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Food and human health are inextricably linked. As such, revolutionary impacts on health
have been derived from advances in the production and distribution of food relating to
food safety and fortification with micronutrients. During the past two decades, it has
become apparent that the human microbiome has the potential to modulate health,
including in ways that may be related to diet and the composition of specific foods.
Despite the excitement and potential surrounding this area, the complexity of the
gut microbiome, the chemical composition of food, and their interplay in situ remains
a daunting task to fully understand. However, recent advances in high-throughput
sequencing, metabolomics profiling, compositional analysis of food, and the emergence
of electronic health records provide new sources of data that can contribute to
addressing this challenge. Computational science will play an essential role in this
effort as it will provide the foundation to integrate these data layers and derive insights
capable of revealing and understanding the complex interactions between diet, gut
microbiome, and health. Here, we review the current knowledge on diet-health-gut
microbiota, relevant data sources, bioinformatics tools, machine learning capabilities,
as well as the intellectual property and legislative regulatory landscape. We provide
guidance on employing machine learning and data analytics, identify gaps in current
methods, and describe new scenarios to be unlocked in the next few years in the
context of current knowledge.

Keywords: microbiota, gut microbiome, machine learning, artificial intelligence, data analytics, nutrition

INTRODUCTION

During the past two decades, the human microbiome has emerged as a biological system with the
potential to significantly influence health and disease (Shreiner et al., 2015). Despite our limited
understanding regarding its intricate relationship with the host and its environment (Foster et al.,
2017), recent discoveries related to the human microbiome have opened new horizons in food
science (Barratt et al., 2017), precision medicine (Wishart, 2016), and biotechnology (Taroncher-
Oldenburg et al., 2018) among other fields. In parallel, advances in genomics and bioinformatics
have provided inexpensive tools to acquire biological and clinical data, as well as the tools to
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translate the data into knowledge (Shoaie et al., 2015; Zeevi et al.,
2015; Thaiss et al., 2016a; Korem et al., 2017; Baldini et al., 2018;
Bauer and Thiele, 2018; Gilbert et al., 2018; Greenhalgh et al.,
2018; Knight et al., 2018). Given these advances, the integration
of diet, gut microbiome, and human health (DGMH) data has
the potential to drive a paradigm shift in the way wellness states
are measured, diseases are treated, products are designed, and
health interventions are administered. To realize this potential,
advances in knowledge are required in order to optimize the
composition and metabolic dynamics of microbial communities
in relation to desired health and performance outcomes—from
dietary interventions and bioengineered products to lifestyle
changes and the living environment (Figure 1).

In this article, we summarize the research that has been
done related to DGMH, with a focus on DGMH data and
computational methods. We begin with a brief overview of key
areas of current knowledge regarding the interaction between
diet, health, and the gut microbiome. We then proceed to
review the available data sources and the computational methods
currently used, investigate the role that machine learning and
artificial intelligence (AI) can play in this area, and summarize
the intellectual property (IP) and legislative regulatory landscape.
We conclude with recommendations to accelerate research
and development efforts through better integration of research
resources and tools, especially in the context of computational
science and data analytics. A glossary of terms is provided
in Table 6.

In general, the most recent articles reviewing the
computational tools for microbiome data focusing on
metagenomic data processing methods provide limited guidance
on employing machine learning and data analytics and do not
furnish recommendations in the context of DGMH data. The
purpose of this manuscript is to help fill this gap by considering
relevant literature, describing key challenges and potential
solutions, and proposing a framework to improve the potential
for research initiatives to accelerate progress in this exciting and
potentially revolutionary field.

Current Knowledge: Gut Microbiota and
Human Health
Emerging evidence suggests that the intestinal microbiota plays
a significant role in modulating human health and behavior [see
comprehensive reviews (Sherwin et al., 2018; Pereira et al., 2019;
Zmora et al., 2019)]. Several studies have demonstrated that the
human intestinal microbiota is seeded before birth (Stinson et al.,
2019), and the mode of delivery influences the composition of
the gut microbiota (Ferretti et al., 2018; Shao et al., 2019). The
gut of a vaginally born newborn is enriched primarily with the
vaginal microbiota from the mother, while a cesarean procedure
results in the newborn’s gut microbiota being dominated by the
microbiota of the mother’s skin as well as points of contact at
the hospital (Dominguez-Bello et al., 2010). Microbial diversity
is very dynamic during infancy and increases and converges to
an adult-type microbiota by 3–5 years of age (Rodríguez et al.,
2015). Evidence is also building to suggest that diet plays a
key role in shaping the composition of microbial communities

in the infant’s gut. For example, species of beneficial bacteria
such as Lactobacillus and Bifidobacterium have been found to be
dominant in breastfed infants while species of harmful bacteria
such as Clostridium, Granulicatella, Citrobacter, Enterobacter,
and Bilophila have been found to be dominant in formula-fed
infants (Bäckhed et al., 2015). In addition, breastfed babies have
higher gut microbial diversity compared to formula-fed babies,
and several studies indicate that the diversity of bacteria is directly
connected to health (Wang et al., 2008; Bäckhed et al., 2015). An
unbalanced composition of the infant’s gut microbiota has been
linked to several childhood diseases, including atopic dermatitis
(AD) (Abrahamsson et al., 2012; Zheng et al., 2016) obesity (Yuan
et al., 2016), and asthma (Thavagnanam et al., 2008).

The composition of the gut microbiota of an adult human
is relatively stable (Shreiner et al., 2015), but several factors can
influence it, including antibiotic treatment, long-term change
in diet, microbial infections, and lifestyle (Willing et al., 2011;
Conlon and Bird, 2015; Mathew et al., 2019; Zmora et al., 2019).
Several health conditions are linked to changes in a stable and
established gut microbiota such as Crohn’s disease (Manichanh
et al., 2006), psoriatic arthritis (Scher et al., 2015), type 1 diabetes
(de Goffau et al., 2013), atopic eczema (Wang et al., 2008), celiac
disease (Schippa et al., 2010), obesity (Castaner et al., 2018),
type 2 diabetes (Qin et al., 2012), and arterial stiffness (Menni
et al., 2018). However, further research is required to establish
direct links between these conditions and the composition of
microbial communities in the gut. Interventions, such as oral
administration of probiotics/prebiotics and fecal transplants,
have shown efficacy on reducing the severity of some conditions,
such as diarrhea, acute upper respiratory tract infections, eczema,
Crohn’s disease, and ulcerative colitis (Anderson et al., 2012;
Mansfield et al., 2014; Hao et al., 2015; Saez-Lara et al., 2015;
Goldenberg et al., 2017; Delzenne et al., 2019). See Figure 2 for
illustration of factors affecting the gut microbiota.

Data
The increase in size and heterogeneity of information gathered
by microbiome studies present great opportunities and serious
data analysis challenges (Wooley et al., 2010), with many tools
developed to address them (Breitwieser et al., 2017; Quince
et al., 2017). These bioinformatics tools quantify low dimensional
biological variables, such as the relative abundance of microbial
species and metabolites, by using high dimensional data such as
DNA sequence reads and mass spectrometry (MS) signatures as
illustrated in Figure 3. Depending on data quality, sample size,
and research hypothesis, different information dimensionalities
are used, such as gene-level (Vatanen et al., 2018) or functional
gene ontology terms (Brown et al., 2011).

Gut Microbiota Data
Functional characteristics of microbial communities can be
revealed using high-throughput metametabolomics (Walker
et al., 2014) and metaproteomics (Verberkmoes et al., 2009;
Zhang et al., 2018) using MS technologies. Metagenomic and
metatranscriptomic content of gut microbiota (which give rise
to the functional characteristics) can be quantified using DNA
sequencing. The most widely used approach for gut microbiota

Frontiers in Microbiology | www.frontiersin.org 2 April 2020 | Volume 11 | Article 393

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00393 April 2, 2020 Time: 17:57 # 3

Eetemadi et al. Computational Diet, Microbiome and Health

FIGURE 1 | The vision for the next nutrition revolution involves microbiome-aware dietary planning and manufacturing. First, DGMH data is collected, homogenized,
and stored, with any new user data integrated as part of a cohesive compendium. Then, DGMH data are analyzed (data analytics) to identify the functional
characteristics and target microbiota, personalized to the individual and the desired phenotype. This includes data processing followed by supervised and
unsupervised learning using a user profile compendium. Bioinformatic tools are used during data processing to extract meaningful information from raw
high-throughput data such as metagenomic sequence reads. Then, the recommendation system provides dietary recommendations to help achieve target
microbiota. This includes the integration of user profiles in a compendium along with nutrition DB proceeded by data processing then content-based and
collaborative filtering. Finally, diet engineering is performed to create dietary products for the user. This includes the design of prebiotics, probiotics, synbiotics,
manufactured food, and detailed dietary planning. In practice, taste and flavor of dietary products is very important to help users commit to any given diet, therefore
sensory analysis should inform all dietary engineering efforts.

profiling is marker gene sequencing, which relies on sequencing
counts of the hypervariable 16S genes to calculate Operational
Taxonomic Units (OTUs) (Amann et al., 1995). Searching OTUs
against reference databases such as Greengenes (McDonald
et al., 2012) and SILVA (Quast et al., 2012) allows inferring
relative taxa abundances in a microbiome sample (Langille
et al., 2013). Whole-genome or shotgun metagenomics (Quince
et al., 2017) is a recent technique that not only reveals the
microbial community structure, but it can also quantify relative
abundances of genes, taxa, conserved functional groups, or
over-represented pathways. Within-sample (alpha) and cross-
sample (beta) diversity of microbiome can be calculated with
respect to genetic, taxonomic, functional, or metabolic pathway
profiles of samples (Turnbaugh et al., 2009; Martiny et al., 2011;

Huttenhower et al., 2012; Lozupone et al., 2012; Heintz-Buschart
and Wilmes, 2017; Ranjan et al., 2018). The Shannon index,
Chao1, and Abundance-based Coverage Estimator (ACE) are
used to measure alpha diversity while UniFrac, weighted UniFrac,
and Bray–Curtis calculate beta diversity. In longitudinal studies,
the same measures of diversity, or more sophisticated eigenvalue-
based analyses, can quantify the microbiota stability across
timepoints (Lozupone et al., 2012; Relman, 2012; Coyte et al.,
2015; Mehta et al., 2018). Jackknifing and bootstrapping are
used to estimate the bias in diversity estimates, particularly
when estimating the number of species (i.e., species richness)
in samples (Smith and van Belle, 1984). Some of the most
significant publicly available microbiome datasets are listed
in Table 1.
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FIGURE 2 | Factors affecting the gut microbiota. A summary of human gut microbiome taxonomy at the family level and the corresponding modulating factors.

Diet Data
Various types of dietary information are collected in gut
microbiome studies. This includes fine-grain information
such as mass spectrometry (MS) signatures and metagenomic
reads (Quinn et al., 2016) or coarse grain information such
as dietary style [e.g., Western vs. Mediterranean diet (De
Filippis et al., 2016)] from study participants. Diet data
collection is often questionnaire-based, either through self-
reporting or by a trained interviewer. For self-reporting, a
food frequency questionnaire (FFQ) and 24-h dietary recall
(24HR) can be used where participants report their dietary
intake either every 24 h or over a longer period through a
checklist of food items (Shim et al., 2014). A dietary record
(DR) can also be used where data collection is done when
food is consumed (e.g., using smartphones),which minimalizes
reliance on participant’s memory. After data collection,
the intake amount of macronutrients (fat, carbohydrates,
and protein), micronutrients (vitamins and minerals),
and food metabolites can be estimated by querying the
food items against food composition databases such as

the USDA food composition database (US Department of
Agriculture and Agricultural Research Service, 2010) and the
Canadian nutrient file (Canada, 2010). Note that microbiota
of dietary intake can be characterized using metagenomic
sequencing as reviewed previously, if not already defined
[e.g., probiotics with predefined strains (Sánchez et al., 2017)].
Some studies perform metabolic characterization of dietary
intake directly (Quinn et al., 2016), while others rely on pre-
characterized metabolic profiles (Zhao et al., 2018). A significant
limitation of any analysis is that food composition databases
characterize only 0.5% of the known nutritional compounds
(Barabási et al., 2019).

Host Data
Profiled host information types can be very high dimensional
[e.g., high-throughput genome sequences (Hall et al., 2017)] or
low dimensional [e.g., obese vs. non-obese (Thaiss et al., 2014;
Cox and Blaser, 2015)]. Host genotype data can come from
whole-exome sequencing (WES) (Gopalakrishnan et al., 2018) or
a genome-wide association study (GWAS) (Bonder et al., 2016;

Frontiers in Microbiology | www.frontiersin.org 4 April 2020 | Volume 11 | Article 393

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00393 April 2, 2020 Time: 17:57 # 5

Eetemadi et al. Computational Diet, Microbiome and Health

FIGURE 3 | Illustration of data processing, data analytics, and recommendation systems. Data processing generates diverse types of information with different levels
of resolution and dimensionality. Such information needs to be transformed and integrated across all users for building a compendium. Next, data analytics methods
are used to discover the characteristics of target microbiota prescribed for individuals to achieve their health objectives. Finally, recommendation system methods
use the compendium to find the dietary recommendations for helping individuals achieve the target microbiota.

Turpin et al., 2016). It can also be extended by predicting the
whole-genome sequence for each individual through genotype
imputation software (Howie et al., 2009), as done in several
studies (Bonder et al., 2016; Goodrich et al., 2016; Rothschild
et al., 2018). Host transcriptomic profiles can be assessed
directly using microarrays (Schwartz et al., 2012; de Steenhuijsen
Piters et al., 2016) and RNA-Seq (Thaiss et al., 2016b; Pan
et al., 2018) or imputed using tools such as PrediXcan
(Gamazon et al., 2015) with GWAS data. The genetic and
transcriptomic profiles can be summarized into informative
lower-dimensional features through gene ontology categories
and metabolic pathways using databases such as MetaCyc
(Caspi et al., 2017), KEGG (Kanehisa et al., 2011), Reactome

(Fabregat et al., 2017), or GO (Antonazzo et al., 2017). Today,
limited microbiome studies perform such analysis (Blekhman
et al., 2015; Davenport et al., 2015; Dobson et al., 2015).
Other important information such as age, gender, ethnicity,
body weight, blood pressure, dietary restrictions, and diseases
of a host organism can be extracted from medical records,
surveys, and interviews.

COMPUTATIONAL ANALYSIS

There have been various reviews concerning microbiome data
processing and analysis (Tyler et al., 2014; Tsilimigras and Fodor,
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TABLE 1 | Publicly available data from gut microbiota studies.

Project, database, or
repository name

Number of
cases

Sample types Disease
related
(Y/N/B)

Data
availability

(Y/N/Conditional)

Website

Human Microbiome Project
(HMP1)

300 Nasal passages, oral cavity,
skin, gastrointestinal tract, and
urogenital tract

N Y NIH Human Microbiome
Project - Home, 2019

Integrative Human Microbiome
Project (iHMP): pregnancy and
preterm birth (MOMS-PI)

∼2,000 Mouth, skin, vagina, and
rectum

Y Y NIH Human Microbiome
Project - Home, 2019

Integrative Human Microbiome
Project (iHMP): onset of IBD
(IBDMDB)

∼90 Stool and blood Y Y NIH Human Microbiome
Project - Home, 2019

Integrative Human Microbiome
Project (iHMP): onset of type 2
diabetes (T2D)

∼100 Fecal, nasal, blood, serum, and
urine

Y Y NIH Human Microbiome
Project - Home, 2019

American Gut Project (AGP) >3,000 Stool and swabs from
skin/mouth

B Y American Gut, 2019

Personal Genome Project
microbiota component (PGP)

>5,000 Skin/oral/fecal − Y Data – The Harvard Personal
Genome Project (PGP), 2019

TwinsUK >11,000 Multiple − C TwinsUK, 2019

Global Gut Project (GG) 531 Fecal N Y Yatsunenko et al., 2012

Project CARDIOBIOME >4,000 − − N

Pediatric Metabolism and
Microbiome Repository (PMMR)

∼350 Human microbial cell lines,
stool, and/or DNA and RNA

Y N https://clinicaltrials.
govClinicalTrials.gov, 2019

Lung HIV Microbiome Project
(LHMP)

162 Lung, nasal, and/or
oropharyngeal cavities

Y Y BioLINCC, 2019

The Study of the Impact of
Long-Term Space Travel on the
Astronauts’ Microbiome
(Microbiome)

9 Saliva and gastrointestinal N N NASA, 2019

Michigan Microbiome Project
(MMP)

− − − N The Michigan Microbiome
Project, 2019

uBiome − Gut, mouth, nose, genitals, and
skin

B C

Human Oral Microbiome
Database (eHOMD)

− Upper digestive and upper
respiratory tracts, oral cavity,
pharynx, nasal passages,
sinuses, and esophagus

− Y HOMD : Human Oral
Microbiome Database, 2019

Human Pan-Microbe
Communities (HPMC)

>1,800 Gastrointestinal B Y HPMCD: Human Pan
Microbial Communities
Database, 2019

Curated Metagenomic Data >5,000 Multiple B Y curatedMetagenomicData,
2019

European Nucleotide Archive − − − Y European Nucleotide Archive
EMBL-EBI, 2019

EBI-metagenomics portal
samples

>20,000 Multiple B Y EMBL-EBI Mg, 2019

MG-RAST >10,000 Multiple B Y MG-RAST, 2019

2016; Breitwieser et al., 2017; Quince et al., 2017; Knight et al.,
2018). Here we focus on data analytics, machine learning, and AI-
based recommendation system methods that enable microbiome-
aware systems involving diet and wellness. We provide readers
insight into important methods, challenges that arise, suggested
solutions as well as blueprints of example scenarios to be used in
their research. See Qu et al. (2019), Topçuoglu et al. (2019), and
Zhou and Gallins (2019) for further explanation and examples of
the machine learning methods discussed here.

Microbiome Data Processing Tools
There are a substantial number of publicly available microbiome
data processing methods and pipelines that can generate the
various types of data discussed. Table 2 provides a representative
summary of such methods and pipelines. For 16S data, QIIME
(Caporaso et al., 2010) and MOTHUR (Schloss et al., 2009)
provide a wider range of options for the user compared to
UPARSE (Edgar, 2013), but all are popular pipelines. QIIME 2
(Bolyen et al., 2019) is now emerging as a powerful replacement

Frontiers in Microbiology | www.frontiersin.org 6 April 2020 | Volume 11 | Article 393

https://clinicaltrials.gov
https://clinicaltrials.gov
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00393 April 2, 2020 Time: 17:57 # 7

Eetemadi et al. Computational Diet, Microbiome and Health

TABLE 2 | A summary of highlighted methods and pipelines for microbiome
data processing.

Steps Sub-step
descriptions

Highlighted methods and their
availability in popular pipelines
(QIIME, MOTHUR, and UPARSE)

(1) Quality
control

Chimera removal
and noise
mitigation

Trimmomatic(Q) (Bolger et al., 2014),
AmpliconNoise(Q,M) (Bragg et al.,
2012), UNOISE(M, U) (Edgar, 2016),
UCHIME(Q, M, U) (Edgar et al., 2011),
Deblur(Q, M) (Amir et al., 2017), and
DADA2(Q) (Callahan et al., 2016)

Remove host DNA
contaminant reads

Bowtie2(Q) (Langmead and Salzberg,
2012), BMTagger (Agarwala and
Morgulis, 2011), and DeconSeq
(Schmieder and Edwards, 2011)

(2) Sequence
assembly

De novo read
assembly

MEGAHIT (Li et al., 2015), MAFFT(Q,

M) (Katoh and Standley, 2013),
UCLUST(Q, U) (Edgar, 2010), and
metaSPAdes(Q, M) (Nurk et al., 2017)

Read alignment to
annotated
database

DIAMOND (Buchfink et al., 2014),
NAST(Q, M) (DeSantis et al., 2006),
USEARCH(Q, U) (Edgar, 2010), and
VSEARCH(Q, M) (Rognes et al., 2016)

(3) OTU
analysis

Assignment of
reads to OTUs

UPARSE-OTU(U) (Edgar, 2013),
Kraken (Wood and Salzberg, 2014),
MetaPhlAn2(Q) (Truong et al., 2015),
and DOTUR(M) (Schloss and
Handelsman, 2005)

(4) Functional
profiling

Functional profiling
and prediction

MEGAN (Huson et al., 2016), HUMAnN
(Abubucker et al., 2012), MetaCLADE,
MOCAT (Kultima et al., 2016), and
PICRUSt (Langille et al., 2013)

(5) Diversity
analysis

Diversity, evenness,
and richness
metrics

Alpha [e.g., Chao1(Q,M,U)] and Beta
[e.g., Jaccard(Q,M,U)]

to its predecessors, partly due to its extensibility and support. For
whole metagenomic sequencing, methods such as Kraken (Wood
and Salzberg, 2014), MEGAN (Huson et al., 2016), MetaPhlAn2
(Truong et al., 2015), and HUMAnN (Abubucker et al., 2012)
are used.

Challenges in Microbiome Data Processing
Growth in the variety and complexity of data processing tools
presents opportunities but also significant challenges for new
investigators. First, although best practices have been suggested
(Knight et al., 2018), tools are still far from a fully automated user
experience that would lead to reliable results. Second, microbial
genomes with different abundances are sequenced together,
making metagenomic assembly more challenging compared
to single genome assembly where the sequence coverage is
approximately uniform. Third, the number of uncharacterized
microbes (known as microbial dark matter) exacerbates problems
associated with unaligned and misaligned sequence reads.
Fourth, evaluation of methodology and findings from different
studies is difficult since each study may use a different method
or a different implementation of the same method in their data
processing pipeline. Fifth, data collection and integration of
microbiome data from different studies are difficult because of
many factors including differences in wet-lab library preparation

(e.g., primers used), differences in sequencing devices and their
settings (e.g., coverage), and non-uniform methods of formatting
and storage for microbiome data and metadata. See Quince
et al. (2017) for further discussion concerning microbiome data
processing challenges.

Data Analytics and Machine Learning
Data processing is considered to be the step necessary for
converting the raw data, such as metagenomics sequence reads,
into biologically meaningful representations, such as OTU counts
using bioinformatics tools, some of which are done in the
sequencing device itself. Data analytics, start after the integration
of processed sample data from various information sources (i.e.,
microbiota, diet, and host), as illustrated in Figure 3. In most
cases, all samples are from a single study, which helps ensure
consistency with respect to the experimental settings and data
processing protocols used. Furthermore, limited resources force
the researchers to narrow their data collection to particular
information types in order to have sufficient statistical power
for hypothesis testing. A recent increase in the number of
microbiome studies with publicly available data has enabled
cross-study data integration (Pasolli et al., 2016, 2017; Duvallet
et al., 2017; Wang et al., 2018; Thomas et al., 2019; Wirbel et al.,
2019). In such cases, extra precautions are necessary to minimize
biases introduced by inconsistencies among datasets during data
collection, sample preparation, sequencing, and data processing.

Challenges in Microbiome Data Analysis
A number of challenges arise when analyzing microbiome data, as
summarized in Table 3. The first challenge is due to compositional
quantities in microbiome data. Quantities such as the number of
reads assigned to a given species, which can only be interpreted as
proportions, are called compositional. These quantities cannot be
compared directly across multiple samples. Conclusions should
not be made based on the number of reads assigned to individual
sample features (e.g., OTUs, genes, and functional groups) since
they do not represent absolute abundances due to instrumental
limitations (Gloor et al., 2017). Instead, the assigned number of
reads should be converted to relative abundances and analyzed
with that in mind. Some studies perform rarefaction to adjust
for differences in library size due to unexhaustive metagenomic
sampling. Although several pipelines provide this functionality,
it has been found inadmissible for metagenomics microbiome
studies as it discards many reads leading to decreased sensitivity
in differential abundance testing (McMurdie and Holmes, 2014)
and biased estimates for alpha diversity (Willis, 2019). The
second challenge is due to the high dimensionality associated
with OMICS data. Datasets in which items are characterized by
a high number of features while the number of items is limited
are called high dimensional. In microbiome studies, a limited
number of individuals are characterized using many host, diet,
and microbiome features leading to high dimensional datasets
(Li, 2015). Dimensionality can be reduced by grouping OTUs
into phylogenetic variables, regularization, or unsupervised
dimensionality reduction (DR) (explained below). The third
challenge is about testing multiple hypotheses in an exploratory
analysis. It relates to the fact that, as the number of hypotheses
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TABLE 3 | Key challenges that arise in microbiome data analysis with examples and suggested solutions.

Challenges in microbiome data analysis Examples and solutions

(1) Compositional quantities:
Metagenomic data processing provides read counts for
discovered entities such as genes, species, and OTUs from
a given sample. These read counts are only meaningful
within a sample.

Example: Metagenomic analysis of feces samples tells us that Person A has 5 reads mapped to
bacterium Escherichia coli, while person B has 10. Can we conclude that this bacterium is more
populated in the gut of person B compared to person A? Answer: No, read counts cannot be
compared across samples.
Solutions: (I) Convert read counts to relative abundances before comparison. (II) If an optimization
problem is defined using read counts, add constraint for total counts per sample.

(2) High dimensionality:
Metagenomic data processing results in many entities such
as genes and species discovered for each sample, which
may not be shared among multiple samples. During data
aggregation, one dimension is associated to each entity
resulting in a high number of dimensions compared to the
number of samples.

Example: Metagenomic data processing of feces samples from 20 individuals results in relative
abundances for 10 microbial families per sample. Can we use classical linear regression to predict
an individual’s age using relative abundances from aggregated data? Answer: No, aggregating 20
samples results in more than 20 microbial families.
Solutions: (I) Use dimensionality reduction such as PCA prior to regression. (II) Use regularized
linear regression such as Lasso. (III) Use microbial abundances of higher-order taxonomic ranks
such as phylum instead of family.

(3) Multiple hypotheses:
The high-dimensional nature of metagenomic data allows
the researcher to generate a large number of hypotheses,
which leads to seeing patterns that simply occur due to
random chance. This is sometimes called “the high
probability of low probability events.”

Example: Metagenomic data processing provides relative microbial abundances at species level
using feces samples of 200 individuals, half of which are diagnosed with Crohn’s disease and the
rest are healthy. Performing a t-test identifies that the relative abundance of 40 species (amongst
1,000) are significantly different between microbiota of sick and healthy individuals (p-value < 0.05).
Is this result correct? Answer: No, the standard threshold of 0.05 for p-value is only acceptable
when a single hypothesis is involved while the t-test is performed 1,000 times leading to many false
discoveries.
Solution: Calculate FDR adjusted p-value (i.e., q-value) of 0.05 to control the false discovery rate.

(4) Hierarchical relationships:
Assumptions of independence do not hold in microbiome
data since taxonomic variables (e.g., species and OTUs)
have known hierarchical relationships due to genetic and
phenotypic similarities. Therefore, common statistical
techniques that assume independence between variables
are problematic.

Example: Beta-diversity can be used to calculate the similarity between groups of microbiome
samples. Can we simply calculate the Beta-diversity using standard Euclidean distance between
relative abundances at a given taxonomic order? Answer: No, Euclidean distance doesn’t take into
account the similarity between species.
Solution: Use phylogeny-aware metrics such as UniFrac distance instead, which takes into
account the phylogenetic tree when calculating distances.

(5) Missing quantities:
Metagenomic data often lacks information about the
functions of the microbial communities which can only be
estimated using meta-transcriptomics or meta-proteomics.
However, deciphering microbiota’s function is a major goal
in microbiome studies.

Example: In one case, metagenomic data processing from marker-gene data has provided us with
relative abundances at the genus level, but we do not know the possible functions of the microbiota
in terms of proteins that it can produce. Should we abandon further analysis? Answer: No, although
we don’t have direct information about proteins, we can infer.
Solution: Databases such as Greengenes contain the whole-genome sequence of identified
species at various taxonomic orders which can be used for gene and protein inference.

increases, the chance of false discoveries also increases. This can
be addressed by increasing sample size and p-value adjustment
(explained below). The fourth challenge relates to hierarchical
relationships amongst bacterial species due to their shared
ancestors. Assumptions such as independence among samples
may not hold, leading to wrong estimations of correlation
(Felsenstein, 1985) and phylogeny-aware methods to address
the issue. The fifth challenge is about missing quantities in
sampled data. For example, when marker gene sequencing is
used, quantities relating to the amounts of functional genes
in the microbiome are not directly available (i.e., missing).
Identifying functions of microbial organisms is important for
understanding the gut microbiota. Such information can be
estimated using metatranscriptomics data, which is often not
available. Data imputation tools, such as PICRUSt (Langille et al.,
2013), help to mitigate this through gene imputation based on
annotated databases.

The methods for identifying microbiota characteristics
associated with host phenotypes of interest can be categorized
into two main groups, based on whether they use supervised
or unsupervised learning. Supervised learning methods require
labeled data, while unsupervised learning methods can be used
when records are not labeled. More advanced methods include

semi-supervised learning (Zhu, 2005), which takes advantage of
both labeled and unlabeled data, and transfer learning (Pan and
Yang, 2010), which transfers knowledge learned from one task to
another, are not discussed here.

Supervised Learning Methods
Hypothesis testing and variation analysis
Analysis of variation may involve single or multiple variables.
For a single variable hypothesis, the student’s t-test or non-
parametric tests, such as Wilcoxon rank-sum or Kruskal–Wallis,
can be used. For example, the t-test has been used to show
that patients with ADHD have a lower alpha-diversity
index of gut microbiota compared to healthy controls
(Prehn-Kristensen et al., 2018). Non-parametric tests are
good alternatives when the assumptions regarding the data
being normally distributed do not hold. For example, the
Wilcoxon rank-sum test is used on predicted pathway data,
suggesting that enzymes in the “Glycan Biosynthesis and
Degradation” pathway increase in summer when compared to
winter (Davenport et al., 2014). In cases where a statistical
test is repeated with different hypotheses (i.e., multiple
hypothesis testing), the statistical significance should be
adjusted by methods such as an FDR adjustment (i.e.,
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q-value) (Benjamini and Hochberg, 1995) or Holm’s procedure
(Rice, 1989).

When the hypothesis that is investigated contains multiple
variables, MANOVA (Smith et al., 1962) or non-parametric
alternatives such as PERMANOVA (Anderson, 2001) or
ANOSIM (Clarke, 1993) can be used. The samples are first
assigned to multiple groups (e.g., based on some feature values).
The goal is to quantify how much this grouping can explain
the distribution of values in any given sample feature (response
variable). The simplest case is the popular method called
analysis of variance (ANOVA), which considers a single response
variable with a normal distribution. For instance, in a recent
study, two bacterial phyla (Bacteroidetes and Firmicutes) were
identified using ANOVA with different relative abundance in the
microbiota of children living in a rural African village compared
to European children (De Filippo et al., 2010). ANOVA can be
generalized to multivariate analysis of variance (MANOVA),
which can have multiple response variables. For example, it is
used to investigate the overall difference in composition between
the microbiota of children with Prader–Willi syndrome and
children with simple obesity, before and after treatment (Zhang
et al., 2015). In many cases, normal distribution assumptions do
not hold; hence, non-parametric methods are used. In one study,
PERMANOVA is used to detect taxonomic differences in the
microbiota of patients with Crohn’s disease when compared to
healthy controls (Pascal et al., 2017).

Regression and correlation analysis
A general understanding of the extent of association among
pairs of variables can be achieved using correlation analysis.
Correlation metrics measure different types of relationships. For
example, the Bray–Curtis measures abundance similarities (Bray
and Curtis, 1957), the Pearson correlation coefficient quantifies
linear relationships, and the Spearman correlation coefficient
quantifies rank relationships (Spearman, 1904). In (Weiss et al.,
2016), the authors perform a simulation-based comparison on a
range of correlation metrics for microbiome data. Metrics such
as SparCC (Friedman and Alm, 2012) and LSA (Ruan et al.,
2006) perform particularly better as they are designed to capture
complex relationships in compositional microbiome data. For
example, SparCC is used for analyzing the TwinUK dataset to
identify bacterial taxa whose abundances are influenced by host
genetics (Goodrich et al., 2014). This was done by creating a
correlation network between microbial families based on their
intraclass correlation. More recently, the phylogenetic isometric
log-ratio (PhILR) transform has been introduced (Silverman
et al., 2017) to transform compositional data into non-
compositional space where standard data analytic techniques are
applicable. Usage of such transformations should be limited to
features that are compositional and phylogenetic in nature.

Regression methods aim to predict the change in one
continuous variable using other variables. Correlation analysis
can be considered a special case of regression with a single
input variable. Standard linear regression can be used for various
DGMH predictive tasks. However, when variables relate to OTU
abundances, the typical assumptions of a linear relationship,
normal distribution, and dependence do not hold. For example,

when the goal is to predict the composition of OTUs [normalized
for summing up to one (Tyler et al., 2014)], zero-inflated
continuous distributions are used. Often a two-part regression
model is used where part I is a logistical model to calculate
the probability that the given OTU is present. Part II is a
generalized linear regression using beta distribution to predict
relative abundance assuming the presence of OTU in the
sample (Ospina and Ferrari, 2012; Chen and Li, 2016; Peng
et al., 2016). Phylogenetic comparative methods (PCMs) such as
phylogenetic generalized least squares (PGLS) are used to control
for dependence among observations given the phylogenetic
hierarchies (Washburne et al., 2018). Ignoring the phylogenetic
ancestry of microbial species can increase the chance of false
discovery in regression models (Felsenstein, 1985). PCMs are
not widely used in microbiome studies today, which may be one
reason for a high number of false positives that can be alleviated
by using them (Bradley et al., 2018).

Canonical correlation analysis (CCA) can be used (Hotelling,
1992) to investigate the correlation between two groups
of variables (e.g., abundances of microbiome OTUs and
metabolites). CCA finds linear transformation pairs that are
maximally correlated when applied to data while ensuring
orthogonality for different transformation pairs. The original
CCA, however, fails for high dimensional microbiome data when
the number of variables exceeds the number of samples. This
can be addressed using regularization, giving rise to sparse CCA
methods (Witten et al., 2009). For example, a sparse CCA is
applied to investigate correlations between the gut microbiome
and metabolome features in type 1 diabetes (Kostic et al., 2015).

Classification
In supervised classification, the goal is to build a predictive
model (classifier) using labeled training data. The labels can
have binary or categorical values (in contrast to regression
where labels are continuous and numerical). In one study, a
classifier was built to predict the geographical origin of sample
donors using relative OTU abundances estimated from 16s
rRNA gut samples (Yatsunenko et al., 2012). This was done
using the method called Random Forests (RF), which constructs
an ensemble of decision trees (Breiman, 2001). In a different
study, the classification task was to identify healthy vs. unhealthy
donors given relative OTU abundance data (including species
level) coming from shotgun metagenomics sequencing of the gut
(as well as other body sites) (Pasolli et al., 2016). In addition
to RF, they used the support vector machine (SVM) classifier,
which is a powerful method for building generalizable and
interpretable models and is mathematically well understood
(Suykens and Vandewalle, 1999). In their study, RF classifiers
performed better than SVM except in a few datasets. Both RF
and SVM have built-in capability to deal with overfitting issues
that arise in high-dimensional datasets. RF achieves this using an
ensemble-based technique where the prediction is made based on
predictions from many trained classifiers. In SVM, parameters
of the predictive model are constrained based on a priori
defined criteria. Note that constraining the model parameters
is often mathematically equivalent to regularization (Scholkopf
and Smola, 2001). In both cases, the objective is to minimize the
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value of a loss function that calculates the overall error in model
predictions. When regularization is used, the loss function not
only depends on prediction errors but also on the magnitude
of model parameters. For example, in L1 regularization, the
absolute values of model parameters are scaled and added to
the loss function. Therefore, when two models have a similar
error, the model with smaller parameter values will be selected
during training. L1 regularization is commonly used for feature
selection by picking only the non-zero features of the trained
model because such a model achieves a low prediction error while
using a subset of features.

Artificial neural networks (ANN) can also be used for
classification and are shown to outperform other techniques in
many areas of biology (Kim et al., 2016, 2017; Singh et al., 2016;
Eetemadi and Tagkopoulos, 2018) as well as computer vision
and natural language processing, to name a few (LeCun et al.,
2015). Recently, a new ANN-based method called Regularization
of Learning Networks (RLN) was designed and evaluated
microbiome data. RLN provides an efficient way for tuning
regularization parameters of a neural network when a different
regularization coefficient is assigned for each parameter (Shavitt
and Segal, 2018). They use RLN to predict human traits (e.g.,
BMI, cholesterol) from estimated relative OTU abundances
and gene abundances. We expect the development of new
classification methods that can deal with the aforementioned
challenges arising in DGMH data by considering the biological
phenomenon, properties of measurement instruments, and
upstream data processing pipelines.

Unsupervised Learning Methods
Dimensionality reduction
High-dimensional datasets can provide a high resolution and
multifaceted view of a phenomenon such as gut microbiota.
Predictive performance in data analytics can increase
significantly given such data. Many data analytics methods,
however, fall short when presented with high-dimensional data
that necessitates using DR. Once dimensionality is reduced, data
visualization and analytics become more accessible. Principal
component analysis (PCA) is one of the most widely used DR
methods. It replaces the original features with a few uncorrelated
features called principal components (PCs), which are linear
combinations of the original features and preserve most of the
variance within the data. In one study, PCA was applied to
predicted abundances of about 10 million genes from the gut
microbiota of donors (Li et al., 2014). Reducing dimensionality
from 10 million to two dimensions only enabled visualization
of data on a standard two-dimensional scatter-plot (i.e., PCA
plot) showing a clear distinction between the microbiota of
Danish and Chinese donors. In another study, the top five PCs
of individual bacteria’s genome (sequenced from infant fecal
samples) were used to create a classifier for predicting antibiotic
resistance (Rahman et al., 2018).

The relationships among features in a microbiome study
can be used in DR, giving rise to various factor analysis (FA)
methods we review here briefly. Multiple factor analysis (MFA)
is an extension of PCA that considers predefined grouping of
features during DR to ensure equal representation for all groups

of features in derived PCs (Abdi et al., 2013). In one study
(Robertson et al., 2018), MFA is used for simultaneous 2D
visualization of host and microbiome features (see Morgan et al.,
2012; Raymond et al., 2016 for other examples). Exploratory
factor analysis (EFA) is used to identify unobserved latent
features called factors to explain the correlations among observed
features (Yong and Pearce, 2013). Factors that are identified
by EFA are uncorrelated to each other similar to PCs in
PCA; however, PCs are used to explain overall variance instead
of correlations. EFA has been used in a recent study to
extract four factors explaining the correlations among 25 top
taxa for studying the association of microbiome with early
childhood neurodevelopmental outcomes in 309 infants (Sordillo
et al., 2019). Confirmatory factor analysis (CFA) and structural
equation modeling (SEM) can be used to examine the extent
to which a hypothesized model of latent features and their
relationships with observed variables are supported by the
data (Schreiber et al., 2006). In a recent study, a theoretical
framework is proposed and examined using CFA to model the
influence of maternal and infant factors on the milk microbiota
(Moossavi et al., 2019). The R packages lavaan (Rosseel, 2012) and
FactoMineR (Lê et al., 2008), as well as the IBM SPSS software
(IBM Corp, 2013), are widely used for factor analysis.

Another related method is principal coordinate analysis
(PCoA), also called multidimensional scaling (MDS) (Kruskal,
1964), which is commonly employed for 2- and 3-dimensional
visualization of beta diversity. It can deal with situations where
distances between individual feature vectors from samples cannot
be used directly (e.g., due to significant sparsity and phylogenetic
relationships). PCoA takes a matrix of distances among samples
(e.g., UniFrac distance between OTU abundances of a pair
of sample donors) as input. It then assigns new coordinates
such as PC1 and PC2 to each sample such that the Euclidean
distances in the new coordinate are similar to the ones in the
matrix. For example, PCoA was applied given UniFrac distances
between OTU abundances (from 16S rRNA samples) from
the gut microbiota of donors (Yatsunenko et al., 2012). Two-
dimensional visualization using PC1 and PC2 showed that the gut
microbiota of donors who lived in the United States is distinct
from the gut microbiota in donors living in Amerindian and
Malawian villages.

Linear discriminant analysis (LDA) is also a DR technique,
although supervised and closely related to regression and
ANOVA. Unlike PCA and PCoA, it requires class labels. It
generates new features that are linear combinations of the
original ones while separating samples with respect to their class
labels. In one study, LDA was used to distinguish gut microbiota
samples based on diet but not for DR (Paulson et al., 2013).
Successful usage of LDA for high dimensional microbiome data
may require regularization to account for overfitting as similarly
used for high-dimensional microarray (Guo et al., 2006).

The optimal amount of reduction in dimensionality (e.g.,
the number of principal components) varies given the data and
the task downstream. For data visualization tasks, it is largely
constrained by the limitations of human visual perception (three
dimensional). For downstream supervised learning tasks, we
are often interested in the maximum amount of DR without
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a significant decrease in predictive power. This is showcased
in Bartenhagen et al. (2010), where the impact of the amount
of DR on classification performance is evaluated for gene
expression data.

Cluster analysis
Similar microbial communities are expected to exhibit analogous
effects on the host organism (Gould et al., 2018). Once a similarity
measure is defined, various cluster analysis methods can be
used to find groups of samples with similar microbiota. In
one study, three robust microbiota clusters (called enterotypes)
were identified using cluster analysis from 16s rRNA data of
fecal samples (Arumugam et al., 2011). It was later shown that
such clustering results are not only sensitive to data but also to
choices made during analysis (Koren et al., 2013). We enumerate
four important choices impacting cluster analysis results (other
than upstream data processing). First is the distance measure.
Standard distance metrics such as the Euclidean and Manhattan
distance are simple, well understood, and supported in many
clustering libraries. Applicability of such metrics depends on
prior compositionality aware transformations such as ILR. Beta-
diversity metrics such as weighted and unweighted UniFrac
distances are designed for microbiome analysis considering
compositionality and phylogenetic dependencies of microbiome
data. Researchers should pay attention to the properties of the
distance metric used in order to better understand the clustering
results. Second is the clustering algorithm. Algorithms such
as Partition Around Medoids (Kaufman and Rousseeuw, 1987)
and Hierarchical Clustering (Murtagh and Contreras, 2012)
can employ various distance metrics. Others, such as k-means,
are tied to a single distance measure but computationally
less demanding. Third is the number of clusters. Clustering
algorithms often require the number of clusters to be provided as
input. When unknown, the number that provides higher cluster
scoring is picked. Prediction strength (Tibshirani and Walther,
2005), silhouette index (Rousseeuw, 1987), and Calinski–
Harabasz (Caliñski and Harabasz, 1974) are popular cluster
scoring metrics. Fourth is the method used to identify the
robustness of clustering results. Often a cluster scoring metric
that is not used to identify the number of clusters is used
as a robustness measure. Recent studies consider the effect of
the above choices during cluster analysis to better understand
how results can be generalized (Hildebrand et al., 2013;
Costea et al., 2018).

The integration of data from disparate omics data types
(also called integrative omics) and other heterogeneous metadata
enables a more comprehensive look into the underlying biology
(Karczewski and Snyder, 2018). Integrative omics data analysis
methods have been categorized into three types (Kim and
Tagkopoulos, 2018). First is data-to-data, where disparate data
types are analyzed together. For example, CCA can be used
to investigate the correlations between metagenomics and
metabolomics data, as discussed before. Second is data-to-
knowledge, where the knowledge gained from analyzing some
data types are used to inform analysis of other data types.
For example, a metagenomics analysis of colon cancer patients
can lead to further investigation of candidate genes using

targeted proteomics analysis. Third is knowledge-to-knowledge,
where the data types are initially analyzed separately, but the
acquired knowledge is integrated together afterward to either
identify hypotheses that are supported by multiple data types
or create a more complete view of a given phenomenon.
For example, differentially expressed genes and differentially
abundant metabolites in the digestive tract of patients with
Crohn’s disease can be used together for narrowing down
pathways involved in disease etiology. See Huang et al. (2017),
Karczewski and Snyder (2018), Kim and Tagkopoulos (2018), and
Jiang et al. (2019) for comprehensive reviews.

Recommendation Systems and Artificial
Intelligence
The human microbiome is referred to as “our second genome”
and has a major influence on our health (Grice and Segre,
2012). Although it is known for its resilience (Lozupone
et al., 2012; Relman, 2012), unlike the human genome, it
has considerable plasticity hence providing ample opportunities
in the design of new types of food, medical interventions,
and dietary recommendations (Gentile and Weir, 2018).
Despite recent progress in microbiome research, switching
from population-wide dietary recommendations to microbiome-
aware recommendations is not yet realized. See Table 4, for
a representative summary of recent microbiome-aware diet
recommendation studies. Once a personalized healthy target
microbiome is identified using data analytics methods, a
recommendation system (RS) can utilize this information to
suggest the path toward establishing it in the host and ensuring
the health benefits. One approach is to use a knowledge-based
RS where recommendations are made using a limited number of
approved drugs and dietary prescriptions. Although this would
be a good starting point, such a system would be limited in
its ability to provide precise and personalized recommendations
that usually need a platform that can create new products or
processes on a case-by-case basis. Recent studies simulate a
virtual gut microbiome by integrating known metabolic pathways
of microbial species with the individual’s microbiome and diet
(Shoaie et al., 2015; Baldini et al., 2018; Bauer and Thiele,
2018; Greenhalgh et al., 2018). Such mechanistic modeling is
very promising, however, it is currently hindered by numerous
challenges, such as incomplete characterization of an individual’s
gut and metabolic pathways of their microbiome. There is
considerable research on AI-based RS related to food, drug
design, and health (Tran et al., 2017; Suphavilai et al., 2018), but
its application with microbiome data is in its early stages (Zeevi
et al., 2015; Thaiss et al., 2016a; Korem et al., 2017). Commercial
investments in this area have already started, with companies
such as UBiome and DayTwo using 16S rRNA technology
to provide insights into our personal microbiota and suggest
dietary recommendations.

Recommendation system is defined as “any system that guides
a user in a personalized way to interesting or useful objects in
a large space of possible options or that produces such objects as
output” (Burke, 2002). Microbiome-aware diet recommendations
can be generated from knowledge-based, content-based, or
collaborative filtering, as described next.
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FIGURE 4 | Examples of microbiome-aware diet recommendation pipelines for scenarios (A–D).

Knowledge-Based Recommendation Systems
An ideal knowledge-based RS would be based on in silico
models that can correctly simulate an individual’s gut. It
requires proper characterization of the gut microbiome, human
intestinal cells, intestinal and dietary metabolite concentrations,
their interactions through metabolic pathways, and realistic
objective functions for modeling such complex dynamics. Such
a knowledge-based RS was devised in a recent study involving
28 patients with Crohn’s disease and 26 healthy individuals
(Bauer and Thiele, 2018). Researchers integrated genome-scale
metabolomic reconstructions (GENREs) of 818 microbes from
http://vmh.life (Noronha et al., 2018) with the individual’s
microbiome abundances after metagenomic data processing in
the R package BacArena (Bauer et al., 2017). Their in silico
simulations provide personalized metabolic supplements for
improving patient’s SCFA levels. Earlier studies have created
a metabolic model of the gut microbiome on a smaller scale
(Shoaie et al., 2015). See Magnúsdóttir and Thiele (2018) for a
comprehensive review. Despite their promise, there are several
challenges for the application of such knowledge-based RSs.
The first challenge is the limited availability and accuracy of
GENREs for gut microbes. A recent study has identified 1,520

unique microbes in the human gut (Zou et al., 2019), while the
number of microbes that have GENREs is only 818 (Noronha
et al., 2018). In one study (Tramontano et al., 2018), 75%
of the GENREs required updates [from previously constructed
GENREs (Magnúsdóttir et al., 2017)] so that in silico simulations
could recapitulate growth on new media. This suggests that
in silico GENREs of the gut microbiome are far from complete,
however, progress is being made toward closing this gap. The
second challenge is the metabolic characterization of the media
inside the intestine on which gut microbes grow. This includes
identifying the dietary metabolites available to microbes at
different sites in the gut, which necessitates meticulous dietary
data processing. The third challenge relates to the computational
complexity of in silico simulations, which increases as host
and microbial GENREs become more comprehensive. Although
more challenges can be enumerated, their inclusion here would
go beyond the scope of this article.

Content-Based Recommendation Systems
In content-based RSs, the recommendations are made based
on the item’s content (often characterized using item features).
This is in contrast to collaborative filtering RSs where
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recommendations are based on preferences of other users for
each item. In one landmark study (Zeevi et al., 2015), authors
use a content-based RS for meal recommendations with the
goal of improving post-meal glucose levels. Each meal is first
characterized based on its nutritional profile (macronutrients
and micronutrients). Then a regression model is trained to
predict post-meal glucose level based on the meal’s nutritional
profile, the individual’s microbiome features, and other personal
information. For each new user and meal, post-meal glucose
levels are predicted by the model, and the meal with the
minimum post-meal glucose level is recommended to the user.
The same methodology is used in a later study using only
microbiome features of individuals to predict post-meal glucose
levels in a bread-type recommendation system (Korem et al.,
2017). Several challenges arise when building content-based RSs.
The first challenge is variable data quality and compatibility.
When a group of users (or items) are overrepresented in the
data, the predictive model tends to be biased toward their
favorite items. As a result, the quality of recommendations will
be highly variable. Stratified sampling can be used to alleviate
this issue. The second challenge is difficulty in generalizing
and personalizing recommendations, particularly when feature
vectors are not informative for predictions (also relevant to the
“missing quantities” challenge mentioned in Table 3). This is in
contrast to collaborative filtering RSs, where latent features are
learned instead of being defined a priori. Hybrid RS methods
are designed to take advantage of collaborative filtering RSs to
address such inherent challenges in context-based RSs (and vice
versa) (Burke, 2002). For an extensive review of context-based
RSs, methods see (Lops et al., 2011).

Collaborative Filtering Recommendation Systems
In collaborative filtering RSs, each user is characterized by the
items (foods or ingredients here) they have previously rated,
bought, or generally acted upon. Recommendations are given
based on the idea that users who assign the same rating to
existing items are expected to have a similar rating profile for all
items. Matrix completion is one of the most popular collaborative
filtering methods (Su and Khoshgoftaar, 2009; Ekstrand et al.,
2011). User-assigned scores are first organized in a sparse matrix

where columns correspond to different items and rows to various
users. In cases where most users only have evaluated a few
items, most of the matrix remains empty. Matrix completion
fills the rest of the matrix through the similarities discovered
amongst users and items. See Su and Khoshgoftaar (2009) and
Ekstrand et al. (2011) for a comprehensive review. Collaborative
filtering RSs have not been used for microbiome-aware food
recommendations. We describe an example here to showcase
how it can be used. Consider a matrix where each column
corresponds to a dietary plan and each row to a person—a specific
value can represent gut microbiome alpha diversity during the
time which the user followed a particular dietary plan. Assuming
that each person has only tried a few dietary plans, most of the
matrix will be empty. Here we can use matrix completion to fill
the matrix with predicted alpha diversities to create a complete
matrix. This can be used to recommend dietary plans for a person
with the goal of maximizing gut microbiota diversity. Several
challenges arise in collaborative filtering RS. The first challenge
is the lack of data for new users (“cold-start”). Note that the
recommendations rely on similarities among users, while new
users have not tried any of the items available in the database. The
second challenge is the curse of dimensionality. As the number
of items increases, the chance of having user scores for the same
item combinations decreases, hence items and users become
equally dissimilar (also relevant to the “high dimensionality”
challenges in Table 3). In such cases, hybrid RS can be used. Next,
we bring up a few example scenarios.

Example Scenarios
We discussed various data analytics and recommendation system
methods for microbiome discovery and diet engineering, as
illustrated in Figures 1, 3. Applicability of each method depends
on research objectives and data availability. Here we explain
particular scenarios illustrated in Figure 4 as blueprints for
integrating relevant techniques in a single pipeline. In scenario
A, the goal is to identify metabolic pathways that are enriched
in the gut microbiome of healthy adults using 16S rRNA data
(see Duvallet et al., 2017; Thomas et al., 2019; Wirbel et al.,
2019 for similar works). In scenario B, the goal is to provide
recommended probiotic intake for supporting a healthy gut

TABLE 4 | Highlighted microbiome-aware diet recommendation studies.

Study description Dietary variables Metagenomic
technology

References

A personalized meal recommendation system uses personal, microbiome and dietary
features to select an optimal meal for lowering post-meal glucose levels in patients with
type II diabetes.

Micro and
macronutrients

16S rRNA and whole
metagenomics

Zeevi et al., 2015

Microbiome features enable accurate prediction of an individual’s glycemic response to
different bread types.

Bread type 16S rRNA and whole
metagenomics

Korem et al., 2017

Accurate prediction of weight regain given normal vs. high-fat diet in mice is enabled
using a microbiome-based predictor.

Dietary fat 16S rRNA Thaiss et al., 2016a

Personalized metabolite supplement recommendations for Crohn’s disease are made
using in silico simulation of reconstructed metabolic pathways from gut microbiome
(773 microbes).

Metabolic supplements Whole metagenomics Bauer and Thiele, 2018

Fecal amino acid levels are predicted given dietary macronutrients through in silico
simulation of metabolic pathways from gut microbiome (four microbes) and host cells.

Macronutrients 16S rRNA Shoaie et al., 2015
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microbiome. First, the study participants would be profiled
based on the probiotic products they consume (each containing
specific OTUs) as well as their gut microbiome. Next, microbiome
scores will be calculated for each participant based on the
distance between enriched pathways of their microbiome and the
target healthy microbiome. Then a regression model is trained
to predict microbiome scores based on OTU intakes. Finally,
the OTU intake concentration that is predicted to have an
optimal microbiome score would be used as the recommended
probiotic intake. In scenario C, the goal is to identify optimal
diets for health, performance, and disease. A compendium
needs to be built following a consistent data collection and
processing pipeline for study participants. The compendium
serves the training data necessary for building machine learning
models to predict health metrics such as post-meal glucose
level (Zeevi et al., 2015; Korem et al., 2017) or post-dieting
weight regain (Thaiss et al., 2016a). The predictive models can
then be used as the key part of a recommendation system by
identifying the expected impact of a given diet on health for new
individuals. In scenario D, the goal is to recommend metabolic
supplements needed by an individual’s microbiota to secrete
vital compounds. First, OTU abundances of each individual
are identified using a metagenomic data processing pipeline.

Then, individual gut metabolic pathways are reconstructed using
online resources such as the Virtual Metabolic Human database
(Noronha et al., 2018). Finally, constraint-based reconstruction
and analysis (COBRA) tools (Bauer et al., 2017; Baldini et al.,
2018) are used to perform in silico simulations of GENREs
to identify metabolic intake requirements to secrete vital
compounds of interest. This mechanistically sound approach
has been used in a few recent studies (Shoaie et al., 2015;
Bauer and Thiele, 2018).

INTELLECTUAL PROPERTY
DEVELOPMENT

The potential application impact generated by research on
the relationship between the gut microbiome and diet can be
visualized by the abundant number of patent applications on the
topic, as well as more generally in the field of microbiome and
health research. A search for “gut microbiome” and “diet” returns
over 2,500 patents on Google, deposited by universities, institutes,
and companies such as MicroBiome, Microbiome Therapeutics,
Gutguide, Whole Biome Inc., UBiome, and others, from as early
as 2004. However, it is important to note that most of these hits

TABLE 5 | Highlighted patents relating to diet, gut microbiome, and human health.

Patent number Name Owner Year

US20100172874A1 Gut microbiome as a biomarker and therapeutic target for treating obesity or an
obesity-related disorder

Washington University
in St. Louis

06

WO2007136553A2 Bacterial strains, compositions including same and probiotic use thereof Benson et al. 06

US20110123501A1 Gut flora and weight management Nestec S.A. 07

EP2178543B1 Lactobacillus rhamnosus and weight control Nestec S.A. 07

US9371510B2 Probiotic compositions and methods for inducing and supporting weight loss Brenda E. Moore 07

US9113641B2 Probiotic bacteria and regulation of fat storage Arla Foods amba 07

EP2296489A1 Lactobacillus paracasei and weight control Nestec S.A. 08

EP2216036A1 Lactobacillus rhamnosus NCC4007, a probiotic mixture and weight control Nestec S.A. 09

WO2010091991A1 Lactobacillus helveticus cncm i-4095 and weight control Arigoni et al. 09

US20100331641A1 Devices for continual monitoring and introduction of gastrointestinal microbes Gearbox LLC 09

US20160074505A1 Method and System for Targeting the Microbiome to Promote Health and Treat Allergic
and Inflammatory Diseases

Kovarik et al. 09

US20120058094A1 Compositions and methods for treating obesity and related disorders by characterizing
and restoring mammalian bacterial microbiota

New York University
Dow Global
Technologies LLC

10

US9040101B2 Method to treat diabetes utilizing a gastrointestinal microbiome modulating composition MicroBiome
Therapeutics LLC

11

US20170348359A1 Method and System for Treating Cancer and Other Age-Related Diseases by Extending
the Health span of a Human

Kovarik et al. 11

US20170281091A1 Capsule device and methodology for discovery of gut microbe roles in diseases with
origin in gut

Lowell Zane Shuck 12

US20170372027A1 Method and system for microbiome-derived diagnostics and therapeutics for locomotor
system conditions

uBiome Inc. 14

US20170286620A1 Method and system for microbiome-derived diagnostics and therapeutics uBiome Inc. 14

US20190030095A1 Methods and compositions relating to microbial treatment and diagnosis of disorders Whole Biome Inc. 14

WO2017216820A1 Metagenomic method for in vitro diagnosis of gut dysbiosis Putignani et al. 16

WO2017171563A1 Beta-caseins and cognitive function Clarke et al. 16

WO2017160711A1 Modulation of the gut microbiome to treat mental disorders or diseases of the central
nervous system

Strandwitz et al. 17

US20180318323A1 Compositions and methods for improving gut health Plexus Worldwide LLC 17
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TABLE 6 | Glossary of terms.

Alpha diversity. A measure that quantifies the species diversity in a given
sample. It can be calculated by several methods including richness (i.e. the
number of unique species) as well as the Shannon index which relies on the
relative abundance of unique species.
Beta diversity. A measure that quantifies the difference between species
abundances across samples. It can be calculated by several methods including
the Jaccard index (i.e. the ratio of shared to total unique species in a pair of
samples) as well as the weighted Jaccard index which also considers the
number of times each specie is observed.
Classification. A type of supervised learning problem where the dependent
variables are categorical.
Cluster analysis. Unsupervised learning methodology to identify groups of
similar datapoints automatically.
Collaborative filtering. Recommendation system methodology which relies
on similarities amongst user preferences for new recommendations.
Compositional quantities. Dataset attributes that their absolute quantities are
only meaningful relative to each other for each sample, and cannot be
compared directly across different samples.
Content-based filtering. Recommendation system methodology in which
recommendations are made based on the features for both items and users.
Curse of dimensionality. A set of challenges, such as the need of
exponentially more samples to train a model and increased computational
complexity, that appear when the dimensionality of the data or model increases.
Data imputation. Substitution of missing values in a given dataset.
Diversity metric. Quantitative measure that represents the number of unique
entity types (e.g., species) in a community and evenness in their relative
population.
Dimensionality. Number of attributes available for each sample in a given
dataset. A dataset with relatively few attributes is considered low-dimensional
while a dataset with many attributes is referred to as high-dimensional.
Labeled/unlabeled samples. Samples that have been tagged using particular
labels describing the value of a dependent variable are called labeled. This is in
contrast to unlabeled samples for which such labels are unavailable. Note that
labels can be categorical or numerical.

Marker gene sequencing. Primer-based strategy (such as 16S rRNA) that
targets a specific region of a gene of interest to characterize microbial
phylogenies of a sample.
Multiple-hypothesis testing. A problem that arises in tests of statistical
significance when applied multiple times using different hypotheses.
Overfitting. A problem that arises in machine learning where parameter values
of a model are too closely fit for training data and therefore not useful in practice.
Rarefaction. A bias correction technique used to enable comparison of
diversity measures between communities with unequal sample sizes.
Recommendation system. “Any system that guides a user in a personalized
way to interesting or useful objects in a large space of possible options or that
produces such objects as output.” (Burke, 2002)
Regression. Supervised learning tasks in which the dependent variables are
numerical.
Regularization. Machine learning technique that dampens the variability of
model parameters leading to a less complex model. It is usually used to
mitigate overfitting.
Stability metric. A quantitative measure to assess whether properties of a
community (e.g., gut microbes) are preserved over time.
Supervised learning. Learning tasks that require labeled data. They involve
learning a function to predict the correct label for a new sample given input
attributes.
Unsupervised learning. Learning tasks that do not rely on labeled data. They
involve learning hidden structures, features, or patterns within the data.
Variation analysis. Statistical methods, such as analysis of variance (ANOVA),
used to identify the amount of variance in a dependent variable that can be
explained using independent variables.
Whole metagenomic sequencing. A sequencing strategy that targets the
whole genome of all microbial species within a sample. This is also called
shotgun metagenomics.

are less than a decade old, demonstrating the relatively early
stages in which this area still resides. The exponential growth
in patent applications related to the microbiome since 2007
correlates to a similar curve for the academic publications in the
same period (Fankhauser et al., 2018).

One of the earliest available patent applications
(US20050239706A1) related to the topic of the microbiome and
nutrition describes methods to regulate weight by manipulating
the gut microbiome. Additional patents also aim to use the gut
microbiome as a therapeutic target, monitoring and altering the
composition with the goal of manipulating the host phenotype
such as weight gain/loss and obesity. In general, weight
management with the manipulation of the gut microbiome
(US20110123501A1 and US20100172874A1) appears as a
favored theme for early patent applications in the area of
microbiome and diet. Several patents describe novel probiotics
and their uses (WO2007136553A2), often relating them to
specific target phenotypes such as weight loss (EP2178543B1,
US9371510B2, US9113641B2, EP2216036A1, EP2296489A1,
and WO2010091991A1). Multiple applications for probiotics
focused on weight loss were deposited by Nestec SA, which offers
research and consulting services to the food company Nestlé S.A.

With the development of computational techniques to
analyze larger datasets, and more research on the relationship

of the microbiome and the host homeostasis and disease,
patent applications related to gut microbiome and diet have
subsequently extended to other health conditions beyond
obesity and weight control. Among the newest patent
applications related to the gut microbiome and diet is a patent
describing the characterization, diagnostics, and treatment
of a locomotor system condition based on microbiome data
(US20170372027A1). Other applications include metagenomic
methods specific for the comparison of healthy individuals
and those with gut dysbiosis (WO2017216820A1), diagnostic
tools for Crohn’s disease, inflammatory bowel disease, irritable
bowel syndrome, ulcerative colitis, and celiac disease using
microbiome and other types of data (US20170286620A1), and
devices such as capsules to acquire and monitor microbiome
and metabolites in the gut (US20170281091A1). Research
on the gut–brain axis relationship also resulted in several
applications aimed at monitoring and manipulating the gut
microbiome to enhance cognition or treat mental-health
conditions (WO2017171563A1 and WO2017160711A1).
A recent and thorough review of patents related to the
microbiome identified cancer diagnosis and treatment and
CRISPR technology as recent trends in the field (Fankhauser
et al., 2018). Table 5 shows a summary of highlighted patents
relating to DGMH.
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Even though there is already a considerable number of patent
applications for technologies aiming to manipulate the gut
microbiome for multiple health conditions, regulatory legislation
has not yet become specific to deal with the new scientific
advances in the field. In Europe, the European Food Safety
Authority (EFSA) is responsible for regulating and approving
food products with health claims, including probiotics, while in
the United States, the Food and Drug Administration (FDA)
assumes a similar role. Legislation and regulatory aspects are
changing in an attempt to keep up with the ever-evolving
field. Recently, the FDA has released a statement (Food and
Drug Administration, 2018) clarifying existing regulations and
announcing the intention to work closely with the United States
National Institutes of Health to ensure public safety. Currently,
there is no probiotic approved to be marketed in the United States
as a live biotherapeutic product, defined by the agency as
a “biological product other than a vaccine that contains live
organisms used to prevent or treat a disease or condition in
humans” (Food and Drug Administration, 2016, 2018). This
means that, even though probiotics are legally available as dietary
supplements or food ingredients, they cannot yet have claims
to cure, treat, or prevent any diseases per current regulation
(Food and Drug Administration, 2018), since those claims are
reserved for drugs. Classification of food ingredients targeting the
microbiome, but not composed of living organisms, microbiota-
directed foods or MDFs, prebiotics, and dietary fiber, is also
challenging based on the available legislation. Depending on the
health claims, such products can fall under the categories of drugs
or dietary supplements, which have different requirements for
approval (Green et al., 2017).

CONCLUSION

Significant advances in microbiology, genomics, analytical
chemistry, computational science, bioinformatics, and other
critical disciplines have begun to converge such that it is possible
to foresee a new era of health and nutrition research enabling
the design of food products capable of optimizing health via
predictable interactions with the gut microbiome. Despite the
exciting potential in this context demonstrated by pioneering
research efforts of many investigators, including those cited
in this brief review, the complexity of the microbiome, the
chemical composition of food, and their interplay in situ remains
a daunting challenge in the context of achieving necessary
breakthroughs. However, recent advances in high-throughput
sequencing and metabolomics profiling, compositional analysis
of food, and the emergence of electronic health records as
an opportunity to integrate health information provide new
sources of data that can contribute to addressing this challenge.
Indeed, it is now clear that computational science will play an
essential role in this effort as it will provide the foundation
to integrate these data layers and derive insights capable of
revealing and understanding the complex interactions between
diet, microbiome, and health.

The human microbiome is exceptionally plastic,
which presents both challenges and opportunities

(Gentile and Weir, 2018). Due to its temporal and inter-
individual variability, it is difficult to discover statistically
significant signatures that unambiguously constitute a
healthy versus non-healthy microbiota. At the same time,
its potential for adaptation to diet and other environmental
factors makes the gut microbiome an excellent target for
diet-related interventions to improve health. In this article, we
presented a brief overview of the current state of knowledge
and potential avenues for research at the interface of diet,
gut microbiome, and human health, with particular emphasis
on the role that computational science and data analytics
can play in accelerating this research. Using these tools, we
envision a future in which diets, as well as food and dietary
supplement products, can be better designed for specific
populations, and, in some cases, for individuals, in order to
optimize gut microbiota and health via a platform integrating
two distinct systems. The first system will be responsible for
identifying the optimal target microbiota (discovery) given
the desired target, individual, and environment, while the
second will provide recommendations for achieving that target
microbiota (engineering). Recognizing this distinction and
the requirement for seamless interaction between the two can
reinforce collaborative research in this evolving field where
some teams focus on microbiota discovery and others on
diet engineering.

Microbiome research has attracted much interest in the past
few years and given rise to various software tools and pipelines
for metagenomic data processing and analysis. Many of these
tools address similar problems and researchers may choose a
variety of tools depending on the context. Interestingly, recent
research has shown that synthetic datasets can be used to
assess the performance of competing tools given a project’s
assumptions and hence provide useful benchmarks (Ounit and
Lonardi, 2016; Hitch and Creevey, 2018). We further believe that
progress in simulation-based studies can give rise to new data
processing and analytics pipelines customized for each project
based on factors such as sequencing technology, data availability,
dimensionality, and variability. This can help to build standard
protocols for addressing challenges like the ones mentioned in
Tables 3, 4.

Our current knowledge about the relationship between
diet, gut microbiome, and human health is evolving
fast. Many data analysis methods exist for discovering
characteristics that can define a healthy microbiota and the
factors influencing it. We believe that proper integration of
recommendation systems with existing research developments
will have an unprecedented impact on our way of life.
Given the accelerated pace of advances in sequencing and
computational tools, we expect the next decade to be the era of
computational nutrition that will revolutionize our relationship
with food and diet.
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Topçuoğlu, B. D., Lesniak, N. A., Ruffin, M., Wiens, J., and Schloss, P. D. (2019).
Effective application of machine learning to microbiome-based classification
problems. BioRxiv [Preprint]. Available at: https://www.biorxiv.org/content/10.
1101/816090v1 (accessed March 14, 2020).

Tramontano, M., Andrejev, S., Pruteanu, M., Klünemann, M., Kuhn, M., Galardini,
M., et al. (2018). Nutritional preferences of human gut bacteria reveal
their metabolic idiosyncrasies. Nat. Microbiol. 3:514. doi: 10.1038/s41564-018-
0123-9

Tran, T. N. T., Atas, M., Felfernig, A., and Stettinger, M. (2017). An
overview of recommender systems in the healthy food domain.
J. Intellig. Inform. Syst. 50, 501–526. doi: 10.1007/s10844-017-
0469-0

Truong, D. T., Franzosa, E. A., Tickle, T. L., Scholz, M., Weingart, G., Pasolli, E.,
et al. (2015). MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat.
Methods 12:902. doi: 10.1038/nmeth.3589

Tsilimigras, M. C., and Fodor, A. A. (2016). Compositional data analysis of the
microbiome: fundamentals, tools, and challenges. Ann. Epidemiol. 26, 330–335.
doi: 10.1016/j.annepidem.2016.03.002

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley,
R. E., et al. (2009). A core gut microbiome in obese and lean twins. Nature
457:480. doi: 10.1038/nature07540

Turpin, W., Espin-Garcia, O., Xu, W., Silverberg, M. S., Kevans, D., Smith,
M. I., et al. (2016). Association of host genome with intestinal microbial

Frontiers in Microbiology | www.frontiersin.org 21 April 2020 | Volume 11 | Article 393

https://doi.org/10.1093/bioinformatics/btl417
https://doi.org/10.1155/2015/505878
https://doi.org/10.1155/2015/505878
https://doi.org/10.1002/mnfr.201600240
https://doi.org/10.1002/mnfr.201600240
https://doi.org/10.1002/art.38892
https://doi.org/10.1128/aem.71.3.1501-1506.2005
https://doi.org/10.1128/aem.71.3.1501-1506.2005
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1371/journal.pone.0017288
https://doi.org/10.1186/gb-2012-13-4-r32
https://doi.org/10.1038/s41586-019-1560-1
http://papers.nips.cc/paper/7412-regularization-learning-networks-deep-learning-for-tabular-datasets
http://papers.nips.cc/paper/7412-regularization-learning-networks-deep-learning-for-tabular-datasets
https://doi.org/10.1111/nyas.13416
https://doi.org/10.4178/epih/e2014009
https://doi.org/10.4178/epih/e2014009
https://doi.org/10.1016/j.cmet.2015.07.001
https://doi.org/10.1016/j.cmet.2015.07.001
https://doi.org/10.1097/MOG.0000000000000139
https://doi.org/10.1097/MOG.0000000000000139
https://doi.org/10.7554/eLife.21887
https://doi.org/10.1093/bioinformatics/btw427
https://doi.org/10.1001/jamanetworkopen.2019.0905
https://doi.org/10.1001/jamanetworkopen.2019.0905
https://doi.org/10.3389/fmicb.2019.01124
https://doi.org/10.1093/bioinformatics/bty452
https://doi.org/10.1093/bioinformatics/bty452
https://doi.org/10.1038/nature20796
https://doi.org/10.1016/j.cell.2016.11.003
https://doi.org/10.1016/j.cell.2014.09.048
https://doi.org/10.1111/j.1365-2222.2007.02780.x
https://doi.org/10.1111/j.1365-2222.2007.02780.x
https://microbe.med.umich.edu/research/michigan-microbiome-project
https://microbe.med.umich.edu/research/michigan-microbiome-project
https://doi.org/10.1038/s41591-019-0405-7
https://doi.org/10.1198/106186005x59243
https://doi.org/10.1198/106186005x59243
https://www.biorxiv.org/content/10.1101/816090v1
https://www.biorxiv.org/content/10.1101/816090v1
https://doi.org/10.1038/s41564-018-0123-9
https://doi.org/10.1038/s41564-018-0123-9
https://doi.org/10.1007/s10844-017-0469-0
https://doi.org/10.1007/s10844-017-0469-0
https://doi.org/10.1038/nmeth.3589
https://doi.org/10.1016/j.annepidem.2016.03.002
https://doi.org/10.1038/nature07540
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00393 April 2, 2020 Time: 17:57 # 22

Eetemadi et al. Computational Diet, Microbiome and Health

composition in a large healthy cohort. Nat. Genet. 48:1413. doi: 10.1038/ng.
3693

TwinsUK, (2019). The Biggest twin Registry In The Uk for The Study Of Ageing
Related Diseases. Available at: http://twinsuk.ac.uk (accessed February 11,
2019)

Tyler, A. D., Smith, M. I., and Silverberg, M. S. (2014). Analyzing the human
microbiome: a “how to” guide for physicians. Am. J. Gastroenterol. 109:983.
doi: 10.1038/ajg.2014.73

US Department of Agriculture and Agricultural Research Service, (2010). USDA
National Nutrient Database for Standard Reference, Release 28. Agricultural
Research Service. Washington, D.C: USDA.

Vatanen, T., Franzosa, E. A., Schwager, R., Tripathi, S., Arthur, T. D., Vehik, K.,
et al. (2018). The human gut microbiome in early-onset type 1 diabetes from
the TEDDY study. Nature 562:589. doi: 10.1038/s41586-018-0620-2

Verberkmoes, N. C., Russell, A. L., Shah, M., Godzik, A., Rosenquist, M.,
Halfvarson, J., et al. (2009). Shotgun metaproteomics of the human distal gut
microbiota. ISME J. 3:179. doi: 10.1038/ismej.2008.108

Walker, A., Pfitzner, B., Neschen, S., Kahle, M., Harir, M., Lucio, M., et al. (2014).
Distinct signatures of host–microbial meta-metabolome and gut microbiome
in two C57BL/6 strains under high-fat diet. ISME J. 8:2380. doi: 10.1038/ismej.
2014.79

Wang, J., Kurilshikov, A., Radjabzadeh, D., Turpin, W., Croitoru, K., Bonder, M. J.,
et al. (2018). Meta-analysis of human genome-microbiome association studies:
the MiBioGen consortium initiative. Biomed. Central 6:101.

Wang, M., Karlsson, C., Olsson, C., Adlerberth, I., Wold, A. E., Strachan, D. P.,
et al. (2008). Reduced diversity in the early fecal microbiota of infants with
atopic eczema. J. Allergy Clin. Immunol. 121, 129–134. doi: 10.1016/j.jaci.2007.
09.011

Washburne, A. D., Morton, J. T., Sanders, J., McDonald, D., Zhu, Q., Oliverio,
A. M., et al. (2018). Methods for phylogenetic analysis of microbiome data. Nat.
Microbiol. 3:652. doi: 10.1038/s41564-018-0156-0

Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y.,
et al. (2016). Correlation detection strategies in microbial data sets vary
widely in sensitivity and precision. ISME J. 10:1669. doi: 10.1038/ismej.20
15.235

Willing, B. P., Russell, S. L., and Finlay, B. B. (2011). Shifting the balance: antibiotic
effects on host–microbiota mutualism. Nat. Rev. Microbiol. 9:233. doi: 10.1038/
nrmicro2536

Willis, A. D. (2019). Rarefaction, alpha diversity, and statistics. Front. Microbiol.
10:2407. doi: 10.3389/fmicb.2019.02407

Wirbel, J., Pyl, P. T., Kartal, E., Zych, K., Kashani, A., Milanese, A., et al. (2019).
Meta-analysis of fecal metagenomes reveals global microbial signatures that are
specific for colorectal cancer. Nat. Med. 25, 679–689. doi: 10.1038/s41591-019-
0406-6

Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery
and precision medicine. Nat. Rev. Drug Discov. 15:473. doi: 10.1038/nrd.
2016.32

Witten, D. M., Tibshirani, R., and Hastie, T. A. (2009). penalized matrix
decomposition, with applications to sparse principal components and canonical
correlation analysis. Biostatistics 10, 515–534. doi: 10.1093/biostatistics/kxp008

Wood, D. E., and Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genom. Biol. 15:R46. doi: 10.1186/gb-
2014-15-3-r46

Wooley, J. C., Godzik, A., and Friedberg, I. A. (2010). primer on metagenomics.
PLoS Comput. Biol. 6:e1000667. doi: 10.1371/journal.pcbi.1000667

Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-
Bello, M. G., Contreras, M., et al. (2012). Human gut microbiome
viewed across age and geography. Nature 486:222. doi: 10.1038/nature
11053

Yong, A. G., and Pearce, S. A. (2013). beginner’s guide to factor analysis: focusing
on exploratory factor analysis. Tutor. Quant. Methods Psychol. 9, 79–94. doi:
10.20982/tqmp.09.2.p079

Yuan, C., Gaskins, A. J., Blaine, A. I., Zhang, C., Gillman, M. W., Missmer,
S. A., et al. (2016). Cesarean birth and risk of offspring obesity in childhood,
adolescence and early adulthood. JAMA Pediatr. 170:e162385. doi: 10.1001/
jamapediatrics.2016.2385

Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., et al.
(2015). Personalized nutrition by prediction of glycemic responses. Cell 163,
1079–1094. doi: 10.1016/j.cell.2015.11.001

Zhang, C., Yin, A., Li, H., Wang, R., Wu, G., Shen, J., et al. (2015). Dietary
modulation of gut microbiota contributes to alleviation of both genetic and
simple obesity in children. eBio Med. 2, 968–984. doi: 10.1016/j.ebiom.2015.
07.007

Zhang, X., Deeke, S. A., Ning, Z., Starr, A. E., Butcher, J., Li, J., et al. (2018).
Metaproteomics reveals associations between microbiome and intestinal
extracellular vesicle proteins in pediatric inflammatory bowel disease. Nat.
Commun. 9:2873. doi: 10.1038/s41467-018-05357-4

Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Wang, X., et al.
(2018). Gut bacteria selectively promoted by dietary fibers alleviate
type 2 diabetes. Science 359, 1151–1156. doi: 10.1126/science.
aao5774

Zheng, H., Liang, H., Wang, Y., Miao, M., Shi, T., Yang, F., et al. (2016). Altered
gut microbiota composition associated with eczema in infants. PLoS One
11:e0166026. doi: 10.1371/journal.pone.0166026

Zhou, Y.-H., and Gallins, P. A. (2019). review and tutorial of machine learning
methods for microbiome host trait prediction. Front. Genet. 10:579. doi: 10.
3389/fgene.2019.00579

Zhu, X. (2005). Semi-Supervised Learning Literature Survey. Wisconsin: University
of Wisconsin-Madison.

Zmora, N., Suez, J., and Elinav, E. (2019). You are what you eat: diet, health and
the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56. doi: 10.1038/
s41575-018-0061-2

Zou, Y., Xue, W., Luo, G., Deng, Z., Qin, P., Guo, R., et al. (2019). 1,520 reference
genomes from cultivated human gut bacteria enable functional microbiome
analyses. Nat. Biotechnol. 37:179. doi: 10.1038/s41587-018-0008-8

Conflict of Interest: MK and IT are employed or have a financial interest in PIPA
LLC. HS has a financial interest in T.O.P. LLC and March Capital US LLC.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Eetemadi, Rai, Pereira, Kim, Schmitz and Tagkopoulos. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Microbiology | www.frontiersin.org 22 April 2020 | Volume 11 | Article 393

https://doi.org/10.1038/ng.3693
https://doi.org/10.1038/ng.3693
http://twinsuk.ac.uk
https://doi.org/10.1038/ajg.2014.73
https://doi.org/10.1038/s41586-018-0620-2
https://doi.org/10.1038/ismej.2008.108
https://doi.org/10.1038/ismej.2014.79
https://doi.org/10.1038/ismej.2014.79
https://doi.org/10.1016/j.jaci.2007.09.011
https://doi.org/10.1016/j.jaci.2007.09.011
https://doi.org/10.1038/s41564-018-0156-0
https://doi.org/10.1038/ismej.2015.235
https://doi.org/10.1038/ismej.2015.235
https://doi.org/10.1038/nrmicro2536
https://doi.org/10.1038/nrmicro2536
https://doi.org/10.3389/fmicb.2019.02407
https://doi.org/10.1038/s41591-019-0406-6
https://doi.org/10.1038/s41591-019-0406-6
https://doi.org/10.1038/nrd.2016.32
https://doi.org/10.1038/nrd.2016.32
https://doi.org/10.1093/biostatistics/kxp008
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1371/journal.pcbi.1000667
https://doi.org/10.1038/nature11053
https://doi.org/10.1038/nature11053
https://doi.org/10.20982/tqmp.09.2.p079
https://doi.org/10.20982/tqmp.09.2.p079
https://doi.org/10.1001/jamapediatrics.2016.2385
https://doi.org/10.1001/jamapediatrics.2016.2385
https://doi.org/10.1016/j.cell.2015.11.001
https://doi.org/10.1016/j.ebiom.2015.07.007
https://doi.org/10.1016/j.ebiom.2015.07.007
https://doi.org/10.1038/s41467-018-05357-4
https://doi.org/10.1126/science.aao5774
https://doi.org/10.1126/science.aao5774
https://doi.org/10.1371/journal.pone.0166026
https://doi.org/10.3389/fgene.2019.00579
https://doi.org/10.3389/fgene.2019.00579
https://doi.org/10.1038/s41575-018-0061-2
https://doi.org/10.1038/s41575-018-0061-2
https://doi.org/10.1038/s41587-018-0008-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	The Computational Diet: A Review of Computational Methods Across Diet, Microbiome, and Health
	Introduction
	Current Knowledge: Gut Microbiota and Human Health
	Data
	Gut Microbiota Data
	Diet Data
	Host Data


	Computational Analysis
	Microbiome Data Processing Tools*-.5pt
	Challenges in Microbiome Data Processing

	Data Analytics and Machine Learning
	Challenges in Microbiome Data Analysis
	Supervised Learning Methods
	Hypothesis testing and variation analysis
	Regression and correlation analysis
	Classification

	Unsupervised Learning Methods
	Dimensionality reduction
	Cluster analysis


	Recommendation Systems and Artificial Intelligence
	Knowledge-Based Recommendation Systems
	Content-Based Recommendation Systems
	Collaborative Filtering Recommendation Systems

	Example Scenarios*-1pt

	Intellectual Property Development
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References




