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a b s t r a c t

After solar and other renewable energy developers select generally suitable sites for exploration, they
frequently encounter conflict over biodiversity conservation values that were not factored into the initial
suitability rating methods. This paper presents a spatial multicriteria analysis method for modeling risk
of conflict with biological resources and applies the model in the California deserts where such conflicts
are rapidly rising. The premise of the model is that the least conflict will occur on sites that are the most
ecologically degraded with low conservation value and that would engender low off-site impacts when
connecting to existing transmission infrastructure. Model results suggest sufficient compatible land
exists in flat, non-urban areas to meet state solar energy targets of 8.7 GW of installed capacity in the
California deserts for 2040. The model is a promising tool to fill the gap between site suitability analysis
for renewable energy and regional biodiversity conservation planning to identify areas where rapid
impact assessment and permitting will generate the least regrets.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Areas of high solar energy potential are often in fragile ecosys-
tems that are easily disturbed and hard to restore. The best way to
minimize environmental impacts in accordance with the miti-
gation hierarchy of the US National Environmental Policy Act is to
avoid sites where impacts are likely to be unacceptably high. Great
interest in utility-scale solar energy development in the deserts of
the southwestern U.S. has created an urgent need for regional
conservation planning to map and protect areas of high conserva-
tion value [1e3]. However, this planning approach requires time-
consuming collection, compilation and analysis of biological data.
In the interim, it makes sense to quicklymap sites that stakeholders
can agree have low potential conservation value and thereby avoid
unnecessary conflicts and delays in the review and permitting
process.

Such mapping builds on the long tradition of land suitability
analysis based on spatial multicriteria analysis. Its application for
renewable energy is more recent, however [4e6]. Geographic in-
formation systems (GIS) have been used to model spatial patterns
of suitability and constraints for development of solar [6e8], wind
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[6,9,10], and wave or tidal [11,12] resources. Two basic approaches
have been used. Some studies used Boolean logic to exclude lands
based on “hard constraints” where development is legally pro-
hibited (e.g., parks) or operationally infeasible (e.g., greater than
a threshold distance from roads and transmission lines) [4]. Other
studies combined values of energy potential with those of technical
and environmental factors to derive an overall suitability score
[5,6,8,9]. Known biological constraints such as designated critical
habitat for endangered species can be incorporated in this
approach. Outside of these constrained areas, however, the po-
tential for conflict with biological resources is highly uncertain,
ranging from most compatible to most potential conflict. Energy
developers, permitting agencies, and conservation interests would
all benefit from information to reduce this uncertainty, particularly
for identifying the most compatible or “no regrets” sites [3].

To help fill this need, this paper presents an alternative
approach based on modeling the relative likelihood that a site will
not incur substantial impacts on biological resources from renew-
able energy development. We refer to this metric as a Compatibility
Index. Developing projects on low compatibility lands increases the
risk of loss of conservation values and the risk that solar developers
would face stiff opposition from conservation interests or high
mitigation costs. Although the two forms of risk are perceived from
opposite perspectives, both share a similar measurement of the
potential for conflict [13]. We have chosen the term “compatibility”
or the absence of conflict, to highlight the potential for meeting
renewable energy objectives without unacceptable loss of bio-
logical resources.
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Fig. 1. Location map of American Semi-Desert and Desert Province and the study area in southeastern California.
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The paper lays out the logic and assumptions of the model, and
implements it for the California deserts. The model is not a com-
plete assessment of suitability for solar energy development.
However, this model can be used by developers in conjunctionwith
models of other constraints and opportunities in order to make
comprehensive siting decisions. The model is also not a compre-
hensive assessment of biological conservation value but provides
a landscape level overview of areas that are unlikely to have high
value. To illustrate the utility of the model, we answer two research
questions: What areas in the region could be considered most
compatible with conservation of biological resources? What is the
total area of the most compatible sites relative to projected need?

2. Methods

2.1. Study area description

The American Semi-Desert and Desert province (#322; [14]) in
the southwestern United States is endowed with excellent solar
insolation, averaging 6.5 kWh m�2 day�1 (National Renewable
Energy Laboratory, http://www.nrel.gov/gis/). The average for the
conterminous 48 states is only 5.1 kWhm�2 day�1. The topography
includes extensive plains between rocky mountain ranges. The
vegetation is very sparse, dominated by shrubs such as creosote
bush (Larrea tridentata) and burrobush (Ambrosia dumosa). The
region is relatively unencumbered by land uses that would pre-
clude solar energy development.

State and federal laws and policies to increase low-carbon en-
ergy production have spurred a flurry of permit applications from
solar energy developers in this region. The agencies charged with
issuing permits have been hard-pressed to keep up with the
workload [2]. At the federal level, the Bureau of Land Management
(BLM) and the Department of Energy (DOE) are conducting a study
to designate desirable “solar energy zones” (SEZ) for fast-tracking
solar energy permitting on lands managed by BLM [2]. Agencies
are also planning for transmission corridors to support the antici-
pated development [15].

The presence of many sensitive species, ecological processes and
natural communities in this region, has made the siting of large-
scale renewable energy development challenging. Within Califor-
nia, a group of stakeholdersdagencies, energy companies, and
conservation groupsdare developing the Desert Renewable Energy
Conservation Plan (DRECP) to protect areas of highest conservation
value and tomitigate impacts from renewable energy development
projects on species and habitats in areas designated for energy
development [16]. The California Energy Commission estimates
that 25,000 ha of utility-scale solar projects will be required in the
DRECP area with 8.7 GW of installed capacity to achieve 2040
greenhouse gas reduction goals [17]. The Energy Commission
assumed that 42% of this capacity would be for solar thermal

http://www.nrel.gov/gis/


Fig. 2. Hierarchical multicriteria framework for modeling compatibility of solar energy development with biological resources.
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technology and 58% for photovoltaics, requiring 2.8 ha (7 acres) per
MW for each (see Ref. [17] for more about their assumptions). Until
this large-scale plan is completed, the need remains to identify
compatible areas of low potential conflict on both public and pri-
vate lands for near-term siting [3].

The study area is based on the California portion of the American
Semi-Desert and Desert province. The ecoregion was buffered by
20 km to ensure that potential solar energy sites were included.
Because of data limitations, Inyo County was excluded, leaving 9.4
million ha in the study area (Fig. 1). Section 2.2 gives a top-down
overview of the logic hierarchy of criteria, and Section 2.3 pro-
vides more bottom-up detail about the calculation and aggregation
of criteria scores.

2.2. Logic for the multicriteria analysis framework

In fragile ecosystems such as the California deserts that have
been targeted for utility-scale solar projects, the least disturbed
lands are likely to be in relatively good ecological condition and
may ultimately prove to have significant conservation value. The
best way tominimize impacts in this case is to site projects on lands
that are already degraded [1,3,18]. However, for a site to become
operational, it must also be interconnected to the transmission grid
and road system, requiring off-site impacts. Therefore the highest
level of our hierarchical multicriteria framework evaluates the
current level of degradation (On-Site Degradation) and how much
additional degradation would be generated by connecting the site
to existing road/substation/transmission line infrastructure (Off-
Site Impact) (Fig. 2).

2.2.1. On-site degradation
Analysts frequently model land degradation from various hu-

man activities such as building roads, urban development, and
agriculture. We prefer to model the level of degradation with ref-
erence to change in general ecological condition or landscape
integrity [19]. We modeled current site degradation based on
removal of vegetative cover (Impacted Native Cover) and fragmen-
tation of habitat (Fragmentation; Fig. 2). Loss or reduction of veg-
etative cover can either be considered essentially permanent such
as urban development, contaminated sites, and utilities, or



Table 1
GIS input data sources.

GIS input data layer Source

ECOMAP (USFS) EcoregionsCalifornia07_3 http://www.fs.fed.us/r5/rsl/clearinghouse/gis-download.shtml
Farmland Mapping and Monitoring Program (FMMP) http://www.conservation.ca.gov/dlrp/fmmp/Pages/Index.aspx
Fire perimeters (FRAP) fire09_1.gdb http://frap.cdf.ca.gov/data/frapgisdata/select.asp
Develop (extracted from FMMP 2008) http://www.conservation.ca.gov/dlrp/fmmp/Pages/Index.aspx
Housing density (EPA) iclus2010b2 http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid¼205305
Renewable Energy Generation Potential on EPA and

State Tracked Sites, EPA_OCPA_Renewable_Energy_Shapefile
http://www.epa.gov/renewableenergyland/data.htm

Significant Topographic Changes (USGS) topochange http://topochange.cr.usgs.gov/
Roads (ESRI) StreetMap USA\Streets\streets.sdc ESRI
Railroads (ESRI) StreetMap USA\stmap_plus\rail100k.sdc ESRI
Transmission lines for condition (BLM) ptllca http://www.blm.gov/ca/gis/
Canals and aqueducts (ESRI) StreetMap USA\ mapdata\ md_riv.sdc
Category I Exclusion areas (RETI) CategoryI_Lands http://www.energy.ca.gov/reti/documents/index.html
FWS Critical Habitat for Threatened & Endangered Species http://criticalhabitat.fws.gov/docs/crithab/crithab_all/crithab_all_layers.zip,

accessed 08/31/11
Highways (ESRI) StreetMap USAdStreets/highways.sdc ESRI
Substations (RETI) Collector_Substations (select Existing only) http://www.energy.ca.gov/reti/documents/index.html
Transmission lines for cost distance (RETI) RETI_

Conceptual_Proposed_Transmission_Segments (as per Dudek
Proposed Approach to the DRECP Effects Analysis, dated June 30, 2011)

http://www.energy.ca.gov/reti/documents/index.html

Census 2000 urbanized areas and urban clusters http://www.census.gov/geo/www/ua/ua_2k.html
BLM/EPA Solar Energy Zones http://solareis.anl.gov/maps/gis/index.cfm
Slope general exclusion area >5% (RETI) http://www.energy.ca.gov/reti/documents/GIS/GIS_RETI_General_Exclusions.zip
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temporary as vegetation recovers from past disturbance such as
farming. Although native vegetative cover may eventually recover
from farming, soil crust (a key component of desert ecosystem
processes) is destroyed by plowing and may take decades to cen-
turies to recover [20]. Previously tilled lands are thus given lower
conservation priority. Repeated fire in mid-elevation desert
shrubland can allow invasive annual grasses to establish and alter
the fire regime, particularly after wet years [21]. Whereas Impacted
Native Cover represents the ecological condition within an indi-
vidual grid cell, landscape-scale impacts on connectivity are rep-
resented by measures of fragmentation. Habitat loss also fragments
the landscape, but because it was already incorporated in the
Impacted Native Cover score, it was not repeated in the Fragmen-
tation score.

2.2.2. Off-site impacts
Most suitability and constraints analyses of renewable energy

projects either rate sites according to their proximity to existing
infrastructure as a surrogate for capital costs and permitting
challenges or as a hard constraint with a maximum feasible
geographic distance [6e8]. From an ecological perspective, the
impact to the environment is a function of the distance from
existing transmission infrastructure. However, just as sites vary
in their current condition and the degree that solar development
would cause new impacts, the condition of the landscape
through which new infrastructure would be constructed also
varies. Consequently we modeled Off-Site Impact as an impact-
weighted distance associated with new infrastructure, using
a cost or impact surface derived from the degradation layer
(Fig. 2).
b ¼ 40 If cell burned four or more times between 1895 through 2
¼ 30 If cell burned three times
¼ 20 If cell burned two times
¼ 10 If cell burned one time
¼ 0 If cell never burned
2.3. Spatial modeling

The hierarchical multicriteria framework diagram (Fig. 2) was
implemented with spatial modeling tools with ArcGIS 9.3 Mod-
elBuilder. All spatial data (Table 1) were processed into grid or
raster format at 90 m resolution. Scores were scaled such that the
most degraded sites were rated as highest compatibility (i.e., 100),
that is, the best for solar development from the perspective of
minimizing potential biological and ecological impacts. Data sets
on “permanent” land use such as urban or landfills were given
a score of 100 and aggregated into the Cover permanently removed
criterion, P (Fig. 2).

Native vegetation can eventually recover from transient im-
pacts such as farming and fire. The agricultural mapping was
a 20-year time series from the Farmland Mapping and Mon-
itoring Program with mapping in even-numbered years. Agri-
cultural land use was dynamic, with some new tracts becoming
cultivated and old farmland being abandoned over time. The
score for Recovery from farming, F, over time based on the anal-
ysis of field data in the Mojave Desert by Webb et al. [20] was
calculated as:

F ¼ 100� 13:14*lnð2009� yÞ (1)

where y is year that the cell was last farmed. F equals 100 if the cell
was farmed in 2008, the most recent year for which mapping was
completed. If a cell was notmapped as farmland from 1988 through
2008, y was assumed to be zero, so that F equals 0. The score for
Recovery from fire, B, was based on fire frequency, b, and burning
after particularly wet years, w, (1999, 2005, or 2006):
009

(2)

http://www.fs.fed.us/r5/rsl/clearinghouse/gis-download.shtml
http://www.conservation.ca.gov/dlrp/fmmp/Pages/Index.aspx
http://frap.cdf.ca.gov/data/frapgisdata/select.asp
http://www.conservation.ca.gov/dlrp/fmmp/Pages/Index.aspx
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm%3fdeid%3d205305
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm%3fdeid%3d205305
http://www.epa.gov/renewableenergyland/data.htm
http://topochange.cr.usgs.gov/
http://www.blm.gov/ca/gis/
http://www.energy.ca.gov/reti/documents/index.html
http://criticalhabitat.fws.gov/docs/crithab/crithab_all/crithab_all_layers.zip
http://www.energy.ca.gov/reti/documents/index.html
http://www.energy.ca.gov/reti/documents/index.html
http://www.census.gov/geo/www/ua/ua_2k.html
http://solareis.anl.gov/maps/gis/index.cfm
http://www.energy.ca.gov/reti/documents/GIS/GIS_RETI_General_Exclusions.zip


Table 2
Weights for linear features used in the fragmentation score.

Linear feature Weight

Freeway and ramps 9
Highway 6
Major road 4
Local road 1
Other road 3
Pedestrian way 1
Railroad 5
Transmission line 1
Canal/aqueduct 5
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w ¼ 30 If burn year ¼ 1999; 2005; or 2006
¼ 0 Otherwise (3)

B ¼ maxðb;wÞ (4)

In our judgment, fire was less degrading than farming, so the
times burned score was scaled to a maximum of 40, and burning in
wet years was scaled to a maximum of 30. Thus a cell could not be
considered most compatible with biological resources if the only
disturbance was from fire. The Cover is recovering score, R, was
calculated as the maximum of the farm, F, and fire recovery, B,
scores (Fig. 2), or was set to zero if neither farming nor fire occur-
red. The overall Impacted Native Cover score, N, was determined by
the maximum of the Cover permanently removed and Cover is
Fig. 3. Map of On-Site Degradation scores based on Impacted
recovering scores (Fig. 2). Thus in both cases, the criterion with the
greatest impact on ecological condition prevails, analogous to the
“law of the minimum” in ecology. This law states that plants, or
biological populations, can only grow at the rate allowed by the
factor (nutrients, light, water) that is the most limited [22].

Fragmentation, G, was modeled as a weighted line density of
roads, railroads, transmission lines, and large canals or aqueducts,
with higher weights for the most impactful classes of roads, e.g.,
multi-lane freeways (Table 2). The On-Site Degradation score was
determinedby themaximumof the two input scores,N andG (Fig. 2).

Ecological condition, the inverse of On-Site Degradation, was
used as the basis of a Cost-Surface for calculating theOff-Site Impacts
score (Fig. 2). Thus, totally degraded sites were assigned a score of
zero in the Cost-Surface as no further loss of conservation value
could occur. Sites with no degradation were initially assigned
a score of 100. Furthermore, lands with special restrictions were
assigned cost penalties that overrode the condition-based cost.
Lands that cannot be legally used to connect new power projects,
such as parks and wilderness areas, were treated as barriers by
assigning them a “cost” of 10,000 per cell (no units). Designated
critical habitat areas for listed species are not off-limits to infra-
structure projects, but development there is considered a high risk
to biological resources; therefore, a “cost” of 1000 was assigned to
them. The authors chose these additional cost penalties to be suf-
ficiently high so that the cumulative cost to circumnavigate these
areas would be lower than crossing them.
Native Vegetation and degree of Fragmentation scores.



Fig. 4. Pie chart of distribution of On-Site Degradation scores.
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The ArcGIS Cost Distance tool creates an output raster in which
each cell is assigned the cumulative cost to the closest source cell.
The algorithm finds the lowest cost from a source cell, in this case
a paved highway, existing electrical substation, or existing trans-
mission line, to a neighboring cell. The algorithm then proceeds
iteratively to calculate the least cumulative cost (ecological impact)
to every cell in the study area. Therefore the value of each cell in-
tegrates the geographic distance to infrastructure and associated
environmental cost. The three cost-distance (CD) scores were
aggregated by equal-weighted averaging them (Equation (5)) as
there was no basis for weighting one higher than the others. Note
that the overall score for Off-Site Impacts, I, represents the lowest
possible cumulative impact (i.e., least environmental cost) to con-
nect a site. The actual pathway for a project’s access roads and
connector lines may follow a route with a higher environmental
cost, especially if the financial cost would be lower.

I ¼ ðCD to highwaysþ CD to substations
þ CD to existing transmission Þ=3 (5)

The overall Compatibility Index, C, score was calculated as the
mean of the On-Site Degradation and Off-Site Impact scores (Equa-
tion (6)), ranging from 0 (least compatible) to 100 (most compat-
ible). Unlike the intermediate nodes that were based on a most
limiting factor principle, the logic for the top node was that
a combination of high scores in both inputs was necessary to be
Table 3
Comparison of model scores to photo interpreted point scores for on-site degradation. B

Model degradation score

Not degraded Slight

Photo interpretation
overall score

0 Not degraded 128 91
1 Slightly degraded 15 65
2 Moderately degraded 2 13
3 Most degraded 0 4
Total 145 173
% agreement 88 38

Kappa Statistic: 0.40.
Model shows more degradation than photoplots 29%.
Photoplots show more degradation than model 10%.
rated as highly compatible. Based on the dispersion of scores, we
chose to assign overall scores greater than 90 to the Most Com-
patible class. This same scoring rule for Most Compatible applied to
all intermediate nodes of the hierarchical framework. Model results
at intermediate nodes of the framework were retained, both for
visualization and for the validation process described below.

C ¼ ðDþ IÞ=2 (6)

Because of the large geographic extent, the analysis depends
upon standardized, publicly available spatial data sets of land uses.
Large-scale mapping of land uses will tend to miss some existing
disturbances, such as off-road vehicle tracks through the desert. For
the purposes of mapping compatibility of energy projects, however,
such errors of omission (i.e., ground conditions are more degraded
than indicated by the model) are less risky from the conservation
perspective than commission errors by which the model may
incorrectly identify a site as being highly degraded and of low
conservation value. However, for solar developers, the risk of
omission errors represents missed opportunities, whereas com-
mission errors might lead to wasted effort pursuing sites that
encounter resistance later in the permitting process. We con-
sciously took a conservative approach in applying spatial data to
attempt to minimize errors of commission.

To avoid redundancy or double-counting in themodel, Pearson’s
correlation coefficients between some of the spatial data layers
were calculated so that any highly correlated criteria could be
removed from the model. We examined whether Off-site Impacts
were correlated with On-site Degradation, and whether simple
geographic distance was an adequate proxy for cost-weighted
distance.

The purpose of the model was to map compatibility of solar
energy development with biological resources, but there are many
other constraints on energy project siting. For example, utility-scale
solar energy projects cannot be technically or economically con-
structed on slopes greater than 5% [23]. Also urban residents gen-
erally oppose utility-scale renewable energy projects in or near
their town [6,18] even though urban areas have low biological
value. To account for these constraints, we excluded areas with
slopes >5% [23] and urban regions mapped by the 2000 US Census.
The area of compatible land was determined after these exclusions
and compared to the projected area required to meet state
renewable energy goals [17]. Because Compatibility Index scores are
relative, we determined area at two threshold scores: >90 and
more liberally, scores >70.
2.4. Model review and validation

Validation is challenging in suitability analysis because the
model outcome is not directly measurable in the field. The deg-
radation/condition layer was evaluated against a set of 381
old font indicates agreement between model scores and photo interpreted points.

ly degraded Moderately degraded >90 most degraded Total

6 0 225
8 3 91
9 3 27
4 30 38
27 36 381
33 83 61



Fig. 5. Map of Off-Site Impact scores based on cost-distance from highways, substations, and transmission lines.

Fig. 6. Pie chart of distribution of Off-Site Impact scores.
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random points that were photo interpreted from 2009 to 2010
National Agricultural Inventory Program natural color imagery
with 1 m spatial resolution. Each random coordinate pair was
used as the center point of a 90 m radius photo-plot. For each
point, we recorded the overall level of disturbance of the land
(none, slight, substantial, complete transformation). If land was
disturbed, we recorded the land use associated with the dis-
turbance, if discernable. To test the modeled degree of fragmen-
tation, we counted the number of highways, roads (paved and
unpaved), transmission lines, and railways visible in the imagery
and weighted each category similar to the modeled version.
Fragmentation scores were similarly classed into four levels, and
then the Cover and Fragmentation classes were combined into
the same four levels. These point values were then compared
with the modeled predictions of On-Site Degradation in an error
matrix. Investigating the mismatches between plots and the ini-
tial modeling led to several modifications in the initial model (see
Ref. [24] for details).

The revised model results were distributed to a group of
knowledgeable people for comment, including staff from agencies,
environmental groups, and consultants involved in the DRECP.
Their feedback led to several other revisions prior to the final ver-
sion of the model. A new error matrix was generated for the final
version, and the kappa statistic was calculated to indicate the rel-
ative level of confidence.



Fig. 7. Map of the Compatibility Index based on On-Site Degradation and Off-Site Impact scores. Urban areas and slopes >5% that were excluded in this study because they are
unsuitable for solar energy development are displayed in the Least Compatible class.

Fig. 8. Pie chart of distribution of Compatibility Index scores, after excluding urban
areas and slopes >5%.
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3. Results

The model identified only 5% of the study areawith high On-Site
Degradation scores (>90), clumped in valley floors where urban and
agricultural land use occurs (Figs. 3 and 4). Otherwise most of the
study area is classed as least degraded. Themain exception is where
roads and other linear features fragment the habitat and yield
a moderately low score. The model showed generally good agree-
ment with the photoplots in themost (83%) and not degraded (88%)
classes, but often predicted a slightly greater degree of degradation
in the mid-range scores than was discerned in the photoplots
(Table 3). Overall agreement was 61%, with a kappa statistic of 0.40.

Off-Site Impact scores (Figs. 5 and 6) show large core areas (9% of
study area) around urban and agricultural areas that had high
scores (>90). Nevertheless, the Pearson correlation between On-
Site Degradation and Off-Site Impact was only 0.36, indicating that
they were not highly redundant. The Pearson correlation between
Euclidean or geographic distance and cost-distance was only 0.19,
so including a cost associated with ecological condition added new
information to the conventional approach in renewable energy
suitability analysis.

Averaging the On-Site Degradation and Off-Site Impact criteria
scores produced more Compatibility Index values near the center of
the potential compatibility range with fewer grid cells in the Most



Fig. 9. Histogram of percentage of compatibility classes on privately-owned lands and
federal Bureau of Land Management (BLM) lands.

D.M. Stoms et al. / Renewable Energy 57 (2013) 289e298 297
or Least Compatible classes (Figs. 7 and 8). Nearly 4 million ha (42%
of the study area) were excluded because of urban areas or slopes
>5%. Even though only 3% of the study area has scores >90 in the
“Most Compatible” class, this corresponds to roughly 282,000 ha,
with 396,000 ha with scores >70 after excluding urban areas and
slopes >5%. Thus there appears to be a sizeable area of degraded
land close to infrastructure yet outside of towns and unsuitable
terrain. In fact there is an order of magnitudemore landmodeled as
Most Compatible than the approximately 25,000 ha required to
meet California’s clean energy goals [17].

Most permitting applications for solar energy projects have
been filed on privately-owned lands and federal lands managed by
the Bureau of Land Management. Compatibility scores are dis-
tributed quite differently between the two ownerships (Fig. 9).
Even excluding urban areas, private lands tend to be much more
degraded than federal lands, and therefore have a higher percent-
age of Most Compatible lands. Nearly all of the Most Compatible
lands are privately-owned (272,000 ha), with only 1700 ha man-
aged by BLM.
4. Discussion

The mitigation hierarchy defined in the US National Environ-
mental Policy Act specifies four levels of dealing with environ-
mental impacts in decreasing order of preferencedavoid,
minimize, restore, offset. Generally each level becomes more costly,
and the probability of success becomes less certain Refs. [18,25,26].
Therefore avoidance of impacts would appear to be a prudent
strategy from the perspective of any stakeholder. Mapping areas
that would avoid or minimize impacts over a regional scale would
be a valuable information resource for developers, permitting
agencies, and conservation interests.

The framework presented here provides a transparent logic for
identifying compatible, low impact sites that appear to have low
conservation value because they are already degraded habitat and
can be connected to existing infrastructurewith minimal impact on
intervening lands. It fills a gap between regional site suitability
prospecting for renewable energy and systematic biodiversity
conservation planning. This study assesses potential compatibility
on both private and public lands. We propose that the framework
could also be used to assist in prioritizing the processing of solar
(and wind) energy development right-of-way applications by BLM.

The study most similar to this paper mapped disturbed lands to
determinewhat level of wind energy penetrationwas possiblewith
minimal impact on conservation values [18]. This would be similar
to our Impacted Native Cover criterion, because that study did not
include fragmentation or off-site impacts. They excluded certain
areas from the disturbed category (e.g., protected areas, urban
areas) that our model treated as costs or in post-analysis. The Brody
et al. map [13] is similar in revealing the potential level of conflict,
in their case of oil and gas extraction in the Gulf of Mexico. The
main differences are that biodiversity was just one of eight marine
interests that compete with energy production, and it was repre-
sented by spatial data on important habitats rather than inferred
from ecological condition.

As with any spatial model, there are inherent limitations. Only
mapped land uses provide evidence of degradation. Some forms of
land use such as intensive grazing or off-road vehicle use often go
unmapped and hence are omitted in the model. Such omissions are
not risky for biological resources, however, because these sites
would be erroneously labeled as least compatible. Themodel is also
not a comprehensive assessment of biological conservation value.
No biological observations, species distribution models, or critical
habitat designations were used in constructing this model. There-
fore not all least compatible land will prove to be of high conser-
vation value. Conversely some agricultural land may provide more
suitable habitat for some species than utility-scale energy devel-
opment. We recommend that a decision process include a process
for consideration of erroneously mapped least compatible sites for
solar development and for denial of applications (or additional
mitigation) on most compatible sites where biological value can be
shown to be high.

The logic framework for the model should be transferrable to
most regions, even if the data and GIS modeling might need to be
adapted to each location. Modeling recovery of past agricultural
activity appears to be an improvement over the conventional
method of using a past snapshot of land use to model impacted
natural cover in our study area. Where agricultural land use is more
stable through time, it may be sufficient to use land use data for
a single period, since repeating historical land use maps are not so
common. The On-Site Degradation criterion is similar to the Human
Footprint of the West [27], which was designed as a general pur-
pose measure of degradation and not specific to renewable energy.
Although developed in the context of solar energy, the framework
has similar applicability for wind and geothermal energy. For
instance, Janke [6] modeled site suitability for wind and solar farms
in Colorado with the same set of environmental and geographic
criteria for both technologies. The On-site Degradation information
from the risk model can inform conservation planning as a factor in
determining conservation value and in modeling species habitat
suitability. It can be modified with scenarios of future development
and transmission corridors to model future threats and cumulative
impacts [19].

The convergence of the economic objectives of energy de-
velopers and conservation objectives of environmental groups is an
encouraging aspect onwhich we based this study. Both stakeholder
groups prefer that renewable energy developments be sited close
to roads and transmission infrastructure, corresponding to the Off-
Site Impacts criterion in the model. They may also agree on the use
of degraded lands for energy projects to avoid or minimize impacts
and potential conflict. Applying this winewin strategy demon-
strated that there is ample compatible land, outside of urban areas
and steep terrain, to meet the solar contribution toward 2050
greenhouse gas reduction goals at the least challenging levels of the
mitigation hierarchy. Directing renewable energy development to
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the most compatible lands in the short-term should expedite the
rapid, yet sustainable, deployment of low-carbon energy resources.
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