
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Efficient In-DRAM Near-Bank Processing for Emerging Parallel Computing Workloads

Permalink
https://escholarship.org/uc/item/5xt5818s

Author
Xie, Xinfeng

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5xt5818s
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Efficient In-DRAM Near-Bank Processing for

Emerging Parallel Computing Workloads

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Xinfeng Xie

Committee in charge:

Professor Yuan Xie, Chair
Professor Dmitri Strukov
Professor Tim Sherwood
Professor Yufei Ding

March 2022

The Dissertation of Xinfeng Xie is approved.

Professor Dmitri Strukov

Professor Tim Sherwood

Professor Yufei Ding

Professor Yuan Xie, Committee Chair

March 2022

Efficient In-DRAM Near-Bank Processing for Emerging Parallel Computing Workloads

Copyright © 2022

by

Xinfeng Xie

iii

I am dedicating this dissertation to my parents, Jieli Fang and

Boxuan Xie, for bringing me to this world and giving me their

unconditional support and love throughout my life.

iv

Acknowledgements

I have received help from many people along my Ph.D. program. I would like to

express my deepest gratitude to these kind people and their nice help. Without their

generous help, it would be impossible for me to complete this dissertation.

First of all, I would like to thank my advisor, Prof. Yuan Xie. As my advisor, Prof.

Yuan Xie is very supportive of my research and professional skill development. He leaves

me the highest degree of freedom to select research topics and schedule project agendas,

and he always encourages me to explore topics I am most interested in. Moreover, when

I was frustrated with obstacles and difficulties, he always encourages me to insist on

my research direction. In addition to my research projects, he also supports all of my

decisions about industrial internships. These internship experiences deeply shape my

research tastes and motivate me to focus more on real-world problems.

Second, I would like to thank all members of my Ph.D. committee, Prof. Dimitri

Strukov, Prof. Tim Sherwood, and Prof. Yufei Ding, for their professional services.

Especially, I would like to thank Prof. Yufei Ding for her suggestions and help to improve

my research work in this dissertation.

Third, I would like to thank all of my labmates and collaborators, including but not

limited to Dr. Lei Deng, Dr. Fengbin Tu, Dr. Jiayi Huang, Dr. Maohua Zhu, Dr.

Abanti Basak, Alvin Glova, Liu Liu, Wenqin Huangfu, Nan Wu, Tianqi Tang, Gushu Li,

Ling Liang, Bangyan Wang, Jilan Lin, Zheng Qu, Zhaodong Chen, Guyue Huang, and

Anbang Wu. Working in a research lab of so many great researchers with diverse research

directions, I learned a lot from them in a wide spectrum of research fields. Among all

labmates and collaborators, I would like to especially thank Dr. Xing Hu and Dr. Peng

Gu for their help to both my research projects and my personal life. Dr. Xing Hu is the

senior researcher who helped me build fundamental skills in the early stage of my Ph.D.

v

program. She also helped me a lot when I was settling down in Santa Barbara. Dr.

Peng Gu is my most important collaborator, who is the co-primary contributor to two

projects in this dissertation. He taught me a lot about memory technology and hardware

knowledge. Also, his hard-working and enthusiasm for research always motivate me to

push myself forward in my research projects.

In addition to the help I received in my academic research projects, I also received a

lot of help from industrial mentors in internships during my Ph.D. program. I would like

to thank Dr. Andrea Di Blas, Dr. Qiuling Zhu, Dr. Yuchen Hao, Dr. Jianyu Huang,

Dr. Peter Ma, and Dr. Yanqi Zhou for their great mentorship during my stays in Google

and Facebook. I sincerely appreciate their efforts to help me build professional skills and

help me set up a good starting point in my career path.

Last but not least, I am thankful to my friends and my family members for their

continuous support and encouragement not only in this Ph.D. program but also in my

whole life. Especially, I thank my parents, Jieli Fang and Boxuan Xie, for bringing me to

this world and encouraging me to explore the beauty, art, and adventure of this journey.

vi

Curriculum Vitæ
Xinfeng Xie

Education

2022 Ph.D. in Electrical and Computer Engineering (Expected), Univer-
sity of California, Santa Barbara, United States.

2020 M.S. in Electrical and Computer Engineering, University of Cali-
fornia, Santa Barbara, United States.

2017 B.S. in Microelectronics Science and Engineering, Peking University,
Beijing, China.

Publications

[C1] Pengfei Zuo, Yu Hua, Ling Liang, Xinfeng Xie, Xing Hu, Yuan Xie. ”SEALing
Neural Network Models in Encrypted Deep Learning Accelerators.” 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2021.

[C2] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing
Hu, Yuan Xie. ”SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory
Accelerator.” 2021 IEEE International Symposium on High-Performance Computer Ar-
chitecture (HPCA). IEEE, 2021.

[C3] Abanti Basak, Jilan Lin, Ryan Lorica,Xinfeng Xie, Zeshan Chishti, Alaa Alameldeen,
Yuan Xie. ”Saga-bench: Software and hardware characterization of streaming graph an-
alytics workloads.” 2020 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2020.

[C4] Peng Gu,Xinfeng Xie (co-primary author), Yufei Ding, Guoyang Chen, Weifeng
Zhang, Dimin Niu, Yuan Xie. ”iPIM: Programmable in-memory image processing accel-
erator using near-bank architecture.” 2020 ACM/IEEE 47th Annual International Sym-
posium on Computer Architecture (ISCA). IEEE, 2020.

[C5] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie,
Yufei Ding, Chang Liu, Timothy Sherwood, Yuan Xie. ”Deepsniffer: A dnn model
extraction framework based on learning architectural hints.” Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems. 2020.

[C6] Kun Wu, Guohao Dai, Xing Hu, Shuangchen Li, Xinfeng Xie, Yu Wang, Yuan Xie.
”Memory-bound proof-of-work acceleration for blockchain applications.” Proceedings of
the 56th Annual Design Automation Conference 2019. 2019.

[C7] Yu Ji, Youyang Zhang, Xinfeng Xie, Shuangchen Li, Peiqi Wang, Xing Hu, Youhui
Zhang, Yuan Xie. ”Fpsa: A full system stack solution for reconfigurable reram-based nn
accelerator architecture.” Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

vii

[C8] Abanti Basak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie, Li Zhao,
Xiaowei Jiang, Yuan Xie. ”Analysis and optimization of the memory hierarchy for graph
processing workloads.” 2019 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). IEEE, 2019.

[C9] Peiqi Wang, Xinfeng Xie, Lei Deng, Guoqi Li, Dongsheng Wang, Yuan Xie. ”Hit-
net: Hybrid ternary recurrent neural network.” Proceedings of the 32nd International
Conference on Neural Information Processing Systems. 2018.

[C10] Jie Wang, Xinfeng Xie, Jason Cong. ”Communication optimization on GPU:
A case study of sequence alignment algorithms.” 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2017.

[J1] Xinfeng Xie, Peng Gu, Jiayi Huang, Yufei Ding, Yuan Xie. ”MPU-Sim: A Simu-
lator for In-DRAM Near-Bank Processing Architectures.” IEEE Computer Architecture
Letters, vol. 21, no. 1, pp. 1-4, 1 Jan.-June 2022, doi: 10.1109/LCA.2021.3135557.

[J2]Xinfeng Xie, Prakash Prabhu, Ulysse Beaugnon, Mangpo Phitchaya Phothilimthana,
Sudip Roy, Azalia Mirhoseini, Eugene Brevdo, James Laudon, Yanqi Zhou. ”A Trans-
ferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules.”
arXiv preprint arXiv:2112.04041 (2021).

[J3] Xiaobing Chen, Yuke Wang, Xinfeng Xie, Xing Hu, Abanti Basak, Ling Liang,
Mingyu Yan, Lei Deng, Yufei Ding, Zidong Du, Yuan Xie. ”Rubik: A Hierarchical Archi-
tecture for Efficient Graph Neural Network Training.” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2021).

[J4] Xinfeng Xie, Peng Gu, Yufei Ding, Dimin Niu, Hongzhong Zheng, Yuan Xie.
”MPU: Towards Bandwidth-abundant SIMT Processor via Near-bank Computing.” arXiv
preprint arXiv:2103.06653 (2021).

[J5] Xinfeng Xie, Xing Hu, Peng Gu, Shuangchen Li, Yu Ji, Yuan Xie. ”NNBench-X:
A Benchmarking Methodology for Neural Network Accelerator Designs.” ACM Transac-
tions on Architecture and Code Optimization (TACO) 17.4 (2020): 1-25.

[J6] Peng Gu, Xinfeng Xie, Shuangchen Li, Dimin Niu, Hongzhong Zheng, Krishna T
Malladi, Yuan Xie. ”Dlux: a lut-based near-bank accelerator for data center deep learn-
ing training workloads.” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2020).

[J7] Peiqi Wang, Dongsheng Wang, Yu Ji, Xinfeng Xie, Haoxuan Song, XuXin Liu,
Yongqiang Lyu, Yuan Xie. ”QGAN: Quantized generative adversarial networks.” arXiv
preprint arXiv:1901.08263 (2019).

[J8] Xinfeng Xie, Xing Hu, Peng Gu, Shuangchen Li, Yu Ji, Yuan Xie. ”Nnbench-
x: Benchmarking and understanding neural network workloads for accelerator designs.”
IEEE Computer Architecture Letters 18.1 (2019): 38-42.

[J9] Xinfeng Xie, Dayou Du, Qian Li, Yun Liang, Wai Teng Tang, Zhong Liang Ong,
Mian Lu, Huynh Phung Huynh, Rick Siow Mong Goh. ”Exploiting sparsity to accelerate

viii

fully connected layers of cnn-based applications on mobile socs.” ACM Transactions on
Embedded Computing Systems (TECS) 17.2 (2017): 1-25.

ix

Abstract

Efficient In-DRAM Near-Bank Processing for Emerging Parallel Computing Workloads

by

Xinfeng Xie

Despite the success of parallel architectures and domain-specific accelerators in boost-

ing the performance of emerging parallel workloads, contemporary computer organiza-

tions still face the bottleneck of data movement between processors and the main memory.

Processing-in-memory (PIM) architectures, especially those designs integrating compute

logics near DRAM memory banks, are promising to address this bottleneck. However,

such an in-DRAM near-bank integration faces hardware and software design challenges

in performance, area overheads, architecture complexity, and programmability.

To address these challenges, this dissertation focuses on developing efficient hardware

and software solutions for in-DRAM near-bank computing. First, this dissertation inves-

tigates the memory bandwidth bottleneck of contemporary hardware platforms through

in-depth workload characterization, which motivates in-DRAM near-bank processing so-

lutions. Second, this dissertation proposes multiple full-stack in-DRAM near-bank pro-

cessing solutions targeting different application scopes that vary from application-specific

to general-purpose computing. These solutions reveal a wide spectrum of trade-off points

among hardware efficiency, architecture flexibility, and software complexity. On top of

these solutions, this dissertation introduces an open-source simulation framework that

supports the architectural and software optimization studies of in-DRAM near-bank pro-

cessing. Finally, this dissertation develops novel machine learning-based compiler opti-

mizations for partitioning workloads on a chiplet hardware platform that has a distributed

compute-memory abstraction similar to in-DRAM near-bank architectures.

x

Contents

Curriculum Vitae vii

Abstract x

1 Introduction 1

2 NNBench-X: A Benchmarking Methodology for Neural Network Ac-
celerator Designs 6
2.1 Motivation . 8
2.2 Benchmarking Methodology . 13
2.3 Workload Characterization . 24
2.4 Discussion . 35
2.5 Conclusion . 37

3 SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory
Accelerator 39
3.1 Motivation . 41
3.2 SpaceA Architecture . 44
3.3 Mapping Method . 49
3.4 Evaluation . 53
3.5 Related Work . 66
3.6 Discussion . 68
3.7 Conclusion . 69

4 iPIM: Programmable In-Memory Image Processing Accelerator Using
Near-Bank Architecture 70
4.1 Motivation . 73
4.2 iPIM Architecture . 76
4.3 Compiler Support . 78
4.4 Evaluation . 85
4.5 Related Work . 95
4.6 Conclusion . 97

xi

5 MPU: Memory-Centric SIMT Processor via In-DRAMNear-Bank Com-
puting 98
5.1 Motivation . 101
5.2 MPU Architecture . 103
5.3 Compiler Support . 108
5.4 Evaluation . 111
5.5 Related Work . 122
5.6 Conclusion . 124

6 MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architec-
tures 125
6.1 MPU Simulator . 127
6.2 Calibration Studies . 133
6.3 Case Studies . 135
6.4 Related Work . 138
6.5 Conclusion . 139

7 A Transferable Approach for Partitioning Machine Learning Models on
Multi-Chip-Modules 140
7.1 Motivation . 142
7.2 Related Work . 146
7.3 Hardware Architecture and Problem Formulation 148
7.4 Reinforcement Learning with a Constraint Solver 151
7.5 Experiments . 157
7.6 Conclusion . 165

8 Summary 166

Bibliography 170

xii

Chapter 1

Introduction

The slowdown of technology node scaling urges hardware architecture innovations to

sustain the performance improvements of modern computing platforms. Over the last

several decades, parallel computing architectures, including multi-core CPUs and many-

cores GPUs, have achieved great success in accelerating many data-intensive parallel

computing workloads. Additionally, domain-specific hardware designs further boost the

performance improvements in many important application domains, such as TPU [1]

for machine learning applications. Despite these successful architecture innovations, the

advances in computation capability significantly outpace the improvements of memory

technology. Compared with the growth of computation capability on modern computing

platforms, the increase of memory bandwidth is much slower. This comes from the

difficulties in increasing the number of off-chip I/O pins and the frequency of memory

bus under stringent area, thermal, and signal integrity constraints. As a result, the

memory bandwidth wall emerges as a new bottleneck where data movements between

processors and memory units can hardly catch up with the computation throughput.

The 3D-stacking near-data-processing (3D-NDP) architecture [2] emerges as a promis-

ing approach to alleviate this memory bandwidth bottleneck. Currently, high-end GPUs

1

Introduction Chapter 1

are equipped with high-bandwidth memory (HBM) stacks, where off-chip data transfers

need to go through the low performance I/Os on the silicon interposer. The principal idea

of 3D-NDP is to closely integrate affordable logic components adjacent to the memory

stack. A large number of pioneering studies have adopted the processing-on-base-logic-die

(PonB) architecture, where general purpose cores (e.g., SIMT cores [3–10]) are placed on

the base logic die of the 3D stack to benefit from the intra-stack bandwidth enhancement

(around 2× w.r.t. HBM [10]). This solution provides a mediocre bandwidth improve-

ment because intra-stack memory accesses are still bounded by the limited number of

through-silicon-vias (TSVs) between memory dies and the base logic die. To overcome

this bandwidth bottleneck of TSVs, recent near-bank accelerators [11–13] further move

simple arithmetic units closer to the DRAM banks to harvest the abundant bank-internal

bandwidth (around 10× w.r.t. process-on-logic-die solution). These near-bank acceler-

ators have demonstrated significant speedups (around 2 × −14× w.r.t. GPU). More-

over, recent industrial near-bank prototypes from UPMEM [14] and Samsung [15] have

demonstrated that it is feasible to place compute-logic on DRAM dies. Thus near-bank

processing is promising to tackle the memory bandwidth issue.

Despite the promising future of near-bank processing, there are still hardware and

software challenges for efficient near-bank processing that need innovative solutions and

comprehensive studies. In terms of hardware designs, we need to not only innovate area-

efficient near-bank processing architectures but also investigate the trade-off between

hardware programmability and efficiency. Although prior work demonstrates several

near-bank processing designs through domain customization [11,12,15], the solutions for

efficient programmable in-DRAM compute-logics are still missing. Moreover, the fabri-

cation of such compute-memory hybrid chips is expensive so that the trade-offs among

application scopes, hardware costs, and performance are important. In terms of software

support, the unique hardware features of near-bank processing architectures together with

2

Introduction Chapter 1

a wide spectrum of hardware designs open a new space for studying efficient programming

language and system supports. Because of domain specialization, prior studies usually

only narrow this large space to their applications. In particular, near-bank processing

architectures have unique hardware features different from traditional processors that

are not taken into consideration in modern compilers and system software. For example,

different access patterns to the same memory bank could result in significant bandwidth

differences because DRAM row buffer locality affects DRAM timing. These unique hard-

ware features make the optimizations of not only data locality but also memory access

order important and challenging. Finally, an open-source simulator for studying the

hardware and software challenges of near-bank processing is missing. Even though there

are some existing simulators for PIM architectures, they can hardly support the unique

architecture features and the best fit programming model of near-bank processing. This

missing piece significantly impedes the research and development of efficient in-DRAM

near-bank processing solutions.

To address the aforementioned challenges for efficient in-DRAM near-bank processing,

we make the following contributions in this dissertation:

Architecture Designs: In this dissertation, we develop three near-bank processing ar-

chitectures targeting different application scopes. These architectures include application-

specific, domain-specific, and general-purpose computing designs. In particular, we de-

velop SpaceA for sparse matrix-vector multiplication, iPIM for image processing ap-

plications, and MPU for data-intensive parallel computing workloads Our architectural

innovations include lightweight hardware components through customization and decou-

pled control-execution to minimize in-DRAM overheads. Through our evaluations of

performance, power, and area overheads among these three architectures, this disserta-

tion provides a comprehensive view of trade-offs between application scopes and these

design metrics. In particular, application-specific designs provide the most significant

3

Introduction Chapter 1

performance and energy efficiency improvements with the smallest area overhead while

general-purpose design can also achieve considerable performance benefits with affordable

overheads.

Software Support: To address the challenges of unique memory abstraction and fully

exploit the hardware potentials of near-bank processing platforms, we develop several op-

timizations in this dissertation. These optimizations include data locality exploration in

SpaceA by clustering matrix rows with similar column indices to the same memory bank,

memory order enforcement in iPIM, and register location analysis in MPU. In addition

to these architecture-dependent optimizations, we also study the workload partitioning

problem on multi-chip-modules (MCMs) that have a similar memory space abstraction as

near-bank processing architectures. We develop a novel constrained reinforcement learn-

ing method to partition machine learning workloads on an MCM-based ML accelerator,

and our real hardware evaluation demonstrates its significant improvements over existing

search methods in not only the final achieved speedups but also the compilation time.

Simulation Infrastructure: Through our research projects for near-bank processing

architectures, we build and release an open-source simulator, MPU-Sim, for studying

hardware and software challenges. In particular, MPU-Sim supports unique architecture

features that are important to near-bank processing, such as individual memory bank

control, shared bus arbitration, and decoupled execution pipelines. Moreover, MPU-Sim

supports the single instruction multiple threads (SIMT) programming model that is the

best fit to control a massive number of parallel memory banks. These unique hardware

and software features are missing from existing PIM simulators. We conduct calibration

and case studies to validate MPU-Sim and demonstrate its potential usage for the future

research of near-bank processing solutions.

The remainder of this dissertation is organized as follows: Chapter 2 presents a

holistic benchmarking methodology for neural network accelerator designs, which moti-

4

Introduction Chapter 1

vates near-bank computing architectures to overcome the memory bandwidth bottleneck.

Chapter 3, Chapter 4, and Chapter 5 present near-bank processing architectures for

application-specific accelerator, domain-specific accelerator, and general-purpose com-

puting respectively. In particular, Chapter 3 presents SpaceA for sparse matrix vector

multiplication, Chapter 4 presents iPIM for image processing applications, and Chap-

ter 5 presents MPU for data-intensive parallel computing workloads. We also develop

and detail our open-source simulator, MPU-Sim, in Chapter 6 that is an important tool in

studying hardware and software challenges for efficient near-bank processing. In addition

to simulation tools, we also optimize the workload partitioning problem on real hardware

in Chapter 7 that has a similar memory space abstraction as near-bank processing archi-

tectures. Finally, Chapter 8 summarizes the research projects and contributions of this

dissertation for efficient in-DRAM near-bank computing solutions.

5

Chapter 2

NNBench-X: A Benchmarking

Methodology for Neural Network

Accelerator Designs

In this chapter, we introduce NNBench-X which is a benchmarking methodology for

neural network accelerator designs. This project conducts workload characterization and

hardware evaluation for neural network (NN) applications, which derives insights about

both workload characteristics and future hardware design guidelines. One of the most

important observations in this project is the memory bandwidth bottleneck in many NN

models despite the wide usage of compute-intensive tensor operations. Our hardware

evaluation reveals that these applications urge the memory bandwidth of future hardware

designs.

Neural network (NN) algorithms have demonstrated better accuracy than traditional

machine learning algorithms in a wide range of application domains, such as computer vi-

sion (CV) [16–19] and natural language processing (NLP) [20–22]. These breakthroughs

indicate a promising future for their real-world deployment. Deploying these applications,

6

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

especially for the inference stage, requires high performance under stringent power bud-

gets, which boosts the emergence of accelerator designs for these applications. However,

designing such an NN accelerator using application-specific integrated circuits (ASICs) is

challenging because NN applications are changing rapidly to support new functionalities

and improve accuracies, while ASIC design requires a long design and manufacturing

period. The accelerator design could be prone to becoming obsolete if the design fails

to capture key characteristics of emerging models. Therefore, a benchmark to capture

these workload characteristics is crucial to guiding NN accelerator design.

In this work, we propose an end-to-end benchmarking approach for software-hardware

co-design to quantitatively select applications and benchmark software-hardware co-

design by decoupling our approach into three stages, workload characterizations, software-

level model compression strategies, and hardware-level accelerator evaluations. In the

first stage, application set selection, we characterize NN applications of interest without

considering any software optimization techniques. After gathering their performance fea-

tures, we select representative applications for the original application set. In the second

stage, benchmark suite generation, users can refine the selected applications to generate

the final benchmark suite according to their model compression strategies. New NN

models for each application in the original benchmark suite will be generated according

to software-level optimizations, such as quantizing and pruning techniques. In the last

stage, hardware evaluation, users can provide the performance models of their accelerator

designs together with the assumptions of interconnection and host. Accelerators are eval-

uated with the benchmark suite generated from the second stage. Power, performance,

and area results are derived according to input performance models.

To demonstrate the functionality of our benchmark, we conduct a case study on de-

signing NN accelerators for general NN applications. First, we comprehensively analyze

57 models with 224,563 operators from the TensorFlow (TF) Model Zoo [23]. Second, we

7

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

generate benchmark suites by using several state-of-the-art software-level optimizations

including quantizing and pruning NN models. Finally, we evaluate several representative

accelerators including general-purpose processors (CPU and GPU), accelerator archi-

tecture (DianNao [24]), near-data-processing architecture (Neurocube [25]), and sparse-

aware architecture (Cambricon-X [26]).

Our contributions can be summarized as follows:

• We propose a novel benchmarking method, which selects the benchmark by analyz-

ing a user-input candidate application pool and covers software-hardware co-design

configurations with high flexibility. Therefore, our benchmark method is able to

provide guidelines for architecture design to trade-off application compatibility, al-

gorithm accuracy, and hardware performance.

• We conduct a case study of generating a general-purpose NN benchmark suite

from the TF Model Zoo while applying state-of-the-art NN model compression

techniques and evaluate it on representative architectures to demonstrate the func-

tionality of our benchmark method. Our case study reveals that CV and NLP ap-

plications show very different performance characteristics and favor different com-

pression techniques and hardware architectures.

2.1 Motivation

2.1.1 System Stack and Neural Network Models

Modern NN development and deployment system stacks are decoupled into several

levels. As shown in Figure 2.1, the whole system stack includes application, framework,

primitive, and hardware levels. From top to bottom, the application level focuses on

developing high accuracy algorithms, and sometimes makes trade-offs between accuracy

8

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Figure 2.1: System stack for the development and deployment of NN applications
including (1) application layer, (2) framework layer, (3) primitive layer, and (4) hard-
ware layer.

and performance when exploring different NN structures. The framework level focuses

on transforming high level abstractions into hardware primitives by providing a flexible

programming model and efficient runtime environment. Meanwhile, the primitive level

provides simple and well-optimized primitives for the hardware. For example, cuDNN [27]

provides well-optimized library for executing convolution on GPUs. At the bottom of the

whole development and deployment stack, the hardware level provides efficient hardware

platforms for executing NN applications.

Across these system stack levels, each NN model is represented by a computation

graph, which abstracts tensor operators as vertexes and tensor operands as edges to

present an NN model. The topology of computation graphs indicate the data depen-

dency among tensor operators. Figure 2.2 provides an example NN represented by these

two abstractions to demonstrate their differences. The computation graph abstraction

brings a more flexible representation of NN models and modern frameworks, such as

TensorFlow [28] and PyTorch [29], adopt computation graph as the programming model.

9

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Figure 2.2: An NN example represented by the layer-by-layer abstraction and the
computation graph with the detailed components of a Conv2D operator to explain
what are included in an operator.

Thus, the computation graph representation is general across different NN frameworks.

Moreover, because the computation graph does not have any constraint on the graph

topology, it is fully compatible with all widely used NN models including RNN models

even though it could introduce loops in the computation graph. All models from Tensor-

Flow Model Zoo [23] are represented by TensorFlow graphs, which is an implementation

of the computation graph concept. In the rest of this paper, we adopt this abstraction

taking an NN model as a computation graph.

2.1.2 Neural Network Benchmarks

Although many NN benchmark suites have recently been proposed, through analyzing

available suites we see that many demands are not met. We first narrow down the analysis

of existing suites by categorizing all previous benchmarks in terms of benchmark-suite

and benchmark-object. Then, we highlight the novelty of this work by comparing it to

BenchIP [30] and Fathom [31] in four detailed aspects.

All previous NN benchmarks can be categorized according to the benchmark-suite

and benchmark-object. A benchmark-suite consists of a set of representative workloads

10

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Table 2.1: Classifying NN benchmarks w.r.t. benchmark-suite and benchmark-object.
(⋆: benchmark-suite, □: benchmark-object)

BenchNN BenchDL DeepBench Fathom BenchIP Our Work
[32] [33] [34] [31] [30]

Application ⋆ ⋆ ⋆ ⋆ ⋆ □
Framework □
Primitive ⋆ ⋆
Hardware □ □ □ □ □

Table 2.2: The uniqueness of our benchmarking methodology. (✗ means the corre-
sponding feature is not supported, and ✓ means the corresponding feature is sup-
ported)

Fathom BenchIP Ours
Analysis based App. Selection ✗ ✗ ✓

Flexible with Update/Customize ✗ ✗ ✓

SW/HW Co-design ✗ fixed general
Evaluation on Accelerators ✗ ASIC ASIC/NDP

to be evaluated on different benchmark-objects. We classify the benchmark-suite and

benchmark-object into different levels in the system stack, as shown in Table 2.1. Al-

though BenchNN [32] is one of earliest efforts in building an NN benchmark, the benchmark-

suite is a bit out of date without updates. Prior study [33] (denoted as BenchDL)

proposes a benchmark suite for evaluating different deep learning software tools, i.e.,

frameworks in our system stack of NN applications. DeepBench [34] is a benchmark

suite comparing the performance of different primitives on different platforms. How-

ever, benchmarking NN applications from the primitive layer loses the whole picture.

Fathom [31] and BenchIP [30] serve a similar purpose as our work. However, they do not

take software-hardware co-design as the benchmark object. Different from all of them,

our benchmarking methodology targets at capturing end-to-end application-to-hardware

characteristics to guide architecture design for state-of-the-art NN workloads. Since both

Fathom and BenchIP serve a similar purpose of benchmarking NN accelerator designs, we

further detail our comparison with Fathom and BenchIP in four aspects, as summarized

11

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

in Table 2.2.

Quantitative analysis based benchmark selection: Accelerator designers usually

know the application domain they are interested in, which could include a large number

of NN applications. Thus, it is important to select representative NN applications to

guide hardware architecture design. Fathom and BenchIP pick their applications with

some empirical guidelines but not by any quantitative analysis. Even though they show

the effectiveness of their selected suits afterward, there is no guarantee that their selec-

tions are the most representative. On the contrary, our approach selects benchmarks

according to the results of extensive profiling and analyzing. Our method characterizes

NN applications through application features that are key to the performance, from the

perspective of architecture designs. At the end of Section 2.3.1, we show how our method

captures additional features that other benchmarks fail to cover.

Flexible with updates and customizations: We propose a benchmarking methodol-

ogy, not simply a benchmark suite. By doing this, we are subject to updates due to the

rapid developing NN algorithms. Statistics [30] have shown that within one year, the NN

models proposed in top tier conferences double. For a fixed benchmark suite, it is difficult

to know whether to extend the suite and whether a new accelerator is needed when a new

model appears. Although evaluating a new model on existing accelerators can help us

understand its characteristics to some extent, the demand for updating the benchmark

suite and designing a new accelerator would be challenging without an in-depth work-

load characterization. In addition, most of the accelerators target a certain application

scenario (e.g., autonomous cars), instead of a general NN processor. A single one-for-all

benchmark suite does not adequately address these needs. Instead, we generate different

suites according to the user-customized candidate application pool.

SW/HW co-design: Recent NN accelerator designs usually include both software

optimizations, such as model pruning and quantization, and hardware optimizations.

12

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Our benchmark method is the first for accelerators with a comprehensive awareness of

software-hardware co-design. Although BenchIP [30] includes sparse models, such as

Sparse VGG, into their application set as representative workloads, these considerations

are insufficient due to two reasons. First, pruned models are very similar to their original

models in their work. For example, Sparse VGG performs very similar to VGG in terms of

extracted performance features, making it redundant. Second, their sparsity benchmark

cannot consider all model compression techniques. For example, structural sparsity [35]

is not covered.

Diversity of evaluation platforms: Because of the growing heterogeneity of hardware

platforms, targeting only ASIC designs is not sufficient. We evaluate our benchmarks

not only on CPU/GPU and ASICs but also on other innovative architectures such as

NDP architectures. In addition, our evaluation method is not limited to any NN frame-

work. Instead, we use the computation graph as a programming model with a general

abstraction for the execution of NN applications across different platforms.

2.2 Benchmarking Methodology

An overview of our benchmarking method is shown in Figure 2.3. Our benchmarking

method includes three stages. The first stage is application set selection, with an appli-

cation candidate pool as its user input and original application set as its output [36].

The second stage is benchmark suite generation, with the model compression technique

as the user input and the previous generated original application set as another input.

The last stage is the hardware evaluation, which takes the generated benchmark suite

and the hardware performance models as its inputs, and then outputs the performance

results. The rest of this section will introduce these three stages in detail.

13

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

StageUser Input Output

Application
Candidate Pool

Model Compression
Techniques

Hardware Perf.
Models

Configurations
Data type: int8
Sparsity: 30%

MatMul:
4096x4096x4096
à40ms

MatMul:
4096x4096x4096
à40ms

Accelerator Perf.
MatMul:
4096x4096x4096
à40ms

Original
Application Set

Benchmark
suite

Performance
Results

…
M-1 M-2

…
M-1 M-2

M-1
M-2

Perf. Power Area

…
…

Application Set
Selection

Benchmark Suite
Generation

Hardware
Evaluation

M
et

ric
-1

Metric-2

Operators

Fe
at

ur
e-

1

Feature-2

Applications

Sparse_In

sparse
op1

Sparse_O
ut

op1

In

O
ut

Host

Accelerators

op1

op2

dispatch

sparse
op

dense
op

VG
G …

Re
sN

et

In
ce

pt
io

n

Figure 2.3: Benchmark method overview with three main stages and their correspond-
ing inputs and outputs.

2.2.1 Application Set Selection

In the first stage, application set selection, we select diverse and representative NN

applications from the application candidate pool which includes the applications of the

user’s interests.

The proposed application set selection consists of two phases, operator-level and

application-level analysis, as shown in Figure 2.4. Since tensor operators are the primi-

tives of NN applications, operator-level analysis is conducted first, before application-level

analysis. In the operator-level analysis, we extract all operators from the application can-

didate pool, and use two important metrics, locality and parallelism, as the performance

feature to represent an operator. Then, all the operators are clustered into several groups

according to the extracted operator features. This process of getting operator clusters is

detailed as Algorithm 1. After the operator-level clustering, application-level analysis is

performed as the second phase. Applications are first profiled on baseline architectures

before they are quantified by time breakdown on the different operator clusters. The

14

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Original Application Set

Extract Operators

Extract Operator
Features

Cluster Operators

Operator Features

Operator Clusters

Operator Pool

Profile

Extract Application
Features

Select Applications

Application Features

Computation Graph
and Operator Trace

Application Candidate Pool

Ap
pl

ic
at

io
n

An
al

ys
is

O
pe

ra
to

r A
na

ly
sis

1

2

3

4

5

6

Figure 2.4: Application set selection process with two phases: operator-level analysis
phase and application-level analysis phase.

process of getting application features is detailed as Algorithm 2. After obtaining these

application features, we conduct a similarity analysis for all applications. Finally, an

application set composed of diverse and representative workloads can be selected out of

the application candidate pool. Instead of clustering operators according to their func-

tionalities, as in prior work [31], our work is fundamentally different because it clusters

tensor operators according to their architectural features, i.e. locality and parallelism.

We observe that functionality-based classification is not sufficient and can cause incorrect

bottleneck characterization, as validated by the experiments at the end of Section 2.3.1.

Operator-level Analysis

As shown in Figure 2.4, we perform operator-level analysis in the first phase to extract

operator features and cluster operators based on these operator features. Our operator-

level analysis first extracts all operators from the applications in the application candidate

pool. Then, we analyze operator features from the perspective of architecture designs.

15

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Finally, we cluster these operators.

To improve the generality of the generated benchmark suite, we use platform-independent

metrics as the operator feature. Specifically, we define two platform-independent met-

rics, Locality and Parallelism, for the operator-level analysis to reflect general architec-

ture considerations when designing accelerators for tensor operators. A common practice

in accelerator design is to consider customized data-path designs, such as the different

dataflow structures in Eyeriss [37], that can leverage both the locality of these operators

and can utilize multiple processing elements (PEs) to exploit the available parallelism.

Thus, these two platform-independent metrics can be useful to help understand opera-

tors from the viewpoint of architectural designs for overall demands. The definition of

these two metrics used to represent the architectural feature of an operator is detailed as

follows.

Locality. This metric is defined as the amount of data needed by an operator divided

by the number of scalar arithmetic computations it needs. The amount of data needed

by an operator is equal to the sum of the input tensor size and the output tensor size.

Input tensors include all input data needed by this operator, such as model weights. Our

locality metric reflects the overall locality of an operator because it indicates the average

times of a byte used in the scalar arithmetic computations. Moreover, the average times

of a byte used in the computation indicates the locality in an ideal memory system where

a cache hit happens if the same location was accessed before. For example, when the

locality metric of an operator equals to 0.1, it means that this operator performs an

arithmetic scalar computation on 0.1 byte of data on average. In other words, each byte

is used for 10 (= 1
0.1

) scalar computations on average. In an ideal memory system, this

byte is accessed 10 times (1 access per arithmetic computations), and the miss rate is

10% because only the first access of these ten accesses will result in a cache miss. Another

example is that when the locality metric of an operator equals to 12, it means that this

16

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

operator performs an arithmetic scalar computation on 12 bytes of data on average. In

this case, each data is accessed only once for the computation, and the miss rate in an

ideal memory system is 100% because there is no data-reuse. In summary, the cache

miss rate of an operator in an ideal memory system is min{Locality, 100%} when the

cache line size is 1 byte. Thus lower values of this metric indicate better locality for the

operator.

Parallelism. This metric is defined as the ratio of scalar arithmetic operations which

can be executed in parallel, assuming sufficient hardware resources. Thus the quantitative

value of this metric falls into the range between 0 and 1. Higher values of this metric

express greater available parallelism for the operator. This metric reflects the parallelism

of computations in terms of data dependency. For example, a tensor Add operator

which adds two tensors with N elements in an element-wise manner has N scalar-add

operations. All of these scalar-add operations can be executed in parallel without any

true dependency. Therefore, the parallelism for this tensor Add operator is 100%. Take a

tensorMax operator as another example. The functionality of a tensorMax operator is to

find the maximum value in the input tensor with N elements. A tree-based reduction can

explore the parallelism with logN sequential steps that must be executed in a sequential

manner. In each step of this tree-based reduction, all of the N scalar-max operations can

be executed in parallel given sufficient hardware resources. As a result, the parallelism

for a tensor Max operator is 1
logN

.

After obtaining operator features in the aforementioned metrics, we can group oper-

ators into several clusters according to these operator features.

Application-level Analysis

As shown in Figure 2.4, we perform application-level analysis in the second phase

to extract application features and select applications based on these application fea-

17

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

tures. We define the performance feature of an application as the time breakdown on

the different operator clusters obtained from the operator-level analysis. We denote the

number of operator clusters as n. Specifically, the performance feature is denoted as

f⃗ = (R1, R2, ..., Rn) where Ri represents the percentage of the elapsed time spent in the

i-th class operators. We profile each application from the application candidate pool on

the baseline hardware, usually a CPU or a GPU, to obtain its time spent in each opera-

tor cluster. By analyzing applications in terms of time breakdown, benchmark users can

have a better understanding of which operator class acts as a bottleneck on the baseline

hardware. Because operators are grouped by their architecture features of both locality

and parallelism, it provides clearer guidelines to design specialized hardware to accelerate

the bottleneck operator cluster.

We rely on the application-level analysis phase to understand the application char-

acteristics on baseline platforms. Thus there are several major design decisions when we

are building application features. First, we use profiling information on existing base-

line platforms for a more accurate analysis. Although baseline platforms are usually

general-purpose processors, such as CPU or GPU, they can be changed to other hard-

ware devices depending on design goals. For example, if NNBench-X is used to develop

the second generation of TPU, the first version of TPU could be the baseline device [1].

Second, because this phase in the application set selection stage, this phase needs to be

independent from software-hardware co-design solutions to be evaluated by NNBench-X.

Specifically, this phase does not take any software-hardware co-design solutions as inputs

and extracts application features based on performance models of these co-designs, such

as the roofline model [38]. Third, we do not consider inter-operator parallelism as a part

of application features because software frameworks usually take operators as the granu-

larity of scheduling. These frameworks will offload operators to hardware instead of the

whole computation graph and they are responsible to exploit inter-operator parallelism.

18

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Algorithm 1 Operator-level analysis to get operator clusters.
Input: A list of models (M) and the number of operator clusters (N)
Output: Operator cluster centers
Init All Op Features = []
for m in M do

for op in m.operator list() do
op features = ExtractOperatorFeatures(op)
All Op Features.append(op features)

end for
end for
cluster centers = kMeans(All Op Feastures, num clusters=N)
Return cluster centers

Algorithm 2 Application-level analysis to get application features.
Input: A list of models (M) and the centers of operator clusters (cluster centers)
Output: The application features for each model (All App Features)
Init All App Features = []
for m in M do

Init app feature = [0.0] * len(cluster centers)
Init total time = 0.0
for op in m.operator list() do

op features = ExtractOperatorFeatures(op)
cluster id = GetNearestClusterCenterID(op features, cluster centers)
app feature[cluster id] += op.elapsed time
total time += op.elapsed time

end for
app feature = app feature / total time
All App Features.append(app features)

end for
Return All App Features

However, when designing an accelerator taking the whole computation graph as inputs,

this metric can be added into application features as discussed in Section 2.4.

After this two-level analysis, we select representative applications out of the applica-

tion candidate pool to build the original application set.

19

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Figure 2.5: An example for benchmark suite generation to generate a new computation
graph according to user-provided quantizing (int16) and pruning strategies (sparse
weights).

2.2.2 Benchmark Suite Generation

In the second stage, benchmark suite generation, we provide interfaces for users to

customize their NN compression techniques to generate the final benchmark suite.

This stage is motivated by the success of model compression techniques, either quan-

tizing or pruning, and the fact that state-of-the-art accelerator designs leverage these

techniques for better computation and memory access efficiency by designing specialized

hardware, either fixed-point ALU or sparse tensor computation engines. Although we

obtain a diverse and representative application set after the first stage, we cannot bench-

mark different accelerators using only one set of applications because of the diversity of

NN model compression techniques.

Each application from the original application set is a computation graph. To cus-

tomize different NN model compression techniques, we provide interfaces for the users to

specify the data type of tensors in this computation graph. For tensors storing the pre-

trained weights, users can overwrite these weights by using pruned weights so that these

tensors become sparse. Sparsity information can also be included as an additional at-

tribute in the tensors storing weights. The sparsity of the tensors produced by activation

functions, such as ReLU, can be computed in runtime. Figure 2.5 illustrates a case for

20

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

these interfaces. Suppose we quantize the original application from the single-precision

floating-point into 16-bit fixed-point, and prune weights by 90%, the structure of the com-

putation graph remains the same but the operators and tensors are changed accordingly,

as shown in Figure 2.5. Users can define and import model compression methods, and

change the information of operators and tensors to generate the final benchmark suite

according to their software-level studies in the training stage. Compression techniques

resulting in intolerable accuracy degradations should not be imported into this stage. At

the end of this stage, NNbench-X produces the final test set of applications composed of

quantized and pruned NN models for evaluations.

Because our benchmark methodology provides interfaces for the users to specify

their own compression methods instead of defining several patterns, NNBench-X is able

to support a wide range of compression methods. For example, when NNBench-X is

used to evaluate software-hardware co-designs exploiting the structural sparsity [39, 40],

NNBench-X passes model weights to compression methods provided by the users to gen-

erate weights in structural sparse patterns. In this case, the pruned models with weights

in structural sparse patterns will be in the generated benchmark suite at the end of this

stage.

2.2.3 Hardware Evaluation

In the final stage, the hardware evaluation, we evaluate the generated benchmark

suite on accelerator designs.

Although this stage can be completed by users with detailed simulation results of ac-

celerators, we build a system-level simulator for fast performance estimation in the initial

architecture design stages to provide high-level guidelines for accelerator designs. Our

system-level simulator evaluates accelerators on the generated benchmark suite by using

21

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Figure 2.6: The workflow of hardware evaluation with the user-inputs for hardware
modeling including models for host, interconnect, and accelerators.

the performance models of the accelerator, the host, and the interconnection between the

accelerator and the host. These performance models are provided by users so that they

can be as simple as a roofline model or as complicated as a cycle-accurate simulator de-

pending on the demands of hardware evaluation. For example, early design stages could

use the roofline model to decide the balance between computation and memory resources

while later design stages could need cycle-accurate simulators to model more hardware

details. The inputs and outputs of our system-level simulator are shown in Figure 2.6.

For each application in the generated benchmark suite, our simulator schedules operators

into either the accelerator or the host by a first-come-first-serve scheduling algorithm.

When an operator is not supported by the accelerator, it will be launched into the host

with subsequent data transfer between the accelerator and the host. The performance

results of running supported operators on accelerators and overheads of data transfer

between the host and accelerators are provided by input hardware models which are a

part of inputs to our system-level simulator. To demonstrate the usage of our system-

level simulator, we use a simple but effective analytical model, the roofline model, in

22

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Section 2.3.2 to evaluate various architectures including DianNao [24], Neurocube [25],

and Cambricon-X [26].

Our system-level simulator plays a role similar to that of frameworks. Our straight-

forward scheduling policy may not consistently achieve optimal performance, but inte-

grating accelerators into the whole system with developed primitives is time-consuming

and impractical in the initial design space exploration stage for architectures. As the

case study shown in Section 2.3.2, the performance speedups of different architectures

could vary in orders of magnitudes. Therefore, our coarse but fast estimations can still

provide insightful guidelines in architectural designs. Furthermore, the accuracy of esti-

mation in this stage depends on the accuracy of performance models provided by users.

Although we use a simple analytical model, roofline model, in Section 2.3.2 as a demo

case, users can provide models capturing more hardware details to fit their demands

exploiting various hardware designs. For example, when it is decided to use dataflow ar-

chitectures in NN accelerators and our benchmark methodology is used to evaluate and

compare different dataflow designs, the MAESTRO [41] framework can be used to pro-

vide the performance results of different architectures for supported operators. Another

example is that when the users want to evaluate software-hardware co-designs exploiting

structural sparsity, the user-provided performance models of hardware designs need to

take the sparsity into account [39, 40]. In both examples, our system-level simulator is

responsible to provide operator information, such as input tensor shapes and operator

weights, while users need to implement their own performance models as the backend to

return the performance results of running the operator on their accelerators. For accel-

erator designs in Section 2.3.2, we implement a roofline model as the backend for various

accelerator designs which returns the performance by using the roofline model according

to operator information and hardware specifications. For the performance of operators

on real devices, such as CPU and GPU, we implement the backend performance model

23

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

by running the operator on the real device and returning the measured time.

2.3 Workload Characterization

We conduct a case study of benchmarking NN inference accelerators to demonstrate

the usage of our benchmark approach. To this end, we set the TensorFlow (TF) Model

Zoo [23] (with 57 NN models and 224,563 operators) as the application candidate pool,

and our software-hardware co-design evaluation includes several state-of-the-art model

compression techniques and hardware designs. The version of the TF Model Zoo we

used in this case study contains 57 NN models from 24 different applications. These

NN models have very diverse structures including convolutional neural networks (CNNs)

and recurrent neural networks (RNNs). From the perspective of learning algorithms,

these models are from different learning methods, including supervised learning, unsu-

pervised learning, and reinforcement learning. Thus our application pool has very good

coverage on existing NN applications from different application domains, with different

model structures, and trained by different learning algorithms. This section follows the

three-step process introduced in Section 2.2. First, Section 2.3.1 studies our application

set selection process to select representative applications from TF Model Zoo. By com-

paring to the application set of prior benchmarks, we also demonstrate the advantages

by the end of Section 2.3.1. Then, Section 2.3.2 evaluates several software-hardware co-

designs on these selected applications. In the process of both application set selection and

evaluating software-hardware co-designs, we conclude several observations on application

characteristics and architecture design guidelines from these studies.

24

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

2.3.1 Application Selection from TensorFlow Model Zoo

As the first step of our analysis flow, we apply the operator-level analysis to most of

the applications from the TensorFlow Model Zoo [23]. We first perform extract operators

Figure 2.4- 1) to all 224,563 operators from the application candidate pool. We then

extract operator features (Figure 2.4- 2) and measure both the locality and the paral-

lelism of the operators as defined in Section 2.2.1. The resulting distribution of operator

features is shown in Figure 2.7a. It labels different operator functionalities including

matrix multiplication (MatMul), convolution (Conv), pooling, reduction, element-wise,

and other irregular operators (Others) where computations and memory accesses are

dependent on input tensor values. Based on the performance feature distribution, we

conduct cluster operations step (Figure 2.4- 3), which groups these operators into three

clusters. We apply the k-means algorithm and obtain the cluster results shown as Fig-

ure 2.7b. After this, we conduct an application-level analysis. Because most accelerator

designs compare their performance to two kinds of general-purpose processors, CPU and

GPU, we profile (Figure 2.4- 4) all applications from the application candidate pool on

Intel Xeon E5-2680 CPU and NVIDIA Titan Xp GPU. To extract application features

(Figure 2.4- 5), we use the three operator classes from previous operator analysis. The

application performance feature in this case study is denoted as f⃗ = (R1, R2, R3), where

R1, R2, and R3 represent the time breakdown of an application into three operator clus-

ters. The performance feature distributions measured on CPU and GPU are shown as

Figure 2.8a and Figure 2.8b. Since R1 + R2 + R3 = 1, we plot two dimensional scatter

figures where x-axis stands for the R2, y-axis stands for the R3, and R1 can be derived

by 1−R2−R3. Finally, we select applications (Figure 2.4- 6). Based on the distribution

of the application features on CPU, we select ten diverse and representative applications

as the original application set by evenly sampling the application candidate pool. The

25

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

(a) Operators from the pool. (b) Operator clusters.

Figure 2.7: The distribution of operator features for all operators from the application
candidate pool (TF Model Zoo) and the clustering results by running k-means.

(a) CPU (b) GPU

Figure 2.8: The distribution of application features using CPU and GPU as baseline devices.

distribution of these ten applications is shown in Figure 2.9. Brief descriptions for these

ten applications can be found in Table 2.3.

Observations on the operator-level analysis. We classify operators into several

categories to obtain observations on their architectural characteristics. The operator

categories are designed to reflect operator functionalities or data access patterns. Among

these operator categories, matrix multiplication (MatMul), convolution (Conv), and pool-

ing attract intensive attention in many accelerator designs because of their importance

in early NN models, such as VGG models [16]. The activation functions are also very

26

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Table 2.3: Brief descriptions for ten applications selected into the original application set.
Application Description Application Domain
textsum [21] Text summarization Natural Language Processing
skip thoughts [22] Sentence-to-vector encoder Natural Language Processing
pcl rl [42] Reinforcement learning Others
entropy coder [43] Image file compression Information and Coding
mobilenet [19] Image classification Computer Vision
inception resnet v2 [17,18] Image classification Computer Vision
image decoder [44] Image file decompression Information and Coding
rfcn resnet101 [45] Object detection Computer Vision
faster rcnn resnet50 [46] Object detection Computer Vision
vgg16 [16] Image classification Computer Vision

common in NN models, such as ReLU operation in convolutional neural networks [16–18],

and all of them are vector-like element-wise operations. Thus we create a category as

Element-wise in Figure 2.7a for all operators performing vector-like operations. We also

create a separate category named as reduction for operators with reduction patterns,

such as the Softmax and Argmax operations. Although these five categories cover most

of the operators, we put the rest of operators into the last category as others.

We make several observations from the results of operator clustering (Figure 2.7a-

2.7b). First, convolution and matrix multiplication operators are similar to each other,

and most of them have good locality. Because of existing reduction patterns along some

tensor dimensions, such as input channels in convolution operators, these two kinds of

operators possess moderate parallelism. Second, all element-wise operators have identical

parallelism while the computation intensity on each tensor element can vary significantly.

Because of fully parallel scalar operations for all elements in element-wise operators,

element-wise operators have the largest degree of parallelism (100%). Third, operators

with the same or similar functions can have very different performance features, such as

reduction and pooling operators. Clustering these operators by functions and designing

hardware accordingly would result in bottleneck mis-prediction.

27

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Figure 2.9: The distribution of application features for selected applications out of
the application candidate pool (TF Model Zoo).

Architecture implications of operator clusters. The application feature in our work

is directly associated with the breakdown of execution time spent on different operator

clusters. Since we cluster operators according to their architecture features, i.e. locality

and parallelism, operators in the same cluster could favor similar architecture designs.

Specifically, operators in the first cluster have limited parallelism and moderate locality,

whose execution time contributes to R1. These operators could benefit from the local-

ity optimizations while they can hardly benefit from more parallel processing elements

(PEs). Operators from the second cluster have both moderate parallelism and locality,

such as matrix multiplication and convolution, whose execution time contributes to R2.

These operators could benefit from parallel PE design, more computation resources, and

optimizations on locality, such as the careful design of data-flow to exploit data reuse.

Finally, operators from the third cluster can be fully parallelized whose execution time

contributes to R3. Increasing the number of PEs is helpful to exploit the parallelism

while these operators will become bounded by memory bandwidth when the number of

PEs is sufficient.

From the perspective of applications, application features indicate the distribution

of execution time on these operator clusters. Thus these application features help iden-

28

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

tify the application bottleneck from the perspective of operator clusters, which further

provides architecture design guidelines. For example, an application with a large R2 in-

dicates that its bottleneck comes from operators in the second cluster, which could prefer

architecture designs with more computation resources or larger on-chip memory. Simi-

larly, an application with a large R3 could prefer memory-centric architectures for higher

effective memory bandwidth because it is bounded by operators in the third cluster.

Observations on the application-level analysis. For the application-level analy-

sis in Figure 2.8a-2.8b, we summarize the following observations. First, Conv, MatMul,

and Element-wise operators take up a majority of the application time in most of the

applications, since most of the applications distribute near the line R2 + R3 = 1. Sec-

ond, in contrast to CPU, GPU is more likely to be bounded by R1, due to its more

powerful computing resource and higher memory bandwidth. In addition, R3 takes a

larger percentage on GPU, indicating there are opportunities for GPU memory system

optimization. Third, the consideration of application scenarios reveals additional trends.

Both of Figure 2.8a and Figure 2.8b label different application domains including com-

puter vision (CV), natural language processing (NLP), hybrid CV and NLP (CV+NLP),

information and coding, and others. We classify applications into application domains

according to the task of applications. Applications for traditional CV or NLP tasks are

labeled as CV or NLP respectively. The task of some applications is mixed by traditional

CV or NLP tasks. For example, image captioning requires image understanding and cap-

tion generation where image feature extraction is a CV task while the caption generation

involving text summary is an NLP task. The application domain of these mixed tasks is

denoted as CV+NLP. In addition to these traditional CV or NLP tasks, some tasks focus

on the coding of information, such as file compression, decompression, and encryption.

The application domain of these tasks related to information and coding is labeled as

Information and Coding although they could need domain knowledge related to CV or

29

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

(a) CPU (b) GPU

Figure 2.10: The application feature distribution of applications from our applica-
tion candidate pool (TF Model Zoo) compared to the distribution of applications in
Fathom.

NLP when handling corresponding information, such as image compression. The do-

main labeled as Others includes the rest of the applications, most of the applications

in this category belong to applications using reinforcement learning, such as robotics

applications. Most CV applications are bounded by operations from R2 (mostly Conv

and MatMul). On the contrary, most NLP applications are bounded by operations from

the R3 (mostly element-wise operators). This indicates that memory-centric computing

architectures can be helpful for these NLP applications.

The advantage of our methodology. We first demonstrate the advantage of the

operator-level analysis by showing how misleading bottleneck diagnosis would occur if

the aforementioned analysis is neglected. Without operator-level clustering, one has

to extract the application feature with function-based operator clustering. For exam-

ple, as described by Fathom, Add operators are clustered as the category Elementwise

Arithmetic, but transpose operators are clustered as another category Data Movement.

However, when using our operator-level analysis, these two clusters should be in the

same category (R3 in our notation), since they have very similar architecture features

in terms of locality and parallelism. There would be an issue in the case where R3 is

30

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

the application’s bottleneck, but as part of R3, neither Elementwise Arithmetic nor Data

Movement individually shows as a bottleneck. The bottleneck is then misunderstood. The

described problem happens for 15 out of 57 models in the TF Model Zoo. Taking applica-

tion video prediction stp [47] for example, according to the performance feature defined

in Fathom, it will show Conv2D as the bottleneck (taking 38% of total time). How-

ever, the elapsed time of operators from the R3 cluster takes 52% of total time, making

R3-like operators (memory-intensive highly parallel operators) the actual bottleneck, not

Conv2D. Instead of accelerating Conv2D, which would result in more computation re-

sources or larger on-chip memory, our analysis recommends that the architecture should

be designed with higher effective memory bandwidth, such as processing-in-memory ar-

chitectures [25,48–50], for R3-like operators because they take the majority of the elapsed

time.

Second, our benchmark process selects more diverse and representative applications.

Compared to Fathom, our method selects applications from a large application candi-

date pool based on extracted application features. Therefore, our analysis-based selection

guarantees the diversity and representativeness of selected applications from the view-

point of performance features. To understand the representativeness of Fathom appli-

cations on the TF Model Zoo, we go through the same application analysis process for

applications (8 applications in total) from Fathom. The results measured on the CPU and

the GPU are shown as Figure 2.10a and 2.10b. Through comparisons, we can conclude

that the application selection in Fathom is fairly good due to its similar distribution as

TF Model Zoo. However, compared with Fathom, our benchmark selection in Figure 2.9

is more evenly distributed, making it more representative as a general benchmark. For

example, the two selected benchmark applications in the orange circle in Figure 2.10a are

too close to each other, making one of them redundant. In addition, some applications

are underrepresented, such as applications in green circles in Figure 2.10a and 2.10b. The

31

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Table 2.4: The description of hardware platforms.
Platform GPU Nuerocube DianNao Cambricon-X
Peak Comp (GOPs) 12,100 132.4 482 528
Peak Mem (GB/s) 547.7 320 250 250
TDP (W) 250 21.5 0.4851 0.9541

Area (mm2) 471 68 3.021 6.381

Tech Node (nm) 16 15 65 65
1These power and area data are from their original papers without considering the power consumption

and area cost of DRAM dies.

applications from Fathom in these green circles are not sufficiently representative of the

other applications with similar characteristics.

2.3.2 Hardware Evaluation

We need the benchmark generation step (Section 2.2.2) after application selection,

to plug-in the NN compression setup. This step is user-customized. According to our

evaluation target, we generate our benchmark suite with three config:nnbench-x:urations:

no compression (for GPU), quantized 16-bit fixed-point (for DianNao), and 16-bit fixed-

point quantized and 90%/95% pruned (for Cambricon-X).

Finally, we conduct studies on evaluating several state-of-the-art software-hardware

solutions in this section. In particular, we evaluate GPU (Titan Xp), Neurocube [25], Di-

anNao [24], and Cambricon-X [26] with different model compression techniques. Among

these hardware platforms we evaluated, GPU is a representative many-core processor

exploiting the massive parallelism in tensor operators. Neurocube is an NDP design that

exploits an internal memory bandwidth of memory cubes to accelerate memory-bound

operators while DianNao is a compute-centric accelerator design with on-chip computa-

tion and data movements tailored for NN applications. Both of these two platforms are

designed for computing fixed-point arithmetic, which needs the help of NN model quanti-

zation from the software-level. Cambricon-X has a similar design as DianNao except that

32

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

its design is intensively customized to exploit the sparsity of NN models, which needs

the help of NN model pruning. For the purpose of architecture comparison, Figure 2.11

shows the architecture of Neurocube, DianNao, and Cambricon-X.

Table 2.4 includes comparisons among these platforms in terms of power, perfor-

mance, and area. These numbers are collected from official product specifications or

their original papers. Due to the lack of detailed power models and area models on these

platforms, such as the off-chip DRAM power and area data of DianNao and Cambricon-X,

we only estimate the performance in our case studies. We use our system-level simulator

to estimate the performance of these platforms compared to the CPU baseline imple-

mentation. According to the performance results presented in the original papers, we

derive an analytical model based on the roofline model [38] to estimate the performance

of each supported tensor operators on accelerators. Results on the GPU are profiled and

measured from the execution on a real machine. We assume that these heterogeneous

platforms are connected to a host CPU, Intel Xeon E5-2680 CPU, through PCIe and

any unsupported operator will be offloaded into the CPU for computation. The time

of execution on the host CPU and data transfers triggered by offloading unsupported

operators will be counted in the final elapsed time. However, we exclude the time used

for transferring input data and model weights into these platforms because transferring

different batches of input data can overlap in real-world inference stage, and loading

trained weights into these platforms is a one-time overhead.

Our simulation results are shown in Figure 2.12. The original application set is

evaluated on the GPU, and results are shown in Figure 2.12a. Figure 2.12b presents

the performance results on Neurocube for applications quantized into 16-bit fixed-point

data-type. Figure 2.12c presents the performance results for DianNao and Cambricon-

X. Applications executed on DianNao are also quantized into 16-bit fixed-point. We

evaluate two pruning strategies for applications executed on Cambricon-X which prunes

33

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

Figure 2.11: The architecture overview of (a) Neurocube, (b) DianNao, and (c) Cam-
bricon-X to distinguish key architecture differences among them: (a) an NDP design,
(b) a compute-centric design, and (c) a compute-centric design with the support for
sparsity.

Figure 2.12: The speedups over CPU baseline of applications on (a) GPU without
any model compression (b) Neurocube with models quantized into 16-bit fixed-point
(c) DianNao with models quantized into 16-bit fixed-point, Cambricon-X (90%) with
models further pruned 90% weights, and Cambricon-X (95%) with models further
pruned 95% weights.

90% and 95% weights of models, denoted as Cambricon-X (90%) and Cambricon-X (95%),

respectively.

Insights from the result. By evaluating three representative accelerator designs with

various compression config:nnbench-x:uration, we make the following observations from

Figure 2.12. First, GPU can benefit these applications with a higher R2 ratio in their

performance features. These applications are usually computation bound. Since appli-

cations on the x-axis are ordered by the increasing order of R2, applications closer to the

right direction along the x-axis spend more time in the second cluster operators, of which

most are convolution and matrix multiplication operations. As shown in Figure 2.12a,

GPU obtains higher speedups on applications on the right side of the x-axis. Second,

34

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

near-data computing architectures favor applications (mostly NLP related) with a higher

R3 ratio. Figure 2.12b shows that Neurocube achieves higher speedups on applications

on the left side of the x-axis. Finally, we found that weight pruning is less attractive for

NLP applications than it is for CV applications. Figure 2.12c shows the comparison of

DianNao and Cambricon-X in terms of performance benefits from pruning NN model

weights, which reduces the computation and memory workloads of matrix multiplication

and convolution operations. Comparing Cambricon-X (90%) to DianNao, Cambricon-X

can achieve higher speedups than DianNao, which mainly benefits from the reduction of

computation and memory workloads due to pruned models. Such speedups are more sig-

nificant for computation-bound applications as opposed to memory-bound applications.

The results of models with different sparsities, Cambricon-X (90%) and Cambricon-X

(95%), indicate that pruning more weights can have slight benefits on memory-bound

applications while significant benefits on computation bound applications.

2.4 Discussion

Software-hardware co-design in MLPerf. Neural network applications, especially

the inference stage, benefit from the hardware-software co-design methodology. Thus our

work urges taking the whole software-hardware co-design solution as a benchmark object

instead of benchmarking pure hardware designs by providing a fixed set of applications.

The recently released MLPerf inference benchmark [51] includes an Open Division under

the same motivation as our study, although they are a preliminary release and the rules of

Open Division are immature. Compared to the immature rules in this preliminary release,

our methodology provides a concrete interface to take the model compression techniques

as the input, and generate the compressed models as the output. Our work takes model

compression techniques as the software optimizations in the end-to-end methodology,

35

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

and our case studies reveal new insights for the impact of software optimizations on

hardware designs. We still need to further refine stages in our methodology to embrace

a larger scope of software solutions varying model architectures for the same prediction

task, which is an important perspective of our future work.

Extensibility of our benchmark methodology. There are many configuration choices

in our case study, which should be configured case by case. For example, we use local-

ity and parallelism as operator features to capture various architecture designs. They

are sufficient to indicate the overall architecture demand, such as compute-centric vs.

memory-centric designs, because these two metrics are major considerations among dif-

ferent architecture designs to capture memory access patterns and computation intensity.

However, these two metrics are not able to capture finer-grain locality and parallelism

characteristics. When finer-grain operator characteristics are needed, the operator-level

analysis phase needs to be adapted to new features, such as adding the reuse distance [52]

to reflect the average distance between data reuses. Another example is adding new ap-

plication features. We consider time breakdowns in application features because we think

inter-operator parallelism is usually implemented in software frameworks, such as Tensor-

Flow [28], for a higher flexibility of scheduling. However, when designing an accelerator

taking the whole computation graphs as inputs and exploiting inter-operator parallelism

at the hardware-level, the characteristics of computation graphs, such as the average of

node degrees, can be added to the application features. In summary, configurations in

our benchmark methodology are not fixed and some of them are tailored to our case

study. We expect this benchmark methodology to be used by varying configurations case

by case. Despite the change of configurations, such as adding reuse distance into the op-

erator features, the key principles of our benchmark methodology, selecting applications

quantitatively and benchmarking software-hardware co-designs, remain the same.

NNBench-X for new NN workloads. Because of the promising results from NN

36

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

techniques, there are new algorithms developed for challenges in various applications.

In these fast-growing algorithm studies, our benchmark methodology is feasible to char-

acterize new NN workloads to provide insights for accelerator designs. For example,

Bayesian neural networks (BNNs) [53,54] attract attention due to its ability to deal with

uncertainty during the estimation. In our benchmark methodology, we decompose BNN

models into operators and go through the application set selection flow to understand

their characteristics. The only class of operators in BNN models different from existing

NN models in the TF Model Zoo is sampling to generate the learned distribution of

weights. Because each element in weights is sampled independently from its distribution

in BNNs, these sampling operators have 100% parallelism. Thus these operators belong

to the third cluster in Figure 2.7b and their execution time contributes to R3. BNN mod-

els with these sampling operators will have a larger R3 than NN models with the same

NN architecture. As a result, BNN models could have a larger demand on memory band-

width, which is the same as most of the workloads bounded by R3. If the performance

of BNN models is significantly bounded by these sampling operators, efficient sampling

implementations in the accelerator should also be considered [55]. These architectural

implications will be helpful when designing new accelerators for BNN models.

2.5 Conclusion

In this work, we propose a novel end-to-end benchmarking method for NN acceler-

ator designs. To select the most representative NN applications and evaluate software-

hardware co-designs, our benchmark method is composed of three stages: application

set selection, benchmark suite generation, and hardware evaluation. The application set

selection stage selects representative NN applications according to quantitative metrics

to ensure the diversity of the benchmark suite. The benchmark suite generation and

37

NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs Chapter 2

hardware evaluation stages refine the selected applications according to user-provided

model compression techniques and evaluate the compressed models on accelerator de-

signs. We conduct a study of benchmarking several state-of-the-art NN accelerator de-

signs to demonstrate the usage of our benchmark method. We analyze applications from

the TensorFlow Model Zoo and observe that applications from the same application do-

mains have similar bottlenecks. Moreover, we evaluate several state-of-the-art software-

hardware co-design solutions, including hardware designs for quantized and pruned NN

models. From our case studies, we observe that computation-centric and memory-centric

architectures can have different benefits for different application domains. Also, we find

that pruning NN models provides little benefit to memory-bound applications. Through

our case studies and observations, we are convinced that our benchmark method is prac-

tical and feasible to provide insightful guidance to NN accelerator designs.

38

Chapter 3

SpaceA: Sparse Matrix Vector

Multiplication on

Processing-in-Memory Accelerator

This chapter presents the first of three full-stack near-bank processing solutions in this

dissertation. In particular, this near-bank processing solution is an application-specific

accelerator for sparse matrix vector multiplication (SpMV). We first introduce the back-

ground of SpMV and the performance characterization study of SpMV on an NVIDIA

GPU that is one of the state-of-the-art hardware platforms. Our profiling results reveal

a high DRAM utilization, which indicates that SpMV has been well-optimized on GPU

and the memory bandwidth becomes the bottleneck.

1 Although near-bank processing architectures provide higher effective bandwidth

compared to the traditional memory interface between processors and memory, there are

1©2021 IEEE. Reprinted, with permission, from Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak,
Lei Deng, Ling Liang, Xing Hu, Yuan Xie. ”SpaceA: Sparse Matrix Vector Multiplication on Processing-
in-Memory Accelerator.” 2021 IEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA). IEEE, 2021.

39

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

several challenges in accelerator designs. First, the memory latency to access data in

other banks is much higher than in the local bank. The processing element (PE) design

should hide such a high latency for fully utilizing the bank level bandwidth. Second,

since interconnect bandwidth is much smaller than that of the memory bank, memory

access should be kept as local as possible to ease the burden on the interconnect. Third,

PEs near the memory banks have a strict area budget, which requires the compute logic

to remain fairly simple, but effective. In addition, challenges of workload balancing and

locality exploitation of the input vector also exist when distributing non-zero elements

across PEs.

Our accelerator, SpaceA, is designed to overcome these challenges. To overcome the

first challenge, each PE near the memory bank possesses a queue to hold the non-zero

elements for processing and memory requests to input vector according to the column

index of non-zero elements in this queue. Memory requests are non-blocking to hide the

memory access latency to other banks by exploiting memory-level parallelism (MLP). To

address the second challenge, content addressable memory (CAM) is integrated at the

bank level to cache elements from the input vector so that the amount of memory access

to other banks is reduced by exploiting the locality. This helps alleviate the bandwidth

pressure on the TSVs. The third challenge related to the strict area budget is tackled

by the fact that our PE design only includes a queue and a floating-point unit (FPU).

Therefore, our PE occupies a very small area overhead, which makes it practical to be

integrated near the memory banks. In addition to these design options to overcome

hardware challenges, we develop a mapping scheme for SpaceA to distribute the non-

zero elements of the sparse matrix across different memory banks to achieve workload

balance among PEs and to exploit the locality of data from the input vector.

In summary, the contributions of this project are as follows:

40

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

• We design an accelerator, named SpaceA, to leverage outstanding memory requests

to hide the memory access latency to non-local banks. To reduce the memory traffic

to non-local banks, we integrate CAM buffers in SpaceA to exploit the locality of

input vectors.

• We develop a mapping scheme for SpaceA to distribute the non-zero elements

across different banks to achieve workload balance among PEs and to exploit the

data locality of the input vector.

• Our evaluation of SpaceA with the proposed mapping scheme on matrices [56]

from real-world applications reveals 13.5x speedup and 87.49% energy saving on

average over the GPU baseline with only 4.86% area overhead. Additionally, our

case study on graph applications demonstrates a better performance than state-of-

the-art graph accelerators, Tesseract [57] and GraphP [58], because of the higher

effective bandwidth provided by near-bank integration instead of placing compute-

logic on the base die.

3.1 Motivation

3.1.1 SpMV Workloads

SpMV is a widely used operation in many applications that use algorithms based on

a large amount iterations of matrix-vector multiplication in which the coefficient matrix

is sparse. We denote an SpMV operation as Y = Y + AX where X is the input vector,

A is the input matrix, and Y is the output vector. We denote the dimensions of the

input matrix as m and n, which indicate that the matrix has m rows and n columns.

Additionally, we denote nnz as the number of non-zero elements. Each component of the

output vector can be computed as Yi = Yi +
∑n

j=0AijXj where Yi is the i-th component

41

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

i-1, i-1, …, i-1

Col idx in Row i-1

Values in Row i-1

Coordinate List (COO)

Compressed Sparse Row (CSR)

i, i, …, i i+1, i+1, …, i+1

Col idx in Row i Col idx in Row i+1

Values in Row i Values in Row i+1

Col idx in Row i-1

Values in Row i-1

Col idx in Row i Col idx in Row i+1

Values in Row i Values in Row i+1

Row idx

Col idx

Vals

Row ptr

Col idx

Vals

Ptr i-1 Ptr i Ptr i+1

Figure 3.1: The compressed sparse row (CSR) format of a sparse matrix.

of vector Y , Xj is the j-th component of vector X, and Aij is the element located in i-th

row and j-th column of matrix A. For a sparse matrix, the computation of AijXj can be

skipped for locations where Aij = 0.

For highly sparse matrices, compressed storage formats such as Coordinate List

(COO) and Compressed Sparse Row (CSR) store the non-zero elements efficiently and

remove ineffective computation for the zero elements. The COO format is composed of

three lists of length nnz. These three lists store the row index, the column index, and

the value, respectively, for each non-zero element. The CSR format, on the other hand,

consists of three arrays: 1) row ptr, 2) col idx, and 3) vals. Each entry in the row ptr

array points to an entry in the col ids array which represents the beginning of the list of

column ids containing non-zero elements in that row. The row ptr entry simultaneously

points to the entry in the vals array which records the value of the non-zero elements.

Figure 3.1 demonstrates how non-zero elements of i-th row are stored.

Compared to COO, CSR is more compact since it saves the memory space of row

index array from the length of nnz to the length of m + 1. Therefore, CSR is the most

widely used sparse matrix format and csrmv() [59] is supported in almost all libraries

42

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

on multi-core and many-core architectures to compute SpMV. SpaceA is designed to

perform SpMV based on the CSR format.

3.1.2 SpMV on GPU

The poor reuse opportunity in the sparse matrix and irregular memory access patterns

make SpMV memory-bound on multi-core and many-core processors. Compared to the

CPU, GPU provides higher memory bandwidth through the GDDR memory bus and

exploits memory-level parallelism to hide long memory access latency. To understand

the state-of-the-art implementation of SpMV on GPU, we profiled SpMV computation

with a collection of real-world matrices from the University of Florida sparse matrix

collection [56]. The names, application domains, and characteristics of these matrices

are elaborated upon Table 3.1. For the implementation of SpMV on GPU, we use the

library routine csrmv() from the vendor-provided library cuSPARSE [59], which is a

library optimized for sparse linear algebra operations on NVIDIA GPU. We measured

the performance and profiled the DRAM metrics of SpMV on NVIDIA GPU, Titan Xp.

DRAM read throughput is collected by nvprof . In addition, we measured effective read

throughput which is computed as nnz times the size of a non-zero element over the

measured execution time. Moreover, we compute the achieved GFLOPs of SpMV as

nnz over the execution time, and the ALU utilization as the achieved GFLOPs over the

maximum GFLOPs provided by GPU. Compared to the maximum DRAM bandwidth

of Titan Xp, which is 547.8 GB/s, Figure 3.2 shows that the current average bandwidth

utilization (as represented by the mean orange bar) of SpMV on GPU is 27.08% and

43.39% when excluding matrices 12, 13, and 142. In addition, Figure 3.2 shows that

the ALU utilization is only 2.68%. Figure 3.2 provides two important starting points

2Exceptions represent social networks and web graphs which show relatively poorer utilization of the
DRAM bandwidth, in agreement with prior studies [60–62].

43

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100

200

300

 DRAM Read Throughput ALU Utilization (%)

 Effective Read Throughput

Matrix ID

T
h

ro
u

g
h

p
u

t
(G

B
/S

)

0

2

4

6

 A
L

U
 U

ti
li

z
a

ti
o

n
 (

%
)

Geo.
Mean

Figure 3.2: Profiling results of SpMV on GPU (The details of each matrix are listed
in Table 3.1).

for our work. First, the small ALU utilization compared to the much larger DRAM

bandwidth utilization demonstrates the memory-bound behavior of SpMV, motivating

our PIM-based architecture. Second, the effective bandwidth utilization (represented by

the blue bar) is close to the actual bandwidth utilization (represented by the orange bar),

which indicates that actual hardware innovation (rather than algorithmic innovation to

eliminate redundant DRAM accesses) is required for higher performance SpMV.

3.2 SpaceA Architecture

3.2.1 Overview

The architecture design of SpaceA is demonstrated in Figure 3.3. As shown in Fig-

ure 3.3(a) and 3.3(b), SpaceA is composed of several 3D stacked memory cubes connected

in a memory network. To exploit bank-level memory bandwidth, SpaceA integrates a PE

near every memory bank. The input/output vectors are evenly partitioned and stored

in memory banks on the DRAM layer just above the base logic die, whereas the sparse

matrix is statically distributed by the mapping algorithm (Section 3.3) on all the other

DRAM layers. The separation of the storage allows each PE to process the sparse matrix

44

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

Bank Bank

Row Buffer

R
e

g
.

F
ile

FPU Ctrl

L1
LDQ

L1

CAM

PE

Queue

R
e

g
.

F
ile

Ctrl FPU

Row Buffer

PE

Queue

DRAM Dies
for Matrices

Logic Die TSV

Bank
Group

Mem. Ctrl

L2
LDQ

L2

CAM

NoC

Router

TSV
TSV

Vault

Bank
Group

1

PE

Cube
Cube

0

Cube

1

Cube

2

Cube

3

(a)

(d)

(b) (c)

PE
2

3 6

54

7

DRAM Die
for Vectors

Figure 3.3: SapceA architecture design: (a) memory cubes connected through mem-
ory network, (b) the overview of a cube, (c) components in a bank group, and (d)
components in a vault controller.

in a streaming manner to maximize the read bandwidth. In addition, on the DRAM die

for vectors, the elements with the same index from input and output vectors are stored

in the same memory bank. This is because, in an iteration of SpMV, the output of i-th

iteration is the input of i + 1-th iteration. Therefore, this storage scheme can eliminate

data movement between iterations for input and output vectors.

3.2.2 PE Design

In SpaceA design, there is a PE dedicated for each memory bank. Since matrix

and vector data are separated into memory banks on different dies, PEs attached to

these memory banks have different functionalities. The PE of memory banks storing

the sparse matrix computes partial dot-product results, while the PE of memory banks

storing vectors accumulates the partial results which is finally stored into the output

vector. We denote the first type of PE as Product-PE and the second type of PE as

Accumulation-PE. Although these two types of PEs have different functionalities, they

can be realized by the same set of hardware components. The hardware components of a

45

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

bank group are shown in Figure 3.3(c). Following is the description of how these compo-

nents are designed for the Product-PE and how they are used for the Accumulation-PE.

Product-PE: Product-PE is responsible for processing non-zero elements of the

sparse matrix in its local memory bank. After tRAS cycles, a DRAM row will be loaded

into the row buffer of the memory bank (Figure 3.3(c)- 1). Using the similar idea of CSR

matrix format, when distributing non-zero elements into memory banks, the mapping

algorithm aligns the number of non-zero elements of a row into the size of a DRAM row.

This alignment causes non-zero elements of the same DRAM row to end in the same row

index in the original sparse matrix. As a result, when storing non-zero elements in a

DRAM row, the leading 4 bytes are used to indicate the row index of non-zero elements

in this DRAM row, and the rest of the space is used to store pairs of column index and

value.

As shown in Figure 3.3(c)- 2 , non-zero elements from a DRAM row buffer are pushed

into a PE queue if the PE queue is not full. The PE queue is physically realized with

scratchpad memory while the control logic in Product-PE accesses elements inside it as

a logical cyclic queue. For each non-zero element in the PE queue, it needs to compute

the partial result AijXj where the row index i, column index j, and value Aij are already

known. The control unit scans the PE queue in a cyclic manner when it is not empty, and

then processes a non-zero element every Lp cycle (Figure 3.3(c)- 3). For each unprocessed

non-zero element, it will check whether Xj is ready in the register file.

Case I: Xj is not ready: When Xj is not ready, the Product-PE needs to read it from

other memory banks because vectors are stored separately from the matrix. The access

latency to a remote bank is significantly larger than the access to its local memory. To

exploit the locality of the input vector, SpaceA integrates an L1 CAM for PEs in the

same bank group. This L1 CAM provides a key-value store so that it can help to search

the value Xj according to the column index j (Figure 3.3(c)- 4). When the access to

46

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

L1 CAM misses, it will return a miss signal which indicates that the remote access is

unavoidable. To hide the latency of remote access, the control unit will continue to

process the next element in the PE queue instead of waiting for the value Xj. Since

this is a logical cyclic queue, the control unit will access this non-zero element again

after scanning the rest of non-zero elements in the PE queue. Meanwhile, L1 CAM will

send the requested column index j to the load queue (LDQ) (Figure 3.3- 5) to remove

the duplication of data requests. If this column index has not been requested yet, it

will send out the request through TSV (Figure 3.3(c)- 6). When the requested value Xj

comes back, it will be written into both L1 CAM and register file. The corresponding

load request j will be removed from the load queue. Since the control unit repeatedly

iterates through all elements in the PE queue, Xj will become ready when the control

unit accesses it again after the requested value comes back.

Case II: Xj is ready: When Xj is ready in the register file, it will send Aij, Xj, and the

current partial result Yi to Floating-point Unit (FPU) for computing Yi = Yi + AijXj

(Figure 3.3(c)- 7). After accumulating the partial result into Yi, the non-zero element is

labelled as processed. When all of non-zero elements from the same DRAM row in the

front of the PE queue are processed, they are popped out of the queue and the control

unit moves the front pointer of the queue. The granularity for popping non-zero elements

is the same size of a DRAM row buffer so that the whole row buffer of new data can be

pushed into the PE queue, and checked as to whether the row index of this new row is

different from the existing row index. The partial result Yi is flushed out through TSV

when the new row index is different from the existing row index.

Accumulation-PE: Bank groups with Accumulation PE serve two purposes. First,

since the memory banks of this bank group store some elements of the input vector, it

will respond the value Xj according to the requested column index j. For this purpose,

the request first goes to L1 CAM, and then goes to the memory bank if Xj is not in the

47

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

L1 CAM (CAM miss). This part only needs the help of the memory bank, L1 CAM, and

control unit. Second, since the memory banks of this bank group store some elements of

the output vector, they need to accumulate partial results Yi. To achieve this purpose,

the SRAM of the PE queue is used to realize an update buffer where the elements of

the output buffer are stored. When Yi comes, it will first look up the output buffer by

the row index stored in the register file. If corresponding output elements are not in

the update buffer, it will be loaded into the update buffer from the memory bank. Then

existing Yi and new partial result Yi will be accumulated with the help of the FPU. When

the update buffer is full, it will write the logical first row back to the memory bank, and

load a new row containing Yi from the memory bank.

3.2.3 Vault Controller

The components of a vault controller on the base die are shown in Figure 3.3(d).

In addition to the existing NoC router for inter-vault communication and the memory

controller to read and write memory banks attached to the same TSVs, SpaceA integrates

a L2 CAM and a corresponding load queue to exploit the locality of the input vector in

the communication path between bank groups. There are three types of packets a vault

controller could potentially process.

Type I: Xj request. When the vault controller receives the request for the value of Xj, it

will first look up the L2 CAM according to the column index j. If Xj exists in L2 CAM,

the vault controller will generate a response packet with the value of Xj, and send it

back to the source of the request packet, either by NoC router to other vaults or TSV to

bank groups attached to the same TSV. If Xj does not exist in L2 CAM, it will look up

the load queue (LDQ) to remove duplicated requests for Xj. The vault controller will

forward this request to the bank group storing Xj according to the column index j by

48

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

row

col

N1=5, C1={1,3,4,6,8}

N2=4, C2={2,4,5,6}

N3=6, C3={1,2,4,7,8,10}

N4=3, C4={3,6,9}

N5=2, C5={2,8}

N6=4, C6={4,6,7,9}

N7=7, C7={1,4,5,6,7,8,10}

N8=4, C8={3,5,7,9}

N9=6, C9={1,2,4,6,8,10}

N10=2, C10={3,9}

N11=3, C11={1,6,10}

N12=4, C12={2,4,7,8}

N13=3, C13={4,6,9}

N14=8, C14={1,2,3,5,6,7,8,10}

N15=4, C15={3,4,6,7}

N16=2, C16={2,6}

PE1
R1={1,2}, W1=9

Col1=C1 U C2={1,2,3,4,5,6,8}

PE2
R2={3,5}, W2=8

Col2=C3 U C5={1,2,4,7,8,10}

PE3
R3={4,6,10}, W3=9

Col3=C4 U C6 U C10={3,4,6,7,9}

PE4
R4={7,16}, W4=9

Col4=C7 U C16={1,2,4,5,6,7,8,10}

PE5
R5={8,12}, W5=8

Col5=C8 U C12={2,3,4,5,7,8,9}

PE6
R6={9,11}, W6=9

Col6=C9 U C11={1,2,4,6,8,10}

PE7
R7={13,15}, W7=7

Col7=C13 U C15={3,4,6,7,9}

PE8
R8={14}, W8=8

Col8=C14={1,2,3,5,6,7,8,10}

BG1
PE1 & PE4

Col1 U Col4={1,2,3,4,5,6,7,8,10}

BG2
PE2 & PE6

Col2 U Col6={1,2,4,6,7,8,10}

BG3
PE3 & PE7

Col3 U Col7={3,4,6,7,9}

BG4
PE5 & PE8

Col5 U Col8={1,2,3,4,5,6,7,8,9,10}

Vau

1

BG1
&

BG4

Col1 U Col4 U Col5 U Col8
={1,2,3,4,5,6,7,8,9,10}

Vau

1

BG2
&

BG3

Col2 U Col3 U Col6 U Col7
={1,2,3,4,6,7,8,9,10}

Row Assignment (Algorithm 1)
PE Placement

Bank Group Placement

Sparse MatrixHW Config. Phase I Phase II Mapping
Output

Figure 3.4: The flow of our mapping algorithm which is composed of two phases: row
assignment to logical PEs (Phase I) and PE placement to bank groups and vaults
(Phase II).

either the NoC router or the TSV.

Type II: Xj response. When the vault controller receives the response for the value of Xj,

the vault controller will have the same logic as the Product-PE hearing back the value of

Xj. Besides forwarding this packet to its destination, the vault controller will write the

value Xj into its L2 CAM and remove the corresponding entry in the load queue.

Type III: Yi partial result: The vault controller for partial result Yi will forward it to the

corresponding vault storing Yi according to the row index i. If Yi is stored in the same

vault, it will forward it to the bank groups on the bottom of DRAM dies by TSVs so

that the partial result of Yi can be accumulated with the help of the Accumulation-PE.

3.3 Mapping Method

49

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

Algorithm 3 Row assignment to logical PEs.
Init nnz = nnz

#PEs

Init Kp = a large constant value
for pid = 0 to #PEs do
Init the set of assigned rows, Rpid = ∅
Init the set of unique column indexes, COLpid = ∅
Init the number of assigned non-zero elements, Wpid = 0

end for
for i = 0 to m do
Ni: the number of non-zero elements in i-th row
Ci: the set of column indexes in i-th row
for pid = 0 to #PEs do
if Wpid +Ni > nnz then
Scorepid = −(Wpid +Ni − nnz)×Kp

else
Overlap = |Ci

⋂
COLpid|

Scorepid = max{Overlap
Ni

, 1
Wpid+Ni

}
end if

end for
maxID = the pid with highest Scorepid
RmaxID = RmaxID

⋃
{i}

COLmaxID = COLmaxID

⋃
Ci

WmaxID = WmaxID +Ni

end for

3.3.1 Overview

The proposed mapping method distributes the non-zero elements of a sparse matrix

into the memory banks of SpaceA for Product-PE to process. There are two overall

metrics to efficiently use SpaceA hardware: 1) workload balance and 2) locality. First,

since all PEs process non-zero elements in parallel, the performance is bounded by the

slowest PE, which requires workload balance among PEs. Second, since SpaceA integrates

L1 CAM at the bank group level and L2 CAM at the base die of each vault to mitigate

the latency of accessing the data of input vector, non-zero elements assignment should

consider the column index locality of non-zero elements to leverage L1 and L2 CAM for

keeping access local.

50

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

To achieve workload balance and leverage the locality of the input vector, we design

the overall mapping pipeline shown in Figure 3.4, which takes the hardware configuration

of SpaceA and the sparse matrix as the input. As shown in Figure 3.4, the first phase

assigns different rows to PEs, which are logical PEs without any physical location infor-

mation. In this phase, we exploit the intra-PE locality by assigning the rows of non-zero

elements with similar column index pattern to the same PE. Meanwhile, this phase also

balances the number of non-zero elements assigned to PEs. The algorithm used in this

phase is further introduced in Section 3.3.2. In the second phase, we place all logical

PEs into the physical location in SpaceA. This phase clusters PE workloads with similar

sets of column index from the non-zero elements, and minimizes the maximal number of

unique column indexes across bank groups and vaults to achieve workload balance. The

formulated optimization problem is detailed in Section 3.3.3.

3.3.2 Logical PE Workload

The first phase assigns multiple rows of the sparse matrix into PEs, each of which is

considered equivalent. In this phase, we balance the workload among PEs and maximize

the intra-PE locality. Algorithm 3 shows the scheme, which iterates through all rows and

determines which PE is the best to be assigned for a specific row according to the current

assignment of previous rows. The metric used to determine the best PE for processing

this row is designed according to the following two principles. First, if the current row

i assigned to the current PE pid makes the current PE process the number of elements

larger than nnz, we add a penalty for the number of elements exceeding this budget.

The budget nnz is computed as nnz over the total number of logical PEs. When each

PE processes nnz elements, the workloads of PEs are perfectly balanced. Second, the

column index overlap between non-zero elements of the current row i and the non-zero

51

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

elements of existing rows assigned to the current PE pid is computed. In case of an

overlap, the overlap ratio is taken as the score, which is the number of overlap non-zero

elements over the number of non-zero elements of row i. When there is no overlap, the

factor one over the number of non-zero elements assigned to the current PE is taken as

the score. This score rating metric means we optimize locality first and the workload

balance when the number of non-zero elements does not exceed the given budget nnz.

After computing the score of each PE, the row i is assigned to the PE with the highest

score.

Although mapping the sparse matrix optimally to logical PEs is an NP-hard problem,

our mapping heuristic is feasible in terms of time complexity. We denote P as the

number of PEs, Wpid as the number of non-zero elements assigned to PE pid, and Ni

as the number of non-zero elements in the row i. Each row needs the time complexity

of O(Ni

∑P
pid=1 logWpid). Since Wpid is always smaller than nnz (the total number of

non-zero elements), the upper bound of the time complexity of a row assignment can

be simplified as O(NiPlognnz). Summing up the time complexity of assigning all rows,

since
∑m

i=1 Ni = nnz, the time complexity for finishing all row assignments has an upper

bound O(P × nnzlognnz). This time complexity is scalable in terms of the number of

PEs and the number of non-zero elements. Therefore, the algorithm of this phase is

practical enough, and its effectiveness is further demonstrated in Section 3.4.3.

3.3.3 Logical PE Placement

In this phase, each logical PE is placed into the position of a physical PE. We decouple

this phase into two stages. First, logical PEs are clustered into bank groups. Second,

bank groups are clustered into vaults. To achieve locality and workload balance, this

phase minimizes the maximal number of unique column indexes across bank groups and

52

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

vaults when clustering banks and bank groups. Both stages, clustering logical PEs and

bank groups, represent similar problems in terms of problem structure and optimization

target. Therefore, we abstract the problem of both stages as follows. Given p sets

S1, S2, ..., Sp, we divide them evenly into q groups, and each group has the same number

of sets k where p = kq. Therefore, we denote Cgw as the w-th set assigned to the group

g. The value of Cgw should be one of the values between 1 and p. To optimize locality,

we want sets assigned to the same group to have a larger overlap. Locality indicates

the preference to assign sets with a larger number of overlap while workload balance

implies that the maximal number of unique elements should be minimized. The problem

is formulated as Formula 3.1 where F (C) stands for the maximum number of unique

elements across all groups under the assignment C.

minimize
C

F (C)

subject to F (C) = max
1≤g≤q

{|
k⋃

w=1

SCgw |},

Cgw ∈ {1, 2, ..., p}, ∀1 ≤ g ≤ q, 1 ≤ w ≤ k

Cg1w1 ̸= Cg2w2 , ∀(g1, w1) ̸= (g2, w2)

(3.1)

In the first stage, p equals the number of logical PEs and q equals the number of bank

groups while in the second stage, p equals the number of bank groups and q equals the

number of vaults. The formulated problem is also an NP-hard problem, thus we use a

heuristic algorithm similar to Algorithm 3 to solve it. The effectiveness of the mapping

algorithm is quantitatively shown in Section 3.4.3.

3.4 Evaluation

In this section, we first introduce the experimental setup in Section 3.4.1. Next, we

detail the overall performance, power, and area results of our design compared to state-of-

53

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

Table 3.1: The information of sparse matrices used to evaluate SpMV on GPU and
SpaceA. The number of non-zero elements (nnz), average number of non-zero elements
per row (µ), and the standard deviation of the number of non-zero elements in each
row (σ) are shown to reflect the pattern of non-zero elements distribution.

ID Matrix Domain Dimensions nnz µ σ
1 bcsstk32 Structural Problem 44609 x 44609 2014701 45.16 15.48
2 cant 2D/3D Problem 62451 x 62451 4007383 64.17 14.06
3 consph 2D/3D Problem 83334 x 83334 6010480 72.13 19.08
4 crankseg 2 Structural Problem 63838 x 63838 14148858 221.64 95.88
5 ct20stif Structural Problem 52329 x 52329 2600295 51.57 16.98
6 lhr71 Chemical Process Simulation Problem 70304 x 70304 1494006 21.74 26.32
7 ohne2 Semiconductor Device Problem 181343 x 181343 6869939 61.01 21.09
8 pdb1HYS Weighted Undirected Graph 36417 x 36417 4344765 119.31 31.86
9 pwtk Structural Problem 217918 x 217918 11524432 53.39 4.74
10 rma10 Computational Fluid Dynamics Problem 46835 x 46835 2329092 50.69 27.78
11 shipsec1 Structural Problem 140874 x 140874 3568176 55.46 11.07
12 soc-sign-epinions Directed Weighted Graph 131828 x 131828 841372 6.38 32.95
13 Stanford Directed Graph 281903 x 281903 2312497 8.20 166.33
14 webbase-1M Weighted Directed Graph 1000005 x 1000005 3105536 3.11 25.35
15 xenon2 Materials Problem 157464 x 157464 3866688 24.56 4.07

the-art SpMV implementations on GPU in Section 3.4.2. Section 3.4.3 demonstrates the

advantages of our proposed mapping methods. Section 3.4.4 shows the sensitivity studies

of SpaceA performance to hardware configurations. Section 3.4.5 studies the scalability

of SpaceA design. Finally, we conduct a case study of using SpaceA to accelerate graph

analytics to show its potential for benefiting applications built on SpMV.

3.4.1 Evaluation Methodology

Workload. We evaluate SpaceA by executing SpMV using fifteen real-world matrices

from various application domains including scientific computing and graph analytics.

These matrices come from the University of Florida collection [56], and they are used in

prior studies for accelerating SpMV on GPU [63] and Intel Xeon Phi processors [64]. In

terms of the distribution of non-zeros, these matrices cover both structural patterns (i.e.

a smaller standard deviation of the number of non-zeros in each row) and non-structural

patterns (i.e. a larger standard deviation of the number of non-zeros in each row). The

details of these matrices are listed in Table 3.1.

54

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

Hardware Configuration. We adopt an HMC-like [65] design to realize the ar-

chitecture design of SpaceA. The rest of the evaluation results assume an HMC-like

architecture, a detailed further discussion between HMC and HBM technology can be

found in Section 3.6. We use an HMC configuration specified in the prior HMC char-

acterization study [66]. Specifically, a memory cube has 16 vaults that use 1024 TSVs

running at the bit rate of 2 Gbps to communicate with 8 stacked DRAM die layers. Each

bank group has 2 banks; each bank has a capacity of 128 Mb with a 2 Kb row buffer.

Therefore, there are 256 memory banks in a memory cube with a total of 4 GB capacity,

and a memory cube has a footprint of 48mm2. We use NVIDIA Titan Xp as a represen-

tative of GPU architecture for comparison which has processors with a die size 471 mm2,

an area equivalent to that of 10 cubes. We assume that the area of GPU DRAM dies

is comparable to processors in Titan Xp, thus the default configuration of SpaceA uses

16 cubes, occupying 768 mm2 – a similar area footprint as Titan Xp. Inside each PE,

there is a 16 Kb scratchpad memory for the PE queue, which enables the PE to process

non-zero elements from 8 DRAM rows concurrently. Register file has the same size as the

number of non-zero elements stored in a PE queue. To support double-precision SpMV

in scientific computing, each PE includes a floating-point unit (FPU). PEs from the same

bank group share an L1 CAM with 32 sets and 4 ways per set. Each way in L1 CAM has

32 bytes, which is equivalent to the size of 4 input vector elements. The configuration of

the number of ways per set and the size of each way in L2 CAM is the same as L1 CAM

for simplicity, whereas L2 CAM has a larger number of sets, which is 2048 by default.

The size of L1 and L2 CAM are 4 KB and 256 KB respectively. The load queues for

L1 and L2 CAM are used to remove duplicate requests, and they are realized with fully

associated CAM which have the sizes of 512 and 8192 elements respectively. The default

configuration of L1 and L2 CAM is an intuitive design point; a detailed sensitivity for L1

and L2 CAM will be demonstrated in Section 3.4.4 to further justify our design point.

55

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

Simulation Method. We develop an event-based in-house simulator for the perfor-

mance and power simulation. The performance simulation is based on triggering events

according to the behavior of each hardware component described in Section 3.2. The

triggered events are simulated to happen after a deterministic latency of the event trig-

gering it which is based on the latency model of each hardware component. The events

in the performance simulator cover FPU computation, the read/write to DRAM banks,

on-chip SRAM (register file, PE queue, L1 CAM, L1 load queue, L2 CAM, and L2 load

queue), TSV, and NoC packet transfer. Additionally, our simulator maintains a data

structure tracking values stored in DRAM banks and on-chip SRAM when simulating

each event, and some events will modify this data structure. At the end of the simulation,

the correctness of the event triggering mechanism is validated by the values of the output

vector.

After validating the event triggering mechanism, the fidelity of our performance sim-

ulation relies on the latency of each event. Therefore, we use an existing well-validated

simulator CACIT-3DD [67] and tape-out FPU design [68] to provide the latency model

of each hardware component. Specifically, CACTI-3DD provides the access latency for

DRAM banks, on-chip SRAM, and data transfer via TSV. Prior work [68] provides the

latency of the FPU design.

Our event-based simulator logs a detailed event trace including read/write transac-

tions to DRAM banks and on-chip SRAM, TSV data transfer, and FPU computation.

Meanwhile, CACTI-3DD provides the energy consumption for each read/write transac-

tion, TSV data transfer, and the static power of these components. FPU design [68]

provides both dynamic and static power. Finally, we estimate the total energy consump-

tion by accumulating the energy needed for each activity and the energy spent in the

static power.

56

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

 SpaceA Speedup SpaceA+Proposed Mapping Speedup
 SpaceA Energy Saving SpaceA+Proposed Mapping Energy Saving

Matrix ID

N
or

m
al

iz
ed

 S
pe

ed
up

 (%
)

0

20

40

60

80

100

E
ne

rg
y

S
av

in
g

(%
)

Geo.
Mean

Figure 3.5: Overall speedup and energy savings w.r.t GPU.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ff
ic

 w
.r

.t

N
a

iv
e

 M
a

p
p

in
g

Matrix ID

 TSV Traffic

 NOC Traffic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a
li
z
e

d

W
o

rk
lo

a
d

Matrix ID

 Naive mapping

 Proposed mapping

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

L
1
 H

it
 R

a
te

 (
%

)

Matrix ID

 Naive mapping

 Proposed mapping

Geo.
Mean

Geo.
Mean

Geo.
Mean(a) (b) (c) (d)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

L
2

 H
it

 R
a

te
 (

%
)

Matrix ID

 Naive mapping

 Proposed mapping

Geo.
Mean

Figure 3.6: Performance metric comparisons between the naive mapping and our
proposed mapping: (a) normalized workload, (b) L1 CAM hit rate, (c) L2 CAM hit
rate, and (d) traffic between bank groups and vaults (TSV and NoC) with respect to
that of the naive mapping.

3.4.2 Overall Performance, Power, and Area

Figure 3.5 shows the performance and energy efficiency for both our architecture

design and the proposed mapping algorithm. As shown in Figure 3.5, the architecture

design of SpaceA obtains 6.22x speedup and reduces the energy consumption by 4.89x

(79.55% energy saving) on average compared to the GPU baseline. The results of SpaceA

shown in Figure 3.5 uses a naive mapping which randomly assigns rows from the sparse

matrix to PEs, so the performance and energy efficiency benefits mainly come from the

advance of the architecture design. Figure 3.5 also demonstrates the overall performance

energy efficiency with the proposed mapping method. SpaceA with the proposed mapping

57

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

Table 3.2: The area and power density of components in a bank group.
Component Area Power Density

PE Queue (x2) 0.0048 mm2 43.75 mW/mm2

Register File (x2) 0.0058 mm2 49.66 mW/mm2

PE Logic (x2) 0.0994 mm2 28.21 mW/mm2

L1 CAM (4 KB) 0.0286 mm2 66.56 mW/mm2

L1 Load Queue 0.0072 mm2 56.29 mW/mm2

Total / Peak 0.1458 mm2 66.56 mW/mm2

achieves 13.54x speedup and reduces 7.99x energy consumption (87.49% energy saving)

on average compared to the GPU baseline. The comparison between the results of SpaceA

using two mapping methods reveals that our proposed mapping method contributes 2.18x

speedup and saves 1.63x energy consumption over the naive mapping method.

We estimate the area of the hardware components needed by SpaceA in addition to

the existing HMC memory with CACTI-3DD [67] and an existing FPU design [68]. These

hardware components are assumed to be fabricated in the 22 nm technology. According

to prior studies [11], the area of compute-logic fabricated in the DRAM process could

be up to 2x larger than the one fabricated in the CMOS process due to the less number

of metal layers. Thus we multiply all area results from CACTI-3DD and existing FPU

design by 2x to estimate the area of these components in the DRAM process. The area

of hardware components in a bank group is shown in Table 3.2. As shown in Table 3.2,

SpaceA only has an area overhead of 0.1458 mm2 on the bank group level, which is only

4.86% of the area of a bank group and 5.96% of the area of memory banks. Thus the

design of SpaceA has very little area overheads when integrating PE with memory banks.

We estimate the area of L2 CAM and L2 load queue which reside on the base die in a

similar way. In the default configuration, the area of an L2 CAM is 0.1898 mm2 and the

area of an L2 load queue is 0.0760 mm2. The area of these two components is 0.2658

mm2 in total, which is 8.86% area of a vault. The base die in the vanilla HMC memory

has 10% to 30% area budget where other prior work integrates compute-logic [57, 69].

58

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

As long as the area of components on the base die does not exceed this budget, these

components do not introduce any area overhead. In our work, we conservatively assume

that the area budget on the base die is only 10%, thus the area of our L2 CAM and load

queue is still within such a conservative area budget.

Recent research studies [11] and industrial prototypes [14] have demonstrated the

feasibility of fabricating compute-logic in the DRAM process. However, the thermal issue

is still a well-known challenge for PIM architecture based on 3D memory [70, 71]. We

demonstrate the power density of components on DRAM dies in Table 3.2. As shown in

Table 3.2, the peak power density per footprint is 532.48 mW/mm2 (66.56 mW/mm2 x 8

layers), which is under the constraint of power density from both commodity server active

cooling [72] (706 mW/mm2) and high-end server active cooling [71] (1214 mW/mm2).

3.4.3 Mapping

In this section, we discuss performance metrics and power breakdown in detail in order

to gain a better understanding of the source of these performance and energy efficiency

benefits from our proposed mapping method.

Workload Balance. Since the performance of SpMV in SpaceA is bounded by the

slowest PE, one goal of the proposed mapping method is to balance workloads among

PEs. To quantify the workload balance, we do the following. First, we define the amount

of work done by a PE to be the number of non-zero elements processed by it. Next, we

define normalized workload, which indicates the ratio of the average amount of work done

across all the PEs and the maximum amount of work done by any single PE. We use the

normalized workload to represent the quantitative metric for workload balance (higher

the better). The choice of the denominator in this ratio calculation is explained by the

fact that workload balance is bottlenecked by the slowest PE, i.e., the PE which does the

59

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

largest amount of work. In the ideal case where non-zero elements are evenly distributed

among PEs, the normalized workload should equal one due to the equivalence between the

average and the maximum PE workloads. The difference of normalized workload between

the naive mapping and the proposed mapping is shown in Figure 3.6(a). Figure 3.6(a)

shows that the normalized workload of the naive mapping is only 81% of that of the

proposed mapping on average, which indicates that the maximum PE workload in the

proposed mapping is only 81% of that in the naive mapping. The smaller maximum PE

workload demonstrates a better workload balance in the proposed mapping.

Locality Improvement. In the flow of our proposed mapping method, we consider

locality optimization. To demonstrate the locality improvement in the proposed mapping,

we profile the hit rate of both L1 CAM and L2 CAM, the traffic on TSV for intra-vault

communication, and the traffic on NoC for inter-vault communication. Since intra-vault

communication through TSVs has a uniform latency while inter-vault communication

through NoC has non-deterministic latency, we define the traffic of TSV as the amount

of data transferred through TSVs and the traffic of NoC as the size of a packet multiplied

by the distance between the source and the destination of the packet. Figure 3.6(b)-(d)

demonstrate these profiling results. Overall, Figure 3.6(d) shows that the traffic on TSV

and NoC is only 33.11% and 38.89% with respect to that of the naive mapping, which

indicates a significant amount of communication savings resulted from the improvement

of the locality. In details, Figure 3.6(b) shows that the proposed mapping improves the

average L1 CAM hit rate of all L1 CAMs significantly from 18% and 78% on average

while Figure 3.6(c) shows that the L2 CAM hit rate decreases in the proposed mapping

from 47.09% to 31.93%. The main reason for the decreasing L2 CAM hit rate comes from

the reduction of requests to L2 CAM with the same amount of cold miss. As a result,

the saving of NoC traffic is less than the saving of TSV traffic.

Energy Breakdown. To understand the energy efficiency between the naive map-

60

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

0.0 0.2 0.4 0.6 0.8

4

6

8

10

12

14

16

Naive Mapping Proposed Mapping

S
p

e
e

d
u

p

Area(mm2)

1 2 4 8

11

12

13

14

15

S
p

e
e
d

u
p

Number of L2 Ways

1 2 4 8 16 32
13.3
13.4
13.5
13.6
13.7
13.8
13.9

S
p

e
e

d
u

p

Number of L1 Ways

512 1024 2048 4096

11

12

13

14

15

S
p

e
e

d
u

p

Number of L2 Sets

32 64 128 256 512
13.3
13.4
13.5
13.6
13.7
13.8
13.9

S
p

e
e
d

u
p

Number of L1 Sets(a)

(b)

(c)

(d) (e)

Our Design Point

Area Budget

0.3

Figure 3.7: The sensitivity of performance to (a) the number of L1 sets, (b) the
number of L1 ways, (c) the number of L2 sets, and (d) the number of L2 ways. (e)
The trade-off between performance and area in L2 CAM design.

N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P
0

2

4

6

8

10

12

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

Matrix ID

 Total static

 Interconnect dynamic

 PE & L1 & L2 dynamic

 DRAM dynamic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Geo.
Mean

Figure 3.8: The energy consumption breakdown of SpaceA for the naive mapping
(denoted as N) and our proposed mapping (denoted as P).

ping and the proposed mapping method, we demonstrate the energy consumption break-

down for these two mapping methods. We normalize the energy consumption of different

parts into the energy consumption of DRAM dynamic power mapped by the naive map-

ping. We divide the overall energy consumption into four parts. The first part is the

DRAM dynamic power. The second part is the dynamic power of PE, L1 CAM with its

load queue, and L2 CAM with its load queue. The third part is the dynamic power of

interconnect, which includes TSV and NoC. The last part is the static power of the whole

chip. The energy breakdown of these four parts for the naive mapping and the proposed

mapping is shown in Figure 3.8. We have several observations from Figure 3.8. First,

61

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

the dynamic power of hardware components added by SpaceA design is negligible (PE &

L1 & L2 dynamic). Second, 65.55% on average of the dynamic power of interconnect is

saved by the proposed mapping, which is the result of a reduced traffic amount on TSV

and NoC shown in Figure 3.6(d). Finally, the proposed mapping method saves 54.05%

energy consumption of the static power part: the result of improved performance. The

static power dominates the overall energy consumption in matrix 7, 12, and 13. The en-

ergy consumption of static power is saved in the proposed mapping method of the matrix

7 due to a 3.87x speedup over the naive mapping. Matrix 12 and 13 have a relatively

poor access pattern, thus pushing heavy traffic in the interconnect and resulting in a long

execution time while DRAM banks and PEs are idle in most of the cycles.

3.4.4 Sensitivity Study

We conduct sensitivity studies for L1 CAM, L2 CAM, and TSV transfer latency to

justify the selected design points in SpaceA architecture.

L1 and L2 CAM Sensitivity Study. We study the performance sensitivity of

L1 and L2 CAM by varying either the number of sets or the number of ways. The

average speedups compared to GPU for different numbers of sets and different numbers

of ways in L1 and L2 CAM are shown in Figure 3.7(a)-(d). As shown in Figure 3.7(a)

and (b), the performance of SpaceA is not sensitive to the size of L1 CAM. Although

varying the number of ways could help the average speedup from 13.43 to 13.80, the

benefit from such a large number of ways is relatively insignificant. Therefore, we keep

the number of sets as small and the number of ways as large, resulting in the design

with an L1 CAM composed of 32 sets and 4 ways per set. As shown in Figure 3.7(c)

and (d), the performance is moderately sensitive to L2 CAM settings. Although the

changes of speedup are not significant, these speedup changes are still noticeable, from

62

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

11x to 15x, among different CAM settings. Since L2 CAM can be as large as within

the area budget, we study the trade-off between the performance and L2 CAM area as

shown in Figure 3.7(e). Figure 3.7(e) shows that a larger L2 CAM usually result in a

better speedup. Thus we select the largest one under our area budget, 10% area of a

vault. Figure 3.7(e) also shows that our proposed mapping algorithm can leverage a

smaller L2 CAM while achieving a better performance compared to the naive mapping.

The naive mapping with an L2 CAM as large as 0.76 mm2 achieves only a 68.61%

speedup of the proposed mapping with an L2 CAM as small as 0.09 mm2. The results

further demonstrate the advantage of our proposed mapping method in terms of efficient

hardware resource usage.

TSV Sensitivity Study. Most of PIM architecture design based on 3D memory

technology leverages the low latency of TSV data transfer. We conduct a sensitivity study

for TSV latency by varying the latency setting in our performance simulator. Figure 3.9

shows the performance slowdown of different TSV data transfer latency. Figure 3.9

shows that there is little difference between the latency of 1 cycle or 2 cycles for most of

matrices. For the scenario where TSV transfer is 4 cycles, some matrices are not affected

significantly (within 10% performance slowdown) while some matrices exhibit significant

performance slowdown up to 2x. Thus the average slowdown of the performance is 1.3x,

a factor which can hardly be ignored. When the TSV transfer latency is increased to 16

cycles, the performance incurs a 2x slowdown on average. In summary, our design is not

sensitive to the TSV latency when it is low enough while the performance of design will

start to degrade when the TSV latency is large enough, which justifies the reason for a

design based on 3D memory technology bringing the low latency of TSV transfers.

63

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.5

1.0

1.5

2.0

2.5

N
o

rm
a
li
z
e
d

E
x
e
c
u

ti
o

n
 T

im
e

Matrix ID

 Latency=1 Latency=2 Latency=4

 Latency=8 Latency=16

Geo.
Mean

Figure 3.9: The sensitivity of performance to TSV transfer latency.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.5

1.0

1.5

2.0

2.5

N
o

rm
a

li
z
e

d

S
p

e
e

d
u

p

Matrix ID

 #cubes=16 #cubes=32 #cubes=64

Geo.
Mean

Figure 3.10: The scalability of SpaceA with the increase of the number of cubes.

3.4.5 Scalability

We show the scalability of SpaceA by increasing the number of cubes in Figure 3.10.

Figure 3.10 shows that SpaceA with 32 cubes achieves 1.42x speedup and SpaceA with 64

cubes achieves 1.8x speedup on average compared to the default configuration. These re-

sults reveal moderate scalability where overheads come from a more expensive inter-vault

communication with an increase of cube amount. Although the scalability of SpaceA is

moderate, the memory capacity of baseline design (64 GB) is able to accommodate most

of the matrices from the University of Florida collection (max size about 50 GB) [56].

When the number of cubes increases, the latency of memory access to other cubes be-

comes larger, which makes the size of the current PE queue not large enough to hide the

latency of remote memory access. Using a larger PE queue and L1 load queue to exploit

64

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

Table 3.3: The speedup comparison among Tesseract, GraphP, and SpaceA for PageR-
ank (PR) and Single-Source Shortest Path (SSSP) algorithms on Wiki (WK) and
LiveJournal (LJ) datasets over CPU baseline.

Tesseract GraphP SpaceA
PR + WK 18.19 22.58 29.73
SSSP + WK 43.70 52.17 103.57
PR + LJ 21.09 34.08 58.34
SSSP + LJ 40.10 42.83 51.47

larger memory-level parallelism (MLP) will introduce a larger area overhead in the bank

group level.

3.4.6 Case Study: Graph Analytics

Since SpMV is a building primitive in many application domains, such as scientific

computing and graph analytics, SpaceA can be used to accelerate these applications. In

order to study the performance benefits of SpaceA for these applications, we conduct a

case study of running graph workloads on SpaceA, and compare the performance with

state-of-the-art graph accelerators, Tesseract [57] and GraphP [58]. For comparing both

Tesseract and GraphP, we use algorithms and input graphs evaluated in both of them.

As a result, we use PageRank (PR) and Single-Source Shortest Path (SSSP) algorithms

and Wiki (WK) and LiveJournal (LJ) input graphs [73] in this case study. Then, we run

the implementation of these two algorithms from the GAP benchmark [74] on NVIDIA

DGX-1 server (Intel Xeon CPU E5-2698 x2) as the baseline. To obtain the performance

on SpaceA, we rewrite SSSP and PR algorithms into iterations of SpMV [75], and run

them on SpaceA under the same number of cubes, vaults, and memory banks as the

Tesseract configuration. We assume Tesseract and GraphP can obtain the same speedup

as claimed in their paper, and the speedup of Tesseract, GraphP, and SpaceA over CPU

is summarized as Table 3.3. This assumption overestimates the performance of Tesseract

65

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

and GraphP because our CPU baseline is more performant than theirs. Specifically, the

CPU in our baseline has more cores (40 vs. 32), the same L1 and L2 cache per core

while larger L3 cache in total (100 MB vs. 32 MB), and higher memory bandwidth

(153.6 GB/s vs. 102.4 GB/s). Moreover, we use a well-optimized GAP benchmark as

the CPU baseline instead of in-house C++ implementations used in Tesseract [57]. The

results in Table 3.3 show that SpaceA obtains better performance than Tesseract and

GraphP despite the overestimation of their speedups. The performance improvement of

SpaceA mainly comes from the higher bandwidth provided by the near-bank integration

instead of placing compute-logic on the base die. In summary, SpaceA can significantly

accelerate graph analytics and it has the potentials to benefit other workloads built on

SpMV computation.

3.5 Related Work

SpMV workloads. The study on efficient SpMV implementation starts from the

CPU platform where the exploration of the locality of SpMV computations to efficiently

use the memory bandwidth plays a major role [76–79]. GPU provides massive memory-

level parallelism and high memory bandwidth, which makes it a promising solution when

it comes to accelerating SpMV workloads [80]. Although existing studies develop ef-

ficient implementations for the widely used compressed sparse row (CSR) format on

GPUs [81, 82], new matrix compression formats, such as AMB [83], BRO [63], Cock-

tail [84], BCSC [85], and BCCOO [86], are proposed to address the challenges of irreg-

ular memory access and workload imbalance across different processing units in more

efficient and scalable manners. The road-map for SpMV on other many-core architec-

tures, such as Intel Xeon Phi and Intel Knight Landing, is similar to GPGPU where

customized matrix compression formats [64,87,88] are designed together with the paral-

66

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

lel algorithms SpMV to partition workloads across cores. Although these studies exploit

existing memory bandwidth very well, they can not overcome the problem of limited

memory bandwidth. Unlike these prior works optimizing SpMV on multi-core (CPU) or

many-core processors (GPU), we exploit PIM-based architecture for superior bandwidth

to overcome the bandwidth problem in multi-core and many-core processors.

PIM and NDP accelerators. There are several studies for PIM and NDP archi-

tectures in recent years for general purpose programs on different memory technologies,

such as non-volatile memory (NVM) [89,90] and DRAM [3,11,12,91,92]. These architec-

tures are usually equipped with compute logic designed for basic arithmetic primitives to

support general purpose programs. Meanwhile, PIM architectures are also very promis-

ing in accelerator designs, which are customized for specific application domains, such

as neural networks, block-chain [93], and image processing [50] workloads. In particular,

many neural network workloads are memory intensive [36], thus prior studies exploit

PIM architectures for different application phases: both training [94–99] and inference

phases [25, 48, 49, 69, 100–102]. Among these application domains prior work studied for

exploiting PIM architectures, graph analytics is the closest to SpMV workloads. In the

vertex-centric programming model, a graph algorithm is equivalent to multiple iterations

of SpMV when edges are stored in an adjacency matrix. Prior work studied graph work-

loads in PIM architectures for various memory technologies [57, 103–105] and efficient

graph data partition methods [58]. Our case study in Section 3.4.6 shows that SpaceA

achieves higher performance than prior designs placing compute-logic on the base die

because of higher effective bandwidth exploited at the memory bank level. Prior studies

have also exploited similar sparse linear algebra primitives, such as sparse matrix-matrix

multiplication (SpGEMM) [106]. However, SpGEMM is very different from SpMV be-

cause of its poor data reuse opportunity. Other research discussing in-memory computing

for the scientific workloads [107] has also been conducted. However, these studies do not

67

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

use compact sparse formats leading to both storage and performance overheads. Overall,

different from all of these PIM accelerators, SpaceA is the first to design lightweight

compute-logic near DRAM banks for irregular workloads whose memory access pattern

is highly irregular thus introducing challenges for increasing the utilization of bank-level

memory bandwidth.

Sparse linear algebra primitive accelerators. There are prior studies designing

accelerators for SpMV [108] or other sparse linear algebra primitives [109,110]. In partic-

ular, because of the model compression techniques for neural network applications, such

as weight pruning [111] and weight quantization [112], a lot of dense linear algebra prim-

itives are transformed to sparse ones. As a result, these sparse neural network training

and inference workloads attract intensive attention to accelerator designs for sparse linear

algebra primitives [113–116]. Although these studies optimize SpMV for better locality

or workload balance for on-chip computation, these compute-centric hardware designs

have limited memory bandwidth. SpaceA exploits a PIM-based architecture superior

bandwidth to overcome the bandwidth problem in CPU, GPU, and compute-centric ac-

celerators.

3.6 Discussion

System and programming interface: Since SpaceA is designed as a standalone

accelerator attached to the PCIe bus, it copies the sparse matrix and input vector from the

CPU, offloads the computation of SpMV, and finally copies the output vector back to the

CPU. The software support of SpaceA needs to provide APIs for memory allocation, data

transfer, and SpMV computation invocation so that CPU programs can offload SpMV

computation to SpaceA. Because the data format is different between sparse matrices and

vectors, these two data structures need different driver APIs to support data allocation

68

SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator Chapter 3

and transfer. Additionally, the sparse matrix needs to be pre-processed on the CPU

for assigning different rows across PEs before it is transferred to SpaceA. This execution

model has been proven practical by prior studies offloading SpMV into GPU [63,83,84,86].

HMC vs. HBM: Although our architecture design of SpaceA is demonstrated and

evaluated based on HMC-like configuration, SpaceA can also be realized by HBM [117]

achieving similar performance and power under an equivalent configuration. The ef-

fectiveness of SpaceA architecture design mainly relies on two perspectives, near-bank

logic integration and low latency communications for banks within the same channel.

Although memory banks are grouped into the same channel horizontally in HBM while

vertically in HMC, both of these two architectures have low latency TSV for communi-

cations among banks in the same channel. Therefore, the proposed approach would be

applicable to HBM with a similar conclusion on performance and energy improvement.

3.7 Conclusion

In this project, we design an accelerator, SpaceA, based on PIM architecture by

integrating compute-logic at the memory bank level to provide orders of magnitude higher

effective bandwidth than GPU for SpMV computation. To exploit such a high bandwidth,

our PE design is composed of a queue that holds memory requests to hide the latency

of memory access to data in other memory banks. To exploit locality and to reduce

traffic among memory banks, we integrate CAM buffers in SpaceA to cache data from

the input vector. In addition to the architecture design, we develop a mapping scheme

for SpaceA to balance workload and exploit locality among PEs. Our evaluation of 15

real-world matrices shows that SpaceA is highly competitive in terms of performance and

energy-efficiency compared to the state-of-the-art GPU baseline.

69

Chapter 4

iPIM: Programmable In-Memory

Image Processing Accelerator Using

Near-Bank Architecture

This chapter focuses on developing a domain-specific accelerator based on near-bank

processing architectures for image processing workloads. Despite the success of SpaceA

in accelerating SpMV operations through application-specific customization, we aim to

study the potentials, benefits, and trade-offs of domain-specific near-bank processing ar-

chitectures in this project. We select image processing as our target application domain

for two reasons. First, image processing is becoming an increasingly important domain

on workstations [118] and the data-center [119] platforms for various applications, such

as machine learning [120], biomedical engineering [121], and geographic information sys-

tems [122]. Second, the memory-wall [123] impedes its further performance improvement

as a result of both the characteristics of image processing workloads and the limited

bandwidth provided by the compute-centric architecture. In this project, we develop

iPIM, a domain-specific in-DRAM near-bank processing accelerator for image processing

70

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

workloads.

1 Although near-bank architecture has great potential for accelerating image pro-

cessing applications, there are still several challenges. First, heterogeneous image pro-

cessing pipelines exhibit various computation and memory patterns, thus requiring pro-

grammable hardware support. However, directly attaching control cores to each DRAM

bank introduces large area overhead [124–126], so it is challenging to design a lightweight

architecture supporting diverse image processing pipelines. Second, the design of in-

struction set architecture (ISA) needs to be concise yet powerful because it needs to

avoid complex hardware support while enabling flexible computation, data movement,

and control flow operations at the same time. Third, end-to-end compilation support

for this accelerator requires easy programming interfaces to enable the efficient mapping

of various image processing pipelines to the near-bank architecture, as well as backend

optimizations to fully exploit the hardware potentials.

To address these challenges of using the near-bank architecture for image processing

pipelines, we design the first programmable image processing accelerator (iPIM) and

an end-to-end compilation flow based on Halide [127] to efficiently map applications

onto our accelerator. First, iPIM uses a decoupled control-execution architecture to

integrate a control core under the tight area constraint. Specifically, the control core

is placed on the base logic die of the 3D-stack, while lightweight computation units

and several small buffers are attached to each memory bank in DRAM dies. During

the execution of instructions, the control core broadcasts instructions to all associated

banks using TSVs, and all computation units conduct parallel execution in lockstep.

Second, we design Single-Instruction-Multiple-Bank (SIMB) ISA for the proposed near-

1©2020 IEEE. Reprinted, with permission, from Peng Gu, Xinfeng Xie (co-primary author), Yufei
Ding, Guoyang Chen, Weifeng Zhang, Dimin Niu, Yuan Xie. ”iPIM: Programmable in-memory im-
age processing accelerator using near-bank architecture.” 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020.

71

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

bank accelerator. The SIMB ISA supports SIMD computation which utilizes the bank’s

high I/O width (128b), flexible data movement within the near-bank memory hierarchy,

control flow instructions that enable index calculation, and synchronization primitives

for communication. Third, we develop an end-to-end compilation flow with new Halide

schedules for iPIM. This compilation flow extends the frontend of Halide for supporting

these new schedules and includes a backend with optimizations for iPIM including register

allocation, instruction reordering, and memory order enforcement to reduce resource

conflict, exploit instruction-level parallelism, and optimize DRAM row-buffer locality,

respectively.

The contributions of this project are summarized as follows:

• We design a standalone programmable accelerator, iPIM, using 3D-stacking near-

bank architecture for image processing applications. By using a decoupled control-

execution architecture, iPIM supports programmability with small area overhead

per DRAM die (∼ 10.71%).

• We propose SIMB (Single-Instruction-Multiple-Bank) ISA which enables flexible

computation, data access, and communication patterns to support various pipeline

stages in image processing applications.

• We develop an end-to-end compilation flow based on Halide with novel iPIM sched-

ules and various iPIM backend optimizations including register allocation, instruc-

tion reordering, and memory-order enforcement.

• Evaluation results of representative image processing benchmarks, including single

stage and heterogeneous multi-stage pipelines, show that iPIM design together with

backend optimizations can achieve 11.02× speedup and 79.49% energy saving on

average over an NVIDIA Tesla V100 GPU. The backend optimizations improve

72

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

3.19× performance compared with the näıve baseline.

4.1 Motivation

4.1.1 Image Processing and Halide Programming Language

Image processing contains heterogeneous pipelines which are wide and deep [127],

and it is bound by memory bandwidth on the compute-centric architecture. From the

applications’ point of view, first, most image processing pipeline stages have low arith-

metic intensity (operations per byte) and massive data parallelism for individual pixels,

such as elementwise and stencil computations. Second, the whole pipelines are long and

heterogeneous (e.g., 23 different stages in local Laplacian filter [128]), and they have com-

plex data dependencies (e.g., resampling and gather in local Laplacian filter). Therefore,

from the hardware’s point of view, these features make it very difficult to apply pipeline

fusion techniques [127, 129–133] to boost the performance. Thus, on compute-centric

accelerators like GPU, image processing performance is bound by memory-bandwidth

(Sec.4.1.2), and near-bank architecture provides a promising solution.

Although widely-adopted programming languages for image processing like Halide [127]

provide optimizations for a wide range of compute-centric accelerators like GPU [134]

and FPGA [135], there are no existing solutions for memory-centric accelerators. Halide

decouples the algorithm descriptions and the algorithm to hardware mapping, thus pro-

grammers can separately describe an algorithm and a schedule. Based on the provided

algorithms and schedules, the Halide compiler will synthesize hardware-specific programs.

In this work, we propose the first end-to-end compilation framework for image process-

ing applications in Halide on the near-bank architecture by designing novel schedules

(Sec.4.3.2) and developing a compiler backend to improve the performance (Sec.4.3.3).

73

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Figure 4.1: GPU profiling results for image processing workloads (Table.4.1).

4.1.2 Image Processing on GPU

First, we find that memory-bandwidth is the performance bottleneck for GPU, which

is the current state-of-the-art image processing accelerator [136]. We conduct a de-

tailed profiling of representative benchmarks (Table.4.1) using Halide framework [127]

and DIV8K [137] dataset on an NVIDIA Tesla V100 GPU [138]. The measured total

DRAM bandwidth, DRAM utilization, and ALU (both FP32 and INT32) utilization are

shown in Fig.4.1(a). We observe that these benchmarks exhibit DRAM bandwidth-bound

behavior by achieving 57.55% DRAM utilization (518GB/s bandwidth) and 3.43% ALU

utilization on average. We also note that the memory and ALU utilization are both low

for Histogram benchmark, which results from that Histogram involves value-dependent

computations and the Halide schedule for GPU cannot achieve ideal performance.

Second, we observe that multi-stage benchmarks (the last 4 in Fig.4.1), which are

optimized by Halide pipeline fusion, show little performance improvement compared with

single-stage benchmarks (the first 6 in Fig.4.1). The ALU utilization only increases from

74

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

2.85% to 4.53%. Also, the DRAM utilization is merely reduced from 58.80% to 55.73%,

which is still significantly higher than the ALU utilization. We conclude that Halide

compiler optimizations cannot change the memory-bound behavior of image processing

applications on GPU, motivating an accelerator providing more memory bandwidth.

Third, we find that index calculation, which is an important part of programmability

support for flexible memory access patterns, consumes a large portion of total ALU

utilization for image processing workloads. For the current profiling, index calculation

uses INT32 data type and algorithm-related computation uses FP32 data type. The

breakdown of the ALU utilization is shown in Fig.4.1(b). We observe that on average

index calculation takes 58.71% of total ALU utilization, and index calculation dominates

the total ALU utilization (> 60%) for 5 out of 10 benchmarks. The index calculation

ratio is high because image processing requires frequent translations from 2D image to

1D memory space [139]. This motivates us to enable architecture support for index

calculation in iPIM.

Figure 4.2: iPIM control-execution decoupled 3D-stacking microarchitecture: (a1)
3D-stacking cubes. (a2) A vault. (a3) A Process Group (PG). (b) Components inside
an iPIM control core on the base logic die. (c) Components inside a Process Engine
(PE) on the PIM dies.

75

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

4.2 iPIM Architecture

We introduce the microarchitecture overview in Sec.4.2.1 and describe iPIM’s decou-

pled control-execution scheme in Sec. 4.2.2.

4.2.1 Microarchitecture Overview

In general, iPIM uses the 3D-stacking near-bank architecture with a top-down hier-

archy of cube, vault, process group, and process engine as illustrated in Fig.4.2(a). First,

iPIM consists of multiple cubes (Fig.4.2(a1)) interconnected by SERDES links similar to

HMC [140]. Second, one cube is horizontally partitioned into multiple vaults (usually 16

per cube) connected by an on-chip network. Each vault (Fig.4.2(a2)) spans multiple 3D-

stacking layers, including several process-in-memory (PIM) dies (usually 4 to 8 per vault)

and one base logic die. The inter-layer communication is realized by Through-Silicon-

Vias (TSVs, usually 64 per vault), which are high-bandwidth vertical interconnects that

link each layer to the base logic die. The base logic die of each vault contains one iPIM

control core (Fig.4.2(b)), which is the basic unit to execute an iPIM program. Next,

one PIM die of each vault contains one process group (PG) (Fig.4.2(a3)), which fur-

ther consists of many process engines and a shared process group scratchpad memory

(PGSM). Last but not least, each process engine (PE) (Fig.4.2(c)) employs near-bank

architecture, where compute-logic and lightweight buffers are integrated with a DRAM

bank. Especially, each PE adds an address register file and an integer ALU to efficiently

support index calculations which are important for image processing (Fig.4.1(b)).

Based on this microarchitecture, iPIM decouples the control, which happens on the

base logic die, from the massive bank-level parallel execution, which happens on the PIM

dies (Sec.4.2.2). In addition, we design SIMB ISA to support various computation and

memory access patterns in image processing, and efficiently move data among the iPIM

76

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

hierarchy (PE-level, PG-level, vault-level, or cube-level).

4.2.2 Decoupled Control-Execution Architecture

iPIM uses a novel decoupled control-execution design to reduce the overhead of the

control core by placing it on the base logic die, and allows the parallel execution of

processing engines on the PIM dies to benefit from the abundant bank-level bandwidth.

For the control core, the design principle is to keep the hardware simple and rely on

compiler optimizations (Sec.4.3) to realize high performance. Therefore, iPIM uses a

pipelined, single-issue, and in-order core, where the data hazard is eliminated when

an instruction is issued, so the hardware needs no complex forwarding logic. For the

execution part, the SIMB ISA can exploit massive bank-level parallelism by programming

the bits of simb mask.

Next, we introduce the detailed pipeline execution of iPIM in Fig.4.2(b) as follows.

1 Depending on the program counter (pc), an instruction will be fetched from the in-

struction cache (I$) and decoded. pc can be updated from control register file (CtrlRF)

using jump/cjump, and calc crf, seti crf are used to calculate control flow values. 2

The decoded instruction will be checked against instructions in the Issued Inst Queue.

If true/anti/output data dependency is found, the instruction will stall with a pipeline

bubble inserted. Once the instruction is issued, it is added to the Issued Inst Queue

until retirement. 3 The issued instruction is broadcast by SIMB controller to each PE

according to the simb mask, or sent to a vault-level unit for execution (e.g. seti vsm).

If the instruction involves remote vault access, it is dispatched to the network interface

controller (NIC). 4 (a) For the vault-local SIMB execution, each PE will check the corre-

sponding bit in simb mask and proceed execution or stay idle. (b) For the remote vault

access, the request will be translated into packets and traverse the on-chip network or

77

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

off-chip links. 5 The SIMB instruction executes in lock-step, and an instruction retires

only if all bits in the simb mask are cleared. Each time a PE finishes an instruction, the

SIMB controller will clear its execution bit. After an instruction finishes, it is committed

by popping the corresponding entry from the Issued Inst Queue. This also clears data

dependency for later instructions.

As a conclusion, this architecture not only enables lightweight programmability to

control heterogeneous pipeline stages (base logic die) but also supports parallel execution

to provide abundant memory bandwidth for data-intensive image processing operations

(PIM dies).

4.3 Compiler Support

This section details the design of an end-to-end compilation flow based on Halide

for iPIM hardware. First, we introduce the programming interface of iPIM in Sec.4.3.1,

which includes the design of new schedules for iPIM. Second, we explain the compilation

flow in Sec.4.3.2 including the extension of Halide front-end compilation passes and our

customized backend for iPIM. Third, we detail the backend optimizations in Sec.4.3.3 for

generating efficient iPIM executable programs. Finally, we discuss the system integration

of iPIM in Sec.4.3.4 for executing compiled programs.

4.3.1 Programming Interface

To support various image processing applications composed of heterogeneous pipelines

on iPIM, we use Halide as the programming language because of its success in this appli-

cation domain. Our front-end support for Halide eases the burden of programmers from

two perspectives. First, the image processing algorithm written in Halide does not have

to be changed for iPIM because Halide decouples the algorithm from its schedules. Sec-

78

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

// Algorithm

Func blurx (x , y) = (in (x − 1 , y) + in (x , y)
+ in (x + 1 , y)) / 3 .0 f ;

Func out (x , y) = (blurx (x , y − 1) + blurx (x , y)
+ blurx (x , y + 1)) / 3 .0 f ;

// Schedule for iPIM

out . compute_root ()
. ipim_tile (x , y , xi , yi , 8 , 8)
. load_pgsm (xi , yi)
. vectorize (xi , 4) ;

Listing 4.1: Code example of image blur.

ond, we develop customized schedules to provide an easy-to-use high-level abstraction for

indicating workload partition and data sharing among PEs in iPIM. Thus the workload

partition and data sharing are optimized automatically by our end-to-end compilation

flow according to these high-level schedules without programmers’ involvement.

We develop customized schedule primitives to efficiently exploit hardware characteris-

tics on iPIM hardware. In particular, we extend Halide with two new schedule primitives,

ipim tile() and load pgsm(), for distributing data into different banks and utilizing the

scratchpad of a processing-group. The first customized schedule for iPIM, ipim tile(),

specifies the dimensions of image data to be partitioned and distributed across the hierar-

chy of iPIM. For example, the schedule ipim tile(x, y, xi, yi, 8, 8) in Listing.4.1 indicates

that the image will be partitioned into image tiles (8x8 size). In addition to the partition

of the image into tiles, this schedule also indicates the distribution of these image tiles

across all PEs. Fig.4.3(a) shows the distribution of these image tiles into different levels

in the hierarchy of iPIM. Specifically, image tiles are distributed in an interleaved way to

the PEs of the same PG so that they can load adjacent image tiles at the same loop iter-

ation to improve data sharing. The second customized schedule for iPIM, load pgsm(),

indicates the usage of shared scratchpad memory at the PG level. For example, the

schedule load pgsm(xi, yi) in Listing.4.1 indicates that the data of input image needed

79

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Figure 4.3: An iPIM compilation example of image blur: (a) Spatial mapping. (b)
PG-level scheduling. (c) PE-level scheduling.

for computing output along loops xi and yi will be loaded into shared scratchpad memory

before using it for the computation. Fig.4.3(b) shows the usage of PGSM according to the

specification of load pgsm() in Listing.4.1 at PG-level. After loading data into PGSM,

Fig. 4.3(c) shows the temporal scheduling of the computation for each PE including four

steps (2) to load the whole region of input data (1) for a vector of output pixels. By

supporting this schedule, data sharing across adjacent image tiles can happen at the PG

level.

In addition to our customized schedules for data partition and sharing on iPIM,

we leverage existing Halide schedules to specify the fusion of pipelines and the vector-

ization of computation on iPIM. In Listing.4.1, compute root() ensures that the loops

80

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Figure 4.4: The end-to-end compilation flow of iPIM.

along dimensions of the Func out will be outermost loops and the stages of comput-

ing blurx will be fused into the computation of out. During code generation, each

compute root() implies a kernel function reading input data from and writing output re-

sults to DRAM banks. Besides compute root(), we also exploit the vectorization schedule

(vectorize(xi, 4)) supported by Halide for iPIM because our ISA includes SIMD instruc-

tions. Specifically, we exploit the compilation pass of vectorization in Halide frontend

aligning data to improve the utilization of SIMD units in iPIM.

4.3.2 Compilation Flow

As shown in Fig.4.4, we develop an end-to-end compilation flow to support an au-

tomatic transformation from a Halide algorithm with customized iPIM schedules to a

hardware executable program on iPIM. We develop the frontend code transformation to

support our iPIM schedules and the backend instruction optimizations to improve the

performance of generated programs. Our backend optimizations have unique challenges

due to our novel near-bank architecture from two perspectives. First, because of the

simple in-order control core design, our register allocation phase needs to prevent data

hazards due to register contention. Thus, this phase aims to span virtual registers into

different physical registers to avoid such data hazards instead of minimizing the number

of allocated registers in the typical register allocation phase. Second, our instruction

reorder phase needs to optimize row buffer locality when exploiting the instruction-level

81

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

parallelism (ILP) because of the timing characteristics of DRAM banks. Thus we add

new virtual dependencies to enhance the row-buffer locality which is critical to the per-

formance of programs. In summary, our end-to-end compilation flow takes advantage of

customized schedules to generate programs exploiting iPIM hardware features, such as

PGSM, and our backend optimizations further improve the performance of the programs.

4.3.3 Backend Optimization

In this section, we detail the novel instruction optimizations we developed for the

backend. The major goal of the backend in our compilation flow is to generate efficient

iPIM executable programs from the input Halide module. The backend decouples this

program generation process into two parts, instruction lowering which translates the

Halide module into iPIM instructions, and instruction optimizations which improve the

performance of the generated programs. We will detail these optimizations into three

parts, register allocation, instruction reordering, and memory order enforcement. The

effectiveness of our backend optimizations will be quantitatively analyzed in Sec.4.4.4.

Register Allocation: The goal of register allocation is to assign a physical register to

each virtual register and avoid the instruction dependency due to the conflict of physical

registers. To avoid such conflicts on physical registers, our algorithm is based on the

depth-first search on the register interference graph, and it attempts to assign each virtual

register from a physical register different from the most recently used one. The input

of our algorithm, the register interference graph, is built upon the traditional liveness

analysis of virtual registers. After building the register interference graph and converting

the register allocation problem into a graph coloring problem, our algorithm tries to avoid

the conflict of physical registers rather than solely minimizing the number of physical

registers in the allocation. Because the architecture design of iPIM uses simple in-order

82

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Algorithm 4 Instruction reordering algorithm
Input: dependency graph of instructions G = (V,E)
Output: a sequence of instructions S
Init the set of ready instructions R = ∅
for v ∈ V do

Init T (v) = 0
if v.degree == 0 then

R = R
⋃
{v}

end if
end for
N(v): the outgoing neighbour nodes of the node v.
L(v): the execution latency of the node v.
for i = 1 to |V | do

vopt = Inst with the highest priority for v ∈ R.
R = R− {vopt}; Si = vopt; T (vopt) = i
for u ∈ N(vopt) do

T (u) = max{T (u), T (vopt) + L(vopt)}
u.degree = u.degree− 1
if u.degree == 0 then

R = R
⋃
{u}

end if
end for

end for

control core to avoid hardware overheads, the traditional register allocation method could

cause the dependency between instructions due to the conflict of physical registers, which

further leads to pipeline stalls.

Instruction Reordering: Although the program generated by register allocation

is already executable on iPIM, we reorder instructions in the program to maximally

exploit the instruction-level parallelism. Because of the instruction issue mechanism of

our in-order core, the dependency between adjacent instructions will lead to pipeline

stalls. Therefore, the instruction reordering aims to expose instruction-level parallelism

to the hardware, which eliminates pipeline stalls and improves the performance. We

first build a directed graph where each node stands for instruction and directed edges

between nodes represent the dependency between instructions. Then we develop our

instruction reordering algorithm which traverses this directed graph in topological order.

We associate each node with a timestamp to provide an estimation of its earliest time

83

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Figure 4.5: Instruction reordering example: image brighten.

ready to be issued (T (v) in Algorithm.4). When there are multiple instructions available

at a time step, we will schedule the load instruction with the T smaller than the current

time step or the node with the smallest T . After marking the instruction to be scheduled,

we update the incoming degree of all its outgoing neighbors, and also their timestamp T .

Finally, all instructions are scheduled into the output sequence after iterating through

|V | time steps. This graph traversal algorithm is demonstrated in Algorithm 4, and its

time complexity is O(|V |log|V |+ |E|) where |V | is the number of nodes, i.e. instructions,

and |E| is the number of edges in the directed dependency graph.

Memory order enforcement: In addition to data dependency which will block is-

suing instructions, we also add the dependency for resource conflicts to prevent pipeline

stalls due to resource contention on DRAM. In particular, issuing two DRAM load in-

structions consecutively consumes slots in the instruction queue at the base logic die while

the second instruction has to be stalled because of the single memory request queue and

a longer DRAM access latency. In some cases, a large number of consecutive DRAM

instructions could occupy the whole instruction queue impeding the scheduling of fur-

ther computation instructions which do not have a dependency on any instruction in the

queue. To prevent pipeline stalls due to the lower throughput of the memory request

queue, we insert dependency between load instructions and store instructions to defer

84

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

the scheduling of consecutive memory instructions. We use the image brighten pipeline

as an example shown in Fig.4.5. Since DRAM access latency varies from the case of

row buffer hit to row buffer miss, we also add the third kind of dependency to enforce

the memory accesses to the DRAM with the same order as they appear in the input

program. As shown in Fig.4.5, these two kinds of newly added dependency edges help to

avoid pipeline stalls due to DRAM request queue contention and improves the locality

of row buffers as it keeps the originally good data access locality on image tiles. After

adding these two new kinds of dependency among instructions, the generated instruction

dependency graph is passed to the instruction reordering stage.

4.3.4 System Integration

We consider iPIM as a standalone accelerator with a separate address space, which

is not a part of the host CPU’s system memory. This standalone design can avoid the

complexity and overhead of supporting virtual memory [141] and cache coherence [142],

which introduces extra communication traffic between the host and PIM accelerator and

offsets the benefits of PIM. iPIM can be integrated with the host CPU using a standard

bus, such as PCIe [143] and AMBA [144], and can be scaled using off-chip SERDES links

similar to HMC [140].

4.4 Evaluation

We first describe the experimental setup and methodologies in Sec.4.4.1. Next, we

show the performance, energy, and area results of iPIM in Sec.4.4.2. In Sec.4.4.3, we

demonstrate the advantages of iPIM’s near-bank design and the effectiveness of decou-

pled control-execution architecture. In Sec.4.4.4, we show the benefits of iPIM’s compiler

optimizations by conducting a series of comparative evaluations. In the end, we conclude

85

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Table 4.1: Image Processing Benchmark Setting.
Category Benchmark Description

Single-stage
Benchmarks

Image
Brighten

out(x,y)=α· in(x,y)

Gaussian
Blur

blur x(x,y)=(in(x,y)+in(x+1,y)+in(x+2,y))/3
blur y(x,y)=(blur x(x,y)+blur x(x,y+1)+blur x(x,y+2))/3

Downsample
d(x,y)=(in(2x-1,y)+in(2x, y)·2+in(2x+1,y))/4
out(x,y)=(d(x,2y-1)+d(x,2y)·2+d(x,2y+1))/4

Upsample
u(x,y)=(in(x/2,y)+in((x+1)/2,y))/2
out(x,y)=(u(x,y/2)+u(x,(y+1)/2))/2

Shift out(x,y)=in(x-4,y-4)

Histogram
RDom r(0,in.width(),0,in.height())
histogram(in(r.x,r.y))+=1

Multi-stage
Benchmarks

Bilateral
Grid

It uses the bilateral grid filter to smooth
images with edges preserved (4 pipeline stages) [145]

Interpolate
It interpolates pixel values using a pyramid of
low-resolution samples (12 pipeline stages) [127]

Local
Laplacian

It tone-maps an image and enhances its local contrast
using a multi-scale method (23 pipeline stages) [128]

Stencil
Chain

It is composed of a chain of
stencil computations (32 pipeline stages) [127]

that iPIM’s compiler optimizations are near-optimal by showing the achieved high hard-

ware utilization and instruction per cycle (IPC) number.

4.4.1 Experimental Setup

Benchmark and Dataset Selection. As detailed in Table.4.1, we use a set of

single-stage and multi-stage benchmarks for an in-depth and comprehensive analysis. The

single-stage benchmarks cover a wide range of computation and memory patterns in im-

portant image processing operations [146], such as elementwise, stencil, reduction, gather,

shift, and other data-dependent operations. With them, we are able to provide isolated

in-depth analysis for each image processing operation. The multi-stage benchmarks,

which are widely used in image processing programming languages [127,130,132,147], on

86

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

the other hand, contain heterogeneous pipeline stages that require the support of pro-

grammability. We use DIV8K [137] dataset, which contains over 1500 images covering

diverse scene contents with 8K (7680×4320) resolution for all the evaluated benchmarks.

The choice of a high-resolution dataset is to reflect the application trend on workstations

and data-center that deep learning training, medical image processing, and geographical

information system require higher image quality.

Hardware Configuration. iPIM assumes 3D-stacking memory configuration sim-

ilar to previous near-bank accelerators [11–13] without changing DRAM’s core timing.

We list the detailed hardware configuration, latency values, energy consumption, and

DRAM settings in Table.4.2. We also consider important timing parameters to limit

power (tRRDS=4, tRRDL=6, tFAW=16). iPIM contains 8 iPIM cubes (total ∼ 850mm2)

to compare with a Tesla V100 GPU card [148] with 4 HBM stacks (total ∼ 1199mm2),

where one HBM stack consumes ∼ 96mm2 footprint [149].

Simulation Methodology. We develop a cycle-accurate simulator extended from

ramulator [150] by integrating customized compute-logic and buffers with DRAM banks.

iPIM is designed to run at a clock frequency of 1GHz under the 22nm technology node.

We use cacti-3DD [67] to evaluate the inter-PE interconnects, TSV, and the 3D DRAM

bank access latency and energy. The energy, performance, and area of the address/data

register file and process group/vault scratchpad memory are also simulated by cacti-3DD.

The base die and the SERDES energy are set based on previous near data processing

work [151]. The hardware components of SIMD units and integer ALUs are synthesized

by design compiler [152] to derive performance, power, and area results. For all the

evaluated components on the DRAM die, we conservatively assume ×2 area overhead

considering reduced metal layers in the DRAM process [11]. For the control core on the

base logic die, we adopt an in-order ARM cortex-A5 core [153] to evaluate its area and

power. For the GPU evaluation, the baseline image processing workloads are written in

87

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Table 4.2: iPIM hardware configuration parameters.
Parameter Names Configuration

Cubes/Vaults/PGs/PEs/InstQueue/DRAMReqQueue 8/16/8/4/64/16
SIMD len / CAS width / link width (SERDES) 4/128b/4
Bank / AddrRF / DataRF / PGSM / VSM (Byte) 16M/256/1K/8K/256K
tCK / tRCD / tCCD / tRTP / tRP / tRAS (ns) 1/14/2/4/14/33
tADDRRF / tDATARF / tPGSM / tVSM (ns) 1/1/1/1
tADD(SUB) / tMUL / tMAC / tLOGIC (ns) 4/5/8/1
tPEbus / tTSV / tNoC (hop) / tSERDES (hop) (ns) 1/1/1/0.08
RD,WR / PRE,ACT / AddrRF / DataRF (J/access) 0.52n/0.22n/0.43p/2.66p
SIMD Unit / Int ALU (J/access) 87.37p/11.05p
PEbus / TSV / SERDES (J/bit) 0.017p/4.64p/4.50p
DRAM rowbuffer policy / DRAM schedule open page / FR-FCFS

Figure 4.6: Throughput and speedup comparison between iPIM and GPU.

Halide with manually-tuned schedules. The GPU performance and power are measured

from nvprof and nvidia-smi, respectively.

4.4.2 Performance, Energy-efficiency, and Area

Performance. iPIM achieves 11.02× average speedup over the GPU as shown in

Fig.4.6. From the hardware’s point of view, this speedup is mainly attributed to iPIM’s

ample memory bandwidth as a result of near-bank architecture (more comparisons in

Sec.4.4.3). From the software’s point of view, this high speedup is achieved through

88

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

good compiler optimizations (more analysis in Sec.4.4.4).

Next, we explain the variations in the speedup for different benchmarks. First, the

Brighten benchmark consists of elementwise operations which are completely bound by

memory bandwidth, so iPIM’s enormous bank-level bandwidth can provide very good

speedup (21.09×). Second, the Histogram benchmark involves data-dependent compu-

tation resulting in inferior performance using Halide’s default schedule on GPU. The

schedule on iPIM converts it into a reduction of parallel reduced partial histogram re-

sults, thus it achieves significant performance improvement (43.78×). Third, Blur and

Stencil Chain benchmarks only have moderate speedup (4.32× and 4.30×, respectively)

on iPIM. Later analysis (Sec.4.4.4) shows that these two benchmarks have higher com-

putation intensity than other benchmarks, and involve a lot of index calculations which

are bound by address register file. As a conclusion, the results indicate that iPIM can

effectively accelerate a wide range of image processing applications.

Energy-efficiency. iPIM achieves 79.49% average energy saving over the GPU

(Fig.4.7). The energy saving mainly comes from the reduction of expensive data move-

ment compared with GPU, since iPIM’s compute-logic can use the local bank without

off-chip data access. Sec.4.4.3 provides a more detailed energy breakdown to show the

small overhead of data movement in iPIM. Also, we observe that for each benchmark the

energy saving in Fig.4.7 is approximately proportional to the speedup in Fig.4.6. This

is because iPIM’s increased bank-level bandwidth is a result of near-bank data access,

which also contributes to the reduction of data movement energy.

Next, we explain the difference in energy saving between single-stage benchmarks and

multi-stage benchmarks (89.26% and 66.81%, respectively). iPIM employs compute root

schedule, where intermediate data between pipelines are written back to banks without

fusing. In comparison, since Halide employs pipeline fusion for multi-stage benchmarks

on GPU, the expensive off-chip memory access can be reduced due to increased on-

89

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Table 4.3: Area evaluation of iPIM components on the DRAM die considering DRAM
process overhead.

Name Number Area (mm2) Overhead (%)

SIMD Unit 64 2.26 2.36
Int ALU 64 0.32 0.33
Address Register File 64 0.20 0.21
Data Register File 64 1.79 1.86
Memory Controller 16 1.84 1.92
PGSM 16 3.87 4.03
Total - 10.28 10.71

Figure 4.7: Energy comparison between iPIM and GPU.

chip data reuse. As a result, iPIM has a slight drop in energy saving for multi-stage

benchmarks.

Area. iPIM’s decoupled control-execution architecture is area-efficient because it

only adds small area overhead (execution part) per DRAM die and the control core can

be well fitted on the base logic die. First, we evaluate the area of execution components in

the PIM layers considering DRAM process overhead (Fig.4.2(c)), and normalize the total

added area to a DRAM die (96mm2 [149]). We show that the added area per DRAM

die is small (10.71%) to support programmability according to Table.4.3. Second, we

evaluate the area of iPIM’s control core on the base logic die (Fig.4.2(b)). The core

consumes 0.92mm2 total silicon footprint (including the VSM which takes 0.23mm2),

90

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

and it can be well fitted into the extra area of each vault (3.5mm2 [69]) on the base logic

die. On the contrary, if this control core is näıvely integrated with each bank, the total

area overhead per DRAM die will increase to 122.36%, which is 10.42× larger than that

of our decoupled control-execution design.

Thermal Issues. iPIM’s peak power is 63W per cube considering both DRAM

dies and the base logic die, and the peak power density is 593mW/mm2. The normal

operating temperature for 8Hi HBM2 DRAM dies is 105◦C [149], and we conservatively

assume the DRAM dies in our case operates under 85◦C. A prior study on 3D PIM ther-

mal analysis [154] shows that active cooling solutions can effectively satisfy this thermal

constraint (85◦C). Both commodity-server active cooling solution [72] (peak power den-

sity allowed: 706mW/mm2) and high-end-server active cooling solution [71] (peak power

density allowed: 1214mW/mm2)) can be used. Also, compared with previous work [154]

where PIM logics are concentrated on the base logic die far from the top heat sink, iPIM

distributes the PIM logics evenly to each DRAM dies, so the heat dissipation will be much

better [155]. In addition, we note that the majority of the peak power (78.5%) is induced

by simultaneously activating/precharging DRAM banks. Since iPIM compiler optimizes

row buffer locality for image processing workloads, for memory-intensive workloads with

ideal row buffer locality, the frequency of this activity is relatively low.

4.4.3 Architecture Analysis

Comparison of iPIM and process-on-base-die solution

We compare iPIM with the process-on-base-die (PonB) solution and observe that

iPIM on average achieves 3.61× speedup and 56.71% energy saving as shown in Fig.4.8.

We further explain the PonB configuration and the advantages of iPIM over the PonB

solution. The only difference of PonB with iPIM is that all near-bank components are

91

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Figure 4.8: Comparison of near-bank and process-on-base-die solutions.

moved to the base logic die, and these components access their DRAM banks through

TSVs. We evaluate PonB using the same benchmarks and simulator while serializing

the data traffic on the shared TSVs between the base logic die and the DRAM dies.

The inferior performance of the PonB solution is because all memory accesses need to

go through TSVs with limited bandwidth, which is only 10% of iPIM’s peak memory

bandwidth. The energy overhead of the PonB solution is induced by expensive in-cube

data movement energy, which is 2.48× of iPIM’s local bank access energy. We argue that

it is impractical for the PonB solution to have the same memory bandwidth as iPIM by

increasing the number of TSVs, since this will increase the TSV overhead by 10×, which

translated to 187% area overhead per DRAM die.

Energy Breakdown

We provide a detailed energy breakdown of iPIM programs shown in Fig.4.9. The

DRAM in this figure contains the background energy, activation/precharge (RAS) en-

ergy, read/write (CAS) energy, and refresh energy. The SIMDunit contains all float-

ing/integer operation energy of the SIMD unit. The AddrRF/DataRF/PGSM contains

the read/write energy and leakage energy. The Others contains data movement energy

and control core’s energy on the base logic die. The breakdown shows that iPIM’s de-

92

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Figure 4.9: Energy breakdown of iPIM programs.

coupled execution-control architecture spends most of the energy on PIM dies (89.17%),

and only a small part on data movements and the control core (10.83%). The low energy

consumption of inter-vault and intra-vault data movement is contributed from (1) iPIM’s

near-bank architecture and (2) localized data movement benefited from the memory hi-

erarchy and compiler optimizations.

4.4.4 Compiler Analysis

Effectiveness of compiler optimizations

We add a set of comparative evaluations to justify the performance benefits pro-

vided by iPIM’s compiler optimizations (Fig.4.10). We summarize these optimization

choices as follows. The register allocation policy determines whether to use the mini-

mum number of physical registers (min) or scatter registers to avoid the dependency of

instructions (max). The instruction reordering option determines whether to reorder the

instruction of programs generated by the register allocation stage. The memory order

enforcement option chooses whether to add dependency edges on adjacent memory re-

quests or not before sending the dependency graph to the instruction reordering stage.

The optimized design (opt) adopts the max register allocation policy and applies both

instruction reordering and memory order enforcement. The näıve baseline (baseline1) as-

93

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Figure 4.10: Effectiveness of different iPIM compiler optimizations.

sumes the min register allocation policy without instruction reordering. All of baseline2,

baseline3, and baseline4 have only one different compiler optimization option compared

to opt . Specifically, baseline2 uses the min register allocation policy, baseline3 does not

apply instruction reordering, and baseline4 does not enforce memory order. The rest of

settings for baseline2− 4 remain the same as opt.

We observe that all of iPIM compiler optimizations provide an overall 3.19× speedup

(opt v.s. baseline1). Further analysis shows that max register allocation provides 2.59×

speedup than min register allocation (opt v.s. baseline2). This is because iPIM’s in-

order core does not support expensive register renaming mechanism in the out-of-order

execution, and max register allocation can optimally eliminate output-dependency and

anti-dependency to prevent issue stall of later instructions. Next, instruction reordering

provides 2.74× speedup (opt v.s. baseline3), since it can expose more instruction-level-

parallelism by overlapping instructions without dependency. In the end, enforcement of

memory-order provides 1.30× speedup (opt v.s. baseline4). The reason is that it can

maximally interleave other instructions with memory access requests and it also improves

row buffer locality.

94

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

Figure 4.11: iPIM’s key components’ utilization and IPC.

IPC and Utilization analysis

As shown in Fig.4.11, we provide the IPC of the control cores and the utilization

of key hardware components on the PIM dies. First, we observe that the average IPC

achieves a very high value of 0.63 after intensive compiler optimizations. This implies

that iPIM currently attains near-optimal performance, and further improvement has an

upper bound of 1.59× assuming no pipeline stalls. Second, detailed analysis shows that

for each benchmark, key hardware components reach very high utilization. For example,

benchmarks with intensive index calculations (Blur, Shift, Histogram, Bilateral Grid,

and Stencil Chain) realize more than 40% utilization on the address register file. As a

conclusion, the high IPC and hardware utilization indicate current compilation flow has

well-optimized image processing applications on iPIM architecture.

4.5 Related Work

Image processing accelerators. Previous work has explored Field Programmable

Gate Array (FPGA) [130,131,147], Coarse Grain Reconfigurable Arrays (CGRA) [156,

157], and ASIC solutions [139, 158] for image processing acceleration. These acceler-

95

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

ators target mobile and embedded platforms, where power-efficiency and low latency

are the primary goals of optimization. Also, the application scenarios are mostly im-

age streaming applications with a small working set, so spatially distributed data flow

architecture is often adopted to map the entire image processing pipeline. To achieve

the desired power-efficiency, line buffer [157] is widely used to exploit producer-consumer

data locality and fuse pipeline stages, so the intermediate data can stay on-chip with-

out expensive off-chip memory access. In comparison, iPIM focuses on data center and

workstation environments, where the complex algorithm pipelines and large working set

due to high-resolution images need both high memory capacity and bandwidth. Thus,

conventional compute-centric accelerators will suffer from the memory bandwidth bot-

tleneck, while iPIM’s near-bank architecture provides abundant bandwidth resources to

tackle this challenge.

Process-in-memory (PIM) accelerators. We compare iPIM with previous work

using practical DRAM technology without invasive modifications to the DRAM bank’s

circuitry [91, 159]. The first category of research [125, 160, 161] that tries to integrate

processor cores to DRAM dies suffers from large area overhead. iPIM solves this chal-

lenge by proposing a control-execution decoupled approach where the control core is

placed on the base logic die and shared by execution units closely integrated with

each bank. The second category of research adopts 3D process-on-logic-die architec-

ture [25, 57,58, 69, 103,162–166], which is bound by the TSV bandwidth available in the

base logic die. iPIM evaluation shows 3.61× speedup and 56.71% energy saving com-

pared with this approach. To further improve memory bandwidth, a few work [11–13]

employs near-bank architecture similar to this work, but only supports limited fixed

functionalities and cannot map the heterogeneous image processing pipelines which have

diverse computation and memory patterns. iPIM proposes SIMB ISA and an end-to-

end compilation flow to solve this programmability challenge. In addition, some recent

96

iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
Chapter 4

work proposes integrating computation logic on the DRAM DIMM modules to enable

low overhead near-data processing [167–170]. While practical, these architecture designs

only have small bandwidth improvement over CPUs compared with 3D-PIM solutions.

There are also studies exploiting PIM architectures based on non-volatile memory (NVM)

technologies [48,49,90,93,171,172]. Compared with these studies, DRAM provides a bet-

ter write endurance than NVM, which is critical to image processing applications where

intermediate results of pipelines need to be written back to memory.

4.6 Conclusion

This project develops iPIM, the first programmable in-memory image processing ac-

celerator using near-bank architecture. iPIM uses a decoupled control-execution archi-

tecture to support lightweight programmability. It also contains a novel SIMB (Single-

Instruction-Multiple-Bank) ISA to enable various computation and memory patterns for

heterogeneous image processing pipelines. In addition, this project develops an end-to-

end compilation flow extended from Halide with new schedules for iPIM. The compiler

backend further contains optimizations for iPIM including register allocation, instruc-

tion reordering, and memory order enforcement. Evaluations show that iPIM supports

programmability with small area overhead, and provides significant speedup and energy

saving compared with GPU. Further analysis demonstrates the benefits of iPIM com-

pared with the previous process-on-base-logic architecture design and the effectiveness of

iPIM’s compiler optimizations.

97

Chapter 5

MPU: Memory-Centric SIMT

Processor via In-DRAM Near-Bank

Computing

This chapter focuses on developing a general-purpose near-bank processing architecture

for addressing the memory bandwidth wall of many parallel computing workloads on

state-of-the-art GPU platforms. This work further explores near-bank processing archi-

tectures under the context of general-purpose computing in addition to our prior studies of

application-specific and domain-specific solutions. Although a general-purpose graphics

processing unit (GPGPU) with its single-instruction-multiple-thread (SIMT) program-

ming model benefits these workloads by exploiting massive memory-level parallelism and

providing DRAM bandwidth higher than traditional CPUs, its further performance scal-

ing is constrained by the ”memory bandwidth wall” [123] challenge.

Despite the potential of near-bank computing to provide plentiful memory bandwidth,

existing academic research [11–13] and industrial prototypes (e.g., HBM-PIM [15]) focus

on developing application-specific or domain-specific architectures. In previous chapters,

98

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

our near-bank processing designs, SpaceA and iPIM, also demonstrate such success in

SpMV computation and image processing workloads. Although these near-bank process-

ing designs accelerate their target applications through the customization of hardware and

software, they lack the flexibility of supporting a wider range of data-intensive workloads.

Such a lack of flexibility increases the non-recurring engineering costs for chip fabrication,

thus impeding the development and deployment of near-bank processing hardware to ad-

dress the memory bandwidth wall. As a result, it urges a general-purpose architecture

that lowers the non-recurring engineering costs by providing a higher programmability

to support various applications without changing hardware.

There are still several challenges for general-purpose near-bank computing in acceler-

ating a number of data-intensive workloads. First, the pipeline of SIMT processors con-

tains complex logic components (e.g., load-store-unit [173]) and large register files [174].

Different from the prior near-bank accelerators customized for applications, the SIMT

pipeline is needed for general purpose data-intensive workloads. Naively placing the whole

pipeline with complex logic components and complicated data paths in the DRAM die

introduces an intolerable area overhead [124–126]. Second, the efficient support of the

SIMT programming model on near-bank computing is needed, especially the inter-thread

communication and the dynamic scheduling of warps [175]. As the shared memory is fre-

quently used for inter-thread communication in a thread block, directly placing it on

the base logic die will incur enormous TSV traffic. The dynamic scheduling of warps

could disrupt the row-buffer locality of DRAM banks, seriously downgrading bandwidth

utilization. Third, it requires both the end-to-end support of a parallel programming

language to ease the programmers’ burden and backend compiler optimizations for near-

bank computing to exploit hardware potentials.

To address these challenges, we design MPU (Memory-centric Processing Unit), the

first general purpose SIMT processor based on 3D-stacking near-bank computing archi-

99

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

tecture, and an end-to-end compiler flow supporting CUDA programs [176] with opti-

mizations tailored to MPU. First, we design a hybrid SIMT pipeline for MPU where only

a small number of registers and other lightweight components are added on the DRAM

dies. At runtime, instructions are fetched, decoded, and issued on the base logic die

while they can be offloaded to near-bank units (NBU) according to either compiler hints

or hardware policies. To facilitate this hybrid execution of instructions, we propose an

instruction offload engine to make instruction movement decisions, a register track table

and a register move engine to flexibly transfer registers, and a load-store unit extension

to handle near-bank load/store requests. Second, we propose two architectural optimiza-

tions for the SIMT model. For the shared memory, we move it to the DRAM die and

restructure the core organization by placing all NBUs associated with the same core on

the same DRAM die. For the dynamic scheduling of thread warps, we enable multiple

activated row-buffers per DRAM bank to reduce the ping-pong effect thus improving the

bandwidth. Third, we propose an end-to-end compilation flow to support CUDA pro-

grams. To optimize instruction offloading location on MPU’s hybrid pipeline, we further

propose a novel instruction and register location annotation algorithm through the static

analysis of instructions, which effectively reduces the data movement among the shared

TSVs.

The contributions of this project are summarized as follows:

• To the best of our knowledge, we design the first general-purpose near-bank SIMT

processor using a hybrid pipeline with an instruction offloading mechanism. By

integrating lightweight hardware components on the DRAM die, MPU achieves a

small area overhead for general purpose processing.

• We propose two architectural optimizations for the SIMTmodel, including the near-

bank shared memory to reduce data movement and multiple activated row-buffers

100

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Figure 5.1: Profiling results for data-intensive workloads on NVIDIA Tesla V100 GPU.

to alleviate ping-pong effects in the dynamic warp scheduling.

• We develop an end-to-end compilation flow supporting CUDA programs on MPU

and a novel backend optimization annotating the locations of registers and instruc-

tions.

• Evaluation results of representative data-intensive workloads show that MPU with

all optimizations achieves 3.46× speedup and 2.57× energy reduction on average

over an NVIDIA Tesla V100 GPU.

5.1 Motivation

5.1.1 GPU Profiling

Despite the success of the graphics processing unit (GPU) in accelerating data-

intensive parallel programs, we observe from performance characterizations that the

memory bandwidth is a serious performance challenge for these workloads on the state-

of-the-art GPU. Specifically, we evaluate a set of representative data-intensive workloads

from various application domains including deep learning, bioinformatics, linear alge-

bra, and image processing applications as detailed in Table 5.1. The measured memory

bandwidth, bandwidth utilization, and compute utilization of an NVIDIA Tesla V100

101

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

GPU [177] are shown in Fig.5.1. On average, these benchmarks achieve 55.90% DRAM

bandwidth utilization (503.10 GB/s) and 2.57% compute utilization. The saturation of

DRAM bandwidth and the low utilization of the compute resources exhibit a memory-

bandwidth bound behavior. This performance characteristic results from the low arith-

metic density and the regular memory access patterns in most of these workloads. Also,

we note that the workloads HIST and NW show relatively low bandwidth utilization

as a result of the long memory access latency on GPU.

For workloads suffering from either the limited DRAM bandwidth or the long DRAM

access latency on GPU, near-bank computing is a promising architecture to alleviate

these performance bottlenecks because of both abundant bank-level memory bandwidth

and reduced memory access latency. However, prior near-bank computing accelera-

tors [11–13, 50] are domain-customized, since they have simple data paths, application-

specific mapping strategies, and inefficient general purpose programming language sup-

port. The lack of programmability for these accelerators confines them to a niche applica-

tion market, adding non-recurring engineering costs in manufacturing. Moreover, parallel

data-intensive workloads usually come from various application domains, making none

of these near-bank accelerators feasible to support all of these parallel programs.

In summary, the memory bandwidth bottleneck on the state-of-the-art GPU urges

the need for a higher memory bandwidth for data-intensive parallel programs, and the

huge overheads of placing an SIMT processor near banks introduce unique technical chal-

lenges. Both of these factors motivate us to design MPU, the first general purpose SIMT

processor based on 3D-stacking near-bank computing to exploit bank-level bandwidth

and alleviate the GPU bandwidth bottleneck.

102

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

5.1.2 SIMT Processor

SIMT model [178] is widely adopted in modern GPUs [179, 180] for accelerating

parallel computing programs. The pipeline can be divided into front-pipeline which

consists of instruction fetch, decode, and issue stages, middle-pipeline which consists

of execution and writeback stages, and end-pipeline which consists of the commit stage.

The front-pipeline and the end-pipeline usually involve complex control and logic circuits,

such as warp table, SIMT stack, scoreboard, and load-store unit. The middle-pipeline

contains arithmetic instruction and memory access instructions. MPU reduces the near-

bank overhead by duplicating some parts of the middle-pipeline to DRAM dies, and

add corresponding instruction offloading mechanisms. The SIMT model also has some

special features that require optimizations. First, the shared memory is extensively used

for inter-thread communication inside the same thread block. Placing it in the base

logic die may introduce extra communication traffic among the 3D layers. Second, the

SIMT scheduling causes warps to access different row-buffers interchangeably, causing a

row-buffer ping-pong effect. MPU explores architectural optimizations, near-bank shared

memory and multiple activated row-buffers, for these two features detailed in Sec.5.2.3.

5.2 MPU Architecture

First, we discuss MPU’s high-level design in Sec.5.2.1. Second, we introduce MPU’s

hybrid pipeline in Sec.5.2.2. Next, we present two architectural optimizations for SIMT

model in Sec.5.2.3.

103

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Figure 5.2: (1) MPU architecture overview. (2) Detailed microarchitecture of a MPU
core (left: Subcores, middle: TSVs, right: NBUs).

5.2.1 Microarchitecture Overview

From the high-level, MPU adopts a scalable design with many processors (Fig.5.2 1)

interconnected by an off-chip network (similar to SERDES links in the HMC [181]) as

shown in the bottom of Fig.5.2 (1). Each processor is a 3D-stacking cube of a base

logic die stacked with multiple DRAM dies, connected by vertically shared buses called

the through silicon vias (TSVs) [182] (Fig.5.2 5). The base logic die is horizontally

partitioned into an array of SIMT cores (Fig.5.2 2) interconnected by an on-chip 2D-

mesh network [183].

To harvest the near-bank bandwidth with small overheads on DRAM dies, MPU’s

SIMT core adopts a hybrid pipeline design. In the MPU core (Fig.5.2 2), complex logics

are placed on the base logic die, and some lightweight components in the execution

stage are replicated on near-bank locations. On the base logic die, a core consists of

four subcores (Fig.5.2 3), an instruction cache, a warp scheduler, and components for

handling inter-core traffic (network interface unit, router, and LSU-Remote). The TSVs

(Fig.5.2 5) are evenly divided among the cores (64b data buses per core), via which the

subcores can communicate with near-bank components on DRAM dies. All the core’s

104

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

near-bank components are located within the same DRAM die, containing four near-bank

units (NBUs) (Fig.5.2 4) and the shared memory. To enable efficient processing in this

hybrid architecture (Sec.5.2.2), we propose a novel instruction offloading mechanism and

a hybrid load-store unit design.

In addition, MPU considers two architectural optimizations for the SIMT program-

ming model in Sec.5.2.3. First, we find that naively implementing shared memory on the

base logic die results in poor performance, so we restructure the core’s 3D organization

and develop a near-bank shared memory design. Second, we observe that the dynamic

execution of SIMT warps may disrupt the row-buffer locality of DRAM banks, so we

adopt a technique to enable multiple activated row-buffers inside the same DRAM bank.

5.2.2 Hybrid Pipeline

As illustrated in Fig.5.2 (2), an MPU core (Fig.5.2 (2) 2) adopts a hybrid pipeline

design that is split between the base logic die (subcore) (Fig.5.2 (2) 3) and the DRAM die

(near-bank unit, NBU) (Fig.5.2 (2) 4). The frontend components of the SIMT pipeline

mostly comprise of control flow and data dependency logic, so they are mainly contained

in the subcores, including instruction fetch (I-cache, SIMT stack, warp table), decode,

and issue (scoreboard) stages. For the backend pipeline, MPU duplicates some simple

parts from the subcore to the NBU, including the register file, operand collectors, and

ALUs. Other complex units such as LSU and network interface units are left on the base

logic die. Note that the memory controller and the shared memory are entirely moved

from the base logic die to the DRAM die, since near-bank memory controller will reduce

TSV traffic for DRAM commands [11, 50], and shared memory can reduce TSV traffic

for register movement (Sec.5.2.3).

In addition to the original pipeline components, to assist flexible instruction offload-

105

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Figure 5.3: (1) Vertical and (2) horizontal core structure.

ing, each subcore also adds an instruction offload engine, a register move engine, and

an associated register track table. Besides, the load-store unit (LSU) is modified and

augmented to support remote data traffic and near-bank instruction offloading.

5.2.3 Optimizations for the SIMT model

Near-bank Shared Memory Design: The shared memory is extensively used for

inter-thread communication in the same thread block for a great number of important

GPU benchmarks [175]. If the default shared memory location is set in the far-bank

subcore on the base logic die, a lot of register data movement traffic will be created

and the TSVs will be congested, causing significant performance loss. Thus, it will

be desirable to enable a near-bank shared memory design and set the default register

location for ld/st.shared to the near-bank register file. However, this is impossible in

the vertical core structure (Fig.5.3 (1)) in the default HMC-style setting [181], where

all the NBUs associated with a core are distributed among multiple 3D stacks. Under

such an assumption, moving the shared memory (Smem) to each NBUs means that the

shared memory is split into each 3D layer and inter-thread shared memory accesses need

to go through the bandwidth-bound TSVs. To enable the near-bank shared memory, we

106

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

restructure the core’s 3D-organization as shown in the horizontal core design in Fig.5.3

(2). In our solution, we put all NBUs of the same core into the same DRAM die, so

that all NBUs can access the near-bank shared memory without TSV’s constraints. In

Sec.5.4.3, we confirm the benefits of this optimization on benchmarks that extensively

use shared memory.

Multiple Activated Row-Buffers Design: The dynamic execution of warps will

create a ping-pong effect on DRAM’s row-buffer. Ideally, warps from the same thread

block executing the same memory access instruction will have continuous DRAM ad-

dresses and result in a high row-buffer hit rate. However, the hardware dynamically

issues available instructions from each warp, resulting in the ping-pong effect of differ-

ent warps accessing a few row-buffers irregularly. Since MPU has no hardware cache,

this ping-pong effect will cause frequent DRAM precharge and activations, significantly

downgrade its performance.

To solve this issue in a software transparent way, we observe that for a lot of bench-

marks we evaluate, only a small set of row-buffers are active in a short period. If we can

enable multiple row-buffers to be simultaneously activated, then this ping-pong effect

will be greatly alleviated. Based on the design of MASA (Multitude of Activated Subar-

rays) [184] which enables multiple subarrays’ row-buffers to be activated in parallel, we

change our address mapping so that continuous DRAM row addresses will be mapped to

interleaved subarrays’ physical row. Extra row address latches and access transistors are

added to enable different warps to access different row buffers in independent subarrays.

Through evaluations in Sec.5.4.3, we confirm that this design can decrease the row-buffer

miss rate and increase performance for multiple benchmarks.

107

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

PTX
Kernels

Branch
Analysis

Location
Annotation

Register
Allocation

MPU
Executables

Figure 5.4: The backend of MPU compiler generating MPU executable kernels from
PTX kernels.

5.3 Compiler Support

To enable the SIMT programming model, MPU supports an end-to-end compilation

flow from CUDA programs to MPU executable programs. This compilation flow con-

tains a novel static analysis stage to optimize the location assignment of instructions by

reducing data movement between MPU cores and near-bank units. Experimental results

in Sec.5.4.4 demonstrate that this novel location annotation improves the performance

of MPU compared with a default hardware policy.

The end-to-end compilation flow of MPU includes frontend stages and backend stages.

In frontend stages, the MPU compiler reuses nvcc [185] to compile CUDA programs [175]

to generate kernels in Parallel Thread Extension (PTX) [186] ISA which is a kind of

intermediate representation of CUDA kernels. Then, the backend generates the MPU

hardware executables from the PTX kernels, which includes three main stages as shown in

Fig.5.4. Among these three stages, the branch analysis and register allocation stages are

common to support the SIMT programming model. The branch analysis stage infers the

re-convergence point of each jump instruction so that the hardware can maintain a SIMT

stack to handle thread divergence efficiently during the execution [187]. This problem

can be formulated as the post-dominator analysis of a control-flow graph representing

the program. The register allocation stage analyzes the liveness of each virtual register

in the program to build a register interference graph. The allocation of physical registers

can then be formulated as a graph coloring problem on this register interference graph.

The location annotation is a novel backend stage to optimize the performance by

108

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

…
ld.global.f32 %f1, [%rd9];
ld.global.f32 %f2, [%rd8];
add.f32 %f3, %f2, %f1;
add.s64 %rd10, %rd1, %rd7;
st.global.f32 [%rd10], %f3;
…

1
2
3
4
5

Figure 5.5: A code snippet of PTX instructions with a dependency chain of near-bank
registers highlighted.

annotating the location of instructions as either the near-bank NBU or the far-bank sub-

core on the base logic die. When executing the annotated kernels on MPU, the locations

annotated on instructions will be used to finalize the runtime instruction offloading de-

cision. The main idea of this optimization is a heuristic approach based on the static

analysis extracting the dependency chains of the control-related, address-related, and

value-related registers. First, value-related registers will be annotated as near-bank reg-

isters while control-related and address-related registers will be annotated as far-bank

registers. Then, instructions from the dependency chain of value-related registers are

annotated as the near-bank instructions while the rest of instructions are annotated as

the far-bank instructions. For example, Fig.5.5 highlights a dependency chain of value

registers. Offloading the compute instruction in line 3 to near-bank compute logic can

eliminate the data transfer on TSVs for registers %f1, %f2, and %f3. Finally, the anno-

tated program will be passed to the register allocation stage where registers annotated

as different locations will not share the same physical register.

The static analysis of the location annotation is implemented as an iterative algo-

rithm shown in Algorithm 5 to realize the idea of decoupling register dependency chains.

Initially, the location of all registers is annotated as U (unknown). The value registers

of the global load/store instructions are annotated as N (near-bank) while the address

registers of these instructions are annotated as F (far-bank) because of the LSU design.

109

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Algorithm 5 Location annotation algorithm
Input: A kernel with a list of instructions I
Output: A location table L for all registers and instructions.
L(reg): the location of an register reg.
L(instr): the location of an instruction instr.
Init the location of all registers to unknown U .
Init the location of all instructions to unknown U .
Init the set of registers R = ∅.
// Annotate the initial location to address registers, value registers, and
// control registers.
for instr in I do

for reg ∈ {instr.SrcRegs
⋃
instr.DstRegs} do

R = R
⋃
{reg}

end for
if instr.type ∈ Instrjump then

L(instr.SrcRegs) = F
end if
if instr.type == ld.global then

L(instr.SrcRegs) = F
L(instr.DstRegs) = N

end if
if instr.type == st.global then

L(instr.SrcRegs) = N
L(instr.DstRegs) = F

end if
if instr.type ∈ {ld.shared, st.shared} then

L(instr.SrcRegs) = N
L(instr.DstRegs) = N

end if
end for
// Propagate the location of known registers to others.
while ∀reg ∈ R,L(reg) does not change do

for instr in I do
for reg in instr.SrcRegs do

if L(reg) == U then
L(reg) = L(instr.DstRegs)

end if
if L(reg)! = L(instr.DstRegs) then

L(reg) = B
end if

end for
end for

end while
// Annotate the location of instructions according to the location of their
// destination registers.
for instr ∈ I do

L(instr) = L(instr.DstRegs)
end for

110

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

In addition to that, the location of predicative registers is annotated as F (far-bank)

because control-related instructions are executed on the far-bank pipeline stages. Then,

our algorithm iteratively scans over the program to update register locations. In partic-

ular, if the destination register location is known for an instruction, its source registers

will follow the same location annotation. If a register is annotated as both N and F

from different instructions, it will be annotated as B, meaning that this register could

appear on both far-bank and near-bank pipeline stages. This process will finish once the

annotated locations of all registers converge. Finally, the location of instruction follows

the same location as its destination register.

5.4 Evaluation

In Sec.5.4.1, we introduce the experiment setup and methodologies. In Sec.5.4.2,

we show the performance, area, energy, and thermal results of MPU. In Sec.5.4.3, we

demonstrate the benefit of MPU’s architecture optimizations and the comparison with

the prior processing-on-base-logic-die designs. In Sec.5.4.4, we present the effectiveness

of the location annotation in our compiler backend optimization.

5.4.1 Experimental Setup

Benchmark. To evaluate the effectiveness of the MPU design in supporting data-

intensive parallel programs, we select a set of representative CUDA workloads as shown in

Table.5.1. In particular, these workloads are from various important application domains

including image processing, machine learning, linear algebra, and bioinformatics. Because

our MPU compiler needs either CUDA source code or PTX kernels to generate MPU

executable programs, we have CUDA implementations of these workloads from either

well-known GPU benchmarks, such as Rodinia [190], or writing CUDA programs in the

111

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Table 5.1: The workloads of the benchmark suite.
Workload App Domain Reference Description
BLUR Image Processing Halide [127] 3x3 blur.
CONV Machine Learning TensorFlow [28] 3x3 conv.
GEMV Linear Algebra cuBLAS [188] Matrix-vector multiply.
HIST Image Processing CUB [189] Histogram.
KMEANS Machine Learning Rodinia [190] K-means clustering.
KNN Machine Learning Rodinia [190] K-nearest-neighbour.
TTRANS Linear Algebra cuBLAS [188] Tensor transposition.
MAXP Machine Learning TensorFlow [28] Max-pooling.
NW Bioinformatics Rodinia [190] Sequence alignment.
UPSAMP Image Processing Halide [127] Image upsample.
AXPY Linear Algebra cuBLAS [188] Vector add.
PR Linear Algebra CUB [189] Parallel reduction.

Table 5.2: MPU hardware configuration parameters.
Parameter Names Configuration

Proc/(3D,Core)/(Subcore,NBU/Bank/RowBuf) 8/(4,16)/(4,4/4/4)
SIMT/BankIO/TSV/(on)offchip bus (Bit) 32/256b/1024/(256)128
Bank/Icache/(Far)Near-bank RF/Smem (Byte) 16M/128K/(32K)16K/64K
tRCD/tCCD/tRTP/tRP/tRAS/tRFC/tREFI [150] 14/2/4/14/33/350/3900
fCore / fTSV / fRouter / f(on)offchip bus (GHz) 1/2/2/(2)2
RD,WR/PRE,ACT/REF/RF/SMEM [67] (J/access) 0.15n/0.27n/1.13n/40.0p/22.2p
Operand collector / LSU-Extension (J/access) 41.49p/39.67p
TSV [191] / (on)off-chip bus [67,151] (J/bit) 4.53p/(0.72p)4.50p
DRAM rowbuffer policy / DRAM schedule open page / FR-FCFS

same functionality while achieving performance comparable to state-of-the-art libraries,

such as cuBLAS [188].

Hardware Configuration. Using the 3D-stacking memory configuration similar

to the previous near-bank accelerators [11–13, 50], MPU needs no changes to DRAM’s

core circuit except the multiple activated row-buffers enhancement [184]. The detailed

hardware configuration, latency values, energy consumption, and DRAM settings are

presented in Table.5.2. MPU contains 8 processors (total ∼ 926mm2) to compare with

a Tesla V100 GPU card [148] with 4 HBM stacks (total ∼ 1199mm2), where one HBM

112

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

stack consumes ∼ 96mm2 footprint [149].

Performance Simulation. We build an event-driven simulator from scratch using

SimPy [192] to implement the timing model of SIMT cores, DRAM, and interconnect

network. This ensures that our implementation and integration of these hardware com-

ponents are consistent. We use the timing parameters of DRAM banks and other SRAM

buffers from cacti [67]. The router latency is from BookSim2 [183]. TSV and on/off-chip

buses adopt parameters from previous studies [67, 151, 191]. For the ALU, we use the

measured results from PTX instructions [193,194].

Energy Model. We use state-of-the-art performance tools to extract key power

parameters for our hardware components, and our performance simulator generates the

trace of hardware events to help with the estimation of dynamic power. In particular,

we use the design compiler to get the power values for the SIMT core pipeline based on

Harmonica project [6], and we use cacti [67] to evaluate the power of DRAM banks and

SRAM buffers. The energy values of routers are from BookSim2 [183] and the power

parameters of TSV and on/off-chip links are from prior studies [67,151,191].

Area Estimation. We use design compiler [152] to analyse pre-layout area of the

vector ALU and the SIMT core pipeline [6]. We use AxRAM’s area result [11] for the in-

dram memory controller and scale it to 20nm. The area for the shared memory, register

file, operand collector, and LSU-Extension are derived from cacti [67]. For all the above-

evaluated components on the DRAM die, we conservatively assume ×2 area overhead

considering the reduced number of metal layers in the DRAM process [11]. For multi-row-

buffer support, we include the overhead of 128 extra row address latches [184] per memory

controller to enable simultaneous activations of 4 subarray row buffers. Our DRAM area

overhead estimation method and results are consistent with prior architecture studies of

near-bank processing, such as AxRAM [11] and iPIM [50].

Simulator Calibration. We validate our simulator implementation with state-of-

113

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Figure 5.6: (1) Execution time and speedup comparison with the GPU. (2) Workloads
memory intensity and speedup.

the-art performance simulators by comparing the simulation results of MPU-Sim and

other simulators with the same inputs for key hardware components. In particular,

we validate our SIMT cores against the streaming processors in GPGPUSim2 (SM35

TITAN) [195], our DRAM controller against the memory controller in DRAMSim2

(HBM2E) [196], and the network interface against the NoC components in BookSim2

(2D mesh) [183].

GPU Baseline. The GPU performance and power results are collected on real GPU

hardware with the help of nvprof and nvidia-smi, respectively. We include detailed steps

to reproduce GPU performance and power on NVIDIA V100 GPU real hardware in the

file benchmark/README.md of MPU source code repository.

114

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

5.4.2 Performance, Area, Energy, and Thermal Analysis

Performance. MPU achieves 3.45× speedup on average over the GPU as shown

in Fig.5.6 (1). This speedup is contributed by the improved memory bandwidth from

the hybrid-pipeline near-bank architecture, the architecture optimizations for the SIMT

programming model (Sec.5.4.3), and the compiler optimizations for the locations of in-

structions (Sec.5.4.4).

To further explain different speedup numbers across workloads, we plot the memory

intensity (Byte/Instruction) and the speedup of these workloads in Fig.5.6 (2). First, we

observe that the speedup number has a strong correlation with the memory intensity be-

cause the memory intensity represents the demand of workloads for memory bandwidth.

As MPU provides more memory bandwidth than the GPU (4.13× in measurement), for

benchmarks with simple memory access and compute patterns (e.g., AXPY), the speedup

is proportional to the memory intensity. Second, we find that some benchmarks show

higher (KMEANS) and lower (TTRANS, UPSAMP) speedup numbers than their mem-

ory intensity. The reason is that memory dependency cannot reflect memory latency

characteristics and complex program behaviors. For KMEANS, MPU provides addi-

tional latency reduction compared to the GPU, as the compute instructions are mostly

data-dependency free so the performance is less sensitive to the number of instructions.

For TTRANS and UPSAMP, complicated control flow and data-dependency hinder the

memory parallelism, so the abundant memory bandwidth in MPU is not fully utilized.

Area. MPU’s hybrid pipeline architecture is area-efficient because only a small part

of the pipeline backend components are added in the DRAM die, saving the area for other

pipeline units. In Table.5.3, we evaluate the area of added components and normalize the

total overhead to a DRAM die (96mm2 [149]). Thanks for our compiler optimizations

(Sec.5.4.4) which significantly reduce the near-bank register usage, we shrink the near-

115

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Table 5.3: Area evaluation of MPU components on the DRAM die considering DRAM
process overheads.
Name Number Area Per Die (mm2) Overhead (%)

Shared Memory 4 0.84 0.88
Register File 16 9.71 10.12
Memory Controller 16 0.63 0.66
Operand Collector 64 2.43 2.53
Vector ALU 16 3.74 3.90
LSU-extension 16 2.43 2.53
Multi-row-buffer Support 64 0.01 0.01
Total - 19.80 20.62

Figure 5.7: Energy and energy reduction comparison with the GPU.

bank register file to half the size of the far-bank register file. This brings the total

area overhead from 30.74% to 20.62%. We argue this overhead is small for a general

purpose SIMT processor, comparing to 10.71% area overhead in previous work which only

supports domain-acceleration [50]. According to the synthesis result of Harmonica [6]

scaled to 20nm, the 3.4mm2 area of the SIMT core with an instruction cache, operand

collectors, and a load-store unit can perfectly fit into the available area (3.5mm2 [69])

on the base logic die. On the contrary, if the whole core is placed in the DRAM die, the

total area overhead will increase significantly (2× compared with the hybrid pipeline of

MPU).

Energy. MPU achieves 2.57× energy reduction on average over the GPU (Fig.5.7).

The energy reduction mainly comes from the reduction of expensive data movement

compared with the GPU, since MPU has a much shorter and simpler data path to access

116

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Figure 5.8: MPU energy breakdown.

a core’s local DRAM banks. Compared with the complex data path components in the

GPU, where the data needs to travel through the TSVs inside the HBM, off-chip links,

L2 cache, crossbar network, and then L1 cache to the local register file, the MPU directly

offloads the instruction to the DRAM dies to transfer data between the near-bank register

file and the DRAM banks. Also, we observe that for each benchmark the energy reduction

in Fig.5.7 is approximately proportional to the speedup in Fig.5.6 (1). This is because

MPU’s increased bank-level bandwidth is a result of near-bank data access, which also

contributes to the reduction of data movement energy.

In order to further analyze the energy consumption, we provide a detailed energy

breakdown in Fig.5.8. We discover that most of the energy in MPU (92.94%) is spent

on computation (ALU consumes 39.82%), data access (31.90%), and data movement

(21.22%). The data access energy contains local register file access (operand collectors

(OPC) and register file (RF) consume 15.47%) and DRAM accesses (16.42%). For data

movement, the energy spent on remote data movement (Network consumes 4.43%) is

significantly smaller than the local data movement (TSV consumes 16.79%). This well

explains the data movement saving advantages of MPU compared to GPU to achieve

great energy reduction.

Thermal Analysis. MPU’s peak power is 83W per processor considering both

117

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Figure 5.9: Comparison of near-bank / far-bank smem.

DRAM dies and the base logic die, and the peak power density is 552mW/mm2. The

normal operating temperature for HBM2 DRAM dies is 105◦C [149], and we conserva-

tively assume the DRAM dies in our case operates under 85◦C. A prior study on 3D

PIM thermal analysis [154] shows that active cooling solutions can effectively satisfy this

thermal constraint (85◦C). Both commodity-server active cooling solution [72] (peak

power density allowed: 706mW/mm2) and high-end-server active cooling solution [71]

(peak power density allowed: 1214mW/mm2)) can be used.

5.4.3 Architecture Analysis

Shared memory optimization. To understand the benefit of our near-bank shared

memory, Fig.5.9 shows performance results compared with placing the shared memory

on the base logic die, denoted as far-bank shared memory. In the same figure, we also

plot TSV traffic improvement of near-bank shared memory design w.r.t. far-bank shared

memory design. On average, near-bank shared memory design achieves 1.48× speedup

and 1.89× TSV traffic improvement compared with far-bank shared memory design. The

performance benefits of near-bank shared memory come from the extensive use of shared

memory. If the shared memory location is far-bank, the contents of near-bank registers

need to be brought down to the base logic die for the inter-thread communication through

shared memory. This will create a lot of register movement traffic and congest the TSVs.

118

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Figure 5.10: Comparison of the number of activated row-buffers on (1) performance
and (2) row-buffer miss rate

For the near-bank shared memory design, the default locations of value registers for

ld/st.global and ld/st.shared are all near-bank. Thus less register movement will be

involved, easing the bandwidth pressure on the TSVs. However, since the number of

instructions offloaded to NBUs also rises, this may increase TSV traffic, as we observe

that for some workloads with speedup larger than 1, the TSV traffic improvement may

be slightly less than 1 (HIST, NW). For workloads that do not use shared memory, both

the performance and TSV traffic are identical to the location of shared memory.

Multiple activated row-buffers analysis. To understand the benefits of multiple

activated row-buffers, we compare the performance of all workloads running on MPU with

different numbers of activated row-buffers. Fig.5.10 shows such performance comparisons

where the speedup is normalized to a single row-buffer. As shown in the Fig.5.10 (1), the

speedup numbers are 1.10× and 1.25× when we increase the number of activated row-

buffers to 2 and 4, respectively. The row-buffer miss rate in Fig.5.10 (2) indicates that as

we increase activated row-buffer numbers to 2 and 4, the miss rate reduces from 15.60%

to 9.20% and 5.45%, respectively. Because more activated row-buffers can effectively

119

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Figure 5.11: Execution time and speedup comparison with the processing-on-base–
logic-die solution.

reduce the row-buffer ping-ping effect in the dynamic scheduling of warps, increasing

the number of activated row-buffers effectively reduces average DRAM access latency

to improve end-to-end time. Especially, we observe that KNN, UPSAMP, and AXPY

significantly benefit from the increased number of activated row-buffers due to severe

ping-pong effects on a single row-buffer.

Comparison with processing-on-base-logic-die (PonB) solution. We compare

MPU with the state-of-the-art general purpose near-data SIMT processors by placing all

compute logic on the base logic die, denoted as PonB. The end-to-end execution time

shown in Fig.5.11 demonstrates that on average MPU achieves 1.46× speedup up com-

pared with the PonB solution. This performance improvement is contributed by a sig-

nificant amount of instructions offloaded for near-bank computations. This reduces data

movements on the TSVs which have a much lower bandwidth than bank-level memory

bandwidth.

5.4.4 Effectiveness of Compiler Optimizations

We first conduct static analysis according to the iterative algorithm introduced in

Sec.5.3 to infer the locations of registers. The breakdown of registers on different locations

for all workloads is shown in Fig.5.12. On average, 32.5% registers only appear in near-

bank locations, 63.7% registers only appear in far-bank locations, and 3.8% registers could

120

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

Figure 5.12: Register location analysis.

Figure 5.13: Comparison of performance for different instruction location policies.

appear in both locations. Because only registers appearing in near-bank locations need

to use the near-bank register file, we effectively shrink the size of the near-bank register

file to reduce its area overhead. This breakdown also demonstrates a clear separation

of near-bank registers from far-bank registers. Only a small portion of registers could

appear in both locations. This clear separation comes from a clear separation of two

classes of dependency chains. The first class involves computations on the data value

loaded from the DRAM, and the second class involves integer calculations for DRAM

addresses and control-flow related variables, such as loop variables. Usually registers

for these two classes of dependency chains do not interfere with each other, as registers

associated with the first class usually exist in near-bank locations, and registers related

to the second class reside on the base logic die. Therefore, for most registers (more than

121

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

95%) we can assign them to a certain near/far-bank location to reduce the register file

usage.

We further evaluate the performance of different instruction location policies with

the GPU as shown in Fig.5.13. On average, using the proposed instruction annotation

optimizations, we achieve 3.45× speedup w.r.t. GPU. However, using hardware’s default

instruction location policy, offloading all instructions to near-bank compute-logic, or of-

floading all instructions to far-bank compute-logic, we achieve 1.92×, 1.22×, and 1.78×

speedup, respectively. Compared with the default hardware policy and both naive of-

floading strategies, our instruction location annotation is based on the annotated register

location. Because of the clear separation of two classes of aforementioned dependency

chains, our instruction location annotation assigns most of the computation on data val-

ues to near-bank and computation on addresses or control-flow conditions to far-bank.

As a result, the register movement traffic on TSVs is minimized, which eventually boosts

the performance of programs running on MPU.

5.5 Related Work

General Purpose Near-data-processing Platforms: Pioneering studies [124,

126,161] attempted to integrate the entire processor on the DRAM die, which incurs con-

siderable area overheads. Compared with them, MPU only places lightweight components

in the DRAM dies through a hybrid pipeline, which significantly reduces the overhead.

Recently, there are a number of practical general purpose near-data-processing solutions

that explore near-cache [197], near-memory-controller [198], near-DIMM [167, 199], and

3D-stacking processing-on-logic-die CPU-style [92, 200, 201] and GPU-style [4, 5, 7, 8, 10]

platforms. However, these solutions have several drawbacks. First, they have moderate

bandwidth improvement, due to the hierarchically shared bus of the main memory. To

122

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

overcome this drawback, MPU unleashes bank-internal bandwidth through near-bank

computing. Second, the communication between the host and the near-data logic in-

troduces extra data traffic because of shared memory space, which may offset the bene-

fit of near-data-processing, including fine-grained instruction offloading overhead [4, 92],

cache coherence traffic [200], concurrent host access stall [201], and inconsistent data

layout requirement [10]. Different from these prior studies, MPU has an independent

memory space and supports end-to-end kernel execution, the same as discrete GPU

cards [179,180].

Domain-specific Near-data-processing Accelerators: A large number of previ-

ous studies have explored domain-specific accelerators using near-data-processing ideas,

including approximate computing [11], image and video processing [50,202], deep learn-

ing [12, 15, 203], graph analytics [103], bioinformatics [169], garbage collection [164],

address translation [204] and data transformation [205]. These designs usually adopt

domain-specific processing logic, customized data paths, and application-tailored soft-

ware mapping strategies. The lack of programmability for these accelerators confines

them to a niche application market, adding non-recurring engineering costs for silicon

manufacturing. In contrast, the SIMT programming model supported by MPU can bene-

fit a wide range of data-intensive parallel programs, and our end-to-end compilation flow

greatly eases the burden of programmers.

Analog Process-in-memory Architecture: In addition to the digital near-data-

processing solutions, recently there is a surge in researches about analog process-in-

memory (PIM) architecture [206, 207]. Different from the digital solution where the

memory array and the computing logic are separate, analog solutions modify the mem-

ory array to integrate computing functionalities within memory arrays, thus achieving

extremely high computation throughput and energy efficiency. However, these designs

suffer from analog noise [172], limited write-endurance issues of non-volatile devices [208],

123

MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing Chapter 5

and high overhead of analog-digital converters [209]. Although analog PIM solutions are

promising for certain application domains such as neural network [48, 95, 100], they are

still challenging for general purpose computing usage. In comparison, MPU adopts com-

mercially available 3D stacking technologies [149, 181] without modifying the DRAM

bank’s circuit, and this work has demonstrated promising results of MPU on general

purpose data-intensive workloads.

5.6 Conclusion

This work proposes MPU (Memory-centric Processing Unit), the first SIMT proces-

sor based on 3D-stacking near-bank computing architecture. First, we develop a hybrid

pipeline where only lightweight hardware components are added on the DRAM dies and

the instructions can be offloaded for near-bank computing. Second, we explore two ar-

chitectural optimizations for the SIMT programming model, introducing a near-bank

shared memory design to reduce data movements, and multiple activated row-buffers

designs to increase bandwidth utilization. Third, we present an end-to-end compilation

flow for MPU based on CUDA with a backend optimization to annotate the location of

instructions as either near-bank or base logic die through the static analysis of programs.

The end-to-end evaluation results of MPU on a set of representative benchmarks demon-

strate 3.46× speedup and 2.57× energy reduction compared with an NVIDIA Tesla V100

GPU. We further conduct studies to show the performance improvement of MPU over

prior 3D-stacking processors and identify the benefits of MPU’s software and hardware

optimizations.

124

Chapter 6

MPU-Sim: A Simulator for

In-DRAM Near-Bank Processing

Architectures

In previous chapters, we have developed three different accelerators based on near-bank

computing architectures. In particular, our designs, SpaceA, iPIM, and MPU, have

demonstrated that with architectural and software innovations, near-bank computing

can benefit different application scopes, including SpMV, image processing, and even

a wider range of data-intensive parallel computing workloads. The evaluation of these

designs shows that near-bank computing delivers an effective bandwidth not only higher

than traditional memory bus but also higher than processing on the base logic die of 3D

memory cubes.

1 Despite its potential benefits to a wide range of data-intensive workloads by pro-

viding a significant amount of effective bandwidth, it is challenging to develop efficient

1©2022 IEEE. Reprinted, with permission, from Xinfeng Xie, Peng Gu, Jiayi Huang, Yufei Ding,
Yuan Xie. ”MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures.” IEEE Com-
puter Architecture Letters, vol. 21, no. 1, pp. 1-4, 1 Jan.-June 2022, doi: 10.1109/LCA.2021.3135557.

125

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

near-bank processing accelerators. From a hardware’s perspective, these accelerators

need architectural modifications at the bank-group level to place compute logics near

memory banks facing stringent area constraints. From a software’s perspective, these

accelerators need efficient data locality optimization to exploit the benefits of bank-level

bandwidth. It urges an open-source simulator for near-bank processing architectures to

study solutions overcoming these obstacles. Although there are several simulators for

PIM architectures [103, 210, 211], most of them target processing on base logic die, and

focus on the integration with the host system. Moreover, these PIM simulators lack the

support for software and hardware features to enable near-bank computing. As a result,

it is infeasible to directly use existing PIM simulators for studying the hardware designs

and software optimizations of near-bank processing architectures.

In this work, we develop MPU-Sim, an open-source simulator 2 for in-DRAM near-

bank processing architectures. MPU-Sim is built for MPU [212], a near-bank single-

instruction-multi-thread (SIMT) processor, which supports SIMT programming model

for general-purpose data-intensive workloads via near-bank computing. Because MPU is

a general-purpose SIMT processor, it includes near-bank compute logics, SIMT proces-

sors on the base logic die, and NoC components for inter-vault communication. MPU-Sim

supports various hardware designs with the customization of near-bank compute logics

and base logic die control units. Moreover, as MPU-Sim takes programs in PTX instruc-

tions generated from CUDA programs, it exposes a generic programming interface for

users to explore compiler design and optimizations. Our contributions of this work are

summarized as follows:

• We develop an open-source simulator, MPU-Sim, for general-purpose near-bank

processing architectures.It runs CUDA programs and enables software optimization

studies in addition to hardware design explorations.

2GitHub link: https://github.com/GD06/mpu-sim_distribution

126

https://github.com/GD06/mpu-sim_distribution

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

• We conduct calibration studies for key components (processor, DRAM, and NoC)

in MPU-Sim with state-of-the-art simulators to validate our simulator implemen-

tations.

• We conduct case studies for hardware and software optimization opportunities in

near-bank processing architectures with MPU-Sim to demonstrate its potential

usage.

6.1 MPU Simulator

We first provide an overview of MPU architecture and software interface in Sec-

tion 6.1.1. Then, we detail the design and implementation of MPU-Sim in Section 6.1.2.

Finally, we introduce the useful auxiliary tools of MPU-Sim for performance analysis and

power modeling in Section 6.1.4.

6.1.1 MPU Overview

MPU-Sim is a simulator for MPU [212], a general-purpose near-bank processing ar-

chitecture based on 3D memory technology. The architecture overview of MPU is shown

as Figure 6.1. MPU is composed of several processors connected through off-chip network

links. There are several MPU cores inside a processor connected through on-chip network

links. Each MPU core includes several subcores, and each subcore is a simple in-order

pipeline. Moreover, each MPU core includes several near-bank processing units (NBUs)

on DRAM dies where each NBU is associated to one DRAM bank group. There are

ALUs inside NBUs, thus the NBU can perform most of the simple arithmetic operations,

such as add and multiply. During the execution of MPU kernels, the subcore is able

to offload instructions to an NBU for near-bank processing without transferring data to

127

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

Subcore Subcore

Subcore Subcore

Warp
Scheduler

Bus
Logic

NBU NBU

NBU NBU

Shared
Memory

Bus
Logic

TSVs

Base Logic Die DRAM Die

Of
f-c

hi
p

Ne
tw

or
k

On
-c

hi
p

Ne
tw

or
k

Processor

M
PU

 C
or

e

Figure 6.1: The overview of MPU architecture.

compute logics on the base logic die. Because MPU [212] is designed for general-purpose

processing, it can be adapted to other near-bank processing accelerators by tailoring

control logics in subcores and compute logics in NBUs.

In terms of the software interface, MPU adopts the SIMT programming model to

exploit massive bank-level parallelism and address the challenge of control logic and

communication overheads. First, there are a large number of lightweight NBUs associated

with bank groups leading to a good fit for the SIMT programming model to exploit

massive fine-grain bank-level parallelism. Second, the SIMT programming model saves

the number of control-logic units by sharing the same control-logic unit among several

NBUs, which reduces area overheads. Third, the SIMT programming model reduces the

number of instructions communicated between control-logic units and NBUs thanks to

instruction sharing among threads from the same thread warp.

6.1.2 Design and Implementation

MPU-Sim focuses on the program execution on MPU by assuming programs and

data are ready inside MPU’s memory space when the simulation starts. Thus, MPU-Sim

does not cover the data transfers between host CPUs and MPU devices, and this design

decision is the same as other accelerator simulators, such as GPGPU-Sim [195]. As

shown in Figure 6.2, the simulation interface of MPU-Sim takes three inputs, program,

128

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

CUDA
Kernel

PTX
Instructions

MPU
Executable

device_ptr_a = mpu_malloc(sizeof(float) * N);
MPUMemCpy(host_ptr_a, device_ptr_a, HostToDevice);
……

{
Thread Block 0: Core 0, Thread Block 1: Core 1, …,
}

MPU-
Sim

Pr
og
ra
m

Da
ta

Sc
he

du
le

nvcc mpucc

Figure 6.2: The simulation interface of MPU-Sim.

data, and schedule. First, MPU supports the execution of PTX instructions, which

can be lowered from CUDA programs using nvcc without any modifications to CUDA

source code. Second, programmers need to allocate data in MPU and transfer data from

the host device. Third, MPU-Sim takes a thread block scheduling which specifies the

mapping of thread blocks to MPU cores. These interfaces leave a flexibility to explore

software optimizations for near-bank processing architectures. For example, instruction

offloading optimization can be explored at the compiler backend (mpucc), data layout

can be customized through the memory allocation, and thread block scheduling can be

tailored to study runtime scheduling optimizations.

Listing 6.1 demonstrates an example code snippet of scalar-vector multiplication on

MPU-Sim. The function ScalarVectorMultiply is a CUDA kernel for the computation.

The main function includes memory allocation and memory transfers to set up input

data on MPU. Then, it invokes the computation kernel that is running on MPU. Finally,

it transfers output data from the memory space to the host memory space. This pro-

gramming interface is similar to CUDA programming, which eases the burden of writing

MPU specific programs from programmers.

Figure 6.3 demonstrates a block diagram of simulation components inside MPU-

129

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

// CUDA kernel for scalar -vector multiplication

__global__ void ScalarVectorMultiply (float∗ input ,
float∗ output , float alpha , int len) {
int numThreads = gridDim . x ∗ blockDim . x ;
int tid = blockIdx . x ∗ blockDim . x + threadIdx . x ;
for (int i = tid ; i < len ; i += numThreads) {

output [i] = alpha ∗ input [i] ;
}

}

int main () {
. . .
// Memory allocation on MPU

mpu_malloc (mpu_input_vec , len ∗ sizeof (float)) ;
mpu_malloc (mpu_output_vec , len ∗ sizeof (float)) ;
// Transfer the input data to MPU

mpu_memcpy (mpu_input_vec , host_input_vec ,
len ∗ sizeof (float) , Host2Device) ;

// Launch kernel for the computation on MPU

ScalarVectorMultiply<<<GridCfg , BlockCfg>>>(
mpu_input_vec , mpu_output_vec , alpha , len) ;

// Transfer MPU computation results

mpu_memcpy (host_output_vec , mpu_output_vec ,
len ∗ sizeof (float) , Device2Host) ;

. . .
}

Listing 6.1: Code example of scalar-vector multiplication.

SIMT
Processor
Simulation

NBU Simulation

NoC Simulation

DRAM Bank Simulation

MPU
Executable

(instructions)

Thread Block
Information

1
2 3

Figure 6.3: A block diagram of MPU-Sim components.

Sim. The SIMT processor simulation takes the program and thread block information

as inputs. During the simulation, it offloads instructions to near-bank processing units

(NBU simulation) according to the location of each instruction annotated by mpucc.

It also communicates with hardware components (e.g., memory banks) in other vaults

through the NoC interface (NoC simulation). The implementation of MPU-Sim includes

three key components: SIMT processors, DRAM, and NoC. Based on these components,

MPU-Sim provides a flexibility to study hardware designs, such as customizing compute

130

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

logics in NBUs to study near-bank processing accelerators. Additionally, the flexibility

of these hardware components can enable the research of other PIM architectures. For

example, modifying an NoC mech interconnect structure to a shared bus structure could

help generalize our near-bank processing architectures from HMC-based to DIMM-based

designs. We conduct calibration studies for these three key components in Section 6.2

by comparing with state-of-the-art simulators.

6.1.3 Simulator Features

Compared with existing open-source HMC-style PIM simulators [103,210,211], MPU-

Sim supports new hardware and software features for studying near-bank processing ar-

chitectures. From the software perspective, MPU-Sim supports the SIMT programming

model (CUDA programs) to exploit massive fine-grain bank-level parallelism and reduce

control and communication overheads while most of the existing open-source HMC-style

PIM simulators are based on OpenMP. From the hardware perspective, MPU-Sim mod-

els various architectural components differently for near-bank processing architectures.

First, the SIMT processor (Figure 6.3 1) adopts a split processor pipeline to enable

instruction offloading to NBUs. Second, TSVs between SIMT processors and NBUs

(Figure 6.3 2) have the arbitration capability as they are shared by multiple subcores

and NBUs. Third, DRAM simulation (Figure 6.3 3) supports individual bank controls

for the flexibility of computation from independent NBUs. These software and hardware

features help identify new challenges (case studies in Section 6.3) and enable new research

of software and hardware designs for near-bank processing architectures.

131

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

Figure 6.4: An example of performance profiling traces.

6.1.4 Auxiliary Tools

We develop several auxiliary tools in MPU-Sim to help with performance and energy

analysis. First, MPU-Sim has a profiling mode that helps with the performance analysis.

The profiling mode of MPU-Sim logs detailed performance traces from all hardware

components. A detailed performance trace includes detailed hardware events, and each

hardware event includes its type, location, start timestamp, and end timestamp. These

hardware events can be imported to chrome://tracing for visualization. For example,

Figure 6.4 shows the snapshot of a hardware trace visualization in chrome://tracing.

This detailed profiling and visualization helps with the performance analysis, especially

analyzing program behaviors and identifying the bottlenecks of hardware components.

Second, MPU-Sim outputs the performance counters of each hardware component to help

with the energy analysis. We build an energy model that includes the modeling of static

energy and dynamic energy. We model the static energy as the static power multiplied by

the execution time where the static power is independent from program execution. We

model the dynamic energy by accumulating the dynamic energy of each hardware event.

For example, the dynamic energy of an NoC link is modeled as the total data transfer

132

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

across this link during the program execution multiplied by the energy for transferring a

data unit. Another example is the dynamic energy of scratchpad memory. The dynamic

energy of a scratchpad memory is modeled as the accumulation of the energy of each

read or write transaction during the program execution. With both static and dynamic

energy results, MPU-Sim can also output the energy consumption for each hardware

component.

6.2 Calibration Studies

In this section, we conduct calibration studies to validate our simulator implementa-

tion for the key hardware components in MPU-Sim with state-of-the-art hardware simula-

tors. In particular, we calibrate the processor part of MPU-Sim with GPGPU-Sim [195],

the DRAM part with DRAMSim2 [196], and the NoC part with BookSim [183], respec-

tively. Among all studies in this chapter, we evaluate a set of data-intensive workloads

from various application domains, including image processing (BLUR, CONV, HIST, UP-

SAMP), machine learning (CONV, KMEANS, KNN), linear algebra (GEMV, TTRANS,

AXPY, PR), and bioinformatics (NW). They are implemented in CUDA and shipped

with our simulator repository.

Processor calibration study: We conduct a calibration study to validate the imple-

mentation of our SIMT processor by running workloads in both GPGPU-Sim [195] and

MPU-Sim, and comparing simulation results. Because the memory hierarchies of GPU

and MPU are fundamentally different, we assume an ideal DRAM and NoC during this

calibration study. Figure 6.5 elaborates the comparison of simulation results between

MPU-Sim and GPGPU-Sim. Because we take GPGPU-Sim as the reference implemen-

tation, the simulation error is defined as the runtime difference between GPGPU-Sim

and MPU-Sim over GPGPU-Sim’s runtime. Because our MPU-Sim does not accurately

133

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

0
40
80
120
160
200

0
20
40
60
80

100

BLU
R

CONV
GEMV

HIST

KMEANS
KNN

TTR
ANS

MAXP
NW

UPSAMP
AXPY PR

Geo
mea

n

N
or

m
al

iz
ed

 R
un

tim
e

(%
)

E
rro

r (
%

)

Error (%) Normalized Runtime (%)

Figure 6.5: The simulation error and normalized runtime of workloads on MPU-Sim
compared with GPGPU-Sim.

model shared memory, workloads with intensive shared memory usage in GPU, such as

GEMV, NW, and PR, have larger differences (errors) in simulation results. Compared

with GPGPU-Sim, MPU-Sim has an average of 17.03% error and the average normalized

runtime is 116.05%.

DRAM calibration study: We conduct a DRAM calibration study by comparing the

average latency of DRAM requests simulated by DRAMSim2 [196] and MPU-Sim. In

particular, we generate two DRAM traces in a random access pattern with 100% and

67% of DRAM read transactions respectively, and feed these two DRAM traces to both

DRAMSim2 and MPU-Sim under different DRAM request bandwidth. The average

latency of DRAM requests in the simulation is shown in Figure 6.6. It shows that the

average latency differences between DRAMSim2 and MPU-Sim are 8.88% and 9.87%

for traces with 100% and 67% read transactions. These latency differences come from

different DRAM refreshing mechanisms. In particular, DRAMSim2 deploys a per-rank

refreshing mechanism while MPU-Sim uses a per-bank refreshing mechanism because

DRAM banks in MPU-Sim are independent for the flexibility of simulating near-bank

processing architectures.

NoC calibration study: We conduct an NoC calibration study by comparing the sim-

ulation results of BookSim [183] and the NoC in MPU-Sim. We implement a uniform

random traffic generator to inject single-flit packets for both 4×4 and 8×8 NoCs, where

134

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

0.2 0.3 0.4 0.5 0.6
Bandwidth (GB/s)

50

75

100

125

150

Av
g.

 L
at

en
cy

 (n
s)

DRAMSim2 (100% Read)
MPU-Sim (100% Read)
DRAMSim2 (67% Read)
MPU-Sim (67% Read)

Figure 6.6: The average latency of DRAM requests under different input bandwidth
for 100% and 67% read transactions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Injection Rate (flits/cycle/node)

0

100

200

300

400

Av
g.

 L
at

en
cy

 (c
yc

le
s) 4x4 BookSim

4x4 MPU-Sim
8x8 BookSim
8x8 MPU-Sim

Figure 6.7: Load-latency curves with uniform random traffic pattern for 4×4 and 8×8
meshes.

each router has a three-stage pipeline with look-ahead XY routing and a 4-flit buffer for

each input port. Figure 6.7 plots the load-latency curves. The result shows that the zero-

load latency differences between BookSim and MPU-Sim are 4.25% and 2.57%, while the

throughput differences are 7.95% and 3.21% for 4×4 and 8×8 meshes, respectively.

6.3 Case Studies

In this section, we conduct case studies using MPU-Sim for hardware and software

optimization opportunities in DRAM-based processing-in-memory accelerators to demon-

strate a potential usage of MPU-Sim. In particular, we conduct two case studies with

135

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

MPU-Sim to demonstrate that MPU-Sim helps identify potential hardware and software

challenges for near-bank processing architectures. Because of the missing support of crit-

ical features, as detailed in Section 6.1.3, existing HMC-style PIM simulators can hardly

identify these challenges in the scope of near-bank computing.

DRAM refresh study: In the first case study, we focus on the impact of DRAM refresh

on the performance of near-bank processing architectures. In particular, we set up DRAM

timing into two configurations, one without DRAM refresh and the other with standard

DRAM timing including DRAM refresh. We also consider two different page policies,

open page and close page, for DRAM timing. Figure 6.8 shows the normalized runtime of

an ideal DRAM without refresh over the standard DRAM. We have several observations

from Figure 6.8. First, DRAM refresh degrades the performance of near-bank processing

by blocking DRAM requests during refresh periods. In particular, there are 3.26% and

5.88% slowdowns on average for open page and close page policies respectively. Second,

the performance degradation of near-bank processing with an open page policy is less

than that of a close page policy. Because DRAM refresh increases the number of pending

DRAM requests in memory controllers by blocking requests during refresh, it provides

more opportunities for an open page policy to reorder requests thus reducing the number

of row activation and pre-charge commands. In the open page policy, some workloads,

such as TTRANS, even have performance slowdowns when disabling DRAM refresh

due to this reason. Profiling results of TTRANS with an open page policy shows that

the number of row activation and pre-charge increases 25.23% and 30.45% respectively

after disabling DRAM refresh. Third, different workloads are affected by DRAM refresh

differently. The performance of some workloads (BLUR, CONV, GEMV, and NW) is

less sensitive to DRAM refresh than the others because of their lower DRAM access

intensity [212]. In summary, this case study shows that DRAM timing play an important

role in near-bank processing and MPU-Sim can be used to study potential hardware

136

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

0.6

0.8

1

1.2

BLU
R

CONV
GEMV

HIST

KMEANS
KNN

TTR
ANS

MAXP
NW

UPSAMP
AXPY PR

Geo
mea

nN
or

m
al

iz
ed

 R
un

tim
e

Open Page Close Page

Figure 6.8: The normalized runtime of an ideal DRAM without refresh for both open
page and close page policies over the DRAM with actual HBM timing.

1

10

100

BL
UR

CO
NV
GE
MV HI

ST

KM
EA
NS KN

N

TT
RA
NS
MA
XP NW

UP
SA
MP

AX
PY PR

Ge
om
ea
n

S
pe
ed
up

Figure 6.9: The speedup of an interleaved thread block scheduling over the baseline.

optimizations.

Thread block scheduling study: In the second case study, we focus on the impact of

data locality on the performance of near-bank processing architectures. In particular,

we study the thread block scheduling that maps a thread block ID to an MPU core

ID to specify the execution location of each thread block. We compare two thread

block scheduling schemes: The baseline scheduling uses a continuous uniform division for

thread blocks to MPU cores. The MPU core ID for a thread block i is calculated as i
N
,

where N stands for the number of MPU cores. Then we have an interleaved thread block

scheduling, which is aligned to the memory space mapping to DRAM banks. The MPU

core ID for a thread block i in this interleaved thread block scheduling is represented as i

mod N . On average, the performance speedup of an interleaved thread block scheduling

over the baseline is 10.90× as shown in Figure 6.9. This significant speedup results from

the huge latency and bandwidth gap between accessing data in local banks and remote

137

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

banks. For the histogram workload (HIST), because the number of thread blocks equals

to the number of MPU cores, these two thread block scheduling schemes are identical to

each other, which result in a speedup of 1.0×. Similar to DRAM refresh study, we found

that some workloads (BLUR, CONV, GEMV and NW) are less sensitive to data locality

because of a lower DRAM access intensity although the speedups of these workloads are

still significant. In summary, the data locality plays an important role in the performance

of near-bank processing architectures due to the intrinsic non-uniform memory access,

and MPU-Sim can be used as a tool to study potential software optimizations, such as

thread block scheduling.

6.4 Related Work

Although prior studies develop HMC-style PIM simulators, such as GraphPIM [103],

PIMSim [210], and MultiPIM [211], they lack necessary software and hardware supports

for near-bank processing architectures.

From software’s perspective, the support for the SIMT programming model is missing

from existing open-source HMC-style PIM simulators although there are some in-house

PIM simulators modified from GPGPU-Sim. Because of a massive number of DRAM

banks, the SIMT programming model can reduce control-logic area overhead and exploit

fine-grained parallelism. Thus, MPU-Sim can help with the studies of software optimiza-

tions based on the SIMT programming model for near-bank processing architectures.

From hardware’s perspective, MPU can enable future research of hardware designs

based on near-bank processing architectures. Compared to existing open-source HMC-

style PIM simulators, MPU-Sim supports new hardware features with clear abstraction

and modularity for bank-level control and datapath, such as individual memory bank

controls and TSV arbitration. We detail these architectural supports as follows: First,

138

MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures Chapter 6

existing HMC-style PIM architectures usually directly use off-the-shelf processor designs

that are infeasible to be placed near memory banks due to area overheads. MPU uses a

split processor pipeline where control logic resides on the base logic die while compute

logic resides on DRAM dies for near-bank processing. These new split processor pipeline

designs are not supported in existing HMC-style PIM architectures. Second, vault con-

trolled on the base logic die control TSVs in each vault and individual banks have no

flexibility to arbitrate for TSV resources. This TSV arbitration is important for near-

bank processing because different memory banks could request data from other locations

at different timestamps, resulting in traffic contention on TSVs. Third, memory banks

within a vault are controlled by the same memory controller in HMC-style PIM simula-

tors. Thus they do not have the flexibility to control each memory bank independently.

This independent control is important for near-bank processing because compute logics

are designed at the granularity of memory banks.

6.5 Conclusion

In this project, we present MPU-Sim, an open-source performance simulator for in-

DRAM near-bank processing architectures. In particular, we introduce the design prin-

ciples of MPU-Sim and its implementation for key hardware components. Moreover,

we conduct calibration studies for the performance simulation of these key hardware

components with state-of-the-art hardware simulators to validate the implementation of

MPU-Sim. Finally, we conduct two case studies, the DRAM refresh study and thread

block scheduling study, to demonstrate the potential usage of MPU-Sim in the future to

help with the research of hardware and software optimizations for in-DRAM near-bank

processing architectures.

139

Chapter 7

A Transferable Approach for

Partitioning Machine Learning

Models on Multi-Chip-Modules

This chapter focuses on developing a novel machine learning-based approach to opti-

mize the workload partitioning problem for multi-chip-modules (MCMs) that have a

distributed memory space similar to near-bank processing architectures. Although our

previous chapters propose several hardware-specific optimizations for each individual

hardware design, some common software optimization challenges remain unsolved. For

example, the memory bandwidth and latency gap between local accesses and remote

accesses are so significant that the workload partitioning on such a distributed memory

space play important roles in performance and energy efficiency. In this chapter, we

present our work that targets the partitioning problems of machine learning (ML) work-

loads on an MCM-based ML accelerator to come up with a novel ML-based solution for

this common software challenge of near-bank processing architectures.

In this work, we propose a partitioner that combines reinforcement learning (RL)

140

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

…

Input ML Graph
… … …

RL Agent Constraint
Solver

Constrained RL Method

Chip 0 Chip 35

…

Output (Partitioning ML
Graphs to Chips)An MCM Package

… … …

Pretrained
RL Model

…

Training Dataset

… … …

RL Agent Constraint
Solver

Training Worker

Analytical
Cost

Model

Environment
Partition

Rewards

Output
the best
partition

Map nodes
to an MCM

package

A partition
sample

Reward
(measured

throughput)

Finetuning
Process

Figure 7.1: The overview of our constrained RL method that includes an offline pre–
training on a training dataset and an online fine-tuning to generate an ML model
partition. The objective is to optimize throughput or end-to-end latency targeting an
MCM package.

with a constraint solver to address the shortcomings of existing solutions. The deep

RL engine learns to interact with the dynamic compilation environment and creates an

action distribution that is biased towards a balanced partition while the constraint solver

takes the distribution and generates partition solutions that respect various constraints

(e.g. acyclic dataflow, no skipping chip). The overview of our RL-based method with

a constraint solver is shown in Figure 7.1. To further reduce the compilation time, we

develop a pre-training and fine-tuning method to generalize the pre-trained policies to

unseen input graphs. Our RL-based partitioner shows strong generalization via the pre-

training even when using an analytical cost model during the pre-training followed by

fine-tuning on real hardware. The use of an analytical cost model saves hardware resource

141

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

consumption and reduces pre-training time from a week to hours. During the deployment

of our RL-based method, this generalization significantly reduces the number of samples

and shortens the compilation time caused by expensive real hardware evaluation. Our

contributions are broken down in the following order:

• We define the problem of multi-chip partitioning for MCMs and propose a method

that combines the capabilities of deep RL networks and constraint solvers to search

for good partitionings in a search space where valid solutions are extremely sparse

due to constraints imposed by the hardware architecture.

• Our evaluation for BERT, a production-scale model, on real hardware demonstrates

that our RL-based partitioner achieves 6.11% and 5.85% higher throughput than

random search and simulated annealing upon its convergence.

• We demonstrate strong transfer learning performance via a pre-training based

method. We pre-trained the RL policy on 66 production neural networks from

computer vision applications and language models, using an analytical performance

model as a reward function. Fine-tuning the pre-trained policy on BERT reduces

the search time from more than 3 hours for RL training from scratch to only 9

minutes, while achieving the same runtime performance.

7.1 Motivation

We use an MCM-based ML accelerator as our target hardware platform to study the

workload partitioning problem of near-bank processing architectures for two reasons:

First, due to the success of MCMs in real-world industrial prototypes, we can con-

duct real hardware evaluation while the fabrication of near-bank processing architectures

142

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

is still difficult, expensive, and immature. Recent industrial prototypes of ML acceler-

ators, such as Simba [213] and multi-chip TPUs [214], have demonstrated that multi-

chip-modules (MCM) can reduce design and fabrication costs while delivering a similar

performance and energy efficiency as that of a monolithic chip. Instead of a large mono-

lithic chip, MCM designs are composed of a set of small chips integrated into a package

joined by off-chip interconnects [213,215,216]. MCM packages reduce the design cost as

designing a smaller chip is easier than designing a monolithic large chip, and also have

lower fabrication costs since the yield of chips is higher due to a smaller chip area [213].

Second, The memory space abstraction of MCMs is similar to that of near-bank

processing architectures. Figure 7.2 presents the architecture comparison between 3D

memory based near-bank processing designs and multi-chip-modules (MCMs). Since the

memory sizes of individual chiplets in an MCM are significantly smaller than monolithic

accelerators, training and inference of large ML models invariably require partitioning

the dataflow graph of tensor computations over the chiplets. Multi-chip partitioning is

the problem of finding an assignment of operations in a computational graph to chiplets

to maximize some performance metrics, typically throughput. The unique hardware

characteristics of MCMs make the performance of ML models particularly sensitive to

the quality of the partitioning, and therefore finding a good partitioning is an important

optimization step in compilers targeting MCMs.

Multi-chip partitioning is challenging for three reasons. First, the specialized hard-

ware architecture imposes constraints that invalidate large parts of the solution space.

For example, in a multi-chip TPU package [214], valid partitionings must assign opera-

tions to chiplets such that dataflows between chiplets are consistent with their relative

positions along a uni-directional inter-ring network (Figure 7.3c). Second, determining

whether a partitioning is feasible or not requires executing the subsequent stages in the

compilation process. For example, checking whether the peak memory usage for a partic-

143

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

Cube
0

Cube
1

Cube
2

Cube
3

Cube
4

Cube
5

Cube
6

Cube
7

Cube
8

Cube
9

Cube
10

Cube
11

Cube
12

Cube
13

Cube
14

Cube
15

(a) 3D Memory-Based Near Bank Processing

Chip
0

Chip
1

Chip
2

Chip
3

Chip
4

Chip
5

Chip
6

Chip
7

Chip
8

Chip
9

Chip
10

Chip
11

Chip
12

Chip
13

Chip
14

Chip
15

(b) Multi-die Chiplet ML Accelerator

Figure 7.2: The architecture comparison between (a) a 3D memory-based near-bank
processing design and (b) an MCM-based ML accelerator.

ular placement is less than the available chiplet memory (Figure 7.3f) requires knowledge

of the order of scheduling of operations that is only determined at a later compilation

pass. Finally, ML compilers usually have stringent time budgets for end-to-end compila-

tion making it harder to find good partitionings in this sparse search space.

There are several existing solutions for the multi-chip partitioning task, such as con-

straint solvers, compiler heuristics, search-based algorithms, and reinforcement learning.

Unfortunately, these solutions can hardly find the optimal partition solution under strong

constraints within a stringent time budget in the multi-chip setting. It is a common ap-

proach to use constraint solvers in compilers to solve well-formulated optimization prob-

lems, such as loop transformations [217]. After encoding the problem as a combinatorial

decision optimization, off-the-shelf solvers are then applied to find the solution that min-

imizes an objective function [217–220]. Unfortunately, some dynamic constraints, such

as memory allocation that happens later during the compilation process, are hard to be

formulated at the stage of multi-chip partitioning. Moreover, objective functions with

a closed-form formulation expressed in a solver logic typically fail to encapsulate the

complexity of the MCM system. On the other hand, hand-crafted compiler heuristics,

144

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

CPS CH RL CPS + S CPS + RL
(Our Work)

Static Constraints Yes Yes No Yes Yes
Dynamic Constraints No Yes No Yes Yes

Requires Close-Form Perf. Model Yes No No No No
Solution Quality N.A. Low N.A. Medium High
Time to Solution N.A. Fast N.A. Slow Fast

Table 7.1: Comparison among Constraint Programming Solver (CPS), Compiler
Hueristic (CH), Reinforcement Learning (RL), Search Algorithms with Constraint
Solvers (CPS + S), and RL with Constraint Solvers (CPS + RL).

such as greedy algorithms [213] and dynamic programming [221], are frequently used

in production compilers. Although they can search for valid partitions efficiently, they

often fail to find the optimal placement due to their over-simplification of the perfor-

mance model. Third, search-based compiler optimizations, such as random search and

simulated annealing, can mitigate the problem of inaccurate performance models in real

systems by sampling and evaluating partition candidates. However, these optimizations

cannot find good candidates in a timely manner when the solution space is overwhelm-

ingly large. In addition, search-based methods do not use prior knowledge to optimize an

unseen new graph, thus they always search from scratch resulting in a long search time.

Recent work [222] shows that Reinforcement Learning (RL) can be used to efficiently

solve graph optimization problems that arise in ML compilers. However, the strict con-

straints of multi-chip partitioning invalidate most of the decisions in the action space.

As a result, conventional RL methods fail due to insufficient valid samples or rewards.

In this work, we propose an RL partitioner working with a constraint solver to address

the aforementioned challenges. We summarize the comparison between our work and

prior studies in Table 7.1.

145

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

�

� �

� �

&KLS�
�

&KLS�
�

&KLS�
�

&KLS�
�

&KLS�
�

&KLS�
�

&KLS�
�

&KLS�
�

� �

�

�

�

&KLS�
�

&KLS�
�

&KLS�
�

&KLS�
�

�

�

�

�

�

&KLS�
�

&KLS�
�

&KLS�
�

&KLS�
�

� �

�

�

�

&KLS�
�

&KLS�
�

&KLS�
�

&KLS�
�

� �

�

�

�

�F
 �G
�E

�H
 �I
 �J

Figure 7.3: Examples of (a) a computation graph representing an ML workload, (b)
multiple chips connected by uni-directional links, (c) an invalid partition violating the
acyclic dataflow constraint, (d) an invalid partition violating the rule of no skipping
chips, (e) an invalid partition violating the triangle dependency constraints, and (f)
an invalid partition violating the memory allocation constraint.

7.2 Related Work

Multi-Chip-Module Package: The advance of interconnect and package technol-

ogy drives the the development of multi-chip-module (MCM) architectures to reduce the

design and fabrication cost, e.g., CPU [216], GPU [215], and ML accelerators [213, 223].

Instead of building a large, monolithic chip, an MCM combines small chiplets into a

chip package, thus reduces the per-chip complexity and improves manufacture yields.

However, coming up with a balanced workload partitioning while minimizing inter-chip

communication becomes critical for high workload throughput on an MCM package, as

the off-chip communication is both low bandwidth and high latency. Both hardware

methods such as active interposers [224, 225] and software methods such as compiler

heuristics [213] are developed for the partitioning and mapping problem. We are the first

to develop a novel reinforcement learning method tailoring the workload partitioning and

placement problem, targeting an edge TPU-based MCM.

146

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

Model Parallelism: Power-law in deep learning drives the design of large and

complex neural models [226–230]. Model parallelism enables running large models on

hardware devices, particularly for edge devices where on-chip memory is scarce. Mesh-

TensorFlow [231], GPipe [232], GShard [233] provide various programming primitives to

enable the execution of large models on a cluster of hardware accelerators. Pipeline paral-

lelism [232,234] enables model parallelism along the temporal axis, yet still maps compu-

tational graphs across multiple accelerators for higher throughput. Although these stud-

ies provide computational primitives and conduct heuristic-based optimizations, none of

them targets partitioning ML models on an MCM package with hardware constraints.

In this work, we develop an automatic model partitioning solution targeting an MCM

package.

ML for automatic partition and placement: Reinforcement learning has been

used for device placement [222, 235–237] and has demonstrated run time reduction over

human-crafted placements and conventional heuristics. Progressive placements [236–238],

generate decisions on a per-node basis, so they have difficulty capturing long-distance de-

pendencies over large graphs and are slow in training. Placeto [238] represents the first

attempt to generalize device placement using a graph embedding network. GO [222] is

the first single-shot method that generates placement decisions for an entire graph and

generalizes to unseen data. However, all the above methods do not handle constraints ex-

plicitly and can fail when facing strict systems constraints imposed by novel architectures

because of an ultra-sparse reward space.

Constrained learning: Differentiable SAT [239] and differentiable optimizer [240]

integrate constraints to the end-to-end learning systems, which can learn the logical struc-

ture via supervised learning. Constrained Policy Gradient [241] trains neural network

policies for high-dimensional control while making guarantees about all policy behaviors

throughout training. However, many system constraints can hardly be formulated stat-

147

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

ically during the compilation, necessitating an actor to interact with the environment

and learn the interacting constraints. None of these studies are tailored for finding opti-

mal solutions in a compilation system with dynamic constraints because of the lack of a

closed-form objective formulation. In this work, we leverage the constraint solvers to rule

out infeasible partition statically while using reinforcement learning to propose optimal

solutions through interaction with a real system.

7.3 Hardware Architecture and Problem Formula-

tion

Hardware specialization provides speedups and higher energy efficiency for ML work-

loads. However, some specialized hardware impose constraints when mapping the work-

load during the compilation stage. In this section we introduce the target hardware

platform of our problem–a multi-chip TPU [214], then define and formulate the multi-

chip placement problem with constraints.

Hardware Architecture: In this work, our target hardware platform is a 36-die multi-

chip ML accelerator [214] package with a 1D ring for inter-chip communication. Fig-

ure 7.3b shows an example 4-die multi-chip package with only uni-directional links among

adjacent chips, and the inter-chip link topology of our multi-chip TPU package is similar

to that of Figure 7.3. Each chip has tens of MBs SRAM, and inter-chip links only offer

a bandwidth of tens of GB/s. Thus, it is unavoidable to partition production-scale ML

models to our multi-chip TPU, and optimizing inter-chip communication is important.

Problem Definition: Denote the set of available chips as D = {0, 1, 2, ..., C−1}, and a

directed acyclic graph G = (V,E) representing an ML workload where V stands for the

vertex set of operations and E stands for the edge set of dependencies between operations.

148

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

The multi-chip partitioning problem aims to find a function f , which maps V to D

denoted as f : V 7→ D, that maximizes or minimizes an objective function. Figure 7.3a

shows an example of a computation graph for an ML workload. In this work, we aim

to maximize the throughput of ML workloads on ML accelerators. Thus the multi-chip

partitioning task can be formulated as Equation 7.1 denoting T (G, f) as the throughput

of running the graph G on the hardware with the mapping function f , and F as the set

of all possible mapping functions from V to D.

max
f∈F

T (G, f) (7.1)

Constraint 1: Acyclic Dataflow Constraint. Since the links among chips are

uni-directional, only data transfer from low chip ID from high chip ID is allowed. For

example, Figure 7.3c shows an invalid partition where data transfer from chip 1 to chip

0 between node 2 and node 4 is not allowed. Denoting f(u) as the chip ID where the

node u is mapped to using the mapping function f , this constraint can be formulated as

Equation 7.2.

f(u) ≤ f(v) ∀(u, v) ∈ E (7.2)

Constraint 2: No Skipping Chips. Since the ML accelerator can pipeline the execu-

tion of operators mapped to chips, the backend of the current multi-chip TPU compiler

does not allow skipping chips to maximize the throughput. As a part of compilation

optimization, we also impose this constraint on this multi-chip partitioning task. For

example, Figure 7.3d shows an invalid partition where the chip 1 is skipped without any

nodes mapped to it. This constraint can be formulated as Equation 7.3.

d ≤ f(u) ⇒ ∃v ∈ V, f(v) = d ∀u ∈ V, d ∈ D (7.3)

149

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

Constraint 3: Chip Triangle Dependency. Because the simplified network-on-

chip (NoC) routers on the multi-die TPU cannot handle all NoC traffic patterns, direct

data dependencies between two chips cannot co-exist with indirect data dependencies

between the same chips. For example, Figure 7.3e shows an invalid partition where there

is a direct dependency between chip 0 and chip 2 through the data transfer between

node 0 and node 2 while there is an indirect dependency chain from chip 0 to chip 1 then

chip 2 through the data transfer from node 0 to node 1 then node 3. To formulate this

dependency, we define δ(d0, d1) as the length of the longest path from chip d0 ∈ D to

chip d1 ∈ D in the graph G whose nodes are the chips and edges are data dependencies

between chips. We then impose this length to be at most one for each direct dependency

in the computational graph, as formulated in Equation 7.4.

δ(d0, d2) ≥ δ(d0, d1) + δ(d1, d2) ∀d0, d1, d2 ∈ D

f(u) ̸= f(v) ⇒ δ(f(u), f(v)) = 1 ∀(u, v) ∈ E

(7.4)

Constraint 4: Dynamic Constraint. In addition to static constraints which can

be explicitly expressed in closed-form formulas, there are also constraints from system

dynamics. For example, the on-chip memory consumption of a model partition (mapping

f) should fit in memory. Figure 7.3f shows an invalid partition that leads to the out-of-

memory allocation issue by consuming too much on-chip memory on chip 1. Because these

dynamic constraints are not able to be explicitly formulated, we define a boolean function

H(G, f) which returns true only if the mapping function f can pass the compilation and

hardware evaluation. To ensure the completeness of the problem formulation, we add

this boolean function as a constraint in the overall formulas.

Putting It All Together. Combining all static constraints from the hardware ar-

chitecture of multi-chip TPU and dynamic constraints from the compiler backend, the

multi-chip partitioning task that maps a computation graph G to the available set of

150

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

chips D can be formulated as Equation 7.5.

max
f∈F

T (G, f)

s.t. f(u) ≤ f(v) ∀(u, v) ∈ E

d ≤ f(u) ⇒ ∃v ∈ V, f(v) = d ∀u ∈ V, d ∈ D

δ(d0, d2) ≥ δ(d0, d1) + δ(d1, d2) ∀d0, d1, d2 ∈ D

f(u) ̸= f(v) ⇒ δ(f(u), f(v)) = 1 ∀(u, v) ∈ E

H(G, f) = True

(7.5)

Although prior studies develop reinforcement learning solutions, strict constraints

in Equation 7.5 invalidate most of the possible mappings from the set F . Thus, the

reward space is ultra-sparse, making it difficult for the agent to learn an optimal parti-

tion. On the other hand, although constraint solvers are good at solving optimization

problems, they are not able to handle non-closed form functions. Because the objective

function T (G, f) and the dynamic constraint H(G, f) cannot be explicitly formulated,

it is impossible to apply constraint solvers directly for solving the problem formulated

in Equation 7.5. These shortcomings motivate us to develop our constrained reinforce-

ment learning method detailed in Section 7.4, which combines the reinforcement learning

method with the constraint solver to efficiently explore the space of feasible partitions.

7.4 Reinforcement Learning with a Constraint Solver

The overview of our RL-based approach is shown in Figure 7.4. In this section, we

will detail our RL framework for generating a chip assignment for nodes in Section 7.4.1,

and the constraint solver for generating a valid ML model partition in Section 7.4.2.

Then, we will introduce our pre-training pipeline to generalize our RL-based approach

in Section 7.4.3.

151

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

4VSTVMIXEV]���'SRƻHIRXMEP

<a�ϊ��øĦÔīĲĬ

3ROLF\�1HWZRUN*UDSK6$*(

)HHG�)RUZDUG�/D\HUV

,Q
SX

W�*
UD
SK

1
RG
H�

(
P
EH
GG
LQ
J

6
WD
WH
�

(
P
EH
GG
LQ
J

1[���

1[6

3
RO
LF
\�
2
XW
SX
W

1['

&RQFDW

&
RQ

VW
UD
LQ
W�6

RO
YH
U

5HLQIRUFHPHQW�/HDUQLQJ��5/��)UDPHZRUN�

9D
OLG
�3
DU
WLW
LR
Q

2XWSXW>L��M@��
7KH�SUREDELOLW\�
RI�D�QRGH�L�WR�
EH�DVVLJQHG�
RQ�WKH�FKLS�M

Figure 7.4: The overview of our RL-based method including an RL framework to
generate the probability distribution of chip assignments, and a constraint solver to
generate a valid partition by sampling according to the policy output from the RL.

7.4.1 Reinforcement Learning

As shown in Figure 7.4, our learnt policy πθ (policy network) takes the node em-

bedding of a graph, hG, from a feature network and the current state embedding and

generates a probability distribution matrix P = [p1,p2, ...,pN] where N stands for the

number of nodes and the vector pi = [pi1, pi2, ..., piC] stands for the probability distri-

bution of i-th node to C available chips. We adopt GraphSAGE [242] for the feature

extraction of an input computation graph to generate hG, and a fully connected net-

work as the policy network. We train the feature extraction network and the policy

network in an end-to-end fashion, using a reward of the execution throughput on the

target multi-chip environment.

Let yi be the action for the i-th node (yi ∈ D). Ideally, we would like to compute the

action distribution of the current node based on the actions of all previous nodes in an

auto-regressive manner:

p(y|G) =
N∏
i=1

p (yi|hG, yi−1, yi−2, ...) (7.6)

152

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

However, the above is infeasible in practice because the number of nodes can be as large

as 10K, and computing the yi’s sequentially can be extremely expensive. To address this

issue, we use an iterative but non-autoregressive process as an approximation same as

prior work [222]:

p(y(t)|G) =
N∏
i=1

p
(
y
(t)
i |hG,y

(t−1)
)

(7.7)

Although the N sampling procedures are now carried out in parallel within each iteration

t, decisions over the N nodes are allowed to mutually influence each other because the

process above will be repeated for T times (T ≪ N). Note the distribution of y(t) is

informed about y(t−1), the actions made over all the nodes in the previous iteration. At

each iteration, a concrete partition solution y(t) can be sampled from the probability

distribution P(t).

Due to constraints formulated in Equation 7.5, the reward space for the action y is

extremely-sparse. Thus we use the reward of y′ rather than directly using the reward of

y to efficiently learn policy πθ, where y
′ is a valid partition generated from the constraint

solver according to y and partitioning problem constraints. The constraint solver is

detailed in Section 7.4.2.

7.4.2 Constraint Solver

The role of the constraint solver in Figure 7.4 is to find a valid partition of the

constraint satisfaction problem that follows problem constraints.

The procedure to find a solution is based on the CP-SAT open-source constraint

solver [243]. The solver has a variable representing action yi for each node i and enforces

constraints in equations (7.2)-(7.4). Internally, the solver maintains the range of valid

values for every variable yi, called the domain of yi. The procedure to find a solution

interacts with the solver by querying the current domain of variables and by manually

153

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

Algorithm 6 Constraint solver in SAMPLE mode
Input: A node order T , and a distribution P.
Output: A valid partition y′.
S = init solver() // Init the constraint solver
i = 0
while i < N do

u = Ti
// Get the current valid domain of the node u.
Du = S.get domain(u)
y′u = sample pu from Du

// Set yu domain, perform constraint propagation, and backtrack to a previous i if needed
i = S.set domain(u, {y′u})

end while

setting variable domains. When setting the domain of a variable yi, the solver internally

runs a constraint propagation algorithm that recursively prunes the domain of other

variables so that they only contain values that are compatible with the new domain of

yi with regards to constraints. If constraint propagation detects an invalid assignment,

the solver will backtrack to a previous state, undoing previous decisions.

Our procedure finds a solution by picking the assignment of one node at a time. At

each step, it picks a node i and queries the current domain Di of yi from the solver. It

then calls the solver to restrict the domain of i to a single value c ∈ Di taken from the

domain of yi. The procedure stops when all nodes are assigned a device.

There are two important factors for our constraint solver to generate a valid partition

y′ given an input partition y and a probability distribution P: (1) the node traversal

order, and (2) the strategy to pick a value yi from the valid domain. First, our constraint

solver provides an interface to specify the node order. By default, we generate a random

order each time to explore a larger decision space rather than prioritizing a fixed set

of nodes that significantly prunes the domain of other nodes. Second, there are two

strategies to pick a value yi from the current valid domain.

• With the SAMPLE strategy, the solver visits nodes according to the input node

order. For each node i, it samples a chip ID according to pi restricted to the current

154

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

Algorithm 7 Constraint solver in FIX mode
Input: A node order T , and a candidate partition y.
Output: A valid partition y′.
S = init solver() // Init the constraint solver
i = 0
while i ¡ 2 × N do

u = Ti mod N

if i ¡ N then
Du = S.get domain(u)
if yu ∈ Du then

y′u = yu
i = S.set domain(u, {y′u})

else
i = S.set domain(u, Du)

end if
else

Du = S.get domain(u)
y′u = randomly sample Du

i = S.set domain(u, {y′u})
end if

end while

domain of the yi.

• With the FIX strategy, the constraint solver traverses nodes according to the input

node order, and assigns yi to y′i if yi is a valid assignment. After the traversal, it

repeatedly assigns random chip IDs to remaining nodes (where yi is invalid) until

getting a valid assignment.

The algorithms for SAMPLE and FIX strategy are detailed in Algorithm 6 and Al-

gorithm 7 respectively. In these two algorithms, we rely on the underlying CP-SAT

solver (denoted as S) to maintain and update valid domains for all nodes. In particular,

the function get domain returns the current valid domain for a node, and the function

set domain performs the constraint propagation step to update valid domains for all

nodes. The loop index, i, is the number of decisions set by calling set domain. Calling

set domain returns the new value of i. In general, this is i + 1 but this can also be a

lower value if the solver backtracks.

155

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

…

Training Dataset

…

Validation Dataset

… …

RL Agent Solver

Training Worker

Analytical

Cost

Model

Environment

… …

RL Agent Solver

Validation Worker

Analytical

Cost

Model

Environment

… … … … … …

… … …

RL Agent Constraint

Solver

Checkpoint

@train_steps=0

Checkpoint

@train_steps=N

Checkpoint

@train_steps=2 x N

Checkpoint

@train_steps=i x N

Checkpoint

@train_steps=(m-1) x N

Checkpoint

@train_steps=m x N

…

Unseen Input Graph Constrained RL Method MCM Package

Train Steps

Tr
a

in
in

g
 P

h
a

se
D

e
p

lo
ym

e
n

t

P
h

a
se

…… …… ……

Throughput

Partition

Throughput

Partition

Throughput

Partition

Zero-shot

Finetuning

Figure 7.5: The workflow of our pre-training method including a training phase to
obtain pre-trained model checkpoints, and a deployment phase using the optimal
checkpoint for zero-shot and fine-tuning on an unseen input graph.

As shown in Figure 7.4, RL model outputs both y and P so that the constraint solver

generates a valid partition y′ according to the input node order and assignment strategy.

Because y′ satisfies static constraints, its reward space is denser than that of y, and we

use this denser reward space to efficiently train our end-to-end RL models.

7.4.3 Pretraining Pipeline

In addition to the constrained deep RL method introduced in Section 7.4.1, we develop

a pre-training based method to generalize the constrained deep RL solution such that it

can learn from the training dataset while transferring the learned knowledge to unseen

data. As shown in Figure 7.5, the whole pre-training pipeline is composed of two phases:

the training phase and the deployment phase.

Training Phase: There are two workers in the training phase: a training worker gen-

erating the checkpoints of RL model weights, and a validation worker to evaluate the

performance of each model snapshot. In particular, the training worker iterates through

156

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

the input graphs from the training set, and periodically generates checkpoints of the RL

model weights. Meanwhile, the validation worker conducts a continuous evaluation on

graphs from the validation set. The validation worker is warm-started from a pre-trained

model checkpoint. During the evaluation, the validation worker conducts a zero-shot

prediction and a fine-tuning upon the pre-trained checkpoint, for each graph from the

validation set. After iterating through all model checkpoints, the validation worker can

pick the checkpoint with either the best zero-shot or fine-tuning performance for deploy-

ment.

Deployment Phase: In the deployment phase, we load the optimal checkpoint picked

by the validation worker to warm start the RL model. Then the RL model takes a new

(previously unseen) graph as the input and directly runs inference (zero-shot). Alterna-

tively, we can fine-tune the RL model for this new graph to capture out-of-distribution

data, as detailed in Figure 7.4.

Experimental results in Section 7.5.2 show that our pre-training pipeline is able to

generalize the pre-trained solution to a test set of previously unseen graphs.

7.5 Experiments

Our goal is to find a valid and efficient ML model partition to chips while minimizing

the search time. First, we introduce the experiment setup in Section 7.5.1. Then, we

present the results of our pre-training experiments in Section 7.5.2 to demonstrate the

generalization of our RL approach on the test dataset of 16 ML graphs. Finally, we

evaluate the BERT model in Section 7.5.3 to show the effectiveness of our RL approach

on real hardware.

157

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

7.5.1 Experiment Setup

Evaluation Platform: We conduct our experiments on a real hardware platform of

multi-chip TPU [214] that includes 36 chiplets in a package. To efficiently pre-train our

RL model, reducing pre-training time, and saving hardware resources, our pre-training

experiments are based on an analytical cost model. This analytical cost model estimates

the latency of running all nodes assigned to each chip, and returns the maximal latency

of all chips.

Workloads: We conduct the real hardware evaluation on a production-scale model,

BERT [244], that has 2138 nodes and around 340 million (600 MB) parameters. To

pre-train our RL model, we use a dataset of 87 ML models from real-world applications,

and most of them are from computer vision and natural language processing applications

including convolutional neural network (CNN) and recurrent neural network (RNN) mod-

els. The computation graphs of these ML models have tens to hundreds of nodes. None

of these ML graphs contain a Transformer-like attention mechanism. In our pre-training

experiment, we randomly partition these 87 computation graphs into three datasets: a

training dataset of 66 graphs, a validation set of 5 graphs, and a test dataset of 16 graphs.

Performance Metric: We evaluate each partition solution and obtain its through-

put because a multi-chip TPU focuses more on throughput rather than latency. However,

our framework can easily re-target a latency metric. Then we report the throughput im-

provement over compiler heuristics, such as a greedy algorithm and a random partition,

that are usually fast with a time complexity of O(N). We run all experiments on real

hardware 5 times and report both mean and standard deviation of throughput improve-

ments.

RL with Constraint Solver: Our default configuration of graph neural network

uses 8 GraphSAGE layers, and the size of each layer is 128. For the policy network,

158

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

we use a feed-forward network with 2 layers, and the size of each layer is the same as

GraphSAGE layers. We use Proximal Policy Optimization (PPO) [245] to train our RL

models. We explore various values for hyper-parameters during the training process, such

as the number of rollouts, the number of mini-batches, and the number of epochs. We

select the optimal hyper-parameter (20 rollouts, 4 mini-batches, and 10 epochs) across

all explored settings to report RL results. For this example, we use the FIX mode in the

constraint solver, as it outperforms SAMPLE mode.

RL without Constraint Solver: Instead of passing the policy output from RL

to the constraint solver, this baseline directly generates partition solutions by sampling

based on the output probability distribution P. Our evaluation platform returns a zero

throughput when it evaluates an invalid partition. Without the help of the constraint

solver, the reward space is extremely sparse as most of the partitions are invalid. As a

result, this baseline is not able to find any valid partition in the training process even

when the number of samples is sufficiently large.

Traditional Search Strategies: We implement several traditional search strategies

working with the constraint solver as comparison baselines. These traditional search

strategies include Random Search (Random) and Simulated Annealing (SA). We tune

these search strategies with the constraint solver empirically to pick an implementation

with the best performance. The details of each search algorithm are as follows:

Random Search Strategy (Random) provides a fixed uniform probability distribution,

p(yi = j|G) = 1
C
for ∀j ∈ D, and the constraint solver works under the SAMPLE mode

to generate valid partitions.

Simulated Annealing (SA) starts from the same uniform probability distribution as

Random. Each iteration, SA randomly selects a set of nodes, and for each node i from

this set, it generates a new random distribution pi. The constraint solver takes this new

probability distribution to generate a valid partition. Based on the evaluation results of

159

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

0 1000 2000 3000 4000 5000
samples

1.5

1.6

1.7

1.8

1.9

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t

Method
RL
RL Finetuning
RL Zeroshot
Random
SA

Figure 7.6: The geomean throughput improvement of 16 graphs from test dataset on
the analytical model comparison for a random search strategy (Random), simulated
annealing (SA), reinforcement learning training from scratch (RL), the zeroshot pre-
dictions of the pretrained model (RL Zeroshot), and the finetuning of the pretrained
model (RL Finetuning).

Throughput Improvement ≥ 1.60× ≥ 1.70× ≥ 1.80×
Random 305 (1.08×) 915 (0.74×) 3612 (0.41×)
SA 255 (1.29×) 979 (0.69×) N.A. (N.A.)
RL 330 (1.00×) 676 (1.00×) 1496 (1.00×)
RL Zeroshot 196 (1.68×) 600 (1.13×) 3652 (0.41×)
RL Finetuning 171 (1.93×) 503 (1.34×) 1362 (1.10×)

Table 7.2: The number of samples and the reduction of samples to achieve certain
geomean throughput improvement levels. The results 171 (1.93×) indicate that RL
Finetuning needs 171 samples and reduces 1.93× samples compared with RL training
from scratch to achieve a 1.60× geomean throughput improvement over a compiler
heuristic.

this valid partition, SA decides whether to accept the new probability distribution.

160

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

7.5.2 Pretraining Experiment

We pre-train the RL model using evaluations from an analytical model. The evalua-

tion with an analytical model is orders of magnitude faster than evaluating the samples on

real chips. In particular, we pre-train the RL model on the training dataset (66 graphs)

with a total of 20,000 samples. The pre-training process generates 200 checkpoints.

Then, we use the validation dataset (5 graphs) to pick the optimal checkpoint with the

best average rewards. The pre-training process takes a few hours using the analytical

cost model rather than several days compared to using real-chip evaluations. Finally,

we evaluate 16 graphs from the test dataset on the analytical model to demonstrate the

generalization.

Figure 7.6 presents the geomean throughput improvement over a compiler heuristic of

16 test graphs among RL, RL Finetuning, RL Zeroshot, Random, and SA. An RL-based

approach can achieve a better performance by 4.36% and 6.49% compared to Random

and SA. Table 7.2 shows the number of samples needed to achieve different throughput

gains. It shows that fine-tuning on a pre-trained RL model can reduce the number of

samples by up to 1.93x compared to RL training from scratch. Both Figure 7.6 and

Table 7.2 show that zero-shot RL (without fine-tuning) can achieve higher throughput

in early hundred samples, thus 1.68x fewer samples than RL training from scratch to

achieve a geomean of 1.60x speedup, but RL zero-shot does not perform well with more

samples. This could result from the different data distributions between the training

dataset and the test dataset. It justifies a further fine-tuning on a pre-trained model for

out-of-distribution data.

We further evaluate BERT on real chips in Section 7.5.3 to demonstrate a real-world

use case.

161

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

0 100 200 300 400 500 600 700 800
samples

1.8

2.0

2.2

2.4

2.6
Th

ro
ug

hp
ut

 Im
pr

ov
em

en
t

Method
RL
RL Finetuning
SA
Random
RL Zeroshot

Figure 7.7: The throughput improvement of BERT on real hardware over a greedy
heuristic comparing the random search strategy (Random), simulated annealing (SA),
reinforcement learning training from scratch (RL), the zeroshot of the pretrained
model (RL Zeroshot), and the finetuning of the pretrained model (RL Finetuning).

Throughput Improvement ≥ 2.55× ≥ 2.60× ≥ 2.65×
Random 447 (0.25×) N.A. (N.A.) N.A. (N.A.)
SA 576 (0.19×) N.A. (N.A.) N.A. (N.A.)
RL 112 (1.00×) 423 (1.00×) 607 (1.00×)
RL Zeroshot N.A. (N.A.) N.A. (N.A.) N.A. (N.A.)
RL Finetuning 20 (5.60×) 20 (21.15×) 161 (3.77×)

Table 7.3: The number of samples and the reduction of samples to achieve certain
throughput improvement levels. The results 20 (5.60×) indicate that RL Finetuning
needs 20 samples and reduces 5.60× samples compared with RL training from scratch
to achieve a 2.55× throughput improvement over a greedy heuristic.

7.5.3 BERT Evaluation

We evaluate a production-scale model, BERT [244], on a real MCM system with

36 chips to demonstrate real system performance. We use a greedy heuristic from the

production compiler as the baseline of throughput improvement. Section 7.5.1 details the

implementation of our RL method and other traditional search strategies. To generate

162

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

sufficient pre-training samples, we adopt the analytical cost model in the pre-training

phase, as described in Section 7.5.2.

Figure 7.7 shows that our RL-based approach can achieve 6.11% and 5.85% better

throughput than Random and SA respectively, at convergence. Moreover, Figure 7.7

shows that fine-tuning on a pre-trained RL model improves the placement throughput

at low sample complexity, compared to RL training from scratch. Unfortunately, RL

zero-shot does not work well due to two possible reasons: 1) BERT model is much bigger

than the graphs in the training dataset and has a drastically different model architecture

compared to models in the training dataset. 2) The difference between the analytical

cost model and real-chip evaluations exacerbates the RL environment gap between the

pre-training stage and the deployment (test) stage.

Table 7.3 shows that fine-tuning on a pre-trained RL model reduces the number of

samples by up to 21.15x for achieving the same throughput gain compared to RL training

from scratch. Since the elapsed time of getting a sample takes 26.97 seconds on average,

reducing the number of samples from 423 to 20 means a reduction of searching time from

more than 3 hours to around 9 minutes. Finally, for a search budget of 10 minutes, the

fine-tuning of our RL-based approach can outperform Random and SA by up to 15.18%.

The results demonstrate strong generalization from an analytical cost model based

pre-training on training dataset consisting of small production models, to a real-chip

environment on large production models such as BERT. The pre-training and fine-tuning

method enables the deployment of an RL-based method into production ML compilers.

7.5.4 Analytical Cost Model Accuracy

To justify the use of an analytical cost model during pretraining, we conduct a calibra-

tion study on the analytical model. We randomly generate 2000 samples on BERT. Then

163

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

Figure 7.8: The hardware runtime and predicted runtime of valid partition samples
for BERT model normalized to the minimal values of all samples respectively.

we evaluate these 2000 samples on real hardware. Finally, we normalize the predicted

runtime and measured runtime to their minimal respectively. The runtime is defined as

the maximum latency across all chips, which is the reciprocal of the throughput. Fig-

ure 7.8 shows the normalized predicted runtime vs. the normalized measured runtime for

all valid samples from these 2000 samples. We have three main observations from this

calibration study: 1) 13.5% of generated partitions are invalid on real hardware. 2) Some

partitions showing lower runtime do not work well on real hardware, such as samples

from the red cycle in Figure 7.8. 3) There is a strong correlation (Pearson correlation

R = 0.91) between predicted runtime and measured runtime.

Observing the critical features of the analytical cost model, we conclude that RL

zero-shot does not work well for BERT on real chips because dynamic constraints cannot

be captured by the constraint solver (13.5% failures) and there are some false-positive

results. However, RL fine-tuning can start from a pre-trained model efficiently due to the

164

A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Chapter 7

strong correlation between the results of the analytical cost model and that of the real

hardware evaluation. The knowledge created during the pre-training with the majority

of accurate samples can be still successfully transferred. For example, the knowledge of

balanced placement and chip static constraints can be transferred.

7.6 Conclusion

In this work, we develop a deep RL solution working with a constraint solver for

ML model partitioning targeting an MCM package. Our method is generalizable to

unseen input graphs via a pre-training pipeline. Our evaluation of a production-scale

model, BERT, on real hardware evaluation shows that our approach can outperform

random search and simulated annealing by 6.11% and 5.85% at convergence. Finally,

our RL-based approach is transferable. The fine-tuning on a pre-trained model improves

the sample efficiency up to 21.15x than RL training from scratch on BERT placement.

This effectively reduces the search time from more than 3 hours to 9 minutes to achieve

a throughput improvement of 2.6x, compared to a greedy heuristic in the production

compiler.

165

Chapter 8

Summary

The computation capability increase of contemporary computing platforms, especially

with the development of domain-specific architectures, significantly outpaces the growth

of main memory bandwidth. This exaggerates the memory bandwidth bottleneck of

many data-intensive parallel workloads that play important roles in various application

domains. Although processing-in-memory architectures, especially in-DRAM near-bank

processing, are promising to deliver a higher effective bandwidth by putting compute

logics into DRAM, they face hardware and software challenges to reduce overheads and

improve performance.

To address these challenges and facilitate efficient in-DRAM near-bank processing,

this dissertation includes six projects that characterize workloads to identify memory

bandwidth bottleneck (Chapter 2), develop near-bank processing architectures (Chap-

ter 3, Chapter 4, and Chapter 5), build simulation infrastructures for studying near-

bank processing (Chapter 6), and optimize workload partitioning on a distributed mem-

ory space by constrained reinforcement learning (Chapter 7). The contributions of this

dissertations are summarized as follows:

First, this dissertation starts with a novel benchmarking methodology in Chapter 2.

166

Summary Chapter 8

Neural network (NN) applications are representative workloads that demand high per-

formance and energy efficiency on modern computing platforms. In this project, we

develops a holistic benchmarking method from workload characterization to hardware

platform evaluations. Our case studies reveal that there are still a number of NN mod-

els bounded by memory bandwidth although some commonly used tensor operators are

computation intensive, such as matrix multiplication and convolution. Moreover, our

evaluations on hardware platforms find that despite the success of neural network ac-

celerators and model compression techniques, it is hard to address memory bandwidth

bottleneck unless applying near data processing architectures to provide higher effec-

tive bandwidth. These characterization studies and hardware evaluations emphasize the

importance of overcoming the memory bandwidth wall for data-intensive workloads.

Second, this dissertation develops an application-specific near-bank processing accel-

erator in Chapter 3. In particular, we design an accelerator, named SpaceA, to leverage

outstanding memory requests to hide the memory access latency to non-local banks. To

reduce the memory traffic to non-local banks, we integrate content addressable memory

(CAM) buffers in SpaceA to exploit the locality of input vectors. Furthermore, we de-

velop a mapping scheme for SpaceA to distribute the non-zero elements across different

banks to achieve workload balance among processing elements (PEs) and to exploit the

data locality of the input vector. Our evaluation of SpaceA with the proposed map-

ping scheme on matrices from real-world applications reveals 13.5x speedup and 87.49%

energy saving on average over the GPU baseline with only 4.86% area overhead.

Third, this dissertation develops a domain-specific near-bank processing accelerator

in Chapter 4. In particular, we design a standalone programmable accelerator, iPIM,

using 3D-stacking near-bank architecture for image processing applications. By using

a decoupled control-execution architecture, iPIM supports programmability with small

area overhead per DRAM die (∼ 10.71%). Furthermore, we develop an end-to-end com-

167

Summary Chapter 8

pilation flow based on Halide with novel iPIM schedules and various iPIM backend op-

timizations including register allocation, instruction reordering, and memory-order en-

forcement. Evaluation results of representative image processing benchmarks, including

single stage and heterogeneous multi-stage pipelines, show that iPIM design together

with backend optimizations can achieve 11.02× speedup and 79.49% energy saving on

average over an NVIDIA Tesla V100 GPU. The backend optimizations improve 3.19×

performance compared with the näıve baseline.

Fourth, this dissertation develops a general-purpose near-bank processing architec-

ture in Chapter 5. In particular, we design the first general-purpose near-bank SIMT

processor using a hybrid pipeline with an instruction offloading mechanism. By inte-

grating lightweight hardware components on the DRAM die, MPU achieves a small area

overhead for general purpose processing. We also propose two architectural optimizations

for the SIMT model, including the near-bank shared memory to reduce data movement

and multiple activated row-buffers to alleviate ping-pong effects in the dynamic warp

scheduling. Additionally, we develop an end-to-end compilation flow supporting CUDA

programs on MPU and a novel backend optimization annotating the locations of regis-

ters and instructions. Evaluation results of representative data-intensive workloads show

that MPU with all optimizations achieves 3.46× speedup and 2.57× energy reduction on

average over an NVIDIA Tesla V100 GPU.

Fifth, this dissertation develops a near-bank computing simulator in Chapter 6 that

provides an important tool for the hardware and software studies of near-bank processing.

In particular, we develop an open-source simulator, MPU-Sim, for general-purpose near-

bank processing architectures. It runs CUDA programs and enables software optimization

studies in addition to hardware design explorations. Furthermore, we conduct calibration

studies for key components (processor, DRAM, and NoC) in MPU-Sim with state-of-the-

art simulators to validate our simulator implementations. Additionally, we conduct case

168

studies for hardware and software optimization opportunities in near-bank processing

architectures with MPU-Sim to demonstrate its potential usage.

Finally, this dissertation studies the workload partition problem on a distributed

memory space using a constrained reinforcement learning method in Chapter 7. Be-

cause the memory space abstraction of multi-chip-modules (MCMs) is similar to that

of near-bank processing architectures and we can conduct real hardware evaluation, we

select the ML workload partition on an MCM-based ML accelerator as our target prob-

lem in this project. In particular, we define the problem of multi-chip partitioning for

MCMs and propose a method that combines the capabilities of deep RL networks and

constraint solvers to search for good partitionings in a search space where valid solu-

tions are extremely sparse due to constraints imposed by the hardware architecture. Our

evaluation for BERT, a production-scale model, on real hardware demonstrates that our

RL-based partitioner achieves 6.11% and 5.85% higher throughput than random search

and simulated annealing upon its convergence. Moreover, we demonstrate strong transfer

learning performance via a pre-training based method. We pre-trained the RL policy on

66 production neural networks from computer vision applications and language models,

using an analytical performance model as a reward function. Fine-tuning the pre-trained

policy on BERT reduces the search time from more than 3 hours for RL training from

scratch to only 9 minutes, while achieving the same runtime performance.

Hopefully, the contributions of this dissertation in benchmarking methodology, ar-

chitecture designs, software optimizations, and simulation infrastructures pave the way

for the future academic research and industrial development of in-DRAM near-bank pro-

cessing hardware platforms and software systems.

169

Bibliography

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,
R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
H. Dan, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu,
K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and
D. H. Yoon, In-datacenter performance analysis of a tensor processing unit, in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, pp. 1–12, ACM, 2017.

[2] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair,
and S. Swanson, Near-data processing: Insights from a micro-46 workshop, IEEE
Micro 34 (2014), no. 4 36–42.

[3] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, Top-pim: throughput-oriented programmable processing in
memory, in Proceedings of the 23rd international symposium on High-performance
parallel and distributed computing, pp. 85–98, ACM, 2014.

[4] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, Transparent offloading and mapping (tom):
Enabling programmer-transparent near-data processing in gpu systems, in ACM
SIGARCH Computer Architecture News, vol. 44, pp. 204–216, IEEE Press, 2016.

[5] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,
O. Mutlu, and C. R. Das, Scheduling techniques for gpu architectures with
processing-in-memory capabilities, in Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation, pp. 31–44, 2016.

170

[6] C. D. Kersey, H. Kim, and S. Yalamanchili, Lightweight simt core designs for
intelligent 3d stacked dram, in Proceedings of the International Symposium on
Memory Systems, pp. 49–59, 2017.

[7] G. Kim, N. Chatterjee, M. O’Connor, and K. Hsieh, Toward standardized
near-data processing with unrestricted data placement for gpus, in Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–12, 2017.

[8] W. Wen, J. Yang, and Y. Zhang, Optimizing power efficiency for 3d stacked
gpu-in-memory architecture, Microprocessors and Microsystems 49 (2017) 44–53.

[9] L. Nai, R. Hadidi, H. Xiao, H. Kim, J. Sim, and H. Kim, Coolpim:
Thermal-aware source throttling for efficient pim instruction offloading, in 2018
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 680–689, IEEE, 2018.

[10] Y. Wu, M. Shen, Y.-H. Chen, and Y. Zhou, Tuning applications for efficient gpu
offloading to in-memory processing, in Proceedings of the 34th ACM International
Conference on Supercomputing, pp. 1–12, 2020.

[11] A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran, H. Esmaeilzadeh, and
N. S. Kim, In-dram near-data approximate acceleration for gpus, in Proceedings of
the 27th International Conference on Parallel Architectures and Compilation
Techniques, p. 34, ACM, 2018.

[12] H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, Mcdram: Low latency
and energy-efficient matrix computations in dram, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 37 (2018), no. 11
2613–2622.

[13] S. Aga, N. Jayasena, and M. Ignatowski, Co-ml: a case for collaborative ml
acceleration using near-data processing, in Proceedings of the International
Symposium on Memory Systems, pp. 506–517, ACM, 2019.

[14] UPMem, UPMem, 2020. https://www.upmem.com/.

[15] Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-P. Son, O. Seongil,
H.-S. Yu, H. Lee, S. Y. Kim, et. al., 25.4 a 20nm 6gb function-in-memory dram,
based on hbm2 with a 1.2 tflops programmable computing unit using bank-level
parallelism, for machine learning applications, in 2021 IEEE International
Solid-State Circuits Conference (ISSCC), vol. 64, pp. 350–352, IEEE, 2021.

[16] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556 (2014).

171

https://www.upmem.com/

[17] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image
recognition, in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, Mobilenets: Efficient convolutional neural networks
for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017).

[20] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural
networks, in Advances in neural information processing systems, pp. 3104–3112,
2014.

[21] A. M. Rush, S. Chopra, and J. Weston, A neural attention model for abstractive
sentence summarization, arXiv preprint arXiv:1509.00685 (2015).

[22] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and
S. Fidler, Skip-thought vectors, in Advances in neural information processing
systems, pp. 3294–3302, 2015.

[23] Google, “TensorFlow Models.” https://github.com/tensorflow/models, 2018.

[24] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning, in
Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 269–284, ACM, 2014.

[25] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, Neurocube: A
programmable digital neuromorphic architecture with high-density 3d memory, in
Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International
Symposium on, pp. 380–392, IEEE, 2016.

[26] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,
Cambricon-X: An accelerator for sparse neural networks, in Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pp. 1–12,
IEEE, 2016.

[27] Nvidia, “cuDNN.” https://developer.nvidia.com/cudnn, 2017.

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zheng, Tensorflow: A system for large-scale machine learning, in 12th

172

https://github.com/tensorflow/models
https://developer.nvidia.com/cudnn

USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), (Savannah, GA), pp. 265–283, USENIX Association, Nov., 2016.

[29] P. Core team, “PyTorch.” http://pytorch.org/, 2017.

[30] J.-H. Tao, Z.-D. Du, Q. Guo, H.-Y. Lan, L. Zhang, S.-Y. Zhou, C. Liu, H.-F. Liu,
S. Tang, A. Rush, W. Chen, S.-L. Liu, Y.-J. Chen, and T.-S. Chen, BENCHIP:
Benchmarking Intelligence Processors, arXiv preprint arXiv:1710.08315 (2017).

[31] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, Fathom: reference
workloads for modern deep learning methods, in Workload Characterization
(IISWC), 2016 IEEE International Symposium on, pp. 1–10, IEEE, 2016.

[32] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere, S. Qiu,
M. Sebag, and O. Temam, Benchnn: On the broad potential application scope of
hardware neural network accelerators, in Workload Characterization (IISWC),
2012 IEEE International Symposium on, pp. 36–45, IEEE, 2012.

[33] S. Shi, Q. Wang, P. Xu, and X. Chu, Benchmarking state-of-the-art deep learning
software tools, in Cloud Computing and Big Data (CCBD), 2016 7th International
Conference on, pp. 99–104, IEEE, 2016.

[34] Baidu, “DeepBench.” https://github.com/baidu-research/DeepBench, 2018.

[35] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke, Scalpel:
Customizing dnn pruning to the underlying hardware parallelism, in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
pp. 548–560, ACM, 2017.

[36] X. Xie, X. Hu, P. Gu, S. Li, Y. Ji, and Y. Xie, Nnbench-x: Benchmarking and
understanding neural network workloads for accelerator designs, IEEE Computer
Architecture Letters 18 (2019), no. 1 38–42.

[37] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks, IEEE Journal of
Solid-State Circuits 52 (2017), no. 1 127–138.

[38] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual
performance model for multicore architectures, Communications of the ACM 52
(2009), no. 4 65–76.

[39] H. Kung, B. McDanel, and S. Q. Zhang, Packing sparse convolutional neural
networks for efficient systolic array implementations: Column combining under
joint optimization, in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems,
pp. 821–834, 2019.

173

http://pytorch.org/
https://github.com/baidu-research/DeepBench

[40] B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili, Eridanus: Efficiently running
inference of dnns using systolic arrays, IEEE Micro 39 (2019), no. 5 46–54.

[41] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
Understanding reuse, performance, and hardware cost of dnn dataflow: A
data-centric approach, in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 754–768, 2019.

[42] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, Bridging the gap between
value and policy based reinforcement learning, in Advances in Neural Information
Processing Systems, pp. 2772–2782, 2017.

[43] N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh, T. Chinen, S. J.
Hwang, J. Shor, and G. Toderici, Improved lossy image compression with priming
and spatially adaptive bit rates for recurrent networks, arXiv preprint
arXiv:1703.10114 (2017).

[44] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, and
M. Covell, Full resolution image compression with recurrent neural networks,
arXiv preprint (2016).

[45] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for
accurate object detection and semantic segmentation, in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 580–587, 2014.

[46] S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object
detection with region proposal networks, in Advances in neural information
processing systems, pp. 91–99, 2015.

[47] C. Finn, I. Goodfellow, and S. Levine, Unsupervised learning for physical
interaction through video prediction, in Advances in neural information processing
systems, pp. 64–72, 2016.

[48] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, Prime: A
novel processing-in-memory architecture for neural network computation in
reram-based main memory, in Proceedings of the 43rd International Symposium
on Computer Architecture, pp. 27–39, IEEE Press, 2016.

[49] Y. Ji, Y. Zhang, X. Xie, S. Li, P. Wang, X. Hu, Y. Zhang, and Y. Xie, Fpsa: A
full system stack solution for reconfigurable reram-based nn accelerator
architecture, in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
pp. 733–747, 2019.

174

[50] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie, ipim:
Programmable in-memory image processing accelerator using near-bank
architecture, in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pp. 804–817, IEEE, 2020.

[51] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C. Wu,
B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka, C. Coleman,
S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S. Gardner, I. Hubara,
S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee, J. Liao,
A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Osborne, G. Pekhimenko,
A. T. R. Rajan, D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson, F. Wei,
E. Wu, L. Xu, K. Yamada, B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou,
Mlperf inference benchmark, in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 446–459, 2020.

[52] C. Ding and Y. Zhong, Predicting whole-program locality through reuse distance
analysis, in Acm Sigplan Notices, vol. 38, pp. 245–257, ACM, 2003.

[53] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer Science &
Business Media, 2012.

[54] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, Weight uncertainty
in neural networks, arXiv preprint arXiv:1505.05424 (2015).

[55] S. S. Banerjee, Z. T. Kalbarczyk, and R. K. Iyer, Acmc 2: Accelerating markov
chain monte carlo algorithms for probabilistic models, in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 515–528, 2019.

[56] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM
Transactions on Mathematical Software (TOMS) 38 (2011), no. 1 1.

[57] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, A scalable processing-in-memory
accelerator for parallel graph processing, ACM SIGARCH Computer Architecture
News 43 (2016), no. 3 105–117.

[58] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and
X. Qian, Graphp: Reducing communication for pim-based graph processing with
efficient data partition, in High Performance Computer Architecture (HPCA),
2018 IEEE International Symposium on, pp. 544–557, IEEE, 2018.

[59] “NVIDIA cuSPARSE library.”
https://docs.nvidia.com/cuda/cusparse/in-\dex.html, 2018.

175

https://docs.nvidia.com/cuda/cusparse/in-\dex.html

[60] S. Beamer, K. Asanovic, and D. Patterson, Locality exists in graph processing:
Workload characterization on an ivy bridge server, in 2015 IEEE International
Symposium on Workload Characterization, pp. 56–65, IEEE, 2015.

[61] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and Y. Xie, Analysis
and optimization of the memory hierarchy for graph processing workloads, in 2019
IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 373–386, Feb, 2019.

[62] A. Basak, J. Lin, R. Lorica, X. Xie, Z. Chishti, A. Alameldeen, and Y. Xie,
Saga-bench: Software and hardware characterization of streaming graph analytics
workloads, in 2020 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 12–23, IEEE, 2020.

[63] W. T. Tang, W. J. Tan, R. Ray, Y. W. Wong, W. Chen, S.-h. Kuo, R. S. M. Goh,
S. J. Turner, and W.-F. Wong, Accelerating sparse matrix-vector multiplication on
gpus using bit-representation-optimized schemes, in Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, p. 26, ACM, 2013.

[64] W. T. Tang, R. Zhao, M. Lu, Y. Liang, H. P. Huynh, X. Li, and R. S. M. Goh,
Optimizing and auto-tuning scale-free sparse matrix-vector multiplication on intel
xeon phi, in Proceedings of the 13th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, pp. 136–145, IEEE Computer Society,
2015.

[65] “HMC Specification 2.1.” http://hybridmemorycube.org/, 2014.

[66] R. Hadidi, B. Asgari, B. A. Mudassar, S. Mukhopadhyay, S. Yalamanchili, and
H. Kim, Demystifying the characteristics of 3d-stacked memories: A case study
for hybrid memory cube, in 2017 IEEE International Symposium on Workload
Characterization (IISWC), pp. 66–75, IEEE, 2017.

[67] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
Cacti-3dd: Architecture-level modeling for 3d die-stacked dram main memory, in
Proceedings of the Conference on Design, Automation and Test in Europe,
pp. 33–38, EDA Consortium, 2012.

[68] S. Galal, O. Shacham, J. S. Brunhaver II, J. Pu, A. Vassiliev, and M. Horowitz,
Fpu generator for design space exploration, in 2013 IEEE 21st Symposium on
Computer Arithmetic, pp. 25–34, IEEE, 2013.

[69] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, Tetris: Scalable and
efficient neural network acceleration with 3d memory, in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 751–764, 2017.

176

http://hybridmemorycube.org/

[70] M. J. Khurshid and M. Lipasti, Data compression for thermal mitigation in the
hybrid memory cube, in 2013 IEEE 31st International Conference on Computer
Design (ICCD), pp. 185–192, IEEE, 2013.

[71] Y. Eckert, N. Jayasena, and G. H. Loh, Thermal feasibility of die-stacked
processing in memory, .

[72] D. Milojevic, S. Idgunji, D. Jevdjic, E. Ozer, P. Lotfi-Kamran, A. Panteli,
A. Prodromou, C. Nicopoulos, D. Hardy, B. Falsari, et. al., Thermal
characterization of cloud workloads on a power-efficient server-on-chip, in 2012
IEEE 30th International Conference on Computer Design (ICCD), pp. 175–182,
IEEE, 2012.

[73] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset
collection.” http://snap.stanford.edu/data, June, 2014.

[74] S. Beamer, K. Asanović, and D. Patterson, The gap benchmark suite, arXiv
preprint arXiv:1508.03619 (2015).

[75] J. Kepner and J. Gilbert, Graph algorithms in the language of linear algebra.
SIAM, 2011.

[76] A. Pinar and M. T. Heath, Improving performance of sparse matrix-vector
multiplication, in Proceedings of the 1999 ACM/IEEE conference on
Supercomputing, p. 30, ACM, 1999.

[77] E.-J. Im and K. A. Yelick, Optimizing the performance of sparse matrix-vector
multiplication. University of California, Berkeley, 2000.

[78] J. Mellor-Crummey and J. Garvin, Optimizing sparse matrix–vector product
computations using unroll and jam, The International Journal of High
Performance Computing Applications 18 (2004), no. 2 225–236.

[79] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
Optimization of sparse matrix-vector multiplication on emerging multicore
platforms, in Supercomputing, 2007. SC’07. Proceedings of the 2007 ACM/IEEE
Conference on, pp. 1–12, IEEE, 2007.

[80] N. Bell and M. Garland, Implementing sparse matrix-vector multiplication on
throughput-oriented processors, in Proceedings of the conference on high
performance computing networking, storage and analysis, p. 18, ACM, 2009.

[81] J. L. Greathouse and M. Daga, Efficient sparse matrix-vector multiplication on
gpus using the csr storage format, in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
pp. 769–780, IEEE Press, 2014.

177

http://snap.stanford.edu/data

[82] D. Merrill and M. Garland, Merge-based sparse matrix-vector multiplication
(spmv) using the csr storage format, in ACM SIGPLAN Notices, vol. 51, p. 43,
ACM, 2016.

[83] Y. Nagasaka, A. Nukada, and S. Matsuoka, Adaptive multi-level blocking
optimization for sparse matrix vector multiplication on gpu, Procedia Computer
Science 80 (2016) 131–142.

[84] B.-Y. Su and K. Keutzer, clspmv: A cross-platform opencl spmv framework on
gpus, in Proceedings of the 26th ACM international conference on
Supercomputing, pp. 353–364, ACM, 2012.

[85] X. Xie, D. Du, Q. Li, Y. Liang, W. T. Tang, Z. L. Ong, M. Lu, H. P. Huynh, and
R. S. M. Goh, Exploiting sparsity to accelerate fully connected layers of cnn-based
applications on mobile socs, ACM Transactions on Embedded Computing Systems
(TECS) 17 (2017), no. 2 1–25.

[86] S. Yan, C. Li, Y. Zhang, and H. Zhou, yaspmv: yet another spmv framework on
gpus, in Acm Sigplan Notices, vol. 49, pp. 107–118, ACM, 2014.

[87] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, Efficient sparse matrix-vector
multiplication on x86-based many-core processors, in Proceedings of the 27th
international ACM conference on International conference on supercomputing,
pp. 273–282, ACM, 2013.

[88] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang, Cvr: efficient
vectorization of spmv on x86 processors, in Proceedings of the 2018 International
Symposium on Code Generation and Optimization, pp. 149–162, ACM, 2018.

[89] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerging
non-volatile memories, in Proceedings of the 53rd Annual Design Automation
Conference, p. 173, ACM, 2016.

[90] D. Fujiki, S. Mahlke, and R. Das, In-memory data parallel processor, in
Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 1–14, ACM,
2018.

[91] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, Drisa: A
dram-based reconfigurable in-situ accelerator, in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 288–301, ACM,
2017.

178

[92] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, Pim-enabled instructions: a
low-overhead, locality-aware processing-in-memory architecture, in Computer
Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium
on, pp. 336–348, IEEE, 2015.

[93] K. Wu, G. Dai, X. Hu, S. Li, X. Xie, Y. Wang, and Y. Xie, Memory-bound
proof-of-work acceleration for blockchain applications, in Proceedings of the 56th
Annual Design Automation Conference 2019, pp. 1–6, 2019.

[94] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, Processing-in-memory for
energy-efficient neural network training: A heterogeneous approach, in Proceedings
of the 51st Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 656–669, ACM, 2018.

[95] L. Song, X. Qian, H. Li, and Y. Chen, Pipelayer: A pipelined reram-based
accelerator for deep learning, in High Performance Computer Architecture
(HPCA), 2017 IEEE International Symposium on, pp. 541–552, IEEE, 2017.

[96] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang, Time: A
training-in-memory architecture for memristor-based deep neural networks, in
Proceedings of the 54th Annual Design Automation Conference 2017, p. 26, ACM,
2017.

[97] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, Neurostream: Scalable and energy
efficient deep learning with smart memory cubes, IEEE Transactions on Parallel
& Distributed Systems (2018), no. 1 1–1.

[98] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini, A scalable
near-memory architecture for training deep neural networks on large in-memory
datasets, arXiv preprint arXiv:1803.04783 (2018).

[99] P. Gu, X. Xie, S. Li, D. Niu, H. Zheng, K. T. Malladi, and Y. Xie, Dlux: a
lut-based near-bank accelerator for data center deep learning training workloads,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2020).

[100] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, ISAAC: A convolutional neural network
accelerator with in-situ analog arithmetic in crossbars, in Proceedings of the 43rd
International Symposium on Computer Architecture, pp. 14–26, IEEE Press, 2016.

[101] P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie, Snrram: an efficient
sparse neural network computation architecture based on resistive random-access
memory, in Proceedings of the 55th Annual Design Automation Conference,
p. 106, ACM, 2018.

179

[102] S. Angizi, Z. He, A. S. Rakin, and D. Fan, Cmp-pim: an energy-efficient
comparator-based processing-in-memory neural network accelerator, in Proceedings
of the 55th Annual Design Automation Conference, p. 105, ACM, 2018.

[103] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, Graphpim: Enabling
instruction-level pim offloading in graph computing frameworks, in 2017 IEEE
International symposium on high performance computer architecture (HPCA),
pp. 457–468, IEEE, 2017.

[104] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, Graphr: Accelerating graph
processing using reram, in High Performance Computer Architecture (HPCA),
2018 IEEE International Symposium on, pp. 531–543, IEEE, 2018.

[105] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and
H. Yang, Graphh: A processing-in-memory architecture for large-scale graph
processing, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (2018).

[106] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, Accelerating sparse
matrix-matrix multiplication with 3d-stacked logic-in-memory hardware, in High
Performance Extreme Computing Conference (HPEC), 2013 IEEE, pp. 1–6,
IEEE, 2013.

[107] B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang, and E. Ipek, Enabling
scientific computing on memristive accelerators, in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pp. 367–382, June,
2018.

[108] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and F. Franchetti, Efficient
spmv operation for large and highly sparse matrices using scalable multi-way
merge parallelization, in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 347–358, 2019.

[109] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, Extensor: An accelerator for sparse
tensor algebra, in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 319–333, 2019.

[110] B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili, Alrescha: A
lightweight reconfigurable sparse-computation accelerator, in 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pp. 249–260, IEEE, 2020.

[111] S. Han, H. Mao, and W. J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, arXiv preprint
arXiv:1510.00149 (2015).

180

[112] P. Wang, X. Xie, L. Deng, G. Li, D. Wang, and Y. Xie, Hitnet: Hybrid ternary
recurrent neural network, in Advances in Neural Information Processing Systems,
pp. 604–614, 2018.

[113] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and
T. Krishna, Sigma: A sparse and irregular gemm accelerator with flexible
interconnects for dnn training, in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 58–70, IEEE, 2020.

[114] M. Zhu, T. Zhang, Z. Gu, and Y. Xie, Sparse tensor core: Algorithm and
hardware co-design for vector-wise sparse neural networks on modern gpus, in
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 359–371, 2019.

[115] L. Liu, Z. Qu, L. Deng, F. Tu, S. Li, X. Hu, Z. Gu, Y. Ding, and Y. Xie, Duet:
Boosting deep neural network efficiency on dual-module architecture, in 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 738–750, IEEE, 2020.

[116] Z. Zhang, H. Wang, S. Han, and W. J. Dally, Sparch: Efficient architecture for
sparse matrix multiplication, in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 261–274, IEEE, 2020.

[117] “JEDEC Standard. High Bandwidth Memory (HBM) DRAM. JESD25A.”
https://www.jedec.org/standards-documents/docs/jesd235a, 2015.

[118] X. L. Li, B. Veeravalli, and C. Ko, Distributed image processing on a network of
workstations, International Journal of Computers and Applications 25 (2003),
no. 2 136–145.

[119] Y. Yan and L. Huang, Large-scale image processing research cloud, Cloud
Computing (2014) 88–93.

[120] S. T. Bow, Pattern recognition and image preprocessing. CRC press, 2002.

[121] T. M. Deserno, Biomedical image processing, .

[122] J. R. Jensen, Introductory digital image processing: a remote sensing perspective.
Prentice Hall Press, 2015.

[123] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin, Scaling the
bandwidth wall: challenges in and avenues for cmp scaling, ACM SIGARCH
Computer Architecture News 37 (2009), no. 3 371–382.

[124] P. M. Kogge, Execube-a new architecture for scaleable mpps, in 1994 International
Conference on Parallel Processing Vol. 1, vol. 1, pp. 77–84, IEEE, 1994.

181

https://www.jedec.org/standards-documents/docs/jesd235a

[125] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick, A case for intelligent ram, IEEE micro 17 (1997),
no. 2 34–44.

[126] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki,
J. Shin, C. Chen, C. W. Kang, et. al., The architecture of the diva
processing-in-memory chip, in Proceedings of the 16th international conference on
Supercomputing, pp. 14–25, 2002.

[127] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,
Halide: a language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines, in Acm Sigplan Notices, vol. 48,
pp. 519–530, ACM, 2013.

[128] S. Paris, S. W. Hasinoff, and J. Kautz, Local laplacian filters: Edge-aware image
processing with a laplacian pyramid., ACM Trans. Graph. 30 (2011), no. 4 68.

[129] Y. Chi, J. Cong, P. Wei, and P. Zhou, Soda: stencil with optimized dataflow
architecture, in 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–8, IEEE, 2018.

[130] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, A dsl compiler for
accelerating image processing pipelines on fpgas, in 2016 International Conference
on Parallel Architecture and Compilation Techniques (PACT), pp. 327–338,
IEEE, 2016.

[131] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and
M. Horowitz, Programming heterogeneous systems from an image processing dsl,
ACM Transactions on Architecture and Code Optimization (TACO) 14 (2017),
no. 3 26.

[132] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, Darkroom: compiling high-level
image processing code into hardware pipelines., ACM Trans. Graph. 33 (2014),
no. 4 144–1.

[133] R. T. Mullapudi, V. Vasista, and U. Bondhugula, Polymage: Automatic
optimization for image processing pipelines, in ACM SIGPLAN Notices, vol. 50,
pp. 429–443, ACM, 2015.

[134] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian,
Automatically scheduling halide image processing pipelines, ACM Transactions on
Graphics (TOG) 35 (2016), no. 4 83.

182

[135] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio, A common
backend for hardware acceleration on fpga, in 2017 IEEE International Conference
on Computer Design (ICCD), pp. 427–430, IEEE, 2017.

[136] J. Fung and S. Mann, Using graphics devices in reverse: Gpu-based image
processing and computer vision, in 2008 IEEE international conference on
multimedia and expo, pp. 9–12, IEEE, 2008.

[137] M. D. M. F. J. L. Shuhang Gu, Andreas Lugmayr and R. Timofte, Div8k:
Diverse 8k resolution image dataset, in International Conference on Computer
Vision (ICCV) Workshops, October, 2019.

[138] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, Dissecting the nvidia volta
gpu architecture via microbenchmarking, arXiv preprint arXiv:1804.06826 (2018).

[139] J. Clemons, C.-C. Cheng, I. Frosio, D. Johnson, and S. W. Keckler, A patch
memory system for image processing and computer vision, in The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, p. 51, IEEE Press,
2016.

[140] J. T. Pawlowski, Hybrid memory cube (hmc), in 2011 IEEE Hot Chips 23
Symposium (HCS), pp. 1–24, IEEE, 2011.

[141] A. Barbalace, A. Iliopoulos, H. Rauchfuss, and G. Brasche, It’s time to think
about an operating system for near data processing architectures, in Proceedings of
the 16th Workshop on Hot Topics in Operating Systems, pp. 56–61, ACM, 2017.

[142] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarungnirun,
K. Hsieh, N. Hajinazar, K. T. Malladi, H. Zheng, et. al., Conda: Efficient cache
coherence support for near-data accelerators, .

[143] C. McGinnis, Pci-sig® fast tracks evolution to 32gt/s with pci express 5.0
architecture, News Release, June 7 (2017).

[144] K.-y. Chae, Advanced microcontroller bus architecture (amba) system with reduced
power consumption and method of driving amba system, June 19, 2007. US Patent
7,234,011.

[145] J. Chen, S. Paris, and F. Durand, Real-time edge-aware image processing with the
bilateral grid, in ACM Transactions on Graphics (TOG), vol. 26, p. 103, ACM,
2007.

[146] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV
library. ” O’Reilly Media, Inc.”, 2008.

183

[147] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel,
T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis, et. al., Spatial: A language and
compiler for application accelerators, in ACM Sigplan Notices, vol. 53,
pp. 296–311, ACM, 2018.

[148] NVIDIA Tesla V100 GPU Architecture, 2018. https://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[149] K. Sohn, W. Yun, R. Oh, C. Oh, S. Seo, M. Park, D. Shin, W. Jung, S. Shin,
J. Ryu, H. Yu, J. Jung, K. Nam, S. Choi, J. Lee, U. Kang, Y. Sohn, J. Choi,
C. Kim, S. Jang, and G. Jin, A 1.2 v 20 nm 307 gb/s hbm dram with at-speed
wafer-level io test scheme and adaptive refresh considering temperature
distribution, IEEE Journal of Solid-State Circuits 52 (2017), no. 1 250–260.

[150] Y. Kim, W. Yang, and O. Mutlu, Ramulator: A fast and extensible dram
simulator, IEEE Computer architecture letters 15 (2015), no. 1 45–49.

[151] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, Ndc: Analyzing the impact of 3d-stacked
memory+logic devices on mapreduce workloads, in 2014 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pp. 190–200, IEEE, 2014.

[152] G. Dupenloup, Automatic synthesis script generation for synopsys design
compiler, Dec. 28, 2004. US Patent 6,836,877.

[153] ARM Cortex-A5 processor, 2009. https://https:
//www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a5.

[154] Y. Zhu, B. Wang, D. Li, and J. Zhao, Integrated thermal analysis for processing in
die-stacking memory, in Proceedings of the Second International Symposium on
Memory Systems, pp. 402–414, 2016.

[155] A. Agrawal, J. Torrellas, and S. Idgunji, Xylem: Enhancing vertical thermal
conduction in 3d processor-memory stacks, in 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 546–559, IEEE,
2017.

[156] F.-J. Veredas, M. Scheppler, W. Moffat, and B. Mei, Custom implementation of
the coarse-grained reconfigurable adres architecture for multimedia purposes, in
International Conference on Field Programmable Logic and Applications, 2005.,
pp. 106–111, IEEE, 2005.

[157] A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky, and
M. Horowitz, Evaluating programmable architectures for imaging and vision

184

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a5
https://https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a5

applications, in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1–13, IEEE, 2016.

[158] M. Mahmoud, B. Zheng, A. D. Lascorz, F. H. Assouline, J. Assouline,
P. Boucher, E. Onzon, and A. Moshovos, Ideal: Image denoising accelerator, in
2017 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 82–95, IEEE, 2017.

[159] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan,
and Y. Xie, Scope: A stochastic computing engine for dram-based in-situ
accelerator., in MICRO, pp. 696–709, 2018.

[160] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKenzie,
Computational ram: Implementing processors in memory, IEEE Design & Test of
Computers 16 (1999), no. 1 32–41.

[161] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and
J. Torrellas, Flexram: Toward an advanced intelligent memory system, in
Proceedings 1999 IEEE International Conference on Computer Design: VLSI in
Computers and Processors (Cat. No. 99CB37040), pp. 192–201, IEEE, 1999.

[162] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur,
D. Kim, A. Kuusela, A. Knies, P. Ranganathan, et. al., Google workloads for
consumer devices: Mitigating data movement bottlenecks, in ACM SIGPLAN
Notices, vol. 53, pp. 316–331, ACM, 2018.

[163] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian, Graphq:
Scalable pim-based graph processing, in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 712–725, ACM,
2019.

[164] J. Jang, J. Heo, Y. Lee, J. Won, S. Kim, S. J. Jung, H. Jang, T. J. Ham, and
J. W. Lee, Charon: Specialized near-memory processing architecture for clearing
dead objects in memory, in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 726–739, ACM, 2019.

[165] J. Li, X. Wang, A. Tumeo, B. Williams, J. D. Leidel, and Y. Chen, Pims: a
lightweight processing-in-memory accelerator for stencil computations, in
Proceedings of the International Symposium on Memory Systems, pp. 41–52,
ACM, 2019.

[166] C. Xie, X. Zhang, A. Li, X. Fu, and S. Song, Pim-vr: Erasing motion anomalies
in highly-interactive virtual reality world with customized memory cube, in 2019
IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 609–622, IEEE, 2019.

185

[167] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K. Wang, T. Roewer,
A. McPadden, O. O’Halloran, D. Chen, J. Xiong, et. al., Application-transparent
near-memory processing architecture with memory channel network, in 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 802–814, IEEE, 2018.

[168] M. Alian and N. S. Kim, Netdimm: Low-latency near-memory network interface
architecture, in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 699–711, 2019.

[169] W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, Medal: Scalable dimm based
near data processing accelerator for dna seeding algorithm, in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 587–599, 2019.

[170] Y. Kwon, Y. Lee, and M. Rhu, Tensordimm: A practical near-memory processing
architecture for embeddings and tensor operations in deep learning, in Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 740–753, 2019.

[171] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams,
P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy, et. al., Puma: A
programmable ultra-efficient memristor-based accelerator for machine learning
inference, in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
pp. 715–731, ACM, 2019.

[172] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, Rram-based analog
approximate computing, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 34 (2015), no. 12 1905–1917.

[173] L. Nyland, J. R. Nickolls, G. Hirota, and T. Mandal, Systems and methods for
coalescing memory accesses of parallel threads, Dec. 27, 2011. US Patent
8,086,806.

[174] J. E. Lindholm, M. Y. Siu, S. S. Moy, S. Liu, and J. R. Nickolls, Simulating
multiported memories using lower port count memories, Mar. 4, 2008. US Patent
7,339,592.

[175] D. Kirk et. al., Nvidia cuda software and gpu parallel computing architecture, in
ISMM, vol. 7, pp. 103–104, 2007.

[176] C. Nvidia, Compute unified device architecture programming guide, .

186

[177] M. Martineau, P. Atkinson, and S. McIntosh-Smith, Benchmarking the nvidia
v100 gpu and tensor cores, in European Conference on Parallel Processing,
pp. 444–455, Springer, 2018.

[178] M. Nemirovsky and D. M. Tullsen, Multithreading architecture, Synthesis Lectures
on Computer Architecture 8 (2013), no. 1 1–109.

[179] J. Macri, Amd’s next generation gpu and high bandwidth memory architecture:
Fury, in 2015 IEEE Hot Chips 27 Symposium (HCS), pp. 1–26, IEEE, 2015.

[180] M. O’Connor, Highlights of the high-bandwidth memory (hbm) standard, in
Memory Forum Workshop, 2014.

[181] J. D. Leidel and Y. Chen, Hmc-sim-2.0: A simulation platform for exploring
custom memory cube operations, in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 621–630, IEEE,
2016.

[182] Y. Xie and J. Zhao, Die-stacking architecture, Synthesis Lectures on Computer
Architecture 10 (2015), no. 2 1–127.

[183] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E. Shaw,
J. Kim, and W. J. Dally, A detailed and flexible cycle-accurate network-on-chip
simulator, in 2013 IEEE international symposium on performance analysis of
systems and software (ISPASS), pp. 86–96, IEEE, 2013.

[184] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, A case for exploiting
subarray-level parallelism (salp) in dram, ACM SIGARCH Computer Architecture
News 40 (2012), no. 3 368–379.

[185] C. NVIDIA, Compiler driver nvcc, Options for Steering GPU Code Generation
URL (2013).

[186] NVIDIA, Parallel Thread Extension ISA, 2020.
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[187] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, Dynamic warp formation and
scheduling for efficient gpu control flow, in 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007), pp. 407–420, IEEE, 2007.

[188] Nvidia, “cuBLAS.” http://docs.nvidia.com/cuda/cublas/index.html, 2017.

[189] NVIDIA, CUB Library, 2020. https://github.com/NVlabs/cub.

187

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/cublas/index.html
https://github.com/NVlabs/cub

[190] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
Rodinia: A benchmark suite for heterogeneous computing, in 2009 IEEE
international symposium on workload characterization (IISWC), pp. 44–54, Ieee,
2009.

[191] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W. Keckler, and
W. J. Dally, Fine-grained dram: energy-efficient dram for extreme bandwidth
systems, in 2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 41–54, IEEE, 2017.

[192] N. Matloff, Introduction to discrete-event simulation and the simpy language,
Davis, CA. Dept of Computer Science. University of California at Davis.
Retrieved on August 2 (2008), no. 2009 1–33.

[193] Y. Arafa, A.-H. A. Badawy, G. Chennupati, N. Santhi, and S. Eidenbenz, Low
overhead instruction latency characterization for nvidia gpgpus, in 2019 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–8, IEEE, 2019.

[194] Y. Arafa, A. ElWazir, A. ElKanishy, Y. Aly, A. Elsayed, A.-H. Badawy,
G. Chennupati, S. Eidenbenz, and N. Santhi, Verified instruction-level energy
consumption measurement for nvidia gpus, in Proceedings of the 17th ACM
International Conference on Computing Frontiers, pp. 60–70, 2020.

[195] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, Analyzing
cuda workloads using a detailed gpu simulator, in 2009 IEEE International
Symposium on Performance Analysis of Systems and Software, pp. 163–174,
IEEE, 2009.

[196] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, Dramsim2: A cycle accurate
memory system simulator, IEEE computer architecture letters 10 (2011), no. 1
16–19.

[197] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sanchez, and N. Beckmann, Livia: Data-centric computing throughout the
memory hierarchy, in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems,
pp. 417–433, 2020.

[198] M. H. K. E. E. Onur, Reducing memory access latency via an enhanced (compute
capable) memory controller milad hashemi khubaib eiman ebrahimi onur mutlu
yale n. patt, .

[199] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim, Chameleon:
Versatile and practical near-dram acceleration architecture for large memory
systems, in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1–13, IEEE, 2016.

188

[200] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T. Malladi,
H. Zheng, and O. Mutlu, Lazypim: An efficient cache coherence mechanism for
processing-in-memory, IEEE Computer Architecture Letters 16 (2016), no. 1
46–50.

[201] B. Y. Cho, Y. Kwon, S. Lym, and M. Erez, Chonda: Near data acceleration with
concurrent host access, International Symposium on Computer Architecture
(2020).

[202] C. Xie, S. L. Song, J. Wang, W. Zhang, and X. Fu, Processing-in-memory enabled
graphics processors for 3d rendering, in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 637–648, IEEE, 2017.

[203] B. Akin and A. R. Alameldeen, A case for asymmetric processing in memory,
IEEE Computer Architecture Letters 18 (2019), no. 1 22–25.

[204] J. Picorel, D. Jevdjic, and B. Falsafi, Near-memory address translation, in 2017
26th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pp. 303–317, Ieee, 2017.

[205] B. Akin, F. Franchetti, and J. C. Hoe, Hamlet architecture for parallel data
reorganization in memory, IEEE Micro 36 (2015), no. 1 14–23.

[206] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing
memristor found, nature 453 (2008), no. 7191 80–83.

[207] S. Mittal, A survey of reram-based architectures for processing-in-memory and
neural networks, Machine learning and knowledge extraction 1 (2019), no. 1
75–114.

[208] M. Imani, S. Gupta, Y. Kim, and T. Rosing, Floatpim: In-memory acceleration of
deep neural network training with high precision, in 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture (ISCA), pp. 802–815,
IEEE, 2019.

[209] L. Xia, T. Tang, W. Huangfu, M. Cheng, X. Yin, B. Li, Y. Wang, and H. Yang,
Switched by input: Power efficient structure for rram-based convolutional neural
network, in Proceedings of the 53rd Annual Design Automation Conference,
pp. 1–6, 2016.

[210] S. Xu, X. Chen, Y. Wang, Y. Han, X. Qian, and X. Li, Pimsim: A flexible and
detailed processing-in-memory simulator, IEEE Computer Architecture Letters 18
(2018), no. 1 6–9.

[211] C. Yu, S. Liu, and S. Khan, Multipim: A detailed and configurable multi-stack
processing-in-memory simulator, IEEE Computer Architecture Letters 20 (2021),
no. 1 54–57.

189

[212] X. Xie, P. Gu, Y. Ding, D. Niu, H. Zheng, and Y. Xie, MPU: towards
bandwidth-abundant SIMT processor via near-bank computing, CoRR
abs/2103.06653 (2021) [arXiv:2103.0665].

[213] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, et. al., Simba: Scaling
deep-learning inference with multi-chip-module-based architecture, in Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 14–27, 2019.

[214] U. K. Dasari, O. Temam, R. Narayanaswami, and D. H. Woo, Apparatus and
mechanism for processing neural network tasks using a single chip package with
multiple identical dies, Mar. 2, 2021. US Patent 10,936,942.

[215] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel,
C.-J. Wu, and D. Nellans, Mcm-gpu: Multi-chip-module gpus for continued
performance scalability, ACM SIGARCH Computer Architecture News 45 (2017),
no. 2 320–332.

[216] A. Kannan, N. E. Jerger, and G. H. Loh, Enabling interposer-based disintegration
of multi-core processors, in 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 546–558, IEEE, 2015.

[217] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, Pluto: A
practical and fully automatic polyhedral program optimization system, in
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation (PLDI 08), Tucson, AZ (June 2008), Citeseer, 2008.

[218] P. Feautrier, Some efficient solutions to the affine scheduling problem. i.
one-dimensional time, International journal of parallel programming 21 (1992),
no. 5 313–347.

[219] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et. al., The worst-case
execution-time problem—overview of methods and survey of tools, ACM
Transactions on Embedded Computing Systems (TECS) 7 (2008), no. 3 1–53.

[220] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki, A statically scheduled
time-division-multiplexed network-on-chip for real-time systems, in 2012
IEEE/ACM Sixth International Symposium on Networks-on-Chip, pp. 152–160,
IEEE, 2012.

[221] Y. Ding, L. Zhu, Z. Jia, G. Pekhimenko, and S. Han, Ios: Inter-operator scheduler
for cnn acceleration, Proceedings of Machine Learning and Systems 3 (2021).

190

http://xxx.lanl.gov/abs/2103.0665

[222] Y. Zhou, S. Roy, A. Abdolrashidi, D. Wong, P. Ma, Q. Xu, H. Liu, P. M.
Phothilimthana, S. Wang, A. Goldie, A. Mirhoseini, and J. Laudon, Transferable
graph optimizers for ml compilers, 2021.

[223] B. Zimmer, R. Venkatesan, Y. S. Shao, J. Clemons, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, et. al., A 0.11 pj/op, 0.32-128
tops, scalable multi-chip-module-based deep neural network accelerator with
ground-reference signaling in 16nm, in 2019 Symposium on VLSI Circuits,
pp. C300–C301, IEEE, 2019.

[224] N. E. Jerger, A. Kannan, Z. Li, and G. H. Loh, Noc architectures for silicon
interposer systems: Why pay for more wires when you can get them (from your
interposer) for free?, in 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 458–470, IEEE, 2014.

[225] D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh, Cost-effective design of scalable
high-performance systems using active and passive interposers, in 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 728–735, IEEE, 2017.

[226] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A.
Patwary, Y. Yang, and Y. Zhou, Deep learning scaling is predictable, empirically,
arXiv preprint arXiv:1712.00409 (2017).

[227] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean,
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
arXiv preprint arXiv:1701.06538 (2017).

[228] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, Exploring the
limits of language modeling, arXiv preprint arXiv:1602.02410 (2016).

[229] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe,
and L. van der Maaten, Exploring the limits of weakly supervised pretraining, in
Proceedings of the European Conference on Computer Vision (ECCV), 2018.

[230] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, Language
models are unsupervised multitask learners, 2019.

[231] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool,
P. Hawkins, H. Lee, M. Hong, C. Young, R. Sepassi, and B. Hechtman,
Mesh-tensorflow: Deep learning for supercomputers, 2018.

[232] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z. Chen, Gpipe:
Efficient training of giant neural networks using pipeline parallelism, CoRR
abs/1811.06965 (2018) [arXiv:1811.0696].

191

http://xxx.lanl.gov/abs/1811.0696

[233] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer,
and Z. Chen, Gshard: Scaling giant models with conditional computation and
automatic sharding, 2020.

[234] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R.
Ganger, P. B. Gibbons, and M. Zaharia, Pipedream: Generalized pipeline
parallelism for dnn training, in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, (New York, NY, USA), p. 1–15,
Association for Computing Machinery, 2019.

[235] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar,
M. Norouzi, S. Bengio, and J. Dean, Device placement optimization with
reinforcement learning, ICML (2017) [arXiv:1706.0497].

[236] Y. Gao, L. Chen, and B. Li, Spotlight: Optimizing device placement for training
deep neural networks, in Proceedings of the 35th International Conference on
Machine Learning (J. Dy and A. Krause, eds.), vol. 80 of Proceedings of Machine
Learning Research, (Stockholmsmässan, Stockholm Sweden), pp. 1676–1684,
PMLR, 10–15 Jul, 2018.

[237] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean, A
hierarchical model for device placement, ICLR (2018).

[238] R. Addanki, S. B. Venkatakrishnan, S. Gupta, H. Mao, and M. Alizadeh, Placeto:
Learning generalizable device placement algorithms for distributed machine
learning, CoRR abs/1906.08879 (2019) [arXiv:1906.0887].

[239] P.-W. Wang, P. L. Donti, B. Wilder, and Z. Kolter, Satnet: Bridging deep
learning and logical reasoning using a differentiable satisfiability solver, 2019.

[240] B. Amos and J. Z. Kolter, Optnet: Differentiable optimization as a layer in neural
networks, 2019.

[241] J. Achiam, D. Held, A. Tamar, and P. Abbeel, Constrained policy optimization,
2017.

[242] W. L. Hamilton, R. Ying, and J. Leskovec, Inductive representation learning on
large graphs, NIPS (2017) [arXiv:1706.0221].

[243] Google, Cp-sat solver, .

[244] J. Devlin, M. Chang, K. Lee, and K. Toutanova, BERT: pre-training of deep
bidirectional transformers for language understanding, CoRR abs/1810.04805
(2018) [arXiv:1810.0480].

[245] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy
optimization algorithms, CoRR abs/1707.06347 (2017) [arXiv:1707.0634].

192

http://xxx.lanl.gov/abs/1706.0497
http://xxx.lanl.gov/abs/1906.0887
http://xxx.lanl.gov/abs/1706.0221
http://xxx.lanl.gov/abs/1810.0480
http://xxx.lanl.gov/abs/1707.0634

	Curriculum Vitae
	Abstract
	Introduction
	NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs
	Motivation
	Benchmarking Methodology
	Workload Characterization
	Discussion
	Conclusion

	SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator
	Motivation
	SpaceA Architecture
	Mapping Method
	Evaluation
	Related Work
	Discussion
	Conclusion

	iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
	Motivation
	iPIM Architecture
	Compiler Support
	Evaluation
	Related Work
	Conclusion

	MPU: Memory-Centric SIMT Processor via In-DRAM Near-Bank Computing
	Motivation
	MPU Architecture
	Compiler Support
	Evaluation
	Related Work
	Conclusion

	MPU-Sim: A Simulator for In-DRAM Near-Bank Processing Architectures
	MPU Simulator
	Calibration Studies
	Case Studies
	Related Work
	Conclusion

	A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
	Motivation
	Related Work
	Hardware Architecture and Problem Formulation
	Reinforcement Learning with a Constraint Solver
	Experiments
	Conclusion

	Summary
	Bibliography

