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The Importance of Nuclear Spin Effects in Extracting
Alkali Spin-Exchange Cross Sections
from Optical Pumping Signals™
Hyatt Gibbs!

Lawrence Radiation Laboratdry and Department of Physics
University of California, Berkeley, California

November 30, 1964

ABSTRACT

The importance of the nuclear spins in the analysis of alkali spin-
exchange experiments employing optical pumping by circularly polarized
light and performed in low magnetic fields is demonstrated. Since the ex-
change interaction is an electronic process; the spin-exchange cross section
is expected to be essentially independent of the nuclear spiné. However,
the hyperfine coupling is sufficient to make the expressions for the sighals
depend upon the nuclear spins. Failure to include the nuclear spin éffects
in the analysis can lead to errors aAs large as several hundred per cent in
the deduced cross sections. The signal for general nuclear spin is found
fo.r the Franzen-type transient experiment and for the Dehmelt-type steady-
state experiment in the limit of low light intensity, The results are quite
sensitive to the process assumed for the relaxation of the ground-state
populations. The solutions are given for a generél process in which random-

ly oriented disorientation fields interact with the spins of the alkali atom

only through the electron spin. The steady-state signal expression includes

the effects of self-spin exchange and partial disorientation in the excited

state. Only the diagonal elements of the density matrix are included,
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I. INTRODUCTION
Recently there has arisen considerable interest in utilizing the spin-
exchange process to study the forces between atoms and the potentials which
deséribe these forces. The problem of deducing interatomic potential in-
formation from spin-exchange cross sections has been studied by Glassgold

2

and Lebedeff,. particularly for hydrogen. The problem of interest in
this paper is that of obtaining the cross sections from optical pumping ex-
periments.

Optical pumping has been used more than any other technique for de-
termihing spin-exchange cross sections. Most of the optical pumping meas-
urements were made by one of the methods treated in this paper, which in-
volve the determi.nation of a relaxation time and a density. | Recently it has
been shbwn. that information can be obtained without measuring the density
if the line width and frequency shift arising from exchange effects are de-
termined. -4 The analysis of such experiments requires the inclusion of
the off-diagonal density matrix elements, which is not the \;ase here.

The spin-exchange process is an electronic interaction. Since the
collision tifne is much shorter than a period of the hyperfine precession,
the hyperfine coupling has little effect during the collision. Thus the cross
section for electron spin exchange shoul(i be essentially independent of the
nuclear épins. But in a low mégnetic field the electron spin is coupiedv to
the nuclear spin by the hyperfine intei'action, and the good quéntum numbers
are ITFM. Thus the cross sections of interest are betweenv different FM
states; these cross sections depend upon I even though the inferaction is

diagonal in M The optical pumping signals can then depend upon the

I
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nuclear spin because of the hyperfine coupling. Failure to include the
nuclear spin effects can lead to errors of several hundred per cent in the
values of the spin-exchange cross sections deduced from opﬁcal pumping »
experiments.

The calculations of this paper apply to spin exchange between two.

alkali atoms in their ground states. The following. assumptions are common '

to all the calculations:

1 The puvmpving radiation is circularly polarized D1 light.

2. The four hyperfine components in the pumping radiat_ion are of equal
intensity.

3. The pumping radiation at a .givén point in the cell is approximately
constant.,

The rate equétions which are used to describe the experiments are
given in Section II. The following contribuﬁ_ons to the rate equations are
then ‘discussed: . (a) pumping radiation, (b) excited-state disorientation,

(c) ground-state relaxation, (d) spin exchange between unlike atoms, and

(e) self'—spin exchange. Solutions to the rate equ‘ations:v of Section II are ob-
tained for the Franzen—type5 transient experiment as Tcl.pplied't_o. spin-ex-
change measurements in Section III; self-exchange effects are neglected.
The expression for the signal in the _uSual Dehmelt—type6 steady-state spin
exchange experiment is found in Section IV in the limit of low light intensity.
Applications or comparisons are made to the results of Dehmelt, 6 Jarre’t’c,7

Balling et al.,,‘4 and Anderson and Ramsey.
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II. RATE EQUATIONS
Cbnsidef the description of the time varia'tion of f:he popglal:iofis of
two different species of alkali atoms in a static magnetic field of weak in-
tensity. The ISFM representation is then best. Eis the total angular mo-
mentum obtained by coupling the ngclear angular momen’cumi to the elec-
tronic angular momentum é(:l = § since’ L = 0). M is the projection of E
along the axis defined by the external magnetic field and the incident light

beam. Species 1 is optically pumped and has a density in the ground state

FyM, of PF,M,
continuously during part or all of the experiment and has a density dF M
' ' 2772

in the ground state FZMZ and a total density d. The first species has a

and a total density of p. The second species is disoriented

density n in the excited state JiF

1M1' The time variation of pF,lM

T F My

can be described as follows:

1

o
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1 11 11 1t IH
2 f{pF M, PFyM! 051(F1M1F1M1’F M Fy " M)

F' M' 1
11 14
F1M1 X
B My PF*{MEPF'“M'”Q51(F"M'1'F'1“M'1”’ FAMyFaMy) e (g )vg 49 Vg
. | (1)
ZS L. (»)P' (F,M,, J' F' M' )dv is the probab1l1ty per unit time that an
0 q vq 1 1771

q

atom in the ground state FiMi will absorb a resonance photon and make a

transition to the F'iM'1 substate of the ZPJ,

. | Ty |
light intensity with polarization q and with frequencies between v and y+dv.
—3} P”(J'iF'iM'i, F Mi) is the probability per unit time for the reverse process;

1
1
T3

T is the radiative lifetime of an atom in one of the substates of the 2PJ,
1 1
excited state. The quantity w(F Mi’ F' M! ) is the probability per umt time

excited state; L:q(v)dv is the

for an atom in the substate FMy of the ground state to make a transition to

the F'iM',1 substate of the ground state by relaxation processes excluding spin
~ exchange. In the last two terms the subscript Evrefers to exchange between
atoms of different species and S to exchange between atoms of the same

species. Q(F MiFZMZ’ F'1M'1F'ZM2) is the cross section for a spin-exchange

collision between two atoms in which the first atom makes a transition from

F M to F'iM’1 and the second: from FZMZ to ]:"‘ZM'2 The function f(v) is the
distribution of relative velocities v with the normahzationﬁ(v)d3v = 1. The
'populati‘onsva.re then affected by (a) the pufnping radiation, (b) excited-state

disorientation, (c) ground-state relaxation, (d) spin exchan(ge with the second

species, and (e) self-spin exchange between atoms of the same species.



')

-5- ' UCRL-11814

The form of these equations 'co‘rresponds to a diagonal density matrix
approé.ch, which should be valid in the absence of coherence-producing in-
teractions. The radib—frequency fields used in the experiments treated in
this paper are drdinarily applied in a manner producing very little coherence.
Mégnetic field inhomogeneities are usually sufficient to damp out any co-
herence effects in a time short compared with the other significant times of
the problem. A solution of the.rate éQuations including the off-diagonal
elements but neglecting nuclear spins has been obtained by other workers;
it is discussed in Section IVD.

Each of the terms in (1) will now be discussed and thé simplifying
assumptioﬁs stated. | The re_sultin-.'g rate equations are given in IIF. For the
experiments treated in this paper, the 2(2I + 1) equations for each species
(excluding excited-state equations) reduéé to two equations with the variables
being the longitudinal electronic polarizations of the various hyperfine levels
as defined in (13). However, the particular assumptions made in Sections ‘
III and IV are necessary before this re’duétion is ‘corﬁplete; therefore, the
rate equations of IIF are not entirely in that form.

A. Pumping Radiation

1. Circularly Polarized D, Resonance Radiation

It is assumed that the resonance radiation is filtered with only the D1
line (ZP,l/2 - 281/2) incident upon the resonance cell containing two alkali
species. It is further assumed that is is circularly pdlarized so that M,1

must change by +1 for electric dipole transitions; i.e.,

. 1 ,
1 TN Y = 1 el Nt S .
Lq(v)qu(F'lM'l’ J1F1M1) L(v)Pv(FiMi, > F1M1+'1) bJ'i" 1/26M' ) M1+1'
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2.. Equal-Intensity Hyperfine Components. Throughout the Cell

It should always be possible to write

1 1 - 1 1 H
P! LEM,, = FyM,+1) = P'(F,M,, 5 F{,M, +1){(v-v° F oMy F,iM,),

Cf(w- VF M. F'M! ) represents the broadening of the absorption line around

1770747
the center frequency VFiM FiM,i by, for example, Doppler or pressure
effects; furthermoreﬁ) flv-v° P Mi’FliM' Ydv = .‘ _Ngw assume that

o0
J, Liv)}{(v- VF M., F' M’ }dv = L
0 . 17171771

i.e., over the frequencies for which absorption occurs, the light at each
point of the cell is independent of the frequency. Experimental care must
be taken to achieve equal hyperfine components in the incident light; this

can usually be done by regulating the amount of self-reversal in the lamp

bulb, ‘if one is able to monitor the components. Since the hyperfine com-

ponents often have different absorption coefficients, "tﬁé absorption rmust
.usuélly' be kept loW to approximate equal components throughout the
cell (see II A'3).
The first term in (1) contains
J'F ., J WP, (F My, Ty F: \M})dv = L Z P! (F,M,, 5 F} M, +1)

1
Fy

= LP' (F,M,), | | (@)

P! (F. M,) e 2 Q<I1J1F1M1 HOR ‘Ii‘TiF'iM +1>i )
F, |

where

™
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where r(1, q) denotes the gth component of the valence electron position
vector r which is a tensor of rank 1; see Edmonds, ? Chapter 5. Using

Edmonds' (5.4.1) and(7. 1. 7), one finds
1
| | Z F, 1 F | |
PY(F M)« . . A(Fy, F). (4)
¥y M, 1 -M,;-

The squared 3-j symbol in (4) is given in Table I (from Edmonds' Table 2).

The quantities

1/2 Fy I) 2
A(F F"i) = 6(2F,+1)(2F}+1) = A(FY), F)) ' (5)
' F, 1/2 1) ’

‘are given in Table II; they were obtained with the aid of Edmonds' Table 5.

Then, for F, =1, % 1/2,

1
! = ] = T = - -
P'(,M,)=P' (F,M,)= C[1+ M,/(1, +1/2)] = C[1 - 2(F,-1,)M,/(I,+ 1/2)1,
| (6)
where LP' (FiMi) is the total probability per unit time that an atom in the
substate FiMi will absorb a resonance photon. C is a constant independent

of the quantum numbers of interest.

3. Low Absorption

The experiments analyzed in this paper employ the transrhission»
monitoring technique; the changes in the absorpti.on by the: resonance. cell
constitute the signais. The absorption by the cell can be found as follows.
Thé light intensity at frequency v and time t at a penetration depth of x
into the resonance cell of length £ decreases by

1

dL{w, x,t) = -L(v, x, t) Z (x, t) PL‘(FiM = F'M,+1)hvdx (7)

1
F,M,F

P ’
F1M1 172 71771

171
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between x and x +dx; it is assumed that Li(v, x, t) is circularl'y po_lari_zed so
that,AMi_ = +1 in absorption. With the assumptions of IIA 2, (7) yields for

the absorption

J'4
A(2,t) = L(0,t)-L(£,t) = L(x, t) Z Pp M1 (x,t) P"(F1M1)hv dx. (8)
| ° FyMy

The conditions necessary for maintaining the equality of the hyperfine

components throughout the cell can be found by integrating (7):

x
1.
= _ 3 i il + 1
Liv, x, t) L(v, O,t)exp[ JO Z pF1M1(X ’t)Pv(FiMi’ ZF1M1 1)hy dx}
. H
FME
x
= L(v, 0,t) exp[ —J k. (x' ,t)dx'] R (9)
0 v

where Li(v, 0,t) is constant over the frequencies. fO}' which the absorption
is appreciable. L(v,x,t)= L(v, 0,t) if the absorption is low, i.e., k0£ <<t
where ko is the peal;c absorption coefficient. But for some cases slightly
less stringent requirements are sufficient. For example, if the excited-
state hyperfine sepération and the Zeeman spliftings are much less than the
absorption width, the two resolved components are approximately equal to
each other at eacil point of the cell if_ko‘l/(ZIV1 +1) <}< 1. This réquirement is
satisfactory, since the difference in their absorption rates is only 1/(211 +1)
times the total absorption rate. Experimentally, an thrapolatiop to zero
absorption or a demonstration of the independence of the signals upon
absorption should be made.

With the assumption that the absofbable light at each point in the cell

is independent of frequency, the absorptioﬁ (and the signals) can be ex-

pressed as a simple function of
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}: Prom, P (EMy) = Cpi L - Z 2(F-1)Mpp o /(I +5p |,
FM 17 T Y _ 17" |
1771 14 g ‘ (10)

which can be expressed as a function of the electronic polarization as
follows. It can be shown that <FM|SZ| FM> = 2(F -1)M/(21+1). Then the
absorption is ¢

A, t) ®k | Lxt) (1 - P(x,t)) dx, | BENEEY

with the absorption coefficient k = Cphv and

P Z<Siz> =2 X Pr M <F1M1l Siz,‘ F1Mi> /P = } Pg . (12)
| 1My 1
. F,

FyM,
Pp opa1p " P 5% ) MyPL 21/2, M /(14+1/2)p. | (13)
1 17 3 - Il
© M ==L R

Here P is the longitudinal electronic polarization, and P+ and P are the

contributions to this polarization from the two hyperfine levels. Completely-
i \

analogous polarizations D, D,, D_are defined for the second species. Al-

though only P is needed to define the signal, P, and P_ usually appear in

coupled equations and must be solved for separately in drder to determine

P. Or, since

o <Iiz> = <Fiz> - <siz>; I,P,-(I,+1)P_, (14)
the equations for <Sz> and<iz> 'car; be found and solved instead. In
either case the 2(2I+ 1) equations for each species reduce to two equations

in the cases treated in this paper. Consequently, the rate equations for

P-.+ and P rather than for pF M will be determined. ‘Then the absorption
B 171
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. term of (1) gives

(Paps =F L ;I\/XIPFiMiP'(FiMi)/(H +1/2)p, (15)
1 *

when (2), (6), and (13) are used.

' B. Excited-State Disorientation

It is customary, in analyzing optical pumping signals in. which a
buffer gas at a pressure greater than 1 cm of Hg is used, to assume that
_complete mixing occurs in the excited state. In other words, the excited-
state polarization relaxes nonradiatively in a time short compared with the
radiative lifetime. Recently, excited-state disorientation cross sections
have been reported which are considerably smaller than those found earlier
, . . 10 87 ..

for sodium. Yellin and Marrus = report for Rb~ -Ne collisions a cross

17

section of 5X10° cmz, which implies an excited-state relaxation time
of T = 0.4 psecfor Jarrett's experiment (2.8 cm of Ne at 90°C). 7 The
corresponding mixing parameter

q=7/(T+ ;1-) ‘ | (16)
(where T = Z,85><10_8 s'ec.is the excited-state lifetime against spontanéous
emission) is less than 10%, implying that Jarrett's conditions produced
very little excited-state mixing. Sinée one of the primary objectives of
this work is to determine the importance of the nuclear spips in Jarrett's
experiment, it is of interest to investigate the necessity of the assumption
of complete mixing. It Will be shown that the signal for Jarrett's experi- :
ment (in the limit of low light intensity) is independent of the amount of

excited-state disorientation, regardless of the mechanism producing the

mixing.
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By definition, the probabilities P' must satisy

ey P’ (J1F1M FiMi) 1. (17)
1
The time rate of change of the density of excited atoms in the ]5"1M'1 sub-

state of the ZPJ, excited state is

1
Ty My =L z PH{F My, 5 FyMSy

1 T Tt AAfL
WFY M, 1,M+1;r 1/2° JFM/TJ,1

_ z , : , W (J‘l Fl MI 5 J‘HFHMH) + Z n T " W (J’IIFHMII Jl FI Ml )’
JiFiMi 1 1 et J1F1M1 _ 171
J'HFHMH J1F1MI
17171 1 (18)

where-we(J’iF'iMa, J'i’F'i'M‘i') is the probability per unit time that an excited

atom in state J',lF',lM'1 will make a transition to the excited state J'i'F',l'M'i'

(without returning to the ground staté by emission of a photon). Since the
excited-state populations reach equilibrium very r’apidly (£ 1), the equi-
librium value of 011 g M,i can be used in (1), Notice that .a.t equilibrium (18?
is of the form -

Rn = Lm, f | (19)
where R 1is a matrix independent of the various populations, n is a column

vector with components n F M' , and. m has components’

1
T1F
. 1
e = § il ! !
11 171 " 1
FM
171
Therefore n and nJ,iF,'lNI,1 are pfoﬁdrtiorial to L or higher-order terms in
L. The reemission term of (1), Whic'h becomes, when (13) is used,
' - . HIT! B! M
Poge=* ) “pen Z M, P E MG B M) 02l
J'iF'iM'

(24)
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is then proportional to L or higher-order terms in L. This term vanishes
in the transient -experiment of Section III for which L = 0; it will be found to
be independent of P+ and P_ for the Dehmelt-type steady-state experiment

of Section IV,

C. Ground-State Relaxation

The most common assumption for the groundr-state relaxation in
optical pumping experiments is that it is uniform. It has beép suggested
* that a‘ better assﬁmption is that the electron spin is randomized without
affectipg the nuclear spin. 1 Recently Bouchiatiz has carried out a detailed
arilal.ysis of r.elaxation on paraffin—coated cells. She assumes that the re-
laxation.arises from the interaction of randomly oriented disorientation
fields with the spin of the valence electron. This section contains a short ‘
derivation of the contributions to the rate equations from suchAan‘_ interaction
which parallels the elegant density matrix treatment by Bouchiat. A dis-
c.uLssion'iri terms of the assumptions of uniform relaxation and electron
randomization is also given.

The.general relaxation Hamiltonian satisfyiﬁg the above restrictions

can be written

st = ) oy (11381, QH(K, -q), | (@)
kq »

where H(k, q) is the gth‘ component of a randomly oriented field of rank k
‘[for example, a scalar contact field (k = 0) or a tensor dipole field (k = 2);
see reference 12] and is independent of the alkali atom spin coordinates.

S(1,q) is the gth component of the spin »of the valence electron of the alkali

atom.
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.Abra.ga.m13 shows that, ifJC'(t) = AF(t), where A is an operator
acting only-oﬁ the variables of the alkali, and F(t) is a random function
independent of the alkali, the transition probability from state a to b of

the alkali is

W = 1@IAIB)IZIC ), (23)
and w© ,
-1 T .
Jeog)=| - glre b 4r = 27 <F(t)F(t,)>/(1+wib'ri) (24)
provided that :
g(r) = (F)F(tt+r)) =(FOFENexp(-171/7 ) - (25)
. C

i. e., if the interaction can be characterized by a single correlation time T
It should be a good approximation to assume that the Hamiltonian (22) °
is the sum of several terms each of which safiSfies the restrictions of

Abragam's derivation. Then

, 5 ,
1 ty = 1
w(F,M,, F{M}) X (P, M IS(L IR MD I T oy o) (26)
q
Jq(wFiMi, F'iM’1) is proportional to < }: a » ~q)H(k, q)>

which is independent of g since the fields are:randomly oriented.

In a magnetic field of low intensity the hyperfine energy separation
AW is much larger than the Zeeman separation W g Furthermore since the
operator S(1, q) is a tensor of rank one, M1 can ch/ange by at most one unit
in each relaxation event, Therefore, J(AW) and J(w-F) are sufficient to

characterize the ground-state relaxation. Then
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2.
— : 1 1 -
WIE My, FyMY) = 5 1HE M IS QTF M) 6 o T8 p oy JAW)
. : 1’71 1771
q
- S (27)
F'1 1 Fy _ ‘
= A(F,, F}) 5F1’ Fy J)-J(AW)| +T(AW) /4.
1
My My-M,; M, (28)
Equation (28) substituted: into the third> and fourth terms of (1) yields
. _ _ | | >
Z My PR,M,| 77 [J_(w"F) - J(AW)} Z MipF1M1/(211+1) '
M R , M
1 1
1
Z M, pp M, z A(F,, F)T(F F,l,Mi)pF,iM,i/él J(AW).
M,1 F' M‘
(29)
The quantities o 5
i
Fy 1 Fi
i —_— - 1 i
I‘(Fi,F ) Z M1 —Mir‘(Fi,Fi) (30)
Vo LAY
My My My-My -My
are given in Table III, which was found by using Table 2 of Edmonds., 9
Now define two time constants
/T, = D) - AW/ @1+ 1%, . (31)
1/Ty = J(AW). .. (32)

Equations (13), (29), and Table VII give, for the contributions to the rate
equations from ground-state relaxation,

2

('iC>+)R,: -P /T 21 +1,+1)P / 21,+1) Til-(ZI1+2)(211+3)P_/2(Z-Ii+1)2T',

1
(33)
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(P g = -P_/T,-1L, (2L, -0)P,/ (21, +1)°T} - (21;+31,+2)P_/@L+1)°T}.  (34)

To gain some insight into the time constants (31) and (32) consider the

two.limiting cases.

(2) Zeeman relaxation. Let J(AW) <<J(c,.).'F), i. e., T1 << T'i; in this case

the correlation time is much longer than the hyperfine period THEF Re-
laxation then.occurs within thg Zeeman éublevels of each hyperfine level,
but transitions between hyperfine levels are raré. The longitudinal elec-
tronic polarization of each hyperfine level relaxes as a single eXpbnehtial of
time constant T,. It is interesting to note that the same is true if one
assumes that the relaxation is (i) c.omple\telyv uniform:

w(F,M,, F}M}) = 1/2(2114 1)T,, i.e., an atom in a given FM substate has -

- an equal probability for making a transition to any of the substates; or

.. . . - . . ’ ' C= !
(ii) unlfo‘rm within each hyperfine level: w(F1M1, FiMi) 6F1’ F'i/(ZF1+'1)T1'
Because of its formal identity with the assumption of uniform relaxation for

the rate equations of interest here, the limit J(AW) <<J(w .

F) or T',lzc° will

be taken to represent the relaxation when the results here are compared with

other results in which uniform relaxation is assumed. T,1 is then the

characteristic time for Zeeman relaxation in which the electron spin is

- randomized within each hyperfine level but no transitions are made between

hyperfine levels.

{b) Relaxation by electron randomization. . Let J'(wF) = J(AW), T'1‘<< Ti’

T <<Z<T
C

HE in this case both Zeeman and hyperfine transitions occur. The

electron spin is completely randomized without affecting the nuclear spin.
Such a model has been used by workers at Princeton. 1 The term electron
randomization will be used to identify this limit, and T is the electron

1

randomization relaxation time.
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Then in general if the relaxation occurs thrbdgh random interactions
of the alkali electron spin with randomly oriented disof-i-entation fields not
involving the: a-lka»li-s‘fpin»s,- the relaxation of the electronic polarization of
each hyperfine-level jc»an--bez represented as the sum of two contributions:
that from Z»eeman relaxation [J(AW) << J(w"F), T >> T T1 << T'1] and
that from electron randomization [J(AW)= J(wf), T STy Ty <<T, 1.

Equations (33) and (34) correspond to Eqs. (53) »an_d (54) of Bouc:hi»at12
Af (42) and (14) are r’e”called and her time constants Tev and Tn are related to.

T_,1 and T[l by _
1/Te :'1/T1 +1/71', (35)

1/Tn =1/T, + 2'/(211 + 1)2T'1. (36)
A Hamiltonian of the form of (22) was taken by Bouchiat to describe

" relaxation in wall-coated cells. It appears to this author thé.t_(ZZ,) should
hold for relaxation in uncoated cells whether the relaxation is by collisions
with tﬁe wall or with buffer gas atoms. For exafnple, Bernheim" s model
for buffer gas relaxation is of this type. 14 - Equations (33) and (34) will
then be taken to "r'e-pr-«e sent the non-spin-exchange ground-state relaxation
whether it occurs by collisions with the walls, with buffer gas atoms, or
with impurity atoms. For buffer gas collisions the correlation time is no
longer than the collision tirne,. = 10_12 sec, which is much shorter thaﬁ the

hyperfine period. One would then expect disorientation by buffer gas col-

lisions to satisfy the conditions for electron randomization.
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D.  Spin Exchange Between Nonidentical Atoms’

The results - of - Dalgarno's quantum-mechanical treatm'enf of the
spin-exchange process-are used to describe the spin-excha’nge_'collisio_ns
between the fwo-species. 15 Atoms 1 and 2 are assumed to be nonidentical
and in doublet spin states. The stationary state of the molecﬁle formed by
atoms 1 and 2 is then either a singlet or triplet state. With each 6f the
possible states there is associated a potential which describes the interaction
of the two atoms. In the usﬁal manner, the solution of the s‘catte‘ring prob-
lem leads to the scattering amplitudes, fs.and ft, where the subscripts refer
to singlet and triplet. Spin-orbit interactions are neg'lected‘ in\the collision,

For spin-exchange collisions for which the initial states of atoms 1 and 2

are A and B and the final states A' and B', the cross section is

Q=Q,(A B, , bpp +Q,(AB A B, (37)
where _
£ _+’3ftlz y | | |
Q, (A, B) = - + 2 Re [(‘fs+3ft)(ft-fs)] <AB\ §1-§2‘ AB>‘ ae, (38)
. _ . 2 , ' 2 . .
Q,(AB,A'B') = jlft—fsl dQ|<A B\§1- s, ‘AB>| , (39)

and é and § are the electronic angular momenta of atoms 1 and 2. In the
experiments discussed inbthis paper, contribu‘;ions from: the direct cross
section, Qi’ cancel out.because only net changes in state populations are
detected. From (39) it is seen that the spin-exchange éxperime-nts con-

sidered here yield information about the interatomic potentials only through

2
the quantity j Ift - f‘SI ds.
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The. matrix-element of »S,l"--SZ between-FM states is found as follows.

. By.Edmonds 9 (5: 2. 4),

. 1Rt 1 . € ) s = r
(FpvyFymy [, 22 .F1M1F2Mz>' | -

qu <F'1M'1 |S1(1’ a) }F1M1> <F'2M12 |5, (1, -2) "F2M2> - (40)
q o . |

Then by the Wigner-Eckart theorem, Edmonds (5. 4. 1),

Ve ' 1 . : :
<F1M1F2Mz l 2152 |F1M1F2Mz>

F' 1 F\/F, 1 F
o 1 1\/ 2 2
Z (0@ FEYHFS - (MY +M3) ' "

. . ' 1 M . :
4 -M)y a My/\-M; -9 M,

(FY IS, (VI F ) (F IS, 1 7).

(41)

Application of (7. 1.7) and (5. 4. 4) of Edmonds leads to

- : BN
;2 : -
: 1 t et 1 . = ViRl 1 . =
QZ(FiMiFZMZ’ Fil_\/I-1117‘2‘M2)/flft fS] dQ l <F1M1F2M2 | S1 S2 ‘F1M1F2M2>l

2/ g

: 4
¥ 1_F1 '

1
R 9 i t - 1
a4 (2;1+1)(2F1+1)(2F2+1)(2F2+1) >

4
T\ a v/ \M=q n

LFi Y2 1| |F, 4271

(42)
The following selection rules are immediately apparent:
M, + M, =M} + M), [AM,[<1, [AM,| <1. Using (5),‘ one has
: ! t 1 ty = ' -
QZ(FiMiFZMZ’ FiMiFZMZ) _ (43) 5
: . 1 2 T 2
N1 1%ae . Z-Fi AEN e R
' 1 1
T_'A(Fi’Fi)A(FZ"FZ) - .
1 !
.‘M1 q Mi —MZ -¢ M
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Then thé exchange term in '(1) becomes, with (13), ‘
' F' 1 FN\2/F. 1 F_\2

1 . 1
(°P ) - _T_ 1 Z A(Fi’ Fi)A(FZ, FZ) z M 1 1 2 2
EE e L /2 M\t q v /\an -q M
1771 14 g 4 M /My "M,
FZMZ
! 1
FiM),
(p; d -p vd o ) (44)
FiM'l FZM F'Mi FZMZ .
where
1 d ff 2 3 d
— = = [JIf-f | dQv f(v ) d v, = 4/ . - (45)
Ty, Z777t7Ts'E EVE'C VE T T,p

Here TEi is the time which characterizes the influence of the second species
upon the first species through the spin-exchange interaction. Similarly,

TEZ indicates the effect upon the second species arising from spin-exchange

collisions with atoms of the first species. The normalization is in agreement
with accepted convention. Equations (44) are not yet in a useful form be -
cause they-depend upon the populations and not just upon the polarizations.
The further assumptions made for the particular experiments in Sections
III and IV will correct this situation.

A short digression will sho‘\.)v that the cross sections derived here
agree with the results of Glassgold. 1 From (43), one has, for the case in

which the second species is unpolarized,

1
1 1

1 1 | - 1
% A QZ(FiMiFZMZ’ F MiF M' )= Z(ZI +1) ——6—- dQA(Fi, Fi) |
M, M-M, M

1 1
FoM,
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= 2(2'12+1)'fo (fm, £' m' ;0) AR o (47)

lin the notation of Glaésgold with f = F1 and m = Mi' The A(Fi’ F'i) defined

by (5) and given in Table II are identical to the A(f, f') of Glg)ssgold, which

are listed in his Table I. Therefore, by Edmonds (3.7.3),

1 | f17%0 2
O(fm, f'm';0) = 51— AL, " Y(fmf' ~m' ‘ 1m-m')", - (48)

where £, = ft. and fO = fs.. Equation (48) agrees with Eq. (4.6) of Glassgold's

paper.

If one defines

» b | 2
. 2 id >

1 [ nt! 1y = 1 R Y] 1

JQZ(FiM,lFZMZ, FiMiFZMZ)- WSO,<F1M1FZM2 ’Pi-!-e PO\ FiMiFZMZ

Average
over ¢

(49)
then (44) are still valid if 1/TE1d is replaced by wSS\'//Z. This substitution
places the rate equation in the form used, for example, by Anderson and.
Ramsey. 8 This approach is similar to the semiclassical description used
by Wittke and Dicke -® and by Purcell and Field. 17 p , @nd P are the |
. projection operators for a total electronic angular momentum of 1 or 0. |
The relative phase shift, ¢, between the singlet and triplet parts of the wave
function, arises from the difference between the singlet and triplet potentials,
which describe the molecule formed by an alkali atom of each kind., For a
""'strong'' collision, ¢ is assumed to be lafge and random (<cos¢>= 0);
collisions not classified as strong are negle‘cted. The maximum impact
parameter fér which a strong c_ollision 'ogcurs, SO, is usually taken as the
one for which the.particle will have -zgro velocity at the top of the centrifugal
barrier for the éinglet potential. Glassgold and Lebedeff have discussed.the

validity of this approximation.
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E. Self-Spin Exchange

C—Iassg-old1 has shown that the cross section for id—e_ntical atoms,
corresponding to (37), is ‘
Q(AA', A"A™) = f]<A“A"'1a']AA‘> |2 as/ 2. (50)
where the first atom in the collision has eleAct.ronic spin 0';,1/2 ar’ld undergoes
a transition from state A (representing F'lMi) to A" in an exchange collision.

with the second atom of spin .Oi'/Z which makes a transition from A' to A"":

T -F0+F O oy a0 (rag, g4,
(51)
F, = (f, +3ft)/4, (52)
F_=(f-£)/4, | : ' (53)
=Lty =0 =5 | ' (54)
§,:§1+§'1:9/2" s,=8} = 1/2. | (55)

Here Q is the operator which interchanges both the electronic and nuclear

_spins; Q = QnQe, where

_ S+
Q_|msm > = () IIMISMS > , (56)
o \It2i
Q| IMISMS> = (7 IMISMS> . (57)
For a general operator O,
{anar lolaar) = <A"'A"|.o\AA'> : (58)

the first quantum numbers of each bra or ket always refer to the first
atom. -
" The: factor of 2.in (50)is necessary in order to avoid counting final

states twice, The cross section is then
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QAA', AMAM = le(6)| 6A, A"6A' AN + IFd(w— G)l '6A, A'”GA' AN
2i+1 %
+(-) 1o Re {Fd(G)Fd('n— 8) 6A,A' ,ALAN

Fi (O)F (n-6) <AA'l.gi- g” AA'>6A’ ABAT A

+ F) (n-0)F_ © (aralg;-g milAA>5 AOAT AY - (59)
+ FX (6)F_ (7-6) <A“A”"' o \AA> <A'”A" . | AA>}

+ 2 Re F (G)F 9)<AAl 1 m'l‘AA >6A,A”6A',A'”

+2ReFd (- 0)F Tr9)<AA‘m1 m'ilAA>5A AnBAT Al

v | F_o]* |<A"A'” | o, 0y I AA'>|

\ ka('v-9)|2t<A"'A”. giog'i‘AA'> |2stz'/2.,

Fortunately, none of the terms involving deltas contributes to the rate
equations, as can be seen by substituting (59) into (1). The \FX(G-)I 2
term in (59) is the cross section one would expgét between two nonidentical
é-toms_. The IFX(ﬂ’—e)‘Z term arises because no distinction can be méde
betwleen.the incident and target atoms. The ZReFi(G)FX(-rr—vG) term arises
from the quantum-mechanical identity of the two colliding atoms. An
estimate of the interference term using the model of Purcell and Field is..

given in Appendix I and indicates that is is small compared with

&



o

-23- UCRL-11814

the other two terms, at least for Rb87; it will be neglected entirely in the

subsequent calculations. Equation (59) in (1) produces, with the aid of (13)

2 2
and the fact that fIFX(G)I dQ = lex(w—_G)l

+1 A(Fi’ F” Fln)
(P ) M,
s1°” 4_‘ (I, +1/2)p
. 1 1
FyMy
FyMYy
1" "
FyMy

F 1F13 Fj' 1 F)

| Pr, M, Py My PRMGPEYM
My M/ My g emy, TR

(60)

Here T.,, defined by

s1’
— _££| dQ vg f( )d3v - (61)

Vs1 S1’
is the self-spin exchange time for the first species; for the secondbspecies,

aff 2 3
Tff lfft‘-fslsz v, f(vg,)d v, - (62

F. Simplified Rate Equations

Combining the results of this section, one has

e
1
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- M P! . .
= ¥ LZ 1PEAM ™ (F4My) X Iy MY
F,=I;+4/2 . ‘

1 171

T ! 1
z M, PU(I FiM), F M)

M, (1,+1/2)p TJ’i

P . _
STz _ 2 2.4
- - - - +
T, 5F1’ 11“/2 [(ZIi+Ii+1)P+ A(11+1)<211+3)P_]/(211 1)"T}
-5 [1,(21,-1)P +(212+31 +2)P 1/(21 +1)2Tr.
Fi,Ii—i/Z 1471 + 177 T 1 1
' - A( F')A(F,, F!) o4 FN\Y/FL 4 F\?
1 z‘ 1771 2’72 z 1 1 2 2
4T d ‘ 1 ,
E1 M (11+1/2)p M,q My a M,/ \-M, -qg M,
F,M,
H
F,M}
M,(p de y; -p Ay i)
15F,M,"F,M, “F} M} "F, M}
' 2
2 1
. }: A(F, FDA(FY, B Z Fy 1 Fy Fy 1 Fi\
2TgP (1,+1/2) -M!" g M \-M"" -q M'/,
: F) MY 1 P M,q a My M B!
11 ‘H .
FyMy
ni 1t
FyMy
M (63)

(p Pt ast "PrnpnguPgm ni)e
1 F:LI\/I,]-_Fj‘I\/I1 F1M1 Fi :[\/1.,1
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Clearly additional assumptions are necessary before these equations in-
volve only P, and D:!: and none of the individual populations.

III. - TRANSIENT EXPERIMENT
5

In this section the rate equations are solved for the case of a Franzen

transient experiment -applied to the measurement of the spin-exchange cross

<

section in a resonance cell containing the vapors of two alkalis. The. first
species is optically purﬁped and the envelope of the decay in the dark of its
electronic polarization is traced out, yielding the relaxation times T,1 and
T!. In the presence of the second species; which is continuously dis-

1

oriented by an rf field, the relaxation time is shortened to

i (64)

1/T = 1/T, + 1/T} +1/T
néglecting, the nuclear spins. A méasurement of the densi’cy of the second _
species then permits a deterrninafion of the spinmexéhange cfoss sectiomn.
This transient experiment has the advantage that the density and relaxation
times of only one of the two species must be measured, whereas in the
steady-state- experiments they must be de--terrnined for both species.

The transient signal is conveniently defined as

A(w)-Alt) -
A(=)-A(0) ° (65)

S(I.'i)t)‘ =
where the absorption at time t is given by (11). .Equation (11) becomes,
on the assumption that P is independent of x and that L is approximately

i‘nde.pevnde.nt of x and t,

A(L,t) = kL[1-P(t)] L. - o - | (66)
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In that case,
S(Ly,8)= P)/P(0) = (S,,(1)) /<S1z<°)> - ‘ (67)

If the resonance cell contains no buffer gas, P should be independent of x
because of fh;a rapid ﬁotion of the atoms; L is approximately independent N
of x and t 1f the absorption is kept small. At any rate, (67) is valid only -
if experimenta.l ~‘care is taken to satisfy (6;6); otherwise the signal becomes
a much fhore cvomplicat'ed function of the polariza;tion as indicated by (11)
and (65). |

The confinuous application of the rf field at the resonance frequency -
of the second species,

-~ 2.8H,/(2I, +1) Mc/sec, ‘ (v68)
where Hj is the static magnetic field strength in gauss, results in equal
populations among the substates of each hyperfine state:

rar, @
and

d = dp [REL+1) (70)

FLMb Y2

in (63) throughout the experiment. (It may 'take a time "T,'" in paramag-

netic resonance nomenclature for the spins to dephase after tile application

of the rf field; but since the field is applied continuously and is sufficiently

strong to overpower the pumping effect of the light, the .-coherence will not

reappear. ) | o ' .
It is necessary to exclude the self-excharge térm in (63) from the

following solution because of its nonlinear character. Experimentally this “
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is a good.approximation whenever T_, is rmuch longer than the shortest

St
time constants-affecting the relaxation; for -example, for two alkalis, cross-
exchange -dominates over self-exchange when d >>p. The importance of
self-exchange is also reduced because there is no change in the absorption

if the two atoms undergoing a collision have both initial and final states in

the same hyperfine state:
! = - t 14 nt -
AA o< A 1}\:4 Mp oy = M, (-1) + My (1) + MY(H) + MJ"(+1) = 0, (71)
since M,1 + Mﬂ1 = M'i" + M1'“ always., >

With (69), (70), T ‘w0, and L = 0 the 1/TEi term in (63) becomes

s1°
identical in form to the T'i term in (29) or (33) and, (34). Then

. \ . 2 2
P, = —P+/T1—(1/TE1+1/T1)[(211+I1+1)P++(Ii+1)(211+3)P_]/(211+1) , (72)

15“ = nPn/Ti—=(1/TE1+1/T’1)[11(211-1)P++(21i+311+2)PM]'/(211+1)2'. (73)

Alternatively, with the aid of (12) and (14),

(8,,)= -0/ +/r+1/T ) (5, ) + 2(1/Tf1+i /75 (1) /(_211“)2,

(74)

° _ ’ Z
(1,,)* -[4/ T H (/T + 1/ Ty 2/ R+ (1, ) (75)
The solution of the above equations yields, for the signél for a Franzen-type

spin exchange experiment,

S(Ii,t) = (1~é)exp(~t/1‘“1)+‘a exp(-t/TZ)s (76)
where | |

/7, = _1/T1 +14/Ty +1/T (77)

E1’
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/T, = 4T, +2(4/T} + 1/TE1)/(211+1)Z, o (18)

a = z<11z(_0)> /(41i.+ 41,-1) (S, _(0)) ' | (79) “
' 2
= 4[1,P,(0) - (I1+1)P_(O)]/(4I1 + 41, -1)P(0), (80) .

where I, is the nuclear spin of the first species, TEi is defined by (45), |

T, is the time for Zeeman relaxation, and ‘Tli is the time for relaxation by

.electron randomization. <Siz>. and <Iiz> are defined by (12) and (14).
Note that for I, = O or I, = 1/2, P =0, implying <I'lz> = 211<Siz>_ . For
T

= = these results agree with Bouchiat; 12 for T, = T.'1»= o, with

18

E1

Grossetéte.
For a single species, the relaxation of the electronic polarization is
a single exponential if the reblaxation is by Zeeman transitions only and is
the sum of two expo‘nentials [with.characteristic times in the ratio
('ZI,1 + 1)2/2] if it is by electron randomiéa’cion only, The experimental

9

results of Bouchiat and Brossel'1 for Rb87 in paraffin-coated cells indicate
that, at least in some cases, the relaxation is a singlve exponential; i, e.,
Zéeman relaxation is dominant. On the other hand, one would exﬁ;ect
buffer gas collisions to produce relaxation by electron randomization, since
the correlation time is short compared with the hyperfine period if the
collision is-elastic.

In summary, the signal for the Franzen-type transient experiment,
neglecting self-spin exchange, is given by (76). In general, fhé signal is

the sum of two exponentials. For Zeeman relaxation the ratio of the time

: 2
constants ranges from 1 to (A?.I1 + 1)7/2, depending upon the relative sizes
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of T1 and TEi’ For the-electron randomization case, the ratio is always
(2T, + 1)2/2: In -either case, the nuclear spin effects must be included in the

analysis if correct spin-exchange cross sections are to be deduced.

Iv. STEADY—ST-ATE-EX'P-ERIMEN'TS IN
THE LIMIT OF LOW LIGHT INTENSITY

A. Rate Equations

In this section some experiments will be analyzed in the limit of low

light intensity, for which

p = p/2(21,+1) + = , - (81)
F,M, . 1 M,

dp = d/2(21,+1) + & , | (82)
M, 2 F,My

where the devia:cions WF1M1 and 6F2M2 of the populations from the de -

polarized values are small and proportional to L in first order. Sub-
stitution of (81) and (82) into (63), dropping terms proportional to L2 (e. g.,

nFiMiL, TrFiMiéFZMZ, etc, ) immediately, leads to the following rate

equations in the limit of low light intensity (see Appendix II for the details):~,

b z‘(‘?_:[,1+2)(.211+3) 5 C+D++D_ 1 ,(1 1 211+11+1+211(211_1) o
+ Z. + Tey | |Ty \Ty Tg

2 2 +
6(211+1) E1 1 "E (2I1+1) 3(2I1+.1) TSi

(83)

(21,+2)(21,+3) < '
> |

2(21,+1)
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21,(21,-1) [ D,+D \  I,(2I,-1)
e S Loyt =) Lt (L1 L 42 \p
. = - ) . I '
6(21,+1) T Ty @0 \ Ty Th, 3Tg,
( ARCE .
] %_+ % P 22 (2_11+2)(2211+3) o o
1 \ Ty Tgi] ar,+1)° 3(21,+1)° T, -

1
The corresponding e(iluav..t'ions for the secona specie-s are found by setting
L, = L_; = 0, interchanging P, and D, and replaéing the subscript 1 by 2
in (83) a.nd (54). L, and L_, defined by (A-16), are independent of the
polarizations and are lineavrly proportional to the light intensity L;
Lv_y~ = L_ = L for complete mixin\g.., Recall that the hyperfine compbvnen’cs
in the incident light afe equ-ai; 1 €., L+ and L do not refer to unequal
pumping components, |

Transforming to the <Siz> and_<IiZ> representation by using (12)
and (14), one finds ‘ |

<s > [(1,+1)(21,+3)L c/z+1 (21, -1)L_ c/z+(41 +41,+3) <s >/TE1]/3(ZI +1)°

41,(21,42) - -
1,11 121y 1,1, 1
'[f1+_— P J<Siz> te <’T‘T+ T, T ><I DYACHA

[]
1 “E1 .3(2;1+1) Tgy

(85)

<?_4_z>: I,(l +2)[(211+3)Ig+-c/"z_ -(2I;-1)L_C/2 + 4 <§2‘Z>/TE1 ]/3‘(211“)2

1
411(211+2)<Siz> 1 1 1 -1 2 :
¥ 2 SRR C R U o RAC A M K
3(21,+1)°Tg 1 1 E1 S1 .

oo | (86)
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The coi‘responding equations for the second species are again found by
setting L+ = L_ = 0 and interchanging the subscripts 1 and 2 in (85) and (86).
Thus in the limit of low light intensity the rate equations reduce to four

linear equations.

B. Dehmelt Experiment

The expefifnent analyzed in this section was fifst used by Dehmelt to
estimate the _s'_odium-electron' spin exchange cross section. 6 A resonaﬁce
cell contains two atomic species or one atomic species and quasi—'frée '
electrons. The first fspec'}es is optically pumped, and the traﬁsmit‘ted
resonance radiation 1s monitored. The signal can be deﬂned as

' S(1;01,) =[A(0, Hy) - A(0, 0)]/[A(H], 0) - A0, 0)], (87)
where A( ‘1., H'Z) is the absorptiqn in the presence of two rf fields (H'1 dis -
orients species 1, etc.). The absorption is given by (11), provided that the

“incident light is constant over the frequencies for which the absorption is
appreciable, It will be assumed that L(x,t).or L(x, H[l, H"Z) is the same at
each point in the cell for‘ arbitrary values of the rf fields; i.e.,
L (x, '1, H'Z) = L(x, 0, 0) = LL(x). This should be a good approximation in the
limit of low light intensity, for which the polarization.is always small, and
consequently the absorption changes very little with polarization cha‘nges.
P(x, H), H)) = £(x)P(H}, H})," where P(H}, H*Z) is iindepvendent“of % and f(x)
is approximately independent of H'1 and H'2 since the polarization is small
[see (90) below]. ‘Then

S(1,,1,) = 1 - P(0,H,)/P(0,0), | (88)
since P(HY, 0) = 0. For I, =0, (88) is valid for é.ny absorption if t_hé

polarization is low.
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El

Applying H‘Z is equivalent to reducing the relaxation time of the second

species to zero; therefore, . P(0, H' ) = ( = 0) and

S(1,,1,) = 1 - P(T,=0)/P(T,) = 1- <s1 (T, (n>/<s (T )> (89)

1’
By solving the four ‘simuitan-e‘ous equations (85) and (86) and the corresponding

equations for the second species, one finds, at equilibrium (<51z§= 0, etc.),

1 1,2t 1.4 .1 2lg#t
CuT. R T N - A (e — +_ :
,__(11+1)(211+3)( +T +T + ST )L+C I (ZI 1)(T T T 5T )L,-C

n _ Ty Tey Tgy 1 1 S1 1
<Siz> T _ - By _
6(21,+1)[B(1)-a(1)a(2)/B(2)]

(90)
where ) : g : : 5 IR o
a(l) = o [ e +§%fi—+—3> B L
e\ T1 Tgp1 Ts1 1 '
| : Ly 4T?441, 43 | (21, +1)°
6(1) < ey (1 + 1 1"\+ 11 1,1 42 j+ 1
Y Ted\Ty Tp Tyl 2Ty \Tp -Tgyp 3Tgy 2T§
" (92)
Then N ) L
S(1;:1,) ®a(1)a(2)/p(1)p(2) (93)

is the signal .‘for the Dehrnel’c-t;lrpe6 steady state experlment in the limit of
low 1ight‘ir}t_ensity. ii 1s the nuclear sp1n, T1 the Zeeman relaxat1on t1.rne,
T'i' the electron randomization relaxation ‘tlme, .and T81 and TE1 the:self-:
’a'n_d'~crOS"s:e‘xcha.,ng"eit_imes of't_he‘.pu.m.p'ed‘ispecies_;‘ I 29 TZ’ ".T'Z, : T;S"Z.,.'ufa}nd Tﬁz
are the correspondmg quantltles for the other species.

The signal is independent of L, and L, i.e., of any assumptmns

about excited-state disorientation. But (90) indicates that the electron



)

" Egs. (1) become, withn
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polarization depends ulﬁon the excited-state disorientation. However, the
signal is defined as the ratio of two signals, and the disorientation effects
cancel out. S = 0 for T, = 0 or'-T'2 = .0-because the second species is not

affected by the rf field, since it is never oriented. Similarly, S = 0 for

-

1= 0 o-r--'I"1 = 0-because-the first species is not puinped. For TE'l = o,

S = 0, since disorienting-the second species has no effect upon the first

T

species in the absence of spin exchange. Equation (93) is not valid for both

- RaTe 1 =
T, = © and T} = w.
CIf Ti =T, ==, i.e., the relaxation is by electron randomization only,
' -1 Not
sopnp| s r, (d ) (R ) e
T1=T2:f’° E1E2 1 E1 2 E2
Also
s(0,0) = 2 1+1+1>‘11+1+1 -1 (95)
b = G o _r. e o _r v ?
TeiTe2a\T1 T1 Tee) \T2 T2 Tm |

- which is identical to (94) in the limit T1 = Té = o, Therefore, nuclear spin”

effects are unimportant if the ground-state relaxatioﬁ is pre.dominahtly by
electron randomization.

In order to compare the results above with earlier analyses by other
authors, it i's.useful to compare the rate equations for the case 11 = I2 = ’0;
F'1M'1 = n/2(211+1) for complete mixing{ Cc=1/2,

= = L = = .
Tgy = Tg, =Ty =T, ==, m_ £ 1/2:
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| i’1/2:'Lp.1/2/2'\-(15"1/2‘p/2)/T1’(p1/2d-1/z'p.1/2"11/?.)/T}31d’ |
P1/a= "LP_1/2/2=(0_y 5B/ 2/ T =to_y 158y /5Py 58 1 /0) Ty

ai/zz ‘(di/z'd/z)/Tz‘(di/zp_1/z‘d-1/zp1/z)/TE1d’ |

(96)
/20y 2-8/2/ Ty=@ 1 12P1 /2784 /2P 1/2) Tad:
Ué'}ng pii/f'[pi,(pi/;-p_1/2)]/2, one has
byypnhyypTLe/2- (15_+%Z *ii’(P1/z‘P-1/z’+‘d1/z‘d_1/z’/TEz’
(97)

y . !
447279 4727 "(T;+T_‘EZ)(d1/z“dm1/z)+(p1/z'p_i/z)/TEi' |

By comparing (97) with the rate equations used by Dehmelt® to
describe his sodium—electron.experiment, one finds that the following
identifications must be made: p = N, d = n, 1/TE1 = nvQ, T, = 'T(IO = 0),
T, = Te.b Then with Qnv << 1/T or 'l/Te,, (95) becomes, with T'1 = T:Z = oo,

S~(0,0) = nNT 2Q° | (98).

pl0s ) =n STV R -
Of course, .Ii was actually 3/2., for which (93) becomes, with T'1 = T'Z =
Tsy = Tgp = = | | . -
S5,(3/2,0) = 3nNT_7v°Q%/8 = 35 (0, 0)/8. | (99)
Therefore, if the experiment is performed in the limit of low light intensity,

the cross section deduced from a given signal is (8/3»,)1/2 = 1.63 times

larger if nuclear spin is included in the analysis, if the ground-state
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relaxation of the alkali is by Zeeman transitions only, and if self-exchange
is negligible. But if the ground-state relaxation is by electron randomization,

(98) is valid (with Te = T"Z and 7 = T'i) for arbitrary I,.

C. Jarrett Experiment

Comparison of (96) with Eqs. (12) and (13) of the paper by Jarrett'7
indicates _1/TE1d =v Q. 1/T1 = 1/'_1‘"2_= 2R, p = N, and d = aN; therefore,

with T!

= ' o=
1 T2 o, (95) beches

_ ol %A 2 -1 1
§;(0,0) =aN"v 'Q * (2R + Nv_Q_ ) " (2R + aNv. Q) (100)

which is Jarrett's SX/S, as can be verified by solving for the latter from (18)
of Jarrett's paper. But from (94) it is seen' that if the relaxation is by
electron randomization only, (100) is valid for general nuclear épin and
includes self-exchange (with T, = T, = = and 1/T',1 = >1/T"2-= 2R). However,

if Zeeman relaxation is dominant, (93) implies a large correction to the

deduced cross section for the actual nuclear spins (I1 = 3/2, I2 = 5/2). These
-effects may be demonstrated by assuming Jarrett's experimental values of
the.param‘eters and signal and then deducing the spin-exchange cross section.
This author—"é;tim-at-es, kO£/4 =~ 1/3 for Jarrett's e-xperimént; the fact that
koﬂ/4 is not much less than 1 [which is the condition that (11) hold in his

experiment] is ignored in the following discussion.

85

For spin exchange between Rb~~ and Rb87 one has

1/,T51 & ;,p/TEid ~ and 1/TSZ x ?.‘./TEi, (101)

" because “ft"fé ! 249 is only weakly dependent upon nuclear properties.

With Ty, = Tp,d/p, T, = T,, T}, =T}

- v ‘ 11- -
deduced with R = 413 sec 1, N =3.33x140 "~ cm

, in (93), the cross sections Q are.

3, a=d/p=2.59,
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V.= 4.59)(104 cm/sec, and S;{/S = SJ = 0.107. It is assumed that T‘1 = 0.
and - 1/Ti1 .= 2R; Jarrett' s measurement of R was made at a density con-
siderably lower than that for the measurement of the spin-exchange signal,
and the self-vexchang’e contributions to R were presum%ibly elimiﬁated.

= 1.7 ><'10“14 crn2 is the cross section deduced by Jarrett, neglecting the

.QJ
nuclear spins. - A comparison of the deduced cross sections for different
assumptions is given in Table IV, The nuclear spins are important in the
analysis of Jarrett's experiiment unless the ground-state relaxation is by
electron randomization only.

'This author has not determinedl which relaxation mechanism pre-
dominated in Jarrett's experirﬁent. However, the following discussion is

pertinent. The relaxation time of the electronic polarization in a cylindrical

cell containing a buffer gas can be approximated by5

i -+ 1+ : | ' (102)
T Twall  Tbuffer :

-1
- - P ?—-405\2+ L)‘Z' , (103)
wall DopO A a / \L v
'Tbuffer - pO/NOGVp g (104)

where p 1is the pressure of the buffer gas, D, is the diffusion coefficient at

atmospheric pressure Py 2 and L are the radius and length of the cell, N0

is the density of inert gas atoms at Pg and at the temperature of the vapor
cell, ¢ is the disorientation cross section, and v is the mean relative

velocity between inert gas atom and alkali., For Rb in Ne, D, = 0.31 cmz/sec,

0
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3 9

o = 5.2 X'IO-Z cmz, and NO = .2.29'><'101 crn-3 at 47°C. > For Jarrett's
case p = 2.8 cm of Ne, a =5cm, L =143 cm, T = 90°C, implying

T = 23 msec and T,

~ 0.38 sec. Wall collisions should dominate
wall buffer 7 .

for Jarrett's experiment, giving 7= 23 mséc, but Jarrett found = 1 msé'c.
»In'deriving T;wall it was assumed ‘t‘hat every wall collision px:odﬁces cor;lplete
disvorientatiox.l, implying that TQall .Z 23 rﬂsec. If, .however, the cell
contained some impurity in the vapor phase, the feléxafion might be greatly
accelerated and be dominated by électron randomization; The cross section
deduced by Jarrett would then be unchanged by the addition of the nuclear
spins into the anélysis and would be in agreement with th? paramégnetic

20
resonance measurement by Moos and Sands.

" D. Off-Diagonal Density Matrix Elements

In the derivation of the general expression (93), the off-diagonal
- elements of the density matrix were neglected. Balling, ‘Hanson, and
Pipkim4 have carried out an analysis for zero nuclear spin for a general

density matrix. It is of interest to compare their result with the present

1
=T'2= © and L+»= L :

work., The polarization for 1, = I2 = 0 can be found from (97) or (90) with

= = !
Tg1 = Tg, = T}

- 3

|

P=P,= LC/ | o+ .Ti;. S .<§r_ +‘T1_ j
DU ; TE 2 "E2/

: (105)
1. TEA E17E2 ‘

A

Equation (76) of Balling et al. is to be compared with the above, with P,

T Ty, and T, substituted for <P(R)> » Tire Tere Teer 274 Ty

1 Ty

respectively:
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: , ) o2 _ Coooa=117.
1 1 1 11 ) ' \
P < 1| = + — -—(—4—-—— + : ,
- y)
BHP Ty Ter Te1Te2a\T2 TE2 1442 (0. -60.-w) |
2 Y07 %0
(106)
ot HoHy o -
where Wy = -g; =% — wy = -gJT ) 6(.)0 is the ‘spn.l—‘exchax}‘g(‘a
"~ frequency shift, andl
1/7‘2 = 1/T2e + 1/TEZ . ._ (107)

Here TZe is essentially the time required for coherence effects to damp
out, i.e., the usual "TZ" in magnetic resonance nor'n.gnclgture; _TZe should
“not be confused with TZ of this work, which is a .”T1" time for Fhe second
species. For_H'2 = 0 there are no_coherénce effevcts, and (105) and (106)

agree. For

o [l d,) A (e ) ) o
, o : : S . (108)
(106) agrees with (105) in the limit T2—> 0, implyiﬁg that the second species
~is completely disoriented. On the assumpfion that all the time con.st'ants
are equal to 1 msec, (108) requires Hé>> 0.4‘mvi_lligauss. Thus when the
resonance is saturated the polarization found, iﬁclu&ing the off—diagoﬁal '
elements, reduces to the diagonal-treatment value at equilibrium. The
ti}me required to reach equilibrium is related to TZ.e for the off-diagonal
contributions. If TZe is made short--for example, by ’incr'easing the in-
homogeneity of the static field--the coherence effects are damped out more
-rapidly, but-a larger rf field must be applied to séturaté the resonance. In
general, .TZe' should be made srﬁa;ll cofnpared Wifh the peAriod of switching
the rf fields; H! is then chosen large enough to saturate the resonance, i.e.,

i 52
satisfy (108).
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Although the frequéncy shifts and line shapes resulting from spin-
exchange éoliisions can be seen and studied, nonetheless, the calculations
of this section apply té) realizable exﬁeriments in which these’ effects are
unir;npqrtant.‘ For a much more.thorough demonstration of the unimportance
of the off-diagonal matrix elements, see references 12 and 18. This '
problem is difficult to treat in general, but is should be clear that if a
state possesses no co_hefence initial}y it cannot écquire'any by relaxation
processes, which are random. N

Even though it is anelated to the discussion of this Section, one other
aépect of the papér by Balling et al. 4 may be worth mentioning. - They state
that they demonstrate in an appendix that their "results "a'r'e"v‘a‘.lid for genetral
nuclear spin... However, using their Table IV.and their Egq. :(24) Fa_.‘hd'- making
the .simplifying, assumptions that ’:the".' second: species is diso rie‘:ﬁted:’f'.[i.' e .
Ple) = O)] and that ple; R) is d1agona1 th1s author finds: that ‘4P /dt is
not proportlona;l to P (Rb .8 } as in their (A14), ‘but rather one.arrives at
:f_he:Ecié.. (72) and (7 3) of Section IIT of thHis paper with' 1 = 3/2 I, =0.

‘They hé\'ke recently pointed out that their (A14) is in error.

E. Anderson and Rarhsey

Anderson and Ramsey‘8 (AR) have performed an experiment to meas-
ure the self—sﬁin exchange cross section in sodium. The steady-state
populations are needed to analyze their experiment, not just the electronic
polariza‘tion. They define Py, ii/p =1/8 6AR’ p2 :1:1/ 1/8 = ﬁAR’ and
SRTII '

It is shown in Appendix III that, if complete reorientation occurs in
the excited state (q.= 0.8 for Na i 3 cm of He at'154-°C  and-assurning -

0= 23% 10" 16 cmz as’ determmed by. Jordan and Frankenz-z),
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T =M;r~ , (109)
F'lMi 1 F'l
where wFiMi is defined in (81), and ‘that | | |
' T,21/2 :
— - 2 ,
i 3:(11+1/2)ppi 12 N My . » (110)
M1=-11+-1/2 ,

From (83) and (84) %Nith' TEi = o (single species) and L, = L. = L (complete

mixing in the excited state), and using (110), one finds that at equilibrium

ch S 21,+1
: 2L, F1\T] ' Tg, ZT |
m, = : . (111)

* o 412+41 A3, (21, +1)%
- _1__ 1 .2 V1
T T T T ) ' 3T -

1

Equation. (111) as applied to the experiment of Anderson and Ramsey is
given in Table V. Notice that if the ground-state relaxation were by elec-
tron randomization only, the signals would be independent of the exchange

time. Since they used 3 cm of He buffer gas, one might at first expect

- electron randomization to dominate. ~“However, for a spherical cell, 14
T = Rzp/TrZD = 100 msec (112)
wall oPo -
Thuffer pO/NOOVp = 310 sec ' (113)
Lo ' a _ 2 _ -26 2
for Na in 3 ¢cm of He at 154 C (DO =1 cm”/sec, 0= (3£4)X10 cm’ ,
R=5cm, v= 1,6 X10° cm/sec, N = 1. 7><1019 m™?).% The measured

0

relaxation time was 87 msec, in excellent agreement with the wall relaxation
time. Consequently, Zeeman relaxation may dominate; such would seem to
be the case in light of the reasonable cross section deduced by Anderson

and Ramsey assuming uniform relaxation. .

“



-41- UCRL-11814

-ACKNOWLEDGMENTS
The -author is ‘ind‘ebt-ed to Professor Lee Bradley III, Professor
Eugene Commins, Professor-Alfred Glassgold, Professor Eyvind Wichmann,
and Dr. Sergje Lebedeff for several valuable suggeéfions. He is also grate-
ful for discussions with James Crichton, Lethia Gibbs, Dr. Robert Hull,
Professor Howard Shugart, Dr. Joseph Winocur, and Joseph Yellin.
Particular thanks are due Gerald Wick, who has checked many of the.

calculations.



~-42- UCRL-11814

APPENDICES

I. Justification for Neglecting One of the Self-Exchange Terms

Appendix I compares the quantities
- 2 :
I, = J1£,(6)-£(6) {" g | (A

and

als

= [2 Re(£(6) - 1O, (n-0) - £ (-0)p2, L (a-2)

which appear in (59). The author wishes to thank Dr. Sergje Lebedeff for
outlining the following estimate.
Recall ’chat'2

fn(9)=(1/21k) Z 2£+1)exp(216 L)-1)P,(cosb), (A-3)

where n refers to t for triplet or s for singlet. Using the orthogonality

properties-of the Legendre polynomials, one finds

(4n/k2)g (2£+1)Sin2(6£"t— 8 ) | (A-4)
and
I, = (8n/k°) Z (-yE (20+1) sinz(éz,t— 5 - (A-5)
2

In order to proceed with the calculation, one neveds a model for

- estimating the phase shifts. Glassgold and Lebedeffz have found that cross

sections predicted by the Purcell-Field mode117~ agree with the re'sultsv of

exact! caiculations to within a factor of 2. The Purcell-Field model

divides all célli-s_ionsinto two classes: weak collisions £z > 10) for which
£,t

there is no exchange and <sin2( 5 = & s)> = 0, and strong collisions

-5

2.+78 5 is large and random, with the result that

£ < L’O) for which §
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sinz(éz ¢"0 S):a.v'erages to 1/2. Then
] t z
0 .
- @K ) ) = /e’ a8
£=0 '
J4
L, Lo
L~ @n/k%) ) (e = (@n/i) ) e, (A-7)
“2=0
and
_— Lo -
L/1, = 2(-) /(8 +1). K (A-8)

Assuming a Lennard-Jones potential of range ¢ and depth ¢, the

range of the strong collisions is approxirna.’cely'2
. -1/6 _ ,
r, = o{% [1-(1—5K0/4)1/2] } | (A-9)

and

. | 1/2 |
2.+ 1/2 = kro{ % [1 + (2/5K0)(1 - «/1-51{0/4)]} | (A-10)
where KO = Efe, E = ’thZ/Zp. is the kinetic energy in_;the center-of-mass
system, and p is the reduced mass. At room temperature for Rb87--Rb87

collisions, E = 0.025eV, ¢ =0.5eV, 0 ¥4 A =7.6a, then Ky~ 0.05 << 1.

Therefore, Ty ® (I.(8/K0)1/6 and 20 +1/2 = N3, Z‘ko'(s/KO)i/é: .

( ‘)2 _ e E _ 87 (1836) (0,025 |.
a4 "m \. 2, 2 Z ~13.6)
‘ . e \h /Zmeao )

J
kao = 12, !

10 = 260,

and ‘ ‘ , o
12/11 ~ 0.8%. | ‘ (A-11)
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Thus for Rb87v--‘Rb87 collisions the interference term in {59) should

be small compared with the other terms and can be neglected to a good

approximation.

II. Simplification of the Rate Equations in the Limit

of Low Light Intensity

The absorption, reemission, and exchange terms of (63) are found in

the limit of low light intensity, i.e., for = << p/2(21,+1).
F,M, 1
A. Absorption and Reemission

With

LpFiMi ~ Lp/2(211+1), (A-12)

(i:)ﬁ:)Abs =~ 2LC Z Mi/(211+1)3. . (A-13)

Now consider the reemission term of (63). Equation (20) becomes in:

the limit of low light inténsity, i.e., for (A-12),

1 : '
1 1 i
Ty Fy MY 2(21'_+1) Z PH(F M1 Loz FyMy) 1/2 ‘A-i4)
Fy
Then (19) 1nd1cates that the excited-state populations. nJ,iF,iMl “are inde-
pendent of the dev1at10ns T M of the ground-state populations from
1771

p/2(211+1), to firsf order in L. Therefore, in general, in order to include

excited-state mixing of any amount and by any process,

() Abs + Re z{zcz ‘Mi/(211+1)3] L,. (A-15)
My
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The quantities

_(211+1)2 — Iy MY |
. 1t 1 1 1
M, 1L EMY My o |

(A-16)
are independent of the ground-state popula}tio'ns to first order in L. For

complete mixing within each J'1 level

(Ooy g~ =0 /(20 +1)(21,+1); n_, = Z
Ty EMy Ty _1. e \ i

N, w0 )y L, =L, since
J1F1M1 + ‘

Z P'(J) F{ M|, F,M,) is independent of M, and Z M, = 0.
My - My
‘Equations (A-15) vbeco_m'e, if one uses Table VI,

. _ 2 ' ‘
(P ) AbciRe = (211+2)(211+3)L+C/6(211+1) , , (A-17)

(P )

) AbsiRe = (211—1)211L_C/6(211+1) . (A-18)

B. Cross Exchange

Equations (81) and .(82) in (44) yield, to first order in L,

1

!
. - 1w My TELFY
e 1 = S e T2
1 177
1 |
+ Z M, (6. pp1 =5 YW(I,L,F,M,F,M,F, M F,M!
2(F,-1,)(21,+1)°T_ ,d | 10F, My, TR M, e T M oM g M MG
171018y E1 M
F,M - (A-19)

)s
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- where A(Fi’ F',l) is defined by (5), F(Fi’ F'i) by (30), and

t t 1y = : ] »
W(L,L,F,M,F,M,F|M,F,M!) . | '

4 F F! 1 F
1 1
A(F,, FYA(F,, FY) Z 1 1 2 2 _

7 | ,
1 RV
7 \"Mja M, M, -¢ M

(A-20)

Table VII is useful in evaluating the second term in (A-19). To evaluate the

last term, interchange F,, -M, and F'ZM'2

2’ T2
'Z, MiéF'zME W = 'Z | MiaFZ, M, W, . (A-21)
11 11
F,M, oM,
oM, Mo
My | M,y

using Edmonds (3. 7. 5). Table VIII contains the values of a quantity

" a(Fi, F',q) arising in the above sums; then,

. a(F,, F', qla(F,, , ~qIM
1751 222 1
2 M,§ W = > 8 > : (A-22)
1°F M F_M 7 z
2M2 F M, 22 g 421415 (21, +1)” |

Miq

16(F,-1,) } M
1 71 M4 1 Z
= (F,-I,)M_5 .
o F 27 M0 M

(A-23)

L3
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Substituting (81) into (13), one has

Fy

P = 2(F,-1)) Z M, vy /(11+1/2)p,
1 M. 11 ‘

P M, 6 MZI/(IZJri/Z)d.

2 é) Z 2°F,

M2'~‘—F2

Using (A-24) and (A-25) in (A-19) with (A-21) and (A-23) gives

UCRL-11814

_ (21,+2)(21,+3) | (zfi +1,+1)
(Pylg = — z Dy#D_-3P ) - e P,
6(21,#1)°T . (21,+1)°T
;| ' . 2 '
_ ‘21, (21,-1) (2T, + 31, +2)
(P)g~ ——2>— (D, +D_-3P,) - 5
6(21,+1)°T (GRS =)
C. Self-Exchange
Examination of (63) reveals that
] . 2L NP, (2142) (2L +3)P_
(Pygq = Py ~ z - z
3(21,+1)°T 3(21,+1)°T
b 1 S1 1 s1
D,=P, |
TE17Tsy

in the limit of low light intensity.

(A-24)

(A-25)

(A-26)

(A-27)

1

(A-28)



-48- UCRL-11814

1II. Expression of the Population Differences in Terms

- of the-Polarizations in the Limit of Complete Mixing

In-this appendix it is shown that -rrF_iMi = MiTrFi in equilibrium if
there is complete mixing in the excited -state. Since this proof is of interest

in connection with the experiment of Anderson and Ramsey in which a

single species is present, set T = in (1). Substituting (81) into (1),

E1
one finds with the aid of the discussions of the various terms given in

Section II that

. | - o ]
Te M, T e(FEOMy FBEM T o F Z VIEYyMy, By M )rg o =05

1771 1771 RN : 1771
My
I (A"Zg)
» - = ! - 1. _ — 1 1
where B(Fi, Mi_) S(Fi, Mi) and y(F1, Mi’F'l’ Mi) Y(FiMi’ F'lMi)'
Then ' ‘
TTFi, ‘Mi = . (].(]E“,].)M;1 +B(F1M1)(-TTF1, _Mi)"

* Z Y(Fy M), F1M1)(-TrF,1’ ) | =00 (A-30)

1
1 ]
By MYy

Comparing (A-30) with (A-29) reveals TTFi’ 'M1 = -TrFiMi; i.e., an
expansion of w ~ in-M, must be odd.
FiMi 1

Set T = o and L,=1L_ (complete mixing) in (83) and (84) and find,

E1

at equilibrium,
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| <1 . 1 B 211+.1>
- er - \Tp Tg, 2T
o (21,+2)(21,+3) (1 M. 211“) e
(L1
1 1 T1 TSi z_T1

(A-31)

i.e., Z MlinliM' o« z M1TYF1M1 for both values of F'i. Equation (83)' :
11 .
Ml . .
1

My

or (84) can then be written, for equilibrium,

where (A-15) has been used for the radiation term. Since TTF M
PR |

odd function of Mi’ one has

where T is independent of M1. Using (A-33) in (A-24) gives
-

(1,+1/2)p Pr,

MZ

Z(Fi_li) 1

S

(A-32)

‘must be an

(A-33)

(A-34)
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-50-
F,o1 Fy\°
Table I. Values of :
M, 1 -M,-1
1
F4
F, B ' I, +1/2 I, -1/2
2[1% + 21, + 3/4 - M, -M*] 2[1% - 1/4 - 2M, 1, + M%)
17 % 17 1 1717
I, + 1/2 —_—
(21, +1)(21, +2)(21, +3) 4(1, (21, +1)(21, +2)

2[12

' , 2
(F21,3/4 % (21, +2)M M)

2 : 2
21y __1/4-M1-M1]

I - 1/2
41, (21, +1)(21, +2)

(21, -1)21, (21, +1)

2
S : 1/2 Fy, I
Table II. . Values of A(F,,F')=6(2F,+1)(2F"' +1)
1’51 1 1
. , F, 1/2 1
1
Fy
F, I, +1/2 _11.-1/2
(21, +2)(21, + 3) 41, (21, +2)
1, +1/2 1 ! I
21, + 1 21, +1 A '
41, (21, +2) 21, (2T, - 1)
1, - 1/2 B 1Y4%4
21, +1 21, +1




-51. UCRL-11814
F, 4 FyV '
Table III, Values of I'(F,, F', M) = Z M ‘ =M'T"(F,, F!
. 1 1 1 17 Y171
- M, M,-M -M! . .
M1 1 1
1
| | Fi
: F1 1'1'/7"'1/2 - I,l-’l/Z
2
| M! (412 + 81, - 1) M! (21, + 3)
Ii + 1/2 1 1 1 1 1
(21,#1)(21,+2) (21, +3) 21, (21, + 1)
v 1 .' Z
| MY (21, - 1) M} (41 - 5)
I, - 1/2 A '
(21,+1) (21, +2) (21,-1)21, (21, +1)

Table IV, - Rb87 —Rb85

spin-exchange cross sections deduced

from the data of Jarrett (reference 7).

1 2
0 0
3/2 5/2
3/2 5/2
"0 0
3/2 5/2

Q.= 1.7 X 10~14 cmz.
Relaxation: Zeemé.n or Self-exchange Q/QJ
electron randomization included?
Z Yes or No 1
Z No 4.6
Z Yes 6.8
ER Yes or No 1
ER " Yes o¥ No 1

.
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Table V. Compéris-on of population differences for the Anderson and Ramsey

(AR) experiment_‘(réferenc'e 8)

(Tsi:;ZI‘ LC/2 = A, 1, = 3/2; see IV E).

2’

Anderson and Rarnse;r

(uniform  relaxation) "

by, 21/P = 1/8%B )

64 , 44

\
Al 1o
T TZ

1 04T,

a =

*AR

8 . 2.781132 . 16.5
—+ ===
T, T, \Ti T,T

2

(pZ, ﬂ:Z/p = 1/8:£G.AR)

This work

Zeeman or uniferm . Electron randomi-

relaxation zation
(TY = =)  ;»‘>fff;’”" (T = =)

_ 2 ) ‘\"b1 1
LA e s b T ATy
P 8 |T, 4T Fﬁ 8T, D 2

{
_Atiz_z‘,_ 8 _ 42
T, 4T, T,
.T_8+.;_‘(§%+16._
) ,Ti T,T,
o AT s T T
P 8 T1 T T1 STZ P P
NERETS
T, T,)T, T,
8,3 \B2 16
1 “z)\T, T,T,
2y _ T
P P
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F
<12
Table VI. Values of /. Mi’.
M =.F .
1 1
Fi' Values
1, +1/2 (21, +1)(21, +2)(21,+3)/12
1 , 1 1 1
1, - 1/2 (211-1)21‘1(2144%1)/‘12
" Table VII. Values of (211+1)ZI‘(F1, F&)A(Fi, F!)
1
Y
I+ 1/2 I, - 1/2
I, + 1/2 41 +8I, - 1 2(21,+2)(21,+3)
41, (21, -1) 41% 5
1457 1
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o1 F\
\ 2
Table VIII, Values of a(Fi, F'i’ q) = (211+1.) A Fy F' ) Z
1
-M1 q M1
knl}
¥y
F, q I, + 1/2 11-1/2
1 2(11+3/2,+M1)(11+1/2_M1) 2(11-1/2-M1)(11+1/2—M1)
, 2 ’
I, 1/2¢ 0 4MY 4(11+1/2+M1)(11+1/2-M1)
-1 2(11.+3/2-M1)(11+1/2+M1) 2(11+1/2+M1_)(11-1/2+M1)
1 2(1,+1/24M )(1,#3/24M,) 201 +1/2+M ) M2My)
I, - 1/24 0 4(11+1/2+M1)(11+1/;_M1) 4M

S 2(L MM E3/2-M ) 2(14/2-M)(I,-1/2+M )




[

10.

11,

12,

13.
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