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Abstract: Research on fusion modeling of high spatial and temporal resolution images typically
uses MODIS products at 500 m and 250 m resolution with Landsat images at 30 m, but the effect on
results of the date of reference images and the ‘mixed pixels’ nature of moderate-resolution imaging
spectroradiometer (MODIS) images are not often considered. In this study, we evaluated those effects
using the flexible spatiotemporal data fusion model (FSDAF) to generate fusion images with both
high spatial resolution and frequent coverage over three cotton field plots in the San Joaquin Valley of
California, USA. Landsat images of different dates (day-of-year (DOY) 174, 206, and 254, representing
early, middle, and end stages of the growing season, respectively) were used as reference images in
fusion with two MODIS products (MOD09GA and MOD13Q1) to produce new time-series fusion
images with improved temporal sampling over that provided by Landsat alone. The impact on
the accuracy of yield estimation of the different Landsat reference dates, as well as the degree of
mixing of the two MODIS products, were evaluated. A mixed degree index (MDI) was constructed
to evaluate the accuracy and time-series fusion results of the different cotton plots, after which the
different yield estimation models were compared. The results show the following: (1) there is a strong
correlation (above 0.6) between cotton yield and both the Normalized Difference Vegetation Index
(NDVI) from Landsat (NDVIL30) and NDVI from the fusion of Landsat with MOD13Q1 (NDVIF250).
(2) Use of a mid-season Landsat image as reference for the fusion of MODIS imagery provides a
better yield estimation, 14.73% and 17.26% higher than reference images from early or late in the
season, respectively. (3) The accuracy of the yield estimation model of the three plots is different and
relates to the MDI of the plots and the types of surrounding crops. These results can be used as a
reference for data fusion for vegetation monitoring using remote sensing at the field scale.

Keywords: FSDAF; mixed pixel; cotton growth; field scale; MDI

1. Introduction

Time-series data from satellite images with frequent coverage are important for study-
ing land surface dynamics, such as monitoring vegetation phenology [1,2], detecting land
cover and land-use change [3], and estimating agriculture intensity [4]. Additionally, ac-
curate spatiotemporal information about the crop condition during the growing season
is critical for crop management and yield estimation [5–7]. It is important to be able to
estimate crop yields before harvest for food security and commodity trading purposes.

Satellite images with a long return cycle with fine spatial resolution and a short return
cycle with coarse resolution can be used for applications that require imagery from the past
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several decades. Data from the moderate resolution imaging spectroradiometer (MODIS)
and the National Oceanic and Atmospheric Association (NOAA) advanced very high-
resolution radiometer (AVHRR) have coverage every 1–2 days, but the spatial resolution is
coarse at 250 m to 1 km. The other type of data have a fine spatial resolution, but the revisit
cycle is long. It is difficult to acquire remote sensing (RS) images with both high spatial
resolution and frequent coverage due to technical and budget limitations [8]. For example,
RS images acquired from the Landsat and SPOT series and Indian remote sensing (IRS)
satellites with spatial resolutions from 6 to 30 m are usually the primary data source for land
use/land cover mapping and change detection [9], ecosystem dynamic monitoring [10,11]
and biogeochemical parameter estimation [12]. However, these satellites have longer return
cycles (e.g., Landsat is 16 d; IRS is 24 d) and are subject to frequent cloud contamination and
other poor atmospheric conditions [13]. These conditions have limited the application of
these satellites in detecting rapid surface changes associated with intra-seasonal ecosystem
variations and natural disasters [14]. In contrast, MODIS has a shorter revisit cycle and can
provide frequent observations, but the spatial resolution is coarse [15]. As such, MODIS
data cannot meet the requirements for surface cover change and ecosystem monitoring at
farm and field scales. Thus, the fusion of data from different types of sensors has become
a feasible and less costly method to improve the utility of RS data to monitor surface
dynamics at the local level [16].

Spatiotemporal data fusion methods of high spatial and temporal resolution images
have been developed to blend these two types of satellite images to generate synthesized
data with both high spatial resolution and frequent coverage. Among the weighted
function-based methods, the spatial and temporal adaptive reflectance fusion model
(STARFM) was the first developed [17]. STARFM assumes that changes in reflectance
are consistent and comparable at MODIS and Landsat thematic mapper (TM) resolu-
tions and therefore predicts pixel values using a function that gives a higher weight
to more pure MODIS pixels based on information from neighboring Landsat TM pix-
els. Although STARFM is easy to understand and widely used, it still has the following
problems: (1) STARFM had a good effect in predicting the gradient information, but it
cannot predict the instantaneous disturbance events in the short term. (2) STARFM did
not consider reflectance directionality. (3) STARFM assumed that MODIS pixel is pure
and homogeneous. In response to these problems, scholars have made improvements;
the spatial–temporal adaptive algorithm for mapping reflectance change (STAARCH)
and the enhanced STARFM method (ESTARFM) were two other examples of trials to
improve the original STARFM to detect the land-cover change and make it applicable in
the heterogeneous landscape [18,19].

Emelyanova et al. conducted a comprehensive study to investigate the performance of
STARFM and ESTARFM in two landscapes with contrasting spatial and temporal dynamics,
and their results demonstrate that the performance of the data fusion methods is strongly
associated with the spatial and temporal variance of the land cover [20]. Even though
ESTARFM is better than STARFM in heterogeneous landscapes, it does not perform as
well when predicting abrupt changes in land cover types. Additionally, the simulation
accuracy is low when there is a large cloud cover. However, the difficulty in input data
preparation (e.g., certain pairs of fine and coarse resolution images acquired on the same
date) significantly limited their applicability. In order to accurately predict high-precision
Landsat images and overcome the prediction error caused by large heterogeneous mutation
regions, Zhu et al. proposed the flexible spatiotemporal data fusion model (FSDAF) and
showed that FSDAF created more accurate fused images and retained more spatial detail
than STARFM [21]. More importantly, FSDAF closely captures reflectance changes caused
by land cover conversions, which is a major issue with the current spatiotemporal data
fusion methods. In addition, FSDAF only requires a reference image for Landsat and
MODIS and a MODIS image for the predicted time. FSDAF effectively reduces the amount
of data input and is easily operated.
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At present, global land cover and land surface phenology products (MOD09GA) are
available at 500 m spatial resolution from MODIS [22,23], but the 500 m spatial resolution
is too coarse for most crop fields. This resolution often results in mixed pixels of different
vegetation or crop types, which may have very different phenological growth cycles [24,25].
The time-series MOD13Q1 250 m MODIS NDVI data are the primary source for most crop
yield estimation models [26,27]. This study evaluated Landsat images of different dates to
determine the optimal reference date for input fine image and then generated fused images
of both MOD09GA and of MOD13Q1 and compared the results. In addition, we analyzed
the effect of mixed pixels by comparing the accuracy of yield estimation of fusion products
from the two different MODIS resolutions.

Here, we extend the application of fusion images to field-scale study. The main objec-
tive of this study was to evaluate the ability of a Landsat–MODIS data fusion methodology
to generate field scale data at 30 m resolution. Since crop yield can be predicted accu-
rately using NDVI (and other indices) obtained at the peak of the growing season (peak
greenness) [28–30], MOD13Q1 is a 16-day product, for which we can identify the specific
DOY 230 because the day with the highest NDVI value is within the 16-day period for
the MOD13Q1 product. In this way, we evaluated the fusion outputs by first comparing
them to Landsat NDVI at DOY 230, and then, for the best outputs, by assessing their
ability to predict yield. Specifically, our aims were to: (1) evaluate the fusion results of
Landsat–MODIS data (MOD09GA and MOD13Q1); (2) evaluate the effects of different
Landsat image dates on the results of the time-series fusion NDVI; and (3) assess the fusion
results of Landsat–MODIS data (MOD09GA or MOD13Q1) over three cotton plots through
MDI and review the impact on the accuracy of fused Landsat–MODIS images.

2. Materials and Methods
2.1. Study Area

The study area is located on the western side of the southern San Joaquin Valley
of California, USA, and has been extensively used for RS time-series research [31,32].
Cloud-free Landsat–MODIS pairs were available throughout the year because the San
Joaquin Valley has a Mediterranean climate, with hot and dry summers (maximum of 40 ◦C
and a day/night difference of approximately 16 ◦C) and cool and wet winters (average
annual rainfall of 854 mm). The rainy season normally runs from November to April, and
there was little rainfall recorded during the study period of May–September 2002 (https:
//www.usclimatedata.com/climate/california/united-states (accessed on 29 July 2021)).
Three cotton plots (labeled A, B, and) were selected as the study area (Figure 1) because
detailed cotton yield data for these fields were available for validation. Compared to
MODIS images, Landsat NDVI has a relatively fine spatial resolution of 30 m (Figure 1b),
and the mixed pixel problem is therefore not serious. Figure 1b–d present the Landsat and
MODIS images of the three plots, each of which covers an area of approximately 9 pixels at
the 250 m resolution of MOD13Q1 (Figure 1c) and only 1 pixel at the 500 m resolution of
MOD09GA (Figure 1d). Figure 2 shows the yield map of the study plots.

2.2. Satellite Images

We have adopted an identifying nomenclature as follows: NDVIL30_174 identifies
Landsat NDVI at 30 m resolution on DOY 174, NDVIM250 identifies NDVI from MODIS
250 m imagery, NDVIF250_174 identifies NDVI on DOY 174 from MODIS 250 m imagery
fused with a Landsat image, and NDVIF500_174 identifies NDVI on DOY 174 from MODIS
500 m imagery fused with a Landsat image. Other products use the same format.

https://www.usclimatedata.com/climate/california/united-states
https://www.usclimatedata.com/climate/california/united-states
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Figure 1. Map of the study area; (a) California map and Landsat 30 m image of the study area on DOY 206; (b) study plots 
overlain on Landsat NDVI on DOY 206; (c) study plots overlain on MOD13Q1 250 m (MODIS NDVI) image on DOY 193; 
(d) study plots overlain on MOD09GA 500 m image (Band 2, band 1, band 4) on DOY 206. 
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Landsat NDVI at 30 m resolution on DOY 174, NDVIM250 identifies NDVI from MODIS 
250 m imagery, NDVIF250_174 identifies NDVI on DOY 174 from MODIS 250 m imagery 
fused with a Landsat image, and NDVIF500_174 identifies NDVI on DOY 174 from MODIS 
500 m imagery fused with a Landsat image. Other products use the same format. 

Landsat images (TM 5 and ETM 7) of the study area covering the cotton growth pe-
riod from sowing in May to October were obtained for 2002 (http://earthexplorer.usgs.gov 
(accessed on 29 July 2021)). The temporal resolution of Landsat images was 8 days, and 
the spatial resolution was 30 m. Radiometric calibration and atmospheric correction were 
conducted during the preprocessing of the Landsat images. The Landsat NDVI (NDVIL30) 
time-series covering the May–September period (defoliant spraying in September) was 
calculated using the ‘Band math’ function of ENVI 5.1 (Esri, Redlands, CA, USA). 

MOD13Q1 and MOD09GA products from 2002 were obtained from the NASA Re-
verb website (http://reverb.echo.nasa.gov (accessed on 29 July 2021)). The MOD13Q1 
product includes 250 m NDVI data (NDVIM250) and quality assessment (QA) information, 

Legend

Value
High : 10428

Low : 105

Legend

Value
High : 8500

Low : 88

Legend

Value
High : 10109

Low : 102

0 400200
m

0 400200
m 0 400200

m

a b c

Figure 1. Map of the study area; (a) California map and Landsat 30 m image of the study area on DOY 206; (b) study plots
overlain on Landsat NDVI on DOY 206; (c) study plots overlain on MOD13Q1 250 m (MODIS NDVI) image on DOY 193;
(d) study plots overlain on MOD09GA 500 m image (Band 2, band 1, band 4) on DOY 206.
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Figure 2. Cotton yield map (2002) of the study plots (a) plot A; (b) plot B; (c) plot C.

Landsat images (TM 5 and ETM 7) of the study area covering the cotton growth period
from sowing in May to October were obtained for 2002 (http://earthexplorer.usgs.gov
(accessed on 29 July 2021)). The temporal resolution of Landsat images was 8 days, and
the spatial resolution was 30 m. Radiometric calibration and atmospheric correction were
conducted during the preprocessing of the Landsat images. The Landsat NDVI (NDVIL30)
time-series covering the May–September period (defoliant spraying in September) was
calculated using the ‘Band math’ function of ENVI 5.1 (Esri, Redlands, CA, USA).

MOD13Q1 and MOD09GA products from 2002 were obtained from the NASA Reverb
website (http://reverb.echo.nasa.gov (accessed on 29 July 2021)). The MOD13Q1 product
includes 250 m NDVI data (NDVIM250) and quality assessment (QA) information, while
the MOD09GA NDVI data (NDVIM500) was calculated from atmospherically corrected
surface reflectance values. The MODIS Reprojection Tool (MRT; https://lpdaac.usgs.gov
(accessed on 29 July 2021)) was used to convert HDF format images into ENVI standard
format. In this study, to fit the requirements of the FSDAF data fusion model, MOD13Q1
and MOD09GA data were resampled to 240 m and 480 m in order to make better geo-spatial
correction and integration with Landsat 30 m in integral proportion. Table 1 had show the
dates and number of Landsat and MODIS images used in the study.

http://earthexplorer.usgs.gov
http://reverb.echo.nasa.gov
https://lpdaac.usgs.gov
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Table 1. Dates and number of Landsat and MODIS images used in the study over the cotton growing
season from May to October in 2002.

Product Sensors Date Number of Images

Landsat
TM 5

6 May; 22 May; 7 June; 23 June; 1 July;
17 July; 2 August; 26 August;
11 September; 27 September;

13 October; 29 October;

12

ETM 7
14 May; 30 May; 15 June; 9 July; 25 July;
18 August; 3 September; 19 September;

5 October; 21 October;
10

MODIS
MOD13Q1

25 May; 10 June; 26 June; 12 July;
28 July; 13 August; 29 August;

14 September;
8

MOD09GA
7 June; 23 June; 17 July; 25 July;

2 August; 18 August; 26 August;
3 September; 11 September;

9

Note that MODIS and Landsat bands use different band number sequences in the
FSDAF model. It can relate them using the following Landsat product bands 1, 2, 3, 4, 5, 7
vs. MOD09GA product bands 3, 4, 1, 2, 6, 7.

2.3. Yield Data

Yield data were collected using a cotton yield monitor onboard the harvester (Mod-
elAG700, AGRIplan, Stow, MA, USA; www.agriplaninc.com (accessed on 29 July 2021)),
and the yield accuracy (validated with manually harvested field plots) was estimated to
be between 95 and 98% for the pixels of approximately 4.5 m by 4.5 m [33]. The cotton
yield monitor uses an optical sensor to detect the volume of cotton as it passes through
the machine. The crop volume is recorded on a storage device with location data from an
onboard GPS, and a shape-file yield map is later produced using proprietary software.

The yield map was produced in 3 steps [34]:
Step 1: ASCII text and database files were converted into vector shape files using ArcGIS;
Step 2: The shape files were converted to raster, with the output raster cell size set to

0.5 m × 0.5 m to generate the yield map;
Step 3: The outlying yield values caused by grain time lag and yield surges were

removed using a statistical identifier based on a moving average mean and standard
deviation. If the yield was less than or greater than three standard deviations from the
average, it was identified as an outlier and removed.

2.4. FSDAF Model

The FSDAF model synthesizes frequent high spatial resolution images by blending
frequent coarse spatial resolution data, such as those from MODIS, with less frequent high
spatial resolution data, such as those from Landsat [21]. FSDAF requires only Landsat and
MODIS images at the reference time and MODIS images at each of the predicted times, and
therefore effectively minimizes the number of input images. By using a single reference
image and implementing the model for each additional MODIS image over the growing
season, a time-series of high-resolution NDVI images is generated. As FSDAF uses simple
principles and requires only one fine-resolution image as an input, it has the potential to
increase the availability of high-resolution time-series data in support of studies of rapid
land surface dynamics.

Implementation of the FSDAF model required six steps:
(1) manual delineation of the study area on the Landsat image at t1;
(2) calculation of the change in MODIS NDVI between t1 and t2;
(3) prediction of the Landsat NDVI image at t2 using fine-resolution temporal change

in MODIS NDVI and calculation of residuals at each MODIS pixel;

www.agriplaninc.com


Sensors 2021, 21, 5184 6 of 19

(4) prediction of the Landsat NDVI image from the MODIS NDVI image at t2 with
a Thin Plate Spline (TPS) interpolator [35], which is a spatial interpolation technique for
point data based on spatial dependence;

(5) distribution of the residuals based on TPS prediction;
(6) obtaining the final prediction of NDVI at each Landsat pixel using information in

the neighborhood.
In this study, we compared the accuracy of the FSDAF fusion results using different

MODIS products (MOD09GA and MOD13Q1) and Landsat images of different reference
dates. Examples of DOY 206 imagery available for fusion are shown in Figure 3.
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2.5. Selection of Images for the Fusion Model

Figure 4 shows the time-series NDVIL30 curve of cotton growth in the study area
and the NDVIL30 derivatives obtained from the Landsat images from May to October in
2002 extracted from OriginPro 8.5 (https://www.originlab.com (accessed on 29 July 2021)).
From the trend of NDVI derivatives, it is apparent that the cotton began to grow quickly
on DOY 174, grew at a steady rate until DOY 206, and then fell gradually until DOY 254.
We identified three stages, Early, Middle, and End, and selected DOY 230 as the peak of
the growing season. A single Landsat image from each stage (DOY 174, 206, and 254,
respectively) was selected as the reference date for FSDAF in order to compare the effect of
the different dates on the accuracy of the fusion model in duplicating Landsat NDVI on
DOY 230.
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2.6. Mixed Degree Index (MDI)

The MODIS products input into FSDAF model in this paper were MOD09GA and
MOD13Q1, and the fusion process must account for the differences in vegetation change
in the MODIS images. For example, the three different plots occupy different numbers of
pixels; taking MOD09GA products as an example (Figure 5), plot A has four pixels, plot B
has five pixels, and plot C has six pixels. From Figure 1, due to the serious mixed problem
in the MODIS product, the surrounding area around the three plots is so different that it
is important to consider the effects of crop structure and surrounding land cover on the
fusion results (Figure 6). However, the pixels occupied by the plots are not all pure pixels;
thus, it is necessary to analyze the mixing degree of the pixels occupied by the plots. In this
paper, we first propose the MDI to evaluate the degree of pixel mixing and the fusion
results of different plots; its calculation principles are described by Equations (1)–(3). It was
constructed to evaluate the accuracy and time-series fusion results of the different cotton
plots, after which the different yield estimation models were compared.
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(1) Mixed pixel area ratio (MPAR)

MPAR =
SP
SW

∗ SP
SY

(1)

Note: SP is the area of the pixel of the plot; Sw is the area of a pure pixel (250 m × 250 m
or 500 m × 500 m); SY is the area of the plot.

(2) NDVI proportion (NDVIPro)

Different proportions of NDVI values of surrounding ground features are different in
the two MODIS products (250 m or 500 m); this paper uses the NDVIPro to consider the
pixel NDVI influenced by MODIS products of different resolutions.

NDVIPro =
ABS(NDVIM − NDVIL)

MAX(NDVIL, NDVIM)
(2)

Note: NDVIM is the NDVI of the MODIS product (250 m or 500 m); NDVIL is the
NDVI of Landsat (30 m).

(3) Mixed degree index (MDI)

MDI = ∑n
i=1 MPAR ∗ NDVIPro (3)

Note: (a) Number the pixels one by one, from left to right, top to bottom, (1, 2, 3... n);
(b) Pixels for which the degree is less than 1% are not included; (c) The lower right side
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of plot B is largely affected by fallow farmland, and it is divided into different farms by a
road, which covers 13% of the total area (Figures 5 and 6); (d) MDI values from 0 to 1.
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2.7. Yield Estimation Model

Correlation regression analysis was used to analyze the correlation between the yield
and the NDVIL or the predicted NDVI from the fusion results (NDVIF). The regression
model was established with SPSS19.0 (http://www.ibm.com (accessed on 29 July 2021)).
Therefore, this paper took the NDVIL and the NDVIF as the input variables (both NDVIF500
from MOD09GA and NDVIF250 from MOD13Q1) for yield estimation and analyzed the
accuracy to validate the feasibility of fusion images for yield estimations.

Yield Model(y) = a∗x + b (4)

where y is the predicted yield, x is NDVI, predicted NDVI from fusion result, respectively;
a and b are coefficients.

2.8. Accuracy Evaluation Method

(1) Evaluation of FSDAF
The model was evaluated using the adjusted decision coefficient (R2

Adj, Equation (5).
From the scatter between the NDVIF and the NDVIL, the R2

Adj was calculated, and the
fusion results were evaluated from R2

Adj.

R2
Adj =

∑n
i=1(xi − x)2

∑n
i=1(x − x)2 (5)

http://www.ibm.com
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where x is the NDVIF, xi is the NDVIL, and x is the average NDVIL.
The closer to 1 the R2

Adj, the better the FSDAF fusion result.
(2) Evaluation method for the yield estimation model
The general yield model equation is shown as Equation (4). The yield models were

evaluated using the decision coefficient (R2) and the root mean square error (RMSE) [36,37].

2.9. Flow Chart of Data Analysis, Model Validation, and Evaluation

In this paper, MOD09GA and MOD13Q1 products and Landsat images were input into
the FSDAF fusion model, and NDVIF_250 and NDVI NDVIF_500 were obtained. In addition,
MDI was constructed to evaluate the mixing degree of different plots in the different
MODIS products. Finally, the cotton yield estimation models were established, and the
accuracy evaluation was carried out. A flow chart is shown in Figure 7.
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3. Results
3.1. Time-Series NDVI of the MODIS and Landsat Images

Figure 8 shows linear interpolations of NDVI across the time-series of each of the input
images for all three plots. Landsat (NDVIL30) and MODIS images (especially NDVIM250)
show a similar time trend, even though the spatial resolution of the two MODIS products
is much greater, at 250 m and 500 m, than the 30 m of the Landsat images. The problems
caused by mixed pixels, as outlined by Fitzgerald et al., may be masked by the fact that the
mix of vegetation within the large pixels in this agricultural setting relates to different crops
that are all at relatively the same growth stage [38]. The time-series NDVIL30 and NDVIM250
show some difference in the early portion of the cotton growth season (Figure 8a), which
align almost perfectly by the middle of the season and then diverge again in the latter
portion. The NDVIM500 series has a similar trajectory to NDVIL30, but the values are
somewhat lower than those of NDVIL30 and NDVIM250, especially in the middle portion of
the cotton growing season, where there is an unexplained dip in reflectance.

Figure 8b shows the time-series NDVIL30 of the three cotton plots of the study area.
The three plots have similar growth curves, with plot A exhibiting slightly better growth
than plots C and B. From this similarity in growth pattern, it can be assumed that any plot
difference in yield estimation accuracy by NDVIF250 and NDVIF500 is due to the difference
in pixel mixing rather than crop condition.
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Figure 8. Time-series NDVI curve (a) NDVIM500, NDVIM250, and NDVIL30; (b) NDVIL30 of the three cotton plots).

3.2. MDI of A/B/C at Different Spatial Resolutions

Figure 9 shows the MDI of the three plots at 250 m and 500 m spatial resolution. It can
be seen from Figure 9 that the MDI in the 500 m MODIS product of plot A is better than
that of B but slightly lower than that of C. Figure 5 shows that the proportion of pure
pixels at 250 m occupied by plot C was greater than that of A. For plot B, the MDI in 250 m
product was higher than that in A and C. With respect to the location of plot B, the MDI
was increased due to the influence of the plot shape and surrounding crop types (Figure 6).
B was largely affected by fallow farmland, and it was divided into different sections by a
road, which covered 13% of the total area.
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3.3. Landsat–MODIS Fusion Results
3.3.1. Results of the Fusion of Landsat at Different Reference Dates with 500 m MOD09GA

Three single-date Landsat NDVI images (DOY 174, DOY 206, DOY 254) were used in
FSDAF to explore the influence of different reference dates on the accuracy of predicting the
peak of the growing season through Landsat/MODIS fusion (NDVIF500). As an example
of the results, Figure 10 provides a visual comparison of fusion results at peak season
(DOY 230) using Landsat images on DOY 174, DOY 206, and DOY 254 as reference images.
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The overall view of the fusion results is similar to the Landsat image, even capturing
differences in crop conditions, observable as lighter and darker areas within the images.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 19 
 

 

The overall view of the fusion results is similar to the Landsat image, even capturing dif-
ferences in crop conditions, observable as lighter and darker areas within the images. 

 
Figure 10. A visual comparison of fusion results; (a) Landsat image on DOY 230; (b–d) DOY 230 image from the fusion of 
reference Landsat images of DOY 174, DOY 206, and DOY 254 with MODIS 500 m imagery. 

The NDVI values of the fused 500 m MODIS (NDVIF500_230) with three different refer-
ence Landsat images over all three plots were compared to Landsat NDVI at peak green-
ness (NDVIL30_230) using scatterplots and R2 values. Table 2 provides the results of linear 
regression using reference images from the early, middle, and end stages of the growing 
season. A comparison of R2 values shown in Figure 11 and Table 2 indicates that 
NDVIF500_230, which uses NDVIL30_206 as a reference image, has a higher correlation with 
Landsat at DOY 230 than fused images using NDVIL30_174 or NDVIL30_254 as reference im-
ages. These results indicate that using a reference image from the middle stage of the crop 
growth season provides a fusion product that better represents peak growth than using 
reference images from early or late in the growing season. 

Figure 10. A visual comparison of fusion results; (a) Landsat image on DOY 230; (b–d) DOY 230
image from the fusion of reference Landsat images of DOY 174, DOY 206, and DOY 254 with MODIS
500 m imagery.

The NDVI values of the fused 500 m MODIS (NDVIF500_230) with three different
reference Landsat images over all three plots were compared to Landsat NDVI at peak
greenness (NDVIL30_230) using scatterplots and R2 values. Table 2 provides the results
of linear regression using reference images from the early, middle, and end stages of the
growing season. A comparison of R2 values shown in Figure 11 and Table 2 indicates that
NDVIF500_230, which uses NDVIL30_206 as a reference image, has a higher correlation with
Landsat at DOY 230 than fused images using NDVIL30_174 or NDVIL30_254 as reference
images. These results indicate that using a reference image from the middle stage of the
crop growth season provides a fusion product that better represents peak growth than
using reference images from early or late in the growing season.
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Table 2. Results of linear regression between the fusion product NDVIF500_230 using different refer-
ence dates and NDVIL30_230 in 3 plots.

Plot Early Stage
(NDVIL30_174)

Middle Stage
(NDVIL30_206)

End Stage
(NDVIL30_254)

A y = 0.3225x + 0.5601
R2 = 0.3298

y = 1.5028x − 0.5154
R2 = 0.6586

y = 0.8208x + 0.1313
R2 = 0.1401

B y = 0.2752x + 0.5978
R2 = 0.3775

y = 0.6046x + 0.2604
R2 = 0.652

y = 0.5426x + 0.3506
R2 = 0.2626

C y = 0.2282x + 0.5908
R2 = 0.3962

y = 0.8174x + 0.0569
R2 = 0.6599

y = 1.092x − 0.0946
R2 = 0.4449

ABC y = 0.2302x + 0.6105
R2 = 0.3539

y = 0.6931x + 0.1778
R2 = 0.5872

y = 0.615x + 0.2873
R2 = 0.3105
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3.3.2. Results of the Fusion of Landsat at Different Reference Dates with 250 m MOD13Q1

Landsat images from the early, middle, and end stages of the cotton growth season
were used in FSDAF with NDVIM250, as was completed with the 500 m MOD09GA product.
Figure 12 presents a visual comparison of Landsat at peak growth (NDVIL30_230) with
fused 250 m MODIS images (NDVIF250_225) using three different Landsat reference images
(DOY 174, DOY 206, and DOY 254).

Figure 13 shows scatterplots of NDVIL30_230 versus NDVIF250_225 using different ref-
erence dates. These scatterplots show slightly higher correlation values than those of
MOD09GA, but the trend is the same, with NDVIF250_225 using NDVIL30_206 as reference
being slightly better than those using NDVIL30_174 or NDVIL30_254. Table 3 presents results
for each plot separately and shows an anomaly for plot B, in which the results using
both early and late-season reference images provide higher R2 values than the mid-season
reference image. This may be due to the unexplained flattening of the growth curve around
DOY 200 in plot B as revealed in Figure 8b, or it may be due to the irregular shape of plot B
compared to the square outlines of plots A and C. This irregular shape may exacerbate the
influence of mixed pixels at the peak of the growing season. It can be observed in Figure 12
that plot B has a more uniform pattern that closely matches the Landsat image when fused
with Landsat from DOY 254.



Sensors 2021, 21, 5184 13 of 19
Sensors 2021, 21, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 12. A visual comparison of fusion results; (a) Landsat NDVI image on DOY 230; (b–d) image 
on DOY 225 from fusion of MODIS 250 m imagery (NDVIF250_225) with reference Landsat images on 
DOY 174, DOY 206, and DOY 254. 

 
Figure 13. Scatter plots of NDVIF250_225 using different reference dates versus NDVIL30_230. NDVIL30_230 
versus NDVIF250_225 using (a) NDVIL30_174, (b) NDVIL30_206, and (c) NDVIL30_254 for all pixels of 3 plots). 

Table 3. Results of linear regression between the fusion product NDVIF250_225 using different refer-
ence dates and NDVIL30_230 in three plots. 

Plot Early Stage Middle Stage End Stage 

A 
y = 0.3669x + 0.5008 

R² = 0.4933 
y = 0.6458x + 0.2429 

R² = 0.831 
y = 0.6934x + 0.253 

R² = 0.6195 

B y = 0.3911x + 0.4802 
R² = 0.6298 

y = 0.4805x + 0.4025 
R² = 0.6082 

y = 0.9684x + 0.0901 
R² = 0.7703 

C y = 0.224x + 0.5886 
R² = 0.3148 

y = 0.4911x + 0.389 
R² = 0.800 

y = 0.3436x + 0.5077 
R² = 0.4459 

ABC 
y = 0.3371x + 0.5166 

R² = 0.5372 
y = 0.4492x + 0.4173 

R² = 0.739 
y = 0.5085x + 0.3962 

R² = 0.5911 

Figure 12. A visual comparison of fusion results; (a) Landsat NDVI image on DOY 230; (b–d) image
on DOY 225 from fusion of MODIS 250 m imagery (NDVIF250_225) with reference Landsat images on
DOY 174, DOY 206, and DOY 254.
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Figure 13. Scatter plots of NDVIF250_225 using different reference dates versus NDVIL30_230. NDVIL30_230 versus
NDVIF250_225 using (a) NDVIL30_174, (b) NDVIL30_206, and (c) NDVIL30_254 for all pixels of 3 plots).

Table 3. Results of linear regression between the fusion product NDVIF250_225 using different refer-
ence dates and NDVIL30_230 in three plots.

Plot Early Stage Middle Stage End Stage

A y = 0.3669x + 0.5008
R2 = 0.4933

y = 0.6458x + 0.2429
R2 = 0.831

y = 0.6934x + 0.253
R2 = 0.6195

B y = 0.3911x + 0.4802
R2 = 0.6298

y = 0.4805x + 0.4025
R2 = 0.6082

y = 0.9684x + 0.0901
R2 = 0.7703

C y = 0.224x + 0.5886
R2 = 0.3148

y = 0.4911x + 0.389
R2 = 0.800

y = 0.3436x + 0.5077
R2 = 0.4459

ABC y = 0.3371x + 0.5166
R2 = 0.5372

y = 0.4492x + 0.4173
R2 = 0.739

y = 0.5085x + 0.3962
R2 = 0.5911
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3.3.3. Analysis of Time-Series Fusion Results

Figure 14 shows time-series curves of NDVI of Landsat, MODIS, and various fusion
products. Figure 14a shows the time-series NDVIF500 using different reference Landsat
images of plot A as an example, while Figure 14b shows the same information for NDVIF250.
The time-series NDVIF250 values display less variation and are more closely aligned with
the Landsat series than the 500 m images, especially in the middle and end stages of the
growing season.
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Although the farm containing the study area is large, each cotton plot in our study
intersected with only four to six 500 m MOD09GA pixels, and it appears that the mixture
of cover types within these pixels caused variability and divergence from the time-series
NDVI of Landsat. For the 250 m MOD13Q1 fusion products, the smaller pixel size appears
to avoid the mixing problem to a certain extent, thereby enhancing the accuracy of fusion
products generated with MOD13Q1 imagery. There are mixed pixel problems associated
with all MODIS products, but the coarser the resolution, the more serious the mixing
problem [39].

Based on the relationships displayed in Figure 11, which indicate that the results
from fused NDVIM250 are more closely aligned with Landsat results, we selected the
250 m products for further detailed yield analysis. Figure 15 shows the time-series of
NDVIF250 fused with NDVIL30_174, NDVIL30_206, and NDVIL30_254 for the three study plots.
Comparing Figure 15 with Figure 8a, it can be seen that the predicted fusion results are
consistent with the actual Landsat time-series NDVI, with little difference among the three
plots or different reference dates.
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3.4. Correlation Analysis between Cotton Yield and Time-Series Fusion NDVI

The correlation coefficients between time-series NDVI from different image products
and cotton yield are shown in Figure 16. Figure 16a shows the correlation coefficients of
NDVIL30 and NDVIF250 using three different fusion reference dates for all pixels in all three
plots. The data show a strong correlation between NDVIL and yield for all image dates,
and a similarly close relationship (except early in the season) between yield and NDVIF250
using Landsat on DOY 206. Both NDVIF250 using Landsat on DOY 174 and NDVIF250 using
Landsat on DOY 254 display considerably lower and divergent trends in correlation with
yield. Figure 16b shows the correlation coefficients between cotton yield and NDVIF250
using Landsat NDVIL30_206 as a reference for each of the three plots. As shown in Table 3,
this fusion product has high accuracy with respect to duplicating Landsat values at the
peak of the season, and the result is a good correlation (above 0.6) with yield in all three
plots. There are anomalies at the start of the season in plot C and at the end of the season in
plot B, which may be explained by the fact that cotton growth during the start of the season
in plot C was a little worse than plot A and B. However, plot B had poor growth at the
end of the season. There is a strong correlation between cotton yield and both time-series
NDVIL30 and NDVIF250, and the fusion results from DOY 206 as reference using ‘Middle
Stage’ imagery are best for all three plots (Table 3).
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The Scatter diagram between fusion result and cotton yield for three plots is shown
in Figure 17. It shows the R2 and RMSE had a high accuracy on fusion results based
on NDVIF250_225 by NDVIL30_206, with the RMSE 14.73% and 17.26% higher than that
from NDVIL30_174 and NDVIL30_254. In addition, the time-series NDVI (Figure 14) and
the correlation coefficients (Figure 16) indicate that when the prediction date (t2) is closer
to the date of the input Landsat image for the fusion model (t1), the fusion results are
more accurate.
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4. Discussion

In this study, we analyzed the impact of different reference dates on the ability of
fusion results to represent the peak of the growing season. We selected MOD09GA and
MOD13Q1 products to blend with Landsat data using the FSDAF model, and found that
peak NDVI from the fusion of both MODIS products is influenced by the date of the
Landsat images used as reference. Specifically, the fusion result for DOY 230 in the middle
of the growing season using Landsat from DOY 206 as reference follows the Landsat NDVI
pattern for DOY 230 with higher accuracy than the fusion products using Landsat from
DOY 174 (early season) or DOY 254 (late season) as reference images. Compared to the
study of Jamshidi et al. [40], it also takes into account the results of reference image fusion
in different input periods for evapotranspiration. The optimal fusion results were in the
early growing stage and harvest time, which is different from this study. We obtained better
fusion accuracy on the middle stage of cotton growth because the crop grows well and the
plots are uniform. Additionally, the soil, meteorological conditions, and environmental
impact are small for remote sensing images and crop conditions. We also determined
that the higher accuracy of a fused 250 m MODIS image can lead to a very high level
of yield correlation (R2 = 0.83) than a fused 500 m MODIS image, indicating that the
250 m MOD13Q1 product with the higher spatial resolution is preferable for use in fusion
models destined for field-level yield estimation. We might not achieve good accuracy with
MOD09GA due to the negative effect of mixed pixels, as outlined in other studies [23,41].
With respect to the three plots, the 250 m fusion results are consistent, with the accuracy
of fused images using a reference Landsat image from the middle of the season being
highest, and accuracy for plot A being higher than for plot B or C. We attribute the higher
accuracy for plot A to be due to the fact that the pixel boundaries align closely with the
plot boundaries, resulting in more pure pixels. Additionally, the MDI also shows the same
results that MDI plot A for 250 m is higher than for plot B or C. For 500 m, there are strong
correlation between fusion results and MDI. However, MDI and fusion results are not
relevant in fusion results of 250 m among plot B and C. The two plots have serious mixed
pixel problem, but because of the irregular shape of B, resulting in a small number of mixed
cells, resulting B < C(MDI). However, compared at the 30 m scale for fusion results, plot C
obtained a better accuracy than B.

At this scale there can be problems associated with mixed pixels in all MODIS products,
but it appears that the chance alignment of pixels with field boundaries can have a positive
impact on accuracy. It is noteworthy that the accuracy of yield estimation in plot B using a
late-season reference image (R2 = 0.77) is higher than for the mid-season reference image
and only slightly lower than the highest accuracies (using mid-season imagery) in plots A
and C. This result needs further study.

In this paper, not only the number of pixels and the proportion of distribution of
two MODIS products but also NDVIPro was considered, and the MDI was constructed to
analyze the fusion results. At the field scale, MDI is important for the fusion study because
of the mixed pixel problems in MODIS products. Additionally, more fusion models and
multi-source RS images should be tested to verify it. This study represents considerable
progress in the evaluation of crops from regional land use to the field scale, and the factors
affecting the application accuracy at the field scale include the differences in plot shape
and surrounding crop type. In the future, the mixed pixel problem of MODIS products
should be considered in the development of the fusion model at the field scale.

The data fusion model considers all plots as homogeneous farmland. However, crop
type must be considered for crop yield estimation, and the crop type of one plot can
differ from that of another plot. Therefore, the data fusion model maintains the overall
spatiotemporal crop and land cover patterns but cannot obtain adequate results in areas
with different crop phenology or small plots. A yield estimation model for different
crops and different crop phenology will be considered in the future. Although currently
there are a number of higher resolution satellite sensors such as Sentinel-2 available [42],
we restricted our study to older imagery due to the availability of time-series Landsat
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data and high-resolution yield data at this time at this site, but it is a benefit to temporal
change studies of a methodology for generating historical high-resolution field-level yield
estimates.

5. Conclusions

In this study, we extended the application of data fusion to the field scale to estimate
crop yields. Additionally, we analyzed time-series Landsat and MODIS NDVI data and
assessed the importance of different Landsat reference date for fusion results. First, this
study found that the NDVIF from the fusion data is significantly influenced by the dates of
the Landsat images during the cotton growing season. Second, the fusion result and the
yield estimation model from MOD13Q1 and Landsat TM5 are more accurate than those of
MOD09GA and Landsat, which proves that the 250 m MOD13Q1 product with the higher
spatial resolution is preferable for use in fusion models rather than the 500 m MOD09GA
product. Third, yield estimation model accuracy was influenced by the MDI of the three
plots, the number of pixels, and the proportion of distribution of two MODIS products.
The NDVIPro can influence the fusion results at 250 m and 500 m spatial resolutions. This
study estimates crop yields using fusion images from the MOD13Q1 product at the field
scale; these images can be used for vegetation monitoring and yield prediction with RS at
the field scale.

Despite the success of fusion study at the field level, there are additional areas that
need study; (1) in future research, Sentinel-2 and Landsat images could be combined to
improve the spatial and temporal resolution and enable a more precise estimation of crop
yield. (2) In addition to NDVI, the Enhanced Vegetation Index (EVI) could be an alternative
for densely vegetated areas. EVI has been shown to provide a high degree of separation of
vegetative reflection and could enhance yield estimation results. In our next study, we will
test MODIS EVI in the FSDAF model and evaluate the accuracy.
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