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The role of Neurochemicals,
Stress Hormones and Immune
System in the Positive Feedback
Loops between Diabetes,
Obesity and Depression

Julian B. Wilson 1, Ma’ayan Epstein1,2, Briana Lopez 1,3,
Amira K. Brown 1, Kabirullah Lutfy 1,4*

and Theodore C. Friedman 1,3

1Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,
CA, United States, 2Psychiatric Emergency Room, Olive View – University of California, Los Angeles
(UCLA) Medical Center, Sylmar, CA, United States, 3Friends Research Institute, Cerritos, CA, United
States, 4College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
Type 2 diabetes mellitus (T2DM) and depression are significant public health and

socioeconomic issues. They commonly co-occur, with T2DM occurring in 11.3%

of the US population, while depression has a prevalence of about 9%, with higher

rates among youths. Approximately 31% of patients with T2DM suffer from

depressive symptoms, with 11.4% having major depressive disorders, which is

twice as high as the prevalence of depression in patients without T2DM.

Additionally, over 80% of people with T2DM are overweight or obese. This

review describes how T2DM and depression can enhance one another, using

the samemolecular pathways, by synergistically altering the brain’s structure and

function and reducing the reward obtained from eating. In this article, we

reviewed the evidence that eating, especially high-caloric foods, stimulates the

limbic system, initiating Reward Deficiency Syndrome. Analogous to other

addictive behaviors, neurochemical changes in those with depression and/or

T2DM are thought to cause individuals to increase their food intake to obtain the

same reward leading to binge eating, weight gain and obesity. Treating the

symptoms of T2DM, such as lowering HbA1c, without addressing the underlying

pathways has little chance of eliminating the disease. Targeting the immune

system, stress circuit, melatonin, and other alterations may be more effective.

KEYWORDS

diabetes, depression, obesity, dopamine, serotonin, lifestyle medicine, monoamines
Introduction

It has been over 30 years since Reaven first described metabolic syndrome, which

commonly affects overweight individuals (1). Obesity has become endemic in the developed

world and is on its way to becoming so in developing nations, producing many health-related
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problems (2). Not only is weight loss difficult to achieve, but those who

lose weight also find keeping it off is even more difficult (3), causing

many to propose that food is addictive. Over the years, evidence in

support of this has accumulated, and reliable scales to diagnose “eating

addiction” (also known as “food addiction”) have been generated and

used to assess its prevalence in the population (4).

Work on the neuronal basis of eating addiction has also been

conducted. Traditionally this has involved studying both central and

peripheral molecules involved in hunger and satiety, such as leptin,

orexin (also known as hypocretin), insulin, alpha-melanocyte-

stimulating hormone (a-MSH), glucagon-like peptide -1 (GLP-1),

amylin, glucose-dependent insulinotropic polypeptide (GIP, also

known as a gastric inhibitory polypeptide), adiponectin and

cholecystokinin (CCK). However, it is well known in psychiatry

that neurotransmitters are also involved. Soon after the introduction

of atypical antipsychotics, which antagonize serotonin receptors and

dopamine D2 receptors (D2R), numerous case reports appeared

showing that the use of these drugs were associated with increased

obesity and the development of type 2 diabetes mellitus (T2DM) (5).

Conversely, the D2R agonist bromocriptine, which has been used for

over 40 years to treat Parkinson’s disease and hyperprolactinemia (6),

was found to lower blood glucose levels and improve insulin

sensitivity in patients with T2DM (7). In 2009, the US Food and

Drug Administration (FDA) approved a rapid-release bromocriptine

formulation (Cycloset™) to treat T2DM (8). These observations

demonstrate that hunger and satiety, and energy homeostasis, are

controlled by dopamine and serotonin signaling. Increasing

dopamine levels/signals are associated with improved insulin

sensitivity, while decreasing dopamine and serotonin levels/signals

are associated with weight gain and T2DM development.

The above research focused on the effects of food intake on

serotonin and dopamine separately. However, in the limbic system,

their levels are coupled and modulated by changes in this group of

interconnected structures that together regulate emotional and
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motivated behaviors (such as reward) (9). Like other addictive

behaviors, eating over time can inhibit the limbic system and

reduce the reward attained from eating (10). This inhibition can

cause individuals to eat more to obtain the same level of pleasure/

satiety, leading to weight gain (11). This represents a cycle whereby

eating/weight gain and limbic system inhibition reinforce and

strengthen one another contributing to increased body weight

and obesity (12). The resulting weight gain is also associated with

developing T2DM; contributing to the metabolic changes associated

with this disease (13). The mild hypercortisolism associated with

T2DM (14–16) could also increase appetite and inhibit sleep,

leading to weight gain (17). T2DM decreases metabolic rate via

the release of the stress hormone, cortisol, and inflammatory

markers, such as interleukin-6 (IL-6) (18). Cortisol and IL-6 are

important in the pathogenesis and maintenance of both T2DM and

depression (a state of extreme limbic system inhibition) (19, 20).

T2DM can also cause weight gain indirectly via inhibition of the

limbic system (discussed below). Hyperglycemia is neurotoxic and

causes limbic system inhibition (10, 21), showing that overeating/

weight gain does not induce one, but three feedback cycles where

overeating, limbic system inhibition, and T2DM reinforce and

strengthen one another, which expose individuals to further

weight gain and enhance the negative impact of T2DM and

limbic system inhibition (Figure 1). This review summarizes the

various molecular mechanisms that set the stage for these cycles and

includes recommendations to abort these cycles. Although multiple

mechanisms have been proposed for the association between

depression and diabetes, we chose to focus on the immune

system and HPA axis for several reasons as follows: The first

being that these are the most studied and provide a clearly

observable direct link between the two which can be explained

using evolutionary arguments. The second reason is that they can be

used to mechanistically categorize “typical” depression

(melancholic, which is associated with both increased immune
FIGURE 1

Schema for the positive feedback loop where overeating, limbic system inhibition and T2DM reinforce each other. Black arrows indicate promoting
effects, and red arrows indicate inhibitory effects. IL-6, Interleukin 6; T2DM, Type 2 Diabetes Mellitus.
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system and HPA activation) and “atypical” depression (which is

associated with increased immune system but normal

HPA activation).
Food and addiction: serotonin
and dopamine

In order to maintain physiological homeostasis, eating is a

rewarding behavior (11), that acts on the brains pathways

similarly to other rewards and sometimes leads to an eating

addiction. Serotonin and dopamine are important neurochemicals

in regulating mood and reward, respectively. Like other addictive

substances, food directly affects the release of these molecules (22).

It has been known for nearly 40 years that brain serotonin levels are

inversely proportional to both food intake and body weight, and

many of the mechanisms behind this have been well elucidated (23).

The serotonin 5-HT2C receptor has been particularly implicated in

this (24). Deficiency of this receptor or its polymorphism leads to

increased food intake and obesity through dysregulation of the

proopiomelanocortin (POMC)-containing neurons (24, 25). These

hypothalamic neurons undergo neurogenesis into adulthood and

regulate metabolism and reproduction (24, 26). Conversely, it has

also been shown that serotonin 5-HT2C receptor agonists (such as

m-chlorophenylpiperazine) improve insulin sensitivity (27).

Analogous studies have been carried out with dopamine, where

dopamine D2R is implicated in regulating food intake and addictive

behaviors (28). Dopamine is required for feeding in mice (29),

where there is an inverse correlation between body mass index

(BMI) and striatal D2R (30). Loss of this receptor leads to insulin

resistance (31). In humans, it has been shown that expression of the

D2R is reduced in obese individuals (32), and activation of this

receptor alleviates many aspects of metabolic syndrome in obese

women (33). Variations of the D2R allele, although rare in the

general population, have a higher prevalence in obese individuals,

those with alcoholic and tobacco use disorders, and people who use

other addictive substances (34–36).

Food consumption alters the mesolimbic dopaminergic

neuronal activity (28), one of the four dopaminergic pathways in

the brain, which plays a key role in reward and motivation (20). Like

other addictive substances, food consumption triggers dopamine

release in the nucleus accumbens (also known as the ventral

striatum) and dorsal striatum (11). In the dorsal striatum, the

amount of dopamine released is proportional to the palatability of

the meal (37). Alterations to the mesolimbic pathway, either by

genetic approaches or via pharmacological tools, affect both feeding

and addictive behaviors. Furthermore, fasting increases the

rewarding effects of both food (38) and addictive substances (39),

while addictive substances have been shown to alter the expression

of genes involved in food intake (40) and increase the response to

food intake in the hypothalamus (41).

As with other addictive substances, there is evidence that obese

individuals develop a tolerance to food reward (11, 32), setting the

stage for overeating and addiction. In a condition known as Reward

Deficiency Syndrome (RDS), which is compensated by overeating
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to restore hedonic homeostasis, the exaggerated dopamine release

from eating leads to a reduction in D2R density and altered

dopamine signaling during subsequent meals, which causes the

individual to eat more to obtain the same level of satiety (11). This

further reduces the satiety obtained from eating and may initiate a

vicious cycle, driving individuals towards overeating and obesity.

Consistent with this, weight gain has been shown to reduce striatal

activation in response to food intake (42).
The limbic system and depression

The limbic system controls brain-wide monoamine levels, of

which four brain regions are particularly significant. The prefrontal

cortex facilitates executive functions by orchestrating the operations

of other brain regions. It has extensive connections to various

hypothalamic nuclei to monitor and control autonomic functions

and energy homeostasis (43). The amygdala, traditionally associated

with anxiety and fear conditioning, is also involved in positive and

negative affective states, attention, and reinforcement and directly

controls autonomic and endocrine manifestations of fear and stress

(44). The hippocampus, which plays a vital role in learning and

memory, also plays a vital role in spatial representation (45). The

hippocampus and the olfactory bulb are the two brain areas that

participate in life-long neurogenesis in adults (46, 47). The

hypothalamus receives input from the other limbic structures and

modulates physiological processes accordingly. Importantly, it

contains neurons that secrete corticotropin-releasing hormone

(CRH, also known as corticotropin-releasing factor) which

stimulates adrenocorticotropic hormone (ACTH) secretion from

the pituitary gland, which in turn stimulates cortisol secretion from

the adrenal gland. This pathway is collectively known as the

hypothalamic-pituitary-adrenal (HPA) axis, which mediates the

stress response. These CRH-producing neurons generally receive

stimulatory input from the amygdala, while the prefrontal cortex

and hippocampus send inhibitory inputs to these cells (48, 49).

Collectively, the limbic system receives sensory (from the

external environment) and autonomic (from inside the body)

inputs and acts on a collection of neuromodulatory neurons in

the locus coeruleus (where the cell bodies of norepinephrine-

producing neurons are located), raphe nuclei (where the cell

bodies of serotonin-producing neurons are located), the ventral

tegmental area and the substantia nigra pars compacta (where the

cell bodies of dopamine-producing neurons are located), the basal

forebrain (where the cell bodies of acetylcholine-producing neurons

are located), and the tuberomammillary nucleus (where the cell

bodies of histamine-producing neurons are located). The neurons

in these locations project widely throughout the brain to modulate

excitability, to control the “state” of mind, which can be considered

emotions (50). Individuals with depression have reduced mood, and

pharmacological interventions used to treat depression primarily

work by boosting monoamine levels (51). Similarly, monoamine

depletion has been shown to decrease mood in individuals with a

personal or a family history of depression. However, it did not affect

individuals who lack these risk factors (52). Finally, several studies

have demonstrated a link between genetic polymorphisms in the
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serotonergic pathway and depression (20). These findings suggest

that depression is brought about, in part, by the diminished activity

of the limbic system.

In addition to depressed mood, individuals with depression are

unaffected by natural reward, known as anhedonia, which could

initiate RDS (53). Taken together, depression is an important risk

factor in obesity and addictive behavior (54, 55).
Depression causing insulin resistance
and T2DM: glucocorticoids and IL-6

There is an intimate connection between the HPA axis and the

immune system. Depression typically involves a dysregulated

positive feedback loop between these two systems (20), as

opposed to atypical depression, where the HPA axis activity is

normal or decreased (56). The HPA axis and the immune system

can act synergistically to cause insulin resistance, leading to T2DM.

The interaction between the HPA axis and the immune system is

complex. Although it is well known that chronically elevated

glucocorticoid levels suppress the immune system, acute elevation

in stress hormones stimulates the immune system, and basal

glucocorticoid levels are required for immune system activation

(57). Similarly, products of inflammation stimulate the HPA axis,

most notably proinflammatory cytokines (described below). The

usual interaction between the HPA axis and immune system breaks

down in individuals with depression, where the levels of both

glucocorticoids and inflammatory markers are elevated (20).

There may be an evolutionary basis for depressive behaviors

and the underlying mechanisms that maintain them. It has been

suggested that depression arose from the need to control

metabolism during stress periods (58). When activated, the

immune system requires roughly 25 – 30% of the basal metabolic

rate to fight infections (58). To provide this, the immune system and

the HPA axis both act on the brain to induce “sickness behaviors”

such as increased sleep, fatigue, internal focus, and anhedonia

(decreased reactivity to natural reward) to limit the energy

demands of the organism (20). HPA axis activation leads to

glucocorticoid secretion from the adrenal glands, chiefly cortisol,

in humans. Glucocorticoids are lipid-soluble and can freely cross

the blood-brain barrier to act on mineralocorticoid and

glucocorticoid receptors expressed in discrete brain areas,

particularly in the limbic areas and the pituitary gland (59).

Elevated glucocorticoid levels, especially in depression, increase

blood flow and glucose metabolism in the amygdala (60, 61). In

depressed individuals, amygdala activation correlates with both

depression severity and the dispositional negative affect (61). In

the prefrontal cortex and hippocampus, which have the highest

glucocorticoid and mineralocorticoid receptor levels in the brain

(62), elevated glucocorticoid levels induce cellular atrophy and

death. This results in a reduction in both brain activity and grey

matter volume (63, 64). Considering these areas also modulate HPA

axis activity, glucocorticoid release can initiate a detrimental

positive feedback loop, where glucocorticoid-mediated stimulation

of the amygdala (which generally stimulates the HPA axis) and
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inhibition of the prefrontal cortex and hippocampus (which

generally send inhibitory input to the HPA axis) leads to

progressively increased and ultimately dysregulated HPA axis

activation. This HPA axis dysregulation, and the resulting

increase in glucocorticoid levels, is important to the induction

and maintenance of depression and is comparable to that

observed in Cushing’s disease (20), in which a small group of

dysregulated cells in the pituitary gland (an adenoma) secretes

adrenocorticotropic hormone, leading to hypercortisolism.
The HPA axis and the immune system
in depressive behaviors

The immune system can directly stimulate the HPA axis and

induce depressive behaviors. Proinflammatory cytokines like tumor

necrosis factor-a (TNF-a), interleukin (IL)-1b, and IL-6 act on the

brain to stimulate the HPA axis and induce behaviors that conserve

energy (sickness behaviors) (20, 58). Numerous mechanisms exist

for the latter, including directly activating neurons or the blood-

brain barrier endothelial cells and the ability of IL-1b to induce the

serotonin transporter expression (resulting in reduced synaptic

serotonin levels) (52, 65). However, particular focus has been

given to indoleamine 2,3 dioxygenase (IDO) activation. Under

normal conditions, the liver degrades over 95% of dietary

tryptophan, with the remainder used for serotonin synthesis and

other functions (66). Under inflammatory conditions, cytokines

activate IDO to degrade tryptophan through the kynurenine

pathway in the central nervous system (CNS) and peripherally,

where it plays a role in nicotinamide adenine dinucleotide (NAD)

synthesis and dampens the immune response to prevent

autoimmune disease development (a process known as a

peripheral tolerance) (67). This depletes serotonin levels in the

CNS and leads to dysregulated neurotransmission to the point of

neuronal damage since many of the kynurenine pathway

metabolites are neuroactive. The kynurenine pathway produces

products such as quinolinic acid (an agonist of the N-methyl-D-

aspartate receptors, NMDARs) and kynurenic acid (which activates

both glutamate and nicotinic receptors), which have been

implicated in depression as well as other psychiatric and

neurodegenerative disorders (68, 69).

This association between cytokines and depression has been

demonstrated clinically. Patients with inflammatory diseases have a

higher prevalence of depression (70), and anti-inflammatory

therapies have been shown to reduce depressive symptoms

independent of changes in disease symptoms (71). This was best

exemplified by one study where individuals injected with the

Salmonella typhi vaccine demonstrated a strong correlation

between the induction of negative mood and IL-6 production

(72). Psychological stress has been shown to increase the

production of inflammatory cytokines IL-1b, IL-6, and TNF-a
(73), and depressed individuals have been found to have elevated

levels of proinflammatory cytokines (68). These observations

demonstrate the important role of proinflammatory cytokines,

notably IL-6, in the induction and maintenance of depression.
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The immune system (via proinflammatory cytokines) and the

HPA axis (via glucocorticoids) can contribute to the prevalence of

metabolic syndrome and the resulting obesity observed in

depression (74). Depressed individuals have HPA dysfunction,

analogous, but to a lesser degree, to those with Cushing

syndrome, a condition referred to as Pseudo-Cushing syndrome

(14), which can be observed in other conditions, including

alcoholism, T2DM and PCOS. Patients with depression can have

enlarged adrenal glands (75), elevated plasma cortisol levels (19),

and altered circadian cortisol secretion rhythms that fail to be

suppressed by dexamethasone (76, 77). Similarly, we have shown

that the high cortisol levels, as seen in Cushing’s syndrome, cause

insulin resistance and alter lipid metabolism analogous to that

observed in T2DM (78). Glucocorticoids also stimulate food

consumption, particularly low-quality foods (79, 80), far above

the modest energy increase, and in spite of increased levels of the

satiety hormone leptin (81). Glucocorticoids promote muscle

wasting (which lowers the body’s basal metabolic rate) and

promote adipogenesis with a preference for central obesity (82,

83). This is due to increased expression of glucocorticoid receptor

and 11b-hydroxysteroid dehydrogenase type 1, which converts

inactive 11-dehydrocorticosterone (cortisone) to active cortisol to

amplify glucocorticoid signaling (84, 85). Glucocorticoids also

stimulate catecholamine synthesis and release. Catecholamines

can stimulate glucagon from the pancreas, and both act on the

liver to potentiate glycogenolysis, gluconeogenesis, and thus the

hepatic release of glucose into the bloodstream leading to

hyperglycemia (86). High levels of glucocorticoids and

inflammatory cytokines have been shown to reduce thyroid

hormone production as well as reduce the conversion of

thyroxine (T4) to 3,5,3′-triiodo-L-thyronine (T3), setting up a

condition called nonthyroidal illness (euthyroid sick syndrome)

(87, 88). Patients with this condition have low thyroid hormones

without signs and symptoms of hypothyroidism (89). Cortisol also

acts as a mineralocorticoid and is responsible for half of our daily

mineralocorticoid activity (90), so conditions that elevate plasma

cortisol levels may lead to fluid retention and weight gain (91).

These data show that the glucocorticoids and inflammatory

cytokines seen in depression can cause weight gain.

Proinflammatory cytokines also antagonize insulin signaling

through various mechanisms, contributing to the onset of T2DM.

TNF-a inhibits insulin signaling by phosphorylating serine residues

on the insulin receptor substrate-1 (IRS-1) protein, inhibiting

insulin-induced tyrosine phosphorylation (92, 93). The IL-6

receptor is a class I cytokine receptor, like the insulin receptor

(90), and uses the Janus kinases/signal transducers and activators of

transcription (JAK/STATs) molecules. Its activation has been

shown to impair insulin signaling either directly or via suppressor

of cytokine signaling (SOCS) proteins (94). Importantly, although

insulin-resistant adipocytes have been shown to increase expression

of TNF-a, IL-6, and IL-8, only IL-6 released into the systemic

circulation induces insulin resistance in the liver and the production

of C-reactive protein (95, 96). Elevated levels of this protein have

been associated with cardiovascular complications and a two-fold
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increase in the risk for T2DM within 3 – 4 years (97–99). These

findings show that the inflammatory cytokines present in

depression contribute to the pathogenesis of depression and are a

significant consequence of T2DM.
T2DM causing depressive symptoms:
IL-6 and glucocorticoids

It is now understood that obesity is associated with chronic

inflammation, with elevated levels of proinflammatory cytokines

playing a direct role in insulin resistance (13). Numerous studies in

Drosophila, rodents, and humans have implicated the cluster of

differentiation 36 (CD36) in insulin resistance (100, 101). This class

B scavenger receptor is widely expressed and is involved in the

clearance of apoptotic cells, pathogens, thrombospondin-1,

modified low-density lipoproteins, and long-chain fatty acids

(102). Although numerous factors are involved, elevated serum

concentrations of lipids, oxidized low-density lipoproteins, or

glucose lead to a pathological increase in CD36 expression (101).

This is likely caused by inducing a positive feedback loop via

peroxisome proliferator-activated receptors (PPARs), most

notably PPARg, which senses lipids and oxidized low-density

lipoproteins intracellularly and upregulates CD36 expression to

increase ligand endocytosis (103). Interestingly, hyperglycemia

can also increase CD36 expression both directly and indirectly

(100). CD36 activates C-Jun N-terminal kinase (JNK), and both are

required for macrophages to adopt a foamy appearance (101). The

resulting “foam cells” secrete chemokines such as monocyte

chemotactic protein 1 (MCP-1, also known as CCL2) that recruit

additional monocytes, enhance CD36 signaling (104), and secrete

inflammatory cytokines such as IL-1b, IL-6, and TNF-a (104) that

antagonize insulin signaling in adipose tissue (discussed above). Of

these, IL-6 is the only cytokine that leaves adipose tissue and is

found in the systemic circulation, with its serum concentrations

proportional to HbA1c levels (96, 105).

In the liver, IL-6 antagonizes insulin signaling and induces

inflammation, which after reaching a certain threshold, leads to

insulin resistance and non-alcoholic fatty liver disease (18, 106). In

the brain, IL-6 stimulates the HPA axis by acting on both the

hypothalamus and the pituitary gland to stimulate the secretion of

CRH and ACTH, respectively, leading to glucocorticoid secretion

(107, 108). Earlier, we discussed how the subsequent action of

glucocorticoids on the liver is important in maintaining T2DM

(109, 110). It also activates local inflammatory networks in the

brain, which reduce hippocampal neurogenesis, leading to limbic

system dysfunction and depressive symptoms such as those

associated with energy conservation (68, 111, 112). These

observations demonstrate that the pathogenesis of T2DM and

depression involve the same pathways (the immune system and

HPA axis activation) and the same molecules (IL-6 and cortisol).

Thus, both T2DM and depression reinforce and potentially

exacerbate one another.
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T2DM causing depression: glucose

In addition to IL-6 and glucocorticoids, the hyperglycemia seen

in T2DM can also act on the brain to induce depression and obesity.

Glucose can depolarize or hyperpolarize discrete subsets of neurons

throughout the brain, particularly in the hypothalamus (113). These

neurons are thought to play a role in energy homeostasis, in part, by

regulating dopamine release (114). In many of these neurons, the

entry of glucose inside the neuron generates energy in the form of

ATP, which closes ATP-sensitive potassium channels, analogous to

pancreatic b-cells, and is regulated by insulin. In obese rats, the

ability of insulin to activate ATP-sensitive K+ channels is lost and

can lead to dysregulation in feeding and metabolism (115).

Hyperglycemia is also neurotoxic, producing reactive oxygen

species, DNA damage, mitochondrial swelling, and apoptosis even

at levels found in prediabetes (21). Although numerous

mechanisms are involved (21), inhibition of autophagy, reduction

of melatonin levels, and atherosclerosis are particularly harmful

to neurons.
Autophagy inhibition: mTOR/Sirt1

Another way that hyperglycemia can cause neuronal damage

and dysfunction is through inhibition of autophagy. Autophagy is

when a cell destroys abnormal proteins and senescent organelles

(particularly mitochondria because of their high turnover rate) in

the cytoplasm. The first process involves signaling from the

mammalian target of rapamycin (mTOR) and the Sir2-like

protein 1 (Sirt1), both involved in cellular metabolism. Their

pathways interact with each other through AMP-activated protein

kinase (AMPK) and other mechanisms (116). mTOR is a serine/

threonine kinase of the PI3K-related kinase family that regulates

growth factors and nutrient initiation of transcription, translation,

and numerous other cellular functions (117). Sirt1 is a nicotinamide

adenine dinucleotide (NAD+) dependent deacetylase that acts on a

variety of proteins that have been implicated in cancer and energy

homeostasis, including p53, nuclear factor-kb (NF-kb), PPAR g co-
activator-1a (PGC-1a), and forkhead transcription factor

(FOXO) (118).

Typically, in individuals without T2DM, blood sugar can be

elevated during the day (due to eating and the circadian rise in

cortisol levels). This inhibits Sirt1 and activates mTOR to initiate

protein production and cell growth while inhibiting autophagy

(119, 120). At night, these processes are reversed, as sleep

prevents eating. Also, there is a circadian-dependent nadir of

cortisol at night. This process inhibits mTOR, thereby reducing

protein production and removing the inhibition of autophagy. It

also increases Sirt1 activity to induce autophagy (119, 120).

Autophagy is a highly conserved pathway that removes protein

aggregates, unneeded or damaged organelles (particularly

mitochondria), and invading pathogens (121, 122). The circadian

oscillation in blood sugar levels is critical in protein synthesis during

the day and in removing damaged or aggregated proteins at night.

This process is particularly important in neurons as they produce
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large amounts of proteins (such as neurotransmitters) needed for

signaling. They also contain long thin processes (dendrites and

axons) where these proteins can reach high concentrations and

aggregate. The accumulation of protein aggregates is common in

most neurodegenerative diseases (123). In agreement with this,

autophagy inhibition has been shown to induce protein aggregate

formation (124), while autophagy activation removes these

aggregates and thus is beneficial in such diseases (125).

Additionally, impaired autophagy also leads to impaired

mitochondrial clearance and dysfunction. The latter can lead to

decreased adenosine triphosphate (ATP) levels as well as increased

reactive oxygen species (ROS) production and membrane

peroxidation that can impair neuronal signaling and function,

leading to mitochondrial dysfunction all of which has been

implicated in depression.

Both mTOR and Sirt1 are involved in the pathogenesis of

T2DM and are therapeutic targets of the widely used antidiabetic

drug metformin (116). Hyperglycemia, especially chronic

hyperglycemia observed in T2DM, leads to increased protein

production and autophagy inhibition. This, in turn causes

neuronal dysfunction while making these neurons more prone to

protein aggregate formation and subsequent damage. Since limbic

structures project widely (their axons spread throughout the brain)

they are particularly at risk to this type of damage, which would lead

to overall limbic system inhibition and initiate the RDS. Since

autophagy diminishes with age (122), older individuals are more at

risk of the pathological impact of hyperglycemia.
Melatonin and free radical damage

Melatonin is a highly conserved and multifunctional molecule.

It evolved around 2.5 billion years ago during the Great Oxygen

Event when photosynthetic bacteria first originated and began

poisoning the atmosphere with oxygen gas, which was toxic to

most life at the time (126). Melatonin, a powerful antioxidant,

allowed bacteria to survive in this new atmosphere (127). Since

then, organisms have evolved to use this molecule for other

functions, such as regulation of the circadian rhythm and

reproduction, but it has retained its function as a free radical

scavenger and is important in cancer prevention (127). The

predominant melatonin source in mammals is the pineal gland, a

highly vascularized organ located above the posterior commissure

in the roof of the third ventricle. Circadian rhythms and darkness

stimulate the synthesis and secretion of melatonin from this organ

in a progressive manner, with serum melatonin levels rapidly rising

from basal levels of approximately 40 pmol/L (in adult males) to

maximum levels of approximately 300 pmol/L (in young adult

males) by the middle of the darkness period (127, 128). Melatonin

acts on high-affinity G-protein coupled receptors (GPCRs) located

on the plasma membranes and also enters the cells primarily

through glucose transporters to activate the cytosolic enzyme

quinone reductase 2 (a detoxification enzyme), activate nuclear

receptors to modulate transcription, and directly scavenge free

radicals throughout the cell (127, 129).
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Hyperglycemia reduces melatonin production and is partly

responsible for the mitochondrial abnormalities and free radical

damage observed in T2DM and contributes to neuronal

dysfunction (130, 131). The decrease in melatonin and the

resulting increase in free radical damage decreases the number of

neurons in the hippocampus, contributing to neuronal senescence,

damages signaling molecules in plasma membranes, and inhibits

proteasomes to cause protein aggregate formation in a manner

analogous to autophagy inhibition (discussed above) (132–134).

The resulting neuronal dysfunction inhibits the limbic system and

alters many neuroendocrine pathways pathologically.

Decreased nighttime melatonin levels have been implicated in

depression, bringing about RDS and overeating (discussed above).

Melatonin receptor knockout mice display depression-like

behaviors (135). In humans, single nucleotide polymorphisms in

melatonin receptors have been shown to modulate the lifetime risk

of depression (136). Interestingly, melatonin receptor agonists have

been shown to be beneficial in treating depression and other

depressive mood disorders (136–138). As with autophagy, pineal

gland melatonin production decreases with age; therefore, older

individuals may be more susceptible to the complications of

hyperglycemia (128).
Impact of T2DM on limbic function
and structures

The ability of hyperglycemia to inhibit limbic function, leading

to RDS and overeating, was demonstrated in an experiment done by

O’Dell et al. using rats treated with streptozotocin (a drug that

causes b-cell destruction resulting in an animal model of type 1

diabetes) (139). In this study, streptozotocin was given to two-

month-old male rats, and 23 days later, they were challenged with

amphetamine, an indirect dopamine agonist. This period of
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hyperglycemia significant ly reduced basal levels and

amphetamine-stimulated dopamine levels (Figure 2) in the

nucleus accumbens, a region of the brain involved with reward,

demonstrating that hyperglycemia significantly diminishes limbic

system function and reward (37).

These results are particularly significant because the rats were

comparatively young, with developing brains (based on level of

myelination) comparable to 20-year-old humans, an age when the

brain is fairly resistant to the pathologies of hyperglycemia and

depression (140, 141). Over a third of patients with T2DM are 65

years or older, when the brain is far more susceptible to these

pathologies. Hence, it is likely that humans with T2DM experience a

more severe reduction in both basal and stimulated dopamine levels

(142). Secondly, the period of hyperglycemia used in this study is

less than needed to diagnose the binge eating disorder, which

requires a 3-month duration (143). Considering that binge eating,

i.e., consumption of a large amount of food in a short time, can

reduce an individual’s insulin sensitivity and cause prolonged

hyperglycemia, these data suggest that patients also experience

hyperglycemia-induced limbic system inhibition. This inhibitory

effect of hyperglycemia on the limbic system may initiate RDS and

induce overeating, contributing to binge-eating behaviors (144).

In humans, T2DM has been shown to reduce the size of various

limbic structures, which correlates with their reduced function (63,

64). Even though young age protects the brain from the atrophy

commonly observed in depression, adolescent patients with T2DM

have been shown to have significantly reduced hippocampus and

prefrontal cortex volumes (145–149). This change occurred even

though brain-derived neurotrophic factor (BDNF) levels in

adolescents increase with BMI (150, 151), demonstrating that the

impacts of T2DM on the brain are far worse than those typically

observed in depression alone. In geriatric patients, T2DM has been

shown to cause significant atrophy in the prefrontal cortex,

amygdala, and hippocampus independent of vascular
FIGURE 2

Dopamine levels in the nucleus accumbens of streptozotocin (STZ)- and vehicle-treated control rats. *, denotes a significant difference relative to
baseline. †, denotes significant difference between STZ- and vehicle control groups [from (139), permission given by publisher].
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complications (152–154). In fact, declining cognitive function,

including a higher rate of dementia, occurs in individuals with

T2DM (155).
Impact of T2DM on executive functions

In addition to altering the limbic system function, T2DM can

also cause degeneration of the frontal lobe (which contains the

prefrontal cortex) and the temporal lobes (which contains the

amygdala and hippocampus), which has also been shown to

impair executive functions and frequently results in disinhibition

(156). This is characterized by overeating and an increased

preference for sweet foods (156–159). Consistent with this, higher

BMI correlated with reduced activation in the frontal cortex areas,

implicated in inhibition (149). Another study found that frontal

lobe volume predicted future weight gain in young women, where

smaller volumes correlated with increased BMI one year later (160),

demonstrating that T2DM-induced reductions in brain volume are

associated with disinhibited eating and weight gain.
Recommendations

Understanding the intimate connection between T2DM and

depression, how they reinforce each other, and how they may

induce food addiction and result in overeating is relevant to

managing these conditions. A meta-analysis of comorbid

depression and T2DM found that 31% of patients with T2DM

suffer from depressive symptoms, with 11.4% having major

depressive disorders, and the prevalence is significantly higher in

females (161). Given that this comorbidity is associated with

noncompliance to diabetes medications, increased diabetes

complications, poor glycemic control, increased healthcare

expenditures, and increased mortality (162–165), all patients with

T2DM should be screened for depression (143). In an important

study, Echeverry et al. (2009) examined the effects of administering

the antidepressant sertraline (a selective serotonin reuptake

inhibitor, SSRI) to low-income Hispanic and African Americans

with poorly controlled T2DM and comorbid depression. They

found that in addition to lowering their depressive symptoms,

sertraline administration significantly reduced their HbA1c levels

and systolic blood pressure (166). This could be explained by the

increased adherence to diabetes recommendations in patients

whose depression has improved by sertraline or by improvements

in the HPA axis with the drug. Overall, patients with comorbid

T2DM and depression benefit from interventions that target both

conditions to see analogous improvements (167).

Our review has explained that hyperglycemia may play a role in

the maintenance of binge-eating disorder, even in patients who are

young and regardless of their diabetic status. Sodium-glucose

cotransporter 2 (SGLT2) inhibitors, such as empagliflozin, inhibit
Frontiers in Endocrinology 08
glucose reuptake in the kidneys to lower blood sugar without

causing hypoglycemia (168). For individuals with binge eating

disorders that cannot be resolved by other therapies, SGLT2

inhibitors could allow them to maintain near normal blood

glucose levels during binge eating episodes. Treatment with an

SGLT2 inhibitor, although currently not approved by the FDA for

binge eating disorders, could minimize many of this condition’s

pathological impacts and prevent limbic system inhibition, which

theoretically could reduce the frequency and duration of such

episodes. However, more research is required to confirm this

possibility. Interestingly, SGLT2 inhibitors are associated with a

lower risk of dementia (169).

Nonpharmacological approaches commonly used for addiction

should also be considered for patients with T2DM. Both

epidemiological and mouse studies have consistently shown that

the amount of aerobic exercise is inversely proportional to the use

and abuse of addictive substances (170). Since eating itself is

addictive, and T2DM further inhibits the limbic system

amplifying this reward deficiency (described above), it can be

inferred that increased activity will reduce overeating and benefit

individuals with T2DM, regardless of caloric consumption. In fact,

psychologists have appreciated for some time that any activity or

hobby (variously known as “positive addictions” or “positive

psychology”) would be beneficial in treating addiction (171, 172).

This explains the widespread use of diverse activities, such as yoga

and gardening, for mental health interventions and addiction

treatments (173, 174).

Finally, individuals should avoid consuming foods containing

high fructose corn syrup, which activates the limbic system, making

it more likely to induce RDS and initiate or perpetuate food

addiction (175).
Conclusions

The ideal treatment of any disease is to target its underlying

cause, not just its symptoms. In this article, we reviewed the

evidence that eating, especially high-caloric foods, stimulates the

limbic system, initiating RDS as the limbic system adjusts to and

limits the stimulation in a process known as tolerance, thus linking

the behavior of obesity to its psychiatric component (depression).

Additionally, limbic inhibition (depression) and insulin resistance

(which can lead to T2DM) stem from the same molecular

mechanisms and directly stimulate one another while inducing

weight gain. In these positive feedback loops, each continually

stimulates the other and further inhibits the limbic and executive

functions, exacerbating RDS. Treating the symptoms of T2DM,

such as lowering HbA1c, without addressing the underlying

pathways has little chance of eliminating the disease. Future

research on the potential benefits of the six pillars of lifestyle

medicine, which encompasses better diet, increased exercise,

improved sleep, stress reduction, avoidance of risky behaviors,

and fostering better relationships (176), could explore the impact
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of these lifestyle interventions on the shared pathways involved in

conditions like T2DM, chronic inflammation, and depression.
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