex human diseases—those caused by a combination of genetic variants and 
environmental exposures—are difficult to study for a variety of reasons. First, these 
exposures are not experienced in isolation, and for some exposures, the size of their 
effects may depend on the presence of other exposures. For example, cigarette smoking 
increases the risk of developing multiple sclerosis, but the risk is compounded in those 
with a genetic variant in an enzyme that metabolizes products from tobacco smoke.(1, 2) 
Identifying and disentangling multiple potential causes of human disease can be 
complicated because, with the exception of randomized controlled trials to evaluate 
specific interventions, exposures cannot be studied experimentally in humans and we 
must rely instead on observational data, which can be plagued by confounding factors 
and biases. Another reason complex diseases are difficult to study is that many genetic 
exposures are either common but increase the risk of disease by only a small amount, or 
they increase risk substantially but are very rare; in either case large studies are required 
to obtain the statistical power needed to detect their effects. Happily, large-scale genome-
wide association studies (GWASs) have been immensely successful in the past decade 
in identifying genetic variants that predispose individuals to disease by even very small 
amounts. Many argue that the limits of this line of study have been reached and that we 
are now in a “post-GWAS era,” in which the major research goals have shifted to better 
understanding the function of disease-associated genetic variants and to looking at 
orthogonal types of data, such as epigenetic data, for clues about how genetic and 
environmental risk factors actually cause disease.(3–6) This dissertation focuses on post-
GWAS era research problems. A final layer of complexity for studying these types of 
problems is that, although all cells contain the same genetic variants (with the exception 
of somatic mutations), different genes are active in different tissue types, and the 
processes that contribute to disease can occur in any organ or tissue. Therefore, tissue 
type is a major consideration when investigating epigenetic disease associations. 
 
Because of these complexities, studying the etiology of complex diseases requires 
utilizing methods from multiple fields. Computational and bioinformatics methods are 
needed to handle the staggering variety and amount of data that is generated in genetic 
studies; sophisticated statistical methods are needed to find diminishingly small signals 
in a large amount of data and noise; and sound epidemiologic methods are needed to 
design studies that reduce as much potential bias and confounding as possible, and to 
analyze imperfect observational data to the best of our ability. The overlapping goals and 
methods of these fields have converged in the field of genetic epidemiology. My goal as 
a genetic epidemiologist is to utilize these tools to better understand the predictors, 
pathogenesis, and prognosis of autoimmune diseases, and to help identify potential new 
therapeutic targets. 
 
Autoimmune diseases are chronic, often inflammatory, diseases in which the immune 
system mistakenly attacks normal tissues. Over 80 autoimmune diseases have been 
identified, and they affect an estimated 4.5% of the population worldwide, with a higher 
prevalence in women than men.(7, 8) My work focused primarily on rheumatoid arthritis 
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(RA), in which joint tissues are inflamed and damage, and multiple sclerosis (MS), which 
causes inflammation and damage in the central nervous system (CNS). I investigated the 
epigenetic causes of both RA (chapter 2) and MS (chapters 3 and 4). 
 
Epigenetics refers to heritable differences in gene expression that are not due to 
differences in the DNA sequence. One of the most well studied epigenetic features is 
DNA methylation—the addition of a methyl group to cytosines in DNA. Initially, DNA 
methylation was understood mainly as a mechanism to silence gene expression, but it is 
now appreciated as a dynamic regulator that can either increase or decrease expression, 
or determine which splice isoform of a gene is expressed, depending on where it is 
located.(9, 10) Like the DNA sequence itself, DNA methylation patterns are inherited. 
However, unlike the DNA sequence, DNA methylation is influenced by changes to the 
environment. Age, sex, smoking, air pollution, diet, exercise, stress, and medications 
have all been associated with differences in DNA methylation.(11–15) DNA methylation 
patterns are tissue-specific, which makes them both interesting and challenging to study, 
as they can inform us about differences that exist in disease-relevant tissues (joint tissues 
in RA or CNS tissues in MS, for example), but are difficult to obtain, since extracting 
biological samples from most tissue types other than saliva or blood is often too invasive 
to do on a large scale. 
 
MicroRNAs (miRNAs) are another gene regulatory mechanism and can be considered 
part of the epigenetic machinery.(16, 17) miRNAs are short, ~22 nucleotide non-coding 
RNAs that down-regulate gene expression by binding to complementary sequence on 
messenger RNAs and target them for degradation, preventing them from being translated 
into proteins. Any given miRNA can target multiple genes, and genes can be targeted by 
multiple miRNAs, thus miRNAs have the potential to target entire networks of genes at 
once. As with DNA methylation, tissue type is important to consider when investigating 
miRNAs, since different miRNAs are present in different tissues. 
 
Chapter 2 is an investigation of whether DNA methylation patterns found in synoviocytes 
(a type of cell found in joints) from RA patients can also be detected in the immune cells 
circulating in blood of RA patients. 
 
Chapter 3 is a comparison of DNA methylation in T cells of MS cases and controls. T cells 
are the immune cell type responsible for attacking CNS tissue in MS. 
 
Chapter 4 is an examination of miRNA contributions to pediatric-onset MS that can be 
inferred from GWAS data. 
 
Chapter 5 is a characterization of the gene expression and DNA methylation changes 
that occur when tumor necrosis factor alpha (TNFa), an inflammatory cytokine, is 
increased in human endothelial cells. Endothelial cells line the walls of blood vessels and 
are important sites of inflammation in infectious and inflammatory disease. This chapter 
is unique in that it is an experimental study conducted on cell lines rather than an 
observational study. 
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This body of work demonstrates the utility of applying epidemiologic approaches and 
computational methods to the study of autoimmune disease pathogenesis, using both 
observational and experimental studies, with the goals of better understanding disease 
mechanisms and uncovering future avenues of research for disease treatment and 
prevention. 
 
  



 4 

References 
 
1.  Briggs FBS, et al. (2014) Smoking and Risk of Multiple Sclerosis. Epidemiology 

25(4):605–614. 
2.  Olsson T, Barcellos LF, Alfredsson L (2016) Interactions between genetic, lifestyle 

and environmental risk factors for multiple sclerosis. Nat Rev Neurol 13(1):26–36. 
3.  Huang Q (2015) Genetic Study of Complex Diseases in the Post-GWAS Era. J 

Genet Genomics 42(3):87–98. 
4.  Gallagher MD, Chen-Plotkin AS (2018) The Post-GWAS Era: From Association to 

Function. Am J Hum Genet 102(5):717–730. 
5.  Baranzini SE (2018) The era of GWAS is over – Commentary. Mult Scler J 

24(3):260–261. 
6.  Wijmenga C, Zhernakova A (2018) The importance of cohort studies in the post-

GWAS era. Nat Genet 50(3):322–328. 
7.  Hayter SM, Cook MC (2012) Updated assessment of the prevalence, spectrum and 

case definition of autoimmune disease. Autoimmun Rev 11(10):754–765. 
8.  Ngo S, Steyn F, McCombe P (2014) Gender differences in autoimmune disease. 

Front Neuroendocrinol 35:347–369. 
9.  Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T (2017) Whole 

genome DNA methylation: beyond genes silencing. Oncotarget 8(3):5629–5637. 
10.  Luo C, Hajkova P, Ecker JR (2018) Dynamic DNA methylation: In the right place at 

the right time. Science (80- ) 361(6409):1336–1340. 
11.  Horvath S (2013) DNA methylation age of human tissues and cell types. Genome 

Biol 14(10):R115. 
12.  Martin EM, Fry RC (2018) Environmental Influences on the Epigenome: Exposure- 

Associated DNA Methylation in Human Populations. Ssrn. doi:10.1146/annurev-
publhealth-040617-014629. 

13.  Ronn T, Ling C (2014) The impact of exercise on DNA methylation of genes 
associated With type 2 diabetes and obesity in human adipose tissue. US 
Endocrinol 10(1):64–66. 

14.  Vinkers CH, et al. (2015) Traumatic stress and human DNA methylation: a critical 
review. Epigenomics 7(4):593–608. 

15.  Lee SW, et al. (2018) Whole-genome methylation profiling of peripheral blood 
mononuclear cell for acute exacerbations of chronic obstructive pulmonary disease 
treated with corticosteroid. Pharmacogenet Genomics 28(3):78–85. 

16.  Vasilatou D, Papageorgiou SG, Dimitriadis G, Pappa V (2013) Epigenetic 
alterations and microRNAs: New players in the pathogenesis of myelodysplastic 
syndromes. Epigenetics 8(6). doi:10.4161/epi.24897. 

17.  Koch MW, Metz LM, Kovalchuk O (2013) Epigenetics and miRNAs in the diagnosis 
and treatment of multiple sclerosis. Trends Mol Med 19(1):23–30. 

 
 
  



 5 

Chapter 2 - Rheumatoid arthritis naïve T cells share hypermethylation sites with 
synoviocytes 

 
Abstract 
 
Objective: Our study aimed to determine whether differentially methylated CpGs in 
synovium-derived fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA) patients 
were also differentially methylated in peripheral blood samples.  
 
Methods: We measured 371 genome-wide DNA methylation profiles from 63 RA cases 
and 31 controls, in CD14+ monocytes, CD19+ B cells, CD4+ memory T cells and CD4+ 
naïve T cells, using Illumina HumanMethylation450 (450k) BeadChips. 
 
Results: We found that of 5,532 hypermethylated FLS candidate CpGs, 1,056 were 
hypermethylated in CD4+ naïve T cells of RA cases compared to controls. Using a second 
set of CpG candidates based on SNPs from a genome-wide association study (GWAS) 
of RA, we found one significantly hypermethylated CpG in CD4+ memory T cells and 18 
significant (6 hypomethylated, 12 hypermethylated) CpGs in CD4+ naïve T cells. A 
prediction score based on the hypermethylated FLS candidates had an area under the 
curve (AUC) of 0.73 associated with RA case status, which compared favorably to the 
association of RA with the HLA-DRB1 shared epitope (SE) risk allele and with a validated 
RA genetic risk score.  
 
Conclusion: FLS-representative DNA methylation signatures derived from blood may 
prove to be valuable biomarkers for RA risk or disease status. 
 
Introduction 
 
RA is a chronic inflammatory disease with the potential to cause substantial disability, 
primarily due to the erosive and deforming process in joints. It is the most common 
systemic autoimmune disease, with a worldwide prevalence approaching 1%  (1,2). RA 
etiology is complex, with both genetic and non-genetic contributions. A rigorous 
assessment of RA heritability using twin studies suggests that 50-60% of the occurrence 
of RA in twins is explained by genetic effects (3). Approximately 50% of this genetic 
contribution can be explained by genes in the major histocompatibility complex (MHC)  
(3). In addition, at least 101 independent non-MHC risk loci have been identified  (4). A 
role for environmental factors is also supported, but currently exposure to tobacco smoke 
is the only well-established risk factor (5). 
 
DNA methylation is an epigenetic modification resulting from the addition of a methyl 
group to a cytosine base at positions in the DNA sequence where a cytosine is followed 
by a guanine (“CpGs”), which can lead to altered expression of DNA. DNA methylation is 
essential for proper mammalian development and other functions, and methylation 
patterns are affected by environmental changes. Methylation status is also influenced by 
the interaction between genetics and environment, and a growing number of human 
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diseases have been associated with aberrant DNA methylation.  (6) Maintenance of DNA 
methylation is critical for the development and function of immune cells (6,7). 
 
Altered patterns of DNA methylation at CpG sites have been observed in individuals with 
RA. A 1990 study by Richardson et al. found that global methylation of genomic DNA 
from T cells of RA patients was lower when compared to T cells of healthy controls (8). 
Altered methylation patterns have also been observed in small studies of specific genes 
in RA, including the promoter regions of IL6 using peripheral blood mononuclear cells 
(PBMCs) and DR3 (alternative name TNFRSF25) using synovial fibroblasts (9,10). Liu et 
al. studied global DNA methylation among 129 Taiwanese individuals and found that RA 
patients were characterized by significantly lower levels of DNA methylation in PBMCs 
compared to controls  (11). Recently, Glossop et al. identified about 2,000 differentially 
methylated CpGs in both T- and B-lymphocytes between treatment-naïve patients with 
early RA and healthy individuals, and in a separate analysis found that DNA methylation 
profiles from synovial fluid-derived FLS had similarities with the profiles from tissue-
derived FLS  (12,13). 
 
A recent investigation identified 15,220 differentially methylated CpG sites in synovium-
derived fibroblast-like synoviocytes (FLS) between RA patients and either osteoarthritis 
or normal controls that appear to distinguish RA cases from non-RA controls (Whitaker 
et al.  (14) and personal communication). These 15,220 FLS CpGs are the candidate 
sites for the current investigation. FLS in the synovial intimal lining of joints have key roles 
in the production of cytokines that perpetuate inflammation, and the production of 
proteases that contribute to cartilage destruction in RA  (15). An overlap in the methylation 
pattern between FLS and peripheral blood cells could be indicative of disease-associated 
biological processes detectable in the periphery.  Because peripheral blood is easily 
accessible, such signatures may be useful biomarkers for RA risk or disease status.   
 
Materials and Methods 
 
Study Design 
 
Participants included 63 female RA cases (18 of age or older and met the 1987 American 
College of Rheumatology criteria for RA  (16,17)) and 31 female unaffected controls 
(locally based), all of European ancestry. Table 1 summarizes characteristics of our study 
population. All participants provided a peripheral blood sample for genotyping and 
measurement of methylation.  
 
Genotyping 
 
Study participants were genotyped using Illumina HumanOmniExpress, HumanOmni-
ExpressExome, or Human660W-Quad Beadchips, which were read on an Illumina 
HiScan array scanner. Genotype results were merged using PLINK v1.07  (18), and only 
SNPs assessed by all three chips were retained for analysis. SNPs with failed genotype 
calls in 10% or more of individuals, with a minor allele frequency of less than 1%, or found 
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to not be in Hardy-Weinberg equilibrium (p £ 0.000001) in controls were removed from 
analysis. 
 
Ancestry 
 
EIGENSTRAT  (19) was used to visualize ancestral clustering of the study population 
relative to individuals from 11 HapMap populations  (20). Self-identified individuals of 
European ancestry clustered with Utah residents with ancestry from northern and western 
Europe/Tuscans in Italy (CEPH/TSI) as expected. We excluded self-reported individuals 
not of European ancestry because of the potential for confounding. Figure S3 shows the 
ancestral clustering of our final sample of self-identified European-ancestry participants. 
 
Cell Sorting 
 
Whole blood was collected in four 10ml EDTA collection tubes from each subject. PBMCs 
were isolated using Ficoll-Paque density gradient and stained with conjugated 
monoclonal antibodies against CD45 FITC, CD19 PE, CD45RA PE-CY7 (all BD 
Pharmingen), CD3 Brilliant Violet 421, CD4 CF594 (both BD Horizon), CD14 APC (BD 
Biosciences) and CD27 APC-eFlour780 (ebioscience). Cells were then stored overnight 
in buffer at 4°C and sorted the following day, on a BD FACSAria cell sorter (BD 
Biosciences). The following populations were gated for sorting following exclusion of 
debris and doublets: monocytes (CD45+CD14+); B cells (CD45+CD14-CD3-CD19+); 
naïve CD4+ T cells (CD45+CD14-CD19-CD3+CD4+CD27+CD45RA+) and memory 
CD4+T cells (CD45+CD14-CD19-CD3+CD4+CD45RA-). Cell counts and purity checks 
were performed after sorting, and then cells were stored frozen as a pellet at -80°C.   
 
Validation of overnight cell storage 
 
To enable DNA methylation profiling of a large number of FACS samples, a protocol for 
storing blood samples overnight prior to sorting was established and validated. Whole 
blood was collected in ten 10ml EDTA collection tubes from a single individual. PBMCs 
were isolated and stained as described above, and then either sorted the same day or 
stored overnight in buffer at 4°C and sorted the following day. Paired DNA samples from 
the two time points were collected from all four cell types. All DNA samples were 
quantified using a Nanodrop spectrophotometer. All samples underwent bisulfite 
conversion on the same day and were assayed on Illumina 450k BeadChips 
simultaneously.  
 
Methylation 
 
A total of 371 genome-wide DNA methylation profiles were generated using the Illumina 
Infinium HumanMethylation450 BeadChip kit and read on an Illumina HiScan array 
scanner. A β value, the ratio of the methylated probe intensity to the overall (methylated 
plus unmethylated) intensity, was derived for each CpG site. We performed an extensive 
QC process: Illumina GenomeStudio software was used to examine Jurkat controls, 
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between chip/within chip variation, and replicate samples. All replicate samples had r2 
values greater than 0.99 and Jurkat replicates showed r2 greater than 0.98. Background 
signal was subtracted using the methylumi R package “noob” method  (21) and samples 
were normalized with All Sample Mean Normalization (ASMN)  (22) followed by beta-
mixture quantile normalization (BMIQ)  (23) to correct for type I and type II probe 
differences. Multidimensional scaling (MDS) plots for each cell type before and after 
background subtraction and normalization were examined to assess for the presence of 
batch effects. Batch effects were found to be minimal, and were reduced following data 
normalization (see Figures S4 and S5 for an example). 286 CpG sites with low detection 
rates (read p>0.05) in more than 20% of samples were removed from analysis, and one 
sample with low detection rates (read p>0.05) in more than 20% of sites. The following 
CpG sites were also removed from analysis:  the 65 non-CpG “rs” SNP probes included 
in the 450k BeadChip, 30,969 sites with probes predicted to hybridize to more than one 
location in the genome after bisulfite conversion (“cross-reactive probes”) identified by 
Chen et al., and 28,355 sites with a known polymorphism at the site being measured 
(“polymorphic CpGs”) identified by Chen et al. that were either present in our European-
ancestry population or present in Europeans in the 1,000 Genomes Project (24).  The 
final data set used for analysis consisted of 428,232 CpG sites in 371 samples (94 CD14+ 
monocyte samples, 91 CD19+ B cell samples, 94 CD4+ memory T cell samples, and 92 
CD4+ naïve T cell samples). 
 
An MDS plot of all 371 samples (Figure 3) shows that each of the four immune cell types 
cluster together as expected based on their DNA methylation patterns. Differences in 
methylation among different cell types are much larger than the differences between 
cases and controls within each cell type, as expected. There is greater scattering for B 
cells, which is reflective of the diversity of that cell type, versus monocytes and the T cell 
subpopulations examined in this study. 

 
Wilcoxon Rank Sum Tests 
 
Four immune cell types were assayed for each individual: CD14+ monocytes, CD19+ B 
cells, CD4+ memory T cells, and CD4+ naïve T cells. DNA hypermethylation or 
hypomethylation in RA cases relative to controls consistent with methylation differences 
seen in FLS was evaluated separately for each immune cell type. For each of the 
hypermethylated (n=5,532) and hypomethylated (n=8,406) candidate CpGs from the FLS 
study, we used a one-tailed Wilcoxon rank sum test to assess differences in the median 
β value between RA cases and controls. P-values were adjusted using the Benjamini-
Hochberg method for controlling the false discovery rate (25). We controlled the error rate 
for 5,532 or 8,406 tests, depending on the candidate list. Methylation changes at a second 
set of 1,788 candidate CpG sites in 98 genes deemed likely to be important to RA biology 
based on a recent genome-wide association study (GWAS) meta-analysis of >100,000 
subjects  (4) were also evaluated, and an exploratory association analysis was conducted 
using all CpGs on the 450k BeadChip. For the GWAS candidate CpGs and the chip-wide 
tests, we used a two-tailed Wilcoxon rank sum test, controlling for 1,676 tests and 428,232 
tests, respectively. 
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ReFACTor Principal Component 
 
In order to determine whether cell subtype proportions in the sorted cells were 
confounding results, we performed Reference-Free Adjustment for Cell-Type composition 
(26) (ReFACTor), in which principal component (PC) analysis is performed on a subset 
of sites that are informative with respect to the cell composition in the data. ReFACTor 
finds the most informative sites in an unsupervised manner. To measure the potential 
confounding, we examined quantile-quantile (QQ) plots for each cell type for a standard 
epigenome-wide association study (EWAS), using only the methylation sites with a mean 
methylation level in the range of 0.2-0.8, following a suggestion of Liu et al. to remove 
consistently methylated and consistently unmethylated probes when performing EWAS  
(27). Deflation was observed in the QQ-plots of all cell types except CD4+ naïve T cells, 
implying deficient power. To assess the expected QQ-plot under the condition of power 
deficiency, we permuted the phenotype and repeated the EWAS analysis, and repeated 
this procedure 100 times for each cell type. To determine whether a correction was 
required in the cell types, we used the genomic control lambda measurement of inflation  
(28). We considered the median lambda of the 100 EWAS executions as the expected 
lambda. The approach was to add ReFACTor PCs to the analysis until the inflation was 
corrected with respect to the expected lambda (29). Only the CD4+ naïve cells were found 
to be inflated, and adjusting for the first ReFACTor component removed this inflation, 
suggesting possible cell substructure in the CD4+ naïve cells. ReFACTor was executed 
on the CD4+ naïve T cell data with parameter K=2. We added the first PC (PC1) in logistic 
regression models to evaluate results that are adjusted for confounding by cell 
substructure. 
 
Logistic Regression Models 
 
To evaluate possible confounding effects, logistic regression models of RA case status 
were carried out against each FLS CpG that was significant at q<0.05 in the Wilcoxon 
tests (1,056 models), adjusting for smoking, age, batch (date the plate was run), and PC1 
calculated from the ReFACTor analysis described above, which aims to quantify cell 
substructure  (26). Unadjusted models were compared to models adjusted for age only; 
ever having smoked only; batch only; ReFACTor PC1 only; age, smoking and batch 
combined; and age, smoking, batch and ReFACTor PC1 combined. 
 
ROC curve analyses 
 
Receiver operator characteristic (ROC) curve analysis was used to explore the potential 
for the FLS sites to serve as a biomarker for the RA disease process, compared to the 
potential of a validated genetic risk score for RA (30,31) and the presence or absence of 
HLA-DRB1 shared epitope alleles  (32,33). The hypermethylation score for each person 
was calculated by summing the beta values across the 1,056 FLS significantly 
differentially methylated loci. A continuous weighted genetic risk score was also 
calculated, based on the publications by Yarwood et al.  (31) and Eyre et al.  (30) The 
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genetic risk score included 43 of the 45 non-HLA SNPs (rs13397 and rs59466457 were 
missing), and it was calculated by multiplying the number of copies of risk alleles, using 
probability data from genome-wide imputation, for each SNP by the natural logarithm of 
the odds ratio as reported in Eyre et al.  (30), and summing these values across the 43 
SNPs for each person. Presence of the shared epitope was coded as a binary variable. 
Individuals with one or more copies of the following alleles were assigned a value of one 
for the shared epitope: HLA-DRB1*0101, *0102, *0401, *0404, *0405, *0408, or *1001  
(34). The pROC package in R was used to plot each of these variables as a predictor with 
RA case-status as the response variable  (35).  
 
To determine the influence of adjusting for potential confounders of the hypermethylation 
score, we created two additional hypermethylation scores: the first based on the 830 FLS 
sites that remained significant (p<0.05) in the logistic regression models after adjusting 
for age, smoking, and batch, and the second based on the 79 FLS sites that remained 
significant (p<0.05) after adjusting for age, smoking, batch and ReFACTor PC1. 
 
Study Approval 
 
Written informed consent was received from all participants prior to inclusion in this study, 
and research was in compliance with the Helsinki Declaration. Institutional Review Board 
approval was in place at UC San Francisco where study subjects were recruited.  
 
Results  
 
Validation of overnight cell storage 
 
Methylation profiles for isolated cell populations were not impacted by overnight storage 
(correlation between profiles derived from all paired samples was very high (r2>0.997)). 
Details are summarized in Supplementary Text 1. 
 
Candidate FLS CpG results 
  
After adjusting p-values from the Wilcoxon rank sum tests for multiple testing by 
controlling the false discovery rate (FDR; p-values adjusted for multiple testing hereby 
referred to as q-values), 1,056 significantly hypermethylated CpG sites in CD4+ naïve T 
cells had q<0.05 (Table S1). There were no significant sites at this threshold for the 
hypomethylated candidates in CD4+ naïve T cells, nor in any of the remaining cell types 
(CD14+ monocytes, CD19+ B cells and CD4+ memory T cells), for either the hyper- or 
hypomethylated candidates. Results are summarized in Table 2.  
 
Logistic Regression Results 
 
Logistic regression analysis was conducted with RA case status as the outcome and 
methylation beta value as the predictor variable for each of the 1,056 FLS CpG. 1,035 
CpGs were significant (p<0.05, one-sided) in the unadjusted model, 830 remained 
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significant when adjusting for age, smoking and batch together, and 79 remained 
significant when adjusting for age, smoking, batch, and ReFACTor PC1. Results are 
summarized in Table S2, and the shifts in p-values with different models are visualized in 
Figure 2.  
 
Comparison of Methylation Profiles to Shared Epitope and Genetic Risk Score 
 
The association of hypermethylation in CD4+ naive T cells with RA was compared to a 
weighted genetic risk score for non-HLA risk alleles, and presence or absence of the HLA-
DRB1 shared epitope, a major genetic risk factor for RA  (36). The hypermethylation score 
and shared epitope models performed similarly. Figure 1 shows the three ROC curves 
and Table 3 summarizes the point estimates and 95% confidence intervals for the area 
under the curve (AUC) for each model. The hypermethylation score had the largest AUC 
of 72% (61%-83%). The shared epitope had an AUC of 66% (56%-76%), and the genetic 
risk score had an AUC of 51% (38%-63%). The AUC for the hypermethylation score 
based on the 830 CpGs significant at p<0.05 after adjusting for age, smoking, and batch 
in the logistic regression models was 71.8% (61.0%-82.7%), which is similar to the 
hypermethylation score using unadjusted CpGs significant after the Wilcoxon test. The 
AUC using only the 79 CpGs significant after adjusting for age, smoking, batch, and 
ReFACTor PC1 was 80.7% (71.3%-90.1%). Results are summarized in Table 3. 
 
Candidate GWAS CpG results 
 
For this set of Wilcoxon rank sum tests (1,676 CpGs), one CpG (hypermethylated) in 
CD4+ memory cells and 18 CpGs (6 hypomethylated, 12 hypermethylated) in CD4+ naïve 
T cells were significantly associated (q<0.05) with RA susceptibility. Results are 
summarized in Table S4. We also carried out logistic regression analysis using RA status 
as outcome for each of the 18 CpGs that were differentially methylated in CD4+ naïve T 
cells, adjusting for various covariates. Results are summarized in Table S5.  
 
Genome-wide results 
 
Results of the genome-wide tests of differences in methylation are summarized in Table 
S6. No CpG sites were significantly differentially methylated after multiple testing 
correction (adjusting the p-value for 428,232 tests). Differences in global methylation were 
investigated by comparing mean methylation levels in cases and controls (Table S7).  No 
significant differences were observed for any cell type. 
 
Discussion 
 
In the current study, hypermethylated CpG sites previously identified in FLS of RA cases 
relative to osteoarthritis or healthy controls were also distinguished in CD4+ naïve T cells 
from peripheral blood of RA cases relative to healthy controls. Our results show a disease-
associated signature can be observed in cells obtained from whole blood, which is more 
accessible for clinical or epidemiologic studies compared to synovial fluid.  
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Our work extends recent findings demonstrating DNA methylation profiles in peripheral 
blood mononuclear cells differ between RA cases and controls  (12). While Glossop et al. 
observed differences in both B-lymphocytes and T-lymphocytes, most results from the 
current study were confined to CD4+ naïve T cells. However, taken together, the 
combined findings increase the evidence that peripheral blood cells contain a DNA 
methylation signature that can distinguish RA cases from controls. Furthermore, the 
identification of DNA methylation profile differences in T cells detected in treatment naïve 
patients by Glossop suggests there are methylation changes important in RA that are not 
a consequence of medication or long disease duration.  
 
The 1,056 differentially methylated candidate FLS CpGs associated with RA in this study 
were limited to the CD4+ naïve T cell population. Most of the observed differences were 
small, with a difference in median β value of less than 10% between RA cases and 
controls. Of the 1,056 sites, 517 had a methylation difference of greater than 1% (Table 
S1). These 517 sites resided in 357 genes as well as intergenic regions, and across all 
chromosomes. It is uncertain what effect size is biologically meaningful for DNA 
methylation. Some researchers impose a threshold of 5% or 10% difference in 
methylation to consider results relevant (37), while others include modest effect sizes 
(38). One recent study showed replicable methylation differences associated with 
smoking ranging from 1.2% to 24% (39). Though differences in this study were small, 
they were robust, surviving stringent multiple testing correction.  A hypermethylation score 
constructed from the significant 1,056 sites predicted RA case status with an AUC of 73%, 
and awaits validation in an independent dataset. The hypermethylation score based on 
the 830 CpG sites with p<0.05 after adjusting for smoking, age, and batch in the logistic 
regression models had a similar AUC of 71.8%, suggesting the score was not strongly 
influenced by these covariates. The hypermethylation score calculated using the 79 CpG 
sites with p<0.05 after adjusting for smoking, age, batch and ReFACTor PC1 in the 
logistic regression models had a slightly higher AUC of 80.7%, suggesting that adjustment 
for possible cell substructure may improve the ability of our FLS CpG sites score to serve 
as a biomarker for RA. Because DNA methylation was measured subsequent to RA 
diagnosis, we cannot tell with certainty whether the FLS methylation signature in the 
CD4+ naïve T cells predicts RA diagnosis or is a biomarker of the disease process.  
 
One of the top 10 (most significant p-value) CD4+ naïve T cell replicated sites, 
cg21480173, was found in the gene TYK2, which has been associated with RA and other 
autoimmune diseases  (40). The remaining 9 top hits were found in the following genes: 
PRKAR1B, ABCC4, COMT, CAI2, MCF2L, GALNT9, C7orf50, or non-gene regions, 
which have not been previously associated with RA. Results demonstrate that novel 
genes related to RA may be discovered through DNA methylation analysis. We also 
observed differential methylation in CpG sites that reside in genes that have previously 
been associated with RA  (4). For example, two of the CpGs reside in the promoter 
regions for both GATA3 and GATA3-AS1 (cg17566118 and cg15852223), and both are 
hypomethylated in RA cases relative to controls. It is important to note our results were 
not due to genetic variation or genetic ancestry differences between cases and controls.  
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The lack of significant findings in cell types other than CD4+ naïve T cells suggests that 
CD4+ naïve T cells are particularly relevant to RA through epigenetic mechanisms 
involving DNA methylation. There is strong evidence from previous studies that aberrant 
T-cell activation pathways are involved in the pathogenesis of RA, including in the naïve 
T cell population, which have not yet participated in immune responses  (41). CD4+ naïve 
T cells from RA patients have been shown to have premature senescence; to be defective 
in up-regulating telomerase due to deficiencies in telomerase component human 
telomerase reverse transcriptase (hTERT); to have increased DNA damage load and 
apoptosis rates; to not metabolize equal amounts of glucose as healthy control cells of 
the same age; and to generate less ATP (42–45). While our methylation findings need to 
be replicated, the striking CD4+ naïve T cell results, and the existing literature on 
abnormalities in this cell population in RA, suggest that the methylation changes we 
observed may be involved in disease pathogenesis. However, it is also plausible that 
methylation changes are a response to the disease process itself or a result of exposure 
to medications. Additional studies involving patients with early or pre-clinical disease will 
be required to determine when in the course of the disease process such differential 
methylation patterns occur. Longitudinal studies may also help elucidate why results from 
the current study support a hypermethylation signature in RA, in contrast with 
hypomethylation which has been demonstrated in previous studies (8,11). 
Hypermethylation may occur at a specific point along the course of RA, or may be specific 
to the FLS-associated sites rather than the global methylome.  
 
Results from logistic regression modeling suggest that although some variables are 
confounding the relationship between methylation and RA case status, evidence for 
association persists.  Specifically, adjusting for age or smoking did not markedly impact 
the number of FLS CpGs that were significantly associated with RA at p<0.05. Adjusting 
for batch or ReFACTor PC1 reduced the number of statistically significant CpGs by ~ 200, 
but many remained statistically significant (841 adjusting for batch, 837 adjusting for 
ReFACTor PC1). Even when controlling for all four of these variables, 79 CpGs remained 
significant. Figure 2 visually represents the shifting of p-values across these regression 
models.  Evidence for association also persisted in analysis of GWA candidates, even in 
fully adjusted models (Table S5). 
 
Strengths and Limitations 
 
This study has many strengths. DNA methylation profiles were analyzed in four sorted 
cell types for 94 individuals who are all females of European ancestry, which reduced the 
genetic heterogeneity of the study population. Examination of individual cell types from 
FACS-sorted blood allowed us to measure methylation results with more confidence, 
rather than relying on whole blood and cell type proportions (46). Restriction of the study 
to females eliminates the possibility of confounding by sex. Also, since RA affects women 
at a 3:1 ratio relative to men, results are generalizable to the group that experiences the 
greatest disease burden. 
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Stringent quality control of the methylation data, as described in the methods, is another 
strength. In addition to standard QC steps of background subtraction, normalization, and 
removal of sites with low quality scores, CpG sites with known SNPs in individuals of 
European ancestry at the cytosine or guanine being measured on the 450k BeadChip 
were removed, which is important because methylation measurements for CpG sites 
harboring SNPs are likely to simply reflect genetic polymorphism at that site rather than 
truly measuring methylation. We also removed from analysis CpG sites with cross-
reactive sequencing probes on the 450k BeadChip, i.e., probes that could hybridize to 
more than one location in the genome and reflect methylation at two different genomic 
locations rather than only the intended target site. Rigorous quality control measures 
increase confidence that the observed differential methylation is an accurate reflection of 
the disease biology and not due to artifacts.  
 
Both whole genome and whole methylome data were utilized in the current study. The 
whole genome data allowed us to determine genetic ancestry for all participants. The 
original FLS study by Whitaker et al. involved anonymous samples, and the authors did 
not have ethnicity or race information (14). Therefore, it is possible that we are 
underestimating the overlap between FLS and CD4+ naïve sites if we are comparing 
different ethnicities in the CD4+ naïve T cell and FLS group.  Lastly, we were able to 
demonstrate that even after controlling for age, smoking, batch and possible cell 
substructure (ReFACTor PC1), a number of FLS and GWA candidate sites remain 
significantly associated with RA.  
 
This study also has limitations. We could not assess temporality between methylation and 
case-status. Results may be confounded by case-specific factors such as medication and 
inflammation. Indeed, other studies have observed associations between methylation and 
medications (47,48); however, the case-control nature of the current study did not allow 
us to adjust for effects of RA medications since they were present only among RA cases.  
 
Our findings are restricted to CpG sites that are represented on the 450k BeadChip. The 
BeadChip prioritized inclusion of features such as RefSeq genes; CpG Islands, shores 
and shelves; areas of the genome such as the MHC region; and sites known to be in 
important to cancer  (49,50). Therefore, additional CpG sites relevant to RA may be 
missing. Further, although our ROC analysis demonstrates that differential methylation of 
about 1,000 CpGs in peripheral blood has the potential to distinguish RA cases from 
controls, our hypermethylation score needs to be tested as a predictor in an independent 
data set.  
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Tables and Figures 
 
 

 

 
 
 
Figure 1. ROC curves of hypermethylation score, HLA-DRB1 shared epitope, and 
genetic risk score as predictors of RA case status. The hypermethylation score is the 
sum of the beta values across the 1,056 significant CD4+ naïve T cell sites and is a 
measure of hypermethylation. Shared epitope is a binary variable taking on the value of 
1 if a person has 1 or 2 copies of the shared epitope. Genetic risk score is a weighted 
score of 43 SNPs, previously validated  (30,31). The adjusted hypermethylation score 
represents the sum of the 79 CpGs that were significant (p<0.05) after adjusting for age, 
smoking, batch and ReFACTor PC1. 
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Figure 2A-G. Plots of one-sided p-values vs. median methylation difference in 
cases and controls for FLS CpGs in logistic regression models after adjusting for 
covariates. CpGs in the models are those significant at q<0.05 in Wilcoxon rank sum 
tests. Models are adjusted for (A) no covariates, (B) age only, (C) smoking only, (D) batch 
only, (E) ReFACTor PC1 only, (F) age, smoking and batch together, and (G) age, 
smoking, batch, and ReFACTor PC1 together, respectively. 
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Figure 3.  Multidimensional scaling (MDS) plot of DNA methylation profiles. This 
MDS plot of 371 samples (four immune cell types each for RA cases and controls) shows 
that samples cluster according to cell type, as expected. 
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Table 1. Study Participant Characteristics at Time of Blood Draw 

Characteristic 

 

 
Cases  

(mean +/- SD) 
or count (%) 

n=63 

 
Controls  

(mean +/- SD) 
or count (%) 

n=31 

P-value 
(Wilcoxon 

or Chi 
Square) 

  
Seropositive  
(RFA or CCP positiveB) 57 (90%) ----------------- ----------- 

Age 56.4 +/- 14.8 57.5 +/- 16.5 
0.77 

Smoking (Ever, Never) 33 (52%), 30 (48%) 13 (42%), 18 (58%) 
0.34 

Smoking (Current, Not 
Current) 4 (6%), 59 (94%) 1 (3%), 30 (97%) 

0.53 

Disease duration, years 14.0 +/- 10.5 ----------------- ----------- 

Erosive disease (present, 
absent, missing) 

39 (62%), 22 (35%), 2 
(3%) ----------------- ----------- 

Disease activity: CDAIC 10.1 +/- 9.2 
NAD=4 ----------------- ----------- 

 
Table 1. Study Participant Characteristics at Time of Blood Draw. This table 
summarizes study participant characteristics at the time of blood draw. 
ARheumatoid Factor 
BAnti-cyclic Citrullinated Peptide 
CClinical Disease Activity Index 
DNot Available 
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Table 2. Candidate FLS CpG Results 

Cell Type Raw 
p<0.05 

Absolute 
median 

diff > 
10%A 

Absolute 
median 

diff 
between 
1% and 
10%A 

FDR 
q<0.05 

FDR 
q<0.05 

and 
median 

diff > 1% 

CD14 Hypomethylated 263 4 175 0 0 
CD14 Hypermethylated 100 0 61 0 0 
CD19 Hypomethylated 96 1 59 0 0 
CD19 Hypermethylated 1408 1 732 0 0 

CD4 Memory Hypomethylated 262 0 204 0 0 
CD4 Memory Hypermethylated 66 1 36 0 0 

CD4 Naïve Hypomethylated 160 1 62 0 0 
CD4 Naïve Hypermethylated 2,569 0 1,105 1,056 517 

 
Table 2. Candidate FLS CpG Results. Wilcoxon rank sum tests were carried out for 
each FLS candidate CpG in each of the four cell types with one-sided p-values, according 
to whether the CpG was hypermethylated or hypomethylated in the original study.  
AAbsolute median difference numbers are among the CpGs with unadjusted p<0.05 
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Table 3. ROC Areas Under the Curve 

Model AUC (95% CI) 
Hypermethylation Score (1,056 sites) 72% (61%-83%) 
Shared Epitope 66% (56%-76%) 
Genetic Risk Score 51% (38%-63%) 
Hypermethylation Score (830 sites; Age, Smoking, Batch 
Adjusted Regression) 72% (61%-83%) 
Hypermethylation Score (79 sites; Age, Smoking, Batch, 
ReFACTor PC1 Adjusted Regression) 81% (71%-90%) 

 
Table 3. ROC Areas Under the Curve. ROC analysis was carried out for a 
hypermethylation score based on the 1,056 CpG sites significant at q<0.05 from the 
Wilcoxon rank sum tests. This score was compared to shared epitope status 
(positive/negative) and a genetic risk score. Two other hypermethylation scores were 
constructed, based on the 1,056 CpGs that remained significant (p<0.05) in logistic 
regression models after adjusting for various covariates. 
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Supplementary Materials 
 
Supplementary Text 1: Results of Overnight Cell Storage 
PBMCs were isolated and stained for FACS on the same day as blood collection, then 
either sorted the same day or stored overnight at 4°C before sorting. The impact of storing 
cells overnight was assessed for five outcomes:  cell count, purity, quantitative DNA 
yields, DNA quality and stability of DNA methylation profiles. High purity (total >90%; 
gated >96%) was observed for all sorted cell populations, regardless of whether FACS 
occurred on the same day or the day following blood collection. The number of cells 
collected ranged from 1.4-4.6 million cells for samples sorted on the same day and 1.7-
5.7 million cells for samples sorted the next day, and the numbers were similar for all cell 
types. High quality DNA (260/280 ratio: 1.87-1.95) was obtained from all cell types (3.2-
39.0 ug). Paired DNA samples from all four cell types were collected at both time points. 
Overall, correlation between profiles derived from all paired samples for the four cell types 
was very high (r2>0.997). 
  



 26 

  

 

 
 
Figure S1. Eigenvector 1 and 2 from EIGENSTRAT in all samples. Eigenvector 1 vs 
Eigenvector 2 from EIGENSTRAT, showing where the RA European-ancestry and non-
European-ancestry samples cluster relative to HapMap populations, prior to removal of 
non-European-ancestry samples44. 
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Figure S2. Eigenvector 2 and 3 from EIGENSTRAT in all samples. Eigenvector 2 vs 
Eigenvector 3 from EIGENSTRAT, showing where the RA European-ancestry and non-
European-ancestry samples cluster relative to HapMap populations, prior to removal of 
non-European-ancestry samples44. 
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Figure S3. Eigenvector 1 and 2 from EIGENSTRAT in European ancestry samples. 
Eigenvector 1 vs Eigenvector 2 from EIGENSTRAT, showing where the RA European-
ancestry cases and controls samples cluster relative to HapMap populations44. 
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Figure S4. MDS of CD4+ naïve T cells before normalization. Multidimensional scaling 
(MDS) plot for CD4+ naïve T cells showing samples colored by batch, before background 
subtraction and normalization. C1 is MDS component 1 and C2 is MDS component 2.  
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Figure S5. MDS of CD4+ naïve T cells after normalization. Multidimensional scaling 
(MDS) plot for CD4+ naïve T cells showing samples colored by batch, after background 
subtraction and normalization. C1 is MDS component 1 and C2 is MDS component 2. 
 
 
 
 
 
 
 
 
  



 31 

Table S1. FLS Candidate Sites Replicated in CD4 Naïve Cells in Peripheral Blood of 
RA Cases. This table lists the FLS candidate sites that were significant in our study 
(q<0.05) in CD4+ naïve T cells. (Separate file chapter2_supplementary_table_S1.xlsx.) 
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Table S2. Logistic Regression Results from Wilcoxon Rank Sum Test FLS 
Sites 
Model adjusted for Number CpGs p<0.05 
No Covariates 1,035 
Age 1,036 
Smoking 1,034 
Batch 841 
ReFACTor PC1 837 
Age, Smoking, Batch 830 
Age, Smoking, Batch, ReFACTor PC1 79 

 
Table S2. Logistic Regression Results from Wilcoxon Rank Sum Test FLS Sites. 
Logistic regression models were carried out on RA status adjusting for each of the 1,056 
CpGs that were significant at q<0.05 in the Wilcoxon rank sum tests, and adjusting for 
various covariates. For each CpG, individual models adjusting for these covariates were 
performed. 
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Table S3. Candidate CpGs from Genes Previously Associated with RA. This table 
lists the candidate CpGs that are within genes previously associated with RA. (Separate 
file chapter2_supplementary_table_S3.xlsx.)  
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Table S4. Candidate GWAS CpG Results 

Cell Type Raw 
p<0.05 

FDR 
q<0.05 

(direction) 

Absolute 
median diff 

> 10%a 

Absolute 
median diff 
between 
1% and 
10%a 

FDR 
q<0.05 and 
median diff 

> 1% 

CD14 77 0 1 165 0 
CD19 225 0 1 440 0 

CD4 Memory 65 1 (hyper) 0 214 0 

CD4 Naïve 480 
6 (hypo) 

12 (hyper) 0 357 2 
 
Table S4. Candidate GWAS CpG Results. A two-tailed Wilcoxon rank sum test was 
carried for each of the 1,676 CpGs from genes previously associated with RA (4) to 
compare the median methylation value between RA cases and controls, for each of the 
four cell types in peripheral blood. Results were corrected for multiple testing. Median 
difference is the median β methylation value in cases for a CpG minus the median β 
methylation value in controls for that CpG.  
AAbsolute median difference numbers are among the CpGs with unadjusted  p<0.05 
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Table S5. Logistic Regression Results Using 18 Significant CpGs from 
Wilcoxon Rank Sum Test, GWA Sites 
Model adjusted for Number CpGs p<0.05 
No Covariates 18 
Age 18 
Smoking 18 
Batch 16 
ReFACTor PC1 18 
Age, Smoking, Batch 16 
Age, Smoking, Batch, ReFACTor PC1 11 

 
Table S5. Logistic Regression Results Using 18 Significant CpGs from Wilcoxon 
Rank Sum Test, GWA Sites. Logistic regression models were carried out on RA status 
adjusting for each CpG that was significant at q<0.05 in the Wilcoxon rank sum tests, and 
adjusting for various covariates. For each CpG, individual models adjusting for these 
covariates were performed. 
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Table S6. Genome-wide Results 

Cell Type Raw p<0.05 FDR q<0.05 
(% of total) 

Absolute 
median diff > 

10%A 

Absolute 
median diff 

between 1% 
and 10%A 

CD14 17487 0 45 4342 
CD19 57493 0 43 25806 
CD4 Memory 10793 0 31 3708 
CD4 Naïve 10793 0 31 3708 

 
Table S6. Genome-wide Results. A 2-tailed Wilcoxon rank sum test was performed for 
each of the 428,232 CpGs on the 450k BeadChip following quality control to compare the 
median methylation value between RA cases and controls, for each of the four cell types 
in peripheral blood. Multiple testing was accounted for by controlling the false discovery 
rate (FDR). Median difference is the median β methylation value in RA cases for a CpG 
minus the median β methylation value in controls for that CpG.  
AAbsolute median difference numbers are among the CpGs with unadjusted p-value of 
<0.05 
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Table S7. Mean Methylation in RA Cases and Controls. 

Cell Type Mean of RA 
Cases 

Mean of 
Controls P-value 

CD14 0.501 0.500 0.81 
CD19 0.513 0.509 0.32 
CD4 Memory 0.502 0.503 0.92 
CD4 Naïve 0.528 0.523 0.06 

 
Table S7. Mean Methylation in RA Cases and Controls. A global mean methylation 
level in each sample was determined by finding the mean β methylation value for all sites 
that passed QC filtering for that sample, across all CpGs for each RA case and control. 
For each cell type a t-test was calculated to determine whether global methylation differed 
between cases and controls.  
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Chapter 3 - Increased DNA methylation of SLFN12 in CD4+ and CD8+ T cells from 
multiple sclerosis patients 

Abstract 
 
DNA methylation is an epigenetic mark that is influenced by environmental factors and is 
associated with changes to gene expression and phenotypes. It may link environmental 
exposures to disease etiology or indicate important gene pathways involved in disease 
pathogenesis. We identified genomic regions that are differentially methylated in T cells 
of patients with relapsing remitting multiple sclerosis (MS) compared to healthy controls. 
DNA methylation was assessed at 450,000 genomic sites in CD4+ and CD8+ T cells 
purified from peripheral blood of 94 women with MS and 94 healthy women, and 
differentially methylated regions were identified using bumphunter. Differential DNA 
methylation was observed near four loci: MOG/ZFP57, NINJ2/LOC100049716, HLA-
DRB1, and SLFN12. Increased methylation of the first exon of the SLFN12 gene was 
observed in both T cell subtypes and remained present after restricting analyses to 
samples from patients who had never been on treatment or had been off treatment for 
more than 2.5 years. Genes near the regions of differential methylation in T cells were 
assessed for differential expression in whole blood samples from a separate population 
of 1,329 women with MS and 97 healthy women. Gene expression of HLA-DRB1, NINJ2, 
and SLFN12 was observed to be decreased in whole blood in MS patients compared to 
controls. We conclude that T cells from MS patients display regions of differential DNA 
methylation compared to controls, and corresponding gene expression differences are 
observed in whole blood. Two of the genes that showed both methylation and expression 
differences, NINJ2 and SLFN12, have not previously been implicated in MS. SLFN12 is 
a particularly compelling target of further research, as this gene is known to be down-
regulated during T cell activation and up-regulated by type I interferons (IFNs), which are 
used to treat MS. 
 
Introduction 
 
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, 
with onset during early adulthood, leading to demyelination and axonal degeneration that 
often progresses to physical and cognitive disability. The cause of MS is unknown, 
however, genetic and environmental factors, and interactions between them, are known 
to contribute to disease risk.[1–3] Variation in human leukocyte antigen (HLA) genes 
represent the strongest genetic susceptibility factor for MS, with the strongest signal in 
HLA-DRB1. In recent years, genome-wide association studies (GWAS) and custom chip-
based studies have identified 200 MS-associated non-HLA loci.[4–6] Each of these 
genetic associations exerts only a modest effect size, and no genetic variant by itself is 
sufficient to cause MS, making the genetic contribution to MS etiology highly complex. 
The local linkage disequilibrium (LD) structure of most MS-associated loci makes the 
identification of true causal variants difficult. However, when inferring the most likely 
affected genes, a strong overrepresentation of immunologically relevant genes is 
observed, in particular for genes known to regulate T cell mediated immunity.[4,6]  
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MS heritability is not yet fully explained through the associated genetic variants, indicating 
that additional factors, such as epigenetic mechanisms, contribute to MS etiology. The 
term epigenetics describes heritable changes in gene regulation that do not alter the DNA 
sequence. DNA methylation, a widely studied epigenetic mechanism, is the addition of a 
methyl group to the fifth carbon position of cytosine at CpG dinucleotides. DNA 
methylation in gene promoter regions typically prevents transcription factors from binding 
and thereby silences gene expression, although other regulatory effects of DNA 
methylation are known.[7] While DNA methylation patterns can be inherited, they are also 
affected by environmental exposures such as tobacco smoke, diet, exercise, stress, and 
medications. Thus, DNA methylation may link environmental exposures and genetic 
variations to MS disease risk. DNA methylation associations have been shown in 
cancers,[8] and more recently, immune-mediated and neurodegenerative diseases,[9–
11] including MS.[12–20] 
 
Here, we investigate DNA methylation in CD4+ and CD8+ T cells purified from blood in 
Norwegian and Australian MS patients compared to healthy controls. Methylation 
differences in these cell types between MS patients and controls have been previously 
studied in both smaller cohorts.[13,15,16,20] More samples have since been added, and 
the Australian and Norwegian datasets have been combined to maximize statistical 
power. The current analysis represents the largest study to date on the role of DNA 
methylation of immune cells in MS. Epigenome-wide association analysis was performed 
to identify differentially methylated positions (DMPs) and differentially methylated regions 
(DMRs). Gene expression changes in whole blood corresponding to DMRs was used to 
validate our methylation findings in an independent dataset of MS cases and healthy 
controls. 
 
Results 
 
Participant characteristics and proportion of cell type samples available for analyses are 
summarized in Table 1. CD4+ and CD8+ T cells were analyzed separately, and different 
subsets of cases were considered to evaluate potential bias based on treatment. In total, 
five sub-analyses were conducted: a) CD4+ T cells of all cases regardless of treatment 
vs. all controls; b) CD8+ T cells of all cases regardless of treatment vs. all controls; c) 
CD4+ T cells of cases not on treatment at the time of inclusion vs. all controls; d) CD4+ T 
cells of treatment-naïve cases vs. all controls; and e) CD8+ T cells of treatment-naïve 
cases vs. all controls (Table 2). There were insufficient CD8+ T cell samples to analyze 
cases off-treatment at time of inclusion. About 65,000 CpGs were removed from each 
dataset in quality control steps. The genomic inflation factor was close to one for all 
analysis strata, indicating that results were not considerably confounded after including 
surrogate variables (SVs) in the regression models. We compared estimated SVs to the 
measured variables of participant age and batch and found that each of these features 
was well captured in the largest SVs (S1 and S2 Figs). 
 
DMP analysis confirms hypermethylation in CD8+ T cells for MS patients 
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No individual DMPs were significantly associated with MS after adjusting for multiple 
hypothesis testing. However, when we focused on probes that showed a nominally 
significant p-value in the DMP analysis of all samples, we confirmed our previous 
findings[16] that CD8+ T cells of MS patients display a higher degree of DNA methylation 
as compared to healthy controls (Fig 1). This trend becomes increasingly apparent as p-
values become increasingly stringent, ranging from 52% of sites hypermethylated at 
p<0.05 to 69% hypermethylated at p<0.0001. In CD4+ T cells no trend towards DNA 
hypermethylation was observed for any p-value cutoff. 
 
DMRs in MS patients compared to controls 
 
As groups of CpG sites located near one another can be methylated or demethylated 
together, and identifying these regions of differential methylation is statistically more 
powerful than identifying single DMPs, we next sought to identify DMRs.[21] Results are 
summarized in Table 3. The exact same DMRs were identified for CD4+ T cells of cases 
not on treatment at the time of inclusion and CD4+ T cells of treatment-naïve cases 
(datasets c and d listed above), so only results for the latter are included here. 
Additionally, because microarray probes used to assess DNA methylation may be 
sensitive to SNPs in the probe sequences, we evaluated whether methylation at individual 
CpGs within DMRs corresponded to differences in genotypes. Out of 34 CpGs in DMRs 
with SNPs in the probe sequences that were also present in the imputed Norwegian 
genetic data, 4 CpGs in the MOG/ZFP57 DMR were found to be differentially methylated 
by genotype. Dropping the 4 CpG sites resulted in a slightly higher family-wise error rate 
(FWER) for this DMR, but the result remained significant. 
 
Hypermethylation of SLFN12 is associated with MS 
 
A consistent DMR signal was observed on chromosome 17 in CD4+ and CD8+ T cells 
(Table 3). A long DMR (between 18 and 22 differentially methylated CpGs, depending on 
the dataset analyzed) covering the first exon of SLFN12 showed hypermethylation in MS 
patients compared to healthy controls in both CD4+ and CD8+ T cells (Fig 2). 
Hypermethylation was seen in all strata, regardless of treatment status of cases. A much 
smaller DMR consisting of a single CpG site hypomethylated only in the CD4+ T cells of 
treatment-naïve cases compared to controls was identified 3kb downstream of SLFN12 
(Table 3). We note that a DMR can consist of a single CpG site due to the width of the 
Bumphunter smoothing function. 
 
Hypomethylation in the MHC region 
 
Evidence for a DMR was observed in a regulatory region just outside the HLA Class I 
region on chromosome 6 in CD4+ T cells (Table 3). Specifically, this DMR is located in a 
regulatory region 8kb downstream of MOG, encoding myelin oligodendrocyte 
glycoprotein, which is expressed in myelin sheaths,[22] and 3kb upstream of the zinc 
finger protein gene ZFP57, encoding a protein that likely acts a as a transcriptional 
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repressor (RefSeq, Sep 2009). In addition, we confirmed evidence of hypomethylation in 
the HLA-DRB1 gene in MS CD4+ T cells compared to healthy controls, as previously 
reported,[20]  as well as in CD8+ T cells (Table 3). However, the HLA-DRB1 result was 
not observed when analyses were restricted to treatment-naïve cases. 
 
Hypermethylation of the NINJ2/LOC100049716 locus 
 
A DMR consisting of 3 CpGs in the first intron of the NINJ2 gene demonstrated 
hypermethylation in CD4+ T cells from treatment-naïve MS patients when compared to 
healthy controls. This region is overlapped by the first exon of an uncharacterized long 
non-coding RNA (LOC100049716). 
 
DMRs correspond to differential expression of genes in whole blood 
 
To assess whether the observed DNA methylation was associated with gene expression 
of nearby genes, we nominated six candidates in close proximity to the DMRs identified 
in the current study: SLFN12, NINJ2, MOG, HLA-DRB1, ZFP57, and LOC100049716. 
Using whole blood samples from a large collection of MS patients and healthy controls, 
differential gene expression was assessed for four of the genes. MOG and ZFP57 
expression levels were below the microarray background threshold (average log2 
expression <4) and therefore not considered in our analyses. Lower gene expression was 
observed for SLFN12, HLA-DRB1 and NINJ2 in MS patients compared to healthy 
controls, and there was no difference in LOC100049716 (Fig 3). Results from genome-
wide analysis (limma) and individual linear regression fits are listed in Table 4.  
 
Discussion 
 
Our findings show that CD4+ and CD8+ T cells isolated from MS patients have regions of 
markedly increased or decreased methylation compared to cells isolated from healthy 
controls. These regions may influence disease etiology and shed light on risk factors for 
MS.[3] Compellingly, a DMR flanking the first exon of SLFN12 occurred in all patient 
subsets for both CD4+ and CD8+ T cells. SLFN12 encodes a member of the Schlafen 
protein family, which is a family of proteins encoded by a cluster of five genes on 
chromosome 17. Type I IFNs induce the expression of Schlafen genes.[23] SLFN12 has 
been shown to be downregulated during T-cell activation in primary human cells.[24] 
From clinical observations and genetic studies,[4,6,25–27] there is convincing evidence 
that MS pathology is driven by T-cells, and IFN beta type I is an approved therapy for MS, 
making SLFN12 a biologically plausible gene of interest for MS. Experimental evidence 
shows that Slfn8 knockout mice have lower expression of pro-inflammatory cytokines and 
are resistant to induced experimental autoimmune encephalomyelitis (EAE), the mouse 
model of MS.[28] Though Slfn8 is a different member of the Schlafen family, its clear role 
in EAE makes SLFN12 an appealing target for further research in MS. 
 
Hypermethylation of the first exon of SLFN12 suggests repression of this gene in samples 
from MS patients, which is corroborated by decreased expression in whole blood of MS 
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patients compared to controls (Table 4) in an independent cohort. It is not known whether 
this decrease in gene expression is caused by the observed hypermethylation or is a 
result of increased T-cell activity. A study of the transcriptional co-regulator gene 
Mastermind-Like 1 (MAML1) showed that its overexpression in embryonic kidney cells 
induced widespread methylation changes, including hypermethylation of SLFN12 and 
corresponding downregulation of the gene, suggesting that a change in methylation alone 
could be responsible for decreased expression in T cells.[29] Conversely, a study in 
allergic rhinitis sufferers also found increased methylation and decreased expression of 
SLFN12 in lymphocyte-enriched blood after participants were exposed to allergens, 
suggesting that T-cell activation could be the primary instigating factor.[30] Additionally, 
the area of the SLFN12 DMR is enriched in the H3K27Ac histone mark, which is typically 
associated with regulatory elements, and it contains over 50 transcription factor binding 
motifs (Fig 4); increased methylation would therefore be expected to result in decreased 
expression.[31,32] 
 
In line with earlier findings by Graves et al.[13] and Maltby et al.,[20] we confirmed that 
HLA-DRB1 is hypomethylated in the CD4+ T cells of MS patients and observed the DMR 
for the first time in CD8+ T cells. HLA-DRB1 is highly polymorphic, and is the strongest 
genetic risk for MS, raising the question of whether the observed differential methylation 
could be attributable to genetic variation in probe sequences used on the Illumina array. 
However, no CpGs with SNPs in probe sequences with differential methylation by 
genotype in this DMR were found. Interestingly, the HLA-DRB1 DMR was identified using 
a different method from that described by Maltby et al. When we investigated the gene 
expression of HLA-DRB1, we observed that while hypomethylation was present in MS 
patients compared to controls, this gene has decreased expression in MS patients. This 
finding could be due to the location of the DMR in the gene body rather than a 
promoter,[33] or due to the fact that gene expression was investigated in whole blood 
rather than isolated T cells. Of note, the DMR was only detected when including all MS 
patients in the analysis regardless of treatment and not when restricting to off-treatment 
patients. This finding could be explained by lower statistical power in the off-treatment 
subgroups, or the DMR could result from medications used to treat MS.  
 
Finally, hypermethylation of a region near NINJ2 was observed for CD4+ T cells, which 
corresponded with lower expression of this gene in whole blood. This gene has previously 
been reported to show aberrant methylation in borderline personality disorder.[34] The 
DMR was only evident when off-treatment cases were included and was not detected 
when on-treatment cases were added, suggesting that treatment could be altering 
methylation in this region. This finding needs to be validated in an independent dataset. 
 
When we compared the DMRs against the recently published 200 MS-associated 
SNPs[6] we did not observe any overlap outside of HLA-DRB1. It is possible that DNA 
methylation represents an independent functional mechanism of MS etiology. Though not 
in the list of 200 definite MS-associated SNPs, variants in NINJ2 have been identified as 
“suggestive” MS-associated SNPs.[6] The increased methylation in this gene in CD4+ T 
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cells from MS cases could be due to NINJ2 variants, to an environmental factor, or to 
both, possibly acting in concert within an individual. 
 
Some key strengths of this study were that searching for regions of differential methylation 
instead of isolated CpG sites provided greater statistical power, and that the relationships 
between our top DMRs and potential impact on mRNA levels were investigated a large 
independent dataset. In addition, the use of careful quality control procedures ensured 
that results were not due to technical artifacts. The use of SVA to infer covariates in the 
data allowed us to adjust for both measured and unmeasured confounders, and we 
confirmed that known variables such as measurement batch and BeadChip type were 
captured by SVs. Separate analysis of treatment-naïve cases allowed us to confirm that 
results were not due solely to use of medications. A limitation of this study was that DNA 
methylation was measured in cases after they developed MS, therefore temporality 
between methylation changes and disease onset could not be established. Also, 
environmental exposures were not evaluated. Methylation was assessed in T cells while 
expression was assessed in whole blood, which may not completely capture the 
relationship between DMRs and expression in T cells. Of the ~28 million CpG sites in the 
human genome, methylation was assessed only for sites on the 450k BeadChip.[35] 
Larger sample sizes will be needed to investigate differences in findings between CD4+ 
and CD8+ T cells. Finally, because this study was restricted to white females, findings 
may be sex specific and not generalizable to other populations. 
 
Known environmental MS risk factors may exert effects on MS risk via changes in DNA 
methylation. For example, smoking increases MS risk, especially among carriers of HLA 
risk alleles or carriers of variants in NAT1.[3] Furthermore, smoking is associated with 
demethylation of the aryl hydrocarbon receptor repressor (AHRR) gene,[36] and the effect 
of smoking on demethylation of AHRR in blood is more pronounced in MS cases than 
healthy controls.[37] Larger effects from smoking on methylation throughout the genome 
have been observed in MS cases carrying HLA-DRB1*15:01 and lacking the HLA-A*02 
protective variant, and demethylation of a single CpG  site near SLFN12L in former 
smokers relative to never smokers was detected in these cases.[37] Smoking is also 
associated with a more severe disease course.[3] These studies suggest that methylation 
could potentially be a mechanism by which smoking is acting to alter risk of disease or 
severity of disease course.  
 
Other well-established MS environmental risk factors are associated with altered DNA 
methylation patterns and could help explain our findings. Adiposity has been found to be 
the cause of genome-wide methylation changes,[38] and adolescent obesity is associated 
with a two-fold risk of MS. Low vitamin D and decreased sun exposure are also associated 
with MS, and vitamin D can alter methylation status of other genes.[39] Several studies 
have shown an association of Epstein-Barr virus (EBV) with MS, and EBV exploits the 
epigenetic machinery of infected host cells to regulate its life cycle, resulting in 
widespread methylation changes to the host cell.[40] However, EBV resides in epithelial 
and B cells, so if methylation changes are due to EBV, they are more likely to be seen in 
those cell types. The impact of these environmental factors on methylation patterns 
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specifically relevant to MS needs to be investigated further, in T cells and other immune 
cell types and tissues, as methylation changes may help explain the biological 
mechanisms through which environment affects disease risk, and consequently may 
identify new therapeutic targets that have not been revealed by genetic studies alone. 
 
In conclusion, this is the largest genome-wide DNA methylation study of MS in CD4+ and 
CD8+ T cells to date. We show evidence that DNA methylation of CD4+ and CD8+ T cells 
plays a role in MS etiology. Consistent DMRs in SLFN12 and HLA-DRB1 were observed 
across two T cell sub-types, and differential gene expression was detected in whole blood 
for these gene candidates. Results indicate that DMRs may be detected in more 
accessible whole blood samples, paving the way for future large-scale studies of DNA 
methylation in MS. These findings would benefit from additional confirmation in larger 
independent case-control studies. Further research investigating the functional 
mechanisms underlying the association of these methylated regions to MS is warranted, 
particularly for SLFN12, which is not well-characterized. 
 
Methods 
 
Study populations 
 
Norwegian patients with relapsing remitting MS diagnosed according to the McDonald 
criteria[41] (N = 46 females) were recruited from the Department of Neurology at Oslo 
University Hospital, Norway.[16] Controls (N = 46 females) were recruited through 
patients or from hospital employees and were frequency-matched to cases by age in 5-
year increments. Almost all the Norwegian patients were treatment-naïve at the time of 
inclusion, except two patients were on IFN beta treatment, and three patients had 
previously received medications (none antibody-based, with a washout time of at least 
2.5 years prior to inclusion).  
 
Australian relapsing remitting MS patients were recruited from the John Hunter Hospital 
MS Clinic in New South Wales, Australia, and controls were recruited from the Australian 
Red Cross Blood Bank.[15,20] The Australian patients were a mix of patients who were 
treatment-naïve, off treatment for >3 months, or on treatment at the time of inclusion. 
 
The Norwegian Regional Committee for Medical and Health Research Ethics and the 
Australian Hunter New England Health Research Ethics (05/04/13.09) and University of 
Newcastle Ethics (H-505-0607) committees approved this study.  Methods were carried 
out in accordance with institutional guidelines on human subject experiments. Written and 
informed consent was obtained from all subjects. 
 
Purification of CD4+ and CD8+ T cells 
 
For the Norwegian samples, CD4+ and CD8+ T cells were isolated from freshly collected 
peripheral blood mononuclear cells (PBMCs) using immunomagnetic cell separation 
selection kits (EasySep Human CD4+ T cell Isolation Kit (negative selection) and 



 45 

EasySep Human CD8+ Selection Kit (positive selection), StemCell Technologies, 
Canada) according to the manufacturer instructions. Purified cells were stained with 
FITC-conjugated mouse anti-human CD4 (clone RFT4, catalog #9522-02, Southern 
Biotech, USA) or FITC-conjugated mouse anti-human CD8 (clone HIT8a, catalog 
#555634, BD Biosciences, USA) and FITC-conjugated mouse IgG1 isotype control (clone 
15H6, catalog #0102-02, Southern Biotech, USA) antibodies, and purity exceeding 95% 
was confirmed by flow cytometry (Attune Acoustic Focusing Cytometer, Applied 
Biosystems, USA).  
 
For the Australian samples, CD4+ and CD8+ T cells were isolated from PBMCs using the 
same methods as the Norwegian samples. The purity of the cells was assessed by flow 
cytometry using a FITC conjugated anti-human CD4 antibody (clone OTK4, catalog 
#60016FI, StemCell Technologies, Canada) or an anti-human CD8 antibody (clone RPA-
T8, catalog #60022FI.1, StemCell Technologies, Canada) on a BD FACSCanto II flow 
cytometer, then analyzed using FACSDiva software (BD Biosciences, USA) at the 
Analytical Biomolecular Research Facility of the University of Newcastle. All samples met 
a minimum purity threshold of >90%. 
 
DNA extraction 
 
DNA from purified CD4+ and CD8+ T cell samples was extracted using QIAamp DNA Mini 
Kit (Qiagen, Germany) and bisulfite converted with the EZ DNA Methylation Kit (Zymo 
Research, USA). Methylation was assayed using Illumina BeadChips according to the 
manufacturer instructions (Illumina, USA). Two thirds of the Norwegian cohort were 
assayed with MethylationEPIC (EPIC) BeadChips. The Australian cohort and the rest of 
the Norwegian cohort were assayed with HumanMethylation450 (450k) BeadChips. 
Norwegian samples were assayed in four batches; Australian samples were assayed in 
two batches. 
 
Genotyping and imputation 
 
The Norwegian samples were genotyped with the Human Omni Express BeadChip 
(Illumina). PLINKv1.09[42]  was used to apply consecutive filters for per-SNP call rate 
(0.95) and per-sample call rate (0.95) prior to pre-phasing and imputation. MACH[43] was 
used for pre-phasing and genotypes were imputed against European samples from the 
1000 Genomes data release 3 using Minimac3.[44] The Australian samples were not 
genotyped. 
 
DNA methylation data processing and analysis 
 
The Minfi R package was used for pre-preprocessing, normalization, and quality control 
(QC).[45] EPIC and 450k datasets were combined by extracting the probes present on 
both platforms. The Norwegian and Australian samples were combined, and then 
datasets were split by cell type. Processing and analyses of CD4+ and CD8+ T cells were 
performed separately. Separate analyses were performed for a) treatment-naïve patients; 
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b) those off treatment for >3 months at the time of inclusion in addition to treatment-naïve 
patients; and c) all patients. The preprocessNoob function was used for background 
subtraction and dye normalization, followed by quantile normalization with 
preprocessQuantile. Data points with detection p-value > 0.01 were replaced with “NA” 
values. CpG sites with more than 5% “NA” values across all samples were discarded. 
CpG sites with a common SNP (based on hg19, dbSNP build 144) at the CpG 
interrogation site or the single base extension were removed from analysis, as were sites 
with probes predicted to cross-hybridize to other genomic locations.[46] Predicted gender 
based on X and Y chromosome methylation matched each study participant’s gender. 
None of the samples had more than 5% “NA” values for sites forwarded for analysis. 
 
Methylation beta values, defined as the proportion the methylated signal makes up of the 
methylated plus unmethylated signal, were logit transformed into M-values for analysis to 
reduce heteroskedasticity. Surrogate variable analysis (SVA) was run on each separate 
dataset analysis stratum to find latent variables. Such variables may represent batch 
effects, cellular heterogeneity or other unknown confounders (e.g., varying levels of 
inflammation). Measured potential covariates, such as age and batch, were not included 
when estimating SVs to allow SVA to identify such covariates directly from the data, as 
described by Jaffe et al.[47] and Leek,[48] with the “be” option used to determine the 
number of SVs to calculate, since this option resulted in lower genomic inflation compared 
to the “leek” option.[48] To determine DMPs, an epigenome-wide association analysis 
was performed using the empirical Bayes method in limma, with the M-value for each 
CpG as the outcome variable and disease status and SVs as predictors.[49]  
 
Differentially methylated regions (DMRs) were identified using Bumphunter,[50] using the 
same outcome and predictor variables as in the DMP analysis. CpG sites separated by 
at most 500 bp were used to define clusters, and then 1,000 bootstrap samples were 
used to generate a null distribution of regions. Candidate regions were nominated with 
pickCutoff, using the 99% quantile of the null-distribution as a threshold. An adjusted p-
value cutoff of 0.2 for the family-wise error rate (FWER) produced by Bumphunter was 
used to assign DMRs in each analysis. A liberal p-value cutoff was used because 
controlling the FWER (the probability of making at least one type I error) is more 
conservative than controlling the false discovery rate (which controls the proportion of 
type I errors). Imputed genome-wide SNP data was used to identify probes containing 
polymorphic SNPs in their recognition sequence for the Norwegian data. For each DMR, 
CpG sites with probes containing SNPs were further assessed for differential methylation 
by genotype. Those CpG sites were then excluded and supplementary DMR analyses 
were performed for the entire dataset. 
 
Whole blood gene expression data generation and pre-processing 
 
Gene expression was evaluated in a separate population. Whole blood PAXgene tubes 
were collected from 1,329 female relapsing remitting MS patients at baseline of the phase 
3 studies DEFINE and CONFIRM for demonstrating efficacy of delayed-release dimethyl 
fumarate for the treatment of RRMS, and from 97 female healthy volunteers.[51,52] 
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These subjects were predominantly of European ancestry (87%) and treatment-naïve 
(77%). They had a median age of 39 years (inter-quantile range (IQR) 31-46) and median 
disease duration of 7 years (IQR 0-12). mRNA isolation, labeling and hybridization was 
done at Expression Analysis (Q2 Solutions, USA) in two batches. Labeled RNA was 
hybridized on Human Genome U133 Plus 2.0 Arrays (Affymetrix, USA). Sample data was 
processed using the R/Bioconductor gcrma library[53] and outliers were removed based 
on array quality scores. Expression data were normalized for technical factors—RNA 
quantity, quality (RIN score), and gene-level degradation slopes—and for batch effects, 
controlling for primary sample groups using the R ComBat library.[54]  
  
Differential Expression (DE) analysis 
 
Probe-level expression data were summarized to gene-level data using the collapseRows 
function from the R/WGCNA library.[55] Gene-level DE analysis was performed using the 
R limma library.[49] Prior to the analysis, the data were adjusted for 48 surrogate 
variables[54] to adjust for latent variability in the data, controlling for disease status. For 
individual linear regression, the R function lm was used to regress gene expression levels 
of individual genes on disease status. 
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Table 1. Characteristics of relapsing-remitting MS cases and controls, and count 
of CD4+ and CD8+ T cell samples included in analyses. 
  

Cases Controls 
Norway 
N 46 46 
Age ± SD  38 ± 9 37 ± 9 
Female 46 (100%) 46 (100%) 
Treatment naïvea 44 (96%) - 
On treatment 2 (4%) - 
CD4+ T cell samples available for analysis 46 (100%) 41 (89%) 
CD8+ T cell samples available for analysis 46 (100%) 46 (100%) 
Australia 
N 48 53 
Age ± SD 40 ± 11 45 ± 16 
Female 48 (100%) 53 (100%) 
Treatment naïve 16 (33%) - 
> 3 months off treatment 12 (25%) - 
On treatmentb 22 (42%) - 
CD4+ T cell samples available for analysis 48 (100%) 53 (100%) 
CD8+ T cell samples available for analysis 22 (46%) 11 (21%) 

aThree individuals in this group were previously on treatment (5, 4, and 2.5 years before 
inclusion). 
bOne individual in this group had unknown treatment status. 
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Table 2: Overview of number of samples used in each of the five analyses, with 
quality control (QC) and analysis metrics. 
 

T Cell Type Cases, 
N 

Controls, 
N 

Probes 
Passing 

QC 

SVs λ Candidate 
Regions 

M-value 
Cutoff 

All cases, regardless of treatment 
CD4+ 94 94 423,500 13 1.11 3,989 0.154 
CD8+ 68 57 415,676 10 0.95 3,564 0.217 

Treatment-naïve or off treatment for at least 3 months 
CD4+ 72 94 423,500 12 1.10 3,902 0.170 

Treatment-naïve 
CD4+ 60 94 423,500 11 1.18 4,271 0.178 
CD8+ 44 46 409,357 7 1.02 3,703 0.198 

 
Columns indicate the number of case and control samples included in each analysis, 
the count of CpG probes passing QC filters, the number of estimated surrogate 
variables (SVs), genomic inflation factor λ with SVs as covariates, the number of 
candidate differentially methylated regions tested, and the M-value cutoff determined 
by the Bumphunter R package. 

  



 54 

Table 3. Differentially methylated regions (DMRs) in CD4+ and CD8+ T cells between 
MS cases and controls. 
 

DMR Genomic 
Position (hg19) 

DMR Position 
Relative to 

Genes 

# 
CpGs 

in 
DMR 

Direction of 
Methylation 
Change in 

Cases 

Patient Subsets 
with DMR in 
CD4+ Cells  

Patient Subsets 
with DMR in 
CD8+ Cells 

 
chr6:29648225-

29649084 
8kb downstream 

of MOG; 3kb 
upstream of 

ZFP57 

18-22 Decreased All patients - 
Treatment-naïve 

only 
- 

chr6:32551749-
32552453 

Exon 2 of 
HLA-DRB1 

7-8 Decreased All patients All patients 
- - 

chr12:739980-
740338 

Intron of NINJ2; 
first exon of 

LOC100049716 

3 Increased - - 
Treatment-naïve 

only 
- 

chr17:33734664
-33734664 

3kb downstream 
of SLFN12 

1 Decreased - - 
Treatment-naïve 

only 
- 

chr17:33759512
-33760527 

First exon 
SLFN12 

11-12 Increased All patients All patients 
Treatment-naïve 

only 
Treatment-naïve 

only 

P-values were adjusted for multiple tests, controlling the family-wise error rate (FWER 
from Bumphunter), and a DMR was called if the FWER was less than 0.2. Dash (-) 
indicates an FWER>0.2.  
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Table 4: Summary statistics for case/control expression differences in whole blood 
for genes identified in DNA methylation analyses.  
 
Gene FDR 

(limma) 
p-value 
(limma) 

p-value 
(linear fit) 

Moderated log 
fold change 
(limma) 

Log fold 
change 
(linear fit) 

SLFN12 3.29e-09 2.25e-10 4.88e-11 -0.417 -0.599 
HLA-DRB1 7.98e-12 3.17e-13 1.28e-13 -0.302 -0.442 
NINJ2 1.97e-05 3.64e-06 1.83e-09 -0.186 -0.349 
LOC100049716 0.527 0.446 0.046 -0.038 -0.123 

Genome-wide analysis (limma) and individual linear fit coefficients and p-values are 
listed, as well as limma p-values adjusted for multiple hypothesis testing to control the 
false discovery rate (FDR). Limma moderates fold changes and hence represent more 
conservative coefficients and p-values than linear fit. 
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Fig 1. Proportion of significantly differentially methylated positions at increasingly 
stringent p-value cutoffs in the CD8+ T cells of 94 MS cases and 94 healthy controls. 
Numbers indicate the number of CpGs meeting the p-value threshold for hypomethylated 
and hypermethylated. 
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Fig 2. Detailed view of the differentially methylated region on chromosome 17, 
overlapping the first exon of SLFN12. Individual CpG sites and sample values from 
CD4+ cells from 94 cases and 94 healthy controls are represented by dots (red dots – 
cases, blue dots – controls), whereas the lines represent the average values on each 
CpG site. The position of two SLFN12 gene transcripts are shown in dark blue. Illustration: 
the gviz package for R. 
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Fig 3. Gene expression levels of HLA-DRB1, LOC100049716, NINJ2, and SLFN12 in 
whole blood of MS cases compared to healthy controls (HC). Horizontal lines of 
boxplots indicate the lower quartile, median, and upper quartile of log2 gene expression 
intensities; whiskers indicate the lowest and highest values within 1.5 times the inter-
quartile range of the lower and upper quartiles; dots indicate outliers. 
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Fig 4. UCSC Genome Browser image showing the DMR in the SLFN12 gene region 
highlighted in blue. Several tracks are shown: (A) the CpG sites on the Illumina 450k 
chip, (B) candidate regulatory elements identified by the ENCODE SCREEN algorithm, 
(C) the position of the SLFN12 gene (the first exon of two transcript variants are shown), 
(D) the presence of the H3K27Ac mark across seven cell lines, and (E) the location of 
several transcription factor binding motifs in the genome sequence. 
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Supporting Information 
 
 
 

 
 
S1 Fig. Box plots of the first 6 surrogate variables (SV1-SV6) from the CD4+ T cell 
analysis of all participants according to batch. Batch is correlated with each of the 
first 6 SVs except SV5. Illumina chip type (450k vs. EPIC) appears to be captured 
particularly well by SV1.  
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S2 Fig. Scatterplots of the first 6 surrogate variables (SV1-SV6) from the CD4+ T 
cell analysis of all participants according to participant age at the time of blood 
draw. Pearson correlation coefficients and p-values are given. SV3 and SV4 appear to 
capture age the best. 
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Chapter 4 - miRNA contributions to pediatric-onset multiple sclerosis inferred 
from GWAS 

 
Abstract 
 
Objective: Onset of multiple sclerosis (MS) occurs in childhood for approximately 5% of 
cases (pediatric MS, or ped-MS). Epigenetic influences are strongly implicated in MS 
pathogenesis in adults, including the contribution from microRNAs (miRNAs), small 
non-coding RNAs that affect gene expression by binding target gene mRNAs. Few 
studies have specifically examined miRNAs in ped-MS, but individuals developing MS at 
an early age may carry a relatively high burden of genetic risk factors, and miRNA 
dysregulation may therefore play a larger role in the development of ped-MS than in adult-
onset MS. This study aimed to look for evidence of miRNA involvement in ped-MS 
pathogenesis. 
 
Methods: GWAS results from 486 ped-MS cases and 1,362 controls from the U.S. 
Pediatric MS Network and Kaiser Permanente Northern California membership were 
investigated for miRNA-specific signals. First, enrichment of miRNA-target gene network 
signals was evaluated using MIGWAS software. Second, SNPs in miRNA genes and in 
target gene binding sites (miR-SNPs) were tested for association with ped-MS, and 
pathway analysis was performed on associated target genes.  
 
Results: MIGWAS analysis showed that miRNA-target gene signals were enriched in 
GWAS (p=0.038) and identified 39 candidate biomarker miRNA-target gene pairs, 
including immune and neuronal signaling genes. The miR-SNP analysis implicated 
dysregulation of miRNA binding to target genes in 5 pathways, mainly involved in immune 
signaling.  
  
Interpretation: Evidence from GWAS suggests that miRNAs play a role in ped-MS 
pathogenesis by affecting immune signaling and other pathways. Candidate biomarker 
miRNA-target gene pairs should be further studied for diagnostic, prognostic, and/or 
therapeutic utility. 
 
Introduction 
 
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central 
nervous system and a leading cause of neurological disability in young adults. MS is 
typically diagnosed between the ages of 20 and 40, but it is estimated that up to 5% of all 
cases experience their first symptoms before the age of 18.1,2 While pediatric-onset MS 
(ped-MS) and adult MS presentation largely overlap, disease course in children is almost 
exclusively relapsing-remitting, with a higher relapse rate, and a longer time to 
development of secondary progressive MS and disability.2–4  
  
MS is thought to result from a complex interplay of genetic, epigenetic, and environmental 
risk factors.5 MicroRNAs (miRNAs) are epigenetic factors that have been investigated in 
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MS, and over 170 miRNAs have been found to be differentially expressed in various 
tissues in either adult-onset MS or experimental autoimmune encephalomyelitis (EAE) in 
mice.6–13 One study specifically compared miRNA expression levels in ped-MS cases to 
pediatric controls, and 12 upregulated and one downregulated miRNA were reported.14 
miRNAs are short (~22 nucleotides) non-coding RNAs that usually downregulate gene 
expression by binding to specific sequences of messenger RNA (mRNA) transcripts, 
targeting them for degradation and blocking protein translation, though different miRNA 
functions have also been reported.15 Target sites generally lie in the 3’ untranslated 
regions (3’ UTRs) of mRNAs, but binding in other regions is known to occur.16 Because 
each miRNA can target hundreds of genes, and any gene can be regulated by multiple 
miRNAs, they have the potential to influence entire networks of genes at once.  
 
Single nucleotide polymorphisms (SNPs) in and around miRNA genes have been 
associated with a number of autoimmune diseases, including MS.17 These miRNA SNPs 
can disrupt normal gene regulatory functions by affecting miRNA expression levels and 
processing, but SNPs in the target binding sites of mRNAs can also impact the normal 
function of miRNAs. Strategies to examine target gene SNPs in addition to miRNA gene 
SNPs have recently been developed and have implicated specific miRNAs and target 
genes in the development of autoimmune and other diseases.18–21 
 
This study examined evidence of miRNA involvement in ped-MS susceptibility in two 
ways. First, genome-wide association study (GWAS) results were tested for enrichment 
of signals in miRNA-target gene networks utilizing MIGWAS software.21,22 Second, a miR-
SNP association study was performed, and pathway analysis was used to characterize 
target genes harboring miR-SNPs associated with ped-MS. We define miR-SNP as a 
SNP that is either (1) located in a gene that codes for a miRNA, or (2) located in a miRNA 
binding site of a target gene. 
 
Methods 
 
Study Participants 
 
The study participants have been previously described,23 but now include additional ped-
MS cases with same inclusion/exclusion criteria. Additionally, only participants who were 
genotyped using an Illumina BeadChip array were included in this study. Briefly, patients 
with onset of MS or clinically isolated syndrome (CIS) with 2 silent MRI lesions suggestive 
of early MS before the age of 18 (n=432) were enrolled through the U.S. Network of 
Pediatric MS Centers.3 Additional adult cases with onset prior to age 18 (n=68) were 
recruited retrospectively from the Kaiser Permanente Northern California (KPNC) 
membership. All cases were confirmed to have MS using established diagnostic 
criteria.24,25  
Pediatric controls (n=208) were enrolled through the U.S. Network of Pediatric MS 
Centers.3 Adult controls (n=894) without a diagnosis of MS, optic neuritis, transverse 
myelitis, or demyelinating disease confirmed through electronic medical records were 
recruited from KPNC and enrolled. A second set of previously described26 female adult 



 64 

controls (n=268) with no prior history of autoimmune disease who were recruited as part 
of the University of California San Francisco Mother-Child Immunogenetic Study were 
also included.  
 
Data Collection 
 
DNA from participants was purified from either whole blood or saliva samples. Genotyping 
was performed using Illumina Infinium 660K and Human Omni Express BeadChip arrays. 
Genotype data were merged into a single dataset and processed using PLINK 1.9.27 
SNPs with a minor allele frequency (MAF) <1% or success rate <90% and samples with 
>10% failed genotype calls were removed from analysis. To reduce confounding due to 
population stratification, analyses were restricted to white individuals, defined as having 
>=80% European ancestry identified using SNP weights for European, West African, East 
Asian and Native American ancestral populations.28 Related individuals were identified, 
and only one randomly chosen person in any related group was retained for analysis, with 
the exception that cases were preferentially retained in instances where cases and 
controls were related. Classical multidimensional scaling (MDS) was used to visualize 
study population ancestry (Supplementary Figure) and include as covariates in 
subsequent statistical analyses. Five outlier samples were removed from analysis. SNP 
imputation was performed with reference haplotypes from Phase 3 of the 1000 Genomes 
Project29 using SHAPEIT2 and IMPUTE2.30 Genotypes were called using the default 
hard-call threshold of 90% using PLINK. Imputed SNPs with info score <0.3, with MAF 
<1%, with genotype call rate <90%, or not in Hardy-Weinberg equilibrium (HWE) among 
controls (p<0.00001) were removed. The final imputed dataset consisted of 7,570,644 
autosomal SNPs, of which 42,277 lay within the major histocompatibility complex (MHC) 
region chr6:29570005-33377657 in GRCh37/hg19, spanning genes GABBR1 to KIFC1.31  
Presence of the HLA-DRB1*15:01 allele, the strongest genetic risk factor for MS, was 
determined for each participant using the tag SNP rs3135388.32 There were 486 cases 
and 1,362 controls in the final dataset. Study protocols were approved by all institutions, 
and informed consent or assent was obtained from all participants, as previously 
described.23 
 
Statistical Analyses - miRNA-Target Gene Network Enrichment in GWAS (MIGWAS) 
 
Genome-wide association tests were performed on all autosomal SNPs outside of the 
MHC using logistic regression and additive genetic models in PLINK. Models included the 
first 3 MDS components to adjust for residual confounding by population stratification. 
Enrichment of miRNA-target gene network signals in the GWAS results was evaluated 
using MIGWAS software.21,22 Briefly, MIGWAS takes GWAS p-values as input, selects 
the lowest p-value per miRNA and target gene, and, for each of 179 different tissues with 
available miRNA expression data from FANTOM5,33 identifies the number of miRNA-
target gene pairs that satisfy the following conditions: both the miRNA and the target gene 
are associated with the outcome (p<0.01), there is a high binding score prediction for the 
pair, and the miRNA is highly and specifically expressed in the tissue. Enrichment of 
miRNA-target gene signal is estimated by permuting GWAS p-values 20,000 times and 
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recomputing the number of miRNA-target gene pairs that satisfy the conditions to obtain 
an empirical null distribution of that number. A p-value for enrichment is then reported for 
each tissue, as well as an overall enrichment p-value that does not take tissue expression 
into consideration is also reported. Enrichment p-values of 0.05 or lower were considered 
significant. Candidate biomarker miRNA-target gene pairs are also reported, and are 
defined as pairs where both the miRNA and target gene are nominally associated with 
the outcome (p<0.01) and the miRNA-target gene binding prediction score is in the top 
one percentile of all pairs.22 
 
Statistical Analyses - miR-SNP Association 
 
miR-SNPs were tested separately for association with ped-MS. miR-SNPs in miRNA 
genes were identified using version 21 high-confidence annotations from the miRBase 
database.34 Coordinates for 1,877 miRNA genes were converted from build 38 to build 
37 using the UCSC Genome Browser liftOver tool35 and intersected with imputed SNPs 
in the ped-MS dataset using BEDTools,36 resulting in 267 miR-SNPs outside of the MHC 
and 8 within the MHC. miR-SNPs in predicted target binding sites in the 3’ UTRs of 
protein-coding genes were identified using the MirSNP database18 and version 3.0 of the 
PolymiRTS database.19 SNPs in predicted target regions from either database were 
intersected with the ped-MS dataset, resulting in 51,725 target-region miR-SNPs outside 
of the MHC and 586 miR-SNPs within the MHC. 
 
Each miR-SNP was tested for association with ped-MS using the same logistic regression 
models as in the GWAS analysis, with the exception that models for miR-SNPs within the 
MHC also included the HLA-DRB1*15:01 tag SNP as a covariate. P-values in each 
category of association tests—miRNA gene SNPs or target gene SNPs, within or outside 
of the MHC—were adjusted separately for multiple hypothesis testing using the 
Benjamini-Hochberg procedure to control the false discovery rate.37 A threshold of 0.05 
was used to determine significance. In an effort to reduce the statistical burden of multiple 
hypothesis tests, several sets of candidate mir-SNPs were considered separately: 897 
miR-SNPs in the 3’UTRs of genes proximal to 200 non-MHC loci identified in the latest 
adult-onset MS genome-wide association study;38 1,063 miR-SNPs experimentally 
supported by crosslinking, ligation, and sequencing of hybrids (CLASH) experiments, 
including in non-canonical binding sites and non-protein-coding genes;16 19,516 miR-
SNPs predicted in the polymiRTS database to either create a new miRNA binding site or 
disrupt a conserved miRNA binding site, with a context+ score difference of less than -
0.15 (more negative scores indicate increased confidence that miRNA binding is 
disrupted); and one miR-SNP in the 3’ UTR of the HLA-DRB1 gene. 
 
Pathway analysis of target genes with mir-SNPs that were nominally associated with ped-
MS at p<0.01 in the main association analysis were conducted using PANTHER.39 
Statistical overrepresentation tests were performed using a background list of only 
protein-coding genes. Each of 9 available annotation data sets in the “PANTHER,” “GO,” 
and “Reactome” pathways were tested using Fisher's Exact test with FDR multiple test 
correction. 
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Results 
 
Characteristics of study participants are summarized in Table 1. Average age of onset for 
ped-MS cases was 14.3 years, and cases had more copies of the HLA-DRB1*15:01 allele 
than controls, as expected. When plotted with HGDP reference populations, cases and 
controls clustered together near European individuals (Supplementary Figure). 
 
miRNA-Target Gene Network Enrichment in GWAS (MIGWAS) 
 
Enrichment of miRNA-target gene network signals was observed in the ped-MS GWAS 
results for 25 different tissues (p<0.05) as well as overall, without considering tissue-
specific miRNA expression (p=0.038). Results are summarized in Table 2. MIGWAS 
identified 39 candidate biomarker miRNA-target gene pairs comprised of 16 unique 
miRNAs and 37 unique genes (Table 3). 
 
miR-SNP Association 
 
After adjusting p-values for multiple hypothesis testing, no miR-SNPs were significantly 
associated with ped-MS in the genome-wide analyses at FDR<0.05. There were 255 
target genes with 3’ UTR miR-SNPs associated at p<0.01 in the genome-wide analysis 
that were used as input for pathway analyses. These genes were overrepresented in five 
pathways in PANTHER (Table 4). Among the candidate miR-SNP sets, only one CLASH-
supported miR-SNP, rs61075345 in the third exon of TVP23B, was associated with ped-
MS (p=4.59 x 10-05, FDR= 0.047). 
 
Discussion 
 
In the current study, evidence that miRNAs are involved in ped-MS pathogenesis was 
sought using two different approaches that utilized genetic data from the largest 
population of ped-MS cases gathered to date.  
 
The MIGWAS method identified enrichment of miRNA-target gene networks in ped-MS 
GWAS results, and identified tissues in which miRNAs involved in those networks are 
known to be highly expressed. Tissues included gastrointestinal, brain, fetal, fat, joint, 
immune, lung, vascular, skin, kidney and other tissues (Table 2).  While it is true that 
immune and central nervous system tissues have clear roles in MS and are generally 
prioritized first for study, there is evidence that processes starting in other tissues may 
play a role in triggering MS and also warrant investigation. For instance, smoking is 
hypothesized to exert its effect on MS risk primarily through irritation and inflammation of 
lung tissue, which in turn likely trigger (possibly auto-reactive) immune responses.5 The 
highest enrichment observed in this ped-MS study was in a gastrointestinal tissue, 
keratinized cells of the oral mucosa, and gastrointestinal tissues were overrepresented in 
these results: 4 of the 7 gastrointestinal tissues tested were enriched for miRNA-target 
gene network signals. Evidence that miRNA dysregulation could specifically be occurring 
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in gastrointestinal tissues is notable because there is existing evidence of a bi-directional 
relationship between MS and the gut microbiome, where aberrant gut microbiomes found 
in MS patients contribute to a pro-inflammatory state, and the autoreactive immune 
systems of MS patients shape the gut microbiome.40  
 
Several genes identified in the MIGWAS candidate biomarker target-gene pairs are 
involved in immune signaling and activation (Table 3) according to RefSeq annotations,41 
and are therefore particularly promising targets of future research into the role miRNAs 
play in ped-MS development. CIITA is a “master regulator” of class II HLA gene 
expression, and CD80 is a T cell membrane receptor that provides the costimulatory 
signal necessary for T cell activation. CD109 is expressed in activated T cells and 
regulates transforming growth factor beta signaling. CBL is an enzyme required for 
targeting substrates for degradation by the proteasome and is a negative regulator of 
many signaling pathways triggered by activation of cell surface receptors. TFAP4 is a 
transcription factor that activates both viral and cellular genes. Two other MIGWAS genes 
with plausible roles in ped-MS pathogenesis affect neuronal differentiation and signaling. 
GLIS2 is widely expressed at low levels in the neural tube and peripheral nervous system 
and is thought to promote neuronal differentiation, and NCS1 modulates synaptic 
transmission and synaptic plasticity and is expressed predominantly in neurons. Three 
genes identified by MIGWAS are involved in protein folding and homeostasis in the 
endoplasmic reticulum (ER), which is notable because the ER lumen cellular component 
was also identified in the miR-SNP pathway analysis. The ER lumen is where class I and 
II HLA proteins are assembled,42 and stress in the ER caused by accumulation of 
misfolded proteins (the “unfolded protein response” or UPR) is associated with a number 
of inflammatory diseases, including MS.43 Of the MIGWAS-identified genes, HYOU1 is 
thought to play an important role in protein folding and secretion in the ER. ERP29 
localizes to the lumen of the ER and is involved in the processing of secretory proteins. 
SLC37A4 regulates transport from the cytoplasm to the lumen of the ER to maintain 
glucose homeostasis and plays a role in calcium sequestration in the ER lumen. 
Collectively, the genes in the 39 miRNA-target gene pairs suggest that miRNAs could be 
affecting ped-MS through many mechanisms, including immune signaling and activation, 
neuronal differentiation and signaling, and protein folding in the ER. Finally, it is notable 
that expression differences for five of the 16 candidate miRNAs identified by MIGWAS, 
hsa-mir-197, hsa-mir-200c, hsa-mir-21, hsa-mir-599, and hsa-mir-744, have been 
associated with MS or EAE in previous studies,6,7 and two of them, hsa-miR-21 and hsa-
miR-3605, were differentially expressed in ped-MS cases specifically (though hsa-miR-
21 failed a subsequent validation assay).14 A follow-up to the ped-MS expression study 
found that six of the 13 confirmed ped-MS-associated miRNAs were also differentially 
expressed in adults,44 but hsa-miR-3605 was not among them, suggesting that it could 
be a biomarker specific to ped-MS. 
 
In the miR-SNP analysis, the single CLASH-supported miR-SNP associated with ped-MS 
resides in the TVP23B gene, which codes for a membrane protein associated with 
diabetic retinopathy.45 It is not immediately clear how it may play a role in ped-MS 
pathogenesis. However, statistical overrepresentation tests of top miR-SNP hits yielded 
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two receptor-mediated signaling pathways with a more evident relationship to ped-MS. 
Five genes in the histamine H1 receptor pathway were found to have ped-MS-associated 
miR-SNPs (Table 4). Histamine is a ubiquitous compound in human tissues that acts as 
a neurotransmitter and that is involved in inflammatory responses that act through four 
different receptors, H1-H4. It is thought that the pro-inflammatory effects of histamine act 
through H1 receptors.46 Many of the same genes are also involved in the 5-HT2 type 
receptor mediated signaling pathway. 5-HT2 is a subtype of serotonin receptors. Similar 
to histamine, serotonin is a signaling molecule with wide-ranging effects that acts as both 
a neurotransmitter and a hormone. The 5-HT2 class of hormone receptors is expressed 
on several immune cell types.47 Our results suggest that dysregulation of genes involved 
in these signaling pathways by miRNAs increases ped-MS risk. 
 
The other three pathways identified in the miR-SNP analysis each encompass many of 
the same genes, including several genes encoded in the MHC (Table 4). Five class I and 
II HLA genes associated with ped-MS are in the MHC protein complex (GO cellular 
component). These genes code for proteins that present antigens to T cells, and variants 
in antigen-presenting genes are the first-documented and strongest genetic risk factors 
for MS.5,38 The same five HLA genes are part of the integral component of the luminal 
side of endoplasmic reticulum (ER) membrane (GO Cellular Component). Of note, the 
genes identified in the miR-SNP analysis are different from those identified in the 
MIGWAS analysis, but both methods point to dysregulation of processes in the ER. The 
interferon gamma (IFN-γ) signaling pathway contains a total of nine ped-MS-associated 
genes. The role of IFN-γ in MS has been extensively studied, and, similar to histamine 
and serotonin, it can have detrimental or beneficial effects on MS depending on where 
and when it is active.48 Our miR-SNP analysis findings indicate that aberrant regulation 
by miRNAs of genes in the MHC protein complex, genes on the inner part of the ER 
lumen, or genes involved in IFN-γ signaling (which are not mutually exclusive genes), 
could be contributing to ped-MS pathogenesis. 
 
This study had some limitations. It is possible that the SNPs identified in the MIGWAS 
and miR-SNP studies do not affect ped-MS via miRNA function but instead are associated 
due to linkage disequilibrium with SNPs acting by other mechanisms. Another issue is 
that miRNA-target binding prediction is imperfect, and therefore some of the miRNAs may 
not actually act on the genes identified in MIGWAS, and some of the miR-SNPs tested 
may not in reality impact miRNA function. Because the study was restricted to a white 
population, results may not be generalizable, and miRNA associations that exist in other 
non-white populations may have been missed. 
 
An important strength of this study is that it utilized the largest study population thus far 
for ped-MS, which is a rare disease, and therefore difficult to study. Furthermore, cases 
were ascertained by a panel of pediatric MS specialists. Only samples genotyped on 
Illumina microarrays were utilized, minimizing the possibility of imputation bias, and 
rigorous quality control of microarray data was applied. By assessing p-values of SNPs 
in miRNA and target genes at the same time, and by including miRNA expression data, 
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MIGWAS was able to detect signals that may be missed with traditional GWAS or miR-
SNP analysis.  
 
In conclusion, this study provides evidence that ped-MS risk is influenced by miRNAs 
acting on immune signaling and other genes, and several miRNA-target gene pairs and 
specific tissues were nominated for further study. Larger studies are needed to confirm 
these results, and further work is needed to determine whether any miRNA-mediated 
disease processes are specific to the pediatric population. 
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Tables and Figures 
 
 
Table 1: Characteristics of ped-MS case and control individuals in the miR-SNP 
association study.  
 

  Ped-MS Cases Controls 

N 486 1,362 
Sex   
       Female 362 (74) 1,122 (82) 
       Male 124 (26) 240 (18) 
Age of onset 14.3 (3.2) -- 
Copies HLA-DRB1*15:01 allele 

  

         0 250 (51) 1,005 (74) 
         1 194 (40) 334 (24) 
         2 42 (9) 23 (2) 

 
Table values are mean (SD) for continuous variables or n (%) for categorical variables. 
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Table 2: Tissues enriched for miRNA-target gene network signals (p<0.05) in ped-MS 
GWAS results in the MIGWAS analysis. 
 

 
P-values and fold changes are for enrichment of the number of miRNA-target gene pairs 
associated with ped-MS (where the pair has a high predicted binding score and the 
miRNA is highly expressed in the tissue) compared to the empirical null distribution of the 
number of such pairs. 
 

Tissue P-value Fold 
change 

MIGWAS 
tissue category 

Keratinized cell of the oral mucosa 0.002 4.07 gastrointestinal 
Human spinal cord - adult sample 0.011 2.61 brain 
Epithelial cell of amnion 0.014 2.99 fetal 
Preadipocyte 0.020 2.42 fat 
Amnion mesenchymal stem cell 0.020 2.74 fetal 
Epithelial cell of alimentary canal 0.023 2.79 gastrointestinal 
Synovial cell 0.025 2.25 joint 
Epithelial cell of esophagus 0.026 2.28 gastrointestinal 
Acinar cell of sebaceous gland 0.027 2.64 fat 
Mast cell 0.029 2.49 immune 
Non-pigmented ciliary epithelial cell 0.031 2.13 skin 
Tracheal epithelial cell 0.033 2.59 lung 
Smooth muscle cell of internal thoracic artery 0.035 2.14 vascular 
All (tissue-naïve test) 0.038 1.68 - 
Extraembryonic cell 0.036 2.42 fetal 
Human renal cortical epithelial cell sample 0.039 1.79 kidney 
Pericyte cell 0.041 2.02 others 
Hair follicle dermal papilla cell 0.041 2.46 skin 
Mesangial cell 0.043 2.03 kidney 
Keratinizing barrier epithelial cell 0.043 2.54 others 
Gingival epithelial cell 0.043 1.86 gastrointestinal 
CD14-pos CD16-neg classical monocyte 0.044 2.30 immune 
Exocrine cell 0.045 2.42 others 
Epidermal cell 0.046 2.37 others 
Omentum preadipocyte 0.047 2.25 fat 
Keratinocyte 0.050 2.43 skin 
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Table 3: Candidate biomarker ped-MS miRNA-target gene pairs from MIGWAS. 
 

miRNA Genes Known miRNA expression associations in MS 
hsa-miR-141 CD80, THAP5 

 

hsa-miR-197 CD109, TSEN2 Decreased in T cells of patients treated with IFN-β6 

hsa-miR-200c SLC35B4 hsa-miR-200c increased in white matter7; hsa-miR-
200a and hsa-miR-200b decreased in B cells7; 
hsa-miR-200a decreased in whole blood8 

hsa-miR-21 C11orf70, PLAA Increased in white matter7; decreased in peripheral 
blood of ped-MS cases14 

hsa-miR-3128 CBL, SCLY 
 

hsa-miR-3188 PRSS12 
 

hsa-miR-3605 ARL6IP6 Increased in peripheral blood of ped-MS cases14 

hsa-miR-4277 ZNF286B 
 

hsa-miR-4294 SLC37A4 
 

hsa-miR-4498 NCS1, RAB35 
 

hsa-miR-4649 HYOU1 
 

hsa-miR-587 PRKRIR, UTP18 
 

hsa-miR-599 PAPPA Increased in PBMCs6 and decreased in B cells7 

hsa-miR-608 ADPRH, CD109, CIITA, 
COX10, CYB561D1, 
EHD2, GAST, GLIS2, 
HYOU1, NTSR1, PHF19, 
PIWIL3, PXN, SNAI1, 
SYNJ2BP, TFAP4, 
ZSCAN20 

 

hsa-miR-744 TANC2 Increased in PBMCs6 

hsa-miR-875 EIF5A2, ERP29 
 

 
Pairs are candidate biomarkers if both the miRNA and target gene are nominally 
associated with ped-MS (p<0.01) and the miRNA-target gene binding prediction score is 
in the top one percentile of all pairs. The last column indicates previously observed MS 
associations in miRNA expression studies. 
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Table 4: Pathways in which the 255 protein-coding genes containing miR-SNPs 
associated with ped-MS (p<0.01) are statistically overrepresented.  
 

Pathway name 

# 
Protein-
coding 

genes in 
pathway 

# 
Expected 

in 255 
ped-MS 
genes 

# 
Found 
in 255 

ped-MS 
genes 

P-value 
(FDR) 

Ped-MS genes 
in pathway 

Histamine H1 
Receptor mediated 

signaling  
43 0.58 5 0.035 

GNG4, PLCB3, 
PLCG2, PRKCB, 

PRKCI 

5-HT2 type receptor 
mediated signaling  66 0.86 6 0.064 

PLCB3, PRKCI, 
PLCG2, GNG4, 

PRKCB, 
SLC18A2 

MHC Protein 
Complex  25 0.34 5 0.085 

HLA-DPB1, HLA-
DQB1, HLA-
DRA, HLA-A, 

HLA-G 

Integral component 
of lumenal side of 

endoplasmic 
reticulum membrane  

28 0.38 5 0.046 

HLA-DPB1, HLA-
DQB1, HLA-
DRA, HLA-A, 

HLA-G 

Interferon gamma 
signaling  90 1.21 9 0.014 

HLA-DPB1, 
TRIM14, HLA-
DQB1, HLA-
DRA, HLA-A, 
TRIM26/AFP, 

TRIM10, HLA-G, 
CIITA 

 
For each pathway, the total number of protein-coding genes in the pathway is given, 
followed by the number of those genes expected by chance to be found among the 255 
ped-MS associated protein-coding genes, the actual number found, the p-value for 
statistical overrepresentation (adjusted for multiple hypothesis tests), and the list of ped-
MS associated genes in the pathway. 
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Supplementary Figure: Multidimensional scaling plot of ped-MS cases (black) and 
controls (gray) with ≥80% European ancestry who were included in the GWAS, along with 
individuals from the Human Genome Diversity Project. 
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Chapter 5 - TNFa drives DNA methylation and transcriptional changes and 
activates autoimmune disease genes in endothelial cells 

 
Abstract 
 
Endothelial cells are a primary site of leukocyte recruitment during inflammation. An 
increase in tumor necrosis factor-alpha (TNFa) levels as a result of infection or as a result 
of some autoimmune diseases can trigger this process. Several autoimmune diseases 
are now treated with TNFa inhibitors. However, the genomic alterations that occur as a 
result of TNF-mediated inflammation are not well understood. To investigate the 
molecular targets and networks resulting from increased TNFa, we measured DNA 
methylation and gene expression in 40 human umbilical vein endothelial cell (HUVEC) 
primary cell lines before and 24 hours after stimulation with TNFa via microarray. 
Weighted gene co-expression network analysis (WGCNA) identified 15 groups of genes 
(modules) with similar expression correlation patterns, and four modules showed a strong 
association with TNFa treatment. Genes in the top TNFa-associated module were all up-
regulated, had the highest proportion of hypomethylated regions, and were associated 
with 136 Disease Ontology terms, including autoimmune/inflammatory, infectious and 
cardiovascular diseases, and cancers. Another module was associated with 
cardiovascular and metabolic diseases but not TNFa, which is notable because 
cardiovascular diseases are increased in some autoimmune diseases. Of 223 
hypomethylated regions identified, 28 were in gene promoters, and several of those 
genes have previously been associated with autoimmune disease in GWAS. These 
results reveal specific groups of genes that act in concert in endothelial cells and delineate 
those driven by TNFa and establish their relationship to DNA methylation changes, which 
has strong implications for understanding disease etiology and precision medicine 
approaches to disease therapy. 
 
Significance Statement 
 
TNFa is a cell-signaling protein involved in a wide variety of normal biological functions, 
including response to infections and inhibition of tumor formation. It is present at 
abnormally high levels in autoimmune diseases, and several autoimmune diseases are 
treated with TNFa inhibitors. However, these drugs do not work perfectly and can have 
unwanted side effects, so a better understanding of the effects of TNFa in various cell 
types is needed. This study characterized gene expression and DNA methylation 
changes in endothelial cells treated with TNFa. These cells line the interior surface of 
blood vessels and lymphatic vessels and are at the interface between the blood and 
autoimmune disease targets. These results can guide future research into improving 
autoimmune disease therapy. 
 
Introduction 
 
TNFα is an inflammatory cytokine that is dysregulated in many autoimmune diseases and 
is generally found at increased levels in disease-relevant tissues. TNFa inhibitors are a 



 79 

major class of treatment for autoimmune diseases, including rheumatoid arthritis, 
psoriasis, psoriatic arthritis, inflammatory bowel disease, ulcerative colitis, Crohn’s 
disease, and ankylosing spondylitis.(1) However, TNFa inhibitors are imperfect 
treatments with several side effects, such as increased risk of infections and non-
melanoma skin cancers, and they can even induce autoimmune disease, including lupus, 
psoriasis, and CNS demyelination.(2–6) TNFa has a range of biological functions that can 
be either homeostatic, e.g., defense against pathogens, tissue regeneration, 
immunoregulation, and inhibition of tumor formation, or pathogenic, e.g., recruitment of 
inflammatory cells, inhibition of T regulatory cells, necroptosis, and tissue 
degeneration.(7) Because so many (sometimes contradictory) biological processes are 
activated by TNFa and disrupted by TNFa inhibitors, there is a need to move from 
therapies that globally influence TNFa toward therapies that can pinpoint its pathogenic 
processes while leaving homeostatic processes undisturbed.  
 
TNFa plays different roles in different cell types. Endothelial cells, found in the linings of 
blood vessels, are of particular interest in autoimmune disease because they directly 
interact with leukocytes to bring them to sites of inflammation or infection.(8) Endothelial 
cells are also of interest because dysfunction of these cells is more common in those with 
autoimmune disease, causing accelerated atherosclerosis and other cardiovascular 
disease, making it a leading cause of mortality among patients, especially in rheumatic 
autoimmune diseases.(9–11) 
 
In this study, DNA methylation and gene expression changes were characterized in 
human umbilical vein endothelial cell (HUVEC) primary cell lines after treatment with 
TNFα in order to help identify new therapeutic targets and to provide information that can 
be used to help predict possible side effects. A systems biology approach, weighted gene 
co-expression network analysis (WGCNA), was used to construct a gene expression 
network and find groups of genes that not only have a high correlation of expression but 
high topological overlap, meaning that to be considered members of the same group, 
genes need to show similar correlation patterns to other genes outside of the group. Each 
group, or module, was then tested to determine whether expression was associated with 
TNFa treatment. This strategy greatly reduces the multiple hypothesis testing burden, 
allows the identification groups of genes that act in a coordinated fashion, and reveals 
groups of transcripts that are differentially expressed in response to TNFa stimulation. 
 
To further understand how TNFa affects endothelial cells, differentially methylated 
regions (DMRs) were identified. DNA methylation affects gene transcription in different 
ways depending on where it is located, though the relationship between methylation and 
expression is still not entirely understood. Increased methylation in promoter regions is 
the most well studied and generally induces stable repression of gene expression, while 
increased methylation in gene bodies frequently coincides with increased expression. 
Decreased methylation in enhancers is mostly associated with increased transcription 
factor binding.(12, 13) DMRs were related to genes in WGCNA modules by identifying 
DMRs within genes. GeneHancer (GH), a database of promoters and enhancers and their 
inferred target genes(14) was used to reveal DMRs in promoter and enhancer regions. 
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The transcription factor NF-kappa-B (NF-κB) was of particular interest in this study 
because its activation is one of the major mechanisms by which TNFa exerts its effects. 
TNFa increases NF-κB expression, which in turn regulates a host of genes involved in 
inflammation and immune responses.(15) The GH elements for genes in WGCNA 
modules were overlaid with known HUVEC-specific NF-κB transcription factor binding 
sites (TFBSs) to identify genes that are likely to be regulated by this transcription factor 
in endothelial cells and to gauge whether NF-κB is a master regulator of specific modules. 
 
Finally, Disease Ontology enrichment analysis was performed on genes in each WGCNA 
module to elucidate the known associations of genes to disease. 
 
Results 
 
Differential expression and identification of gene modules 
 
WGCNA based on a signed network identified 15 gene modules with high topological 
overlap; i.e., 15 clusters of genes with similar patterns of connection to other genes 
(Figure 1). Each module is designated by a color, and the expression pattern of each 
module is summarized by the “module eigengene,” which is the first principal component 
of expression for all genes in the module. The relationship of module eigengenes to one 
another is shown in Figure 2. This relationship shows that, for example, expression of 
genes in the green module is positively correlated with those in the black module, but 
uncorrelated with those in the cyan module. The number of genes per module ranged 
from 34 to 2,570, and roughly 10% of genes were not part of any module, but collected in 
the grey “module” (Table 1). To understand the effect of TNFa on genes in each module, 
two approaches were used: (1) genes that were significantly up- or down-regulated 
according to moderated paired t-tests were identified for each module, and (2) each of 
the 15 module eigengenes (MEs) was tested for association with TNFa treatment in linear 
mixed regression models. Of 14,019 genes detected in HUVEC cell lines, 3,060 were 
upregulated with TNFa and 5,089 were downregulated (Supplementary File 1). The 
green, purple, black, and brown modules were highly associated with TNFa treatment, 
with Bonferroni-adjusted p < 10-15. Genes in the green and black modules nearly all 
showed increased expression with TNFa, while the purple and brown genes showed 
decreased expression. Six modules, turquoise, greenyellow, tan, red, salmon, and yellow, 
were moderately negatively associated with TNFa treatment (0.05 < adjusted p > 10-15) 
and contained more down-regulated than up-regulated genes. The remaining five 
modules were unassociated with TNFa. Reassuringly, the grey module, which contains 
the collection of unassigned genes, was not associated with TNFa treatment. In all cases, 
the sign of the ME regression coefficient corresponded with whether the majority of genes 
was up- or down-regulated (i.e., a positive regression coefficient corresponded with 
majority up-regulated genes). The full list of genes and module assignments is available 
in Supplementary File 1. 
 
Comparison of module genes to methylation changes and TFBSs 
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Bumphunter identified 223 differentially methylated regions associated with TNFa 
treatment, all hypomethylated (Supplementary File 2). Of these, 131 DMRs were located 
within a gene, 186 were located in GeneHancer (GH) regulatory elements (categories are 
not mutually exclusive; 109 DMRs were in both), and 28 were located specifically in GH 
promoters (Supplementary File 2). Of the genes with DMRs in their promoters, 17 also 
contained SNPs (131 unique) associated in GWAS with several traits, including 
autoimmune, cardiovascular, and metabolic diseases. The relationship of WGCNA gene 
modules and DMRs is shown in Table 2. The most highly TNFa-associated module, 
green, contained 34 genes (3.2%) with DMRs, which was more than any other module. 
The green module also had one of the highest proportions (0.29%) of DMRs in gene-
related GH regulatory elements; cyan and midnightblue also had high proportions, but of 
a much smaller number of GH elements. In general, more DMRs were present in GH 
enhancers than in GH promoters. 
 
For most modules, about 10% of the mapped GH elements overlapped binding sites for 
the NF-κB p65 subunit encoded by RELA (range: 7.7%-11.1%). The proportion of 
elements with both a DMR and RELA TFBS was slightly less than the proportion of 
elements with only a DMR, meaning that most GeneHancer elements with a DMR are 
known RELA TFBSs (Supplementary Table 1). 
 
Disease Ontology of module genes 
 
Module genes were overrepresented among genes assigned to Disease Ontology (DO) 
terms for the green, black, and cyan modules. A total of 136 DO terms were enriched for 
genes in the green module (up-reguated with TNFa), with infectious, respiratory, skin, 
connective tissue, and hypersensitivity reaction diseases being among the most 
statistically significant, but several autoimmune diseases, including systemic lupus 
erythematosus, rheumatoid arthritis, Graves’ disease, psoriasis, and multiple sclerosis 
were also enriched for green module genes, as were diabetes, coronary artery disease, 
and atherosclerosis (Figure 3, Supplementary Figure 1, and Supplementary File 3). Lupus 
genes were overrepresented in the black module (up-regulated with TNFa), along with 
skin and pleural cancers, nephritis, and purpura (Supplementary Figure 2 and 
Supplementary File 3). Cardiovascular and metabolic diseases, including coronary artery 
disease, atherosclerosis, diabetes, and obesity, were overrepresented in the cyan 
module, which was not significantly associated with TNFa treatment (Supplementary 
Figure 4 and Supplementary File 3). 
 
Discussion 
 
In this experimental study, sets of genes related by similar expression patterns in 
endothelial cells were identified, and the extent to which expression changed as a result 
of TNFa stimulation was estimated. Three sets of genes identified by WGCNA were 
overrepresented among established Disease Ontology genes, and two of those sets, 
green and black, were associated with response to TNFa stimulation. Specific genes 
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associated with each disease may be used to help explain the mechanisms by which 
global changes to TNFa levels affect many phenotypes and risk for multiple diseases. 
Autoimmune, cardiovascular, metabolic, and cancer disease processes occurring in 
endothelial cells as a result of increased TNFa are likely to be driven by the genes in the 
green and black modules. Interestingly, the cyan module genes, which were associated 
with obesity, diabetes, coronary artery disease, and atherosclerosis, were not associated 
with TNFa, suggesting that while the genes in the cyan list are acting together, they are 
probably not being driven by TNFa changes. This is the first study to characterize the 
gene expression network of TNFa-stimulated endothelial cells. 
 
Supplementary File 1 contains the full lists of genes in each module, along with measures 
of how connected each gene is to other genes. These lists can be used to help predict, 
along with other resources such as the STRING database,(16) whether targeting specific 
genes therapeutically is likely to have an effect on many other genes or not. For instance, 
the top 10 most highly connected genes within the green module are TAP1, CX3CL1, 
CXCL10, PSME2, EBI3, UBD, TNFAIP3, PSMB9, SLC15A3, and TNFRSF9. Because 
expression of these “hub genes” is highly correlated with many other genes, they are 
likely to be integral to the regulation of those other genes, while genes with low 
connectivity are less likely to be tightly coupled to many other genes. There are several 
gene measures reported in Supplementary File 1, each with slightly different meanings 
and implications, though the gene measures tend to be highly correlated.(17) Connectivity 
refers to the sum of connection (correlation) strengths with other genes in the network. 
The measure kWithin is the intramodular connectivity, or connectivity of a particular gene 
to all other genes within its same module and kTotal is connectivity to all other genes 
regardless of module (kOut is kTotal-kWithin, and kDiff is kWithin-kOut). A gene with a 
high kWithin measure but a low kTotal measure is one that is connected mainly to genes 
only within its module and could therefore reasonably be expected not to affect genes in 
other modules. Module membership (MM) is the correlation of a gene’s expression to the 
module eigengene (the first principal component of expression level of all genes in the 
module) and is an indicator of how representative expression of that gene is to the other 
genes in the module. MM can be calculated for both the module a gene belongs to and 
all other modules. Gene significance (GS) is the association of a gene’s expression level 
with treatment with TNFa, and it is the only measurement that is directly tied to TNFa. 
Ideally, candidate genes for future therapeutic research would have a high GS measure 
and a low kTotal measure, indicating that the genes are affected by TNFa fluctuations but 
that they are not likely to affect many other genes. 
 
Genes in the green module are of particular interest for further study because they were 
the most highly associated with response to TNFa stimulation, both individually (high GS 
values), and as a group (strongest and most significant association of the module 
eigengene with TNFa treatment), and genes in this module were by far the most 
overrepresented for diseases in the Disease Ontology database. These included genes 
such as chemokines CXCL1, CXCL10 and CXCL8 and genes associated with 
autoimmune diseases such as HLA-C, DDX58, IL4, NFKBIA and TNFAIP3 which are 
associated with psoriasis susceptibility. Moreover, NFKB1 from this module mediates 
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Th1/Th17 activation in the pathogenesis of psoriasis and probably other autoimmune 
diseases.(18) Th17 activation is particularly significant for the development of a number 
of autoimmune diseases. Green genes also had more DMRs, either in the gene bodies 
or in GH elements mapped to the genes, suggesting that TNFa stimulation causes more 
long-lasting changes to gene expression to genes in the green set than to other sets. It 
should be pointed out that the WGCNA results were based on a signed network, which 
treats strongly negatively correlated genes as unconnected and means that genes in each 
group are generally positively correlated with one another. This also means that the genes 
in the top TNFa-associated modules are almost all up-regulated with TNFa (e.g., green, 
black) or down-regulated with TNFa (e.g., purple, brown). Genes that are strongly 
negatively correlated, for instance, genes that inhibit the expression of other genes, are 
not captured in the same module. The relationship of genes in different modules is 
captured by the MM measures for all genes in all modules (see Supplementary File 1). 
These MM measures for genes in different modules can be used to understand which 
genes in, e.g., the green module are strongly negatively correlated with most genes in, 
e.g., the purple module.  Sets of genes in both the green and cyan modules were 
overrepresented in cardiovascular and metabolic diseases. These sets may be useful in 
future studies that aim to explain the overlap of obesity, autoimmune disease and 
cardiovascular disease.(19–21) The green module genes were overrepresented in all 
three types of disease, were strongly associated as a set with TNFa, and were nearly all 
up-regulated by TNFa, while the cyan module genes were overrepresented in metabolic 
and cardiovascular disease but not autoimmune disease, were not associated as a set 
with TNFa, and were mostly not up-regulated by TNFa. It is therefore possible that it is 
the green module genes, and not the cyan module genes, that are driving the overlap 
among these disease types, but further investigation is needed. 
 
NF-κB binding sites were generally evenly distributed among the enhancers for genes all 
of the WGCNA gene sets, suggesting that NF-κB is not a master regulator of any specific 
modules. It should be noted that NF-κB consists of a collection of different heterodimers 
of seven proteins, but RELA/p65 is considered the prototypical form.(22) It is possible 
that if binding of the other proteins were measured by ChIP-Seq, a slightly different picture 
of NF-κB in endothelial cells would emerge. 
 
This study had some limitations. In particular, several steps required relating data types 
to one another based on gene symbols (common names), which is an imperfect process, 
as genes may have multiple names and change over time. In addition, not all diseases 
and disease-gene associations are captured by the Disease and Gene Annotations 
database, so some diseases may have been missed in the Disease Ontology enrichment 
analysis. Most of the methods employed, especially WGCNA, require selecting specific 
settings that, when adjusted, may change the final results somewhat. Finally, while this 
was a well-powered study in primary endothelial cells, in vivo results may be somewhat 
different, and other cell types would need to be evaluated to get a more complete picture 
of how these genes are affected by TNFa. 
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In summary, this study utilized a comprehensive systems biology approach integrating 
multiple data types and state of the art bioinformatics tools to reveal groups of correlated 
genes with similar patterns of expression in endothelial cells. One of these groups of 
genes is highly associated with TNFa and with cancers and infectious, autoimmune and 
cardiovascular diseases. Another group is not responsive to TNFa but plays an important 
role in metabolic and cardiovascular diseases. The detailed results provided in 
supplementary files can inform future research on new drug targets for diseases that are 
currently treated with TNFa inhibitors. 
 
Materials and Methods 
 
Samples and Data Generation 
 
Forty primary human umbilical vein endothelial cell (HUVEC) lines were obtained from 
Promocell and were cultured until passage four. Each cell line was split in half, and one 
half was treated with 20ng/mL TNFa for 24 hours while the other half was left untreated. 
Cells were then pelleted, and DNA and RNA were isolated. Gene expression was 
measured with Illumina HT-12 V4 expression BeadChip microarrays by Eurofins 
Genomics, and DNA methylation was measured with Illumina Infinium MethylationEPIC 
BeadChip microarrays. 
 
Gene Expression Analysis 
 
Gene expression data were processed with the limma R package.(23) Outlier samples 
were detected with boxplots and classical multidimensional scaling (MDS) plots of the 
log2 probe intensities and removed from analysis. The neqc function was used to perform 
background correction and quantile normalization, log2 transformation of the probe 
intensities, and removal of control probes. Probes with expression detected (detection 
p<0.05) in less than half of the samples (n=28,386) were removed from analysis. The 
remaining 18,937 probes were collapsed to 14,019 genes by selecting the probe with the 
maximum mean intensity value for each gene using the collapseRows function. After 
quality control, 39 sample pairs (treated and untreated) remained for analysis. Differential 
expression was determined with linear regression models with log2 intensity as the 
outcome and treatment with TNFa and HUVEC pair identifier as the predictors. A 
moderated paired t-test statistic for each gene was computed with the empirical Bayes 
method in limma. 
 
Weighted gene correlation network analysis (WGCNA)  
 
The WGCNA R package was used to construct a correlation network of genes, identify 
gene modules consisting of interconnected genes, study module relationships, and find 
the key drivers of each module.(17) A signed co-expression network was constructed 
from all 14,019 genes expressed in HUVEC cells, using data from all 78 treated and 
untreated samples together. A soft-thresholding power of β=16, a minimum module size 
of 30, and a merge cut height of 0.25 were used. Eigengenes (the first principal 
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component of gene expression values) were determined for each gene module. Because 
of the paired design of the study, linear mixed-effect models were used to estimate the 
relationship of module eigengenes to TNFa treatment.(24) Linear mixed effect models 
were used to estimate the relationship of each module eigengene to TNFa treatment with 
the lmer function in the lme4 R package(25), considering treatment as a fixed effect and 
HUVEC pair identifier as a random effect. Gene significance, the association of each gene 
with TNFa treatment, was determined with the same linear mixed effect models described 
above, using expression of individual genes as the outcomes instead of the module 
eigengenes. Hub genes were selected based on connectivity calculated with WGCNA, 
and module membership (the correlation of each gene with its module eigengene) and 
gene significance were also reported.  
 
DNA methylation analysis 
 
The minfi R package was used for data preprocessing, normalization, and quality control 
of DNA methylation data.(26) Background subtraction and dye bias correction was 
performed using the preprocessNoob function, followed by quantile normalization with 
preprocessQuantile. Samples with more than 5% poor detection p-values (>0.01) were 
removed from analysis. CpG sites with poor detection p-values across samples were 
removed from analysis (n=3,451 sites). Predicted sex based on X and Y chromosome 
methylation was checked against recorded sex. CpG sites with probes predicted to cross-
hybridize to other genomic locations were removed from analysis (n=44,032 sites).(27) 
The final dataset used for analysis consisted of 37 sample pairs and 818,391 CpG sites. 
Differentially methylated regions (DMRs) were identified using the bumphunter R 
package.(28) Bumphunter was run using the same linear regression models as the 
expression analysis, using methylation M-values as the outcome and TNFa and HUVEC 
pair identifiers as predictors. CpG sites were considered to be part of a cluster if they had 
no more than 1,000 bases between them. One thousand bootstrap samples were used 
to generate a null distribution of regions. Candidate differentially methylated regions were 
nominated with pickCutoff, using the 99% quantile of the null-distribution as a threshold 
value, and a family-wise error rate (FWER) cutoff of 0.05 was used to determine statistical 
significance. DMRs were mapped to RefSeq Genes by intersecting DMR positions with 
genes in the ncbiRefSeq table using the UCSC Genome Browser (GRCh37/hg19 
assembly coordinates).(29, 30) 
 
Comparison of microarray results and mapping to GeneHancer elements and TFBSs 
 
In order to compare gene expression results to methylation results, and to facilitate 
annotation, each probe from the Illumina HT-12 V4 microarray was assigned a current 
gene name using microarray probe mappings from Ensembl (Genebuild v96).(31) Of the 
47,231 probes on the microarray, 37,525 (79%) mapped to a stable Ensembl Gene 
identifier. After removing probes that mapped to multiple genes and collapsing the 
coordinates of genes with multiple transcripts by taking the minimum transcription start 
coordinate and maximum transcription end coordinate, 34,094 probes remained, 
corresponding to 22,628 genes. 
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In addition to obtaining up-to-date gene names for the Illumina microarray, promoter and 
enhancer elements were identified for most genes using the GeneHancer track on the 
UCSC Genome Browser (GRCh37/hg19 assembly).(14) Genes were matched to 
GeneHancer elements using one of: (1) the Ensembl v96 gene symbol obtained from the 
Illumina probe mapping above, (2) the Ensembl v92 gene symbol (as the Ensembl v92 
regulatory build was used to generate the GeneHancer track), or (3) the Ensembl v92 
stable gene identifier, for GeneHancer elements with no gene symbol. In total, 31,625 
Illumina expression probes and 20,712 genes were successfully mapped to GeneHancer 
elements. 
 
Finally, RELA TFBSs in TNFa-treated HUVEC cell lines were compared to both 
methylation and expression results. TFBSs from three Chip-Seq datasets deposited in 
GEO (GSE53998, GSE34500, and GSE43070) and uniformly processed using ChiP-eat 
software and the PWM peak caller were downloaded from the UniBind website, 
https://unibind.uio.no/.(32) 
 
DMRs within genes were compared to genes in WGCNA modules using gene symbols. 
DMRs within GH elements and RELA TFBSs were identified by intersecting their positions 
using BEDTools.(33) DMRs in GH promoters were identified using the UCSC Genome 
Browser, and GWAS information for genes with the closest (usually overlapping) 5’UTRs 
to the GH promoters was extracted using the UCSC Data Integrator tool and the GWAS 
Catalog track.(30, 34) 
 
Disease Ontology enrichment analysis 
 
Disease Ontology enrichment analysis was performed on genes in each module using 
the XGR R package,(35) which utilizes the Disease and Gene Annotations database to 
map genes to diseases.(36) Gene symbols from the Ensembl Genebuild (v96) were used 
as input to XGR when available; otherwise, original gene symbols from the Illumina HT-
12 V4 expression microarray manifest file were used. The list of 14,019 genes expressed 
in HUVEC cells was supplied as the background gene list for enrichment tests. To be 
considered as an enriched disease term, at least 10 and at most 2,000 genes were 
required to be annotated for that term, and at least 5 genes were required to overlap with 
the input gene list. Fisher's exact test was used to determine significance, and parent-
child relations were accounted for using the "lea" algorithm. Disease terms enriched at 
an FDR-adjusted p<0.05 were reported. 
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Tables and Figures 
 

 
Figure 1. Visualization of the gene co-expression network modules. The co-expression 
network was built by considering all TNFa stimulated and unstimulated samples together. 
Hierarchical clustering dendogram of 14,019 genes expressed in HUVEC cell lines, along 
with colors representing module assignments. Genes that are not assigned to any module 
are colored grey. The heatmap shows the topological overlap matrix, and darker coloring 
indicates higher topological overlap. 
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Figure 2. Visualization of the gene co-expression module relationships. Adjacency 
heatmap shows the relationships among the module eigengenes, which can be thought 
of as the weighted average gene expression of all genes in a module. For each pair of 
eigengenes EI, EJ, adjacency is calculated as (1 + cor(EI, EJ))/2. Red represents positively 
correlated modules and blue represents negatively correlated modules. 
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Figure 3. Disease Ontology categories for the 136 diseases that showed over-
representation of green module genes. Boxes are colored according to the top-level 
disease categories and labels show the second-level categories. The size of each box is 
proportional to the number of disease terms in that category with significant 
overrepresentation of green module genes. Some disease terms belong to more than one 
category (e.g., multiple sclerosis is both a “nervous system disease” and an “immune 
system disease”), but each term is only represented once. For “disease of anatomical 
entity” terms, squares are shaded by the proportion of terms that represent 
autoimmune/inflammatory diseases (e.g., 3 of 16 “gastrointestinal system disease“ terms 
are autoimmune/inflammatory, while 9 of 11 “immune system disease” terms are). The 
full list of disease terms, with (manually curated) autoimmune/inflammatory terms 
highlighted, is given in Supplementary File 3.  
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Module Number of 
Genes 

Up-
regulated 

with 
TNFa 

Down-
regulated 
with TNFa 

Beta value for 
TNFa 

association 

P-value for 
TNFa 

association 

Green 1,067 1,063 0 0.207 1.67E-31 
Purple 491 0 490 -0.202 6.30E-28 
Black 679 655 0 0.162 8.13E-20 
Brown 1,633 0 1,487 -0.146 1.06E-15 

Turquoise 2,570 132 1,203 -0.059 2.14E-07 
Greenyellow 221 11 121 -0.054 1.76E-06 

Tan 187 1 104 -0.062 7.66E-04 
Red 828 29 431 -0.072 3.77E-03 

Salmon 122 8 45 -0.037 5.78E-03 
Yellow 1,252 100 386 -0.028 0.015 
Cyan 37 16 0 0.046 0.090 

Midnightblue 34 0 16 -0.052 0.119 
Pink 673 263 14 0.042 0.339 

Magenta 587 54 152 -0.026 0.363 
Blue 2,202 587 421 0.013 1 

Grey/unassigned 1,436 141 220 -0.005 1 
 

Table 1. Description of gene modules identified by WGCNA and the relationship of genes 
in modules with TNFa. Each gene module is assigned a color, with grey reserved for 
genes not assigned to any module. The number of genes in each module is given, 
followed by the number of genes in that module that were significantly up- or down-
regulated with TNFa according to individual gene tests in limma. The last two columns 
contain regression beta values and Bonferroni-adjusted p-values from linear mixed 
models testing the association of module eigengenes (the first principal component of 
gene expression in each module) and treatment with TNFa. 
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Module 
Genes 
with 

DMRs 

Percent of 
module 
genes 

Total GH 
elements 

GH elements 
with DMRs 
(promoter, 
enhancer) 

Percent of 
module GH 
elements 

Green 34 3.2% 29,456 85 (14, 71) 0.29% 
Purple 0 0.0% 13,144 9 (0, 9) 0.07% 
Black 7 1.0% 18,924 29 (2, 27) 0.15% 
Brown 8 0.5% 44,637 43 (4, 39) 0.10% 

Turquoise 9 0.4% 55,670 63 (9, 54) 0.11% 
Greenyellow 3 1.4% 5,538 3 (0, 3) 0.05% 

Tan 0 0.0% 3,918 2 (0, 2) 0.05% 
Red 7 0.8% 20,300 20 (4,16) 0.10% 

Salmon 2 1.6% 3,581 3 (1, 2) 0.08% 
Yellow 5 0.4% 18,503 23 (7, 16) 0.12% 
Cyan 0 0.0% 672 2 (0, 2) 0.30% 

Midnightblue 0 0.0% 396 1 (0,1) 0.25% 
Pink 0 0.1% 12,661 19 (3, 16) 0.15% 

Magenta 2 0.3% 13,906 21 (7, 14) 0.15% 
Blue 13 0.6% 59,406 68 (14, 54) 0.11% 

Grey/unassigned 4 0.3% 30,967 28 (8, 20) 0.09% 
 
Table 2. DMRs and their relationship to genes and GH elements in WGCNA modules. 
The number of genes overlapping a DMR in each module is given, followed by the percent 
of genes containing a DMR among all genes in the module, the total number of GH 
elements mapped to genes in the module, the number of GH elements overlapping a 
DMR (further broken down into the number of promoters and number of enhancers 
overlapping a DMR), and the percent of GH elements containing a DMR among all GH 
elements mapped to the module. DMR = Differentially methylated region. GH = 
GeneHancer. 
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Supplementary Information 
 

 
Supplementary Figure 1. Directed acyclic graph showing the Disease Ontology 
structure of the top 15 terms (of 136 with FDR-adjusted p-value < 0.05) from the green 
module. Terms with significant enrichment are in box-shaped nodes, and darker color 
indicates a more significant p-value. The full list of diseases enriched for genes in the 
green module and associated gene names are in Supplementary File 3. The relationships 
of green module Disease Ontology terms in not pictured can be explored interactively at 
http://disease-ontology.org/. 
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Supplementary Figure 2. Directed acyclic graph showing the Disease Ontology 
structure of all terms with FDR-adjusted p-value < 0.05 (n=11) from the black module. 
Terms with significant enrichment are in box-shaped nodes, and darker color indicates a 
more significant p-value. The full list of diseases enriched for genes in the black module 
and associated gene names are in Supplementary File 3. 
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Supplementary Figure 3. Directed acyclic graph showing the Disease Ontology 
structure of all terms with FDR-adjusted p-value < 0.05 (n=6) from the cyan module. 
Terms with significant enrichment are in box-shaped nodes, and darker color indicates a 
more significant p-value. The full list of diseases enriched for genes in the cyan module 
and associated gene names are in Supplementary File 3. 
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Module 
Number 

of 
Genes 

Total GH 
elements 

GH 
elements 

with RELA 
TFBSs 

Percent of 
total GH 
elements 

GH 
elements 

with TFBSs 
and DMRs 

Percent 
of total 

GH 
elements 

Green 1,067 29,456 3117 10.6% 74 0.25% 
Purple 491 13,144 1263 9.6% 5 0.04% 
Black 679 18,924 1816 9.6% 22 0.12% 
Brown 1,633 44,637 4001 9.0% 33 0.07% 

Turquoise 2,570 55,670 5625 10.1% 50 0.09% 
Greenyellow 221 5,538 556 10.0% 3 0.05% 

Tan 187 3,918 433 11.1% 2 0.05% 
Red 828 20,300 2115 10.4% 15 0.07% 

Salmon 122 3,581 327 9.1% 2 0.06% 
Yellow 1,252 18,503 1843 10.0% 19 0.10% 
Cyan 37 672 52 7.7% 2 0.30% 

Midnightblue 34 396 43 10.9% 1 0.25% 
Pink 673 12,661 1233 9.7% 16 0.13% 

Magenta 587 13,906 1466 10.5% 17 0.12% 
Blue 2,202 59,406 5932 10.0% 54 0.09% 

Grey/unassigned 1,436 30,967 2772 9.0% 26 0.08% 
 

Supplementary Table 1. Distribution of known HUVEC RELA transcription factor binding 
sites (TFBSs) across the GH elements of genes in modules. 
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Supplementary File 1. Names and WGCNA module assignments of 14,019 genes 
expressed in untreated and TNFa-treated HUVEC cell lines, and measures of connectivity 
(kTotal, kWithin, kOut, kDiff), gene significance (GS), and module membership (MM). The 
second sheet shows the MM value of every gene for every module. The third sheet 
contains the differential expression (DE) test results from limma. (Separate file 
chapter5_supplementary_file_1.xlsx.) 
 
 
Supplementary File 2. Differentially methylated regions identified by Bumphunter. 
Columns are: chromosome, start position, and end position of the region; value = average 
of the estimated regression coefficient; area = the absolute value of the sum of estimated 
coefficients for the region; L = the number of probes in the region; clusterL = the number 
of probes in the cluster (not all probes in the cluster are necessarily included in the region); 
p.value = p value for differential methylation; fwer = p value for differential methylation 
corrected to account for the family-wise error rate. The remaining columns identify genes 
that (1) contain a DMR in the gene body or (2) have 5’ untranslated regions (5’ UTRs) 
within or near a GH promoter containing a DMR. The second sheet shows traits 
associated with SNPs in genes with DMRs in their promoters. (Separate file 
chapter5_supplementary_file_2.xlsx.) 
 
 
Supplementary File 3. Complete Disease Ontology results for the green, black, and cyan 
modules. Columns include Disease Ontology identifier; disease name; number of genes 
annotated for the disease; number of genes in module that overlap the disease annotated 
genes; enrichment fold change, z-score, p-value, FDR-adjusted p-value, odds ratio, 95% 
confidence interval upper and lower bounds; list of annotated genes for the disease, and 
list of in module that overlap the disease annotated genes. (Separate file 
chapter5_supplementary_file_3.xlsx.) 
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Chapter 6 - Conclusions 
 
In this dissertation, I examined DNA methylation in immune cells obtained from blood in 
two case-control studies of RA and MS, inferred miRNA contributions to pediatric-onset 
MS from GWAS data, and characterized DNA methylation and gene expression changes 
in endothelial cells that follow stimulation by the inflammatory cytokine TNFa. This chapter 
summarizes the key findings of each of these studies. 
 
Chapter two compared DNA methylation of 63 RA cases to 31 healthy controls in four 
sorted immune cell types collected from blood samples. Approximately 430,000 CpG sites 
(cytosine bases followed by guanine bases that are potentially methylated) were 
examined. CpG sites previously identified in fibroblast-like synoviocytes (FLS) obtained 
from joints of RA cases and found to have increased methylation compared to 
osteoarthritis cases or healthy controls were found to also be hypermethylated in CD4+ 
naïve T cells from RA cases relative to healthy controls. These results show a disease-
associated signature can be observed in cells obtained from whole blood, which is much 
more accessible for clinical and epidemiologic studies compared to synovial fluid. FLS-
representative DNA methylation signatures derived from blood may prove to be valuable 
biomarkers for RA risk or disease status. 
 
Chapter three compared DNA methylation in 94 women with MS and 94 healthy women 
in two immune cell types, CD4+ and CD8+ T cells, also isolated from blood samples. Four 
regions of markedly increased or decreased methylation in MS cases were found, 
providing evidence that DNA methylation of CD4+ and CD8+ T cells plays a role in MS 
etiology. Genes near regions of differential methylation were subsequently tested for 
differences in gene expression levels in a separate sample of female MS cases and 
healthy controls.  Differentially methylated regions (DMRs) in the SLFN12 and HLA-DRB1 
genes were consistently observed across the two T cell sub-types, and differential gene 
expression was detected in whole blood for these gene candidates. Results indicate that 
DMRs may be detected in more accessible whole blood samples, paving the way for 
future large-scale studies of DNA methylation in MS. The SLFN12 findings are particularly 
compelling and warrant further investigation, as this gene is known to be down-regulated 
during T cell activation and up-regulated by type I interferons, which are already used to 
treat MS. 
 
Chapter four utilized results from the largest pediatric-onset MS GWAS study to date, and 
showed that there are likely miRNA contributions to pediatric-onset MS. Using this 
approach to infer miRNA involvement from GWAS data is especially helpful in a rare 
disease setting, where collecting and processing blood or other tissue samples is 
challenging. Analyses showed that miRNA-target gene signals were enriched in GWAS 
results and identified 39 candidate biomarker miRNA-target gene pairs. The candidate 
biomarker target genes included immune and neuronal signaling genes. Further, 
dysregulation of miRNA binding to target genes was implicated in biological pathways 
involved in immune signaling. These findings provide evidence that pediatric-onset MS 
risk is influenced by miRNAs acting on specific immune signaling and other genes. 
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Several miRNA-target gene pairs and specific tissues were nominated for further study, 
and further work is needed to determine whether the miRNA-mediated disease processes 
found are specific to the pediatric MS population. The candidate biomarker miRNA-target 
gene pairs should be further studied for diagnostic, prognostic, and/or therapeutic utility.  
 
Chapter five characterized DNA methylation and gene expression changes that occur in 
human endothelial cell lines after activation with the inflammatory cytokine TNFa. Disease 
Ontology enrichment analysis was performed to better understand the gene expression 
changes. Weighted gene correlation network analysis (WGCNA) identified 15 gene 
modules, or sets of genes related by similar expression patterns. Four modules showed 
a strong association with TNFa treatment, indicating that those sets of genes act in 
concert in response to increases in TNFa in endothelial cells. Genes in the top TNFa-
associated module were all up-regulated, had the highest proportion of hypomethylated 
DMRs, and were associated with 136 Disease Ontology terms, including infectious, 
autoimmune, and cardiovascular diseases, and cancers. These results can inform future 
research on new drug targets for diseases that are currently treated with TNFa inhibitors. 
 
In summary, each of the studies detailed in this dissertation took an epidemiologic 
approach and employed a variety of computational methods to further the understanding 
of autoimmune disease pathogenesis and identify avenues of future research into 
diagnostic, prognostic, and therapeutic tools to combat these diseases. 
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