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E N V I R O N M E N T A L  S T U D I E S

Amazon rainforest photosynthesis increases 
in response to atmospheric dryness
J. K. Green1,2*, J. Berry3†, P. Ciais2†, Y. Zhang1,4†, P. Gentine1,5

Earth system models predict that increases in atmospheric and soil dryness will reduce photosynthesis in the 
Amazon rainforest, with large implications for the global carbon cycle. Using in situ observations, solar-induced 
fluorescence, and nonlinear machine learning techniques, we show that, in reality, this is not necessarily the case: 
In many of the wettest parts of this region, photosynthesis and biomass tend to increase with increased atmo-
spheric dryness, despite the associated reductions in canopy conductance to CO2. These results can be largely 
explained by changes in canopy properties, specifically, new leaves flushed during the dry season have higher 
photosynthetic capacity than the leaves they replace, compensating for the negative stomatal response to in-
creased dryness. As atmospheric dryness will increase with climate change, our study highlights the importance 
of reframing how we represent the response of ecosystem photosynthesis to atmospheric dryness in very wet 
regions, to accurately quantify the land carbon sink.

INTRODUCTION
Land surface models, as used in Earth system models (ESMs), assume 
static vegetation biogeochemistry during periods of stress. They em-
pirically represent vegetation water stress (1, 2) on the basis of the 
principle that increasing air dryness [vapor pressure deficit (VPD)] 
and decreasing soil moisture reduce ecosystem conductance (the 
exchange of gases between the vegetation and the atmosphere) and 
gross primary production (GPP) (3, 4). This response is well char-
acterized: During periods of low soil moisture, most plants partially 
close their stomata (small pores at the leaf surface), limiting photo-
synthesis and transpiration (5) to prevent the risk of cavitation and 
hydraulic failure (6). Similarly, high levels of VPD also induce sto-
matal closure and photosynthesis reduction (3, 5). As a result, mod-
eled GPP shows a systematic negative sensitivity to increases in VPD, 
and positive sensitivity to increases in rainfall (Figs. 1 and 2). In 
nature, however, it is possible that the convolved dynamical changes 
in canopy structure and biogeochemistry efficiency may partially or 
entirely compensate this dryness response originating from a leaf-
level understanding.

With global warming, VPD will markedly increase throughout 
the globe, as saturation water vapor pressure follows an exponential 
increase with temperature. In addition, relative humidity over con-
tinents is expected to decrease (7), further increasing VPD, while 
changes in soil moisture are substantially smaller (8). It is predicted 
that during the 21st century, the core of the carbon-rich Amazon 
rainforest (9) will become warmer, with higher VPD, while there is 
less consensus on how precipitation regimes will shift (10). As a re-
sult, some earlier studies have suggested that the Amazon rainforest 
may severely dieback by mid-century (11) or is already functioning 
near its optimal temperature (12, 13), Topt. If and when Topt is ex-
ceeded, photosynthesis rates will likely decline due to reductions in 
maximum rates of carboxylation (Vcmax) or electron transport rate 

(Jmax). Increases in VPD could further limit photosynthesis because 
of its reductive effect on stomatal conductance (14). It is believed that 
the carbon uptake of this large carbon sink would then decrease, 
thus accelerating the atmospheric CO2 growth rate (15) and global 
warming. Accurately predicting the response of GPP to VPD and soil 
moisture in models is therefore crucial for reliable climate projections.

Despite the urgency to verify that models are correctly simulating 
the GPP sensitivity of tropical rainforests to rainfall and atmospheric 
dryness, there are still many unknowns regarding the vegetation re-
sponse to changes in water availability. First, data are very sparse 
and limited in time; tropical rainforests have relatively few flux towers 
monitoring carbon and water fluxes due to the remoteness of the 
area and the logistical complications that come with installing and 
maintaining a site in those harsh conditions. Second, tropical climates 
and ecosystems are highly biodiverse and heterogeneous (16), and 
thus, site-level studies may not be representative of larger regions: 
The relationship between GPP, soil moisture, and atmospheric VPD 
can vary greatly between sites. Satellite proxies of GPP with full spa-
tial and temporal coverage are valuable to characterize those re-
gional differences. Yet, while some studies have reported increases 
in satellite measurements of canopy greenness (17, 18), and other 
studies have indicated counterintuitive increases in photosynthesis 
during the dry season (19), it is still unclear whether these results 
translate to general increases in photosynthesis throughout the 
basin, whether these increases are connected to dryness in addition 
to light, and whether increases in GPP would still be observed during 
periods of drought.

RESULTS
K-means clustering
To evaluate observational GPP sensitivity to water stress in the 
Amazon rainforest (while overcoming the issues of data availability 
and site-to-site heterogeneity listed above), we first apply a k-means 
clustering analysis using 9 years of monthly remote sensing data to 
group the tropics into functionally and climatically consistent re-
gions that share similar controls on photosynthesis in space and 
time (fig. S1). This allows for each cluster to be analyzed in terms of 
within-cluster space and time variations, increasing the amount of 
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data for analysis (thus increasing robustness for nonlinear attribu-
tion) and reducing issues of the strong temporal (anti)-correlation 
between VPD and precipitation present in a single pixel (fig. S2). It 
allows for the decomposition of the respective contributions of 
VPD and soil moisture (SM) on a proxy of GPP. The clustering 
analysis resulted in eight clusters to be analyzed separately and are 
ordered from wettest (cluster 1) to driest (cluster 8) (fig. S1).

Artificial neural network sensitivity analysis
Machine learning techniques have often been used as predictive 
tools, but they can also be used, as in this study, to assess the nonlin-
ear contributions of input variables to target variables (20). Within 
each cluster identified by the k-means clustering algorithm above 
(fig. S1), the nonlinear sensitivity of solar induced fluorescence (SIF; 
used as a proxy for GPP) to soil moisture, VPD, and radiation is 
determined using artificial neural networks (ANNs) (Figs. 1 and 2). 
Although there is one ANN trained upon data per cluster, the sen-
sitivity results can be reorganized back into time series of the origi-
nal pixels to provide regional maps of sensitivity to each variable. A 

similar ANN analysis is applied to the output from 10 ESMs (table 
S1) to capture whether the observations are representing the same 
sensitivity of photosynthesis that is represented in the models, al-
though simulated GPP is used in lieu of SIF, and SW is used in lieu 
of PAR.

Observational results show that during the dry season (Fig. 1), 
while photosynthesis (SIF) has a positive sensitivity to precipitation 
and a negative sensitivity to VPD in tropical savannah and season-
ally dry tropical forest regions, this sensitivity is reversed in some of 
the wet parts of the Amazon basin. That is, in these regions of the 
Amazon rainforest, photosynthesis tends to decrease with increases 
in rainfall and stay constant or increase with increases in air dryness. 
Unlike the absolute wettest regions, these regions have high seasonal 
variability in precipitation and higher light availability (figs. S3 and 
S4). Meanwhile, radiation has a positive impact on photosynthesis 
throughout the entire study area. During the wet season (Fig. 2), the 
negative sensitivity to precipitation and positive sensitivity to VPD 
in the wet parts of the basin are even stronger and wider spread, 
while the positive sensitivity to radiation remains. On the other 

Fig. 2. ANN sensitivity analysis results: Wet season. Remote sensing results for the sensitivity of SIF to precipitation (A), VPD (C), and PAR (E). Stippling represents areas 
of a median r > 0.6. Model results for the sensitivity of GPP to precipitation (B), VPD (D), and surface downwelling shortwave radiation (SW) (F). Stippling represents re-
gions where at least 6 of the 10 CMIP5 models agree on the sign of the feedback depicted. Sensitivities represent the percent change in SIF due to a perturbation of each 
predictor variable by 1 SD. The locations of three flux towers used for further analysis are also shown.

Fig. 1. ANN sensitivity analysis results: Dry season. Remote sensing results for the sensitivity (sens.) of SIF to precipitation (precip) (A), VPD (C), and photosynthetically 
active radiation (PAR) (E). Stippling represents areas of a median r > 0.6. Model results for the sensitivity of GPP to precipitation (B), VPD (D), and SW (F). Stippling rep-
resents regions where at least 6 of the 10 CMIP5 models agree on the sign of the feedback depicted. Sensitivities represent the percent change in SIF due to a perturbation 
of each predictor variable by 1 SD. The locations of three flux towers used for further analysis are also shown.
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hand, modeled photosynthesis does not have the same sensitivity in 
this region. ESMs show that precipitation increases drive photosyn-
thesis upward, while increasing VPD decreases modeled photosyn-
thesis throughout the Amazon basin, regardless of the season.

Flux tower analysis
To further examine the mechanisms behind this counterintuitive 
increase in GPP with decreased rainfall and increased VPD in these 
wet forests, hourly daytime data from three eddy-covariance flux 
tower sites in the Amazon rainforest (table S2) (Figs. 3 and 4) are 
used to look in detail at the relation between GPP, radiation, and 
ecosystem conductance calculated via Penman-Monteith inversion 
(21, 22), the estimated ratio of internal leaf to atmospheric CO2 par-
tial pressures (ci/ca) (calculated via Fick’s law), VPD, VPD at the 
leaf surface (22), and the degree of (de)coupling between the vegeta-
tion and the atmosphere (23). Two of the sites [Manaus (K34) and 
Santarem (K67)] are located in wet regions that show positive SIF 
sensitivity to VPD and negative sensitivity to precipitation year-round 
according to our remote sensing analysis, while the third site [Bananal 
(BAN)] shows this response only in the wet season (Figs. 1 and 2).

Flux tower results agree with remote sensing observations for 
the sensitivity of GPP. Unlike models, GPP at the flux sites increases 
alongside VPD at the leaf surface for all three sites during the wet 
season and for the two wettest sites in the dry season as well (Fig. 3, 
A to C). Meanwhile, ecosystem conductance decreases with increas-

ing VPD at all three sites regardless of the season (Fig. 3, D and F), 
confirming that stomata are always partially closing where the air 
gets dryer, and GPP normalized by radiation decreases as well with 
increasing leaf VPD (Fig. 3, G to I). Intrinsic water use efficiency 
(iWUE) increases at each flux tower site in both seasons (Fig. 3, 
J to L), and the atmospheric coupling factor, omega, hovers around 
0.4 for K67 and K34 throughout the year, indicating a weak cou-
pling, while BAN is more coupled to the environment in the dry 
season (~0.3) (Fig. 3, M and N).

The ratio of GPP to ci/ca, a proxy for photosynthetic biogeo-
chemistry (photosynthetic rates), shows a distinct seasonality at all 
three sites. It peaks near the end of the dry season and stays elevated 
during the start of the wet season, emphasizing that photosynthetic 
biogeochemistry is becoming more efficient during these periods. 
These changes lag behind changes in VPD (Fig. 4, A, C, and E), and 
their seasonal cycles have very similar cycles to those of SIF and 
VPD from remote sensing (Fig. 4, B, D, and F).

DISCUSSION
Observational remote sensing results from the ANN sensitivity 
analysis confirm previous findings that the wettest, forested regions 
(fig. S3) of tropical America (the Amazon rainforest) are photosyn-
thetically light limited (Figs. 1 and 2) (24–26). This is due to high 
rainfall rates and frequent cloud coverage, limiting light availability.

Fig. 3. VPD flux tower results. Flux tower data from K34, K67, and BAN in Amazonia showing GPP versus VPD at the leaf surface (leaf VPD) (A to C), ecosystem conduc-
tance (gc) versus leaf VPD (D to F), GPP normalized by SW versus leaf VPD (G to I), GPP normalized by ecosystem conductance versus leaf VPD (J to L), and the decou-
pling coefficient between ecosystem conductance and transpiration, omega (M and N). Omega ranges from 0 (strong coupling) to 1 (no coupling). Hourly daytime data 
with no precipitation are used for varying time periods between 2002 and 2006 based on data availability.
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While it is commonly accepted that high VPD decreases GPP (as 
depicted by the models, Figs. 1D and 2D), observational results 
show a positive or neutral SIF sensitivity to VPD in a large section 
of the Amazon rainforest. In the dry season, the strongest positive 
sensitivity is found in the wet northeastern section of the Amazon 
(Fig. 1C), a region with not only high levels of mean rainfall but also 
high seasonal rainfall variability (figs. S3 and S4), while during the 
wet season, the positive sensitivity expands to include the entire for-
ested region (Fig. 2C and fig. S3). Meanwhile, too much precipita-
tion can reduce photosynthesis, especially in the wet season (Figs. 1A 
and 2A), due to decreased CO2 diffusion in wet leaves (27, 28), in-
creased cloud coverage reducing incoming radiation, and the increased 
prevalence of pathogens (29, 30). Pathogens and fungi, especially 
certain mildew, thrive in the most humid and wet environments 
and can devastate foliage (29, 30). On the other hand, periods of 
high VPD in the wet season dry out the environment, making it less 
habitable for pathogenic fungi, resulting in healthier, more photo-
synthetically efficient leaves, as reflected by the extensive positive 
sensitivity of SIF to VPD, Fig. 2C. Contrary to these results, models 
systematically overestimate soil moisture stress on GPP in the Amazon 
(Figs. 1B and 2B) and show inaccurately that soil dryness is limiting 
photosynthesis and do not capture the observed pattern of higher 
VPD being associated with higher GPP (Figs. 1D and 2D). While 
models capture the positive impact of radiation (Figs. 1F and 2F), it 
is less strong than in the observations (Figs. 1E and 2E).

The flux tower observations confirm that increases in atmo-
spheric dryness increase GPP at all three sites in the wet season and 
at the two wettest sites in the dry season (Fig. 3, A to C). This is con-
sistent with the observational ANN analysis and opposite to the 
models (Figs. 1 and 2). This positive control of VPD on ecosystem 
GPP occurs despite the observed negative effect that VPD has on 
ecosystem conductance (Fig. 3, D to F). Thus, while the stomatal 
physiological stress response is consistent with the model predic-
tions (31), ecosystem GPP continues to increase with VPD, contrary 
to leaf-level understanding. Dynamic leaf and canopy properties 
likely explain this behavior, as recently hypothesized to be triggered 
by radiation and predominantly VPD (32). In wet tropical forests, 
the beginning of the dry season coincides with the time of year 
when old leaves (with lower photosynthetic capacity) in the forest 
canopy are shed, while the understory biomass tends to increase 

with increased light availability (33–37). The increased growth and 
photosynthesis rate of the understory compensate for the upper 
canopy drop in photosynthesis (from leaf shedding). As the dry sea-
son progresses, the old leaves at the top of the canopy are replaced 
by young leaves that gradually mature to have higher photosynthetic 
capacity than the old leaves that they replaced. Thus, by the end of 
the dry season and transition to the wet season, younger mature 
leaves with higher light use efficiency become prevalent (33–37), 
increasing the ecosystem rate of photosynthesis (Fig. 4, A, C, and 
E), despite reductions in stomatal and ecosystem conductance 
(Fig. 3, D to F).

The varying ecosystem maximum rate of photosynthetic capacity, 
due to the shift between upper canopy and understory during the 
dry season, largely explains the seasonality of Amazon rainforest 
GPP at the site level (33–37). However, these processes are not rep-
resented accurately in models (32, 38), contributing to inaccuracies 
in simulating Amazon rainforest GPP, and thus leading to discrep-
ancies between model and observational ANN sensitivity. In one 
model study, VPD data were used to drive liter fall and canopy phe-
nology in the Amazon rainforest, and model accuracy of the carbon 
cycle and its seasonality in this region greatly improved, even more 
so than when using radiation to drive canopy phenology (32). There 
is an upward or neutral trend between photosynthetic efficiency 
(lagged by 2 months, as this is found to lead to the highest correla-
tion) and VPD in observations (fig. S5), further supporting the the-
ory that VPD is driving phenological changes. In addition, factors 
related to canopy structure, such as leaf angle and clumping, which 
can also affect light availability in the canopy and understory, can 
also vary, leading to changes in SIF that would not be present in 
modeled GPP because these processes are simply not included (37).

These phenological changes ignored in most models contribute 
to the discrepancies between models and observations, but there are 
other biophysical mechanisms that could also contribute to the pos-
itive SIF sensitivity to VPD and negative sensitivity to precipitation. 
For one, increased light availability in a radiation-limited environ-
ment (also warms up the leaves, increasing VPD) can also contrib-
ute to GPP increases with VPD (Fig. 3, G to I). Another factor may 
be vegetation-atmosphere decoupling. During both dry and wet 
seasons, the wet forests are not strongly coupled to the atmosphere 
(Fig. 3, M and N). In such less-coupled systems, the aerodynamic 

Fig. 4. Flux tower climatology. Flux tower data from three sites (K34, K67, and BAN) in Amazonia showing the mean climatology of GPP normalized by the ratio of leaf 
internal CO2 partial pressure (ci) to atmospheric CO2 partial pressure (ca) (A, C, and E). Remote sensing data for these same three sites showing the mean climatology of 
SIF and VPD (B, D, and F). Daytime data (averaged from hourly data with no precipitation) are used for varying time periods between 2002 and 2006 based on data avail-
ability for the flux tower data. For remote sensing data, monthly data from June 2007 to May 2016 are used.
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conductance (i.e., turbulence) in addition to the stomatal conduc-
tance limits the exchange of CO2 and water vapor between canopy 
leaves and the atmosphere. The implication is that an increase in 
VPD may strongly reduce the stomatal conductance while not re-
ducing GPP to the same extent, thus having a smaller effect on re-
ducing transpiration and iWUE (Fig. 3, J to L). Thus, even when 
atmospheric VPD is elevated, which often co-occurs with elevated 
temperatures, wet tropical forests in the Amazon may improve their 
photosynthesis by keeping transpiration and evaporative cooling 
rates high (39). A high transpiration rate helps mitigate the rise in 
VPD at the leaf surface and regulate leaf temperatures (40, 41), 
which could otherwise be pushed above Topt by the increased short-
wave radiation.

Last, the positive sensitivity of GPP to VPD observed at flux tow-
ers (Fig. 3, A and B) and confirmed by remote sensing data in wet 
regions of the Amazon rainforest may also be contributed by the 
evaporation of morning dew [the SIF data are retrieved at 9:30 a.m. 
local time (42)] as well as by the evaporation of water droplets from 
leaves after rain events, which both impede photosynthesis when 
VPD is very low by slowing carbon diffusion (27, 28) and making 
vegetation more susceptible to fungi (29, 30). It has been shown that 
during light precipitation events, canopy interception can be up to 
60% of total rainfall in tropical rainforests (43), and evaporation 
from intercepted canopy water in the tropics can represent up to 
15% of total evapotranspiration (ET) (44). However, it should be noted 
that the evaporation of morning dew is not a major explanation for 
these results, as a separate analysis using contiguous SIF (45), a dataset 
based on a satellite observations at 1:30 p.m. (when VPD is higher), 
also reveals similar sensitivity to the morning time SIF. In contrast, 
models overestimate water stress due to both soil moisture and VPD 
as they include an incomplete representation of vegetation access 
to soil water via deep roots and do not include a physical representa-
tion of water stress based on plant hydraulics, which more realisti-
cally couples water stresses in the soil and atmosphere (VPD) (46).

On the basis of our results, the current modeled vulnerability of 
the Amazonian rainforest photosynthesis to increased air dryness 
appears to be overestimated, in part because models do not include 
dynamic vegetation biogeochemistry and, therefore, are too negatively 
sensitive to VPD and soil moisture. These findings also suggest that 
this region could be more resilient to changes in the baseline cli-
mate from climate change (for instance, a slightly warmer environ-
ment with drier air) than previously thought. Nevertheless, it should 
be noted that our observational results show an “average” sensitivity, 
and when we look explicitly at extreme events, which are expected 
to become stronger and more frequent (47), the positive sensitivity 
to VPD in the Amazon rainforest does decrease or reverse (fig. S6). 
In addition, the data do not yet include atmospheric VPD levels as 
extreme as predicted for climate change in the coming century. If 
VPD increases more markedly, demonstrated by an ANN perturba-
tion of 2 SDs rather than 1 (figs. S7 and S8), the positive sensitivity 
of SIF to VPD during the dry season could change sign (fig. S7C). 
This will depend on the interplay between ecosystem phenology/
biochemistry and physiology/biophysics. The latter is fairly well un-
derstood; the former is yet to be properly represented in models.

In addition, vegetation growth could decrease with increasing 
temperature (48, 49) due to increased respiration cost in tropical 
forests, and mortality could increase due to increased hydraulic fail-
ure, especially for taller trees (50). These forests are acclimated to 
function only within a narrow range of temperature, which may be 

exceeded even within the century. Therefore, because of the poten-
tial for interacting disturbance effects resulting from increased at-
mospheric dryness (i.e., increases in fire frequency) and a lack of 
site-level studies with imposed elevated VPD, it is still uncertain to 
deduce from current observations how the Amazon rainforests will 
fare as the 21st century progresses. Thus, in situ experiments with 
imposed high levels of VPD could be as important as experiments 
complementing the elevated atmospheric CO2 concentrations (51) 
in increasing our knowledge of our future carbon and water cycles 
in the Amazon.

Our results show that land surface models used for climate pro-
jections are overestimating atmospheric water stress in the tropical 
rainforests due in large part to the absence of dynamic vegetation 
biogeochemistry, thus misrepresenting the carbon uptake of these 
carbon-rich forests. It is possible that other factors could also be 
contributing to this discrepancy, such as incorrect parameterization 
of photosynthesis, an incomplete representation of plant hydraulics 
and deep rooting systems, or incorrectly representing climato-
logical patterns such as rainfall and cloud coverage. Meanwhile, the 
observational results presented here show that increases in atmo-
spheric dryness in the Amazon rainforest do not currently reduce 
GPP in the wettest tropical forests as previously thought; instead, 
they are correlated with a significant increase in photosynthesis, 
and not simply canopy greenness. These findings support the hypoth-
esis that the positive effects of young, photosynthetically efficient 
leaves at different layers of the canopy combined with the cooling 
effect of transpiration on leaf temperature, the evaporation of water 
droplets on leaf surfaces, the reduction in the prevalence of fungi 
and pathogens, and the increase in radiation are more than able to 
compensate for the losses in GPP due to atmospheric (VPD) and soil 
moisture stress. On the other hand, ESMs are not capturing this VPD 
response, which has implications for projections of future hydro-
logical and carbon cycles. We stress the importance of accurately 
modeling vegetation phenology, the seasonality in the photosynthetic 
capacity of forests, and the coupling between the vegetation and the 
atmosphere to reduce uncertainty in our climate projections.

MATERIALS AND METHODS
K-means clustering
To group tropical regions into areas that share similar environmental 
characteristics to be analyzed independently, a k-means clustering 
analysis is used (fig. S1). Although the focus of this study is the tropics 
of South and Central America, the clustering was performed across 
the entirety of the tropics spanning Africa and Asia as well. We use 
9 years of input data (June 2007 to May 2016) including precipita-
tion from the Global Precipitation Climatology Project (GPCP) (52), 
atmospheric VPD calculated from Atmospheric Infrared Sounder 
(AIRS) humidity and temperature (53), PAR from Clouds and the 
Earth’s Radiant Energy System (CERES) (54), temperature from ERA-
Interim (55), and SIF (used as a proxy of GPP) from the Global Ozone 
Monitoring Experiment-2 (GOME-2) processed by NASA (42). Unlike 
vegetation optical indices, SIF is mechanistically linked to photo-
synthesis, does not saturate in the tropics, and has been shown to 
have a near-linear relationship with ecosystem GPP at the monthly 
scale (56). Recent studies indicate that SIF is highly sensitive to can-
opy structure and leaf display (57) and that this underlies, in part, 
the strong correlation between SIF and GPP (37). This also makes it 
possible both to identify the impact of droughts on GPP (58) and 
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to determine the sensitivity of GPP to factors that would contribute 
to a canopy renewal hypothesis in the Amazon rainforest. All data 
are brought from their native resolution to a 1° by 1° resolution be-
fore the analysis, and a monthly temporal resolution. The SIF data 
are averaged with the eight adjacent pixels surrounding the pixel of 
interest to smooth the dataset, which is inherently noisy. Although 
it is known that there has been GOME-2 SIF sensor degradation, 
here we assess seasonal to subseasonal scale responses, and thus, an 
interannual trend should not contribute to our findings.

For each pixel location, two inputs are used per each of the five 
datasets (to equal 10 predictors total) to represent both the mean 
value of each variable as well as its variability (both temporally and 
spatially). We use (i) the temporal mean minus the spatial tropic 
wide mean, divided by the temporal SD, and (ii) the temporal SD 
minus the spatial mean of the temporal SDs, divided by the SD of 
the temporal SDs.

Artificial neural networks
Within each cluster per the Americas, an ensemble of 10 ANNs per 
cluster is used (results were averaged for the 10 members) to disen-
tangle the effects of environmental variables on the smoothed SIF 
and to account for nonlinearities. On the basis of tradeoff between 
model performance and overfitting, the models are initialized with 
five nodes and three hidden layers, while 60% of the data are used 
for the purpose of training the ANNs. ANNs are chosen for this 
application because they have nonlinear activation functions, which 
can effectively predict nonlinear effects and go beyond a simple light 
use efficiency model.

Each ANN uses monthly precipitation data from the GPCP (52), 
VPD calculated from AIRS (53), and PAR data from CERES (54) for 
all months between June 2007 and May 2016, as well as canopy 
height (16) and average Fraction of Absorbed Photosynthetic Ac-
tive Radiation (FPAR) (45) per pixel as predictor variables. Smoothed 
monthly SIF (42) from June 2007 to May 2016 is used as a response 
variable. Because we are interested in the effects of soil moisture but 
are limited by the depth of measurement of microwave observations 
over the study period (a lack of remotely sensed root-zone soil mois-
ture data), especially in dense tropical forests, precipitation data at 
different monthly lags are used instead. As additional predictor vari-
ables, precipitation data 2 and 4 months ahead of the other datasets 
were used to incorporate memory in the system of earlier rainfall. We 
choose 2- and 4-month lags based on Humphrey et al. (59), where it 
was established that the Gravity Recovery and Climate Experiment 
(GRACE) terrestrial water storage has the highest correlation with 
precipitation data in the tropics for periods varying between 1 and 
4 months. This is also confirmed using monthly in situ soil moisture 
profile and precipitation data from BAN, the only Amazonian flux 
tower site with soil moisture data publicly available and which 
displays a 2-month lag (fig. S9). Adding the lagged precipitation data 
improves model performance demonstrated by increases in r values. 
All datasets are normalized by the cluster mean and SD before run-
ning the models.

Analyses are also performed with the addition of near-surface air 
temperature as a predictor variable, but r values do not improve and 
so these data were excluded from the analysis. As an additional 
check, analyses are also performed using the near-surface air tem-
perature in lieu of VPD, but this degrades model performance 
throughout the study area, reducing r values by an average value of 
0.1, showing that the sensitivity to VPD is not simply the response 

of vegetation to temperature but that it provides additional predic-
tive power. Performance is verified with r values and time series 
plots for locations within each cluster. This analysis was also per-
formed using the contiguous SIF data (45) based on MODIS 1:30 p.m. 
overpass with very similar results.

Observational sensitivity analysis
A sensitivity analysis is used to understand the contribution of each 
predictor variable to the SIF signal. For each of the 10 trained ANNs 
for each cluster, one of the predictor variables is perturbed by 1 SD 
(a value of 1 due to the initial input data normalization), and SIF is 
predicted again using the existing ANN with the predictors including 
the perturbed variable; this process is repeated for each predictor 
variable. Although this process is run per cluster, the predictions 
with the ANN trained within each cluster can then be produced 
back into the time series of their original pixel locations, and the 
predicted SIF with the perturbation can be compared to the SIF 
with the unperturbed model and observations to determine the sen-
sitivity values per pixel. A sample equation showing the calculation 
of the percent of variability in SIF that is explained by precipitation 
is shown (Eq. 1)

	​ 100 × ​ 
mean(​SIF​ (ANN precip+absval(stdev(precip)) )​​ − ​SIF​ (ANN all VAR)​​)     ───────────────────────────────   stdev(​SIF​ OBS​​)  ​​	

(1)

Because each of the trial ANNs will provide slightly different re-
sults, this analysis is performed for each trial, and median values are 
displayed and analyzed in this study to increase the robustness of 
the results (Figs. 1 and 2). Stippling in these figures for the observa-
tional results represents regions that have a median r > 0.6. While 
figures displaying dry and wet season sensitivity are displayed 
(Figs. 1 and 2, and figs. S6 to S8), ANNs are run using the full year 
of data. Results are then divided into their corresponding dry and 
wet season figures for each pixel individually, by first calculating the 
pixel precipitation climatology, and then designating consecutive 
months greater than the mean value as the wet season, and consec-
utive months below the mean value as the dry season.

To determine whether these results would differ during an extreme 
event, the sensitivity during the dry season of 2015 (a strong El Niño) 
is compared to the sensitivity of a nonanomalous year (2014) (fig. S6). 
To see whether these results would differ with larger perturbations, 
a second analysis using 2 SDs is also performed (figs. S7 and S8).

CMIP5 sensitivity analysis
Following the observational analysis, a similar analysis is carried 
out for a suite of CMIP5 models (bcc-csm1-1, CanESM2, CCSM4, 
CESM1-BGC, GFDL-ESM2M, inmcm4, IPSL-CM5A-LR, MIROC-
ESM, MRI-ESM1, and NorESM1-M) (table S1) with GPP in place of 
SIF, leaf area index (LAI) in place of FPAR, incoming SW in place of 
PAR, precipitation, and calculated VPD (from temperature and rel-
ative humidity) for the past 30 years of the CMIP5 historical run 
(1976–2005). Similar to the observational analysis, for each model, 
a k-means clustering analysis is first performed before creating ANNs 
for each cluster per continent with predictor variables normalized 
by their means and SDs. Sensitivity analyses are also performed, where 
each predictor variable is perturbed by 1 SD (a value of 1). Unlike 
the observational analysis, only one set of ANNs is used for each 
model, and instead, the median of the 10 model results is compared 
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with the observational data results (Figs. 1 and 2). The wet and 
dry seasons for each of the models’ pixels are determined based 
on the climatology of each one’s individual precipitation dataset, 
where consecutive months above the mean climatology were desig-
nated as the wet season, and consecutive months below were desig-
nated as the dry season. Stippling in these figures represents regions 
where at least 6 of the 10 ESMs agree on the sign of the sensitivity 
displayed.

Flux tower analysis
Flux tower data from three tropical forest sites (19, 60, 61) (table S2) 
in Brazil are used to confirm the sensitivity of GPP to VPD that is 
seen in the rainforest in the observational results (Figs. 1 and 2). 
Using the available hourly data between 2002 and 2006 (there are 
data gaps for each tower; table S2), ecosystem conductance, gs = 1/rc, 
is obtained by inverting the Penman-Monteith equation (Eq. 2) 
(21, 22) and solving for the reciprocal of canopy resistance

	​ LE = ​ 
​∆ _  ​(​R​ n​​ − G ) + ​ ​L​ v​​ _ ​r​ a​​ ​ q  ─ 

1 + ​ ∆ _  ​ + ​​r​ c​​ _ ​r​ a​​​
  ​​	 (2)

where LE is the latent heat flux,  is the saturated vapor pressure as 
a function of temperature,  is the psychometric constant, Rn is net 
radiation, G is the ground heat flux,  is the density of the moist air, 
Lv is the latent heat of vaporization, ra is the aerodynamic resistance 
to evaporation due to turbulent transport, q is the specific hu-
midity deficit, and rc is the ecosystem resistance. The resistance to 
evaporation due to turbulent transport (ra) is calculated following 
Novick et al. (62) (Eq. 3), using the von Karman constant (K = 0.4) 
available wind speed data (U), measurement height (zm), as well as 
the momentum roughness length (zo = 0.1h) and zero plane dis-
placement (zd = 0.67h), both based on calculated canopy height (h) 
from near neutral conditions (Eq. 4) (63). Hours with a friction ve-
locity (u*) <0.2 are not used, nor were hours with precipitation

	​​ r​ a​​ = ​ 
ln ​​(​​ ​​z​ m​​ − ​z​ d​​ _ ​z​ o​​ ​​ )​​​​ 2​ 

 ─ 
U × ​k​​ 2​

  ​​	 (3)

	​ h = ​  ​z​ m​​ ────────────  
0.6 + 0.1 × exp​(​​ ​k * u _ ​U​ *​​ ​​)​​

 ​​	 (4)

VPD of the leaf surface (the difference in vapor pressure inside 
the leaf stomata versus the vapor pressure of the leaf boundary layer) 
is used in lieu of atmospheric VPD because it acts more directly as 
the stressor of stomata and is thus more ecologically relevant for 
plant response (64). To obtain an estimate of the VPD at the leaf 
surface, Eq. 5 is used, utilizing rc obtained from the inverted Penman-
Monteith equation and the observed latent heat flux (assuming that 
soil evaporation is small—a fair assumption in those dense tropical 
forests). Leaf-level VPD can vary from atmospheric VPD because 
of aerodynamic coupling and acts more directly as the stressor of 
stomata; thus, it is more ecologically relevant for plant response and 
strongly influenced by radiation (64)

	​​ VPD​ l​​ = ​ LE ─ 
 ​c​ p​​ ​ 1 _ ​r​ c​​​

 ​​	 (5)

To assess the coupling between ecosystem conductance and evapo-
transpiration, a decoupling constant, omega, developed by Jarvis 

and McNaughton (23) is calculated (Eq. 6). Omega values range 
from 0 to 1 and characterize the degree of coupling between ecosys-
tem conductance and transpiration, with values of 0 representing 
high degree of coupling with the atmosphere, and values of 1 repre-
senting complete decoupling

	​  = ​ 
1 + ​∆ _  ​ ─ 

1 + ​∆ _  ​ + ​(​​ ​​r​ c​​ _ ​r​ a​​​​)​​
 ​​	 (6)

The rate of photosynthetic assimilation can be related to stomatal 
conductance and plant biogeochemistry (Eq. 7) via Fick’s law, where 
ci is the internal leaf CO2 partial pressure, ca is the atmospheric CO2 
partial pressure, and rco2 is the ecosystem resistance to CO2 (1.6rc)

	​ GPP = ​  1 ─ (​r​ co2​​ + ​r​ a​​)
 ​ (​c​ a​​ − ​c​ i​​)​	 (7)

To evaluate changes in biogeochemistry at the flux tower sites, 
the ratio of ci to ca, ci:ca, is calculated (Eq. 8), where H2O is the den-
sity of water. GPP normalized by this quantity is indicative of changes 
in leaf photosynthetic traits (Vcmax as well as the electron transport 
rate, Jmax). We note that ci here is an estimate at the ecosystem scale 
and should not directly be compared to leaf-level values

	​​  ​c​ i​​ ─ ​c​ a​​ ​ = 1 −  ​ GPP.(​r​ a​​ + ​r​ co2​​)  ─ ​c​ a​​.​​ H2O​​  ​​	 (8)

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/47/eabb7232/DC1
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