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Precision matched solution of the coupled beam envelope
equations for a periodic quadrupole lattice with space charge*

- Edward P, Lee
Lawrence Berkeley National Laboratory, University of California,
One Cyclotron Road, BLDG 47R0112, Berkeley, CA 94720-8201

Abstract

The coupled Kapchinskij - Vladimirskij (K-V) envelope equations for a charged
particle beam transported by a periodic system of quadrupoles with self-consistent space
charge force have previously been solved by various approximate methods, with accuracy
ranging from 1% to 10%. A new method of solution is introduced here, which is based on
a double expansion of the beam envelope functions in powers of the focal strength and
either the beam’s emittance or its dimensionless perveance. This method results in
accuracy better than 0.1% for typical lattice and beam parameters when carried through
one consistent level of approximation higher than employed in previous work. Several
useful quantities, such as the values of the undepressed tune and the beam’s perveance in
the limit of vanishing emittance, are represented by very rapidly COnverging power Series

in the focal strength, with accuracy of .01% or better.

* This work was supported by the Director, Office of Science, Office of
Fusion Energy Sciences, of the U.S. Department of Energy under Contract No, DE-AC03-76SF00098.



1. Introduction

The matched (i.e. periodic) solution of the coupled Kapchinskij — Vladimirskij (K-V)
beam envelope Equations [1,2] is used extensively in the design of quadrupole transport
systems for intense charged particle beams. Although an accurate numerical solution for
the beam envelope radii is easily obtained for specified beam and quadrupole lattice
parameters, approximate analytical solutions continue to be useful for design studies,
scaling, cost optimization, and physical understanding. Various analytical methods have
been applied to solve these equations during the last twenty five years [3,4,5,6,71, with
the degree of error decreasing from about 10% for the early smooth limit approximation
to less than 1% using the small parameter expansions employed by Anderson [6] and Lee
[7]. In the present work the error is reduced to less than 0.1% for typical system
parameters, but one may question the value of this new work since several
approximations have been made in deriving the K-V equations, which may produce
errors much larger than 0.1%. These approximations include the neglect of third order
geometric aberrations, non-linear components of quadrupole fringe fields, higher order
magnetic multipoles, and deviations from the assumed flat space charge profile. A
primary motivation for the present work is that the analyses of Anderson [6] and Lee [7]
essentially employed expansions in powers of the quadrupole strength k alone. However,

the matched K-V envelope equations, when written in dimensionless form, may actually



be expanded in powers of two independent dimensionless parameters. These parameters
are proportional to k and either the beam’s emittance £ or the beam’s dimensionless
perveance (). While technically correct if done with sufficient care, expansion in k alone
results in envelope expressions that are not easily used beyond the lowest non-trivial
order, in contrast to the double expansion employed here. Second, the present approach is
a conceptual simplification and yields a non-trivial limit when kzO (corresponding to a
self-pinched eqﬁﬁbrium). Third, the high (0.1%) accuracy of the present solution is of
value in setting initial values of envelope radii for fundamental beam dynamics studies,
where the effects of very small nonlinearities and mismatches are examined. Finally, the
topic is of interest to workers in the field who make regular use of the K-V envelope
equations and have often derived their own approximate solutions.

The K-V distribution function, which is a three dimensional shell in the four
dimensional transverse phase space, is not used in the present work. In fact, it is
obviously unrepresentative of real beam distributions. However; it is the only known

distribution function that can be exactly matched in a periodic transport lattice. The

K-V envelope equations for edge radii a and b are regarded as having a much greater validity

as an approximate model because they are satisfied by rms radii (F —ad / 4,? — b2/4) under

the assumptions of constant rms emittance and uniform elliptical space charge profile. These

conditions are easily justifiable in the limit of either vanishing emittance or perveance.



The general problem may be stated as follows: For specified quadrupole strength K(z)
with scale strength k (e.g. peak value) and period P, beam edge emittance &, and
dimensionless perveance @, find the periodic envelope edge radii a(z) and b(z) of the
matched elliptical beam profile in the transverse (x,y) plane. The depressed tune ¢, which
is a particle orbit’s phase advance per period P, is then determined from the product of £
and the mean of a(z)”according to Floquet theory. The condition of envelope periodicity
results in a relation among k, £ and Q. Hence these three quantities cannot all be
independently specified in their dimensionless forms. The mean radius a and period P,
which at first appear to be forth and fifth parameters, get absorbed into combinations with
k,e and Q in this approach. As mentioned, the fundamentally new aspect of this work is
that double power series expansions are used, which can be in either (k, £) or (k, Q).
Results from one expansion can be easily transformed to the other. A second new feature
of the present work is the level of expansion. Here it is carried through five non-trivial
orders instead of three orders as in Refs. 6 and 7 (e.g. K’ instead of k). There is
considerable apparent complexity in the additional orders, but it is greatly reduced with
simplifying combinations of terms.

In section II the K-V equations are reduced to a mathematically convenient form
which makes the expansion procedure nearly obvious. Section III gives the formal

expansions of the coupled envelope equations in (k, ). Their integration is formally



carried out in section IV along with an evaluation of the depressed tune. Results for the
(k, @) expansion are given in section V along with a variety of useful, very accurate,

relations among Q, €, o, and the undepressed tune o,. Section VI tabulates results for

the special case K(z) = k cos (272/P), with comparison to an exact numerical case.
Section VII summarizes results through third order for the flat top quadrupole profile
commonly used in conceptual design work. The main general results of the paper are
Equations (50), (52), and (54) for high order terms of the beam radii, and Equations (70),

(76), and (78) for relations among Q,¢,0, and o,.



IL. The K-V Envelope Equation

The x and y radii, a(z} and b(z), are assumed to satisfy the coupled K-V envelope

equations [1]:

d’a g 20
-=—K(2)a+—+——, 1
dz’ (2)a a a+b )
d*b g 20
— = +K(2)b +— + —=, 2
dz” @ B a+b )

Here the quadrupole strength K(z) is the ratio of the transverse magnetic field gradient
G(z) and particle rigidity [B p]= ByMc/q:

K(xy=2& 3)

[Bo)
The perveance Q is a dimensionless parameter, which in the absence of any charge or

current neutralization is related to beam current I by

_ 2q1
(ByYMc*ane,

Q 4

The un-normalized edge emittance £ =g, = ¢, is the occupied two dimensional (x,dx/dz)

phase space area divided by 7. For the K-V distribution this is a uniformly filled ellipse.
For electrostatic quadrulopes the K-V equations apply, but the formula for K(z) is
modified by using the electric field gradient divided by fc.

By assumption

K(z+P)=K(z2)=—K(z+ P/2), &)



so the mean K =0. No additional symmetries are assumed (a minor generalization from

previous work). The matched envelope radii then have the symmetries

a(z+ P)=a(z), b(z+ P)=b(2), )

a(z+ P/2)=b(2). (D

In general a bar denotes the simple average over a full period, for example
a= -—-_[dz a(2). ®)

The depressed tune ¢, or phase advance per lattice period (in either plane), is determined
by the mean of the inverse beta function as defined by Courant and Snyder [8],

(B, = a*/ £); from Floquet theory (or the standard accelerator formalism for a particle

subject to a periodic, linear, transverse force):

T i
£ - Psa— = Ps«l;?. ©)

The tune has units of radians unless degrees are specified.

The approximate solution of Equations (1) and (2) is greatly aided by working

with the sum and difference quantities

a+b a—b

S(z) = ., D)= 7 (10)



It will be seen that S(z) is nearly constant and has period P/2, while D(z) carries most of

the variation of a and b and has symmetry D(z+P/2) = -D(z). Equations (1) and (2) are

added and subtracted to yield

dpf:—Kmi[ L .1 3}2, (1)
a2 2|S+Dy S-Dy | S

D _ ks 5{ SR 3} (12)
iz’ 2| (5+D) (S-D)

Since the desired solutions are periodic we have from Equation (11) the special condition

— & 1 1 1
0= —KJD+—2~[(SJr o7 + (S—D)3:|+Q:S'-' (13)

The tune is given by

o= Pg 1 = Pg 1,=E
(S-Df 2

1 1
ey } v

At this point it is clear that the mean edge radius (a=b = 35) can be absorbed by

£ and Q; we define dimensionless functions s(z) and d(z):

S=dl+s5(z), D=uad(z), (15)

so the edge radii are written

a=a(l+s+d), b=a(l+s—d). (16)

Equations (11) — {13) become

sz:—Kd+(§—:—Jl[ L 3]4{_22}_{_, 17
2| U+s+dy  (Q+s—dY | \7 J1+s

2
Z a




d?.d 2 T
4 _ka+s+] S — L I -l (18)
dz” a j2L(A+s+d)y 1+s—d)

2 Ny
0=—Kd+ ET-E L =+ ! + é% 1 . (19)
a )21 (A+s+d) (Q+s-d) | \g J@+9

The evaluation of s(z) is simplified by subtracting Equation (19) from Equation (17), a

procedure similar to one introduced by Anderson in 6. The equation for s(z) becomes

df={2§—xuh—§;l4 L - L T+ L o= 1 ;
dz a J2|(+s+d)y (Q+s+dyY (A+s—-dyY (A+s-d)
(¥
a J1a+s) (d++s)

In subsequent sections we solve Equations (18) — (20). Note that at this stage
there is a specifiable function K(z), and the two parameters, (&/ EZ) and (Q/ EZ), are
related through Equation (19). The functions s(z) and d(z) are determined by second
order ordinary differential equations that involve K(z) and the two (not independent)
parameters. These equations are to be solved subject to the conditions of zero mean and
periodicity:

s=d=0,

(21)
s(z+ P)=3s(z), d{z+ P)=d(z).

In fact it is also easily shown from Equations (18) and (20) that stronger symmetries
apply:

s(z+ P/12)=s(z2), d(z+ P/2)=—-d(z). (22)



The tune formula, Equation (14), may be written in the convenient form

Gw:l[ S } (23)
Pe 2|(Q+s+dyY ({A+s5s-—-d)

10



I11. Method of solution

It is natural to attempt to solve Equations (18-20) by power series expansions in

the amplitude of K(z). Formally we define
K(z)=kf (z/F), (24)

where f is a specified dimensionless function and k is a variable parameter for expansion
(normalization of fdoes not need to be specified here). The tricky issue is how to treat the
parameters € and Q. In Reference [7] they were formally expanded in k, with the ratio
0d’ / €* held fixed (independent of k). Alternatively, in Reference (6) both &* and O
were regarded as being proportional to &* and the K-V equatioﬁs were solved essentially
by an iterative procedure. Both approaches lead to non-transparent results in all but the
lowest orders of k and tend to submerge the important roles play by emittance and
perveance. The latter defect is demonstrated by setting k=0 in Equations (18-20). A
nonirivial matched solution is immediate:

s=d=0, 25)
£+ 26)
a a

0 must be negative in this case, which can be the result of sufficient space charge

neuiralization by plasma. The tune in this case is simply

o =I_)—f =§@. 27)
a a

11



While neutralized pinch equilibria are not the topic of this work, it is apparent that it is
unnecessary and possibly misleading to strongly tie the values of both £ and Q to k from
the beginning.

An examination of Equations (18-20) shows that & appears more frequently than
Q. Therefore it is reasonable to use Equation (19) to eliminate Q/ @’ from the system and
solve for s(z) and d(z) as double power series in k and €. This procedure immediately
yields useful results for the cold beam limit (¢ — 0). However, for some applications an
expansion in k and @ is actually more useful, for example in evaluating the undepressed
tune o, (here subscript “ v’ denotes vacuum, since the usual designation ¢, could be
confused with an order of expansion). The transformation between the two expansions is
derived in section V.

The magnitude of K(z) employed in accelerators and beam transport systems is
limited by considerations of stability. If Q =0 then single particle orbits are unstable at
o =0, = 180°, with a very broad stop band for increasing values of k. Finite Q results in
a collective envelope instability (breathing mode) for sufficiently large &,. The unstable
zone begins at o, = 90° foro = o,. For ¢ << 0, the unstable zone begins at ¢, =115°.
Consequently, design values of ¢, are usually set below 90°. For the simple case
K (z) = kcos(2mz/ P) it is shown in section VI that this requires | kP? I(47) I<1.0. A good

convergence rate for expanded envelope parameters is found when this condition is

12



observed, and this is generally true for any periodic K(z) when o, <90°. The
combination &*/¢" +Q/a’is approximately equal to &,2/P? (the smooth limit); this also
bounds the range for these parameters if Q> 0.

It is found that |s|<.015 and |d|< .35 for &, <7/4. A Taylor expansion of the

functions of s*d appearing in Equations (18-20) therefore appears to be of questionable

value, e.g.

1
(1+s+d)°

=1-3(s+d)+6(s+d)* — 10(s+dj’ +15(s+d)' —...  (28)
may converge slowly at some values of z. However, it will be seen that convergence is
actually quite rapid when the differential equations for s and d are integrated in z.
Equations (18-20) exhibit the symmetry
K—=-Ks—s5,d—>—-de—e,0—0. 29
We therefore expect expansions in (k,€) to (schematically) contain powers of terms of
the form

d o< k+(E +ke)+ &+ + ke’ +..., (30)

s e B +(k 4R+, (31)

% o« (K +eN+E +EE+ e +EEHEE + K + %) +.... (32)
a

13



Terms are grouped and designated here according to their combined powers of k and € as
first order, second order, third order and so on even though they contain mixed
combinations of k and €.

At this point it is convenient to introduce dimensionless variables and parameters.

This is done by absorbing the period length P:

t=2z/P, (33a)
K (1) = K(z)P* = (kP*) £ (1), (33b)
E=¢eP/d’, (33c)
U=QPld. (33d)

A lattice period has length equal to unity in ¢, and “prime” will denote d/dt.
To evaluate the terms of various orders appearing in s, d and U/, we first expand
Equations (18-20) in simple power series involving s and d:

d” =—K(1+5)+ E[-3d +125d - 1035°d + d®) + ...}, (34)

s = (kd — kd) +E2[—3s +6(s* = 57) + 6@ - &) - ] +U(-s+.), (35
U= E(l—s_Z+..)—E2[1+6(?+?)—10(F+3E)+15(?"+6@+?)-—..](36)

_@—?+4

Following the schematic forms (30) and (31) we set
d=d +d,+d;+.., (37)

§ =8, 8, F (38)

14



where the subscript denotes the order of a term, e.g. d, contains both % and k€*
contributions. Then Equation (36) yields

U =[id, - B*]+|Kd; - 6B & |

— — R — (39)
+[ied; - 53 + B*(~553 ~ 124, + 305,d; - 15d;‘)] o
where we have displayed terms through 6™ order.
From Equation (34) we get
d’ =-x, (40)
dy =-xs, —3E’d,, @1)
df =—is, +B*(-3d, +125,d, -10d}). (42)
And from Equations (35) and (39)
sy =kd, —Kd,, (43)

s = (1eds — )+ B(~3s, + 647 — 647 |- (2, = E)(s,).(44)
Equations (40)-(44) can be integrated for given x(#); this will be done in general
terms in section IV The mean values kd, and &d, will be evaluated from lower order

quantities and an expression for U evaluated from Equation (39). Finally, the depressed

tune is given by Equation (23), which becomes
o _ SR A NP o WP T f37 . A\
E_1+3(s + &)= 47 +35d )+ (s + 650 + ) - (43)

=1+3d7 +(35] + 64 ~125,d7 +5; ) +... 46)

15



IV. Formal Solution

Equations (40) — (44), when solved for specified x(t), give the envelope functions
expanded through fifth order terms. In each of these five equations it is necessary to
integrate twice in t, with the two constants of integration determined by the requirements
of zero mean and periodicity. As an example, consider the simple case k = kP*cos (271t).

From Equation (40) we have

d! =-k =-kP*cos(2m), (47a)
d = l[EJ cos(2m). (47b)
m\ 4n
From Equation (43)
kP

v ={rd —xd)=-2 4mt), 48
s, ( | ,) [4%) cos(4m) (48a)
5= —| 5\ cosam). (48b)
© 87\ 4w

These simple functions illustrate the symmetries and approximate magnitude of the
lowest order terms of d and s; recall (kP2/47r) <1 to make o, <7/2.

In general 4,(t) and s,(¢) are determined from x(¢) alone, by integration. To
obtain d, we must integrate Equation (41) with conditions of periodicity and zero mean

applied to each third order combination of terms separately; let

5=y, (492)

16



e =-—d,.
Then the formal solution is

d, = f, +3E’e,

{(49b)

(50)

with f;(z) and e, (¢) being functionals of (), each satisfying the two integration

conditions. The evaluation of s, requires the definition of four more functionals of k:

8! =K, —Kf,
hy = Ke, —Ke,
L ==s,,

2 zdlz_?’

giving

5, = (g, +xdji, )+ B*(3h, +24, + 6}, ).

Similarly, evaluation of 4, requires eight new functionals of x:

[ =-xg,,
my =—Kh,,
ny ==k,
py =K,
g7 =—fp
R o=-e,
uy =s,d,

17

(51a)
(51b)
(51c)

(51d)

(52)

(53a)
(53b)
(53c}
(53d)
(53¢)
(531)

(53g)



vy =-d?, (53h)
giving
dy = (I, + xdvn,) + B*(3m, +2n, + 6, +3g, +12u, +10v,) + 9E*r,. (54)

To obtain nseful expressions for U and o various mean values must be evaluated

[see Equations (39) and (46)]. We need at least the set [id:,xds,d,’,Kds, s, d,d;,5,d., and
djis,]. Some means, such as -&‘Fand 5,7, must be calculated directly from the relevant

functions. However, there are useful relations among many means and shortcuts for

evaluations; for the present work it is sufficient to solve for only [d,,5,, f;.€,] to evaluate
e.g. the complicated mean ki, . Several examples follow to demonstrate techniques. First,
note that we may write

K, = 4%, = 7, (55)
where we used Equation (40), integration by parts, and the condition of periodicity.

Similarly

Kd, =—d! d, =—d,d =dxs, +3B%d>. (56)

The mean d ks, may be simplified using Equation (43):

dics, = (i — 55 Js, =55 5, =52, 57

We also have the simple relations

Kh=—d f=-df =dxs,= 55 (58)

ke, =—d!' e, =—de! =d?, (59)



de, =—e e, =¢, (60)

dy=d,f,+3Ede,. (61)
The evaluation of kd; involves dixs, at an intermediate step; this is readily shown to be
dKs, = (k_al] - sé’)s4 =—8,8 = (F + EE) + Ez(B_f;El + ZE - Gszd]?'). (62)

‘We then have

Ky = ~d{' dy =—didj| =G5, + B*(34,d, ~ 125, +104;") "
=(R7+d? o2)+BY 62 F + 25~ 185,40, + 104")+ 9E"¢”.

Equation (39) now provides the formal expansion of U through sixth order; after

some straightforward substitution from the mean value formulas we get

U=(d ~B2)+ (s - 38247 )+ | 7 - (64,5 + 35,7 ~ 125,47 +547 )~ 2TB*¢] | +..(64)
Similarly, Equation (46) gives

%: 1+3d7 +[(6de3 +3E—12ﬁ+5d7)+18ﬂ%}5]+.. (65)

While the second and fourth order terms of {/ and zeroth and second order terms of o/E
can be deduced from the work of Lee [7] and Anderson [6], the complicated higher order
terms in brackets are new. Fortunately, they can be written in a very convenient form, to

be given in section V.

19



V. Useful Relations

Much of the value of the present treatment of the envelope equations lies in the
accurate relations that connect the parameters (Q, P,a,E,0, crl,). To a considerable extent
these relations are found to be nearly independent of the specific form of «(t). We expect
to find two independent relations by manipulating Equations (64) and (65) for U and
o/E. We also obtain a formula for &, from these equations by taking the limit I/ =0,

First consider the cold beam limit (E = 0); Equation (64) and (65) become

U=d* +507 + £ +8% order = A[k(n)], (66)

%: 14347 + (64,7, +35,7 ~125,d7 + 54,") +6" order =1+ y[x()].(67)

The functional A appears to converge very rapidly and can be well approximated by its
first two terms. The functional y also appears to converge rapidly, but less so that A4 (see
section VI. Due to the complexity of its forth order term it is desirable to avoid explicit

evaluation of  if possible.
Using the functionals A and y we now write Equations (64) and (65) in the
convenient general forms (E # 0)

U—A+E(1+y)=-27E + 8" order, (68)

—(1+y)=18E%¢ + 6" order. (69)

20



Only the three functionals (A,l/f, e_{i) appear at the present level of approximation, instead

of five as might have been expected. We may now eliminate i between Equations (68)
and (69) to obtain the very useful and accurate relation
U-A+0F = —9E*e +8" order. (70)

So far power series expansions in (k.€) have been used, but for some purposes we
need expansions in (k,Q). These are obtained by solving Equation (68) for E? through
6" order and substituting it in previously derived equations for d,s and &. In this
procedure U is regarded ﬁs a term of second order, or equivalently we could regard the

new expansion as being in the parameter U . We have immediately

E? = (A, ~U)+[A ~ 1, (4 — V)] + [ Ag — vy + (W22 ~ 9, ) (A~ U) - 27¢(*(%; - U |+... ()
where {A,,4,,4;,W,,¥, } are the respectively ordered terms in Equations (66) and (67)

defining the functionals A and . The sixth order term for E*in Equation (71) is not
needed to transform the expressions for d(z) and s(¢)through 5* order. However, note
that this substitution generates new higher order terms at every level. For example, the

factor of E* in d, will contribute 5" and higher orders to the (k,() expansion of 4.

Substitution for E*in Equation (69) vields

o

e 1+, + [1114 + 18:2_1’3(/12 - U)] + 6" order, (72)

We are now able to obtain an expression for ¢ that does not explicitly contain E.

From (71) and (72), after some algebra:

21



E
(% +¥sy + ¥4y~ U) + 967(R, — U)" | + 8th order.

R R

This can be written in the convenient form
0* =(A-U)1+y)+HA-U) ¢ +8" order. (74)
An expression for the vacuum tune is obtained directly from Equation (73) by

setting U/ =0:

2

0% = Za+ (A + W)+ (A + Uy + WAy + 922 ) +8 order.  (75)

¥

However, this is not the best available formula for &,. If we expand cos(av) a very

rapidly converging series is obtained, which gives extraordinary accuracy using only the

lowest order terms. This is

c! of

2 G, O, _’122
2[1—005(0",)]—0", 12 +360 -.—/12 '*'[A;"’Wz’lz 12J+

3

[,15 FULA, WA + O -'}53-();4 FUd)+ ;%) f. (76

Accuracy better that .01% is obtained from terms through 4™ order, which written out

explicitly are

(@)
21~ cos(o, )] = d® +| s + 3d_12d,7—;—2 : (77)

22



The rapid convergence of this series may be related to the fact that terms of higher order
than &* vanish in the thin lens limit. Numerically, in equation (77) we find that the 4
order term is small (<.01) because of the approximate equality 3d_12 = E/IZ.

A final useful relation is found by evaluating the difference between cos(c,) and

cos(o). This is expected to be approximately equal to I//2 based on the smooth Hmit; a
q

very accurate version is

= U{ﬁ _ 9e]") +8"%order. (78)

E 12 180

. 2 3
2(1-coso)-2(1-cosa, )+ L U U
6 120

The 6" order terms on the right of Equation (78) nearly cancel (S .OOSUE).

Equation (78) is clearly exact for the limit I/ = 0. We can also make it exact for

the special limit £ — O by substituting

i’; + % — 2(1 —cosh U }+ T sinh(\/ﬁ ) (79)

In this limit we also have 0 = E =/-U =i/U.

23



VI. The Case of K=k cos(2ntz/P)

The fifth order solution for s and d and the relations, derived in general form in
sections III-V, are tabulate here for the analytically simple and useful case of a
quadrupole gradient approximated by a single cosine term. Recall the dimensionless

forms
K=KP'= (kpg)éos(zn z/P) = 4nBcos(2m), (80)
E=¢P/a’,U=0QP/d’, (81)
where t = z/ P and we define 8=k P*/4r for notational convenience. We have

previously obtained [Equations (47), (48)]

d, =2 cosam), (82)
T

8§, = B 2., cos(4m). (83)
87~

Equations (49a,b) are integrated and the resulting functions (f;,e, )inserted in Equation

(50) to yield the third order term

_ B’ [ 1 :| 3E*8
d, = 6 cos(2mt) + gcos(ﬁm‘) + = cos(Z7t) . (84)

Similarly, Equations (5la —d) are integrated to obtain (g,,,,,, j,). These functions are

inserted in Equation (52) to give

ﬁ4 28 1 SEZﬁZ
S = Togt ?cos(4m) +£c08(8m) —WCOS(‘W) - (85)

24



Finally Equations (53a-h) are integrated for (I;,m,,7,, p;, g5, 1,145,V }, which are inserted

in Equation (54) to obtain

g T28 113 1
ds = YT —-§-cos(2m‘) + acos(ﬁm’) + ECOS(IOM)
B8 30 9E'B

9
434 2my+ —— omt) |+
25697:5[ cos (27} + = cos( )] 167

(86)
.+.

cos(2m).

Several features of the expansions are apparent. Clearly the size of the terms
drops rapidly with decreasing focal strength (~ ) and emittance (~ E). However, 3 and
E may be of order unity in a practical example, so the convergence of the expansion
actually depends on the numerical cocfficients, e.g. the factor of 9/(167°) =.00184 in the

last term of d. It is also clear that s, and s, are of minor significance compared with d,
and d,; the matched sum of a(z) and b(z) is constant within about 1%. Terms involving

powers of emittance are generally larger than terms involving only powers of §.
Therefore a truncation of the expansions of s and 4 is most accurate for space charge

dominated beams.

The functionals A[x] and x[x] are readily evaluated; from Equations (65) and (67):

—= 3 s . p 58°
A=dl +s+ fF+.=20 4+ ——+.. , 87
s Bt S16a° @7

1+y =1+3d7+(6ﬁ+3§—12ﬁ+5d_;‘)+..
3p*  219p° . (83)

)

=1+ + -
2”128z
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Note the “excellent” convergence of A and “good” convergence of . The function e,(#)

is needed for the high order forms of Relations (68) — (78); from Equations (49b) and (82)

we have in the present example

e = %COS(ZRK), (89a)
12 Bz |
=" 89b
€ R (89b)

Then Equations (68) — (70) become

Al
U—/’L+E2(1+w)=~~-2Z--~i'i4E—+8‘h order, (90)
T
%— (I1+y)= 95 :::— + 6" order, 91)
_ 24
U-A+0E= 98ﬁ 4E + 8" order, (92)
T

where Equation (92) is derived from Equations (90) and (91) and is therefore not an

independent result.

The direct expansions for ¢ and o, Equations (74) and (75), are found to converge

poorly and are not recommended for numerical work. In the present example

ol=204+ 25, B+

8~

1169

Bt (93)

but we have for cos(o,) the spectacular
2(1-cos(a,)) =28 —(.016704635)8* + (.000019137)8° +....  (94)

Equation (78), which relates o,u, and E, becomes
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2 3
|:2(1 —cos{o)—2(1—cos(o,) + %sin(cr) - ?—2 - %] =—(.002886)°U* +8" order. (95)

Equations (92), (93) and (94) are recommend for accurate numerical work and are used in
the following example.

A single numerical case is presented to indicate the typical accuracy of the fifth
order solution and relations. We choose parameters representative of an intense beam,
where space charge dominates emittance by a factor of about 3: 8> =.5,E* = .25.

For these parameters the lowest order (smooth limit) yields approximate values for the

envelope maxima:

d(0) = d,(0) = = = 2250791, (96a)

A ™

5(0)=0. (96b)

From Equations (87), (90), (91), (93) we also find in lowest order

A=A, =d”=282=10, (96c)
U=A,—E*=.75, (96d)
o =E=.5 radian = 28.6479° (96¢)
o, = /28> = 1.0 radian = 57.29578" . (96f)

The much more accurate Equation (94) gives for ¢, in lowest order
o, =cos™ (1— %)= cos™ (.5} = 60.00000°", (96g)

These very approximate results are to be compared with the exact numerical solution
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d(0) =.2308369, (97a)

5(0) = .0062717, (97b)
U =.7315774, (97c)
o =31.06746°, (974d)
o, =59.8618366". (97¢)

The smooth limit value of (0) is low by 2.5%, U is high by 2.5%, o is low by 7.8%,
and @, is low by 4.3%. However (96g) predicts o, high by only .23%.

Smooth limit formulas (96a-f) are seen to provide a rough evaluation of useful
envelope quantities, but they are hardly suitable for accurate design or code initialization.
The higher order approximations do provide this accuracy. We obtain from Equations

(83)-(95):

d(0) = d,(0) + d,(0) + d,(0) = .2250791 + .0050678 + .0005917 = .2307386, (98a)

s(0) = 5,(0) +s,(0) = .0063326 — .0000373 = .0062953, (98h)
U=.7317614, (98c)
o =31.06063°, (98d)
o, = 59.80688" (from 93), (58e)

= 59.8618366° (from 94) . (981)

From Equations (87-89) the three structure parameters are

A=A, +A, +A,=1+.0031663 +.0000111 =1.0031774, (98g)
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W=y, + 1w, =.0759909 +.0043911 = .0803820, (98h)

€ = .0006416. (98i)
The fifth order d(0) is low by .043%, s(0) is high by .37%, U is high by .025%, o is
low by .022%, and o, low by .092% if Equation (93) is used. Equation (94) gives &,

exactly to seven places.
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VII. Summary of Design Relations for a Flat Top FODO
Quadrupole System

The simple quadrupole function analyzed in section (6), K = kcos(2z z/P) is
mainly useful for fundamental theoretical studies. For conceptual design a less accurate
third order envelope solution for the flat-top quadrupole function is much more relevant
and convenient. The formulas which follow are derived for the simple “FODO” lattice
with quadrupoles of alternating strength tk centered at z=0,L,2L,... . Here L= P/2 is
the half lattice period length and 7L is the effective quadrupole field length. The drifts,
which are of effective length (1-n7) L, are centered at L/2,3L/2,... . We are primarily
interested in the envelope radii at the middle of the x-focussing quadrupoles:

a(0) = a[1 + 5, (0) + d,(0) + 4,(0)], (99a)
b(0) = a[1+ 5,(0) — d,(0) — 4,(0)]. (99b)

We have from section I'V:

_(nkff)( _y_]

G(0)=—{1-7}, (100)
s TN (1 13 13 . o aon
Y CRE T AR T

d3(0)=@1 n n+—n
192 6 120 240 20

(), 7 YLy,
16 2 8 ANa

3( 19 463 , 511 5, 9 4)
(102)
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The three formulas for (o,0,,0,£) from section 5 become

3 4

2(1-cosg,) = (nkL2)2[1—%n) —(nkL2)4[n2 _0 +—”—) (103)

90 63 180/

PR L]
402\ (2Lec 2 277] (MY (1 5 191, 16 5. 7
O8] 2220 = Y 1- 2+ L L -+ | (104
(a') [a) (r )( 3 3 16 22" 720" 1057 T390

274
2(1-coso)-2(1-cosa, )+ (2—%&} sin(a) — 4 Q_;L =0, (105)
€l

Equations (99-105) are accurate to better than 1.0% when o, < 90°.
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