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Abstract 

Tall trees and vertical forest structure are associated with increased productivity, biomass and 

wildlife habitat quality. While climate has been widely hypothesized to control forest structure at 

broad scales, other variables could be key at fine scales, and are associated with forest 

management. In this study we identify the environmental conditions (climate, topography, soils) 

associated with increased tree height across spatial scales using airborne Light Detection and 

Ranging (LiDAR) data to measure canopy height. The study was conducted over a large 

elevational gradient from 200-3000 m in the Sierra Nevada Mountains (CA, USA) spanning 

sparse oak woodlands to closed canopy conifer forests. We developed Generalized Boosted 

Models (GBMs) of forest height, ranking predictor variable importance against Maximum 

Canopy Height (CHMax) at six spatial scales (25, 50, 100, 250, 500, 1000 m). In our study area, 

climate variables such as the climatic water deficit and mean annual precipitation were more 

strongly correlated with CHMax (18-52% relative importance) than soil and topographic variables, 

and models at intermediate (50-500 m) scales explained the most variance in CHMax (R2 0.77-

0.83). Certain soil variables such as soil bulk density and pH, as well as topographic variables 

such as the topographic wetness index, slope curvature and potential solar radiation, showed 

consistent, strong associations with canopy structure across the gradient, but these relationships 

were scale dependent. Topography played a greater role in predicting forest structure at fine 

spatial scales, while climate variables dominated our models, particularly at coarse scales. Our 

results indicate that multiple abiotic factors are associated with increased maximum tree height; 

climatic water balance is most strongly associated with this component of forest structure but 

varies across all spatial scales examined (6.9-54.8% relative importance), while variables related 
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to topography also explain variance in tree height across the elevational gradient, particularly at 

finer spatial scales (37.15%, 20.26% relative importance at 25, 50 m scales respectively). 

Key words: tree height; LiDAR; mixed-conifer forest; foothill oak woodland; water-energy 

limitation; climate; soils; topography

1. Introduction

Forest canopy height is strongly related to forest productivity and carbon sequestration (Keith et 

al., 2009). Tall and varied vertical forest structure provides habitat for wildlife, and increased 

canopy height and stem diameter is positively correlated with terrestrial plant diversity at 

multiple spatial scales (Cazzolla Gatti et al., 2017; Lindenmayer et al., 2012; Lutz et al., 2018; 

Marks et al., 2016; Slik et al., 2013; Terborgh, 1985). Overstory vegetation is also an important 

driver of near-surface micro-climate conditions important for plant growth, recruitment and 

regeneration (Chen et al., 1999). In spite of its importance to ecosystem processes and 

biodiversity conservation, environmental predictors of forest canopy height have been largely 

assessed at coarse spatial resolution over continental-to-global scales, despite significant regional

and local variation (Tao et al., 2016; Zhang et al., 2016). A better understanding of abiotic drivers

of forest height across scales, especially at scales relevant to forest dynamics and management, 

will help connect ecological theory to ecosystem management in an era of global change. 

Water-energy dynamics have long been hypothesized to control growth and attainable 

tree height, and climatic factors affecting maximum tree height have been explored over large 

latitudinal and altitudinal gradients. Tree height may be constrained due to increased probability 

of hydraulic failure, as well as limited carbon assimilation in the upper canopy (Ishii et al., 2014; 

Koch et al., 2004; Ryan and Yoder, 1997), and limited water transport (Jensen and Zwieniecki, 
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2013). There is evidence for hydraulic resistance and stomatal conductance limiting both tree 

height and the leaf area to sapwood area ratio, particularly in older, larger individuals, a pattern 

that increases with tree age and appears to be consistent globally (McDowell et al., 2002; Ryan 

and Yoder, 1997; Schäfer et al., 2000) . For eucalyptus forests in Australia, Givnish et al. (2014) 

found a strong relationship between precipitation and maximum tree height along a rainfall 

gradient, suggesting both allocational allometry and hydraulic limitation were determining 

maximum tree height. They proposed that hotter, drier conditions lead to negative feedbacks 

related to decreased vertical structure, potentially denser wood and lower hydraulic conductivity

(Givnish et al., 2014).

Global-scale studies have shown that climatic factors related to water and energy balance 

are strong predictors of canopy height, although factor importance varies across biogeographical 

regions and latitudinal gradients (Cong et al., 2016; Moles et al., 2009; Zhang et al., 2016) . Tall 

trees (>25 m) are found in both temperate and tropical climates above a rainfall threshold of 

roughly 1500 mm and where rainfall and temperature variability are low (Scheffer et al., 2018).  

Globally, canopy height has a bimodal distribution, correlated with the distribution of tree cover; 

in regions with low precipitation, trees are short and sparse (savanna) whereas in regions with 

high precipitation, trees are tall and dense (forest).  Landscape (kilometers) and local-scale 

variation (25-500 m) in energy and water balance associated with topography and soils may 

mediate coarse-scale climate regimes. For instance, topography mediates solar radiation and thus

evapotranspiration and water deficit (Dubayah and Rich, 1995). Steeper topography enhances 

tree biomechanical damage by gravitational forces (King et al., 2009) and influences wind 

disturbance that could limit tree height (Larjavaara, 2010). Furthermore topography is also key in

soil development and erosion which in turn affects soil water retention   (McNab, 1989; Moore et
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al., 1991), playing a key role in patterns of forest mortality (Anderegg and HilleRisLambers, 

2016; Anderegg et al., 2016; Young et al., 2017). Additionally, soil properties influence tree 

height via nutrient availability (e.g. P, Mg and N) and water dynamics (Cramer, 2012; Huston, 

1980) . A survey of soil along an elevational transect adjacent to our study area found that soil pH

decreases and soil carbon increases with elevation, with large breakpoints in nutrients and 

weathering coinciding with the transition from oak woodland to mixed-conifer forest, as well as 

the average effective winter snow line (Dahlgren et al., 1997).

Given the potential for multiple mediating factors at landscape-to-local scales, the goal of

this study is to characterize the association of climate, topography and soil factors with forest 

height across spatial resolutions from 25 to 1000 m within temperate, mid-latitude woodlands 

and forests found at the same latitude. We use airborne Light Detection and Ranging (LiDAR) 

data over a 200-3000 m elevational gradient in the Sierra Nevada (California, USA) to determine

(1) What is the distribution of tree height across this elevation gradient? and (2) Which climate, 

topography and soil variables have the greatest influence on maximum tree height and how do 

these relationships vary with scale?  We expected water availability to limit maximum tree height

in this region dominated by water-limited forest and woodland, and that factors related to 

climatic water balance would explain tree height variation at broad scales while topographic 

factors influencing water balance. We also expected maximum tree height to be greater where 

soil factors indicate greater availability of plant nutrients.
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2. Methods 

2.1 Study area

Our study area consists of four non-contiguous sites; three of these form part of the USA 

National Ecological Observatory Network (NEON; www.neonscience.org) D17 (Pacific 

Southwest, California) Region (Fig. 1). This study area was selected because of the availability 

of prototype NEON airborne remotely sensed data acquired in 2013 using the Airborne 

Observation Platform (AOP) and we used the maximum available data footprint around each 

research site. From low to high elevation and west to east, the four sites are the San Joaquin 

Experimental Range (SJER), Soaproot Saddle (SOAP), Providence Creek (PROV) and the 

Teakettle Watershed (TEAK) (Fig. 1). These sites span a 2800-m elevation gradient of decreasing

average temperature and increasing precipitation (Goulden et al., 2012). Sites range from open 

oak woodland savanna at 150 to 520 m at SJER, to conifer-dominated forests from 1390 to 3030 

m at Teakettle (Barbour et al., 2007; Mooney and Zavaleta, 2016). Providence Creek and 

Soaproot Saddle are mid-elevation sites that capture the transition zone from open savanna to 

dense forest (Mooney and Zavaleta, 2016), and the upper elevation range of the Providence 

Creek watershed overlaps with the lower range of the Teakettle watershed around 1500 m (Fig. 

1). The region has a typical Mediterranean-type climate with warm to hot (17-27°C) dry 

summers and cool to cold (10-0°C) wet winters (Ma et al., 2010).  We were motivated to 

evaluate the use of publicly available NEON data that are intended for ecological monitoring and

because the NEON D17 site was specifically designed to attempt to span multiple sites across the

valley-montane transition.  

The lowest elevation site SJER comprises about 6,700 ha of oak woodland and savanna 

in the Sierra Nevada foothills (36° 58’ N, 119° 2’ W) in California’s Central Valley north-east of 
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Fresno, CA (Ratliff et al., 1991). The sparse canopy (< 25%) is dominated by two species of oak 

(Quercus wislizeni and Quercus douglasii) and foothill pine (Pinus sabiniana), and the 

understory is composed of scattered shrubs and a nearly continuous cover of herbaceous plants 

(mostly non-native annual grasses), and gently undulating terrain.  This site is currently a 

functioning research rangeland laboratory associated with California State University, Fresno.   

The two middle elevation transition sites Soaproot Saddle and Providence Creek are 

nearby and ecologically similar.  Soaproot Saddle (3,300 ha) lies in an intermediate location 

along the elevation gradient (37° 1’ N, 119° 15’ W), from 920-1590 m elevation in California’s 

southern Sierra Nevada Mountains. The forest is mixed deciduous/conifer forest dominated by 

ponderosa pine (Pinus ponderosa) and incense cedar (Calocedrus decurrens) with an open, 

structurally mixed canopy and a dense understory and ground layer of shrubs and grasses. 

Topography is complex with broad hills and valleys. This site receives approximately 20% of 

annual precipitation as snow and 80% as rain and captures the snow-rain transition. The 

Providence Creek site (37° 3’ N, 119° 11’ W), a 1000 ha catchment, is the primary research area 

in the Southern Sierra Critical Zone Observatory (http://criticalzone.org/sierra/) and ranges in 

elevation from 1580-2190 m. Forest vegetation at Providence Creek is similar to Soaproot 

Saddle, composed of mid-elevation, mixed-conifer forest. The Providence Creek Watershed is 

part of the larger Kings River Experimental Watersheds research project managed by the USDA 

Forest Service, Pacific Southwest Research Station, and although included in the initial NEON 

Airborne Observation Platform data collection in 2013, it will not be collected in future NEON 

missions. The hydrology and setting of  Providence Creek was described in detail in (Hunsaker 

et al., 2012). 
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Mixed conifer/deciduous forest transitions to red-fir dominated conifer forest at the upper

elevations of the 1500 to 3038 m Wishon watershed.  The watershed extends uphill and north of 

the Wishon Reservoir and downhill to the south of the Wishon Dam where the 1250 ha Teakettle 

Experimental Forest is located (Kampe et al., 2013). The Teakettle Experimental Forest is 

located within this 18,500-ha watershed area at 36°58’N, 119°2’W, and at elevations 1900-2500 

m. The forest is dominated by white fir (Abies concolor) in terms of basal area and tree density, 

but sugar pine (Pinus lambertiana) and Jeffrey pine (Pinus jeffreyi) are among the largest 

diameter and tallest trees. Incense cedar (Calocedrus decurrens), western white pine (Pinus 

monticola), and lodgepole pine (Pinus contorta) are also prevalent and scattered black oak 

(Quercus kelloggii) can be found in rocky areas, primarily at the lower elevations. Shrub cover 

typically consists of whitethorn ceanothus (Ceanothus cordulatus), and green leaf manzanita 

(Arctostaphylos patula) (North et al., 2002).  

Past management activities can influence tree height distributions due to logging 

practices and forest clearing.  Past management activities have influenced the current distribution

and abundance of tall trees in the three study areas dominated by conifers (i.e., Soaproot Saddle, 

Providence Creek and Teakettle) where some logging has occurred beginning in the 1880s, 

which could blur the relationship between canopy height and abiotic factors.  All of these three 

sites, however, have substantial areas where little to no tree removal occurred due to limited 

access and mill activity (McKelvey and Johnston, 1992).  With the exception of the Teakettle 

Site’s highest elevations, most of these forests have been selectively harvested at least once over 

the last century, often removing the largest, commercially-valuable trees (i.e., ‘high grading’

(Rose, 1994).  As a result, residual old-growth stands containing some of the tallest trees could 

be associated with less mechanically accessible sites such as steeper, mid-slope positions.  The 
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Sierra National Forest, however, has not been as heavily logged as many other National Forests 

particularly those in the northern Sierra Nevada (North et al., 2015, 2009). All three sites have 

substantial areas where little to no tree removal occurred due to limited access and mill activity

(McKelvey and Johnston, 1992; Rose, 1994) and large, old trees are well-distributed across the 

landscape. Furthermore, previous studies in the Sierra Nevada based on models (Urban et al., 

2000), historical data (Collins et al., 2015; Stephens et al., 2015), and LiDAR (Kane et al., 2015) 

as well as field sampling (Lydersen and North, 2012) have found tall trees in mesic locations 

associated with large-scale climatic water balance and local topography (i.e., valley bottom and 

lower slope positions), in spite of the history of logging.

Fig. 1: Study Area. Landsat satellite imagery map (true color) and NEON D17 Pacific Southwest
sites. San Joaquin Experimental Range (SJER-yellow), Soaproot Saddle (SOAP-blue), 
Providence Creek (PROV-magenta), Teakettle Forest Watershed (TEAK-red).  
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Table 1. Site code, name, elevation range, climate and description of topography for each of the 

four study sub-sites.  

2.2 Airborne LiDAR data and vertical forest structure

Airborne LiDAR imagery across all sites was collected by the NEON Airborne Observation 

Platform during multiple flights in June 2013. NEON used an Optech Gemini small-footprint 

LiDAR sensor that records both discrete range and full waveform returns (Kampe et al., 2013). 

We used maximum canopy height (CHmax) as our response variable to explain the site’s potential 

for tree growth and as an effort to mitigate the effects of past disturbance from human or natural 

causes which might disproportionately affect mean canopy height. To control the LiDAR point 

classification we completely reclassified the point cloud and ran numerous smoothing and outlier

point removal filters in addition to a manual classification accuracy check in Microstation’s 

Terrascan and QCoherent’s LP360 software.  The canopy surface/digital elevation model and 

canopy height model were all derived from this re-classified point cloud.  To calculate vertical 

forest structure from LiDAR we first created a canopy height model (CHM) which is the first-

return canopy surface model (CSM) minus the bare-earth digital elevation model (DEM). The 1-

m resolution canopy surface model is created by taking the highest return from any ground- or 

canopy-classified point within each pixel (not including points that strike objects like birds, 

clouds, smoke, etc.). The digital elevation model is an interpolated, last-return “bare earth” 

surface which is then rasterized to 1 m to match the resolution of the canopy surface model. After

subtracting the digital elevation model from the canopy surface model, the resulting canopy 

height model is a measure of vertical tree height with differences in topography removed
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(Næsset, 1997; Patenaude et al., 2004).  CHmax is the highest value of the canopy height model 

pixel in the gridded cell at each spatial resolution (25, 50, 100, 250, 500, 1000 m).   

The study area has numerous features that are not forested and were identified visually 

and manually removed from our analysis. These included highways, irrigation ponds, large lakes,

private residences and a large utility ‘right-of-way’ corridor in which all tall vegetation has been 

removed. Grid cells which contained these features were manually digitized and removed. 

Because most of these structures or clearings were relatively small (< 100 m across), we only 

removed them from the analyses conducted at the finest spatial scales (25, 50, 100 m). Removing

these features focuses the analysis on vegetation that has not undergone obvious human 

manipulation or clearing. Grid cells with maximum canopy values less than 3 m were also 

removed to avoid analyzing cells with no trees. 

2.3 Predictor variables

2.3.1 Climate 

We used annual precipitation, annual temperature seasonality, growing degree days (above 5° C),

maximum annual temperature, minimum annual temperature, and climatic water deficit (CWD) 

as the climate predictor variables (see abbreviations in Table 2). Annual temperature seasonality 

is the annual range in temperature, and growing degree days is the annual sum of mean daily 

temperatures minus 5 for all days with a mean daily temperature >5 C. Maximum and minimum

temperature is the mean high and low temperature of the warmest and coldest months 

respectively. Climatic water deficit is quantified as the amount of water by which potential 

evapotranspiration exceeds actual evapotranspiration (Stephenson 1998). The climate data used 

in our study were developed using the Basin Characterization Model (BCM) based on 270 m 
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resolution digital elevation data (Flint et al., 2013).  Historical Parameter-elevation Relationship 

on Independent Slopes Model (PRISM) precipitation and temperature data (Daly et al., 2008, 

1994) were spatially downscaled from 800 m to 270 m using Gradient Inverse Distance Squared 

(GIDS) downscaling (Nalder and Wein, 1998), an approach which applies weighting to monthly 

point data, developing multiple regressions for every fine-resolution grid cell for every month.  

Using the PRISM climate variables and a 270 m digital elevation model, parameters weighting is

based on the location and elevation of the coarse-resolution cells around each fine resolution cell 

to predict the climate variable in the fine resolution cell (Flint and Flint, 2012; Nalder and Wein, 

1998). The BCM provided gridded estimates of 14 different variables including precipitation, 

climatic water deficit, temperature and seasonality. From the past 30-years of climate data, we 

calculated the mean and standard deviation of each of the climate predictor variables at each 

resolution as potential predictors of CHmax. We used these statistics to capture the average, and 

spatial variability of each of our predictor variables.  At coarse scales, individual grids cells can 

contain large variations in individual variables and at fine spatial scales, climate variables 

contained no variability so only the mean value was used.   

2.3.2 Topography 

We focused on terrain variables that are considered proxies for ‘microclimates’ or topo-climates, 

where topographically-determined variability in radiation, and hydrologic environments might 

promote tree growth, or modify the regional climate at fine scales (Frey et al., 2016). We varied 

the spatial resolution of the digital elevation model from 1 to 20 m to identify effects of spatial 

scale on estimation of variables such as curvature which has been shown to be scale sensitive
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(Detto et al., 2013), and based on this we chose 1-m resolution for the final analysis. Standard 

deviation of elevation was calculated at each scale as a measure of terrain roughness (John P 

Wilson and Gallant, 2000). We processed the LiDAR digital elevation model to derive primary 

topographic attributes (John Peter Wilson and Gallant, 2000)  including mean elevation, terrain 

slope and curvature at each scale (Moore et al., 1991), and also computed secondary attributes 

including potential solar radiation on a sloping surface (using the Areal Solar Radiation Model)

(Fu and Rich, 2002), and soil wetness estimated using the Topographic Wetness Index, a 

physically-based basin contribution model (Beven and Kirkby, 1979). Equation below:

Topographic Wetness Index= ln
α

tanβ+c

Where α is the upslope contributing basin area, β is the slope at that cell as defined by Moore et 

al. (1991) and we modified the equation slightly by adding c is a small constant (c=0.01) to avoid

division by zero in flat terrain cells.  We calculated the topographic predictor variables using 

Python scripts in ArcGIS 10.3. 

2.3.3 Soil

We selected soil variables that reflect the physical and chemical properties of soils that influence 

vertical vegetation structure. These included available water content, organic matter, pH and 

geologic parent material (Table 2). Soil data were obtained from the National Resource 

Conservation Service’s SSURGO and STATSGO national soil databases using the ArcGIS 

SSURGO Soil Data Development Toolbox (Soil Survey Staff  United States Department of 

Agriculture., 2017). We gridded continuous and categorical soil variables using the Map Soil 

Properties and Interpretations tool in the gSSURGO Mapping Toolset in ArcGIS 10.3. We 
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calculated the mean and standard deviations of Available Soil Water Content, OM and pH at each

scale. We also included three categorical variables related to geologic substrate, rock type and 

geologic parent material. Based on preliminary generalized boosted models, we removed the 

lowest contributing third of soil variables based on variable importance. 

Table 2: Description of predictor Variables

Variable Name Variable Description

Units Native 

Resolution

Variable 

Type
Annual 

Precipitation Mean annual precipitation

mm 270 m Climate

Annual 

Temperature 

Seasonality Annual temperature range

Degrees Celsius 270 m Climate

GDD

Growing degree days with 

base of 5C

Degree days 270 m Climate

Tempmax

Maximum temperature of 

the warmest month

Degrees Celsius 270 m Climate

Tempmin

Minimum temperature of 

the coldest month

Degrees Celsius 270 m Climate

CWD Climatic water deficit mm 270 m Climate

CURV Slope curvature 

(unitless) + 

convex, 0 flat, - 

concave

1 m Topography

TWI

Topographic wetness 

index (upslope 

contributing area scaled by

slope)

(unitless) 1 m Topography

DEM Solar 3 m

Potential solar radiation on

a sloping surface

Watts/m2 3 m Topography

DEMsd

Standard deviation of 

elevation

m 1 m Topography

AWCmean Available water content

cm water/cm 

soil

vector Soil
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OMmean Organic matter mg vector Soil
pHmean Potential of Hydrogen - 10 log H+ vector Soil

PARMATNM_D Geologic parent material

Rock type  from 

Basalt, Till, 

Granite, etc.

vector Soil

Subscripts
Max Maximum              (ex. Tempmax)
Min Minimum              (ex. Tempmin)

Mean Mean                     (ex. OMmean)

Sd Standard Deviation (ex. DEMsd)

Climate Data Source: https://ca.water.usgs.gov/projects/reg_hydro/projects/dataset.html

Topography Data Source: http://data.neonscience.org/home

Soil Data Source:  https://catalog.data.gov/dataset/soil-survey-geographic-ssurgo-database-for-various-soil-survey-areas-in-the-united-states-

2.4 Statistical analysis

Our statistical methods used generalized boosted models to predict CHmax as a response variable 

from environmental variables which characterized climate, topography and soil characteristics.   

The predictor variables were calculated from source data ranging in spatial resolution from 1-270

m (Table 2) and then gridded at six different spatial resolutions, resulting in a range of sample 

sizes (number of grid cells) available for each scale of analysis: 1000 m (n = 195), 500 m (841), 

250 m (3826), 100 m (24,895), 50 m (102,001), and 25 m (400,460). Our study was designed to 

span a range of resolutions in order detect patterns in these scale-dependent correlations. The 

upscaling of finer resolution to coarser resolutions was done by nearest neighbor averaging for 

continuous variables, and for the soil categorical variables, the category with most of the area in 

each grid cell was used to represent the entire grid cell.

We used generalized boosted (regression tree) models in R (Team, 2013), Version 

1.0.136, package ‘caret’ and ‘gbm’ (Kuhn 2008,Ridgeway 2007) to predict maximum canopy 
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height variables from the environmental predictors. We chose generalized boosted models 

because they combine the strengths of two algorithms, regression trees (models that relate a 

response to their predictors by recursive binary splits) and boosting (an adaptive method for 

combining many simple models to give improved predictive performance). Boosted regression 

trees have been used extensively in ecological modelling (Elith et al., 2008). Generalized boosted

models are a powerful ensemble statistical learning approach capable of achieving bias reduction

through forward stagewise fitting, suitable for handling different types of predictor variables and 

their interactions, and able to characterize complex data-generating processes (Elith et al., 2008; 

Hastie et al., 2009). The final model can be understood as an additive regression model in which 

individual terms are simple trees, fitted in a forward, stage-wise fashion. Generalized boosted 

models provide an estimate of variance explained by the model and the relative importance of 

the predictor variables. 

We initially explored many potential predictors within each group (climate, topography, 

and soil) and computed a preliminary set of generalized boosted models to screen variables. The 

results of the preliminary generalized boosted models were sorted by spatial resolution and 

variable importance was ranked to remove the lowest contributing third of all variables from 

subsequent modeling. The top predictor variables in each group are listed in Table 2 (see Table 

S1 for a full list of all variables initially considered). GBM models of maximum canopy height 

were then developed using the top two thirds of the candidate predictors from each group. Model

parameters were calibrated with 10-fold cross-validation and a full factorial design with 

interaction depth varied over the integers from 1 to 5. The number of regression trees varied from

2,000 to 10,000 in increments of 2,000 and the shrinkage rate was varied from 0.1 to 0.01, at 

intervals of 0.01.
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The gbm package in R, originally developed by (Friedman 2001), estimates the relative 

influence of predictor variables. This measure of variable importance is defined as the number of

times a variable is selected for splitting, weighted by the squared increase in explained deviance 

to the model as a result of each split, and averaged over all trees (Friedman and Meulman 2003). 

Thus, each variable’s relative contribution (or importance) represents its percentage of the total 

contribution of all variables. Although variable importance is determined by splitting thousands 

of models in different trees, generalized boosted models should not be considered a statistical 

‘black box’ since individual variable responses can be summarized, evaluated and interpreted 

similarly to a conventional regression model using partial dependence plots (Elith et al., 2008). 

In our study, variable importance is tracked relative to the other variables for models at each 

spatial scale. 

We expect CHmax (our response variable) to be correlated with environmental predictors 

that we know are spatially structured (Lennon, 2000). We would expect environmental 

conditions to show positive spatial autocorrelation (SA), at spatial lags of tens to thousands of m 

for topography over, and tens to hundreds of km in the case of climate. Boosted regression tree 

models (GBM) are more robust to the effects of SA on model fit, variable importance and 

estimated response curves than generalized linear models (Crase et al., 2012). Model residuals 

were tested for SA at each spatial scale (one-cell lag for 250, 500 and 1000 m scales, lags 1-4 for 

100-m, lags 1-5 to 50-m and lags 1-6 for 25-m) to aid interpretation of the models. Analysis of 

SA in model residuals can suggest that there may either be missing (spatially structured) 

environmental predictors or that there are spatially structured data generating processes for the 

response variable, but cannot distinguish between these exogenous or endogenous causes

(Dormann et al., 2007; Legendre et al., 2002).
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3. Results

3.1 Canopy height on an elevation gradient

Estimated maximum tree height ranged from 3 to 70 m, measured at elevations ranging from 200

to 3000 m. The distribution of maximum tree height with elevation was non-linear, with a peak at

about 2300 m and a secondary peak at about 1200 m. Maximum tree height is smallest at the 

lowest elevation in the transect but declines at both ends of the elevation gradient.  We lacked 

observations between 500 and 950 m elevation – the elevation gap between the open oak 

woodland (San Joaquin Experimental Range) and transition zone (Soaproot Saddle) (Fig. 2). 

However, this gap is less than 14% of the total elevation range and our data do include the rain-

snow transition or the water- to energy-limited forest transition at 2400 m.  

Fig. 2: Scatterplot of maximum canopy height (m) as a function of elevation (m) at 250 m scale. 

Black line is a locally weighted scatterplot smoothing average bounded by the 95% confidence 
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interval (gray shadow). Each point represents the maximum canopy height for 0.25 km2. Colors 

correspond to site colors in Fig. 1.

3.2 Predictor variables associated with canopy height across scales 

Overall variance in maximum height explained by generalized boosted models was roughly the 

same across the intermediate scales examined (50-500 m) ranging from 72-83%, and greatest at 

the 100-250 m scales. At both the coarsest (1000 m) and finest (25 m) spatial scales, the amount 

of variance explained was considerably lower than at middle scales, particularly at the finest 

spatial scale at which only 21% of total variance was explained.  The relative influence of all 

aggregated climatic, topographic and soil predictors was similar across scales; soil and 

topography converged in their importance at 500- to 1000-m scale, but still both were much less 

important than climate (Fig. 3). The relative influence of soil and topography variables 

decreased, and influence of climate increased, for coarser-scale models, and at the 1000-m scale 

four of the five top-ranked predictor variables are climate predictors (Fig.4). 

We show the five top-ranked predictors for Maximum Canopy Height (CHmax) at each 

scale (Fig. 4; variable importance ranking for all predictors is shown in Table S2). CHmax is most 

strongly correlated with climate variables including climatic water deficit, growing degree days, 

and temperature. Annual Precipitation, climatic water deficit, standard deviation of climatic 

water deficit, minimum temperature, maximum temperature, growing degree days, standard 

deviation of growing degree days, and annual temperature seasonality all were included among 

the top five predictors for at least one of the spatial scales.  Temperature variables related to 

growing season length (minimum temperature and growing degree days) and heat stress 

(maximum temperature) rank among the top predictors only at the coarser 250- and 100-m scale. 

Topoclimatic variables including solar insolation and topographic wetness index are important 
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predictors at the finest (25-50 m) scale.  The topographic variables are more strongly associated 

with canopy height compared to soil variables across scales, with a strong divergence at the 25-m

scale (Fig. 3). The only soil attributes included in the top five predictors at any scale was average

pH (Fig. 4), although other soil variables were included in the full models (Table S2). 

Fi

g. 3: Cross-scale relative influence plots (left) grouped by climate, soil and topography variables 

and R-squared values (dots) for generalized boosted models at each scale.
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Fig. 4:   Generalized boosted models relative influence plots outlined by variable type (climate, 

soil, topography) across spatial scales for the five most important variables by spatial scale (25-

1000 m grid cells). Variable categories are outlined by line style indicating climate (solid line), 

soil (short dashed line) and topography (long dashed line). For each model scale, only the top 

five contributing variables are shown (relative importance of all variables in Table S2); different 

scales have a different set of top five variables, but all variables across scales are shown in the 

legend. All variables are means unless standard deviation (sd) is indicated.

Maximum canopy height declined with increasing CWD and had an approximately 

unimodal response to annual precipitation -- height was greatest at middle levels of precipitation 

and declined at the very highest values of precipitation. Maximum height also was greatest at 

intermediate values of maximum temperature (Fig. S1a). 

Models residuals were not significantly spatially autocorrelated (P>0.05 based on 

Moran's I) for the 1000-m, 500-m or 250-m coarser-scale models (Table S3).  Residuals were 

spatially autocorrelated (P<0.05) for 25-m, 50-m and 100-m finer-scale grids at all lags tested, 
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suggesting that there are either addition spatially-structured environmental drivers not included 

in our model that may be important at those scales, or that there are endogenous factors 

(biological processes) causing tall trees to be near other tall trees and vice versa at those scales. 

These Moran's I values were small, however, ranging from 0.02-0.33 on a scale of 1 to -1, where 

0 indicated complete spatial randomness (Table S3). This suggests that SA was not strong; the 

Moran's I values were nonetheless significantly different from zero because of the extremely 

large sample size -- the statistic is calculated based on every cell in the study area grid.

3.3 More than Climate I: Terrain curvature and solar radiation

Although terrain curvature only explains 1.3-6.6 % of total variance across scales, there is a 

consistent cross-scale association between terrain curvature and canopy height, with taller trees 

occurring in valley bottoms or on concave slopes (negative curvature).  At fine spatial scales (25-

100 m) the negative association of terrain curvature with height is the strongest, weakens at 

coarser spatial scales, and is weakest across scales for the oak woodland (SJER) site (Fig. 5). 
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igure 

Fig. 5:  Maximum canopy height plotted as a function of terrain curvature at six scales. Negative 

curvature is concave up (valleys) and positive curvature is concave down (ridges).

3.4 More than Climate II: Soil Parent material

Although soil variables were the least important factors associated with CHmax across all scales in

our comparisons, there are instances where canopy height is stunted on specific soil types (Fig. 

6). Maximum canopy height was greatest on residuum weathered from basalt, residuum 

weathered from andesite, and residuum/colluvium/till weathered from granite parent materials. 
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Lower CHmax was found on residuum weathered from metasedimentary rock, alluvium/colluvium

derived from granodiorite and residuum weathered from granite.  The majority (~85%) of the 

study area is underlain by granite parent material, but basalt is present, and weathering patterns 

and soil texture change along the elevation gradient and with topography.   

Fig. 6: “Soil Type”: Boxplots showing Maximum Canopy height cross tabulated by Soil 
Geologic Parent Material. Line is median, box encompasses 25th-75th percentile, whiskers 
encompass 5th-95th percentile, dots are observations beyond that. The sample size is shown in 
each box (number) for the 1-ha (100 x 100 m grid cell) scale.   

4. Discussion 

The results of this study highlight strong, scale-dependent associations between maximum 

canopy height and water availability as measured by the climatic water deficit, mean annual 

precipitation, and topographic factors across a ~2800m regional elevational gradient. 

Remarkably, despite the extensive disturbance history of the region, these environmental factors 

explain 70% of the variance in maximum canopy height within these mid-latitude temperate 

woodlands and forests.  Generalized boosted models explain most of the variance in CHmax at 
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spatial scales of 50-500 m. As predicted, coarse-scale patterns of canopy height (250-500 m) are 

associated primarily with climatic variables related to water balance. While climate variables still

dominate at finer scales (50-100 m), topographic variables affecting moisture availability (terrain

curvature, topographic wetness index, solar radiation model) become relatively more influential 

(Figure 4). Although most of the area is underlain by granitic parent material, CHmax is also 

associated with parent material and associated soil properties, notably soil pH. We acknowledge 

that there is a roughly 450 m elevation gap in our data however this gap does not cover the rain-

snow transition zone or elevations that did not coincide with critical zones of species turnover  or

water-energy limitation transition.  

4.1 Climatic variables associated with maximum tree height 

Temperate forest structure along the elevation gradient is limited by the availability of water and 

energy (Boisvenue and Running, 2006). At the dry low-elevation end of the moisture availability 

gradient, tree growth may be moisture limited, while at the moist end, light competition may 

drive forest height (Liénard et al., 2016). At higher elevations and latitudes with freezing winter 

temperatures and a short growing season, we would expect canopy height to be limited by low 

temperatures (Reich et al., 2015), as illustrated by the short, sparse nature of boreal forest 

canopies near arctic tree line, and shorter trees as alpine tree line is approached (Paulsen et al., 

2000). In the tropics, however, global studies indicate that temperature is not a limiting factor for

tree height (Way and Oren, 2010). Additionally, there is evidence that the world’s tallest trees are

found in temperate latitudes and grow in similar (mild and stable) thermal climates (Larjavaara, 

2014).
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The overwhelming importance of climate variables describing water limitation found in 

this study is consistent with coarse-resolution, global-scale studies showing that water 

availability limits maximum canopy height in tropical and temperate regions (Scheffer et al., 

2018; Zhang et al., 2016). Our results are also consistent with the characterization of forests 

below ~2400 m in our study region as water limited (Das et al., 2013; Tague et al., 2009). Along 

this same gradient, annual evaporation and gross primary production have been found to be 

greatest at 1160 and 2015 m; both were lower at 405 m, coincident with less precipitation, and at 

2700 m coincident with colder temperatures (Goulden et al., 2012). We found that climate 

variables reflecting energy limitation (minimum temperature, growing degree days) were also 

correlated with canopy height along our gradient that extended into energy-limited forests above 

2400 m elevation with increased snow cover and shorter growing seasons. Lower CHmax values 

were found at low values of minimum and maximum temperature, high values of temperature 

seasonality, and low values of growing degree days.

While we did attempt to quantify both geological substrate and water availability, 

variables like geologic substrate type do not capture deep, subsurface porosity or water holding 

capacity (Meyer et al., 2007), and the climatic water deficit measure used only accounts for 

available moisture in the top layer of soil (Flint et al., 2013). A study of subsurface water in the 

Southern Sierra Critical Zone Observatory found that large trees are deeply rooted in highly 

porous saprolite (weathered subsurface rock at the base of the soil profile) with roots reaching 

10-20 m below the surface. This porous rock layer contains large volumes of subsurface water 

and is vital to supporting the ecosystem through the summer dry season and extended droughts

(Klos et al., 2018). Having spatially explicit maps of subsurface porous rock containing water 

that can be tapped by large trees would improve our ability to model maximum tree height and 
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predict future forest distribution. In spite of this limitation, CWD explained 18-52% of the 

variation in maximum tree height and was the most important predictor at every scale. The 25-m 

resolutions model explained substantially less variance than those for coarser resolutions, and 

also showed the greatest spatial autocorrelation in residuals.  This suggests that the mapped 

predictors used in this study do not describe patterns of maximum tree height at that scale, and 

that there are other exogenous or endogenous factors affecting CHmax and the local scale. 

Possibly, at that higher resolution there is a qualitative biological gap that could explain such 

differences. At 30 m, it is likely that we are switching from describing canopy to describing 

individual trees. At that level of organization (individuals vs. tree communities) it is likely that 

our ability to capture individual histories through climate decreases. Indeed, cross-scaling across 

levels of ecological organization still remains a challenge.  We are uncertain why the explanatory

power of the model declined from 500-m to 100-m resolution, but we note that the amount of 

variance explained by our 1000-m resolution models is about the same as was explained in a 

global model based on 55-km grids (Zhang et al 2016). 

4.2 Topography

Topography affects vertical forest structure by controlling environmental factors such as water 

drainage, solar radiation regime, soil depth, cold air pooling and wind exposure. As predicted, 

topographic effects were detected at the finest spatial scales in the generalized boosted models 

for CHmax, but show less importance at the coarse landscape scale where effects of climate 

dominate.

Terrain curvature, topographic wetness index and the solar radiation model all affect soil 

water balance and were important relative to the other topography variables. At fine scales (25-
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100 m), solar radiation was more important and at coarse scales (250-1000 m) terrain curvature 

was more important. This indicates that specific levels of solar exposure and topographic 

concavity can both promote taller tree growth, independent meso-scale of climate or soil 

characteristics. Tree-ring data from an Appalachian watershed showed differences in growth 

rates on different topographic aspects with nearly all species exhibiting faster growth rates on 

(cooler, shaded) northeast facing slopes compared to (warmer, drier) southwest facing slopes, 

presumably due to differences in solar radiation driving evaporative demand (Fekedulegn et al., 

2003).

Taller trees generally occur in valleys as opposed to ridgetops (Fig. 5), and are found at 

the lowest levels of solar radiation; high levels of topographic radiation are associated with 

shorter tree heights at the finest spatial scales, suggesting the dominance of water-limitations 

(resulting from the positive relationship between insolation and water stress) on much of the 

gradient (Fig. S1). Tall trees found at intermediate levels of potential radiation may reflect the 

ameliorative effects of topography on climatic temperature limitations to tree height at higher 

elevations in the transect where the tallest trees are found.  While other studies of canopy height 

in the Sierra Nevada Mountains have found a positive correlation between change in tree height 

and the topographic wetness index (Ma et al., 2018), our results showed that climatic variables 

are more strongly associated with canopy height over regional scales while topographic wetness 

is correlated with maximum height at local scales.

4.3 Soil

Among the soil variables considered, pH had the strongest association with CHmax, but 

this is likely because in our study region tall, coniferous trees are found on granitic-derived, 

shallow, poorly-developed acidic soils, while low elevation oak woodland trees are found on 
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more basic soils that have developed on colluvium and alluvium.  Low pH soils are probably not 

driving tall tree growth but pH is correlated with the elevational gradient in water availability 

and phylogenetically-determined limits to maximum tree height among the taxa that dominate 

different parts of the gradient. Soil pH is related to the amount of precipitation, with soils at 

higher elevations experiencing heavier leaching and consequently lower pH values. The lower 

pH values result in lower cation exchange capacity and nutrient poor soils at the highest 

elevations. Giant Sequoia trees (Sequoiadendron giganteum) are conifers found along our study 

gradient adjacent to our study sites and are among the tallest trees in the world. This suggests 

that soil nutrients or pH are not generally limiting to conifer growth compared to other predictor 

variables considered. Some soil geologic parent materials were associated with taller or stunted 

maximum canopy heights, but parent material was not highly ranked among soil variables across

scales as a predictor of maximum height. Differences in forest structure are related to erosion 

rates, soil depth and nutrient deficiencies (Cramer, 2012), all of which are influenced by parent 

material. Our ranking of variable importance suggests that at low elevations water availability is 

limiting tree heights rather than nutrient limitation, but the effects of soil parent material are still 

present. In the San Joaquin Experimental Range, a relatively small area of forest (181 ha) is 

found on ‘Residuum derived from Metasedimentary Rock’ and contains the shortest trees of any 

geologic parent material type in our study. There is a distinct break in canopy height between this

area and other adjacent areas in the open oak woodland savanna (SJER) which experience 

similar climatic and topographic conditions suggesting this soil parent material type is poorly 

suited for supporting large trees (Fig. 6). 

Our ability to characterize an effect of soils properties on tree height was compromised 

by both the characteristics of the study area and the accuracy and precision of available large-

29

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570



scale mapped data. Geology and soil were not randomly distributed on our elevation transect, 

preventing us from disentangling the effects of substrate versus other factors. The soil types in 

the NRCS soil survey are based on relatively few field samples, and spatial interpolation to map 

units is based on aerial photographs and historic data (Peters and United States. Forest Service. 

Northern Research Station, 2013). So, while our models show that mapped soil characteristics 

and the geologic parent material are marginally important, comprehensive, spatially-explicit field

soil surveys and maps would be needed to better understand the effects of soil nutrients and 

geology on forest height, particularly at fine spatial scales (Grunwald et al., 2011; Rossiter, 

2006).   

4.4 Management Implications

Most Sierra Nevada forests lack resilience to wildfire and drought because historic 

logging practices and fire suppression have reduced large tree abundance and significantly 

increased fuel loads, stand density and water stress (Stephens et al., 2018).  Current management 

practices emphasize realigning forest conditions with topographic differences in water 

availability and local fire regime (North et al., 2009).  A particular focus is on identifying and 

developing large, tall trees associated with sensitive vertebrate species such as the California 

spotted owl (Strix occidentalis occidentalis) and the fisher (Martes pennanti) in more mesic, 

productive sites buffered from high-severity wildfire and drought stress (North et al., 2017; 

Stephens et al., 2015).  Our results suggest forest managers could identify such locations using 

both large-scale (i.e., >500 m) differences in CWD from readily available mapped data (i.e., 

BASIN (Flint et al., 2013)) and fine-scale (i.e., 25-100m) topographic indicators associated with 

higher soil moisture (i.e., GIS-generated topographic wetness index).  This could help focus 
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budget-constrained management practices in these key areas on reducing fuel loads and water 

competition, creating stand structures to protect and foster large, tall tree development.

In the context of global climate change, our findings suggest that as broad scale changes 

in climate lead to shifts in moisture and temperature regimes, large trees will only persist in their 

current range where microtopography and soil conditions allow. Currently, coarse scale models 

of climate and ecosystem response lack the capacity to incorporate microclimate variability 

critical to biodiversity refugia (Ashcroft et al., 2012; Dobrowski, 2011; Frey et al., 2016). Higher

elevations that are currently snow covered for much of the winter and spring, will be less energy 

limited under a warmer climate and habitat loss at lower elevations could be offset by habitat 

gain at upper elevations. This warmer transition could also increase water stress as there is 

effectively less moisture available for plant growth at all elevations. This future scenario is 

supported by evidence of shifts in California’s forest towards smaller, denser forests with an 

increase in oak species (McIntyre et al., 2015).

The Southern Sierra Nevada Mountains lie at a particularly sensitive geographic junction 

where drier, warmer conditions will persist into the next century and already this area has 

experienced high canopy water loss and tree mortality, particularly during the most recent 

drought from 2012-2015 (Asner et al., 2016). As climate changes, species and consequently 

forest structure will also shift geographically. There is evidence of these shifts in progress along 

a nearby elevational gradient where Pinus ponderosa and P. lambertiana experienced increased 

mortality compared to the other dominant tree species (Paz Kagan et al., 2017)‐ . The Southern 

Sierra Nevada mountains are also home to the largest trees in the world (Giant Sequoias 

Sequoiadendron giganteum); although these trees did not occur within the footprint of the 

available LiDAR imagery, the climate is very similar to the mid-elevation transition sites 
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(Soaproot Saddle/ Providence Creek) and these isolated pockets of Sequoias will also experience

Southern Sierran climatic changes in the next century. Extensive human management and fire in 

these forests has affected species composition and structure, highlighting the importance of 

anthropogenic influences on the forests of the Southern Sierra Nevada (Roy and Vankat, 1999). 

The elevation gradient spanned in this study allows us to make predictions about forest structure 

as climate changes in the next century, and we expect broad scale changes to be driven by water 

availability while fine-scale refugia will provide microclimatic buffering against hotter and drier 

conditions. 
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Appendix A. Supplementary material

Table S1:  List of all predictor variables. All climate variables are 270-m native resolution. 
Topographic variables are 1-m resolution unless otherwise indicated. The soil database is vector 
format (polygons with multiple attributes) with an approximate minimum mapping area of ~625 
ha for STATSGO and ~4 ha for SURRGO. 

Name Variable 
Category

Data Source

Annual Precipitation Climate California Basin Characterization Model
Annual Temperature Range Climate California Basin Characterization Model
Annual Temperature Seasonality Climate California Basin Characterization Model
Aridity Climate California Basin Characterization Model
Growing Degree Days with base of 
5C

Climate California Basin Characterization Model

Max Temperature Climate California Basin Characterization Model
Mean Annual Temperature Climate California Basin Characterization Model
Minimum Temperature Climate California Basin Characterization Model
Precipitation of the Driest Quarter Climate California Basin Characterization Model
Precipitation of the Warmest 
Quarter

Climate California Basin Characterization Model

Precipitation of the Wettest 
Quarter

Climate California Basin Characterization Model

Temperature of the Driest Quarter Climate California Basin Characterization Model
Temperature of the Wettest 
Quarter

Climate California Basin Characterization Model

Climatic Water Deficit Climate California Basin Characterization Model
digital elevation model Topography NEON AOP LiDAR derived DEM
slope (degrees) Topography NEON AOP LiDAR derived DEM
curvature (unitless) Topography NEON AOP LiDAR derived DEM
Sine Slope x Cosine Aspect Topography NEON AOP LiDAR derived DEM
Topographic Wetness Index Topography NEON AOP LiDAR derived DEM
Solar Radiation Model Topography NEON AOP LiDAR derived DEM
resampled curvature 5 m Topography NEON AOP LiDAR derived DEM
resampled curvature 10 m Topography NEON AOP LiDAR derived DEM
resampled curvature 20 m Topography NEON AOP LiDAR derived DEM
resampled TWI 5 m Topography NEON AOP LiDAR derived DEM
resampled TWI 10 m Topography NEON AOP LiDAR derived DEM
resampled TWI 20 m Topography NEON AOP LiDAR derived DEM
Available Water Content Soil NRCS STATSGO AND SSURGO database
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Bulk Density Soil NRCS STATSGO AND SSURGO database
Erodibility Soil NRCS STATSGO AND SSURGO database
Organic Matter Soil NRCS STATSGO AND SSURGO database
Potential of Hydrogen Soil NRCS STATSGO AND SSURGO database
Soil Loss Tolerance Soil NRCS STATSGO AND SSURGO database
Water Content Soil NRCS STATSGO AND SSURGO database
Geologic Parent Material Soil NRCS STATSGO AND SSURGO database
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Table S2: Summary of relative importance of individual variables in the generalized boosted 
models at all scales (25, 50, 100 m – top, 250, 500, 1000 m - bottom). Only variables with 
relative influence greater than 1% are shown in the table. 
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Table S3: Moran's I statistics for residuals (observed - expected values) of Chmax based on 
GBMs at each scale (Resolution), shown for lag 1(-6) where lag 1 is the Distance (m) between 
diagonal grid-cell centers (Queen's case).

Resolutio
n Lag 1 2 3 4 5 6

1000 m

Distance 1415 2829 4243 5657 7072 8486
Moran's
Index:

-0.072423 -0.037695 -0.016248 -0.015138 -0.012552
-
0.014529

Expected
Index:

-0.005155 -0.005155 -0.005155 -0.005155 -0.005155
-
0.005155

Variance: 0.001786 0.000737 0.000367 0.00026 0.000196 0.000164

z-score: -1.59192 -1.198484 -0.578805 -0.619214 -0.528253
-
0.732051

p-value: 0.111403 0.230729 0.562721 0.535776 0.597324 0.464138

500 m

Distance 708 1415 2122 2829 3565 4243
Moran's
Index:

0.01068 -0.009206 -0.004803 -0.003428 -0.003777
-
0.002545

Expected
Index:

-0.00119 -0.00119 -0.00119 -0.00119 -0.00119 -0.00119

Variance: 0.00036 0.000143 0.000068 0.000046 0.000033 0.000026

z-score: 0.625477 -0.670562 -0.437368 -0.329145 -0.452615
-
0.267194

p-value: 0.531658 0.5025 0.661845 0.742046 0.650826 0.78932

250 m

Distance 354 708 1061 1415 1768 2122
Moran's
Index:

-0.009378 -0.00266 -0.004261 -0.003259 -0.003747
-
0.002601

Expected
Index:

-0.000262 -0.000262 -0.000262 -0.000262 -0.000262
-
0.000262

Variance: 0.000073 0.000028 0.000013 0.000009 0.000006 0.000005

z-score: -1.066278 -0.451402 -1.104937 -1.018137 -1.425484 -1.09001

p-value: 0.286298 0.6517 0.269187 0.308613 0.154017 0.275709

100 m 

Distance 142 283 425 566 708 849
Moran's
Index:

0.221602 0.121867 0.080482 0.06398 0.05187 0.04391

Expected
Index:

-0.00004 -0.00004 -0.00004 -0.00004 -0.00004 -0.00004

Variance: 0.000021 0.000004 0.000002 0.000001 0.000001 0.000001

z-score: 48.459407 60.000531 58.793494 57.974943 57.139187
55.57155
5

p-value: 0 0 0 0 0 0

50 m Distance 71 142 213 283 353 421
Moran's
Index:

0.335441 0.242034 0.168434 0.133661 0.11132 0.092743

Expected
Index:

-0.00001 -0.00001 -0.00001 -0.00001 -0.00001 -0.00001
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Resolutio
n Lag 1 2 3 4 5 6

Variance: 0.000003 0.000001 0 0 0 0

z-score:
207.61491
1

244.41942
9

253.71107
8

250.67815
9

246.61340
5

242.9787
92

p-value: 0 0 0 0 0 0

25 m

Distance 36 71 107 142 177 213
Moran's
Index:

0.028154 0.022397 0.024301 0.020803 0.017605 0.015513

Expected
Index:

-0.000004 -0.000004 -0.000002 -0.000002 -0.000002
-
0.000002

Variance: 0.000001 0 0 0 0 0

z-score: 27.576317 35.913395 72.551284 77.490403 80.227294
81.65955
5

p-value: 0 0 0 0 0 0
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Fig. S1:  Partial dependence plots for the top five most important variables in generalized 
boosted models at each spatial scale. 
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Fig. S2: Maps of the top two climate, two topographic, one soil and elevation topography 
variables for low (left), transition (middle) and high elevation sites (right).  Topographic Wetness
Index was re-gridded at 100 m for display purposes. 
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Fig. S3: Canopy height models at each scale (top to bottom) and for low (left), transition 
(middle) and high elevation sites (right). Trees in the top %1 of the tallest portion of the canopy 
height model were included in each map.
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