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Abstract Visualization is a highly data intensive science: visualization
algorithms take as input vast amounts of data produced by simulations or
experiments, and then transform that data into imagery. It turns out, as we
shall explore in this chapter, that visualization reveals a somewhat different
view of scientific data management challenges than are examined elsewhere

1
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in this book. For example, a data ordering and storage layout that works well
for saving data from memory to disk may not be the best thing for subsequent
visual data analysis algorithms.

This chapter will present four broad topic areas under this general rubric:
(1) a view of SDM-related issues from the perspective of implementing a
production-quality, parallel capable visual data analysis infrastructure; (2)
novel data storage formats for multi-resolution, streaming data movement,
access and use by post-processing tools; (3) data models, formats and APIs
for performing efficient I/O for both simulations and post-processing tools,
discussion of issues and previous work in this space; (4) how combining state-
of-the-art techniques from scientific data management and visualization en-
ables visual data analysis of truly massive datasets.

7.1 Introduction

Scientific visualization, which is the transformation of abstract data into
readily comprehensible images, and visual data analysis/analytics, which com-
bines visualization with analysis, play a central role in the modern scientific
process. We use the umbrella term “visualization” to refer to this broad set
of investigatory techniques aimed at enabling knowledge discovery – gaining
insight – from large, complex collections of scientific data.

The term “scientific visualization” was coined in 1987 in a landmark re-
port [21], which said: “Visualization is a method of computing. It transforms
the symbolic into the geometric, enabling researchers to observe their simula-
tions and computations. Visualization offers a method for seeing the unseen.
It enriches the process of scientific discovery and fosters profound and unex-
pected insights. In many fields, it is already revolutionizing the way scientists
do science...The goal of visualization is to leverage existing scientific methods
by providing new scientific insight through visual methods.”

While the term was coined in 1987, the art and science of visualization
dates back hundreds of years to DaVinci’s illustrations, or even earlier, to Ci-
cero’s written account of an early orrery constructed by the Greek philosopher
Posidonious to exhibit the diurnal motions of the sun, moon and five known
planets1. A relatively recent overview in [16] provides a good survey of the
field’s breadth and depth: algorithms for visualizing scalar, vector and tensor
fields, geometric modeling, virtual environments for visualization, large data
visualization, perceptual and cognitive issues in visualization, visualization
software and frameworks, software architecture, and so forth.

1See http://en.wikipedia.org/wiki/Orrery
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Visualization is a very data intensive science: visualization algorithms take
as input vast amounts of data produced by simulation or experiment, and
then transform that data into imagery. It turns out, as we shall explore in
this chapter, that visualization reveals a somewhat different view of scientific
data management challenges than are examined elsewhere in this book. For
example, a data ordering and storage layout that works well for saving data
from memory to disk may not be the best thing for subsequent visual data
analysis algorithms.

This chapter will present four broad topics areas under this general rubric:
(1) a view of SDM-related issues from the perspective of implementing a
production-quality, parallel capable visual data analysis infrastructure; (2)
novel data storage formats for multi-resolution, streaming data movement,
access and use by post-processing tools; (3) data models, formats and APIs
for performing efficient I/O for both simulations and post-processing tools,
discussion of issues and previous work in this space; (4) how combining state-
of-the-art techniques from scientific data management and visualization en-
ables visual data analysis of truly massive datasets.

7.2 Production-level, Parallel Visualization Tool Perspec-
tive on SDM

A production-level, parallel visualization tool is a robust program that is
used by a potentially large population of users to perform diverse visualiza-
tions and analyses, normally on data from many different types of file formats
and with varying types of data models. As such, these tools are somewhat
different from scientific simulation codes in that:

• They “unify” many different data models. For example, they support
many mesh types, field types, and various centerings for those fields
(point-centered, cell-centered, etc).

• They are not the originators of the semantics placed on the data. There-
fore, the meaning of each of the arrays of data must somehow be pro-
vided to the visualization tool.

• When run in a parallel environment, visualization tools are expected to
adapt to available resources (e.g. number of processors) and partition
the data for processing in a way that achieves good load balance.

In the following subsections, we describe how these visualization tools use
the data from scientific simulations. In particular, we will discuss:

• How a production-level, parallel visualization tool loads data, processes
it, and produces results.
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• How a production-level, parallel visualization tool can optimize its data
management and processing with the presence of metadata.

• The importance of data semantics from the perspective of a production-
level, parallel visualization tool.

7.2.1 How Data is Processed

The three major parallelized, production-level visualization tools – En-
Sight [9], VisIt [20], and ParaView [17] – all employ similar strategies. They
use a client-server design, where the client provides a user interface on the
ser’s desktop, and the server runs where the data is located, which is assumed
to have resources for parallel processing. The general data management strat-
egy for the parallel server can essentially be described as a “Scatter-Gather”
algorithm. The process can be characterized in three steps:

1. I/O (scatter): load data (in parallel) onto the server.

2. Processing: employ visualization and analysis algorithms; transform the
data to geometry.

3. Rendering (gather): transform the geometry into images.

7.2.1.1 I/O

Since visualization is a data intensive endeavor, I/O is frequently the slowest
and most expensive part of the entire visualization pipeline. As such, it is
advantageous to parallelize the data loading. A typical design pattern is
for each processor of the parallel server to read a portion of the input data
set, which is the mechanism that “scatters” the data set across each of the
processors. The key question during the I/O phase is how to assign portions of
the input data set to the processors of the server. We simplify the discussion
below, by assuming that the data is being read from disk, i.e. not being
processed in situ as part of a single program with the simulation code.

When the visualization server processes a portion of the data set, the input
data set must be partitioned and distributed across the server’s processors.
When the simulation outputs data, it may impose restrictions on data parti-
tioning. There are two typical scenarios:

1. The underlying I/O infrastructure only supports a partitioning scheme
fixed by the simulation when the file(s) were created. Most of the time,
this scenario corresponds to having one atomic chunk of data for each
processor2. Examples of I/O libraries of this type are Silo [30] and
Exodus [31]. Other examples include file-per-processor output, which

2Atomic in the sense that partial reads of the chunk of data are not possible.
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may be a good way to achieve I/O performance for the simulation’s
data-write phase, but has undesirable consequences for processing tools
that read their data. Those processing tools are then forced to reconcile
between the simulation’s degree of parallelism and their own. For exam-
ple, the simulation may decompose a three-dimensional space into one
thousand pieces, but the processing tool may be running with only five
processors. In this case, the processing tool must find a way to partition
the pieces across its processors, either by combining all of the pieces on
a given processor into one large piece or by respecting piece layout and
supporting multiple pieces per processor.

2. The underlying I/O infrastructure supports re-partitioning during read.
Most of the time, this scenario corresponds to having all of the data in
one large file, with the I/O infrastructure supporting operations like hy-
perslab reads, collective I/O, and so forth. Examples of formats that can
repartition data in this manner are ViSUS [26], SAF [22], and HDF5 [13].

These two scenarios are well supported by the major, parallel, production
visualization tools, although the scenarios are supported differently in terms
of how the tools do parallel partitioning. For the first case (imposed parti-
tioning), each subset of the partition normally consists of “domains”, where
each domain consists of the portion operated on by a single processor. In this
case, the visualization tool distributes the domains across its processors. For
the second case (adaptive partitioning), the visualization tool forms its own
partition of the data set by having each processor read in a unique piece. In
both cases, it is important that each processor has an approximately equal
amount of data to read, which correlates strongly with work to be performed
in subsequent stages. From an SDM perspective, the summary is that both
ways of writing data are acceptable.

7.2.1.2 Processing

The modern parallel visualization tools all use a data flow network pro-
cessing design [1, 32, 36]. Data flow networks have base types of data objects
and components (sometimes called process objects). The components can be
filters, sources, or sinks. Filters have an input and an output, both of which
are data objects. Sources have only data object outputs, while sinks have only
data object inputs. A pipeline is an ordered collection of components. Each
pipeline has a source (typically a file reader) followed by one or more filters
(for example slicing or contouring algorithms) followed by a sink (typically
a rendering algorithm). When a pipeline is executed, data comes from the
source and flows from filter to filter until it reaches the sink. There are many
variations on this general design that include caching, how the execution takes
place (push versus pull), multiplicity in terms of sources and sinks, feedback
loops in the filters, reusing arrays from data object to data object to reduce
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memory footprint, and optimizations like parallel-pipelined operation so that
different stages of the pipeline may operate concurrently.

When the client asks the server to perform some operations on a data ob-
ject, each processor of the server sets up an identical data flow network. They
only differ in the portion of the data set that they process. The majority
of visualization operations are “embarrassingly parallel” – the processing can
occur in parallel with no communication between the parallel processes. For
these operations, the only concern is artifacts that can occur along the bound-
aries of a chunk. For example, a stencil-based algorithm that is run in parallel
may require data from adjacent grid points that are owned by another proces-
sor. The typical way to resolve this problem is using redundant data located
at the boundary, which is often referred to as ghost data.

7.2.1.3 Rendering and Remote/Distributed Visualization

Within the context of visualization software architectures, the majority of
SDM-related concerns reside in I/O and processing stages. The later stage of
visualization – rendering, where visualization results (geometry, 3D volumes,
etc.) are transformed into images – has its own unique set of visualization-
centric SDM-related issues.

As context, remote and distributed visualization applications can use one
of three general types of architectures as shown in Figure 7.1. A discussion
of the relative performance and usability merits of these different configura-
tions is presented in [33]. The important point here, within the context of
SDM-related issues, is that moving data across machine boundaries can be a
non-trivial task. The data might be raw data, as in the desktop-only configu-
ration; it might be geometric output produced by visualization tools, as in the
“cluster isosurface” configuration; or it might be raw image pixels, as in the
“cluster render” configuration. Unlike “traditional” data movement applica-
tions (e.g., ftp and its variants), the visualization use model often dictates
which pipeline partitioning will work best given a particular problem size and
set of machines/networks. For instance, if maximizing rendering interactiv-
ity of static data is the desired target, then one of the configurations that
uses desktop graphics hardware for rendering is the best choice, assuming the
problem will fit onto the desktop machine. If maximizing throughput is the
objective, e.g., cycling through large, time-varying data, then the configura-
tion where data I/O and processing is performed on a parallel machine and
image sent to the remote viewer is the best choice. The trend we see in high
performance visualization for many problem domains is more towards this
latter configuration, which exhibits favorable scaling characteristics as data
sizes grow larger.

In the case when all rendering occurs on the desktop, all data represen-
tation and data transfer issues are encapsulated inside the graphics library
(though there may be substantial SDM issues to consider in the visualization
pipeline prior to the rendering stage). In the case where rendering occurs on
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one machine and image pixels are transmitted to one or more remote ma-
chines for viewing, several interrelated issues appear: security (authorization
and authentication), compression (lossless vs. lossy), efficient data movement
(lossless vs. lossy, multistreamed, multicast), data formats and models for the
pixel data.

For this latter issue, a widely adopted approach is the Remote Framebuffer
Protocol (RFB), which is part of the popular Virtual Network Computing
(VNC) client/server application for remote desktop access [29]. Here, the
remote client connects to a central server where the data-intensive applica-
tion is run; the resulting imagery is “harvested” by the VNC server, encoded
into RFB format, and transmitted to the VNC client for display via a stan-
dard TCP connection. In its native form, VNC is not capable of capturing
image pixels created by graphics hardware. Other recent work rectifies this
shortcoming, as well as provides a solution layered atop the RFB protocol
to capture and deliver image pixels produced by hardware-accelerated, dis-
tributed memory rendering infrastructure [28]. In both cases, the rendering
infrastructure, particularly the image capture and remote delivery, is trans-
parent to the visualization application.

7.2.2 How Metadata Can Enable Optimizations

In this section, we give an example that motivates how the presence of
metadata3 can lead to extensive optimizations for the visualization tool. I/O is
the most expensive portion of a pipeline execution for almost every operation
a visualization tool performs. We can reduce I/O and processing load by
reading only the domains that are relevant to any given pipeline operation.
This performance gain propagates through the pipeline, since the domains not
read in do not have to be processed downstream.

Consider the example of slicing a three-dimensional data set by a plane
(Figure 7.2). In this case, most of the domains will not intersect the plane
– loading and processing those domains that do not intersect the slice plane
is wasted effort. By using metadata, we can dramatically reduce both I/O
and processing load: we can limit I/O and processing only to those domains
needed to complete the task at hand. For example, if the slice filter had access
to the spatial extents for each domain, it could calculate the list of domains
whose bounding boxes intersects the slice and only process that list (note that
false positives can potentially be generated by considering only the bounding
box).

The performance gains one can realize from metadata optimizations can be
extensive. From a theoretical perspective, if D is the total number of domains,
then the number of domains intersected by the slice is typically O(D2/3). Us-

3We define metadata as data about the total data set to be processed, whose size is small
relative to the total data set itself



8Scientific Data Management Challenges in High Performance Visual Data Analysis

ing this fact, we observe that we might expect an order-of-magnitude improve-
ment in performance by using metadata to optimize visualization processing.
From a practical perspective, we ran some performance experiments to show
exactly how much performance gain can result from metadata optimizations.

Table 7.1 presents the results of the study where we run a pair of visual-
ization algorithms – slicing, and isocontouring – and measure the I/O and
processing costs with- and without-metadata configurations. In the slicing
case, we use spatial metadata to limit the subsets of data that are loaded
to only those that intersect the slice plane. In the isocontouring case, we use
metadata describing the data range for each block to limit I/O and processing
only to those blocks containing data ranges of interest – those that intersect
the isosurface.

The data for this study was produced by a Rayleigh-Taylor Instability simu-
lation, which models fluid instability between heavy fluid and light fluid. The
simulation was performed on a 1152x1152x1152 rectilinear grid, for a total of
more than one and a half billion elements. The data was decomposed into
729 domains, with each domain containing more than two million elements.
All timings were taken on a cluster of 1.4GHz Intel Itanium2 processors, each
with access to two gigabytes of memory.

The processing time includes the time to read in a data set from disk,
perform operations to it, and prepare it for rendering. Rendering was not
included because it can be highly dependent on screen size. We note that
using spatial metadata typically yields a consistent performance improvement,
whereas performance gains resulting from metadata about fields defined on
the mesh (e.g. pressure, density, etc.) can be highly problem specific. To
illustrate this effect, we show results from running the contouring algorithm
on simulation data from both early and late timesteps. In earlier timesteps,
the fluids have not mixed much, so the shape of the contour approximates
a planar slice and does not intersect many domains. In the later timestep,
the fluid has undergone substantial mixing, and the contour has much greater
surface area due to folding, so it intersects many more data domains.

In summary, the presence of metadata can improve performance to the
point of being interactive for certain algorithms. And interactivity is widely
regarded to be a key component for scientific discovery.

7.2.3 Data Models and Semantics

Visualization tools devote a substantial amount of code to representing
data (i.e. data structures), importing data, and translating it into those data
structures. Anecdotal evidence suggests that as much as 80% of any given vi-
sualization application is dedicated to these very activities. The large amount
of “SDM-related code” typically comes from the fact that various simulation
tools have many different ways to represent their data and the visualization
often must support them all. By way of example, the VisIt visualization tool
devotes approximately forty thousand lines of code to various data structures.
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Processing time (sec) Data processed (MB)
Algorithm Processors Without With Without With

Metadata Metadata Metadata Metadata
Slicing 32 25.3 3.2 6,375.6 708.4

Contouring 32 41.1 5.8 6,375.6 708.4
(early time)
Contouring 32 185.0 97.2 6,375.6 3,948.0
(late time)

Table 7.1: Performance results of visualization processing – slicing, and iso-
contouring – with and without metadata optimization. For slicing and early-
time isocontouring, we see an order-of-magnitude performance gain resulting
from the metadata optimization. For the late-time isocontouring, the per-
formance gain is still substantial, but not as profound due to the fact that
late-stage isocontour is more complex and spans more blocks of data.

This does not include the portion of the data model that is incorporated from a
third party library (the Visualization ToolKit), which in fact forms the core of
the data model (the portion for mesh and field representations). In addition,
VisIt has over eighty separate file format readers, each of which ranges from
eight hundred lines of code to twelve thousand lines of code. Approximately
150,000 lines of code in VisIt is devoted to file format readers.

In addition to a basic data model for representing standard mesh types
(e.g. rectilinear, curvilinear, unstructured, adaptive mesh refinement (AMR),
and point meshes) and fields (e.g. scalars, vectors, and tensors), production
visualization tools must understand many types of metadata about the data
set to perform certain operations. We list a subset of this metadata to give a
feel for how deep the visualization tool must go:

• For each array in the file that corresponds to data that should be visu-
alized, the tool must understand what this array is and how it should be
interpreted. For example, the visualization tool must understand that
an array in a file labeled “den” is in fact a scalar field defined on a mesh.
It is often not necessary to know that “den” is actually the density field,
but may be necessary to know if the field values are explicit (i.e. density
of some material per unit of volume) or implicit (i.e. density is directly
related to the volume of the cell).

• Which cells in the mesh, if any, are ghost cells.

• If the mesh is hierarchical, as is the case with Adaptive Mesh Refinement
(AMR) meshes, then the visualization tool must understand metadata
describing how the patches of the mesh nest from coarse to fine resolu-
tion.



10Scientific Data Management Challenges in High Performance Visual Data Analysis

• If the mesh is from a multi-domain data set, the metadata defines how
the domains abut. This information is required for many operations,
such as computation of ghost data.

• Metadata for optimizations, such as the per-domain bounding boxes
discussed in the previous section.

• Metadata about temporal characteristics, such as the simulation time
and cycle identifier.

• Information such as volume fractions for Eulerian calculations, including
maintaining sparse matrix structures for efficient representation of this
information.

7.2.4 A Real World Production Parallel Visualization Tool

For concreteness, we describe the architecture and operation of a specific,
production-quality, parallel visualization, VisIt, which implements many of
the concepts described in the previous sections. In terms of I/O, it supports
both imposed and adaptive partitioning (see Section 7.2.1.1). It also caches
all I/O, which is frequently the dominant portion of execution time. In terms
of processing, it uses a pipeline design, although its user interface does not
expose pipeline constructs to users. VisIt’s pipeline design makes full use of
contracts, which enables the components of a data flow network to specify and
communicate optimizations to achieve higher levels of performance efficiency
(see Section 7.2.2). Many filters utilize metadata to limit the amount of
data being processed and many file format readers produce metadata, such as
per-domain bounding boxes. VisIt uses two approaches for rendering. First,
surfaces with a relatively small number of geometric primitives (e.g., triangles,
line segments, etc.) are sent to the client and rendered locally using the
local desktop’s graphics hardware. Surfaces with a relatively large amount of
geometric primitives remain on the server where VisIt renders them in parallel,
then the VisIt server sends the resulting imagery to the remote client. VisIt
automatically decides which rendering approach to use based on the number
of geometric primitives, but this decision can be overridden by users. In
terms of VisIt’s data model, VisIt processes all of the mesh types and field
types described in Section 7.2.3. It also pays special attention to preserving
information about data layout and ordering, so that users can ask debugging
type questions such as, “what is the value of the 110th element in the 41st
domain?” This design represents a large amount of effort. VisIt has over two
hundred filters, twenty different ways to render data, and ninety different file
readers, adding up to over one and a half million lines of C++ code.

Summarizing the entire section, data representation issues and designs of file
formats are a critical issue for visualization tools. First, the visualization tool
needs to be aware of most of the data that the simulation code itself is aware
of, simply because much of that information is directly visualized or needed for
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proper visualization. Second, additional metadata can enable optimizations
and greatly improve the performance of a visualization tool. Third, data
layout issues, such as the way data can be partitioned for parallelization, are
very important and can have a profound impact on end-to-end performance
and usability.

7.3 Multi-resolution Data Layout for Large Scale Data
Analysis

In recent years, computational scientists with access to powerful supercom-
puters have successfully simulated fundamental physical processes with the
goal of shedding new light on our understanding of nature. Such simulations
often produce massive amounts of data: grids of size 10243 to 40963 at multi-
ple timesteps and dozens of variables per grid point are not uncommon. This
data must be visualized and analyzed to verify and validate the underlying
model, to understand the phenomenon in detail, and to develop new insights
into fundamental physics. Both data visualization and data analysis are vi-
brant research areas and much effort is being spent on developing advanced,
new techniques to process the massive amounts of data produced by scientists.
In this section, we describe a multi-resolution data layout, which provides the
ability for quick access to data at varying levels of resolution, from coarse to
fine.

7.3.1 Background

To provide context, we highlight these two components in a typical visu-
alization and analysis pipeline shown in Figure 7.3. We assume that raw
data from simulations is available as real-valued, regular samples of space-
time. Due to the large size of datasets, we emphasize that all data samples
cannot all be loaded into main memory at once; it is not feasible to use stan-
dard implementations of visualization and analysis algorithms on these large
datasets.

Re-ordering this raw data into a suitable multi-resolution data layout can
improve the efficiency of both visualization and analysis. Multi-resolution lay-
outs enable interactive visualization by allowing the user to first load the data
at a coarse level, then progressively refine by adding more samples to obtain a
more detailed view. Classical schemes, e.g., those based on bricking or chunk-
ing, do not readily support the type of data access required for progressive
or multiresolution techniques. In the following, we describe our hierarchical
z-order data layout scheme. It builds on the coherent layout provided by the
z-order space filling curve by incorporating a coarse-to-fine hierarchy on the
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ordering. Our system is very simple to implement and has been used as a
core technology and applied to a variety of visualization algorithms, such as
slicing, isosurfacing, and volume rendering on massive amounts of scientific
simulation data.

A multi-resolution data layout is a key technology that plays a central
role in advanced analysis algorithms that go beyond simple images or movies.
Topological analysis is one such technique that is useful for providing a deeper
understanding of scientific phenomena. In this type of application, the anal-
ysis takes the form of defining, detecting, and quantifying features in data.
Features can and do exist at multiple scales in data. For this reason, an
efficient, multi-resolution data layout and model is an integral part of high-
performance implementations of such algorithms. For more information on
state-of-the art topological analysis, see see [6–8,10,11,25], and for application
of such techniques to the analysis of simulation data, including hydrodynamic
instability, and comparative analysis, see [15,18,23].

7.3.2 Hierarchical Indexing for Out-of-Core Access to Multi-
Resolution Data

Out-of-core computing [37] specifically addresses the issues of algorithm
redesign and data layout restructuring that are necessary to enable data ac-
cess patterns having minimal out-of-core processing performance degradation.
Research in this area is also valuable in parallel and distributed computing,
where one has to deal with the similar issue of balancing processing time
with the time required for data access and movement amongst elements of a
distributed or parallel application.

The solution to the out-of-core processing problem is typically divided into
two parts: (1) algorithm analysis, to understand data access patterns and,
when possible, redesign to maximize data locality; (2) storage of data in sec-
ondary memory using a layout consistent with the access patterns of the algo-
rithm, amortizing the cost of individual I/O operations over several memory
access operations.

In the case of hierarchical visualization algorithms for volumetric data, the
3D input hierarchy is traversed from a coarse grid to the fine grid levels to
build derived geometric models having adaptive levels of detail. The shape of
the output models are then modified dynamically with incremental updates of
their level of detail. The parameters that govern this continuous modification
of the output geometry are dependent on runtime user interaction, making it
impossible to determine, a priori, what levels of detail will be constructed.
For example, parameters can be external, such as the viewpoint of the current
display window or internal, such as the isovalue of a contour or the position of
a slice plane. The general structure of the access pattern can be summarized
into two main points: (1) the input hierarchy is traversed from coarse to fine
and level by level so that data in the same level of resolution is accessed at
the same time, and (2) within each level of resolution, the regions that are
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in close geometric proximity are stored as much as possible in close memory
locations and also traversed at the same time.

In this section, we describe a static indexing scheme that induces a data
layout satisfying both requirements (1) and (2) for the hierarchical traversal
of n-dimensional regular grids. The scheme has three key features that make
it particularly attractive. First, the order of the data is independent of the
out-of-core block structure, so that its use in different settings (e.g. local
disk access or transmission over a network) does not require any large data
reorganization. Second, conversion from the Z-order indexing [19] used in
classical database approaches to the new indexing scheme can be implemented
with a simple sequence of bit-string manipulations, making it appealing for a
possible hardware implementation. Third, since there is no data replication,
we avoid the performance penalties associated with dynamic updates as well
as increased storage requirements typically associated with most hierarchical
and out-of-core schemes.

Beyond the theoretical interest in developing hierarchical indexing schemes
for n-dimensional space filling curves, our approach targets practical appli-
cations in out-of-core visualization algorithms. For details on related work,
algorithmic analysis, and experimental results see [27].

7.3.2.1 Hierarchical Subsampling Framework

This section discusses the general framework for an efficient definition of a
hierarchy over the samples of a dataset.

Consider a set S of n elements decomposed into a hierarchy H of k levels
of resolution H = {S0, S1, . . . , Sk−1} such that:

S0 ⊂ S1 ⊂ · · · ⊂ Sk−1 = S

where Si is said to be coarser than Sj if i < j. The order of the elements in
S is defined by a cardinality function I : S → {0 . . . n− 1}. This means that
the following identity always holds:

S[I(s)] ≡ s

where square brackets are used to index an element in a set.
One can define a derived sequence H′ of sets S′

i as follows:

S′
i = Si\Si−1 i = 0, . . . , k − 1

where formally S−1 = ∅. The sequence H′ = {S′
0, S

′
1, . . . , S

′
k−1} is a partition-

ing of S. A derived cardinality function I ′ : S → {0 . . . n− 1} can be defined
on the basis of the following two properties:

• ∀s, t ∈ S′
i : I ′(s) < I ′(t) ⇔ I(s) < I(t);

• ∀s ∈ S′
i,∀t ∈ S′

j : i < j ⇒ I ′(s) < I ′(t).
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If the original function I has strong locality properties when restricted to
any level of resolution Si, then the cardinality function I ′ generates the desired
global index for hierarchical and out-of-core traversal. The scheme has strong
locality if elements with close indices are also close in geometric position.
These locality properties are well studied in [24].

The construction of function I ′ can be achieved as follows: (i) determine
the number of elements in each derived set S′

i and (ii) determine a cardinality
function I ′′i = I ′|S′

i
restriction of I ′ to each set S′

i. In particular, if ci is
the number of elements of S′

i, one can predetermine the starting index of the
elements in a given level of resolution by building the sequence of constants
C0, . . . , Ck−1 with

Ci =
i−1∑
j=0

cj . (7.1)

Next, one must determine a set of local cardinality functions I ′′i : S′
i →

{0 . . . ci − 1} so that:

∀s ∈ S′
i : I ′(s) = Ci + I ′′i (s). (7.2)

The computation of the constants Ci can be performed in a preprocessing
stage so that the computation of I ′ is reduced to the following two steps:

• given s determine its level of resolution i (that is the i such that s ∈ S′
i);

• compute I ′′i (s) and add it to Ci.

These two steps must be performed very efficiently as they will be executed
repeatedly at run time. The following section reports a practical realization
of this scheme for rectilinear cube grids in any dimension.

7.3.2.2 Binary Trees and the Lebesgue Space Filling Curve

This section reports the details on how to derive from the Z-order space
filling curve the local cardinality functions I ′′i for a binary tree hierarchy in
any dimension and its remapping to the new index I ′.

Indexing the Lebesgue Space Filling Curve. The Lebesgue space
filling curve, also called Z-order space filling curve for its shape in the 2D
case, is depicted in figure 7.4(a-e). The Z-order space filling curve can be
defined inductively by a base Z shape of size 1 (figure 7.4a), that is by the
vertices of a square of side 1 that are connected along a “Z” pattern. Such
vertices can then be replaced each by a Z shape of size 1

2 as in Figure 7.4(b).
The vertices obtained in this way are then replaced by Z shapes of size 1

4 as in
Figure 7.4(c), and so on. In general, the ith level of resolution is defined as the
curve obtained by replacing the vertices of the (i−1)th level of resolution with
Z shapes of size 1

2i . The 3D version of this space filling curve has the same
hierarchical structure with the only difference being that the basic Z shape is
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Level of Tree 0 1 2 3 4
Z-order index (2 levels) 0 1
Z-order index (3 levels) 0 2 1 3
Z-order index (4 levels) 0 4 2 6 1 3 5 7
Z-order index (5 levels) 0 8 4 12 2 6 10 14 1 3 5 7 9 11 13 15
hierarchical index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 7.2: Structure of the hierarchical indexing scheme for binary tree com-
bined with the order defined by the Lebesgue space filling curve.

replaced by a connected pair of Z shapes lying on the opposite faces of a cube
as shown in Figure 7.4(f). Figure 7.4(f-j) show five successive refinements of
the 3D Lebesgue space filling curve. The d-dimensional version of the space
filling curve has also the same hierarchical structure, where the basic shape
(the Z of the 2D case) is defined as a connected pair of (d − 1)-dimensional
basic shapes lying on the opposite faces of a d-dimensional cube.

The property that makes the Lebesgue’s space filling curve particularly
attractive is the easy conversion from the d indices of a d-dimensional matrix
to the 1D index along the curve. If one element e has d-dimensional reference
(i1, . . . , id), its 1D reference is built by interleaving the bits of the binary
representations of the indices i1, . . . , id. In particular if ij is represented by
the string of h bits “b1

jb
2
j · · · bh

j ” (with j = 1, . . . , d) then the 1D reference I of e

is represented by the string of hd bits I = “b1
1b

1
2 · · · b1

db
2
1b

2
2 · · · b2

d · · · bh
1bh

2 · · · bh
d”.

The 1D order can be structured in a binary tree by considering elements of
level i, those that have the last i bits all equal to 0. This yields a hierarchy
where each level of resolution has twice as many points as the previous level.
From a geometric point of view this means that the density of the points
in the d-dimensional grid is doubled alternating along each coordinate axis.
Figure 7.5 shows the binary hierarchy in the 2D case where the resolution
of the space filling curve is doubled alternately along the x and y axis. The
coarsest level (a) is a single point, the second level (b) has two points , the
third level (c) has four points (forming the Z shape), and so on.

Index Remapping. The cardinality function discussed in Section 7.3.2.1
for the binary tree case has the structure shown in Table 7.2. For example, the
element of index 0 is always at the top of the tree (level 0) for any granularity.
If the index as 5 granularity levels (the 4th row in the table), node 8 is at
the second level the tree; the nodes 4 and 12 are at the next level of the tree;
the node 4 has nodes 2 and 6 below it at the next level of the tree, while the
node 12 has 10 and 14 below it at the next level of the tree. The last level
has nodes 1 and 3 below 2, 5 and 7 below 6 and so on. Note that this is a
general structure suitable for out-of-core storage of static binary trees. It is
independent of the dimension d of the grid of points or of the Z-order space
filling curve.
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The structure of the binary tree defined on the Z-order space filling curve al-
lows one to easily determine the three elements necessary for the computation
of the cardinality. They are: (i) the level i of an element, (ii) the constants
Ci of equation (7.1) and (iii) the local indices I ′′i .

i - if the binary tree hierarchy has k levels then the element of Z-order
index j in the Z-order belongs to the level k−h, where h is the number
of trailing zeros in the binary representation of j;

Ci - the total number of elements in the levels coarser than i, with i > 0, is
Ci = 2i−1 with C0 = 0;

I ′′i - if an element has index j and belongs to the set S′
i then j

2k−i must be
an odd number, by definition of i. Its local index is then:

I ′′i (j) =
⌊

j

2k−i+1

⌋
.

The computation of the local index I ′′i can be explained easily by looking
at the bottom right part of Table 7.2 where the sequence of indices (1, 3, 5,
7, 9, 11, 13, 15) needs to be remapped to the local index (0, 1, 2, 3, 4, 5, 6,
7). The original sequence is made of a consecutive series of odd numbers. A
right shift of one bit (or rounded division by two) turns them into the desired
index.

These three elements can be put together to build an efficient algorithm that
computes the hierarchical index I ′(s) = Ci + I ′′i (s) in the two steps shown in
the diagram of Figure 7.6:

1. Set the bit in position k + 1 to 1;

2. Shift to the right until a 1 comes out of the bit-string.

This algorithm could have a very simple and efficient hardware implementa-
tion. The software C++ version can be implemented as follows:

inline adhocindex remap(register adhocindex i){

i |= last_bit_mask; // set leftmost one

i /= i&-i; // remove trailing zeros

return (i>>1); // remove rightmost one

}

This code would work only on machines with two’s complement representa-
tion of numbers. In a more portable version, one needs to replace i /= i&-i
with i /= i&((~i)+1).

Figure 7.7 shows the data layout obtained for a 2D matrix when its elements
are reordered following the index I ′. The data is stored in this order and
divided into blocks of constant size. The 2D image of such decomposition has
the first block corresponding to the coarsest level of resolution of the data.
The subsequent blocks correspond to finer and finer resolution data, which is
distributed more and more locally.
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7.3.2.3 Performance

In this section, we describe experimental results for a simple, fundamental
visualization technique: orthogonal slicing of a 3D rectilinear grid. Slices can
be at different resolutions to allow interactivity: as the user manipulates the
slice parameters, we compute and display a coarse resolution slice, then refine
it progressively. We compare our layout with two common array layouts: row
major, and h× h× h brick decomposition.

Data I/O Requirements. As we shall see, the amount of data required
to be read from disk varies substantially from one array layout to another.
By way of example, consider the case of an 8GB dataset (a 20483 mesh of
unsigned char data values). An orthogonal slice of this mesh consists of
2048× 2048, or 4194304 points/bytes. In this example, disk pages are 32KB
in size (see Figure 7.8(a)). For the brick decomposition case, one would use
32 × 32 × 32 blocks of 32KB for the entire dataset. The data loaded from
disk for a slice is 32 times larger than the output, or 128MB bytes. As the
subsampling increases up to a value of 32 (one sample out of 32), the amount
of data loaded does not decrease because each 32× 32× 32 brick needs to be
completely loaded. At lower subsampling rates, the data overhead remains
the same: the data loaded is 32768 times larger than the data needed. In
the binary tree with Z-order remapping, the data layout is equivalent to a
KD-tree, constructing the same subdivision as an octree. For a 2D slice,
the KD-tree mapping is equivalent to a quadtree layout. The data loaded
is grouped into blocks along the hierarchy that gives an overhead factor in
number of blocks of 1 + 1

2 + 1
4 + 1

16 + · · · < 2 (as for one added to a geometric
series), while each block is 32KB.

Tests with Memory Mapped Files. A series of basic tests were per-
formed to verify the performance of the approach using a general purpose
paging system. The out-of-core component of the scheme was implemented
simply by mapping a 1D array of data to a file on disk using the mmap func-
tion. In this way, the I/O layer is implemented by the operating system
virtual memory subsystem, paging in and out a portion of the data array as
needed. No multi-threaded component is used to avoid blocking the applica-
tion while retrieving the data. The blocks of data defined by the system are
typically 4KB. Figure 7.8(b) shows performance tests executed on a Pentium
III Laptop. The proposed scheme shows the best scalability in performance.
The brick decomposition scheme with 163 chunks of regular grids shows the
next best performance. The (i, j, k) row-major storage scheme has the worst
performance because of its dependency on the slicing direction: best for (j, k)
plane slices and worst for (j, i) plane slices. Figure 7.8(c) shows the perfor-
mance results for a test on a larger, 8GB dataset, run on an SGI Octane. The
results are similar.

The hierarchical Z-order is our layout of choice for efficient data manage-
ment for visualizing and analyzing large scale scientific simulation data. In the
next section, we describe some of the fundamental mathematical techniques
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that we use for analyzing such datasets.

7.4 File Formats for High-Performance Visualization and
Analytics

The notion of data models and formats is a central focal point in the nexus
between producers and consumers of data. As indicated earlier in Section 7.2,
production visualization applications are expected to be able to read and pro-
cess a large number of different formats. Many of these formats are built atop
underlying I/O libraries, like HDF5 and netCDF. Even with well-established
I/O libraries, which implement an on-disk data format for storing and retriev-
ing arrays of data, there exist several issues that perennially affect producers
and consumers of data. One is the fact that the APIs for these I/O libraries
can be complex: they provide a great deal of functionality, which is exposed
through an API. Another is that it is possible to “misuse” the I/O library
in a way that will result in less-than-optimal I/O performance. Yet another
is that semantic conventions are not consistent across and within disciplines.
The existence of well-established I/O libraries is of huge benefit to develop-
ers, for these technologies accelerate development by avoiding “reinventing
the wheel.” However, they can be complex to use, and they don’t solve the
semantic gap problem that exists between producers and consumers of data.

This section addresses these topics from a visualization-centric perspective.
In our work, we often are the ones who end up having to reconcile semantic
as well as format discrepancies between simulation, experiment and visualiza-
tion technologies. As it does not seem practical for a panacea solution that
will solve these problems for all disciplines, we have adopted a “bottom-up”
approach that focuses on addressing these problems for communities and for
specific new capabilities at the crossover point between the fields of visualiza-
tion and scientific data management.

The first subsection below presents H5part, which is a high-level API that
provides a solution to the semantic gap for use in computational accelerator
modeling. Concurrently, H5part is engineered to provide good I/O perfor-
mance in a way that is reasonably “immune to misuse.” It encapsulates the
complexity of an underlying I/O library, thereby providing advanced data
I/O capabilities to both simulation and visualization developers. The relative
simplicity of its API lowers the developer cost of taking advantage of such
technology. Next, we present another high-level API aimed at encapsulating
both data I/O and index/query capabilities. Again, our motivation is to en-
capsulate the complexity of both these technologies. Finally, we present some
examples of how these technologies are used in practice.
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7.4.1 H5Part

7.4.1.1 Motivation

Modern science – both computational and experimental – is typically per-
formed by a number of researchers from different organizations who collec-
tively collaborate on a challenging research problem. In the case of particle
accelerator modeling, different groups collaborate on different aspects of mod-
eling the entire beamline. One group works on modeling injection of particles
into the beam, another works on modeling magnetic confinement and beam
focusing along the beamline, while yet another works on modeling the impact
of the energized particles with the target. Each of these different models is
studied with one or more different simulation codes. One “grand challenge” in
accelerator modeling is to simulate the entire beamline, from injection to im-
pact. This ambitious project is being approached by the development and use
of a number of different codes, each of which models a different portion of the
beamline4. Accurate end-to-end modeling of accelerators is crucial to create
an optimized design prior to building the multi-billion dollar instrument.

Unfortunately, there has historically been little coordination between these
code teams: the individual codes often output particle and field data in dif-
ferent, incompatible formats. Worse yet, some of these codes output multiple
terabytes of simulation data in ASCII format because it is “easy” to do so.
Many of these codes use serial I/O; e.g., ASCII, HDF4, etc. As a result, there
is data format incompatibility between different modeling stages, I/O is slow
when performed in serial, and is wasteful of space in the case of ASCII for-
mats. Of more concern is the impediment to scientific progress that results
from data format incompatibility. It becomes extremely difficult to compare
results from different simulations that model the same part of the beamline
due to different data formats (e.g, different units of measure, different coor-
dinate systems, different data layouts, and so forth).

H5part5 was motivated by the desire of the accelerator modeling commu-
nity to address these problems. The vision is to have a community-centric
data format and API that would enable codes from all processing stages to:
(1) read/write particle and field data in a single format; (2) allow legacy codes
– simulations, visualization and analysis tools – to quickly take advantage of
modern parallel I/O capabilities on HPC platforms; (3) accelerate software de-
velopment and engineering in the area of I/O for accelerator modeling codes;
(4) facilitate code-to-code and code-to-experiment data comparison and anal-
ysis; (5) enable the accelerator modeling community to more easily share data,
simulation and analysis code; and (6) facilitate migrating towards community
standards for data formats and analysis/visualization. The intended result is

4See http://compass.fnal.gov for an example of a large, community-based accelerator
modeling project with exactly these objectives.
5We coined the term H5part for the API to reflect use of HDF5 for particle-based data sets
common in high energy physics.
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to accelerate scientific discovery by reducing software development time, by
fostering “best practices” in data management within the particle accelera-
tor modeling community, and to improve the I/O efficiency of simulation and
analysis tools.

H5Part is a very simple data storage schema and provides an API that
simplifies the reading/writing of the data to the HDF5 file format [13]. An
important foundation for a stable visualization and data analysis environment
is a stable and portable file storage format and its associated APIs. The pres-
ence of a “common file storage format,” including associated APIs, fosters a
fundamental level of interoperability across the project’s software infrastruc-
ture. It also ensures that key data analysis capabilities are present during the
earliest phases of the software development effort. The H5Part file format and
APIs enable disparate research groups with different simulation implementa-
tions to transparently share datasets and data analysis tools. For instance,
the common file format enables groups that depend on completely different
simulation implementations to share data analysis tools.

H5Part is built on top of HDF5 (Hierarchical Data Format). HDF5 offers
a number of advantages: it is a self-describing machine-independent binary
file format that supports scalable parallel I/O performance for MPI codes
on a variety of supercomputing systems, and works equally well on laptop
computers. HDF5 is available for C, C++, and Fortran codes. The primary
disadvantage of HDF5 is in the complexity of the API. Because of the rich set
of functionality in HDF5, it can be challenging for domain scientists to write
out a simple 1D array of data using raw HDF5 calls. Worse, doing parallel I/O
is further complicated by the variety of data layout and I/O tuning options
available in HDF5.

By restricting the usage scenario to particle accelerator data, H5Part en-
capsulates much of the complexity of HDF5 to present a simple interface for
data I/O to accelerator scientists that is much easier to use than the HDF5
API. Compared to code that calls HDF5 directly, code that calls H5part is
more terse, less complex, and easier to maintain. For example, code that uses
H5part need to make any HDF5 calls that set up organization for data groups
inside the HDF5 file since it encapsulates such functionality. The internal
layout of data groups inside the HDF5/H5part file has proven to be effective
for both efficiently writing data from simulation code as well as for efficiently
reading data, either serially or in parallel, into visual data analysis tools.

7.4.1.2 File Organization and API

The H5part file storage format uses HDF5 for the low-level file storage and a
simple API to provide a high-level interface to that file format. A programmer
can use the H5Part API to access the data files or to write directly to the file
format using some simple conventions for organizing and naming the objects
stored in the file.

In order to store particle data in the HDF5 file format, we have formalized
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the hierarchical arrangement of the datasets and naming conventions for the
groups and associated datasets. The H5Part API formally encodes these
conventions in order to provide a simple and uniform way to access these
files from C, C++, and Fortran codes. The API makes it easy to write
very portable data adaptors for visualization tools in order to expand the
number of tools available to access the data. Users may write their own
HDF5-based interface for reading and writing the file format, or may use
the h5ls and h5dump command-line utilities, which are included with the
HDF5 distribution, to display the organization and contents of H5Part files.
The standards offered by the sample API are completely independent of the
standard for organizing data within the file. The file format supports the
storage of multiple timesteps of datasets that contain multiple fields.

The data model for particle data allows storing multiple timesteps where
each timestep can contain several datasets of the same length. Typical particle
data consists of the three-dimensional Cartesian positions of particles (x, y, z)
as well as the corresponding three-dimensional momenta (px, py, pz). These
six variables are stored as six HDF5 datasets. The type of the dataset can
be either integer or real. H5Part also allows storing attribute information for
the file and timesteps.

Table 7.3 presents sample H5Part code for storing particle data with two
timesteps. The resulting HDF5 file with two timesteps is shown in Table 7.4.
These examples show the simplicity of an application that uses the H5Part
API to write or read H5part files. One point is that there is basically a one-
line difference between serial and parallel code. Another is that the H5Part
application is much simpler than an HDF5-only counterpart: this example
code need not worry about setting up data groups inside HDF5; that task is
performed inside the H5Part library.

7.4.1.3 Parallel I/O

A näive approach to writing data from a parallel program is to write one file
per processor. While this approach is simple to implement and very efficient
on most cluster filesystems, it leads to file management difficulties when the
data needs to be analyzed. One must either recombine these separate files
into a single file or create unwieldy user-interfaces that allows a data analysis
application to read from a directory full of files instead of just one file. An
arguably better approach is to provide the means for a parallel application to
write data into a single file from all PEs, which is known as collective I/O.
Collective I/O performance is typically (but not always) lower than that of
writing one file per processor, but it makes data management much simpler
after the program has finished. No additional recombinination steps are re-
quired to make the file accessible by visualization tools or for restarting a
simulation using a different number of processors.

Parallel HDF5 uses MPI-I/O for its low-level implementation. The me-
chanics of using MPI-I/O are hidden from the user by the H5Part API (the
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if(serial)
handle=H5PartOpenFile(filename, mode);

else
handle=H5PartOpenFileParallel(filename, mode, mpi comm);

H5PartSetNumParticles(handle, num particles);
loop(step=1,2)

// compute data
H5PartSetStep(handle, step);
H5PartWriteDataFloat64(handle,”px”,data px);
H5PartWriteDataFloat64(handle,”py”,data py);
H5PartWriteDataFloat64(handle,”pz”,data pz);
H5PartWriteDataFloat64(handle, ”x”,data x);
H5PartWriteDataFloat64(handle, ”y”,data y);
H5PartWriteDataFloat64(handle, ”z”,data z);

H5PartCloseFile(handle);

Table 7.3: Sample H5Part code to write multiple fields from a time-varying
simulation to a single file.

GROUP ”/” {
GROUP ”Step#0” {

DATASET ”px” {
DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { ( 1000 ) / ( 1000 ) }

}
DATASET ”py” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { ( 1000 ) / ( 1000 ) }

}
DATASET ”pz” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { ( 1000 ) / ( 1000 ) }

}
DATASET ”x” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { ( 1000 ) / ( 1000 ) }

}
DATASET ”y” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { ( 1000 ) / ( 1000 ) }

}
DATASET ”z” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { ( 1000 ) / ( 1000 ) }

}
}

GROUP ”Step#1” {
...information for 6 datasets...

}
}

Table 7.4: Contents of the H5Part file generated in Table 7.3.
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code looks nearly identical to reading/writing the data from a serial program).
While the performance is not always as good as writing one-file per-processor,
we have shown that writing files with Parallel HDF5 is consistently faster than
writing the data in raw/native binary using the MPI-I/O library [2]. This effi-
ciency is made possible through sophisticated HDF5 tuning directives, which
are transparent to the parallel application, that control data alignment and
caching within the HDF5 layer. Therefore, we argue that it would be difficult
to match HDF5 performance even using a home-grown binary file format.

7.4.2 HDF5 FastQuery

Large scale scientific data is often stored in scientific data formats like
FITS, netCDF and HDF. These storage formats are of particular interest to
the scientific user community since they provide multi-dimensional storage
and retrieval capabilities. However, one of the drawbacks of these storage
formats is that they do not support the ability to extract subsets of data that
meet multidimensional, compound range conditions. Such multidimensional
range conditions are often the basis for defining “features of interest,” which
are the focus of scientific inquiry and study.

HDF5 FastQuery [12] is a high-level API that provides the ability to per-
form multi-dimensional indexing and searching on large HDF5 files. It lever-
ages an efficient bitmap indexing technology called “FastBit” [14, 38, 39] (de-
scribed in Chapter 10) that has been widely used in the database community.
Bitmap indices are especially well suited for interactive exploration of large-
scale read-only data. Storing the bitmap indices into the HDF5 file has the
following advantages: a) Significant performance speedup of accessing subsets
of multi-dimensional data and b) portability of the indices across multiple
computer platforms. The HDF5 FastQuery API simplifies the execution of
queries on HDF5 files for general scientific applications and data analysis.
The design is flexible enough to accommodate the use of arbitrary indexing
technology for semantic range queries.

HDF5 FastQuery provides an interface to support semantic indexing for
HDF5 via a query API. HDF5-FastQuery allows users to efficiently gener-
ate complex selections on HDF5 datasets using compound range queries like
(energy > 105) AND (70 < pressure < 90) and retrieve only the subset
of data elements that meet the query conditions. The FastBit technology
generates the compressed bitmap indices that accelerate searches on HDF5
datasets, as well as the raw indices (the compressed bitmap indices), which are
stored together with the datasets in an HDF5 file. Compared with other in-
dexing schemes, compressed bitmap indices are compact and very well suited
for searching over multi-dimensional data even for arbitrarily complex combi-
nations of range conditions.
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7.4.2.1 Functionality

HDF5 supports slab and hyper-slab selections of n-dimensional datasets.
HDF5 FastQuery extends the HDF5 selection mechanism to allow subset se-
lection based upon arbitrary range conditions on the data values contained in
the datasets using the bitmap indices. As a result, HDF5 FastQuery supports
fast execution of searches based upon compound queries that span multiple
datasets. The API also allows us to seamlessly integrate the FastBit query
mechanism for data selection with HDF5s standard hyper-slab selection mech-
anism. Using the HDF5 FastQuery API, one can quickly select subsets of data
from an HDF5 file using text-string queries.

The bitmap indices are created and stored through a single call to the
HDF5-FastQuery API. The storage of these indices uses separate arrays in
the same file as the datasets they refer to and are opaque to the general
HDF5 functions. It is important to note that all such indices must be built
before any queries are posed to the API. Once the bitmap indices have been
built and stored in the data file, queries are posed to the API as a text-
string such as (temperature > 1000) AND (70 < pressure < 90), where the
names specified in the range query correspond to the names of the datasets
in the HDF5 file. The HDF5 FastQuery interface uses the stored bitmap
indices that correspond to the specified dataset to accelerate the selection of
elements in the datasets that meet the search criteria. An accelerated query
on the contents of a dataset requires only small portions of the compressed
bitmap indices to be read into memory, so extremely large datasets can be
searched with little memory overhead. The query engine then generates an
HDF5 selection that is used to read only the elements from the dataset that
are specified by the query string.

7.4.2.2 Architectural Layout

In this section, we present a high-level view of the HDF5-FastQuery ar-
chitectural layout. We begin by defining relevant terms used throughout the
architectural layout as well as the HDF5-FastQuery API.

Groups are the logical way to organize data in an HDF5 file. We use the
term group or grouping to refer to this logical structuring. These groups act
as containers of various types of metadata, which in our approach are specific
to a given dataset. Note that these groups may be assigned type information
(float, int, string etc.) to uniquely describe these datasets.

Variables vs. Attributes. The properties assigned to a specific group (i.e.
group metadata) are called attributes or group attributes. For all datasets,
the specific physical properties that the dataset quantizes (density, pressure,
helicity etc.) will be referred to as dataset variables. To organize a given
multivariate dataset consisting of a discrete range of time steps, a division
is made between the raw data and the attributes that describe the data.
This division is represented in the architectural layout by the separation and
formation of two classes of groups: the TimeStep groups for the raw data, and
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the VariableDescriptor groups for the metadata used to describe the dataset
variables.

For the dataset variables, one VariableDescriptor group is created for each
variable (pressure, velocity etc.). The metadata saved under these groups
usually includes the size of the data set; name of the dataset variable; co-
ordinate system used in the dataset (spherical, Cartesian etc.); the schema
(structured, unstructured, etc); Centering (cell centered, vertex centered, edge
centered etc.) and number of coordinates which must exist per centering ele-
ment (each vertex, each face etc.).

The various VariableDescriptor groups are then organized under one TOC
(table of contents) group that retains common global information about the
file’s variables (the names of all variables, bitmap indices metadata informa-
tion). For the raw datasets, a unique TimeStep group is created for each time
step in the discrete time range. Under each TimeStep group exists one HDF5
dataset that contains the raw data for a given variable at that time step. The
bitmap dataset corresponding to the variable is also stored under the same
TimeStep group.

This division between data and metadata is essential for the primary reason
that variable metadata for a given dataset is relevant and accurate across
all time steps for that dataset variable (there is no need to store redundant
metadata). Figure 7.9 illustrates the HDF5-FastQuery architectural layout.

7.4.3 Status and Sample Applications

H5part research and development is an active, international collaborative
effort involving researchers from high performance computing and accelerator
modeling. It has evolved from focusing on I/O for particle-based datasets
to include support for block-structured fields and unstructured meshes. It is
an open source project, and source code may be downloaded from https://
codeforge.lbl.gov/projects/h5part. Several accelerator modeling codes
use H5part for writing data in parallel, and H5part readers have been created
and integrated into visual data analysis applications in widespread use by the
accelerator modeling community (see Figures 7.10 and 7.11).

Recent efforts have focused on merging the capabilities of HDF5-FastQuery,
which provides a high-level API interface to advanced index/query capabil-
ities, into H5part. The objective here is to encapsulate the complexity of
index/query APIs and to integrate that capability into what appears to the
application as an I/O layer. This work has proven very useful in enabling
rapid visual data exploration in several projects, including advanced accel-
erator design using laser wakefield acceleration (see Figure 7.12). Here, the
tightly integrated index/query and I/O provides the fundamental scientific
data management infrastructure needed to implement query-driven visualiza-
tion: a visual interface enables rapid exploration of high-level data character-
istics, enables visual specification of “interesting” data subsets, which are then
quickly extracted from a very large dataset and used by downstream visual
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data analysis tools. The index/query capability has been implemented inside
the H5part layer to run in parallel to take advantage of high-performance
computing platforms to accelerate I/O and range-based subsetting to support
interactive exploration.

7.5 Query-Driven Visualization

The term “query-driven visualization” (QDV) refers to the process of lim-
iting visual data analysis processing only to “data of interest [35].” In brief,
QDV is about using software machinery combined with flexible and highly
useful interfaces to help reduce the amount of information that needs to be
analyzed. The basis for the reduction varies from domain to domain, but boils
down to “what subset of the large dataset is really of interest for the problem
being studied.” This notion is closely related to that of “feature detection and
analysis,” where “features” can be thought of as subsets of a larger population
that exhibit some characteristics that are either intrinsic to individuals within
the population (e.g., data points where there is high pressure and high veloc-
ity) or that are defined as relations between individuals within the population
(e.g, the temperature gradient changes sign at a given data point).

QDV is one approach to visual data analysis of problems that are of massive
scale in size. Other common approaches focus on increasing capacity of the
visualization processing pipeline through increasing levels of parallelism to
scale up existing techniques to accommodate larger data sizes. While effective
in the primary objective – increase capacity to accommodate larger problem
sizes – there is a fundamental problem with these approaches: they don’t
necessarily increase the likelihood of scientific insight. By processing more
data and creating an image that is more complex, such an approach can
actually impede scientific understanding.

Let’s examine the first question a bit more closely. First, let’s assume
that we’re operating on a gigabyte-sized dataset (109 data points), and we’re
displaying the results on a monitor that has, say, 2 million pixels (2 ∗ 106

pixels). For the sake of discussion, let’s assume we’re going to create and
display an isosurface of this dataset. Studies have shown that on the order of
about N2/3 grid cells in a dataset of size N3 will contain any given isosurface
[3]. In our own work, we have found this estimate to be somewhat low – our
results have shown the number to be closer to N0.8 for N3 data. Also, we
have found an average of about 2.4 triangles per grid cell will result from the
isocontouring algorithm [5]. If we use these two figures as lower and upper
bounds, then for our gigabyte-sized dataset, we can reasonably expect on the
order of between about 2.1 and 40 million triangles for many isocontouring
levels. At a display resolution of about 2 million pixels, the result is a depth
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complexity – the number of objects at each pixel along all depths – of between
one and twenty.

With increasing depth complexity come at least two types of problems.
First, more information is “hidden from view.” In other words, the nearest
object at each pixel hides all the other objects that are further away. Second,
if we do use a form of visualization and rendering that supports transparency
– so that we can, in principle, see all the objects along all depths at each pixel
– we are assuming that a human observer will be capable of distinguishing
among the objects in depth. At best, this latter assumption does not always
hold true, and at worst, we are virtually guaranteed the viewer will not be
able to gain any meaningful information from the visual information overload.

If we scale up our dataset from gigabyte (109) to terabyte (1012), we then
can expect on the order of between 199 million and 9.5 billion triangles repre-
senting a depth complexity ranging between about 80 and 4700, respectively.
Regardless of which estimate of the number of triangles we use, we end up
drawing the same conclusion: depth complexity, and correspondingly scene
complexity and human cognitive workload all grow at a rate that is a function
of the size of the source data. Even if we are able to somehow display all those
triangles, we would be placing an incredibly difficult burden on the user. They
will be facing the impossible task of trying to visually locate “smaller needles
in a larger haystack.”

The multi-faceted approach we’re adopting takes square aim at the funda-
mental objective: help scientific researchers more quickly and efficiently do
science. In one view, one primary tactical approach that seems promising is
to help focus user attention on easily consumable images from the large data
collection. We do not have enough space in this chapter to cover all aspects
in this regard. Instead, we provide a few details about a couple of especially
interesting challenge areas.

7.5.1 Implementing Query-Driven Visualization

In principle, the QDV idea is conceptually quite simple: restrict visualiza-
tion and analysis processing only to data of interest. In practice, implementing
this capability can be quite a challenge. Our approach is to take advantage of
the state-of-the-art index/query technology mentioned earlier in this chapter,
FastBit, and use it as the basis for data subsetting in query-driven visualiza-
tion applications. In principle, any type of data subsetting technology can be
used to provide the same functionality. In practice, FastBit has proven to be
very efficient and effective at problems of scale.

Some of our early work in this space focused on comparing the performance
of FastBit as the basis for index/query in QDV applications with some of the
“industry standard” algorithms for isosurface computation [35]. In computing
isosurfaces, one must first find all the grid cells that contain the surface of in-
terest, then for each such cell, compute the isosurface that intersects the cell.
Our approach, which leverages FastBit, shows a performance gain of between
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25% to 300% over the best isocontouring algorithms created by the visualiza-
tion community. Of greater significance is the fact that our approach extends
to n−dimensional queries (i.e., queries of n different variables), whereas the
indexing structures created for use in isocontouring are applicable only to
univariate queries. This approach was demonstrated on datasets created by
a combustion simulation (see Figure 7.13, which shows three different query
conditions performed on a single dataset. See [35] for more details.).

7.5.2 Case Study – Network Traffic Analysis

While our earlier work established the viability of the approach, particularly
when compared to the best search algorithms from the visualization commu-
nity, more recent work extends and applies these techniques to a “hero-sized”
problem. In this application, our objective is to perform interactive visual
data analysis of one year’s worth of network connection data. The case study
in this work focuses on rapid drill-down using multiresolution histograms com-
puted by FastBit for the purposes of identifying the existence of a distributed
network scan attack, then for identifying the set of hosts participating in the
attack. The results of that study (see [4,34]) show that this approach performs
up to four orders of magnitude faster than conventional techniques commonly
used in the field of network traffic analysis.

The basic use model for this application, which is shown pictorially in Fig-
ure 7.14, is as follows: first, compute and display a histogram of traffic levels
at a coarse granularity (per-day over a 365-day period). Histogram display
is augmented with statistical analysis to help highlight anomalous behavior.
Next, through a visual user interface, “drill into” the data by allowing the
user to specify a temporal window of finer resolution. FastBit computes a
new histogram over the specified temporal window and at finer resolution, al-
lowing more details of the data to emerge. This process repeats until coherent
temporal patterns of the attack begin to emerge. Once the attack signature is
identified and confirmed to be a network scan (see Figure 7.15), FastBit can
quickly locate and return the network traffic records that contain information
about hosts participating in the attack (see [34] for more details).

In this work, FastBit was extended to support the rapid creation of mul-
tidimensional, conditional histograms. The implementation and performance
study was conducted on a parallel, shared-memory platform. The results of
the study show that forensic investigation of such massive datasets can be
conducted in an interactive fashion. Previous approaches would require hours
or days to conduct a similar investigation. The significance of this work is that
it shows the potential of coupling state-of-the-art scientific data management
technology with visual data analysis technology to tackle problems of scale in
a manner that virtually guarantees scientific insight and knowledge discovery.
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7.6 Summary and Conclusion

Visualization, which is the transformation of abstract data into images,
plays a central role in virtually all fields of scientific endeavor. It is an in-
dispensable part of hypothesis testing and knowledge discovery. Like most
other fields discussed in this book, visualization faces substantial scientific
data management challenges that are the result of growth in size and com-
plexity of data being produced by simulations and collected from experiments.
Our objective in this chapter has been to reveal some of the scientific data
management issues, challenges, and solutions that are somewhat unique to
the field of visualization.

Production visualization applications, namely those that run on large-scale
parallel machines, can derive great benefit from close attention to scientific
data management issues. Staple operations, like slicing and isosurfacing, can
be vastly accelerated by taking advantage of meta-data. In some cases, the
simulation or experiment produces such meta-data as part of the data pro-
duction process. In other cases, we must generate that data ourselves. A
significant fraction of the code in these production visualization applications
is dedicated to scientific data management: they must support a plethora of
input data formats, and therefore, they contain a number of data loader mod-
ules; they must create an internal data structure that is suitable for use by a
potentially large collection of visualization, analysis and rendering modules,
all of which may potentially run in parallel on shared or distributed mem-
ory machines. An open problem is one of data models and semantics, where
meaning is assigned to arrays of data stored in data files.

With data of massive scale, it is often useful to perform a multiresolution
analysis, working first with a smaller, coarser version of data, then progres-
sively refine the analysis as interesting features are revealed. We saw that
a space-filling curve model has proven to be highly efficient for interactive
analysis of massive data. However, such a data model and layout is unlikely
to be output directly from a simulation. This is a good example of how a data
model and layout that works very well for multiresolution analysis is unlikely
to be used by simulations for output. Multiresolution, quantitative feature
detection and analysis methods were demonstrated on two different datasets
from the field of turbulent mixing. This quantitative analysis approach is
very useful for enabling scientific knowledge discovery by focusing on features
rather than on the machinery for creating potentially incomprehensible images
of large-scale scientific data.

A significant barrier faced by many computational and experimental science
projects is the complexity of using state-of-the art technology from scientific
data management. We discussed an approach for encapsulating complexity in
the form of a high-level API for data storage and retrieval that lowers the entry
point for using such technology. This concept was also applied to index/query



References 30

technology. We have applied these concepts to multiple application areas to
produce results showing that visual data analysis, as a field, can benefit from a
close collaboration with the field of scientific data management. The benefit is
improved performance for many data intensive operations, like data I/O and
data subsetting, as well as the potential to conceive and create completely new,
paradigm-changing approaches to solve the problem of scientific knowledge
discovery for massive, complex datasets.
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FIGURE 7.1: This image shows three different partitionings of a simple visu-
alization pipeline consisting of four stages: data I/O, computing an isosurface,
rendering isosurface triangles, and image display. In one partitioning, all op-
erations happen on a single desktop machine (A-B, blue background). In
another, data is loaded onto an eight-processor cluster for isosurface process-
ing, and the resulting isosurface triangles are sent to the desktop for rendering
(D-C-B, yellow background). In the third, data is loaded onto the cluster for
isosurface processing and rendering, and the resulting image is sent to the
desktop for display (D-E-F, magenta background).
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FIGURE 7.2: Shown is a 36 domain data set. The domains have thick black
lines and are colored red or green. Mesh lines for the elements are also shown.
To create the data set sliced by the transparent grey plane, only the red
domains need to be processed. The green domains can be eliminated before
ever being read in.

Re−ordered dataRaw data
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��������

Hierarchical Z−order
Brick decomposition

E.g.

Visualization

Analysis Statistics

Slicing, contouring, volume rendering...

Topological feature analysis,
feature quantification, tracking...

FIGURE 7.3: Hierarchical z-ordered data layout and topological analysis
components highlighted in the context of a typical visualization and analysis
pipeline.
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FIGURE 7.4: (a-e) The first five levels of resolution of the 2D Lebesgue’s
space filling curve. (f-j) The first five levels of resolution of the 3D Lebesgue’s
space filling curve.

Coarser data
(even samples)
New level data
(odd samples)

(b)(a) (c) (d) (e)

(g)(f) (h) (i)

FIGURE 7.5: The nine levels of resolution of the binary tree hierarchy defined
by the 2D space filling curve applied on 16× 16 rectilinear grid. The coarsest
level of resolution (a) is a single point. The number of points that belong to
the curve at any level of resolution (b) to (i) is double the number of points
of the previous level.
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FIGURE 7.6: (a) Diagram of the algorithm for index remapping from Z-
order to the hierarchical out-of-core binary tree order. (b) Example of the
sequence of shift operations necessary to remap an index. The top element is
the original index and the bottom is the remapped, output index.

FIGURE 7.7: Data layout obtained for a 2D matrix reorganized using the
index I ′ (1D array at the top). The 2D image of each block in the decom-
position of the 1D array is shown below. Each gray region (odd blocks dark
gray, even blocks light gray) shows where the block of data is distributed in
the 2D array. In particular the first block is the set of coarsest levels of the
data distributed uniformly on the 2D array.The next block is the next level
of resolution still covering the entire matrix. The next two levels are finer
data covering each half of the array. The subsequent blocks represent finer
resolution data distributed with increasing locality in the 2D array.
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. . . . . .
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FIGURE 7.8: Comparison of static analysis and real performance in different
conditions. For an 8GB dataset, (a) compares the amount of data loaded
from disk (vertical axis) per slice while varying the level of subsampling and
using two different access patterns/storage layouts: Z-order remapping and
brick decomposition. The values on the vertical axis are reported using a
logarithmic scale to highlight the performance difference – orders of magni-
tude – at any level of resolution. (b-c) Two comparisons of slice computations
times (log scale) of four different data layout schemes with slices parallel to
the (j, k) plane (orthogonal to the x axis). The horizontal axis is the level of
subsampling of the slicing scheme, where values on the left are finer resolu-
tion. Note how the practical performance of the Z-order versus brick layout is
predicted very well by the static analysis. The only layout that can compete
with the hierarchical Z-order the row-major array layout optimized for (j, k)
slices (orthogonal to the x axis). Of course, the row-major layout performs
poorly for (j, i) slices (orthogonal to the z axis), while the hierarchical Z-order
layout would maintain the same performance for access at any orientation.
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HDF5-FastQuery Architecture
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FIGURE 7.9: Architectural layout of HDF5-FastQuery.

(a)

FIGURE 7.10: H5part readers are included with visualization and data anal-
ysis tools in use by the accelerator modeling community. This image shows
H5part data loaded into VisIt for comparative analysis of multiple variables
at different simulation timesteps.
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(a)

FIGURE 7.11: Root, a freely available, open source system for data manage-
ment and analysis, is in widespread use by the high energy physics community.
An H5part reader is included with Root. This image shows an example of
visual data analysis of an H5part dataset produced by a particle accelerator
modeling code.
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FIGURE 7.12: a) Parallel coordinates of timestep t = 12 of the 3D dataset.
Context view (gray) shows particles selected with px > 2 ∗ 109. The focus
view (red) consists of particles selected with px > 4.856∗1010 && x > 5.649∗
10−4, which indicates particles forming a compact beam in the first wake
period following the laser pulse. b) Pseudocolor plot of the context and focus
particles. c) Traces of the beam. We selected particles at timestep t =
12, then traced the particles back in time to timestep t = 9 when most
of the selected particles entered the simulation window. We also trace the
particles forward in time to timestep t = 14. In this image, we use color to
indicate px. In addition to the traces and the position of the particles, we
also show the context particles at timestep t = 12 in gray to illustrate where
the original selection was performed. We can see that the selected particles
are constantly accelerated over time (increase in px) since their colors range
from blue (relatively low levels of px) to red (relatively high levels of px) as
they move along x over time.

(a) CH4 > 0.3 (b) temp < 3 (c) CH4 > 0.3 AND
temp < 4

FIGURE 7.13: A visualization of flames in a high-fidelity simulation of
methane-air jet. The images show the cells in a 3D block-structured dataset
that were returned by three different queries.
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(a) Histogram of suspicious activity levels
over a one-year period at one-day temporal
resolution.
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(b) Suspicious activity levels over a four-
week period at one-hour temporal resolu-
tion.
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(c) Suspicious activity levels over a one-day
period at one-hour temporal resolution.
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(d) Suspicious activity levels over a five-day
period at one-minute temporal resolution.
The attack is occurring every day at 21:15
local time.

FIGURE 7.14: Forensic network traffic analysis is conducted by examining
histograms of suspicious traffic activity at varying temporal resolution. These
examples go from coarse, per-day resolution over a one-year time window
down to per-minute resolution over a five-day window, and show a regular
pattern of systematic network attacks that occur with temporal regularity.
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47670 
Per-minute counts of (STATE==1) && (DP==5554)

(a) This histogram shows suspicious activ-
ity over a two-hour period at one-minute
temporal resolution. The spikes in this his-
togram correspond to the “sheets” in the
adjacent image.

(b) A 3D histogram: the vertical axis is
time, the other two axes are the C and D
octets of the destination host address. The
“sheets” indicate that the remote host(s) are
performing a scan of all IP addresses within
a given IP address space, indicating the at-
tack is a scan.

FIGURE 7.15: Two- and three-dimensional histograms are the building blocks
for visual data exploration of network traffic analysis. Here we see evidence
of an organized scan: one or more remote hosts are probing sequential IP
addresses within a block of addresses hoping to find a vulnerability.




