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Abstract

Atomistic-informed Finite Temperature Crystal Plasticity Finite Element Modeling of
Body-centered Cubic Single Crystals

by

Yuxi Xie

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Shaofan Li, Chair

Crystal plasticity is a long-standing problem in computational materials. Understanding
deep mechanism of plasticity, such as dislocation, multiplication, interaction, has been a
great challenge of major scientific significance since there exist many physical and technical
difficulties.
It is believed that plasticity in a crystal is strongly influenced by the aggregated dislocations.
The aggregated dislocations usually form definite dislocation networks or substrates when
plastic loading happens and the networks or substrates are usually called as dislocation
patterns. It is commonly known that dislocation patterns and their interactions determine
plasticity of crystalline material. Based on lots of experimental observations, it is found
that under the same loading and boundary conditions, the specific type of atomic crystal
structures usually generates very similar dislocation patterns. Therefore, it is believed that
the dislocation patterns emerged in crystalline materials are strongly related to the atomic
crystal structures of crystalline materials at the beginning stage of plastic deformation.
On the other hand, for metallic materials, especially Body-centered Cubic (BCC) crystal
materials, the thermally-activated dislocation glide has a tight link to crystal plasticity, such
as constitutive relation (stress-strain curve), screw dislocation glide and temperature-induced
Peierls-stress. Because the thermally-activated screw dislocation glide results to thermally-
induced Peierls-stress and yield stress decreasing.
In this dissertation, it is developed that a temperature-dependent higher-order Cauchy-
Born (THCB) rule for Multiscale Crystal Defects Dynamics (MCDD) of crystalline solids
based on harmonic approximation. The THCB rule is employed to develop an atomistic-
informed constitutive model and the corresponding higher order stress are used to model
crystal plasticity of single crystals. It is shown in the dissertation that the developed finite
temperature atomistic-informed crystal plasticity finite element method is able to capture the
temperature-dependent dislocation substructure and hence crystal plastic deformation. The
main contributions and novelties of the present work are highlighted by following findings: (1)
A temperature-dependent higher-order Cauchy-Born rule and an atomistic-informed strain
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gradient theory have been developed, and the corresponding temperature-related higher-
order stress and elastic tensor formulations are derived; (2) The finite temperature MCDD
provides an atomistic-informed crystal plasticity finite element method that can simulate
anisotropic crystal plasticity in any orientation within the stereographic triangle at micron
scale and above; (3) The developed multiscale crystal defect dynamics (MCDD) is able
to capture the non-Schmid effects of BCC single crystals; (4) The developed multiscale
crystal defects dynamics (MCDD) is able to capture the size effect of single crystal plasticity,
and (5) The finite temperature MCDD can simulate the temperature dependent dislocation
substructure, and it captures cross-slip in single crystal at low temperature (∼ 20Ko) and
captures dislocation cell structures at high temperature (∼ 500Ko).
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Chapter 1

Introduction

1.1 Motivation and Background

Crystal plasticity is a very common physical phenomenon, no matter a metal shovel is bent
in normal lives or residual strain of steel beam under distortion in engineering application
(see Fig.1.1(a)-(b)).
With deeper understanding of crystal plasticity, scholars realize that the crystalline atom-
istic dislocations are responsible for its plastic behavior (Fig.1.1(c)). At very beginning of
studying crystal plasticity, some phenomenological models were developed to describe plastic
behavior of metals. But this kind of methods require parameters fitting and experimental
calibration so that they are NOT mechanism-based methods.
With the help of computation technologies, massive parallel simulation becomes possible.
Therefore, two bottom-up methods based on dislocation theory have been proposed. The
first method is atom-level method including Molecular Dynamics and first-principle method.
For Molecular Dynamics simulation, massive parallel computation makes it possible that
micron-scale objects simulation but larger size becomes bottleneck of this method. Alterna-

(a) (b) (c)

Figure 1.1: Crystal plasticity: (a) a shovel bent; (b) metal plate bent([1]); (c) atomic dislo-
cation.
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Figure 1.2: Hierarchical scale crystal plasticity modeling methods.

tively, another method, Dislocation Dynamics attempting to characterize behavior of aggre-
gate dislocation ensembles at mesoscale becomes popular. However, Dislocation Dynamics
also suffers shortcomings, such as assumption of linear isotropic elasticity and undefined
dislocation cut-off radius (see Fig.1.2).
Dislocations in crystalline materials lead to crystal plasticity, nevertheless, the plastic flow
in a crystal is not determined by the motion of a single individual dislocation, but by the
evolution of aggregated dislocations. Even though the interactions of dislocations are com-
plex statistical and stochastic events, often times, definite dislocation substructures may
emerge during plastic deformation, which is also called as the dislocation pattern. It is
the interaction of dislocation patterns that determines plastic flow or crystal plasticity e.g.
[13, 14].
Dislocation pattern distribution can partition the entire plastically deformed crystal into
quasi-periodic dislocation-rich and dislocation-poor regions, and by viewing them from dif-
ferent directions or perspectives, we may see different geometric patterns, such as cells, veins,
labyrinth, ladders, which may be viewed as the building block to form complex structured
networks of aggregated dislocation distributions. More importantly, it is now a consensus
that it is the dislocation substructures or deformation micro-structures and their evolution
that determine the plastic hardening parameters and flow stress e.g. [15, 16] rather than a
single or a few dislocations. By studying the evolution of dislocation patterns, we will be
able to gain deep understanding of important physical processes in crystal plasticity such as
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strain hardening, strain localization, and the related material properties at macroscale.
Since 1980s, study of dislocation pattern has been an active field in materials science research.
Most developments before 2010 have been reviewed in [17, 18]. A comprehensive review of
the recent development on dislocation pattern dynamics is presented in [19].
Focusing more on the recent literature, we would like to point out some noteworthy work in
the recent years. An excellent work done by Li et al. [20] has systematically investigated dis-
location patterns in FCC crystals under cyclic loading, in which the authors provided some
experimental evidences for well-defined and lattice-like distribution dislocation microstruc-
ture. Later on, the same authors argued that these lattice-like dislocation patterns are linked
with the original crystal lattice with same standing wave effect and fractal structure [21].
Recently, by various diffraction conditions in the high angular resolution cross-correlation
based electron backscattering diffraction (CC-EBSD), quasi in-situ electron channelling con-
trast imaging has been used by An and Zaefferer [22] to investigate the formation and evolu-
tion of dislocation patterns under low cycle fatigue of a Steel specimen, and they found that
junctions formed by different slip systems interaction help the dislocation dipoles to form
and even lead to dislocation walls formation. It clearly elucidated the formation process of
dislocation patterns from the original crystal lattice structure.
From modeling and simulation perspective, Groma et al. [23] studied dislocation patterns
in a two-dimensional continuum dislocation theory. Hu et al. [24] used discrete dislocation
dynamics (DDD) simulations to investigate dislocation pattern formation in single crystalline
copper pillar and study the related yielding mechanisms. Moreover, Ispanovity et al. [25]
developed a stochastic continuum model for statistically stored and geometrically necessary
dislocation densities. They showed that dislocation pattern characteristics that include the
formation of dipolar dislocation walls; and Zhou et al. [26] developed a machine learning
approach to resolve the local dislocation microstructure.
On the other hand, multiscale crystal plasticity theory is another active research area in com-
putational materials science. Since 1990s, it has been continuously a forward-looking tend in
materials science research to reduce empiricism in modeling and simulation. The atomistic
and multiscale based modeling and simulation in crystal plasticity have been developing and
thriving. Here we list a few multiscale crystal plasticity finite element models (CPFEM): A
hierarchical multiscale modeling method is proposed by Groh et al. [27] and this method can
predict the working hardening of FCC crystals without experiments; A concurrent atomistic
continuum methodology called CAC has been proposed by Xiong et.al [28] who used EAM
force field and an adaptive mesh refinement to simulate dislocation nucleation and migration
of FCC crystal structures; Involving non-Schmid stress dependent slip with strain rate effect
and temperature, an atomistically-informed crystal plasticity finite element model on body-
centered-cubic (BCC) α-Fe has been proposed by Lim et al. [29], and Amodeo et al. [30]
have developed an atomistically-informed multiscale crystal plasticity formulation to model
the pressure-dependent plasticity in MgO.
Instead of coupling with atomistic modeling, some authors coupled discrete dislocation dy-
namics with crystal plasticity finite element formulation. For examples, aiming to damage
and deformation caused by high strain rate in single crystal, a ductile failure framework
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based on dislocation viscoplasticity has been proposed by Nguyen et.al [31]; and inspired by
the model of integrating 3D dislocation dynamic (DD) simulation with the Finite Element
Method (FEM), the Discrete-Continuous Model (DCM) has been proposed by Vattre et.al
[32] to simulate flow of material plasticity at the sub-micron scale.
Recently, Li et. al [33] firstly developed a Multiscale Crystal Defect Dynamics (MCDD) to
systematically study the dynamics of dislocation patterns, in which they model dislocation
pattern as the corresponding three types of dual lattice process zones (see Fig.1.2). The
proposed Multiscale Crystal Defect Dynamics is in fact an atomistically informed high-
er order strain gradient nonlinear finite element crystal plasticity theory and formulation.
To construct an atomistically informed higher order strain gradient theory, a higher order
Cauchy-Born model, is developed by using the interatomic potential to model the lattice
process zones as locally higher-order hyper-elastic media. When the stress and deformation
state inside the crystal, locally or globally, reach to certain level, their relationship becomes
irreversible, i.e. developing plastic deformation. Lyu and Li in [34] employed discrete exteri-
or calculus and algebraic topology theory to study the geometric and topological structures
of the dislocation patterns, and later they [35] proposed a new notion of Geometrically
Compatible Dislocation Pattern (GCDP) and demonstrated the similarity between GCDP
and the real physical dislocation pattern of crystalline materials observed at the early stage.
The so-called geometrically compatible dislocation pattern is defined as the dislocation sub-
structure that mimics the microstructure of the dual lattice based on the original crystal
lattice structure. This is because the initial dislocation formation or crystal defect always
occurs on a lattice plane as forms of lattice complex (simplicial complex), it is reasonable to
postulate that their aggregation will form a dual lattice complex, or CW complex [36, 34].
Such geometric objects have been occasionally mentioned or reported in the literature, e.g
[37, 38] without systematical studies. Subsequently, Zhang et al [39] further investigated of
Geometrically Compatible Dislocation Pattern in body-center-crystal (BCC) structure.

1.2 Temperature-dependent Dislocation Patterns

Individual dislocation tends to form randomly but statistical number of dislocations tend to
converge to some specific regions based on different crystal lattice structures at the beginning
of material plasticity. Different materials, different experimental conditions usually lead
to completely different dislocation patterns but the dislocation-rich regions sandwiched by
dislocation-poor regions are the basic observation characteristics of dislocation patterns.
The shapes of dislocation patterns are not only influenced by crystal lattice structures but
also by external effects. Temperature is one of the most significant factors. There are many
experiments showing that different dislocation patterns at high or low temperature:
Shields et al [2] studied that Ta single crystals with different orientations were stretched or
compressed at 77K and 4.2K. It was found that increasing temperature from 4.2K to 77K
eliminated slip occurrence but promoted dislocation twinning (see Fig.1.3(a)). Spitzig et
al [3] conducted tension tests of Ta single crystals at 373K and compared to [40] entangled
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dislocation cells appeared at much higher temperature (see Fig.1.3(b)). Papanikolaou et
al [4] provided a comprehensive review on the relation between avalanches and plastic flow in
crystal plasticity including experimental observations, theoretical models and computational
methods. The defomed Mo alloy containing 0.5% Ti and 0.1% Zr showed rafts of loops at
350oC (see Fig.1.3(d)) and the deformed single crystal Mo showed dislocation channels at
50oC (see Fig.1.3(c)).
Marchenko et al [5] proposed a phenomenological strain aging model considering slip systems
in HCP crystals to model static crystal plasticity and strain aging. The experimental ob-
servations were provided as validation of proposed scenario, in which super kinks appeared
in α-Ti at 20oC (see Fig.1.4(a)) while those kinks were replaced by dislocation dipoles and
debris in α-Ti at higher temperature 150oC (see Fig.1.4(b)). Sawkill et al [6] conducted
a shear test on gold single crystal and a tension comparison between gold and aluminium
crystals. From the experimental results (see Fig.1.4(c)-(d)), it is found that there are no
obvious difference of dislocation patterns in Au single crystals at room temperature and
high temperature (575oC).
From those experimental observations, one is found that compared to Face-centered Cubic
(FCC) crystals and Hexagonal-close Pack (HCP) crystals, Body-centered Cubic (BCC) crys-
tals show stronger temperature-dependency, i.e. high\low temperature can obviously change
dislocation patterns in BCC crystals and this is the investigation focus of the dissertation.

1.3 Overview of the Dissertation

The present work is aimed to accomplish the following four objectives: (1) Incorporate tem-
perature dependence into atomistically-informed high order strain gradient crystal plasticity
formulation. Even though, this has been attempted before e.g. [29, 41], they are basically
hierarchial multiscale CPFEM approach but they are not con-current multiscale strain gra-
dient approach. (2) Demonstrate MCDD’s capacity to capture distinct dislocation patterns
under different temperature conditions. There is a misconception about MCDD, which some
researchers thought that the main technique of MCDD was only the embedment of a par-
ticular dislocation pattern into a finite element mesh. Similar to the cohesive zone model
(CZM), MCDD embeds almost all kinematic possible dislocation patterns into the FE mesh
except restriction on FEM mesh resolution. In this work, we would like to show under dif-
ferent temperature conditions, the same MCDD finite element mesh may capture different
dislocation substructures; (3) Demonstrate MCDD as an anisotropic strain gradient crystal
plasticity model that can automatically capture the non-Schmid effects, and (4) Demonstrate
MCDD’s computational efficiency on calculating large scale (> 1µm3) size specimens and
hence MCDD’s capacity on simulating size effect of crystal plasticity.
In Chapter 1, we will talk about motivation and current research background of this disser-
tation, in which the significance of current research and past scientific progress on crystal
plasticity are discussed.
Due to the fact that the MCDD method is mesh-dependent, therefore in Chapter 2, we
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(a) (b)

(c) (d)

Figure 1.3: BCC crystal dislocation patterns under high\low temperature: (a) dislocation
twins in Ta at 4.2K [2] (Reuse Permission by Elsevier: License Number 5066160715756);
(b) dislocation cells in Ta at 373K [3] (Reuse Permission by Elsevier: License Number
5066161033777); (c)-(d) dislocation channels in Mo at 50oC and dislocation rafts of loops in
Mo at 350oC [4].
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(a) (b)

(c) (d)

Figure 1.4: HCP and FCC crystal dislocation patterns under high\low temperature: (a)-(b)
super-kinks in Ti at 20oC and dislocation dipoles and debris in Ti at 150oC [5] (Reuse Per-
mission by Elsevier: License Number 5066170446909); (c)-(d) kink bands in Au at room tem-
perature and at 575oC [6] (Reuse Permission by Elsevier: License Number 5066170725766).
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first give a introduction to mesh-related concepts and methods, including the Dual Lattice
Process Zone (DLPZ) model, creating dual lattice tessellation of BCC crystal structures
intuitively and basic theory of discrete exterior calculus and algebraic topology applied on
creating super dual lattices of BCC crystals quantitatively.
In Chapter 3, the notion of Geometrically Compatible Dislocation Patterm (GCDP) is put
forth based on lots of experimental observations of crystalline materials. The introduction of
notion GCDP gives physical explanation to the observation that under the same loading and
boundary conditions similar crystalline materials usually have similar dislocation pattern at
the initial plastic deformation. So that it shows that the super dual lattice tessellation of
crystalline materials is physics-informed Finite Element mesh method.
In Chapter 4, we discussed a particular finite temperature atomistic-informed multiscale con-
stitutive model for a single crystal. Introducing Helmholtz free energy and employing local
quasi-harmonic model can effectively couple thermally-induced energy and mechanically-
induced energy in constitutive equation. And to realize hierarchical process zone activation
during plasticity, the corresponding temperature-dependent higher-order Cauchy-Born rule
in different order process zone elements is discussed.
Based on Finite Element mesh and corresponding constitutive relations in different elements,
Chapter 5 mainly focused on the implementation of Finite Element formulation of MCDD
method as a continuum method in computer. Besides, five quadratic serendipity elemen-
t types (including quadratic hexagonal prism element and quadratic truncated octahedron
element) are introduced to MCDD model and more obvious nonlinear higher order Cauchy-
Born rule effects are displayed in a compression benchmark test.
In Chapter 6, we present some MCDD numerical simulation results, and compare them with
the corresponding Molecular Dynamics (MD) simulation results. First, a uniaxial tension
and a pure shear are conducted to validate the MCDD model by comparing with the results
of Molecule Dynamics. Then to show MCDD is a first-principle based method rather than
phenomenological one, predicting the violation of Schmid law, i.e. non-Schmid law, is nec-
essary. Therefore, a benchmark test of the orientation effects of α-Ta crystal at grain scale
and a benchmark test of non-Schmid effect are conducted. Thirdly, a preliminary study
on size-effect of mesoscale crystal plasticity of MCDD simulation is conducted. Last, it is
well-known that Body-centered Cubic (BCC) single crystal shows very strong temperature-
dependent effect on crystal plasticity so that the last numerical example is to show very
different dislocation substructures appearing under low temperature and high temperature.
Finally, we comment the progress of this research, discuss some remaining issues, and con-
clude the study in Chapter 7.
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Chapter 2

Crystal Lattice-informed Finite
Element Mesh of MCDD Model

One of characteristics of MCDD method is physically mesh-dependency. “Physically” in-
dicates Finite Element mesh of MCDD model is not only numerically meaningful but also
physics-informed. This Chapter will introduce the related concepts and meshing method
including the concept of Dual Lattice Process Zone (DLPZ), dual lattice tessellation of
Body-centered Cubic (BCC) crystal and discrete exterior calculus and algebraic topology
applied on creating super dual lattice of BCC crystals quantitatively.

2.1 Overview of Dual Lattice Process Zone

It is commonly to use lower dimensional objects to describe and model the defects and
their evolution in crystalline materials. For example, in [36], the discrete static mechanics of
crystal lattice is proposed to model defects in crystalline solids and those geometrical objects
are lower dimensional: vertex is usually used to model void(0-cell) which is 0-dimensional;
line segment is usually used to model dislocation line(1-cell) which is 1-dimensional and
surface(2-cell) is usually used to model slip plane which is 2-dimensional. The similar defects
modeling can be found in [42]. On the contrary, there are drawbacks preexisting in the lower
dimensional idealization or modeling of defects, because it is just a geometrical simplification
rather than the physical reality of defect mechanics. From the physics point of view, we all
know that the dislocation has very complex three-dimensional structure, especially for its
core structures, e.g.[43] and by using a single point to represent the real three-dimensional
defects will lead to structural and physical information loss of defects and cause failure of
predicting behaviors of defects. From the mathematical perspective, its existence requires
justification. But for the simplification, lower dimension object without scales prevents itself
from being related to defects in crystalline solids. To solve the physical and mathematical
dilemma and offering a new model that can fully reserve the physical information of defects
in crystalline matters and have complete mathematical justification, we proposed a three-
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dimensional geometrical model to simulate the defects. And this model is called as dual
lattice process zone (DLPZ) model from following series publications [44][45][46][47].

2.2 Concepts and Construction Steps of DLPZ Model

The most natural thought to model the spatial distribution of atoms is to take each atom
location as a geometrical vertex and consider the atom bonds connecting atoms as the
geometrical edges. Therefore, the corresponding crystal structures will have space rather
than vertex, line or surface. For example, the atoms sit at the locations of vertices of
lattice structures in Face-centered Cubic (FCC), Body-centered Cubic (BCC) and Hexagonal
Close-pack (HCP) lattice. In addition to the method above, there is another description for
crystal lattice structures in crystallographic in which the vertex is no longer at the atom
site (as shown in Fig.2.1(a)). It is found that the centre position of Voronoi cell happens
to be consistent with crystal atoms’ positions and therefore the new partition (dual-lattice
partition) is termed as Voronoi-Dirichlet tessellation due to the Voronoi cell. The convex
Voronoi cell is called as Voronoi-Dirichlet Polyhedron (VDP). The union of all VDPs also
partition the whole two-dimensional or three dimensional space.
Fig.2.2 shows the complete steps to have dual lattice process zone tessellation:
(1) Based on crystal lattices of whole atoms in 2D or 3D space, we can have corresponding
dual lattice as shown in Fig.2.1(a);
(2) Then we shall scale the VDPs down (i.e. blue hexagon in Fig.2.2), put them at atom
positions (i.e. black circle in Fig.2.2) and term it as the highest order process zone element.
(3) It is found that the whole two-dimensional or three-dimensional space cannot be covered
by the scaled VDP. Therefore, corresponding different shape of elements are used to fill in
the gaps among scaled VDPs, such as green quadrilateral element representing the 1st-order
process zone and yellow triangular element representing 0th-order process zone in Fig.2.2.
This process is termed as dual lattice process zone tessellation. After completing the dual
lattice process zone tessellation of a unit crystal lattice, we have a corresponding unit cell of
dual lattice process zone model as shown in Fig.2.1(b).
Actually, the lattice tessellation is not a new notion. There are huge amounts of literature
in the past mathematical study. But here we prefer to use a computational method rather
than from mathematical view to describe the geometric topology of lattice tessellation. We
will propose our own description method of three-dimensional defects based on the algebraic
and differential topology in next section.

2.3 Dual Lattice Tessellation on BCC Crystals

In this section, we are applying the dual lattice process zone tessellation on three-dimensional
crystalline solids and prove that the three-dimensional space occupied by Body-centered
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(a) (b)

Figure 2.1: (a) Illustrations of crystal lattice and dual lattice; (b) unit cell of dual lattice
process zone model.

Figure 2.2: The illustrative process zone tessellation: (1) Yellow region: the 0th-order process
zone; (2) Green region: the 1st-order process zone, and (3) Blue region: the 2nd-order process
zone.
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(a) (b) (c)

Figure 2.3: Slip planes: (a) {111} slip plane in Face-centered Cubic crystal; (b) {110} slip
plane in Body-centered Cubic crystal; (c) {0001} slip plane in Hexagonal Closed-packed
crystal.

Cubic (BCC) crystal can be completely partitioned by the method of dual lattice process
zone tessellation.

2.3.1 Dual-lattice process zone tessellation on BCC Crystals

Linking two adjacent atoms together and the corresponding line segment will form so that
the line segment will be equally divided into two segments through a plane normally placed
at the midpoint of the line segment, we can have the corresponding Voronoi-Dirichelt Poly-
hedron (VDP) for the specific crystal lattice structure. The key point is how to choose
the representative atoms in crystal lattice because considering different number of atom
shells as representative atoms in crystal lattice will have different VDPs and accordingly to
have different dual-lattice process zone tessellation. For BCC crystals, the first two nearest
atom shells are chosen as the representative atoms including 8 atoms in the first shell and 6
atoms in the second shell. The reason why first two atom shells are chosen is BCC crystal
does NOT have the most close-packed plane. It is different from FCC crystal whose most
close-packed plane is {111}. The secondary most-packed plane of BCC crystal is {110} (see
Fig.2.3). Therefore, we have the corresponding VDP that is a truncated octahedron, which
is referred as the unit cell of dual lattice tessellation in BCC crystal structure as shown in
Fig.2.4(b). Different from dual-lattice tessellation, the BCC unit cell in crystal lattice is a
rhombic dodecahedron as shown in Fig.2.4(a).
Now we can give detailed illustration on construction of a three-dimensional BCC dual-lattice
process zone tessellation. First of all, a special VDP constructed is based on the selective
representative atoms. The combination of VDPs and other lower order polyhedra elements
will cover the whole crystal lattice space. It is valid for dual-lattice and super dual-lattice
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(a) (b)

Figure 2.4: (a) unit cell of BCC crystal lattice; (b) unit cell of BCC dual-lattice.

when super VDP is used. And then the VDP is labelled as the highest order process zone
element in the rest of the dissertation.
The worthy noting is the difference between Voronoi-Dirichlet partition and the dual-lattice
process zone tessellation. The dual-lattice process zone tessellation is the result of scaling the
Voronoi-Dirichlet Polyhedron down and connecting the nearby VDPs by using lower order
process zone elements like bulk element(0th-order process zone element), wedge element(1st-
order process zone element) and prism element(2nd-order process zone element). Therefore,
if it is Voronoi-Dirichlet partition, none of lower order process zones exists since they de-
generate, in other words, they are not three-dimensional objects any more. To avoid the
unexpected degeneration, the gaps among VDPs by scaling them down becomes necessary.
Based on the specialties of truncated octahedron as the VDP of BCC crystal structure, 14
facets of the highest order process zone element (truncated octahedron element) denote 14
prism elements needed to fill in the gaps of facet-to-facet of truncated octahedron elements
(Fig.2.5) and 36 edges of truncated octahedron element denote 36 wedge elements needed
to fill in the gaps of edge-to-edge of truncated octahedron elements (see Fig.2.6(a)-(f)), and
24 vertices of truncated octahedron denote 24 bulk elements needed to fill in the gaps of
vertex-to-vertex of truncated octahedron elements (see Fig.2.6(g)-(l)).
Therefore, we can summarize that for a dual lattice tessellation unit cell of Body-centered
Cubic crystal, firstly there are 15 truncated octahedron elements (one locates at centre of
the dual lattice structure and other 14 represent the nearest two atom shells locations);
secondly a truncated octahedron element has totally 14 facets including 8 hexagons and 6
squares therefore corresponding 3D prism elements are needed; thirdly 36 wedge elements
(see Fig.2.6(a)-(f)) and 24 bulk elements (see Fig.2.6(g)-(l)) will cover the remained void
space.
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(a) (b)

Figure 2.5: (a) upper seven prism elements (second-order process zones); (b) lower seven
prism elements.

The vertex-to-vertex between truncated octahedron element and prism element, the edge-to-
edge between truncated octahedron element and wedge element, the facet-to-facet between
truncated octahedron element and prism element are shown in Fig.2.7.

2.3.2 Discrete exterior calculus on BCC Crystals

2.3.2.1 Polytopal complexes of a crystal lattice

In this work, we adopt the notation and nomenclature of algebraic topology and discrete
exterior calculus e.g. [48][49], to describe dual-lattice process zones. It may be noted that
Ariza and Ortiz [36] also applied algebraic topology and exterior calculus to describe 3D
crystal lattice and to study dislocation statics. They used some elements with simple geo-
metric shapes to describe the structure of crystal lattice, such as atoms and atom bonds.
Those objects including points, lines, faces and volumes are respectively represented as sim-
plex p-cells, where p is the dimension of a cell. By using the concept as well as notation of
p-cell, one may be able to define geometric objects arising from the mechanics of lattices,
i.e. displacement field, dislocation density distribution, etc.
Since the present work is about dislocation patterns dynamics, we cannot use simplicial
complex p-cell to describe discrete dislocation pattern units. However, the theory of algebraic
topology and exterior differential calculus can still be applied to describe dislocation pattern
dynamics in terms of p-cell of CW complexes. Based on [34], we cited following definitions
and operators:
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.6: Components of BCC dual lattice tessellation unit cell: (a) six wedge element
sets and each set has six wedge elements ((a)-(f)); and six bulk element sets and each set
has four bulk elements ((g)-(l)).
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(a) (b) (c)

Figure 2.7: Detailed connections of 3rd-order process zone in BCC crystals with: (a) 2nd-
order process zone (prism element); (b) 1st-order process zone (wedge element); (c) 0th-order
process zone (bulk element).

Definition 2.1. The k-simplex is defined as a convex hull of k + 1 vertices

σk =

{
x ∈ Rn|x =

k∑
i=0

µivi, with µi > 0 and
k∑
i=0

µi = 1

}
(2.1)

in which, a set of k+ 1 linearly independent points, {v0, v1, · · · , vk} ∈ Rn, n > k, are termed
as vertices. The face is defined as the sub-element of a simplex σk. For example, a tetra-
hedron consists of four triangle surfaces and it is denoted that a triangle is the sub-element
of a tetrahedron. The tetrahedron is a three-dimensional object so that it can be defined as
3-simplex and correspondingly the triangle is defined as 2-simplex. Besides, from the per-
spective of simplicial complex theory, “facet” and “face” are two different concepts. “facet”
denotes as the sub-element that is only one level lower than simplex σk, for example, a tri-
angle is a facet of a tetrahedron since a triangle is 2-simplex and a tetrahedron is 3-simplex.
“face” denotes as all sub-elements of a simplex σk, for example, points, line segments and
triangles are all included as faces of a tetrahedron because all those sub-elements are com-
bined to form a tetrahedron. Therefore, it is concluded that “facet” is belong to “face”. As
shown in Fig.2.8([7]), 0-simplex is a point, 1-simplex is a line segment, 2-simplex is triangle
and 3-simplex is tetrahedron. The detailed faces numbers are shown in table.2.1.

In current dissertation, it is very natural to generalize the concept of Simplicial Complex to
Polytopal Complex since any a polytopal complex can be triangulated as several simplicial
complex. In other words, the polytopal complex contains the simplicial complex.
In the following, two important topology operators are defined [34].
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Figure 2.8: Illustrative example of simplexes([7])

Table 2.1: The number of faces in simplexes

Name
0-faces 1-faces 2-faces 3-faces

(vertices) (edges) (surfaces) (volumes)

0-simplex (point) 1 N.A. N.A. N.A.

1-simplex (line segment) 2 1 N.A. N.A.

2-simplex (triangle) 3 3 1 N.A.

3-simplex (volume) 4 6 4 1

Definition 2.2. The boundary operator for k-simplex is defined as:

∂kσ
k = ∂k([v0, v1, · · · , vk]) =

k∑
i=0

(−1)i [v0, · · · , v̂i, · · · , vk] (2.2)

in which, σk = [v0, · · · , vk] is a k-simplex, and [v0, · · · , v̂i, · · · , vk] is a corresponding face of
σk.
Accordingly, such a boundary of the σk is

∂kσ
k =

∑
σk−1≺σk

±σk−1 (2.3)

in which the + or − is determined by consistency of orientations of σk−1 and σk.
Furthermore, the coboundary of a simplex σk is given:

δkσk =
∑

σk+1�σk

±σk+1 (2.4)

in which the + or − is determined by consistency of orientations of σk and σk+1.
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2.3.2.2 Discrete crystal defect model for BCC crystals

Since two main algebraic topology operators are introduced, a new super dual-lattice tessel-
lation mesh for BCC crystals is proposed and it is used in local-to-global nodes numbering
mapping of a multiscale process zone model.
A super dual-lattice tessellation for a Body-centered Cubic (BCC) crystal lattice will be
discussed in the following. The first step is to introduce lattice basis vectors in BCC crystal
lattice as shown in Fig.2.9(a),
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(
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Secondly, to create a “super” lattice (see Fig.2.9(c)) whose size is proportional to the size of
a regular crystal lattice, a coefficient β1 is introduced to change basis vectors,

bi = β1ai, i = 1, 2, 3 β1 > 1

Thirdly, the dual lattice of Body-centered Cubic crystal is chosen as a frame of super lattice
sites and accordingly the coordinate of each vertex is,
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)
and the scaled Voronoi-Dirichlet Polyhedron (VDP) cell of BCC crystals (see Fig.2.9(b)) is
placed at each super lattice site. The scalability of VDP cell is described as ri = β2εi, β2 >
0. The location of each vertex in the super lattice can be labelled as l ± εi, i = 1, 2, · · · , 7,
as shown in Fig.2.9(c) in which

ε1 = (−1, 1, 1) , ε2 = (1,−1, 1) , ε3 = (1, 1,−1) , ε4 = (1, 1, 1)

ε5 = (1, 0, 0) , ε6 = (0, 1, 0) , ε7 = (0, 0, 1)

Summarily, the coordinate of each vertex in BCC super dual lattice mesh is denoted as

x(l) = ljb, and x(l, εi) = ljb+ ri, i = 1, 2, · · · , 24

in which, lj denotes l ± εj and b = (b1, b2, b3).
Generally speaking, each scaled VDP cell will locate at each lattice site of Body-centered
Cubic crystal super lattice. The gaps or remained spaces among them can be filled by other
3D polytopal complexes without overlapping. The way of combining different polytopal
complexes is through surface-to-surface (prism cell and truncated octahedron cell), edge-to-
edge (wedge cell and truncated octahedron cell) and vertex-to-vertex (bulk cell and truncated
octahedron cell) connection.
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(a) (b) (c)

Figure 2.9: Exterior calculus on super dual-lattice complex: (a) Body-centered Cubic crystal
lattice basis; (b) the scaled Voronoi-Dirichlet Polyhedral (truncated octahedron) cell at lat-
tice site l; (c) neighboring scaled VDPs position numbering in a super dual-lattice tessellation
unit cell.

To make the statements consistent in the dissertation, a unified symbol to describe the rela-
tions among different 3D polytopal complexes is necessary. Therefore, the symbol τ ij(l(`),m)
is introduced. i represents the dimension of the polytopal complex discussed, i.e. i = 0 de-
notes a point, i = 1 denotes a line segment, i = 2 denotes a surface and i = 3 denotes a
volume. j represents type ID of polytopal complexes in BCC super lattice tessellation model
or order of process zone in Chapter 2, i.e. j = 0 indicates bulk cell (0th-order process zone),
j = 1 indicates wedge cell (1st-order process zone), j = 2 indicates prism cell (2nd-order
process zone) and j = 3 truncated octahedron cell (3rd-order process zone).
l represents the central lattice site of the super dual lattice and other 14 lattice sites in the
super dual lattice can be labelled as l ± ε1, l ± ε2, · · · l ± ε7. ` represents the numbering
of the polytopal complex j discussed and in different polytopal complex the range of ` is
different. For example, for prism cells there are totally 14 prism cells needed in a BCC super
dual lattice tessellation unit cell so that ` = 1, 2, · · · , 14; for wedge cells there are totally 36
wedge cells needed in a BCC super dual lattice tessellation unit cell so that ` = 1, 2, · · · , 36;
etc. m represents numbering of the sub-polytopal complex i discussed and in different sub-
polytopal complex the range of m is different. For example, for a truncated octahedron cell,
there are 14 surfaces (i = 2) so that m = 1, 2, · · · , 14, there are 36 edges (i = 1) so that
m = 1, 2, · · · , 36 and there are 24 vertices (i = 0) so that m = 1, 2, · · · , 24.
In the next we shall take τ 1

2 (l(5), 1) as an example to illustrate the application of those
labeling and those operators. As we know that in the label τ ij(l(`),m), i represents the
dimension of sub-polytopal cell and j represents the which type of polytopal cell. Therefore,
we have superscript i = 1 representing edge element, subscript j representing prism element,
l(5) representing NO.5 prism element and 1 represents the NO.1 edge in NO.5 prism element
as shown in Fig. 2.13. This labeling process is important in Finite Element Method (FEM)
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Figure 2.10: Polytopal element labeling convention

formulation and implementation because we need to use the exterior calculus symbol to
construct the connectivity array of FEM nodes that maps the local indices into global indices.
By using boundary operator of exterior calculus in Definition 2.2, we can represent lines
and faces. For example, for central scaled truncated octahedron τ 3

3 (l), we have

∂τ 1
3 (l, 1) = τ 0

3 (l, 5)− τ 0
3 (l, 1) (2.5)

∂τ 2
3 (l, 1) = τ 1

3 (l, 1) + τ 1
3 (l, 5) + τ 1

3 (l, 6) + τ 1
3 (l, 4)− τ 1

3 (l, 2)− τ 1
3 (l, 3) (2.6)

and
∂τ 3

3 (l, 1) = τ 2
3 (l, 1) + τ 2

3 (l, 2) + τ 2
3 (l, 3) + τ 2

3 (l, 4) + τ 2
3 (l, 5) + τ 2

3 (l, 6)

+ τ 2
3 (l, 7)− τ 2

3 (l, 8)− τ 2
3 (l, 9)− τ 2

3 (l, 10)

− τ 2
3 (l, 11)− τ 2

3 (l, 12)− τ 2
3 (l, 13)− τ 2

3 (l, 14)

(2.7)

which are shown in Fig.2.11.

Figure 2.11: Boundary operator illustration:from vertex to edge, from edge to surface, from
surface to volume

Similarly, we can use co-boundary operator δ to define the relations among different types
of elements. For example, for the central scaled truncated octahedron τ 3

3 (l), we have

δτ 0
3 (l, 1) = τ 1

3 (l, 7)− τ 1
3 (l, 1)− τ 1

3 (l, 2)− τ 1
2 (l(7), 1)− τ 1

2 (l(3), 2)− τ 1
2 (l(14), 3) (2.8)

δτ 1
3 (l, 1) = τ 2

3 (l, 1)− τ 2
3 (l, 7) + τ 2

2 (l(7), 1)− τ 2
2 (l(3), 2) (2.9)

δτ 2
3 (l, 1) = τ 3

3 (l)− τ 3
2 (l, 7) (2.10)

which established the links from vertex to edge, edge to surface and surface to volumes as
shown in Fig.2.12.
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Figure 2.12: Co-boundary operator illustration: from edge to vertex, from surface to edge,
from volume to surface

Furthermore, we can also apply the cell complex notation defined above to represent other
types of elements. For example, the prism element τ 3

2 (l,m),m = 1, 2, · · · , 14, (Fig.2.13(a)).
We write the exterior representation by using boundary operator as shown in Fig.2.13(b),

∂τ 1
2 (l(5), 1) = −τ 0

3 (l − ε3, 9) + τ 0
3 (l, 4) (2.11)

∂τ 1
2 (l(5), 2) = −τ 0

3 (l − ε3, 10) + τ 0
3 (l, 3) (2.12)

in which, τ 0
3 (l−εi, j) denotes it is the j-th vertex j = 1, 2, · · · , 24 of on the l+εi, i = 1, 2, · · · , 7

polytopal cell. Also we have (shown in Fig.2.13(c)-(d))

∂τ 2
2 (l(5), 1) = τ 1

2 (l(5), 1)− τ 1
2 (l(5), 2) + τ 1

3 (l, 13)− τ 1
3 (l − ε3, 5) (2.13)

∂τ 3
2 (l, 5) = τ 2

2 (l(5), 1)− τ 2
2 (l(5), 2) + τ 2

2 (l(5), 3) + τ 2
2 (l(5), 4) (2.14)

− τ 2
2 (l(5), 5)− τ 2

2 (l(5), 6)− τ 2
3 (l, 3)− τ 2

3 (l − ε3, 6)

The wedge complex cell (1st-order process zone), τ 3
1 (l,m),m = 1, 2, · · · , 36, (see Fig.2.14(a))

is discussed here. From the perspective of geometric shape, a wedge complex cell with thin
thickness is similar to slip plane in crystal plasticity theory. The geometry of the wedge
complex cell can be described by topology boundary operator. For example, from vertex to
edge (as shown in Fig.2.14(b))

∂τ 1
1 (l(1), 1) = τ 0

3 (l − ε3, 9)− τ 0
3 (l + ε2, 12) (2.15)

∂τ 1
1 (l(1), 2) = −τ 0

3 (l − ε3, 17) + τ 0
3 (l + ε2, 19) (2.16)

And from edge to surface, surface to volume (as shown in Fig.2.14(c)-(d))

∂τ 2
1 (l(1), 3) = τ 1

1 (l(1), 1)− τ 1
3 (l − ε3, 24) + τ 1

1 (l(1), 2) + τ 1
3 (l + ε2, 22) (2.17)

∂τ 3
1 (l, 1) = −τ 2

2 (l(5), 1)− τ 2
1 (l(1), 1) + τ 2

2 (l(3), 1) + τ 2
1 (l(1), 2) + τ 2

1 (l(1), 3) (2.18)
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(a) (b)

(c) (d)

Figure 2.13: Boundary operator on prism element: (a) prism cells (2nd-order process zone);
(b) from vertex to edge; (c) from edge to surface; (d) from surface to volume.
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(a) (b)

(c) (d)

Figure 2.14: Boundary operator on wedge element: (a) 1st-order process zone (wedge) ele-
ments; (b) from vertex to edge; (c) from edge to surface; (d) from surface to volume.
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The bulk complex cell is discussed. Different from other polytopal complexes, the bulk
complex cell is a tetrahedron, which is a simplicial complex. In each truncated octahe-
dron complex cell, 24 vertices correspond to 24 bulk complex cells (0th-order process zone),
i.e.τ 3

0 (l,m),m = 1, 2, · · · , 24 (see Fig.2.15(a)). The geometry of a bulk complex cell is de-
scribed by topology boundary operator. For example, from vertex to edge (as shown in
Fig.2.15(b)),

∂τ 1
0 (l(1), 1) = τ 0

3 (l + ε2, 9)− τ 0
3 (l − ε6, 10) (2.19)

∂τ 1
0 (l(1), 2) = τ 0

3 (l − ε3, 5)− τ 0
3 (l + ε2, 9) (2.20)

And from edge to surface, from surface to volume (as shown in Fig.2.15(c)-(d)),

∂τ 2
0 (l(1), 1) = τ 1

0 (l(1), 1) + τ 1
0 (l(1), 2)− τ 1

0 (l(1), 3) (2.21)

∂τ 3
0 (l, 1) = τ 2

0 (l(1), 1) + τ 2
0 (l(1), 2)− τ 2

0 (l(1), 3)− τ 2
0 (l(1), 4) (2.22)
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(a) (b)

(c) (d)

Figure 2.15: Boundary operator on bulk element: (a) 0th-order process zone (bulk) elements;
(b) from vertex to edge; (c) from edge to surface; (d) from surface to volume.
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Chapter 3

Physics-based Topological
Decomposition of Crystal Dislocation
Pattern

When crystalline materials deform, statistical dislocations have the tendency to converge to
some specific regions so that some regions are rich in dislocations while other regions are not.
These two kinds of regions are sandwiched together. Nowadays, it is commonly believed that
those dislocation-rich regions are responsible for almost crystal plasticity characteristics, for
example, work hardening, strain location, etc. A new novel of the Geometrically Compatible
Dislocation Pattern (GCDP) has been proposed [35][39], and in this Chapter it is further
illustrated that the dual-lattice process zone tessellation mesh discussed in Chapter 2 has a
very solid physics-informed link to original crystal lattice. Therefore, it is concluded that
the new notion GCDP strongly dependent on original crystal lattice will dominate in plastic
deformation of crystals at early stage.

3.1 Experimental Observation and Researches on

Aggregated Dislocations

In discrete dislocation dynamics (DD), the smallest unit of dislocation dynamics is the dis-
location segment [50]. Different from dislocation dynamics, the smallest unit of dislocation
pattern dynamics is discrete dislocation pattern.
It is commonly believed that individual dislocation in deformed crystalline solids can be cate-
gorized as two classes: one is Statistically-stored Dislocations (SSD), another is Geometrically-
necessary Dislocations (GND). The first quantitative computation method of Geometrically-
necessary Dislocations (GND) has been proposed by Nye [51], in which a formulation combin-
ing effective plastic strain gradient and burgers vector to compute Geometrically-necessary
Dislocation density is proposed. Later on, Ashby successfully introduce notion of GNDs into
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flow stress in crystalline solids [52]. Based on these two pioneering’s work, many scholars
(e.g. [53] and [54]) have made contributions to link the GNDs to plastic strain gradients.
For Statically-stored Dislocations (SSD), they evolve from stochastic process and randomly
aggregate into a specific field in crystalline solids when plastic deformation proceeds [38][55].
The Statistically-stored Dislocations usually converge into such pattern that rich disloca-
tions regions sandwiched with low dislocation regions. And the boundary between rich/low
dislocations regions and corresponding networks play a significant role in dislocation pat-
terns formation. The geometries of those dislocation boundary networks include walls, veins,
labyrinth and bands. The related studies on such networks can date back to early 1990s: two
clear notions of dislocation boundary networks were given as geometrically necessary bound-
aries and incidental dislocation boundaries by Kuhlman-Wilsdorf [37]. Arsenilis[38] found
that not only Geometrically-necessary Dislocations existing within the geometrically neces-
sary dislocation boundary, but also Statistically-stored Dislocations existing within it. To
distinguish it from those dislocation boundaries only having GNDs, geometrically allowable
dislocation has been proposed.
It is noteworthy that Nye tensor alone cannot accurately quantify dislocations within the
dislocation patterns consisting of GNDs and SSDs. Therefore, a dislocation pattern model
will be proposed to compensate the incompleteness.
To develop dislocation pattern model, we first need to know how is the dislocation pattern
formed initially.1 Based on the experimental findings (Fig.3.1), e.g. [56], the authors found
that,· · · · · · planar slip mode was found to be dominating in this low stacking fault energy
(SFE) steel under the small strain amplitudes · · · · · · The interaction of different slip systems
forms junctions, which assist the formation of dislocation dipoles and later on trigger the
formation of dislocation walls. These walls consist of primary faulted dipoles in their interior
and pile-ups of dissociated dislocations of opposite signs on their two sides. It was found that
the dislocations in the walls belong to two major, collinear slip systems.
In [57], the same authors observed that dislocation loops with opposite Burgers vectors are
formed on the intersecting slip systems with a collinear relationship. · · · · · · When dislocation
from the two slip systems simultaneously reach the intersection lines, the screw parts with
opposite Burgers vectors will be annihilated. · · · · · · These edge dislocation segments on
intersecting planes are connected by nodes which are junctions of zero Burgers vector.
In [58], authors specifically discussed those dislocation dipole junctions: The formation of
persistent slip band (PSB) ladders depends on the width of extended dislocation and trap
distance of dipole. When the actual capture distance dtrap is less than the critical capture
distance dcritical, a group of relatively stable multiples are obtained from many dipole segments,
followed by the formation of the veins and PSB-ladder structure.
These and other experimental observations indicate that the formation of dislocation pattern
has to be geometrically compatible. We believe that the geometric compatibleness of dislo-
cation patterns is a determining factor for the early formation of dislocation microstructure
or substructures, or the deformation structures. To illustrate this point, we slightly rephrase

1In the dissertation, we only consider the initial formation of dislocation patterns.
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(a) (b)

(c) (d)

Figure 3.1: Dislocation pattern formation: (a) plasticity in Silver[8] (Reuse permission by
Elsevier: License Number 5063710958535); (b) plasticity in Nickel[9] (Reuse permission by
Elsevier: License Number 5063711405070); (c)-(d) plasticity in Tungsten (9% rhenium) at
1% and 2% strain[10].
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the above experimental observations: At the very beginning stage of the dislocation mul-
tiplication, a statistical number of parallel slips have pre-existed in different slip systems
along different atomic planes, and then a bulk-shaped junction (see Fig.3.2) will form at the
intersection of slips. From the energetic perspective, retaining geometric compatibility with
the local crystal structure in order to maintain deformation structure integrity is a necessity
for a deformed or defected crystal, the so-called dislocation networks are formed. We call
such network as Geometrically Compatible Dislocation Pattern (GCDP) (see Fig.3.2(c)).

(a) (b) (c)

Figure 3.2: The 2D projection of geometrically-compatible dislocation pattern: (a) single
dislocation of various slip systems; (b) a bulk-shaped intersection by slips convergence, and
(c) a 2D projection of geometrically-compatible dislocation pattern.

3.2 Geometrically Compatible Dislocation Pattern on

BCC Crystals

Now we want to extend the above Geometrically Compatible Dislocation Pattern arguments
to three-dimensional BCC crystals. Since we know that Body-centered Cubic (BCC) crys-
tal structure is not the close-packed structure, the most likely slip plane should be {110},
which is the secondary most packed plane. Based on the dislocation pattern structure in the
{110} plane of BCC crystals as shown in Fig.3.3(a), we can recover its three-dimensional
geometric structure as shown in Fig.3.3(b)-(c). It may be noted that Fig.3.3(c) is no longer
a BCC lattice, and it is a super dual lattice of BCC crystal, and we may call it as the
dual lattice process zone tessellation of BCC structure. We think it contains all possible
three-dimensional dislocation microstructure and substructures at the early stage. During a
actual loading event, for a specific BCC crystal, and under a given temperature, a particular
dislocation substructure or deformation structure will appear naturally. Any of those pos-
sible dislocation microstructure is called the Geometrically Compatible Dislocation Pattern,
because they partition the entire crystal space with a compatible mesh without overlaps,
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holes and penetration. It should be noted that firstly the super dual lattice or dual lattice
process zone mesh contains all possible kinematically compatible dislocation patterns, and at
an actual load event there is only particular dislocation pattern will appear. This situation
is rather like the Cohesive Zone Model (CZM) Finite Element mesh, and thus why we coin
the name of Dual Lattice Process Zone mesh.
The process from 2D to 3D, we can find that 2D hexagonal or honeycomb element is actually
the projection of a polyhedron cell that has exactly the shape of the Wigner-Seitz cell of
BCC crystals, which is the truncated octahedron element as shown in Fig.3.3.
Therefore, to identify the generic dislocation pattern for BCC crystals or construct du-
al lattice process zone mesh, we can firstly start from constructing the Voronoi-Dirichlet
Polyhedron (VDP) cells at given representative atom positions based on the required reso-
lution, and the Voronoi-Dirichlet Polyhedron (VDP) cells that have the shape resemble to
the Wigner-Seitz cell of BCC crystals

(a)
(b) (c)

Figure 3.3: How to extend a BCC (110) plane dislocation pattern into a 3D dislocation
pattern network or dual lattice tessellation.

Remark 3.1. The combination of these four different elements captures all kinematics pos-
sibilities of how a dislocation pattern can be found. As one may see from Fig.2.12 or Fig.2.13
that the prism elements will form dislocation pattern network that resembles dislocation lines
in a perfect BCC crystal. From Fig.2.6(a)-(f), one may find that all the triangle plate shape
elements can form all possible finite thickness slip “plates” that resemble the original slip
planes in BCC crystals. The only reason that the plate is no longer a plane is because that
we are dealing with the aggregated slip plane movement but not a single slip plane or disloca-
tion line. One can clearly see the geometric connection between super dual lattice mesh with
the original crystal structure, but they are not the same. In the original crystal lattice, the
defect can be only one dislocation, and by using the dual lattice process zone mesh, we can
deal with a set of aggregate dislocations, slip planes and dislocation lines. Most importantly,
from Fig.2.11 and Fig.2.12, one can see that the truncated octahedron element serves as the
“junction” for dislocation vein structure, i.e. mutually interconnected bands or plates. This
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has some resemblances to the dislocation junction in dislocation dynamics, but not exactly
the same. Because the dislocation pattern junction for a given crystal lattice has specific
geometric shape, which reflects how dislocation veins interact with each other. In MCDD
dislocation pattern dynamics, we essentially assume that the aggregated dislocation dipole
junction has a specific shape that is determined by the original crystal lattice structure. This
is a fundamental contribution to dislocation dynamics from the present work.
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Chapter 4

A Temperature-dependent
Atomistic-informed Strain Gradient
Model

The crystal plasticity in Body-centered Cubic (BCC) crystals has two strong peculiarities: (1)
the thermally-activated screw dislocation glide, which leads to temperature-induced Peierls-
stress and yield stress decreases, and (2) the non-Schmid effect, i.e. a strong deviation from
the Schmid law, i.e. the geometric relation between the resolved critical shear stress (RCSS)
and the applied stress [59].
In this dissertation, we attempt to model the both effects from a first principle-based mul-
tiscale approach without empiricism or with less empiricism. For these purposes, we have
developed a finite temperature multiscale higher order strain gradient theory. The basic kine-
matic assumption of multiscale higher order strain gradient theory, i.e. MCDD model, is: the
bulk elements only undergo homogeneous uniform deformation, while nonlinear deformation
is confined within higher order process zone elements in a hierarchical way. These so-called
higher order process zone elements are distinct units of discrete dislocation patterns. We use
an atomistic-informed continuum theory to model these dislocation pattern units, because
they are not a single dislocation, but continuum media with dislocation density distribution.
In this section, the temperature-related higher order strain gradient constitutive relation of
α-phase Tantalum, which is a BCC crystal, is determined by using the Embedded-Atom
Method (EAM) and higher-order Cauchy-Born rule approach.

4.1 Embedded-atom Potentials with Finite

Temperature for BCC Crystals

The embedded-atom potential is an atomistic potential model for metals in molecular dy-
namics, which takes into account interactions between atom nucleus as well as electron
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density contribution. The EAM method has been extensively used in molecular dynamics
for metallic materials.
Based on general formulation of EAM [60] [61], the EAM potential could be written as:

Etot =
1

2

∑
ij

φ(rij) +
∑
i

F (ρ̄i), i, j = 1, 2, ...nb (4.1)

in which, φ(rij) is the nucleus pair interaction energy, F is the electron embedding energy,
and rij = |rj − ri| is the distance between atom i and atom j. Since in present work we are
modeling and simulating crystal plasticity in α-phase Tantalum, which is a BCC crystalline
material.
When we calculate the finite-temperature and free energy of atomic structure[62], the Helmholtz
free energy is the one to be considered:

FH = Etot + kBT
N∑
i=1

3∑
k=1

ln

[
2 sinh

(
hwik

4πkBT

)]
(4.2)

where N is the number of atoms in per unit cell, h is Planck constant, T is temperature,
kB is the Boltzmann constant and wik are the three vibrational frequencies of atom i, for
k = 1, 2, 3.
In current work, we employed local quasi-harmonic model to compute the Helmholtz free en-
ergy, and we assumed the temperature is far below the melting temperature and thus atomic
modes can be decoupled. Therefore, we have following approximation of the Helmholtz free
energy,

FH = Etot + kBT
N∑
i=1

3∑
k=1

ln

[
2 sinh

(
~wik
2kBT

)]
≈ Etot + kBT

N∑
i=1

3∑
k=1

ln

[
~wik
kBT

]

= Etot + kBT
N∑
i=1

3 ln

(
~(wi1wi2wi3)1/3

kBT

)
= Etot + kBT

N∑
i=1

3 ln

(
~D̄i

1/6

kBT

) (4.3)

where ~ = h/2π, D̄i = (wi1wi2wi3)2. Due to the fact that we only have one atom in the
centre of unit cell for Bravais lattice, therefore we can have following simplified Helmholtz
free energy as below:

FH =
1

2

∑
j

φ(rj) + F (ρ̄) + kBT3 ln

(
~D̄1/6

kBT

)
, j = 1, 2, ...nb (4.4)

Based on the Helmholtz free energy formulation and stress-work conjugate relation, we can
split the fourth-order elastic tensor into two parts:

C =
∂2

∂E ⊗ ∂E

(
FH
Ωu

0

)
= Cm +Ct =

∂2

∂E ⊗ ∂E

(
Etot
Ωu

0

)
+

∂2

∂E ⊗ ∂E

(
3kBT

Ωu
0

ln
~D̄1/6

kBT

)
(4.5)
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in which, Cm is shown as below:

Cm =
∂2

∂E ⊗ ∂E

(
Etot
Ωu

0

) ∣∣∣
E=0

=
1

Ωu
0

{∑
j

[
1

2
(φ′′ − 1

rj
φ′) + F ′(ρ̄)(

∂2ρ

∂r2
− 1

rj

∂ρ

∂r
)

]
× Rj ⊗Rj ⊗Rj ⊗Rj

r2
j

+ F ′′(ρ̄)(
∑
j

∂ρ

∂r

Rj ⊗Rj

rj
)⊗ (

∑
j

∂ρ

∂r

Rj ⊗Rj

rj
)

}
. (4.6)

and Ct can be expressed as,

Ct =
∂2

∂EIJEKL

(
3kBT

Ωu
0

ln
~D̄1/6

kBT

)
= F−1

In

∂2

∂FnJ∂FmK

(
3kBT

Ωu
0

ln
~D̄1/6

kBT

)
F−1
Lm

− F−1
In F

−1
Km

∂

∂FmJ

(
3kBT

Ωu
0

ln
~D̄1/6

kBT

)
F−1
Ln (4.7)

In Eq.(4.7),

Ct1 = F−1
In

∂2

∂FnJ ⊗ ∂FmK

(
3kBT

Ωu
0

ln
~D̄1/6

kBT

)
F−1
Lm

= F−1
In

kBT

2Ωu
0

(
1

D̄

∂2D̄

∂FnJ ⊗ ∂FmK
− 1

D̄2

∂D̄

∂FnJ
⊗ ∂D̄

∂FmK

)
F−1
Lm

(4.8)

Ct2 = −F−1
In F

−1
Km

∂

∂FmJ

(
3kBT

Ωu
0

ln
~D̄1/6

kBT

)
F−1
Ln = −F−1

In F
−1
Km

kBT

2Ωu
0

1

D̄

∂D̄

∂FmJ
F−1
Ln . (4.9)

Concentrating on the principle vibration modes, we ignore off-diagonal elements in ∂2Wc

∂r0⊗r0
and therefore D̄ = D11D22D33, Dkk is the diagonal element in matrix ∂2Wc

∂r0⊗r0 , which is shown
below:

∂2Wc

∂r0 ⊗ ∂r0

=
1

Ωu
0

{
F ′′(ρ̄)

∑
j

[
ρ′(rj)

r0 − rj
rj

]
⊗
∑
j

[
ρ′(rj)

r0 − rj
rj

]
+ F ′

∑
j

[(
ρ′′(rj)−

ρ′(rj)

rj

)
r0 − rj
rj

⊗ r0 − rj
rj

+
ρ′(rj)

rj
1

]
(4.10)

+
1

2

∑
j

[(
φ′′(rj)−

φ′(rj)

rj

)
r0 − rj
rj

⊗ r0 − rj
rj

+
φ′(rj)

rj
1

]}
(4.11)
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in which, r0 is central atom coordinate in the unit cell, rj is neighbor atom coordinate in

the unit cell. Therefore, we expand ∂D̄
∂F

as followed,

∂D̄

∂F
=
∂D11

∂F
D22D33 +D11

∂D22

∂F
D33 +D11D22

∂D33

∂F
(4.12)

and ∂Dkk

∂F
is shown as below:

∂Dkk

∂F
=

1

Ωu
0

{
∂F ′′(ρ̄)

∂F

∑
j

[
ρ′(rj)

rjk
rj

]
·
∑
j

[
ρ′(rj)

rjk
rj

]
+ 2F ′′(ρ̄)

∑
j

[
∂

∂F

(
ρ′(rj)

rjk
rj

)]
·
∑
j

[
ρ′(rj)

rjk
rj

]

+
∂F ′(ρ̄)

∂F

∑
j
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ρ′′(rj)−

ρ′(rj)

rj

)r2
jk

r2
j

+
ρ′(rj)

rj

]

+ F ′(ρ̄)
∑
j

[
∂
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(
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)r2
jk
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j

+
(
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ρ′(rj)
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)
2
rjk
rj

∂

∂F

(rjk
rj

)
+

∂

∂F

(ρ′(rj)
rj
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+
1

2

∑
j

[
∂

∂F

(
φ′′(rj)−

φ′(rj)

rj

)r2
jk

r2
j

+
(
φ′′(rj)−

φ′(rj)

rj

)
2
rjk
rj

∂

∂F

(rjk
rj

)
+

∂

∂F

(φ′(rj)
rj

)]}
(4.13)

The second order gradients of D̄ and Dkk with respect to the deformation gradient F are
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given as follows,

∂2D̄2

∂F ⊗ ∂F
=

∂2D11

∂F ⊗ ∂F
D22D33 +

∂D11

∂F
⊗ ∂D22

∂F
D33 +

∂D11

∂F
⊗ ∂D33

∂F
D22

+
∂D22

∂F
⊗ ∂D11

∂F
D33 +D11

∂2D22

∂F ⊗ ∂F
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+
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D22D11 (4.14)

∂2Dkk

∂F ⊗ ∂F
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[
∂2
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(
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rjk
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ρ′(rj)

rjk
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]
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[
∂

∂F

(
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rjk
rj
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∂

∂F

(
ρ′(rj)

rjk
rj
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+
∂2F ′(ρ̄)

∂F ∂F
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j

[(
ρ′′(rj)−

ρ′(rj)

rj

)r2
jk

r2
j

+
ρ′(rj)

rj

]

+
∂F ′(ρ̄)

∂F
⊗
∑
j

[
∂

∂F

(
ρ′′(rj)−

ρ′(rj)

rj

)r2
jk

r2
j

+
(
ρ′′(rj)−

ρ′(rj)

rj

)
2
rjk
rj

∂

∂F

(rjk
rj

)
+

∂

∂F

(ρ′(rj)
rj
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+

∑
j

[(
ρ′′′(rj)−

ρ′′(rj)

rj
+
ρ′(rj)

r2
j

)r2
jk

r2
j

rj ⊗Rj

rj

+ 2
rjk
rj

(
ρ′′(rj)−

ρ′(rj)

rj

)( 1

rj

∂rjk
∂F
− rjk

rj ⊗Rj

r3
j

)
+

(ρ′′(rj)
rj
− ρ′(rj)

r2
j

)rj ⊗Rj

rj

]
⊗ ∂F ′(ρ̄)

∂F
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+ F ′(ρ̄)
∑
j

[
rj ⊗Rj

rj
⊗ ∂

∂F

(
ρ′′′(rj)−

ρ′′(rj)

rj
+
ρ′(rj)

r2
j

)r2
jk

r2
j

+
(
ρ′′′(rj)−

ρ′′(rj)

rj
+
ρ′(rj)

r2
j

) ∂

∂F

(rj ⊗Rj

rj

)r2
jk

r2
j

+
(
ρ′′′(rj)−

ρ′′(rj)

rj
+
ρ′(rj)

r2
j

)rj ⊗Rj

rj
⊗ ∂

∂F

(r2
jk

r2
j

)
+ 2

(
ρ′′(rj)−

ρ′(rj)

rj

)( 1

rj

∂rjk
∂F
− rjk

rj ⊗Rj

r3
j

)
⊗ ∂

∂F

(rjk
rj

)
+ 2

rjk
rj

( 1

rj

∂rjk
∂F
− rjk

rj ⊗Rj

r3
j

)
⊗ ∂

∂F

(
ρ′′(rj)−

ρ′(rj)

rj

)
+ 2

rjk
rj

(
ρ′′(rj)−

ρ′(rj)

rj

) ∂

∂F

( 1

rj

∂rjk
∂F
− rjk

rj ⊗Rj

r3
j

)
+

rj ⊗Rj

rj
⊗ ∂

∂F

(ρ′′(rj)
rj
− ρ′(rj)

r2
j

)
+
(ρ′′(rj)

rj
− ρ′(rj)

r2
j

) ∂

∂F

(rj ⊗Rj

rj

)]
+

1

2

∑
j

[
rj ⊗Rj

rj
⊗ ∂

∂F

(
φ′′′(rj)−

φ′′

rj
+
φ′(rj)

r2
j

)r2
jk

r2
j

+
(
φ′′′(rj)−

φ′′(rj)

rj
+
φ′(rj)

r2
j

) ∂

∂F

(rj ⊗Rj

rj

)r2
jk

r2
j

+
(
φ′′′(rj)−

φ′′(rj)

rj
+
φ′(rj)

r2
j

)rj ⊗Rj

rj
⊗ ∂

∂F

(r2
jk

r2
j

)
+ 2

(
φ′′(rj)−

φ′(rj)

rj

)( 1

rj

∂rjk
∂F
− rjk

rj ⊗Rj

r3
j

)
⊗ ∂

∂F

(rjk
rj

)
+ 2

rjk
rj

( 1

rj

∂rjk
∂F
− rjk

rj ⊗Rj

r3
j

)
⊗ ∂

∂F

(
φ′′(rj)−

φ′(rj)

rj

)
+ 2

rjk
rj

(
φ′′(rj)−

φ′(rj)

rj

) ∂
∂F

( 1

rj

∂rjk
∂F
− rjk

rj ⊗Rj

r3
j

)
+

rj ⊗Rj

rj
⊗ ∂

∂F

(φ′′(rj)
rj

− φ′(rj)

r2
j

)
+
(φ′′(rj)

rj
− φ′(rj)

r2
j

) ∂

∂F

(rj ⊗Rj

rj

)]}
, (4.15)

where the free index k = 1, 2, 3.
To validate the above formulations of temperature-dependent fourth-order elastic tensor,
we make a comparison with experimental elastic constants under different temperatures as
shown below. In this test, we employ 8 α-phase Tantalum BCC atom shells as a unit cell to
represent the physical properties. In Fig.4.1, the red lines represent numerical results and
the blue lines represent experimental data [63]. The numerical results are basically linearly
decreased with increasing temperature which has the same tendency as the experimental
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(a) (b) (c)

Figure 4.1: Temperature-related elastic constants comparison: (a)C11. (b)C12. (c)C44. at
different temperature

data. And the relative error Cexp−Cnumerical

Cexp
between numerical results and experimental data

are: 1.4% ∼ 2.3% for C11, 0.005% ∼ 1.7% for C12 and 0.0027% ∼ 5.7% for C44. Therefore,
we can consider the above temperature-related elastic tensor formulations valid.

4.2 Temperature-dependent Stress Measures in

Higher Order Process Zones

The macroscale constitutive relation is expressed in terms of several important stress mea-
sures as follows,

P =
∂

∂F

(Etot
Ωu

0

)
+

∂

∂F

(3kBT

Ωu
0

ln
~D̄1/6

kBT

)
=

1

Ωu
0

nb∑
j=1

(
F ′(ρ̄)ρ′(rj) +

1

2
φ′(rj)

)rj ⊗Rj

rj
+
kBT

2Ωu
0

1

D̄

∂D̄

∂F
(4.16)

S = F−1P =
1

Ωu
0

nb∑
j=1

(
F ′(ρ̄)ρ′(rj) +

1

2
φ′(rj)

)Rj ⊗Rj

rj
+
kBT

2Ωu
0

F−1

D̄

∂D̄

∂F
(4.17)

σ = J−1PF T =
1

Ωu

nb∑
j=1

(
F ′(ρ̄)ρ′(rj) +

1

2
φ′(rj)

)rj ⊗ rj
rj

+
kBT

2Ωu

∂D̄

∂F

F T

D̄
. (4.18)

Unlike in discrete dislocation dynamics, in the geometrically-compatible dislocation pattern
dynamics, the discrete dislocation pattern segment has no core structure; instead, the overall
effect of the dislocation core structure manifests itself as a continuum level higher order strain
gradient theory [64, 65].
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Remark 4.1. To find initial equilibrium state for many-body potential problem, we use the
general or generic analytical form of EAM potential without consideration of temperature
effect. The initial equilibrium condition is to be considered which is defined as the stress-free
state in an undeformed configuration,

S =
1

Ωu
0

nb∑
j=1

(
F ′(ρ̄)ρ′(rj) +

1

2
φ′(rj)

)
Rj ⊗Rj

rj
= 0 (4.19)

Based on the equation above, the equilibrium lattice constant a can be computed, which sat-
isfies the initial equilibrium condition. Thus it becomes an optimization problem with one
variable and firstly the derivative of norm of S about lattice constant a can be found:

∂ ‖S‖F
∂a

=
∂ ‖S‖F
∂S

:
∂S

∂a
= 2S :

∂S

∂a
= 0 (4.20)

To solve this nonlinear equation, the Newton-Raphson method is used to linearize the above
equation,

∂ ‖S‖F
∂a

(ai+1) =
∂ ‖S‖F
∂a

(ai) +
∂2 ‖S‖F
∂a2

∆ai = 0 (4.21)

Therefore, one is obtained that the ith iteration ai as,

∆ai = −∂ ‖S‖F
∂a

(ai)/
∂2 ‖S‖F
∂a2

(4.22)

the iterative solution stops until ‖∆ai‖ < tol.

The analytical form of
∂2‖S‖F
∂a2

is given as,

∂2 ‖S‖F
∂a2

=
∂

∂a

(
2S :

∂S

∂a

)
= 2

∂S

∂a
:
∂S

∂a
+ 2S :

∂2S

∂a2
(4.23)

in which,

∂S

∂a
=
∑
j

{
a

[
F ′′(ρ̄)(ρ′(rj))

2 + F ′(ρ̄)ρ′′(rj) +
1

2
φ′′(rj) +

F ′(ρ̄)ρ′(rj) + 1
2
φ′(rj)

rj

]
Rj ⊗Rj

}
(4.24)

∂2S

∂a2
=
∑
j

{
F ′′(ρ̄)(ρ′(rj))

2 + F ′(ρ̄)ρ′′(rj) +
1

2
φ′′(rj)

+ rj
[
F ′′′(ρ̄)(ρ′(rj))

3 + 2F ′′(ρ̄)ρ′(rj)ρ
′′(rj)

]
+ rj [F ′′(ρ̄)ρ′(rj)ρ

′′(rj) + F ′(ρ̄)ρ′′′(rj)]

+
1

2
rjφ
′′′(rj) + F ′′(ρ̄)(ρ′(rj))

2 + F ′(ρ̄)ρ′′(rj) +
1

2
φ′′(rj)

}
Rj ⊗Rj

(4.25)
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To model the dislocation pattern segments with the strain gradient theory, we employ an
atomistic-informed higher order strain gradient theory to all the process zone elements (dis-
crete dislocation patterns). Since there are three distinct geometrically-compatible disloca-
tion pattern segments, we use three hierarchical order strain gradients to model them,

G =
∂2x

∂X⊗ ∂X
, H =

∂3x

∂X⊗ ∂X⊗ ∂X
, K =

∂4x

∂X⊗ ∂X⊗ ∂X⊗ ∂X
. (4.26)

Then the bond vectors in corresponding dislocation pattern segments may be defined by the
higher order Cauchy-Born model as follows,

rj = F ·Rj +
1

2
G : (Rj ⊗Rj), (4.27)

rj = F ·Rj +
1

2!
G : (Rj ⊗Rj) +

1

3!
H

...(Rj ⊗Rj ⊗Rj), (4.28)

rj = F ·Rj +
1

2!
G : (Rj ⊗Rj) +

1

3!
H

...(Rj ⊗Rj ⊗Rj)

+
1

4!
K :: (Rj ⊗Rj ⊗Rj ⊗Rj), (4.29)

respectively. Subsequently, as a function of deformation gradients, the strain energy Ww,
Wp, and Wt of the corresponding dislocation pattern elements are considered, which can be
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expressed as follows,

Ww =
1

Ωu
0

[
f(ρ̄) +

1

2

nb∑
i=1

φ
(∣∣∣F ·Ri +

1

2!
G : (Ri ⊗Ri)

∣∣∣)]

+
3kBT

Ωu
0

ln

(
~D̄1/6

(∣∣∣F ·Ri + 1
2!

G : (Ri ⊗Ri)
∣∣∣)

kBT

)
, (4.30)

Wp =
1

Ωu
0

[
f(ρ̄) +

1

2

nb∑
i=1

φ
(∣∣∣F ·Rj +

1

2!
G : (Rj ⊗Rj) +

1

3!
H

...(Rj ⊗Rj ⊗Rj)
∣∣∣)]

+
3kBT

Ωu
0

ln

(
~D̄1/6

(∣∣∣F ·Rj + 1
2!

G : (Rj ⊗Rj) + 1
3!

H
...(Rj ⊗Rj ⊗Rj)

∣∣∣)
kBT

)
, (4.31)

Wt =
1

Ωu
0

[
f(ρ̄) +

1

2

nb∑
i=1

φ
(∣∣∣F ·Rj +

1

2!
G : (Rj ⊗Rj) +

1

3!
H

...(Rj ⊗Rj ⊗Rj)

+
1

4!
K :: (Rj ⊗Rj ⊗Rj ⊗Rj)

∣∣∣)]

+
3kBT

Ωu
0

ln

(
~

kBT
D̄1/6

(∣∣∣F ·Rj +
1

2!
G : (Rj ⊗Rj) +

1

3!
H

...(Rj ⊗Rj ⊗Rj)

+
1

4!
K :: (Rj ⊗Rj ⊗Rj ⊗Rj)

∣∣∣)). (4.32)

4.2.1 Stress Measures in 1st-order Process Zone

The constitutive relations in wedge elements can be further explicated as follows,

P =
∂Ww(F ,G)

∂F
,Q =

∂Ww(F ,G)

∂G
; (4.33)

The higher order stress tensor is expressed in a general form as

Q =
1

2Ωu
0

nb∑
j=1

(
1

2
φ′(rj) + F ′(ρ̄)ρ′(rj)

)
rj ⊗Rj ⊗Rj

rj
+

1

2Ωu
0

kBT

D̄

∂D̄

∂G
(4.34)

in which,
∂D̄

∂G
=
∂D11

∂G
D22D33 +D11

∂D22

∂G
D33 +D11D22

∂D33

∂G
(4.35)
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and

∂Dkk

∂G
=

1

Ωu
0

{
F ′′′(ρ̄)

∑
j

[
ρ′(rj)

∂rj
∂G

]
·
∑
j

[
ρ′(rj)

rjk
rj

]
·
∑
j

[
ρ′(rj)

rjk
rj

]
+ 2F ′′(ρ̄)
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[ ∂
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(
ρ′(rj)

rjk
rj

)]
·
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rjk
rj

]
+ F ′′(ρ̄)

∑
j

[
ρ′(rj)

∂rj
∂G

]
·
∑
j

[
(ρ′′(rj)−

ρ′(rj)

rj
)
r2
jk

r2
j

+
ρ′(rj)

rj

]
+ F ′(ρ̄)

∑
j

[ ∂

∂G
(ρ′(rj)−

ρ′(rj)

rj
)
r2
jk

r2
j

+ 2(ρ′′(rj)−
ρ′(rj)

rj
)
rjk
rj

∂

∂G
(
rjk
rj

) +
∂

∂G
(
ρ′(rj)

rj
)
]

+
1

2

∑
j

[ ∂

∂G
(φ′′′(rj)−

φ′(rj)

rj
)
r2
jk

r2
j

+ 2(φ′′(rj)−
φ′(rj)

rj
)
rjk
rj

∂

∂G
(
rjk
rj

) +
∂

∂G
(
φ′(rj)

rj
)
]}

.

(4.36)

where the free index k = 1, 2, 3.

4.2.2 Stress Measures in 2nd-order Process Zone

The constitutive relation in prism element can further explicated as follows,

P =
∂Wp(F ,G,H)

∂F
,Q =

∂Wp(F ,G,H)

∂G
,U =

∂Wp(F ,G,H)

∂H
; (4.37)

The higher order stress tensors are expressed in a general form as

Q =
1

2Ωu
0

nb∑
j=1

(
1

2
φ′(rj) + F ′(ρ̄)ρ′(rj)

)
rj ⊗Rj ⊗Rj

rj
+

1

2Ωu
0

kBT

D̄

∂D̄

∂G
,

U =
1

2Ωu
0

nb∑
j=1

(
1

2
φ′(rj) + F ′(ρ̄)ρ′(rj)

)
rj ⊗Rj ⊗Rj ⊗Rj

rj
+

1

2Ωu
0

kBT

D̄

∂D̄

∂H
.

(4.38)

in which,
∂D̄

∂H
=
∂D11

∂H
D22D33 +D11

∂D22

∂H
D33 +D11D22

∂D33

∂H
(4.39)
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and

∂Dkk

∂H
=

1

Ωu
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∂
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1

2

∑
j

[ ∂
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(
φ′(rj)
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)
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(4.40)
where k = 1, 2, 3.

4.2.3 Stress Measures in 3rd-order Process Zone

The constitutive relation in truncated octahedron element can further explicated as follows:

P =
∂Wt(F ,G,H ,K)

∂F
, (4.41)

Q =
∂Wt(F ,G,H ,K)

∂G
, (4.42)

U =
∂Wt(F ,G,H ,K)

∂H
, (4.43)

V =
∂Wt(F ,G,H ,K)

∂K
. (4.44)

The higher order stress tensors are expressed in a general form as
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1

2Ωu
0
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(
1

2
φ′(rj) + F ′(ρ̄)ρ′(rj)

)
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∂K
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(4.45)

in which,
∂D̄

∂K
=
∂D11

∂K
D22D33 +D11

∂D22

∂K
D33 +D11D22

∂D33

∂K
(4.46)
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and

∂Dkk
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∂
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∂
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(
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)
]}

,

k = 1, 2, 3 . (4.47)
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Chapter 5

Finite Element Formulation

5.1 MCDD FEM Implementation

Taking displacement variation, the Hamilton principle can be written as,

δ

∫ t1

t0

(T −Wint)dt+

∫ t1

t0

δWextdt = 0 (5.1)

in which, Wint =
∫
V
W (F,G,H,K)dV is the strain and higher order stain gradient energy

density, T =
∫
V

1
2
ρu̇ · u̇dV is the kinetic energy of the crystalline solid, Wext is the external

potential energy.
The variational form of kinetic energy:

δT =

∫
V

ρu̇ · δu̇dV

The variational form of internal energy:

δWint =

∫
V

{ ∂W
∂W

: δF +
∂W

∂G

...δG+
∂W

∂H
:: δH +

∂W

∂K
:

...δK
}
dV

The variational form of external energy:

δWext =

∫
V

b · δudV +

∫
∂Vt

T̄ · δudS

Substituting those formulations above into the formulation of the Hamilton principle, we can
have Galerkin weak form of Multiscale Crystal Defects Dynamics of continuum crystalline
solid as follows,∫

Ω

[
ρü · δu+ P : δF +Q

...δG+U :: δH + V :
...δK

]
dV =

∫
Ω

b · δudV +

∫
∂Ωt

T̄ · δudS

(5.2)
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Specifically, we can rewrite the form of considering different types of elements as:

n
p0
elem∑
e=1

{∫
Ωe

p0

ρ0ü
h · δuhdV +

∫
Ωe

p0

P : δF hdV

}

+

n
p1
elem∑
e=1

{∫
Ωe

p1

ρ0ü
h · δuhdV +

∫
Ωe

p1

(P : δF hdV +Q
...δGh)dV

}

+

n
p2
elem∑
e=1

{∫
Ωe

p2

ρ0ü
h · δuhdV +

∫
Ωe

p2

(P : δF hdV +Q
...δGh +U :: δHh)dV

}

+

n
p3
elem∑
e=1

{∫
Ωe

p3

ρ0ü
h · δuhdV +

∫
Ωe

p3

(P : δF hdV +Q
...δGh +U :: δHh + V :

...δKh)dV

}

=
3∑
i=0

n
pi
elem∑
ei=1

{∫
Ω

ei
pi

ρ0b · δuhdV

}
+

n
p0
elem∑
e0=1

∫
∂tΩ

e0
p0

T̄ · δuhdS

(5.3)
where b is the body force, the subscript ei is element ID in the range of ei = 1, 2, 3, 4, the
superscript p is the order of process zone in the range of p = 0, 1, 2, 3, Ω represents the
volume and ∂tΩ represents traction boundary of the specific volume Ω.
A superscript “h” is used to denote that the displacement fields with “h” are interpolated
displacement fields rather than true displacement fields. Therefore, the discretized displace-
ment field is,

uh(X, t) =

ndi∑
Ii

NIi(ξ)dIi(t), i = 0, 1, 2, 3

in which, ndi is the number of total nodes in the element, and i = 0, 1, 2, 3 denotes the order
of the process zone.
Accordingly, the discretized matrix-form Finite Element dynamic motion equation [66] is
shown as,

3∑
i=0

nei∑
ei=1

ndi∑
Ii=1

∫
Vei

(
P ·Bei(X) +Q : Cei(X) +U

...Dei(X) + V :: Eei(X)
)
dV · d

−
3∑
i=0

nei∑
ei=1

ndi∑
Ii=1

∫
Vei

bNIi(X)dV · d−
ne0∑
e0=1

nd0∑
I0=1

∫
∂Ve0

T̄NI0(X)dS · d

+
3∑
i=0

nei∑
ei=1

ndi∑
Ii,Ji=1

∫
Vei

ρ0NIi(X)NJi(X)dV · d̈ = 0

(5.4)
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in which,

Bei(X) :=
∂NIi

∂X
, X ∈ Ωei (5.5)

Cei(X) :=
∂2NIi

∂X ⊗ ∂X
, X ∈ Ωei (5.6)

Dei(X) :=
∂3NIi

∂X ⊗X ⊗X
, X ∈ Ωei (5.7)

Eei(X) :=
∂4NIi

∂X ⊗X ⊗X ⊗X
, X ∈ Ωei (5.8)

and

d =
{
d1, · · · ,dndi

}T
The discretization procedure above is all about space discretization. Dynamics motion prob-
lem is involved with temporal discretization and integration in which the Newmark-β algo-
rithm [67] is applied,

dn+1 = dn + vn∆t+
1

2
an∆t2 (5.9)

an+1 = M−1(f extn+1 − f intn+1) (5.10)

vn+1 = vn +
1

2
(an + an+1)∆t (5.11)

where the subscript n and n+1 indicate to variables at time tn and tn+1. d is the displacement
field, v is the velocity field, and a is the acceleration field and ∆t is time increment.

5.2 Quadratic Shape Functions of 2D Hexagon

In [68], the way to construct shape functions of polygon element has been proposed. This
section discussed how to construct the quadratic shape functions of 2D hexagon as shown in
Fig.5.1.
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Figure 5.1: Quadratic hexagonal element.

The coordinates of points 1 ∼ 12 are:

n1 = (

√
3

2
,
1

2
), n2 = (0, 1)

n3 = (−
√

3

2
,
1

2
), n4 = (−

√
3

2
,−1

2
)

n5 = (0, 1), n6 = (

√
3

2
,−1

2
)

n7 = (

√
3

4
,
3

4
), n8 = (−

√
3

4
,
3

4
)

n9 = (−
√

3

2
, 0), n10 = (−

√
3

4
,−3

4
)

n11 = (

√
3

4
,−3

4
), n12 = (

√
3

2
, 0)

The lines λ1 ∼ λ6 through nodes are:

λ1 : ξ√
3

+ η − 1 = 0, λ2 : ξ√
3
− η + 1 = 0

λ3 : ξ +
√

3
2

= 0, λ4 : ξ√
3

+ η + 1 = 0 (5.12)

λ5 : ξ√
3
− η − 1 = 0, λ6 : ξ −

√
3

2
= 0

The dashed circle q is defined as:
ξ2 + η2 = 3 (5.13)
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The basis functions w1 ∼ w6 are defined:

w1 =
q

λ2λ3λ4λ5

|
(ξ=

√
3

2
,η= 1

2
)

λ2λ3λ4λ5

q

=
1√
3

( ξ√
3
− η + 1)(ξ +

√
3

2
)( ξ√

3
+ η + 1)( ξ√

3
− η − 1)

ξ2 + η2 − 3
(5.14)

w2 =
q

λ3λ4λ5λ6

|(ξ=0,η=1)
λ3λ4λ5λ6

q

=
2

3

(ξ +
√

3
2

)(− ξ√
3
− η − 1)( ξ√

3
− η − 1)(ξ −

√
3

2
)

ξ2 + η2 − 3
(5.15)

w3 =
q

λ4λ5λ6λ1

|
(ξ=−

√
3

2
,η= 1

2
)

λ4λ5λ6λ1

q

=
1√
3

(− ξ√
3
− η − 1)( ξ√

3
− η − 1)(ξ −

√
3

2
)(− ξ√

3
− η + 1)

ξ2 + η2 − 3
(5.16)

w4 =
q

λ5λ6λ1λ2

|
(ξ=−

√
3

2
,η=− 1

2
)

λ5λ6λ1λ2

q

= − 1√
3

( ξ√
3
− η − 1)(ξ −

√
3

2
)(− ξ√

3
− η + 1)( ξ√

3
− η + 1)

ξ2 + η2 − 3
(5.17)

w5 =
q

λ6λ1λ2λ3

|(ξ=0,η=−1)
λ6λ1λ2λ3

q

=
2

3

(ξ −
√

3
2

)(− ξ√
3
− η + 1)( ξ√

3
− η + 1)(ξ +

√
3

2
)

ξ2 + η2 − 3
(5.18)

w6 =
q

λ1λ2λ3λ4

|
(ξ=

√
3

2
,η=− 1

2
)

λ1λ2λ3λ4

q

=
1√
3

(− ξ√
3
− η + 1)( ξ√

3
− η + 1)(ξ +

√
3

2
)(− ξ√

3
− η − 1)

ξ2 + η2 − 3
(5.19)

The displacement field u(ξ, η) is defined as:

u(ξ, η) =
6∑
i=1

(oiwi + diwiwi+1) (5.20)

in which, oi and di are the coefficients of linear and quadratic deformation modes.
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The displacement u(ξ, η) to be evaluated at 12 nodes in the 2D hexagon as:

u1 = o1, u2 = o2, u3 = o3, u4 = o4, u5 = o5, u6 = o6

u7 = (w1)7o1 + (w2)7o2 + (w1w2)7d1 ⇒ d1 = u7−(w1)7u1−(w2)7u2
(w1w2)7

u8 = (w2)8o2 + (w3)8o3 + (w2w3)8d2 ⇒ d2 = u8−(w2)8u2−(w3)8u3
(w2w3)8

u9 = (w3)9o3 + (w4)9o4 + (w3w4)9d3 ⇒ d3 = u9−(w3)9u3−(w4)9u4
(w3w4)9

u10 = (w4)10o4 + (w5)10o5 + (w4w5)10d4 ⇒ d4 = u10−(w4)10u4−(w5)10u5
(w4w5)10

u11 = (w5)11o5 + (w6)11o6 + (w5w6)11d5 ⇒ d5 = u11−(w5)11u5−(w6)11u6
(w5w6)11

u12 = (w1)12o1 + (w6)12o6 + (w1w6)12d6 ⇒ d6 = u12−(w6)12u6−(w1)12u1
(w1w6)12

o1 ∼ o6 and d1 ∼ d6 are substituted back Eq.(5.20) and assemble common terms to have:

u(ξ, η) = w1

(
1− w2

(w2)7

− w6

(w6)12

)
u1 + w2

(
1− w1

(w1)7

− w3

(w3)8

)
u2

+ w3

(
1− w2

(w2)8

− w4

(w4)9

)
u3 + w4

(
1− w3

(w3)9

− w5

(w5)10

)
u4

+ w5

(
1− w4

(w4)10

− w6

(w6)11

)
u5 + w6

(
1− w5

(w5)11

− w1

(w1)12

)
u6

+
w1w2

(w1w2)7

u7 +
w2w3

(w2w3)8

u8 +
w3w4

(w3w4)9

u9

+
w4w5

(w4w5)10

u10 +
w5w6

(w5w6)11

u11 +
w6w1

(w6w1)12

u12

(5.21)

So that the shape functions of 2D quadratic hexagon element are:

N1(ξ, η) = w1(1− 2w2 − 2w6); N2(ξ, η) = w2(1− 2w1 − 2w3)

N3(ξ, η) = w3(1− 2w2 − 2w4); N4(ξ, η) = w4(1− 2w3 − 2w5)

N5(ξ, η) = w5(1− 2w4 − 2w6); N6(ξ, η) = w6(1− 2w5 − 2w1)

N7(ξ, η) = 4w1w2; N8(ξ, η) = 4w2w3; N9(ξ, η) = 4w3w4;

N10(ξ, η) = 4w4w5; N11(ξ, η) = 4w5w6; N12(ξ, η) = 4w6w1 .

(5.22)

5.3 Quadratic Elements in MCDD Model

To decrease the yielding stress of MCDD model, the improvement from linear elements
to quadratic elements has been made. In the original linear MCDD model, there are five
different element types including tetrahedron element, wedge element, square prism element,
hexagonal prism element, as shown in Fig.5.2.
Linear element type is short of taking higher order Cauchy-Born rule effects into consider-
ation. It is because that trilinear shape functions of linear elements will become trivial in
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(a) (b) (c) (d)

Figure 5.2: Linear elements: (a) tetrahedron element; (b) wedge element; (c) square prism
element; (d) hexagonal prism element.

(a) (b) (c) (d)

Figure 5.3: Quadratic elements: (a) tetrahedron element; (b) wedge element; (c) square
prism element; (d) hexagonal prism element.

higher order derivatives. Therefore, to completely capture higher order Cauchy-Born rule
effects quadratic element types are included in present dissertation, as shown in Fig.5.3.
The shape functions of quadratic tetrahedron element, quadratic wedge element and quadrat-
ic square prism element have been studied thoroughly in past literature. The shape functions
of quadratic hexagonal prism element are based on quadratic 2D hexagonal element discussed
in previous section. The detailed shape functions of 3D hexagonal prism element and its
first-order derivatives are shown in Appendix.A.
In the following, the quadratic serendipity truncated octahedron element (Fig.5.4(a)) has
been studied thoroughly. Floater and Lai [69] proposed a way to use Bernstein polynomial-
like functions to form the piecewise defined functions with order d over a polygon with
arbitrary number of sides. The corresponding quadratic serendipity element shape functions
have Wachspress coordinates φi and local tetrahedra coordinates λi,j. A. Sinu et al has
extended the two-dimensional case to three-dimensional case in [70]. In present dissertation,
the method of constructing quadratic serendipity element shape functions is applied on 3rd-
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order process zone element, i.e. truncated octahedron element.
The first step is to construct Wachspress function φi. P ∈ R3 is defined as the convex
truncated octahedron with facets set F and vertices set V as shown in Fig.5.4(a). hf (x) is
defined as the perpendicular distance of x to f ,

hf (x) = (v − x) · nf (5.23)

in which, f ∈ F is one facet of the truncated octahedron, nf is the unit outward normal
vector, x is an arbitrary point within P and v is one vertex of the truncated octahedron.
Based on coboundary operator of cell complexes in Chapter 2, the three facets sharing one
vertex v can be defined as f1, f2, f3. Therefore, the shape function φv(x) is given as,

φv(x) =
wv(x)∑

u∈V wu(x)
(5.24)

in which,

wv(x) =

∣∣∣∣∣∣
pf1,1 pf1,2 pf1,3
pf2,1 pf2,2 pf2,3
pf3,1 pf3,2 pf3,3

∣∣∣∣∣∣ (5.25)

and pf := nf/hf (x) as shown in Fig.5.4(b).
The second step is to have tetrahedra coordinates as shown in Fig.5.4(c)-(d). Fig.5.4(c)
shows λi,1 and Fig.5.4(d) shows λi+1,1. The tetrahedra coordinate λi,j is denoted as:

λi,j(x) =
di,j(x)

∆i

, j ∈ (1, 2, 3, 4), (5.26)

in which

di,j(x) =

∣∣∣∣∣∣∣∣
1 x y z
1 xk yk zk
1 xl yl zl
1 xm ym zm

∣∣∣∣∣∣∣∣ , (j, k, l,m) ∈ (1, 2, 3, 4), (5.27)

∆i =

∣∣∣∣∣∣∣∣
1 xi yi zi
1 xi+1 yi+1 zi+1

1 xi+2 yi+2 zi+2

1 xi+3 yi3 zi+3

∣∣∣∣∣∣∣∣ (5.28)

Therefore, the shape functions of quadratic serendipity element associated with the vertex
node, i and the midside node (i, 1) (between i and i+ 1) are given as,

ψi = Fi −
1

2

3∑
j=1

F j (5.29)

ψi,1 = 2Fi,1 (5.30)
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(a) (b)

(c) (d)

Figure 5.4: Serendipity shape function: (a) quadratic truncated octahedron element; (b)
wachspress interpolants; (c) 3D local tetrahedron coordinate λi,1: tetrahedron coordinate
of the point for vertex 1 corresponding to vertex i of the convex polyhedral; (d) 3D local
tetrahedron coordinate λi+1,1: tetrahedron coordinate of the point for vertex 1 corresponding
to vertex i+ 1 of the convex polyhedral.
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in which, ψi and ψi,1 are the shape functions of the vertex i and the middle node (i, 1). F j

denotes the Fi,1 of three edges incident to vertex i.
Fi and Fi,1 are defined as

Fi = φiλi,1 (5.31)

Fi,1 = φiλi,2 + φi+1λi+1,2 (5.32)

where φi is the Wachspress coordinate of vertex i; λi,1 and λi,2 are the tetrahedra volume
coordinates corresponding to vertex 1 and 2 associated with the vertex i. It is found that
the shape functions of quadratic serendipity truncated octahedron element satisfies following
constant, linear and quadratic patch tests:

nv∑
i=1

ψi +
nm∑
i=1

ψi,1 = 1, (5.33)

nv∑
i=1

ψixi +
nm∑
i=1

ψi,1xi,1 = x, (5.34)

nv∑
i=1

ψixi ⊗ xi +
nm∑
i=1

ψi,1xi,1 ⊗ xi,1 = x⊗ x . (5.35)

in which, numbers of vertices and middle nodes along edges of elements are denoted by nv
and nm; the space coordinate of vertex node i is denoted as xi and the space coordinate of
middle node (i, 1) is denoted as xi,1; the space coordinate of arbitrary position where the
shape functions are evaluated is denoted as x.
In the next, a simple compression test is conducted to show the effectiveness of higher order
shape functions considered in MCDD model. The MCDD model is shown as Fig.5.5(a). The

initial aspect ratio is 1:2:4, with dimension 420
◦
A× 840

◦
A× 1680

◦
A. The upper 10% portion

of model is velocity-prescribed corresponding to three different strain rate: 1.1 × 107s−1,
5.55×107s−1 and 2.77×108s−1. The MCDD results are compared with Molecular Dynamics
simulation results as Fig.5.5(b).
Fig.5.5(b) has totally 4 sets of curves, including perfect crystal MD simulation, preexisted
voids crystal MD simulation, preexisted dislocations crystal MD simulation and MCDD
simulation. Each set will have three different loading velocities: 1.11× 107s−1, 5.55× 107s−1

and 2.77× 108s−1. The corresponding curves are marked by different line types: solid line,
dash line and dotted line. The labels “∗1” denotes velocity is 1.1× 107s−1× 1, “∗5” denotes
velocity is 1.1× 107s−1 × 5 and “∗25” denotes velocity is 1.1× 107s−1 × 25.
From stress-strian curves comparison in Fig.5.5(b), it is found that applying quadratic ele-
ment MCDD model can so greatly decrease the yielding stress that the MCDD model with
perfect dual lattice mesh can have equivalent yielding stress as crystal MD model with pre-
existed voids. It denotes that higher order process zones with higher order Cauchy-Born rule
and higher order shape functions represent preexisted crystal defects such as cracks, voids,
dislocation and etc. The conclusion is consistent with previous comments on Geometrically
Compatible Dislocation Pattern in Chapter 3.
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(a) (b)

Figure 5.5: Benchmark test of quadratic element MCDD model: (a) MCDD model; (b)
stress-strain curves comparison with Molecular Dynamics simulation.
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Chapter 6

Numerical Simulations

(a) (b)
(c)

Figure 6.1: MCDD modeling of a BCC crystal under: (a) uniaxial tension loading, (b) pure
shear loading and unloading and (c) MD model

6.1 Uniaxial Tension and Pure Shear

In this section, we first present MCDD numerical results in uniaxial tension test and pure
shear test to show the validity of temperature-related MCDD method in stress-strain rela-
tion calculation. To model and simulate crystal plasticity in α-phase tantalum crystal, we
adopt the higher order Cauchy-Born rule that utilizes the Embedded-Atom method potential
discussed in [61].
The total Helmholtz free energy FH of the crystal solid can be written as,

FH =
1

2

∑
i 6=j

φ(rij) +
∑
i

Fi(ρ̄i) + kBT
∑
i

∑
k

ln

[
2 sinh

~wik
2kBT

]
, (6.1)

where φ(rij) represents the pair energy between atoms i and j separated by a distance rij,
and Fi is the embedding energy associated with embedding an atom i into a local site with
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an electron density ρ̄i, which is defined as,

ρ̄i =
∑
i 6=j

ρj(rij) (6.2)

with ρj(rij) as the electron density at the site of atom i arising from atom j at a distance
rij away.

(a) (b)

Figure 6.2: The stress-strain curves comparison between MD and MCDD at low and high
temperature: (a) uniaxial tension loading and (b) pure shear loading and unloading

We use the following pair potential φ(r) for α-Ta,

φ(r) =
A exp

[
−α( r

re
− 1)

]
1 + ( r

re
− κ)20

−
B exp

[
−β( r

re
− 1)

]
1 + ( r

re
− λ)20

, (6.3)

where re is the equilibrium spacing between nearest neighbors, A,B,α and β are four ad-
justable parameters, and κ and λ are two additional parameters for the cutoff. The electron
density ρ(r) is defined as,

ρ(r) =
fe exp

[
−β( r

re
− 1)

]
1 + ( r

re
− λ)20

. (6.4)
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The embedding energy function is expressed as follows,

F (ρ) =
3∑
i=0

Fni

( ρ
ρn
− 1
)i
, ρ < ρn, ρn = 0.85ρe

F (ρ) =
3∑
i=0

Fi

( ρ
ρe
− 1
)i
, ρn ≤ ρ < ρ0, ρ0 = 1.15ρe

F (ρ) = Fe

[
1− ln

( ρ
ρs

)η]( ρ
ρs

)η
, ρ0 ≤ ρ

(6.5)

The value of parameters used for α-phase Tantalum are taken from [61] and are shown in
Table.6.1. Based on the EAM formulation i.e. Eq.(4.5), we can calculate elastic tensor of
Tantalum under different temperature as shown in Fig.4.1.

Table 6.1: Parameters in the formulations of EAM potential for α-Ta

Parameter Value Parameter Value

re[
◦
A] 2.860082 Fn1[eV ] -0.405524

fe 3.086341 Fn2[eV ] 1.112997

ρe 33.787168 Fn3[eV ] -3.585325

ρs 33.787168 F0[eV ] -5.14

α 8.489528 F1[eV ] 0

A[eV ] 0.611679 F2[eV ] 1.640098

B[eV ] 1.032101 F3[eV ] 0.221375

κ 0.176977 η 0.848843

λ 0.353954 Fe[eV ] -5.141526

Fn0[eV ] -5.103845 β 4.527748

The MCDD model with the size of 100
◦
A × 100

◦
A × 100

◦
A is shown as in Fig.6.1(a). In

this example, there are 576 tetrahedron elements, 1008 wedge elements, 154 prism elements
(including 88 hexagonal prism elements and 66 square prism elements) and 15 truncated
octahedron elements. We firstly apply the prescribed displacement/velocity loading condi-
tion on MCDD specimen under prescribed loading strain rate with 0.25 ps−1. The boundary
conditions for MCDD simulations are as follows: The upper and lower 10% portion of the
specimen are applied with the prescribed displacement/velocity with opposite direction. The
rest of the boundaries are traction and higher order traction free (see [39]).
Meanwhile, the molecular dynamics simulation is conducted by using the molecular dynamics
simulation software package LAMMPS, and the MD model or specimen has 59582 atoms,



CHAPTER 6. NUMERICAL SIMULATIONS 59

which is shown as Fig.6.1(c). The atomic pair potential for α-Ta is based on the reference
[61]. The same strain rate used in MCDD calculations is applied in MD simulations.
By calculating uniaxial temperature-related stress-strain curves mentioned above, we have
obtained the corresponding constitutive relations in MCDD simulations at low/high temper-
ature. The obtained stress-strain curves are compared with those of MD simulations as shown
in Fig.6.2(a), respectively. From Fig.6.2(a), one may find that in different temperature-
related cases the stress-strain relations obtained from MCDD simulations and from MD sim-
ulations are consistent, which indicates the MCDD method is valid in simulating nanoscale
crystal plasticity for single α-Ta crystal at different temperature.
By considering higher order Cauchy-Born rule based higher order strain gradient formulations
on wedge shaped dislocation patterns, prism shaped dislocation patterns, and truncated
octahedron dislocation patterns, the MCDD method shows its ability to capture inelastic
behavior and the path-dependent constitutive relation of α-phase tantalum in single crystal
plasticity simulation. Moreover, the above MCDD simulation has much higher computational
efficiency in comparison with the MD model or specimen with the same size and boundary
and loading conditions.
Similar to the pure tension case, we also conducted a pure shear test on an α-Ta specimen

of 100
◦
A × 100

◦
A × 100

◦
A. The setup of the MCDD simulation and α-phase tantalum model

are shown as Fig.6.1(b). The displacement/velocity boundary conditions under prescribed
pure shear deformation are slightly different from the uniaxial loading one: for the uniaxial
loading the upper and lower portion are prescribed with velocity while for the pure shear
loading the upper portion is velocity-prescribed but the lower portion is fix. For the MD
simulation, the boundary condition on x,y and z directions are respectively p,s and s in
which p represents periodic and s represents non-periodic, shrink-wrapped.
Based on the results presented above, we may conclude that under pure shear loading MCDD
method also offers consistent results with that obtained from MD simulations.

6.2 Orientation Effects of Tantalum Crystal at Grain

Scale

Based on classical crystal plasticity theory, the critical resolved shear stress (CRSS) is the key
to govern the dislocation sliding in single crystal. Therefore, scholars established the Schmid
law to relate the critical resolved shear stress (CRSS) to the crystal lattice orientation.
However, the Schmid law is a phenomenological equation based on empirical theory and
NOT valid when it is concerned with BCC crystal lattice structure. We call the violation of
Schmid law in BCC crystal structure as the non-Schmid law.
To prove that the MCDD dislocation pattern dynamics is able to predict crystal orientation
effects at nanoscale, the 28 crystallographic (loading) orientations are applied on Tantalum
crystal under tension and compression (see:Fig.6.3). The way we rotate crystal lattice is
shown in Appendix B. The prescribed displacement/velocity boundary condition is: a con-
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Figure 6.3: Stereographic triangle has red nodes indicating 28 different crystallographic ori-
entations in which the uniaxial loading is applied on the single crystal deformation simulation

stant strain rate of 109/s is applied on the upper and lower 10% portion of MCDD models
in each loading direction. The specimen size is 16nm× 16nm× 16nm. To prove validity of
the MCDD method, we also construct MD model with the same conditions including sample
size, loading boundary condition as comparison.
The molecular dynamics (MD) results at 300Ko are shown in Figure 6.4(a). From the fig-
ure, we can find that asymmetry of tension/compression yielding stress contour with different
crystal lattice orientation in the stereographic triangle at 300Ko. Fig.6.4(b) displays results
of the MCDD simulation of different crystal lattice orientation at 300Ko. By comparing
these two figures, we can conclude that the MCDD method, as an atomistic-informed crys-
tal plasticity model, can reproduce basically the same results obtained by using molecular
dynamics method.

6.3 Non-Schmid Effect in α-Ta

The Schmid Law establishes the relation among the critically resolved shear stress, slip plane
and slip direction, and applied stress. The threshold of a critically resolved shear stress is
the shear strength of the crystalline material on a given slip plane and along a given glide
direction. The formulation that describes Schmid’s law is expressed as,

τ = σcos(λ)cos(φ) (6.6)

where τ is the critical resolved shear stress or the yield stress on a given slip plane. λ
represents the angle between loading direction and slip direction and φ represents the angle
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(a) (b)

Figure 6.4: Stress and stress ratio contour figures: (a) MD results at 300K; (b) MCDD
results at 300K
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between loading direction and normal direction of slip plane, as illustrated in Fig. 6.5(a).

(a)
(b)

Figure 6.5: (a) Illustration of Schmid Law[11] and (b) Definition of χ describing the orien-
tation of the MRSSP relative to the (1̄01) plane[12].

The Schmid law allows phenomenological crystal plasticity to obtain mechanical character-
istics of crystal plastic deformation especially for closed-packed crystal structures, e.g. FCC
crystal. However, for those crystals that are not closed-packed crystal structure, violation of
Schmid law is due to spreading of dislocation to non-parallel planes and we have dependence
of shear stress on orientation of Maximum Resolved Shear Stress Plane(MRSSP)[12].
Vitek and his co-workers have employed molecular dynamics to simulate the Non-Schmid
effect of Tantalum [12]. In molecular dynamics modeling, Moriarty et al. [71] measured the
angle χ with respect to the (1̄01) plane as shown in Fig. 6.5(b). The sign of χ is also shown
and the range of it is between −30o ≤ χ ≤ 30o considering the crystal symmetry. And the
twinning-antitwinning asymmetry of shear can be reflected on {112} plane because the shear
in [111] direction is equivalent to the shear in the [1̄1̄1̄] direction for the orientation −χ but
shears are not equivalent along [111] and [1̄1̄1̄].
In this numerical example, we construct a 20nm × 20nm × 20nm MCDD model with 576
tetrahedron elements(0th-order), 1008 wedge elements(1st-order), 154 prism elements(2nd-
order), 15 truncated octahedron elements(3rd-order), as illustrated in Fig 6.6(a). The lower
10% portion is fixed while the upper 10% portion is applied with prescribed displacement.
The regular orientation is: (100) along x-axis, (010) along y-axis and (001) along z-axis. The
way we rotate the regular orientation to the new orientation: (1̄01) along x-axis, (12̄1) along
y-axis and (111) along z-axis is based on Appendix. B.
For α-Ta, we used the EAM potential developed by Zhou et al in [61] to construct multiscale
constitutive relation.
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(a)
(b)

Figure 6.6: (a) MCDD model with χ = 0o and (b) Non-Schmid curve in α-Ta.

In this case, we regard the shear yield stress as the maximum resolved shear stress. From
the Fig.6.6(b), one may find that with increasing angle χ the critical resolved shear stress
increases. We compare MCDD results with MD simulation in [12] as illustrated in Fig 6.6(b).
From this figure, we can find that MCDD results have a very good consistency with MD
model but less computational costs. Therefore, we conclude that MCDD simulation can
predict the non-Schmid effect in Tantalum single crystal, and it thus provides a validation
for the method.

6.4 Size Effect of Crystal Plasticity in Micron-scale

α-Ta Pillar

At nanos- and sub-micron scale, a very strong size effect of crystal plasticity has been reported
in experiments, e.g.[72]. In the following, we report a preliminary study on size-effect of
mesoscale crystal plasticity observed in MCDD simulations of an uniaxial test of α-Ta single
crystal.
We conduct the uniaxial tension on micron-scale size α-Ta pillars that have following di-
mensions: 1.0µm× 1.0µm× 1.0µm, 1.25µm× 1.25µm× 1.25µm, 1.5µm× 1.5µm× 1.5µm,
1.75µm× 1.75µm× 1.75µm and 2.5µm× 2.5µm× 2.5µm (see Fig.6.7). The upper and lower
10% portion are prescribed with displacement/velocity boundary conditions with opposite
directions. The loading strain rate is kept as 2 × 107s−1. The strain-strain relations with
specimens of different sizes are shown in Fig.6.8.
From the Fig.6.8, we can clearly see that the increase of numerical specimen size will lead to
a decrease in yielding stress in significant manner. Furthermore, the flow stress of different
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Figure 6.7: MCDD finite element models with different sizes: (a) 1.00µm3; (b) 1.25µm3; (c)
1.50µm3; (d) 1.75µm3; (e) 2.0µm3 and (d) 2.50µm3.

Figure 6.8: Stress-strain curves comparison of micron-scale size MCDD models.
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size models are also decreasing corresponding to the increase of the size of the specimen.
Therefore, we can conclude that the MCDD crystal plasticity modeling method is able to
simulate and predict the size effect of crystal plasticity at micron scale. Even though, the
yield stress of 2.50µm3 α-Ta pillar is still very higher, but it is significantly lower than all
the molecular dynamics predictions reported in literature, which is usually > 10GPa, and
hence this is the closest yield stress prediction to the experimental result. With the further
reduce of loading strain rate and increase of the size of specimen, we expect to fill the gap
between the modeling prediction and experimental observation in near future. To author’s
knowledge, it is the first time that anyone captures the size effect of crystal plasticity in the
micon-scale, where the molecular dynamics may require hundreds or even thousands times
of computation cost than that of the MCDD crystal plasticity method.

(a) (b)

Figure 6.9: Isoparameteric quadratic element illustration: (a) 2D quadratic hexagonal ele-
ment and (b) 3D quadratic hexagonal prism element

6.5 Dislocation Substructures under Different

Temperatures

The BCC α-Ta metal is well-known to exhibit strong temperature effect on crystal plas-
ticity. In particular, it has very different dislocation substructures under low temperature
< 70Ko and under high temperature > 450ko e.g. [3, 40]. Under the low temperature, one
finds long screw dislocations in approximately homogeneous distribution, whereas at high
temperatures, one may find cellular dislocation patterns.
In this example, we applied the proposed finite temperature atomistically informed crystal
plasticity to exam how temperature may affect the dislocation substructure morphology or
dislocation pattern.
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In this example, the super dual lattice structure specimens are created in two different
dimensions: Lx×Ly ×Lz = 84nm× 84nm× 168nm, 168nm× 168nm× 336nm as shown in
Fig.6.10. Aiming for a qualitative study, we conducted the numerical simulation at both low
temperature (20Ko) and high temperature (500Ko) to see if different dislocation patterns
will be activated at different temperatures. In the MCDD specimen used, it has 11008

Figure 6.10: Cross-slip simulation in super dual lattice model

tetrahedron elements (bulk crystal elements), 20864 wedge elements(1st order process zone
or wedge dislocation pattern elements), 1776 prism elements(2nd order process zone or prism
dislocation pattern elements), and 209 truncated octahedron elements (the 3rd process zone
or truncated octahedron dislocation pattern elements). We conducted uniaxial compression
tests with prescribed dispacement/velocity boundary condition with loading strain rate:
6× 10−5ps−1.
To capture the slip plane formation during crystal pillar deformation, we employ quadratic
Lagrangian element-wise shape function to model the slip plane deformation. The wedge base
functions are applied to construct quadratic hexagonal prism element as shown in Fig.6.9.
Figure 6.9(a) displays the plane quadratic hexagonal element. The corresponding shape
functions are constructed based on the Wedge Base Function method [68]. The first derivative
of 3D hexagonal prism element shape functions are documented in Appendix A.
To analyze the results of the low temperature uniaxial compression test, we display all
the triangle plate elements with large plastic strain in Fig.6.11(a) in a deformation loading
sequence. One may find that at small deformation, a clear primary slip plane (011) (or
slip plate) appears first, which suggests that there exist long screw dislocation groups on a
localized primary slip plane, which may come from one side of the specimen surface to other
facets of the specimen surface. As the deformation load increase, from Fig.6.11(a) one may
find the dislocation cross-slip from the primary (011) plane or plate to the secondary (1̄01)
slip plane or plate.
Figure 6.11 and Figure 6.12 display the dislocation pattern formation sequence corresponding
to different loading deformation phases. From Fig.6.11(a), we can find that with crystal
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(a)

(b)

Figure 6.11: (a): 84nm × 84nm × 168nm model size at temperature 20K; (b): 168nm ×
168nm×336nm model size at temperature 20K. The grey planes(slip planes) are formed by
wedge process zone elements, the red lines are formed by prism process zone elements, the
yellow dash lines represent shared common edges by primary slip plane and the secondary
slip planes.

deformation the primary slip plane (011) in 84nm×84nm×168nm size model will appear first,
then increasing element strain will activate the secondary slip plane (1̄01) at 20K. Besides the
accumulated dislocations will activate prism elements and even allow prism elements “jump”
from primary slip plane to the secondary slip plane. One of the mechanisms of the cross-slip
in α-Ta is that the screw dislocations with the Burgers vectors [111](1̄01) and [11̄1̄](101) move
downwards, and the screw dislocations with the Burgers vectors [1̄1̄1̄](1̄01) and [1̄11](101)
move upwards, respectively [73]. Due to their interaction, junction dislocations are formed
according to

a

2
[111] +

a

2
[11̄1̄] → a[100]

and
a

2
[1̄1̄1̄] +

a

2
[1̄11] → a[1̄00]
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(a)

(b)

Figure 6.12: (a): 84nm × 84nm × 168nm model size at temperature 500K; (b): 168nm ×
168nm× 336nm model size at temperature 500K. The grey planes(slip planes) are formed
by wedge process zone elements, the red lines and dots are formed by prism process zone
elements and truncated octahedron elements.

where a is the length of the Burgers vector.
From Fig.6.11(b), one may find that for the larger size specimen i.e. 168nm × 168nm ×
336nm at 20Ko, similar process happens but the primary slip plane becomes (101), then
the secondary slip plane (011) will be activated and finally a third slip plane (101) forms
at the last stage, which is in parallel with the first slip plane (101), but not the same slip
plane. Therefore, the dislocation in 168nm × 168nm × 336nm will have double cross slips
(two times “jump”). This example implies that the dislocation substructure might be also
dependent on the size of a crystal specimen.
The slip plane configurations shown in Fig. 6.11 (a) and (b) indicate that at the low tem-
perature there are approximately uniform distribution of screw dislocations in the middle
section of the uniaxial compression specimen. At the very beginning when the critical re-
solved shear stress is reached, the screw dislocation glides easily on the slip plane, so that
dislocation piles up and internal stress accumulates. As accumulated internal stress reached
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a critical point, the secondary slip plane is activated. Therefore, the primary slip plane and
the secondary slip plane interact each other so that stress is needed to produce additional
plastic deformation. As internal stress is high enough for large scale cross-slip to set in, the
dislocation in one slip plane is able to move to another slip plane. Experimental evidence
showed that during this process, the primary dislocation can be regenerated, and a new
dislocation is produced [74]. Thus, the cross slip is regarded as a dislocation multiplication
mechanisms and hence plasticity hardening [75].
In Fig.6.12 , we show the results of dislocation pattern in the uniaxial compression bar
(84nm × 84nm × 168nm) and (168nm × 168nm × 336nm) under the high temperature
(500ko). From Fig.6.12, we can find that when temperature increases the dislocation pattern
has changed: the distinct slip plane configuration under low temperature is replaced by many
small dislocation cells, which also include many dipole elements, i.e. truncated octahedron
elements and aggregated dislocation line elements, i.e. prism elements. This is because that
high temperature will cause atoms have higher free energy to vibrate around their lattice
positions, and hence it will lower the dislocation activation energy or the Peierls-Nabarro
barrier potential to activate many other slip systems rather than the only one (the most
packed plane) under the lower temperature. The consequence of many interacted activated
slip planes and slip systems will be an aggregated dislocation cells, i.e. the cellular dislocation
pattern as shown in Fig.6.12.
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Chapter 7

Conclusions and Discussions

In this dissertation, we have further developed the recently proposed multiscale dislocation
pattern dynamics by considering Temperature-related Higher-order Cauchy-Born(THCB)
rule in different order process zone elements so that we can employ such temperature-related
constitutive relation to calculate material responses of BCC crystal α-Ta at different tem-
peratures.
It is shown that by using the proposed finite temperature multiscale dislocation pattern dy-
namics we are able to capture cross-slip in α-Ta under the low temperature, while we are able
to simulate the cellular dislocation pattern in α-Ta at high temperature. Therefore we can
conclude that the proposed finite temperature MCDD crystal plasticity formulation is able
to capture different dislocation patterns of early stage based on first-principle constitutive
relation and the super-dual lattice tessellation of finite element mesh.
Based on the numerical simulation results presented above, we have found that MCDD
simulation has almost the same accuracy in terms of modeling stress-strain relation with
that of molecular dynamics, but higher computation efficiency. This allows us to study
mesoscale crystal plasticity at micron scale i.e. 1.0µm3 above, which is not reachable for MD
simulations under current computer technology. Moreover, we have demonstrated that as
a dislocation pattern dynamics, MCDD method can accurately predict the effect of crystal
orientation on the yielding stress (asymmetry yielding contour with respect to stereographic
triangle) by directly simulating the non-Schmid effect of BCC single crystals as well as
capture the size effect of crystal plasticity in micron-scale.
This dissertation is highlighted by following advances: (1) The finite temperature MCDD
model is able to capture accurate inelastic stress-strain relation comparable to MD results at
both low and high temperatures, and we can even capture dislocation nucleation and growth
process with obvious crystal plasticity. There is a significant development in computational
efficiency, which allows us to take further steps in simulation of crystal plasticity model at
millimeter scale that can be directly compared with experiment results; (2) MCDD model
can capture the non-Schmid effect of BCC single crystal α-Ta that is consistent with the MD
results; (3) MCDD model demonstrates that it can successfully capture size effect of up to
2.5µm3 micro-pillar specimen, which validates MCDD method in modeling and simulation
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of crystal plasticity; (5) MCDD method can capture cross-slip at lower temperature and
cellular dislocation pattern at high temperature in single crystal uniaxial compression test,
and (6) MCDD simulation results suggested that the dislocation pattern distribution may
be size-dependent as well.
We would like to emphasize the main and distinct advantages of the multiscale dislocation
pattern dynamics, which are: (1) the multiscale crystal defect dynamics is an atomistically
informed strain gradient crystal plasticity theory. It replies on the atomistic potential of
crystal material to derive stress-strain relation without or with less empiricism, and it uses
the material inherent and atomistically informed hyperelastic relation to naturally model
crystal plasticity if the underline finite element mesh is a super dual lattice tessellation
of the original crystal lattice; (2) being a multiscale strain gradient continuum theory, it
does not need to model dislocation core but still mathematically well-posed and regulated,
and (3) the super dual lattice tessellation finite element mesh consists of kinematic possible
dislocation patterns at the early deformation stage, so that this is an inclusive approach, but
not an ad hoc approach.
However, the method still has some unresolved issues. For example, in the current formula-
tion, the higher-order traction forces are negligible. However, since the temperature effects
has been included in the constitutive response, the temperature-related higher-order trac-
tion boundary condition may have significant effect on crystal plasticity as well. Moreover
for macro-scale dislocation pattern dynamics simulations, it will need massive MPI parallel
computation in order to resolve and accommodate the spatial and temporal scale of a par-
ticular dislocation pattern, which may range from 10 nm to 100 µm. For the above issues
and more, we hope to deal with them in the subsequent work.
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Appendix A

3D Hexagonal Prism Element Shape
Functions and Derivatives

In this Appendix, we present the 3D hexagonal prism element shape functions and their first
derivatives.
We first present the formulations of the 3D hexagonal prism element shape functions. To
do so, we first need the auxiliary shape functions of the plane quadratic hexagonal element
that are expressed as follows,

N1(ξ, η) = w1(1− 2w2 − 2w6); N2(ξ, η) = w2(1− 2w1 − 2w3)

N3(ξ, η) = w3(1− 2w2 − 2w4); N4(ξ, η) = w4(1− 2w3 − 2w5)

N5(ξ, η) = w5(1− 2w4 − 2w6); N6(ξ, η) = w6(1− 2w5 − 2w1)

N7(ξ, η) = 4w1w2; N8(ξ, η) = 4w2w3; N9(ξ, η) = 4w3w4;

N10(ξ, η) = 4w4w5; N11(ξ, η) = 4w5w6; N12(ξ, η) = 4w6w1 .

(A.1)
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in which, basis functions wk, k = 1 ∼ 6 are shown below:
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√
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(A.2)

Thus, it is very natural to extend the 2D hexagonal element shape functions to 3D hexagonal
prism element shape functions as shown in Fig.6.9(b) in the text. The shape functions are
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given below:

N1 = w1(1− 2w2 − 2w6)
(1 + ζ)ζ

2
; (A.3)

N2 = w2(1− 2w1 − 2w3)
(1 + ζ)ζ

2
(A.4)

N3 = w3(1− 2w2 − 2w4)
(1 + ζ)ζ

2
; (A.5)

N4 = w4(1− 2w3 − 2w5)
(1 + ζ)ζ

2
(A.6)

N5 = w5(1− 2w4 − 2w6)
(1 + ζ)ζ

2
; (A.7)

N6 = w6(1− 2w5 − 2w1)
(1 + ζ)ζ

2
(A.8)

N7 = 4w1w2
(1 + ζ)ζ

2
; N8 = 4w2w3

(1 + ζ)ζ

2
; (A.9)

N9 = 4w3w4
(1 + ζ)ζ

2
; N10 = 4w4w5

(1 + ζ)ζ

2
; (A.10)

N11 = 4w5w6
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2
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2
; (A.11)
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2
; (A.12)
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2
(A.13)

N15 = w3(1− 2w2 − 2w4)
(ζ − 1)ζ

2
; (A.14)

N16 = w4(1− 2w3 − 2w5)
(ζ − 1)ζ

2
(A.15)

N17 = w5(1− 2w4 − 2w6)
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2
; (A.16)

N18 = w6(1− 2w5 − 2w1)
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(A.17)
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To calculate the derivatives of 3D hexagonal prism element shape functions, we first provide
the derivatives of derivative of the wedge basis functions, which are shown below,
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and
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Therefore, we can have the first order derivatives of 3D hexagonal prism elements shape
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functions as shown below:
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Appendix B

Lattice Rotation and Projection
Operator

To capture the anisotropic feature of crystal plasticity, we need a lattice rotation and projec-
tion operator in computations[76], so that we can rotate a given vector v = (x, y, z) about
an arbitrary axis with direction vector r̂ by a finite angle θ based on the specific crystal
orientation as shown in Fig. B.1(a).
In this Appendix, we show that such operation can be written as the product of a matrix R
and the vector [v], i.e. R[v].
Firstly, we decompose v into two components:

v = v‖ + v⊥

where v‖ is parallel to r̂ and v⊥ is perpendicular to r̂.
Therefore, we have following relations,

v‖ =
v · r̂
|r̂|2

r̂ = (v · r̂)r̂, and v⊥ = v− (v · r̂)r̂ .

Considering the fact that
v = v‖ + v⊥

we can have the following relation based on linearity of operator T ,

T (v) = T (v‖ + v⊥) = T (v‖) + T (v⊥)

Due to the fact that v‖ is parallel to r̂, we have,

T (v‖) = v‖ .

Therefore,
T (v) = v‖ + T (v⊥)
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(a) (b)

Figure B.1: Rotation about an arbitrary axis: (a) rotation axis and rotation plane; (b)
rotated vector on rotation plane.

To calculate T (v⊥), the basis in 2D rotation plane is created in Fig.B.1(b),

{v⊥,w}

in which,
w = r̂ × v⊥ = r̂ × v

Based on Fig. B.1(b), we see that

T (v⊥) = cos θv⊥ + sin θw = cos θv⊥ + sin θ(r̂ × v)

and therefore,
T (v) = v‖ + T (v⊥)

= (v · r̂)r̂ + cos θv⊥ + sin θ(r̂ × v)

= (1− cos θ)(v · r̂)r̂ + cos θv + sin θ(r̂ × v)

(B.1)

Eq.(B.1) implies that there exists a rotation matrix R such that T (v) = Rv. To derive the
explicit expression of R, we first need two intermediary results.

Lemma 1 If u = (ux,uy,uz) and v = (vx,vy,vz), then

u× v =

 0 −uz uy
uz 0 −ux
−uy ux 0

 [v]

Lemma 2 Using the notation of the previous lemma, we have
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(u · v)u =

 u2
x uxuy uxuz

uxuy u2
y uyuz

uxuz uyuz u2
z

 [v]

Therefore, we are able to write T (v) as a matrix transformation or multiplication,

T (v) = (1− cos θ)(v · r̂)r̂ + cos θv + sin θ(r̂ × v)

= (1− cos θ)

 u2
x uxuy uxuz

uxuy u2
y uyuz

uxuz uyuz u2
z

v +

1 0 0
0 1 0
0 0 1

 cos θv + sin θ

 0 −uz uy
uz 0 −ux
−uy ux 0

v

=

 tu2
x + C tuxuy − Suz tuxuz + Suy

tuxuy + Suz tu2
y + C tuyuz − Sux

tuxuz − Suy tuyuz + Sux tu2
z + C


,

(B.2)
where

r̂ = (ux, uy, uz) C := cos θ S := sin θ t := 1− cos θ .
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Appendix C

Detailed Formulations of Derivative of
Dkk in Different Process Zones

In this appendix, we will discuss the expanded formulations of derivative of Dkk in different
process zones.

C.1 Derivative of Dkk in 1st-order Process Zone

The first order derivative of Dkk in 1st-order process zone is:

∂Dkk

∂G
=

1

Ωu
0

{
F ′′′(ρ̄)

∑
j

[
ρ′(lj)

∂lj
∂G

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+ 2F ′′(ρ̄)

∑
j

[
∂

∂G
(ρ′(lj)

rjk
lj

)

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+ F ′′(ρ̄)

∑
j

[
ρ′(lj)

∂lj
∂G

]
·
∑
j

[
(ρ′′(lj)−

ρ′(lj)

lj
)(
rjk
lj

)2 +
ρ′(lj)

lj

]
+ F ′(ρ̄)

∑
j

[
∂

∂G
(ρ′′(lj)−

ρ′(lj)

lj
)(
rjk
lj

)2 + 2(ρ′′(lj)−
ρ′(lj)

lj
)
rjk
lj

∂

∂G
(
rjk
lj

) +
∂

∂G
(
ρ′(lj)

lj
)

]

+
1

2

∑
j

[
∂

∂G
(φ′′(lj)−

φ′(lj)

lj
)(
rjk
lj

)2 + 2(φ′′(lj)−
φ′(lj)

lj
)
rjk
lj

∂

∂G
(
rjk
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) +
∂
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(
φ′(lj)

lj
)

]}
(C.1)
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in which,

∂F ′′(ρ̄)

∂G
= F ′′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj

2lj

]
(C.2)

∂

∂G
(ρ′(lj)

rjk
lj

) = ρ′′(lj)
∂lj
∂G

rjk
lj

+ ρ′(lj)
∂

∂G
(
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lj

)
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1

lj

∂rjk
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− rjk

l2j

rj ⊗Rj ⊗Rj

2lj

]
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∂F ′(ρ̄)

∂G
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∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj

2lj

]
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∂

∂G
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) =

[
ρ′′′(lj)−
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lj
+
ρ′(lj)

l2j

]
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2lj
(C.5)

∂

∂G
(
rjk
lj

) =
1

lj

∂rjk
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− rjk

l2j
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2lj
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(
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lj
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l2j
)
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∂
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∂rjk
∂G

=
1

2
δikei ⊗Rj ⊗Rj (C.10)
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=
1

2lj
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=
1

2lj

∂rmrm
∂GnPQ

en ⊗EP ⊗EQ
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1
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∂GnPQ
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∂

∂GnPQ
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1

2
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]
en ⊗EP ⊗EQ

=
1
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[
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1

2
δmnδPAδQBRARB

]
en ⊗EP ⊗EQ

=
1
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rnRPRQen ⊗EP ⊗EQ =

rj ⊗Rj ⊗Rj

2lj
(C.11)
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so that we have the expanded formulation of ∂Dkk

∂G
:

∂Dkk

∂G
=

1

Ωu
0

{
F ′′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj

2lj

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+2F ′′(ρ̄)

∑
j

[
ρ′′(lj)

rjk
lj

rj ⊗Rj ⊗Rj

2lj
+ ρ′(lj)

(
1

lj

∂rjk
∂G
− rjk

l2j

rj ⊗Rj ⊗Rj

2lj

)]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+ F ′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj

2lj

]
·
∑
j

[
(ρ′′(lj)−

ρ′(lj)

lj
)(
rjk
lj

)2 +
ρ′(lj)

lj

]
+ F ′(ρ̄)

∑
j

[
(ρ′′′(lj)−

ρ′′(lj)

lj
+
ρ′(lj)

l2j
)
rj ⊗Rj ⊗Rj

2lj
(
rjk
lj

)2

+ 2(ρ′′(lj)−
ρ′(lj)

lj
)
rjk
lj

(
1

2lj
δikei ⊗Rj ⊗Rj −

rjk
l2j

rj ⊗Rj ⊗Rj

2lj
)

+ (
ρ′′(lj)

lj
− ρ′(lj)

l2j
)
rj ⊗Rj ⊗Rj

2lj

]
+

1

2

∑
j

[
(φ′′′(lj)−

φ′′(lj)

lj
+
φ′(lj)

lj
)
rj ⊗Rj ⊗Rj

2lj
(
rjk
lj

)2

+ 2(φ′′(lj)−
φ′(lj)

lj
)
rjk
lj

(
1

2lj
δikei ⊗Rj ⊗Rj −

rjk
l2j

rj ⊗Rj ⊗Rj

2lj
)

+ (
φ′′(lj)

lj
− φ′(lj)

l2j
)
rj ⊗Rj ⊗Rj

2lj

]}
(C.12)
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C.2 Derivative of Dkk in 2nd-order Process Zone

The first order derivative of Dkk in 2nd-order process zone is:

∂Dkk

∂H
=

1

Ωu
0

{
∂F ′′(ρ̄)

∂H
·
∑
j

[
ρ′(lj)

rjk
lj

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+ 2F ′′(ρ̄)

∑
j

[
∂

∂H
(ρ′(lj)

rjk
lj

)

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+
F ′(ρ̄)

∂H
·
∑
j

[
(ρ′′(lj)−

ρ′(lj)

lj
)(
rjk
lj

)2 +
ρ′(lj)

lj

]
+ F ′(ρ̄)

∑
j

[
∂

∂H
(ρ′′(lj)−

ρ′(lj)

lj
)(
rjk
lj

)2

+ 2(ρ′′(lj)−
ρ′(lj)

lj
)
rjk
lj

∂

∂H
(
rjk
lj

) +
∂

∂H
(
ρ′(lj)

lj
)

]
+

1

2

∑
j

[
∂

∂H
(φ′′(lj)−

φ′(lj)

lj
)(
rjk
lj

)2

+ 2(φ′′(lj)−
φ′(lj)

lj
)
rjk
lj

∂

∂H
(
rjk
lj

) +
∂

∂H
(
φ′(lj)

lj
)

]}

(C.13)
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in which,

∂F ′′(ρ̄)

∂H
= F ′′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj ⊗Rj

6lj

]
(C.14)

∂

∂H
(ρ′(lj)

rjk
lj

) = ρ′′(lj)
∂lj
∂H

rjk
lj

+ ρ′(lj)
∂

∂H
(
rjk
lj

)

= ρ′′(lj)
rjk
lj

rj ⊗Rj ⊗Rj ⊗Rj

6lj
+ ρ′(lj)

[
1

lj

∂rjk
∂H

− rjk
l2j

rj ⊗Rj ⊗Rj ⊗Rj

6lj

]
(C.15)

∂F ′(ρ̄)

∂H
= F ′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj ⊗Rj

6lj

]
(C.16)

∂

∂H
(ρ′′(lj)−

ρ′(lj)

lj
) =

[
ρ′′′(lj)−

ρ′′(lj)

lj
+
ρ′(lj)

l2j

]
rj ⊗Rj ⊗Rj ⊗Rj

6lj
(C.17)

∂

∂H
(
rjk
lj

) =
1

lj

∂rjk
∂H

− rjk
l2j

rj ⊗Rj ⊗Rj ⊗Rj

6lj
(C.18)

∂

∂H
(
ρ′(lj)

lj
) = (

ρ′′(lj)

lj
− ρ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj

6lj
(C.19)

∂

∂H
(φ′′(lj)−

φ′(lj)

lj
) =

[
φ′′′(lj)−

φ′′(lj)

lj
+
φ′(lj)

l2j

]
rj ⊗Rj ⊗Rj ⊗Rj

6lj
(C.20)

∂

∂H
(
φ′(lj)

lj
) = (

φ′′(lj)

lj
− φ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj

6lj
(C.21)

∂rjk
∂H

=
∂(FkARA + 1

2
GkBCRBRC + 1

6
HkDEFRDRERF )

∂HmPQR

em ⊗EP ⊗EQ ⊗ER

=
1

6
δkmδPDδEQδFRRDRERFem ⊗EP ⊗EQ ⊗ER

=
1

6
δkmem ⊗Rj ⊗Rj ⊗Rj (C.22)

∂lj
∂H

=
1

2lj

∂rmrm
∂HnPQS

en ⊗EP ⊗EQ ⊗ES

=
1

2lj
2rm

∂ 1
6
HmXY ZRXRYRZ

∂HnPQS

en ⊗EP ⊗EQ ⊗ES

=
1

2lj

1

3
rmδmnδXP δY QδZSRXRYRZen ⊗EP ⊗EQ ⊗ES

=
1

2lj

1

3
rmδmnδXP δY QδZSRXRYRZen ⊗EP ⊗EQ ⊗ES

=
rj ⊗Rj ⊗Rj ⊗Rj

6lj
(C.23)
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so that we have the expanded formulation of ∂Dkk

∂H
:

∂Dkk

∂H
=

1

Ωu
0

{
F ′′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj ⊗Rj

6lj

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+ 2F ′′(ρ̄)

∑
j

[
ρ′′(lj)

rjk
lj

rj ⊗Rj ⊗Rj ⊗Rj

6lj

+ ρ′(lj)

(
1

6lj
δkmem ⊗Rj ⊗Rj ⊗Rj −

rjk
l2j

rj ⊗Rj ⊗Rj ⊗Rj

6lj

)]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+ F ′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj ⊗Rj

6lj

]
·
∑
j

[
(ρ′′(lj)−

ρ′(lj)

lj
)(
rjk
lj

)2 +
ρ′(lj)

lj

]
+ F ′(ρ̄)

∑
j

[
(ρ′′′(lj)−

ρ′′(lj)

lj
+
ρ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj

6lj
(
rjk
lj

)2

+ 2(ρ′′(lj)−
ρ′(lj)

lj
)
rjk
lj

(
1

6lj
δkmem ⊗Rj ⊗Rj ⊗Rj −

rjk
l2j

rj ⊗Rj ⊗Rj ⊗Rj

6lj
)

+ (
ρ′′(lj)

lj
− ρ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj

6lj

]
+

1

2

∑
j

[
(φ′′′(lj)−

φ′′(lj)

lj
+
φ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj

6lj
(
rjk
lj

)2

+ 2(φ′′(lj)−
φ′(lj)

lj
)
rjk
lj

(
1

6lj
δkmem ⊗Rj ⊗Rj ⊗Rj −

rjk
lj

rj ⊗Rj ⊗Rj ⊗Rj

6lj
)

+ (
φ′′(lj)

lj
− φ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj

6lj

]}
(C.24)
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C.3 Derivative of Dkk in 3rd-order Process Zone

The first order derivative of Dkk in 3rd-order process zone is:

∂Dkk

∂K
=

1

Ωu
0

{
∂F ′′(ρ̄)

∂K
·
∑
j

[
ρ′(lj)

rjk
lj

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+ 2F ′′(ρ̄)

∑
j

[
∂

∂K
(ρ′(lj)

rjk
lj

)

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+
F ′(ρ̄)

∂K
·
∑
j

[
(ρ′′(lj)−

ρ′(lj)

lj
)(
rjk
lj

)2 +
ρ′(lj)

lj

]
+ F ′(ρ̄)

∑
j

[
∂

∂K
(ρ′′(lj)−

ρ′(lj)

lj
)(
rjk
lj

)2

+ 2(ρ′′(lj)−
ρ′(lj)

lj
)
rjk
lj

∂

∂K
(
rjk
lj

) +
∂

∂K
(
ρ′(lj)

lj
)

]
+

1

2

∑
j

[
∂

∂K
(φ′′(lj)−

φ′(lj)

lj
)(
rjk
lj

)2

+ 2(φ′′(lj)−
φ′(lj)

lj
)
rjk
lj

∂

∂K
(
rjk
lj

) +
∂

∂K
(
φ′(lj)

lj
)

]}

(C.25)
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in which,

∂F ′′(ρ̄)

∂K
= F ′′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj

]
(C.26)

∂

∂K
(ρ′(lj)

rjk
lj

) = ρ′′(lj)
∂lj
∂K

rjk
lj

+ ρ′(lj)
∂

∂K
(
rjk
lj

)

= ρ′′(lj)
rjk
lj

rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj

+ ρ′(lj)

[
1

lj

∂rjk
∂K

− rjk
l2j

rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj

]
(C.27)

∂F ′(ρ̄)

∂K
= F ′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj

]
(C.28)

∂

∂K
(ρ′′(lj)−

ρ′′(lj)

lj
) =

[
ρ′′′(lj)−

ρ′′(lj)

lj
+
ρ′(lj)

l2j

]
rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj
(C.29)

∂

∂K
(
rjk
lj

) =
1

lj

∂rjk
lj
− rjk

l2j

rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj
(C.30)

∂

∂K
(
ρ′(lj)

lj
) = (

ρ′′(lj)

lj
− ρ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj
(C.31)

∂

∂K
(φ′′(lj)−

φ′(lj)

lj
) = (φ′′′(lj)−

φ′′(lj)

lj
+
φ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj
(C.32)

∂

∂H
(
φ′(lj)

lj
) = (

φ′′(lj)

lj
− φ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj
(C.33)

∂rjk
∂K

=
∂(FkARA + 1

2
GkBCRBRC + 1

6
HkDEFRDRERF + 1

24
KkWXY ZRWRXRYRZ)

∂KmPQRS

em ⊗EP ⊗EQ ⊗ER ⊗ES

=
1

24
δkmδWP δXQδY RδZSRWRXRYRZem ⊗EP ⊗EQ ⊗ER ⊗ES

=
1

24
δkmem ⊗Rj ⊗Rj ⊗Rj ⊗Rj

(C.34)

∂lj
∂K

=
1

2lj

∂rmrm
∂KnPQRS

en ⊗EP ⊗EQ ⊗ER ⊗ES

=
1

2lj
2rm

∂ 1
24
KmWXY ZRWRXRYRZ

∂KnPQRS

en ⊗EP ⊗EQ ⊗ER ⊗ES

=
1

24lj
rmδmnδWP δXQδY RδZSRWRXRYRZen ⊗EP ⊗EQ ⊗ERES

=
rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj

(C.35)
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so that we have the expanded formulation of ∂Dkk

∂K
:

∂Dkk

∂K
=

1

Ωu
0

{
F ′′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+2F ′′(ρ̄)

∑
j

[
ρ′′(lj)

rjk
lj

rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj

+ ρ′(lj)

(
1

lj

∂rjk
∂K

− rjk
l2j

rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj

)]
·
∑
j

[
ρ′(lj)

rjk
lj

]
+ F ′′(ρ̄)

∑
j

[
ρ′(lj)

rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj

]
·
∑
j

[
(ρ′′(lj)−

ρ′(lj)

lj
)(
rjk
lj

)2 +
ρ′(lj)

lj

]
+ F ′(ρ̄)

∑
j

[
(ρ′′′(lj)−

ρ′′(lj)

lj
+
ρ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj
(
rjk
lj

)2

+ 2(ρ′′(lj)−
ρ′(lj)

lj
)
rjk
lj

(
1

24lj
δkmem ⊗Rj ⊗Rj ⊗Rj ⊗Rj −

rjk
l2j

rj ⊗Rj ⊗Rj ⊗Rj

24lj
)

+ (
ρ′′(lj)

lj
− ρ′(lj)

l2j
)
rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj

]
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lj
+
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)
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(
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)2

+ 2(φ′′(lj)−
φ′(lj)

lj
)
rjk
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(
1

24lj
δkmem ⊗Rj ⊗Rj ⊗Rj ⊗Rj −

rjk
l2j

rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj
)

+ (
φ′′(lj)
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)
rj ⊗Rj ⊗Rj ⊗Rj ⊗Rj

24lj
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(C.36)
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Appendix D

Crystal Lattice-informed MCDD
Model Mesh on FCC Crystals

D.1 Dual Lattice Tessellation on FCC Crystals

The crystal lattice-based Finite Element mesh of MCDD model can also be applied on Face-
centered Cubic (FCC) crystals. Different from Body-centered Cubic (BCC) crystals, FCC
crystal has the most close-packed plane, i.e. {111}. Therefore, the first nearest atom shell
having 12 atoms will be selected as the representative atoms to construct the corresponding
Voronoi-Dirichlet Polyhedron (VDP) that is rhombic dodecahedron, which is referred as the
unit cell of dual lattice tessellation in FCC crystal structure (see Fig.D.1(b)). The FCC unit
cell of crystal lattice is a cuboctahedron (see Fig.D.1(a)).

(a) (b)

Figure D.1: (a) unit cell of FCC crystal lattice; (b) unit cell of FCC dual-lattice.
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(a) (b)

Figure D.2: (a) upper six prism elements (second-order process zones); (b) lower six prism
elements.

The similar construction procedure of a three-dimensional FCC dual-lattice process zone
tessellation is shown as follows. Based on representative atoms, the Voronoi-Dirichlet Poly-
hedron (VDP) can be determined and is labeled as the highest order process zone element
in the MCDD theory. The square prism element is termed as 2nd-order process zone, the
wedge element is termed as 1st-order process zone and the bulk element is termed as 0th-
order process zone.
Due to the specialties of the rhombic dodecahedron as the VDP of FCC crystal structure, 12
facets of the highest order process zone element (rhombic dodecahedron element) denote 12
square prism elements needed to fill in the gaps of facet-to-facet of rhombic dodecahedron
elements (see Fig.D.2 and Fig.D.3(a)) and 24 edges of rhombic dodecahedron element denote
24 wedge elements needed to fill in the gaps of edge-to-edge of rhombic dodecahedron ele-
ments (see Fig.D.3(b)-(e)), and 14 vertices of rhombic dodecahedron denote 14 bulk elements
(8 tetrahedron and 6 pentahedron elements) needed to fill in the gaps of the vertex-to-vertex
of rhombic dodecahedron elements (see Fig.D.3(f)-(l)).
For a dual-lattice tessellation unit cell of Face-centered Cubic crystal, there are 13 rhombic
dodecahedron elements (one locates at the centre of the dual-lattice structure and other 14
represent the nearest atom shell locations); Besides, a rhombic dodecahedron element has
totally 12 facets therefore corresponding 3D square prism elements are needed; Finally 24
wedge elements (see Fig.D.3(b)-(e)) and 14 bulk elements including 8 tetrahedron and 6
pentahedron elements (see Fig.D.3(f)-(l)) will cover the remained void space.
The vertex-to-vertex between rhombic dodecahedron element and square prism element, the
edge-to-edge between rhombic dodecahedron element and wedge element, the facet-to-facet
between rhombic dodecahedron element and prism element are shown in Fig.D.4.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure D.3: Components of FCC dual lattice tessellation unit cell: (a) four wedge element
sets and each set has six wedge elements ((b)-(e)); and seven bulk element sets and each set
has two bulk elements ((f)-(l)).
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(a) (b) (c)

Figure D.4: Detailed connections of 3rd-order process zone in FCC crystals with: (a) 2nd-
order process zone (prism element); (b) 1st-order process zone (wedge element); (c) 0th-order
process zone (bulk element).

D.2 Discrete crystal defect model for FCC crystals

The super dual-lattice tessellation for a Face-centered Cubic (FCC) crystal lattice will be
discussed. The lattice basis in FCC crystal lattice is introduced as shown in Fig.D.5(a),

a1 =
(

0,
a

2
,
a

2

)
, a2 =

(a
2
, 0,

a

2

)
, and a3 =

(a
2
,
a

2
, 0
)

Secondly, the “super” lattice (see Fig.D.5(c)) created has proportional size to a regular
crystal lattice, a coefficient β1 is introduced to change basis vectors,

bi = β1ai, i = 1, 2, 3 β1 > 1

Thirdly, the dual lattice of Face-centered Cubic crystal is chosen as a frame of super lattice
sites and accordingly the coordinate of each vertex is,

ε1 = a (1, 1, 1) , ε2 = a (−1, 1, 1) , ε3 = a (1,−1, 1) , ε4 = a (−1,−1, 1)

ε5 = a (1, 1,−1) , ε6 = a (−1, 1,−1) , ε7 = a (1,−1,−1) , ε8 = a (−1,−1,−1)

ε9 = a (0, 0, 2) , ε10 = a (0, 0,−2) , ε11 = a (0, 2, 0) , ε12 = a (0,−2, 0)

ε13 = a (2, 0, 0) , ε14 = a (−2, 0, 0)

and the scaled Voronoi-Dirichlet Polyhedron (VDP) cell of FCC crystals (see Fig.D.5(b)) is
placed at each super lattice site. The scalability of VDP cell is described as ri = β2εi, β2 >
0. The location of each atom in the super lattice can be labelled as l ± εi, i = 1, 2, · · · , 6, as
shown in Fig.D.5(c) in which

ε1 = (0, 1, 1) , ε2 = (1, 0, 1) , ε3 = (1, 1, 0)

ε4 = (1,−1, 0) , ε5 = (1, 0,−1) , ε6 = (0, 1,−1)
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Also the coordinate of each vertex in FCC super dual lattice mesh is denoted as

x(l) = ljb, and x(l, εi) = ljb+ ri, i = 1, 2, · · · , 14

in which, lj denotes l ± εj and b = (b1, b2, b3).

(a) (b) (c)

Figure D.5: Exterior calculus on super dual-lattice complex: (a) Face-centered Cubic crys-
tal lattice basis; (b) the scaled Voronoi-Dirichlet Polyhedral (rhombic dodecahedron) cell
at lattice site l; (c) neighboring scaled VDPs position numbering in a super dual-lattice
tessellation unit cell.

Accordingly, each scaled VDP cell will sit at each lattice site of Face-centered Cubic crystal
super lattice. The gaps or remained spaces among them can be filled by other 3D polytopal
complexes without overlapping. The way of combining different polytopal complexes is
through surface-to-surface (prism cell and rhombic dodecahedron cell), edge-to-edge (wedge
cell and rhombic dodecahedron cell) and vertex-to-vertex (bulk cell and rhombic dodecahe-
dron cell) connection.
We applied consistent symbols τ ij(l(`),m) to describe the relations among different 3D poly-
topal complexes as follows. For example, for central scaled rhombic dodecahedron τ 3

3 (l), we
have

∂τ 1
3 (l, 1) = τ 0

3 (l, 6)− τ 0
3 (l, 1) (D.1)

∂τ 2
3 (l, 1) = τ 1

3 (l, 1) + τ 1
3 (l, 2)− τ 1

3 (l, 3)− τ 1
3 (l, 4) (D.2)

and
∂τ 2

3 (l, 1) = τ 2
3 (l, 1) + τ 2

3 (l, 2)− τ 2
3 (l, 3) + τ 2

3 (l, 4)− τ 2
3 (l, 5)

− τ 2
3 (l, 6) + τ 2

3 (l, 7) + τ 2
3 (l, 8)− τ 2

3 (l, 9)

− τ 2
3 (l, 10) + τ 2

3 (l, 11) + τ 2
3 (l, 12)

(D.3)

which are shown in Fig.D.6.
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Figure D.6: Boundary operator illustration:from vertex to edge, from edge to surface, from
surface to volume

The co-boundary δ is used to define the relations among different types of elements. For
example, for the central scaled rhombic dodecahedron τ 3

3 (l), we have

δτ 0
3 (l, 2) = τ 1

3 (l, 1) + τ 1
3 (l, 2) + τ 1

3 (l, 3) + τ 1
2 (l(1), 3) + τ 1

2 (l(2), 2) + τ 1
2 (l(3), 1) (D.4)

δτ 1
3 (l, 3) = −τ 2

3 (l(2), 1)− τ 2
3 (l(3), 2)− τ 2

3 (l, 3)− τ 2
3 (l, 4) (D.5)

δτ 2
3 (l, 2) = τ 3

3 (l)− τ 3
2 (l, 1) (D.6)

which established the links from vertex to edge, from edge to surface and surface to volumes
as shown in Fig.D.7.

Figure D.7: Co-boundary operator illustration: from edge to vertex, from surface to edge,
from volume to surface

Furthermore, we can also apply the cell complex notation defined above to represent oth-
er types of elements. For example, the prism element τ 3

2 (l,m),m = 1, 2, · · · , 12, (see
Fig.D.8(a)). We write the exterior representation by using boundary operator as shown
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in Fig.D.8(b),

∂τ 1
2 (l(2), 1) = −τ 0

3 (l, 2) + τ 0
3 (l + ε2, 7) (D.7)

∂τ 1
2 (l(2), 2) = −τ 0

3 (l, 14) + τ 0
3 (l + ε2, 11) (D.8)

in which, τ 0
3 (l+ε2, j) denotes it is the j-th vertex j = 1, 2, · · · , 14 of on the l±εi, i = 1, 2, · · · , 6

polytopal cell. Also we have (shown in Fig.D.8(c)-(d)),

∂τ 2
2 (l(2), 1) = τ 1

2 (l(2), 2)− τ 1
3 (l + ε2, 15)− τ 1

2 (l(2), 1) + τ 1
3 (l, 9) (D.9)

∂τ 3
2 (l, 2) = τ 2

2 (l(2), 1) + τ 2
2 (l(2), 2) + τ 2

2 (l(2), 3)− τ 2
2 (l(2), 4)− τ 2

3 (l, 4) (D.10)

+ τ 2
3 (l + ε2, 9) (D.11)

The wedge complex cell (1st-order process zone), τ 3
1 (l,m),m = 1, 2, · · · , 24, (see Fig.D.9(a))

is discussed here. The geometry of the wedge complex cell can be described by topology
boundary operator. For example, from vertex to edge (as shown in Fig.D.9(b))

∂τ 1
1 (l(1), 1) = −τ 0

3 (l, 2) + τ 0
3 (l + ε1, 8) (D.12)

∂τ 1
1 (l(1), 2) = −τ 0

3 (l, 2) + τ 0
3 (l + ε2, 7) (D.13)

And from edge to surface, surface to volume (as shown in Fig.D.9(c)-(d))

∂τ 2
1 (l(1), 1) = τ 1

1 (l(1), 2)− τ 1
1 (l(1), 1) + τ 1

1 (l(1), 3) (D.14)

∂τ 3
1 (l, 1) = τ 2

1 (l(1), 1)− τ 2
1 (l(1), 2)− τ 2

1 (l(1), 3) (D.15)

− τ 2
1 (l(1), 4) + τ 2

1 (l(1), 5) (D.16)

The bulk complex cell is discussed here. Different from other polytopal complexes, the bulk
complex cell in FCC dual lattice tessellation includes tetrahedron and pentahedron. The
tetrahedron is simplex and a pentahedron can be divided into two tetrahedron. In each
rhombic dodecahedron complex cell, 14 vertices correspond to 14 bulk complex cells (0th-
order process zone), i.e. τ 3

0 (l,m),m = 1, 2, · · · , 14, (see Fig.D.10(a)). The geometry of a
bulk complex cell is described by topology boundary operator. For example, from vertex to
edge (as shown in Fig.D.10(b)),

∂τ 1
0 (l(1), 1) = −τ 0

3 (l + ε3, 5) + τ 0
3 (l + ε1, 8) (D.17)

∂τ 1
0 (l(1), 2) = −τ 0

3 (l + ε3, 5) + τ 0
3 (l + ε2, 7) (D.18)

And from edge to surface, from surface to volume (see Fig.D.10(c)-(d)),

∂τ 2
0 (l(1), 1) = τ 1

0 (l(1), 2) + τ 1
0 (l(1), 3)− τ 1

0 (l(1), 1) (D.19)

∂τ 3
0 (l, 1) = −τ 2

0 (l(1), 1) + τ 2
0 (l(1), 2) + τ 2

0 (l(1), 3)− τ 2
0 (l(1), 4) (D.20)
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(a) (b)

(c) (d)

Figure D.8: Boundary operator on prism element: (a) prism cells (2nd-order process zone);
(b) from vertex to edge; (c) from edge to surface; (d) from surface to volume.
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(a) (b)

(c) (d)

Figure D.9: Boundary operator on wedge element: (a) 1st-order process zone (wedge) ele-
ments; (b) from vertex to edge; (c) from edge to surface; (d) from surface to volume.
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(a) (b)

(c) (d)

Figure D.10: Boundary operator on bulk element: (a) 0th-order process zone (bulk) elements;
(b) from vertex to edge; (c) from edge to surface; (d) from surface to volume.




