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Abstract

Eroding Uncertainty:

Towards Understanding Flows Interacting with Mobile Sediment Beds Using

Grain-Resolving Simulations

by

Edward Kristopher Biegert

Dense particle-laden flows play an important role in many environmental processes,

including the shaping of rivers and the formation of landslides. Despite decades of study,

researchers have not been able to accurately predict the onset of erosion and the amount

of sediment transported by flows, due in part to the difficulty in measuring dense particle-

laden flows. Highly-resolved numerical simulations, on the other hand, allow us to study

the physics of particle-fluid and particle-particle interactions in much more detail.

We develop a code to accurately simulate dense, polydisperse, particle-laden flows as

well as methods by which to analyze them. The code solves the Navier-Stokes equations

for the fluid phase and resolves the flow around each individual particle using an immersed

boundary method. We also develop a collision model to accurately resolve particle-

particle interactions within the fluid. We then perform simulations of a pressure-driven

flow over a bed of spherical particles that agree with experimental results for particle

velocities and flow rates. Using a control volume momentum balance, we analyze fluid

and particle stresses within the simulations, which reveal the mechanisms by which the

particle bed expands and contracts during changes in flow rates. These same stresses

also allow us to measure the rheology of the particle-laden flows, where we find some

agreement with existing constitutive models but also reveal the need to develop these

models further.
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Chapter 1

Introduction

The flow over dense, mobile granular beds plays a central role in multiple applications

in environmental, mechanical, and process engineering. Prime examples include turbid-

ity currents and powder snow avalanches, for which resuspension of particles essentially

determines the dynamics of the flow [1], and fluvial systems, in which erosion and de-

position can change the shapes of rivers and estuaries [2]. These flows also play a role

in the formation of landslides [3]. Of key importance to a quantitative understanding of

these systems is the ability to predict when the sediment bed will start to move, how

much sediment is entrained into the flow above, and at what rate the sediment is trans-

ported downstream. Identifying a rheology to describe these fluid/particle mixtures can

help answer these questions as well as improve models for these flows [4, 5, 6]. Histor-

ically, models for sediment entrainment [7, 8] and transport [9, 10] have depended on

the resuspension threshold, quantified by the Shields number [11], which is the ratio of

the hydrodynamic drag force to the weight of the particle. The critical Shields param-

eter, however, has proven to be a poor predictor for the onset of particle erosion [12],

and substantial efforts have been made in hydraulic engineering to overcome this diffi-

culty [2]. Progress has been slow, in part due to experimental difficulties of measuring

1



Introduction Chapter 1

dense particle-laden flows [13]. Advances in index-matching techniques and numerical

simulations, however, have shed new light on the field.

Recently, many researchers have focussed their efforts on developing constitutive mod-

els to describe the particle phase or the fluid/particle mixture as a continuum. Descrip-

tions include kinetic theory for turbulent flows with energetic particle collisions [14, 15]

and continuum modeling for laminar shear flows [16] and turbulent flows [5]. With cor-

rect models accounting for fluid-particle and particle-particle interactions, these equa-

tions can predict e.g. the amount of sediment mobilized into the fluid and transported

downstream. Furthermore, experiments using index-matched particles, fluorescent dye,

and laser sheets have enabled researchers to probe the velocities of fluid and particles

deep within the particle bed [17, 18, 19, 20]. In particular, Aussillous et al. [19] demon-

strated the potential for constitutive models to predict experimental data, but they also

demonstrated the shortcomings of rheological models for fluid/particle mixtures. Indeed,

the rheology of particle suspensions has a long history, yet it is still an active field of

research [21, 22, 23, 24, 5]. However, it has generally focussed on the bulk properties of

neutrally-buoyant suspensions inside Couette flow rheometers. To our knowledge, only

Houssais et al. [20] have made any attempt to directly measure the rheology of flows

over sediment beds, leaving unanswered questions related to the applicability of existing

rheology models.

At the same time, numerical simulations, which can provide much more detailed

information, especially in regard to stresses, have contributed to our understanding of

these flows [23, 25, 26, 5, 27]. Phase-resolved simulations, which resolve the interface

between particles and the fluid, accurately account for the two-way fluid-particle coupling

and thereby rely on modeling only for collisions. For this reason, they are useful for

situations involving dense particle-laden flows, including flows over sediment beds. They

have been used to study the dynamics of bedforms in a turbulent flow [28] and sediment

2



Introduction Chapter 1

fluxes under laminar conditions [29]. However, again little attention has been given

to understanding sediment bed rheology, with the exception of Maurin et al. [5], who

examined a simplified turbulent flow but did not use a phase-resolved approach.

We have focussed our efforts on developing numerical tools to make progress to-

wards predicting sediment transport. To this end, we have built our own code, PAR-

TIES (PARTicle-laden flows via immersed boundarIES), which implements an interface-

resolving Immersed Boundary Method (IBM). We also developed an improved collision

model, allowing us to accurately simulate flows over a sediment bed, as well as a mo-

mentum balance method, allowing us to accurately measure particle and fluid stresses

within the bed and to describe the state of the bed during dilation and contraction. With

all of these tools in place, we then performed a detailed analysis of the rheology of our

simulated sediment beds, which may eventually lead to improved rheology models and

hence better predictive sediment transport models.

This document describes the methods we employed and tools we developed to analyze

sediment beds, along with their validations. Chapter 2 presents the equations of motion

governing the fluid and particles. In Chapter 3, we describe our implementation of

the IBM and then validate it against experiments involving single settling spheres. We

present our collision model, which improves upon the work of others, in Chapter 4, where

we then demonstrate its ability to reproduce immersed particle-wall collisions and discuss

its important features in regard to sediment beds. Chapter 5 then validates the ability of

PARTIES to accurately represent sheared sediment beds under laminar flow conditions.

Having then established our simulation methods, we proceed to our analysis techniques.

In Chapter 6, we discuss our implementation of the coarse-graining method, which we

use to convert the discrete particle quantities into continuum fields. In Chapter 7, we

develop a rigorous momentum balance that allows us to analyze stresses on the scale of

individual particles. Finally, we show how all our methods together can be used to start

3



Introduction Chapter 1

investigating the rheology of sediment beds in Chapter 8. After this, we end with a few

closing thoughts in Chapter 9.
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Chapter 2

Governing equations

2.1 Fluid motion

The fluid flow is governed by the incompressible Navier-Stokes equation,

ρf

(
∂u

∂t
+∇ · (uu)

)
= ∇ · τ + fb + fIBM, (2.1)

and the continuity equation,

∇ · u = 0, (2.2)

where we have also assumed a constant fluid density ρf , and τ is the hydrodynamic stress

tensor

τ = −p I + µf
[
∇u + (∇u)T

]
. (2.3)

We utilize typical nomenclature: u is the fluid velocity, p is the pressure, I is the identity

tensor, and µf is the dynamic viscosity. The body force fb acts as a source term, which we

use to mimic a constant pressure gradient in simulations involving periodic boundaries.

We treat the presence of the rigid particles as an extension of the fluid domain. The
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forcing term fIBM enforces the no-slip condition on the particle surface:

u = up + ωp × r on Γp, (2.4)

where up and ωp are the translational and angular velocities, respectively, of particle p,

and r is the position vector from the particle center of mass to a point on the particle’s

surface, Γp.

2.2 Particle motion

The motion of the particles is governed by conservation of linear momentum,

mp
dup
dt

=

∫

Γp

τ · n dA

︸ ︷︷ ︸
Fh,p

+

∫

Ωp

fb dV

︸ ︷︷ ︸
Fb,p

+Vp(ρp − ρf )g︸ ︷︷ ︸
Fg,p

+Fc,p, (2.5)

and angular momentum,

Ip
dωp
dt

=

∫

Γp

r× (τ · n) dA

︸ ︷︷ ︸
Th,p

+Tc,p, (2.6)

where mp, Ip, Vp, and ρp are the mass, moment of inertia, volume, and density, respec-

tively, of the particle, and Ωp is the volume domain of the particle. Along the particle

surface Γp, n is the outward surface normal vector. The forces and torques acting on

particle p are Fh,p and Th,p, which arise from the hydrodynamic stresses acting on the

particle surface, Fb,p, the volume force that acts on both the fluid and particles, Fg,p, the

buoyancy force, and Fc,p and Tc,p, which arise from collision forces with the walls and

other particles. We will describe the collisions in more detail in Chapter 4.
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The hydrodynamic stresses in (2.5) and (2.6) can be difficult and expensive to evaluate

accurately. To work around this problem, we follow the procedure of Tschisgale et al. [30],

who explain that the immersed boundary force leads to a jump condition between the

fluid stresses inside, τ−, and outside, τ+, the particle:

−
∫

Lp

fIBM dV =

∫

Γp

τ+ · n dA−
∫

Γp

τ− · n dA, (2.7)

where Lp is the shell volume surrounding the particle surface and whose width is deter-

mined by the width of the Dirac delta function used for the IBM. From the material

derivative of the fluid within the particle, we can obtain

∫

Γp

τ− · n dA =
d

dt

∫

Ωp

ρfu dV −
∫

Ωp

fb dV , (2.8)

where fb is the body force acting on the fluid, such as an imposed pressure gradient.

Thus, using (2.7) and (2.8), (2.5) becomes

mp
dup
dt

=
d

dt

∫

Ωp

ρfu dV

︸ ︷︷ ︸
Fr,p

−
∫

Lp

fIBM dV

︸ ︷︷ ︸
FIBM,p

+Vp(ρp − ρf )g︸ ︷︷ ︸
Fg,p

+Fc,p, (2.9)

and (2.6) becomes

Ip
dωp
dt

=
d

dt

∫

Ωp

ρfr× u dV

︸ ︷︷ ︸
Tr,p

−
∫

Lp

r× fIBM dV

︸ ︷︷ ︸
TIBM,p

+Tc,p. (2.10)

Here we define Fr,p and Tr,p to be the rigid body force and torque, FIBM,p and TIBM,p to be

the IBM force and torque acting on particle p. Kempe and Fröhlich [31] demonstrated the

7
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importance of Fr,p and Tr,p for capturing the transient particle motions, i.e. that FIBM,p

and TIBM,p alone do not account for the full effects of the IBM acting on the particles.

Note that the body force term, fb drops out of the particle momentum equations (2.9)

and (2.10). Thus, forcing the fluid inside the particles with fb implicitly applies this body

force to the particles through fIBM.

The terms Fr,p, Tr,p, FIBM,p, and TIBM,p in (2.9) and (2.10) are much more straight-

forward to evaluate numerically than the terms Fh,p and Th,p in (2.5) and (2.6). Further-

more, Kempe and Fröhlich [31] showed that this simpler formulation of the hydrodynamic

terms allows for the use of a wider range of fluid/particle density ratios, including val-

ues ρp/ρf ≈ 1, compared to other methods, such as that of Uhlmann [32]. In the next

chapter, we will describe the discretization of these governing equations for the fluid and

particle motion.

8



Chapter 3

Fluid-particle coupling

3.1 Introduction

In this chapter, we describe the methods used to solve the equations of motion for

the fluid, (2.1) and (2.2), as well as for the particles, (2.9) and (2.10). This description

includes a detailed explanation of the IBM, which couples the fluid and particle equations

of motion.

Researchers have developed a number of methods to simulate interface-resolved particle-

laden flows [33, 34, 32, 35, 36, 37]. “Body-conforming methods” modify the fluid mesh

so that fluid nodes are coincident on the particle surface, allowing a simple and accurate

representation of the boundary conditions [38, 39]. However, if the particles move within

the domain, then the fluid mesh needs to be regenerated at every timestep, a procedure

that can be both difficult to implement and computationally expensive [39]. Many recent

developments have instead focused on “immersed methods,” which use a fixed fluid mesh

through which the particle-fluid interface moves [40, 39]. Though extra care must be

taken to properly represent the interface, remeshing is not required, resulting in smaller

computational costs, especially when many particles are involved. These methods fall

9
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into two classes:

• Volume methods: those that enforce rigid body motion of the fluid inside the

particle domain.

• Boundary methods: those that enforce the no-slip boundary condition at the surface

of the particle domain. The fluid motion within the particle is typically meaningless.

3.1.1 Volume methods

Glowinski et al. [33] and Patankar et al. [41] developed a distributed Lagrange mul-

tiplier (DLM)/fictitious domain approach, which treats the entire domain (actual fluid

plus particles) as a fluid, using another variable (a Lagrange multiplier) to enforce rigid

body motion within the particle domain. They developed a fractional step method to

couple the particle and fluid motions in a finite element formulation.

Apte et al. [42, 36] later adopted the DLM method, reformulating it for use with finite

difference methods and extending its stability to a larger range of fluid-particle density

ratios. Taira and Colonius [43] created an alternate framework for directly solving for

the Lagrange multiplier in a finite difference formulation. Theirs is the only version of

this method that simultaneously creates a divergence-free velocity field and rigid body

motion of the particles (expressed through the fluid velocity field).

Volume methods have the advantages that the fluid inside the particle domain rep-

resents the particle motion well and that the method has been shown to work for very

large density ratios. The disadvantage is that the computational cost scales with the

cube of the number of grid cells in each dimension (1/h3), whereas boundary methods,

which only act on the surface, scale with the square (1/h2).

10
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3.1.2 Boundary methods

Zhang and Prosperetti [44, 45] developed PHYSALIS, a method that enforces the

no-slip condition using the analytical solution for Stokes flow (Re = 0) around a sphere.

The authors argue that the Stokes flow condition is valid near the surface of the sphere

even for moderate particle Reynolds numbers (Rep → 100).

Another class of methods is based on applying a force near the particle surface to

enforce the no-slip condition. Peskin [46] is credited as starting this group of immersed

boundary methods, developing a “continuous forcing approach,” which assumes elastic

bodies, to simulate flow around human heart valves. Mohd-Yusof [47] developed the

“direct forcing approach,” which uses a mirroring technique to directly enforce the no-

slip condition at the boundary. While sharply-resolving the interface, this method has

problems with mass conservation around the boundary [48], which Kim and Choi [49] fix

using mass source/sinks near the boundary.

Uhlmann developed an immersed boundary method that enforces the no-slip condi-

tion less directly [32]. Similarly to other immersed boundary methods, he creates a set

of evenly-spaced points on the surface of the particle, called Lagrangian marker points,

where the no-slip condition is applied. Differently from other immersed boundary meth-

ods, he uses Dirac Delta functions to smooth the application of the no-slip condition onto

the Eulerian grid. This smoothing counteracts the oscillatory behavior encountered with

other methods but leads to a less-sharp particle-fluid interface.

We have chosen to implement the IBM of Kempe and Fröhlich [31], who improved

upon Uhlmann’s method to allow for a larger range of stable particle/fluid density ratios.

Our reasons for choosing this method were its ease of implementation, apparent numerical

efficiency, and proven track record by several groups in producing accurate results [32,

31, 50]. The methods we employ make two general assumptions: spherical particles and

11
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a uniform cubic Eulerian mesh (∆x = ∆y = ∆z = h). While the IBM in fact works

without these assumptions (e.g. ellipsoidal particles [51] and nonuniform mesh[52]), they

make many of the algorithms easier to implement and more efficient to run. Furthermore,

many of our initial problems of interest involve spherical particles.

3.2 Fluid solver

In order to solve the fluid governing equations (2.1,2.2), we have implemented methods

similar to those of Uhlmann [32] and Kempe and Fröhlich [31]. The fluid equations of

motion are discretized onto a staggered grid, the velocity components stored at the cell

faces, and the pressure stored at the cell center. A second-order central finite difference

scheme is used to calculate the convective and viscous terms. Using a low-storage three-

step Runge-Kutta (RK) method, we solve the Navier-Stokes equations using the following

pressure-projection method:

u∗ − uk−1

αk∆t
= νf∇2

(
u∗ + uk−1

)
− 2

ρf
∇pk−1 − γk

αk
∇ · (uu)k−1 − ζk

αk
∇ · (uu)k−2(3.1a)

∇2φ =
∇ · u∗
2αk∆t

(3.1b)

uk = u∗ − 2αk∆t∇φ (3.1c)

pk = pk−1 + ρfφ, (3.1d)

where νf is the kinematic viscosity of the fluid. Here, we advance the equations of

motion from RK substep k − 1 to substep k, where k = {1, 2, 3} is the set of substeps

that span one simulation timestep of duration ∆t. The RK coefficients are given by

αk =
{

4
15
, 1

15
, 1

6

}
, γk =

{
8
15
, 5

12
, 3

4

}
, and ζk =

{
0,−17

60
,− 5

12

}
for the respective substeps [53].

In equation (3.1a), we treat the nonlinear advection terms explicitly and the linear

viscous terms implicitly to obtain a preliminary velocity field u∗. This implicit equation is

12
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solved using the conjugate-gradient method without preconditioning. We then solve the

Poisson equation (3.1b) for the pressure-correction term φ using a direct solver based on

fast Fourier transforms. This pressure-correction term adjusts the velocity and pressure

fields in equations (3.1c, 3.1d) in order to satisfy continuity.

3.3 Immersed boundary method

3.3.1 Immersed boundary force

We can summarize Uhlmann’s method for creating the IBM force as follows:

1. Interpolate the fluid velocity onto the Lagrangian marker points using the Dirac

Delta function δh(r).

Ul =
∑

k

∑

j

∑

i

δh(xi,j,k −Xl) ui,j,k h
3, (3.2)

where Ul is the interpolated velocity at the Lagrangian marker, Xl is the coordinate

of the marker, ui,j,k is the fluid velocity at grid location i, j, k, and xi,j,k is the

coordinate of that fluid velocity.

2. At each marker point, there is a small discrepancy between the interpolated fluid

velocity Ul and the rigid body motion of the sphere at that point Ud
l . We calculate

a force to rectify this difference, which will be our IB force.

Fl = ρf
Ud
l −Ul

∆t
(3.3)

This technique effectively applies a spring force correction to the fluid velocity field,

where the spring constant is equal to ρf/∆t. We can iterate this entire method in

13
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hopes of obtaining convergence, which we explore in Section 3.6.2. However, other

methods of convergence exist, such as that of Goza and Colonius [54], who used

Newton-Raphson iterations on Fl to minimize the velocity error Ud
l −Ul.

3. The IB force of each marker point is spread to the Eulerian grid.

fIBM(xi,j,k) =

Np∑

p

Nl∑

l

δh(Xl − xi,j,k) Fl Vl, (3.4)

where Vl is the marker volume described in the next section.

4. The total force on the particle due to the IBM is the sum of the forces from all the

marker points.

FIBM,p = −
Nl∑

l

Fl Vl (3.5a)

TIBM,p = −
Nl∑

l

(Xl − xp)× Fl Vl (3.5b)

Thus, using the Dirac Delta function, we can move between the Eulerian and La-

grangian grids to satisfy the no-slip condition at the particle’s surface. With equa-

tions (3.4) and (3.5), we have numerical approximations for the forcing term fIBM in our

governing equations (2.1), (2.9), and (2.10).

3.3.2 Generating Lagrangian marker points

In order to create a set of Lagrangian marker points on the surface of a sphere, we

need to establish:

• The number of marker points Nl

• How to distribute the marker points along the sphere’s surface

14
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We determine the number of marker points using the same approach as Uhlmann [32].

Each marker has around it a “volume of influence” Vl, which represents the area over

which the IB force is spread. In order for the IBM to work well, we would like to make

Vl as close to the volume of a fluid grid cell h3 as possible. Assuming that each marker’s

Vl protrudes a distance of h
2

into and out of the sphere’s surface (see Figure 3.1), the

volume of the marker is given by

Vl =
4π
3

[
(Rp + h

2
)3 − (Rp − h

2
)3
]

Nl

, (3.6)

where Nl is the number of Lagrangian markers. Specifying that Vl ≈ h3, we get

Nl ≈
π

3

[
12

(
Rp

h

)2

+ 1

]
. (3.7)

Figure 3.1: Volume of influence Vl of Lagrangian markers for a sphere with radius Rp
and fluid domain with grid size h.

Now that we know how many Lagrangian markers we need, we must find a way to

place them. A number of methods exist for evenly distributing a set of points on the
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surface of a sphere. Uhlmann [32] used an iterative method that treats the markers as

charged particle free to move along the surface and allows them to settle into a minimum

energy configuration. Saff and Kuijlaars [55] developed a method that places the markers

in a spiral pattern, which works well for a large number of markers. We employ Leopardi’s

algorithm [56], which places the markers in a series of rings and also works well for a

large number of markers.

3.3.3 Interpolation and spreading between Eulerian and La-

grangian grids

To carry out interpolation and spreading operations, PARTIES uses the Dirac Delta

function of Roma et al. [57]:

δ(r) =





1
6

[
5− 3|r| −

√
−3(1− |r|)2 + 1

]
0.5 ≤ |r| ≤ 1.5

1
3

[
1 +

√
−3|r|2 + 1

]
|r| ≤ 0.5

0 |r| ≥ 1.5

. (3.8)

This function has several properties [57]:

1. δ(r) is continuous ∀ r ∈ R

2. δ(r) = 0 for |r| ≥ 1.5

3.
∑

i∈Z

δ(r − i) = 1 ∀ r ∈ R

4.
∑

i∈Z

(r − i)δ(r − i) = 0 ∀ r ∈ R

5.
∑

i∈Z

[δ(r − i)]2 =
1

2
∀ r ∈ R

The significance of these properties is as follows:
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1. Allows for smooth interpolation/spreading

2. Limits the support of the function to three grid cells

3. Guarantees the conservation of the spread quantity, which leads to conservation of

linear momentum

4. Together with property 3, guarantees conservation of angular momentum

5. Ensures that the effect of one Lagrangian marker on another is maximized when

both points coincide

We then define another function based on this Dirac Delta function:

δ1D
h (r) =

1

h
δ
( r
h

)
(3.9a)

δh(r) = δ1D
h (x) δ1D

h (y) δ1D
h (z), (3.9b)

where r = (x, y, z) is a position vector and h = ∆x = ∆y = ∆z is the grid spacing. This

function scales δ(r) to have a support of three fluid grid cells.

We can use this function to interpolate an Eulerian quantity onto a Lagrangian point,

such as the fluid velocity in equation (3.2), where xi,j,k is the coordinate of the velocity

node and Xl is the coordinate of the Lagrangian marker. Due to the staggered grid, we

must carry out this interpolation separately for each velocity component.

Similarly, we can spread a Lagrangian quantity onto the Eulerian mesh, such as the IB

force in equation (3.4). Here, Vl represents the “volume of influence” of the Lagrangian

marker. Again, fIBM(xi,j,k) acts at different coordinates for each velocity component,

requiring that we calculate this spreading separately for the u-, v-, and w-momentum

equations.
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3.4 Particle motion

The framework in place, we discretize the particle equations of motion, (2.9) and

(2.10), as follows:

We discretize Fr,p and Tr,p by

d

dt

∫

Ωp

ρf u dV ≈ ρf
2αk∆t



∫

Ωk
p

uk dV −
∫

Ωk−1
p

uk−1 dV


 (3.10a)

d

dt

∫

Ωp

ρf r× u dV ≈ ρf
2αk∆t



∫

Ωk
p

r× uk dV −
∫

Ωk−1
p

r× uk−1 dV


 , (3.10b)

where k is the Runge-Kutta substep and the RHS volume integrals are evaluated accord-

ing to equation (3.22).

As developed in Section 3.3.1, we approximate the IBM forces acting on the particle

as:

∫

Ωp

fIBM dV ≈
Nl∑

l

Fl Vl (3.11)

∫

Ωp

r× fIBM dV ≈
Nl∑

l

(Xl − xp)× Fl Vl. (3.12)

Following the example of Kempe and Fröhlich [31], we fully couple the governing

equations (2.1), (2.2), (2.9), and (2.10) through the following steps:

1. Determine desired velocity of Lagrangian marker points

Ud
l = uk−1

p + ωk−1
p ×

(
Xl − xk−1

p

)
(3.13)
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2. Calculate a preliminary velocity field.

ũ− uk−1

αk∆t
= 2νf∇2uk−1− 2

ρf
∇pk−1− γk

αk
∇· (uu)k−1− ζk

αk
∇· (uu)k−2 +

2

ρf
fb (3.14)

3. Apply IBM forcing to enforce the no-slip condition

Ul =
∑

k

∑

j

∑

i

ũ(xi,j,k)δh(xi,j,k −Xl)h
3 (3.15a)

Fl = ρf
Ud
l −Ul

2αk∆t
(3.15b)

fIBM(xi,j,k) =

Np∑

p

Nl∑

l

δh(xi,j,k −Xl) Fl Vl (3.15c)

FIBM,p = −
Nl∑

l

Fl Vl (3.15d)

TIBM,p = −
Nl∑

l

(Xl − xp)× Fl Vl (3.15e)

4. Solve the Helmholtz equation in order to evaluate viscous terms using the Crank

Nicholson method.

û− ũ

αk∆t
= νf∇2û− νf∇2uk−1 +

2

ρf
fIBM (3.16)

5. Apply additional IBM forcing to further enforce the no-slip condition, now that the
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fluid velocity field has been modified. This will be further explained in Section 3.6.2.

u(0) = û (3.17a)

for m = 1 : nf {

Ul =
∑

k

∑

j

∑

i

δh(xi,j,k −Xl) u
(m−1)
i,j,k h3 (3.17b)

Fl = ρf
Ud
l −Ul

2αk∆t
(3.17c)

fIBM(xi,j,k) =

Np∑

p

Nl∑

l

δh(xi,j,k −Xl) Fl Vl (3.17d)

u(m) = u(m−1) + 2ρfαk∆t fIBM (3.17e)

FIBM,p = FIBM,p −
Nl∑

l

Fl Vl (3.17f)

TIBM,p = TIBM,p −
Nl∑

l

(Xl − xp)× Fl Vl (3.17g)

}

u∗ = u(nf ) (3.17h)

6. Solve the Poisson equation for the pressure correction term to enforce continuity.

∇2φ =
∇ · u∗
2αk∆t

(3.18)

7. Apply the pressure correction to the pressure and velocity fields.

uk = u∗ − 2αk∆t∇φ (3.19a)

pk = pk−1 + ρfφ (3.19b)
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8. Evaluate all hydrodynamic forces acting on the particle.

Ff,p =
ρf

2αk∆t



∫

Ωk
p

uk dV −
∫

Ωk−1
p

uk−1 dV




︸ ︷︷ ︸
Fr,p

+FIBM,p (3.20a)

Tf,p =
ρf

2αk∆t



∫

Ωk
p

r× uk dV −
∫

Ωk−1
p

r× uk−1 dV




︸ ︷︷ ︸
Tr,p

+TIBM,p (3.20b)

9. Solve particle equations of motion using fluid forces (Ff,p), buoyant forces (Fg,p),

and collision forces (Fc,p), the latter of which will be discussed in Chapter 4.

ukp = uk−1
p +

2αk∆t

mp

(Ff,p + Fg,p + Fc,p) (3.21a)

ωkp = ωk−1
p +

2αk∆t

Ip
(Tf,p + Tc,p) (3.21b)

xkp = xk−1
p + αk∆t

(
ukp + uk−1

p

)
(3.21c)

(3.21d)

3.5 Volume fraction

One method for numerically evaluating the volume integrals in equation (3.10) re-

quires the volume fraction φi,j,k of the particles in the Eulerian grid. For each fluid grid

cell (i, j, k), this volume fraction gives us the fraction of the cell occupied by the particle

(φ = 1 inside the particle), allowing us to numerically evaluate a volume integral as

∫

Ωp

u dV ≈
∑

k

∑

j

∑

i

φi,j,k ui,j,k Vi,j,k, (3.22)
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where Vi,j,k is the volume of cell (i, j, k). Note, however, that due to the staggered grid

arrangement, this volume fraction will have to be evaluated separately for each velocity

component.

To calculate the volume fraction, we employ the level-set method used by Kempe and

Fröhlich [58], which allows for efficient evaluation but at a lower accuracy compared to

other methods. The volume fraction is given by

φi,j,k =

∑8
m=1−ϕmH(−ϕm)∑8

m=1 |ϕm|
, (3.23)

where H(ϕ) is the heavyside function

H(ϕ) =





0, ϕ ≤ 0

1, ϕ > 0

, (3.24)

and ϕ is the level-set function, which is evaluated at the eight corners m of the control

volume for φi,j,k. ϕ = 0 represents the surface of the sphere, with ϕ < 0 being inside the

sphere and ϕ > 0 being outside the sphere. For a sphere, the level-set function is

ϕ =

√
(x− xp)2 + (y − yp)2 + (z − zp)2

Rp

− 1, (3.25)

where (x, y, z) is the coordinate of ϕ and xp = (xp, yp, zp) is the position of the center of

sphere p.
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3.6 Validation

3.6.1 Settling velocity

To validate the fluid-particle coupling, we will use the case of a single sphere settling

under gravity in a fluid. In this situation, the important parameter to consider is the

particle Reynolds number

Rep =
u∞Dp

νf
, (3.26)

where Dp is the particle diameter νf is the kinematic viscosity, and u∞ is the settling

velocity. We also utilize a reference time scale and velocity scale based on gravity to

nondimensionalize the results:

tref =

√
Dp

g
(3.27a)

uref =
√
Dp g. (3.27b)

Note that, consistent with the nondimensionalization of Uhlmann [32], these reference

scales do not use a reduced gravity, which depends on the relative particle/fluid densities.

Mordant and Pinton [59] carried out a series of moderate Reynolds number experiments

(12 < Rep < 376) involving the settling of a single sphere under gravity in a large tank.

ten Cate et al. [60] carried out experiments at lower Renolds numbers (1.5 < Rep < 32),

observing the settling velocity as the sphere approaches the lower wall of a large tank.

We also consider the work of Brown and Lawler [61], who aggregated the results of

many experiments into an empirical correlation for the settling velocity of a sphere:

u∗ =
d2
∗ (22.5 + d2.046

∗ )

0.0258d4.046
∗ + 2.81d3.046

∗ + 18d2.046
∗ + 405

, (3.28)

where d∗ and u∗ are, respectively, a non-dimensional diameter and settling velocity of
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Rep Experiment Rp (m) ρp/ρf νf (m2/s) g (m/s2)
41 Mordant & Pinton 1/12 2.5677 5.416× 10−3 9.81
360 Mordant & Pinton 1/12 2.5677 1.042× 10−3 9.81
12 ten Cate et al. 0.0075 1.164 1.175× 10−4 9.81
32 ten Cate et al. 0.0075 1.167 6.042× 10−5 9.81

Table 3.1: Simulation parameters to match Mordant and Pinton. [59] and ten Cate et al. [60].

Rep Domain size (m)
(Lx × Ly × Lz)

Domain
boundary
conditions

y0 (m) Nx Dp/h Timestep

41 1.25× 10× 1.25 s × p × s 9.0 76, 150, 226 10, 20, 30 CFL = 0.5
360 1.25× 10× 1.25 s × p × s 9.0 76, 150, 226 10, 20, 30 CFL = 0.5
12 0.1× 0.2× 0.1 p × ns × p 0.13 92, 128, 192 14, 19, 29 CFL = 0.5
32 0.1× 0.2× 0.1 p × ns × p 0.131 92, 128, 192 14, 19, 29 CFL = 0.5

Table 3.2: Simulation setup to match experiments of Table 3.1. Boundary conditions
can be periodic (p), slip (s), or no-slip (ns). The number of grid cells in the x-direction
is Nx, and the initial position of the center of the sphere is y0.

the sphere:

d∗ = 2Rp

[
gρf (ρp − ρf )

µ2
f

]1/3

(3.29a)

u∗ = u∞

[
ρ2
f

gµf (ρp − ρf )

]1/3

. (3.29b)

This correlation fits 97% of the studied experimental data to within a 5% error margin.

Using the parameters in Table 3.1 and the simulation setup in Table 3.2, we conducted

simulations to match the experiments of Mordant and Pinton [59] and ten Cate et al. [60].

3.6.2 Number of forcing loop iterations

The method developed by Kempe and Fröhlich [31] includes an additional forcing loop

after the solution of the Helmholtz equation, shown in equation (3.17). These authors

state that this loop is necessary to ensure the no-slip condition is satisfied, recommending
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Figure 3.2: Effect of number of forcing loop iterations for Rep = 41 at 20 grid
cells/diameter. We have zoomed in along the vertical axis to highlight the differ-
ences.

three iterations. However, in our experience working with Peskin’s Dirac Delta function,

we noticed that interpolating and forcing several times in a row can lead to less-smooth

or oscillatory results. We also noticed that the number of forcing loops can greatly affect

the results for particle-wall collisions. We therefore conducted our own brief study of the

number of forcing loop iterations.

For this study, we considered the Rep = 41 settling sphere case, where we studied

the effect of changing the number of forcing loop iterations on the settling velocity. The

results are shown in Figure 3.2. Adding more than one iteration results in very small

changes in the overall behavior, certainly smaller than the effect of changing the grid

resolution. Based on these results, our desire to not impose the forcing too frequently,

and the sake of computational efficiency, we have decided to utilize one forcing loop

iteration for our simulations, including all those mentioned in this document.
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Figure 3.3: Comparison of settling velocities for Rep = 41.

3.6.3 Settling velocity at different Reynolds numbers

Figures 3.3–3.6 show the convergence of the settling velocity to these experiments

for a range of Reynolds numbers. In Figure 3.3 the transient sphere velocity matches

well with Mordant and Pinton’s experiment for Rep = 41 and that, with grid refinement,

the steady-state velocity appears to converge more towards Brown and Lawler’s relation-

ship (3.28). However, the converged settling velocity is within 5% of both Mordant and

Pinton’s experiment and Brown and Lawler’s correlation.

For the Rep = 360 case shown in Figure 3.4, unsteady behavior emerges in the 30

cells/diameter simulation. Above Reynolds numbers of 210, the flow past a fixed sphere

loses its axisymmetry [62], and in the range of Reynolds numbers from 270 to 300 the flow

becomes unsteady [63]. The Mordant and Pinton results represent the average velocity

for a number of experiments, whereas the simulation results represent single instances.

Again, the simulation results tend to converge towards the Brown and Lawler rela-

tionship (3.28). However, in the 30 cells/diameter simulation, the sphere tumbles out
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Figure 3.4: Comparison of settling velocities for Rep = 360.

of its path and, no longer supported by its long wake, slows down to the Mordant and

Pinton mean settling velocity.

Figures 3.5 and 3.6 demonstrate our code’s ability to capture sphere-wall interactions

and settling velocities at lower Reynolds numbers compared to the experiments of ten

Cate et al. In both figures, we can see that the simulation does an excellent job, capturing

the transient motion in ten Cate’s experiments and converging to the experiments with

grid refinement.
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Figure 3.5: Comparison of settling velocities for Rep = 12.
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Figure 3.6: Comparison of settling velocities for Rep = 32.
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3.6.4 Effect of radius retraction

An interesting paper was put forth by Wim-Paul Breugem [50], who proposed a

method for increasing the accuracy of this IBM. Noticing that the method we have

implemented tends to overpredict the drag on the particles, he proposed to retract the

Lagrangian markers to a radius inside the particle in order to offset the effectively-larger

particle that results from the Dirac Delta function smoothing the IBM force out into

the surrounding fluid. Based on a set of experiments, Breugem established an empirical

retraction distance of rd = 0.3h.

We conducted our own experiments with this method, which only involves moving

the location of the Lagrangian markers. For lower Reynolds numbers (Rep = 12–41), the

results were very promising, as demonstrated in Figure 3.7.

In this figure, the trajectories have collapsed onto one another when compared to the

results of the normal method shown in Figure 3.3, though they again converge towards

the Brown and Lawler relationship. Thus, the effect of the larger effective particle radius

at lower grid resolutions seems to have been counteracted.

However, we see a different picture at higher Reynolds numbers. Figure 3.8 shows

the results at Rep = 360, where the curves do not collapse nearly as well. The results

also seem to overpredict the settling velocity, the sphere experiencing less drag than it

should.

While this method seems to work well in a viscous, laminar regime, we have seen

evidence that it may be much less effective at larger Reynolds numbers. Given this

observation and the fact that this method is based on empirical results at low Reynolds

numbers, we will not be implementing it in PARTIES.
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Figure 3.7: Settling velocities with retracted Lagrangian markers at Rep = 41.
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Figure 3.8: Settling velocities with retracted Lagrangian markers at Rep = 360.
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Collision modeling

4.1 Introduction

Although there exists a variety of phase-resolving methods, the choice of collision

models, on the other hand, has not been as diverse. Derksen [64, 65] used a hard-sphere

model, which resolves collisions instantaneously. Glowinski et al. [33] have developed a

repulsive potential (RP) model that prevents particles from overlapping by applying a

repulsive force at some small distance before the particles come in contact. Many other

authors have adopted this model for simulations involving dilute suspensions of particles.

For example, Uhlmann [66] and Santarelli and Fröhlich [67] investigated particles in a

vertical turbulent channel flow, Lucci et al. [68] studied the impact of finite size particles

on isotropic turbulence, and Breugem [50] and Picano et al. [69] have presented results for

a horizontal flow laden with neutrally-buoyant particles. In these simulations, particles

rarely came in contact, and thus were successfully governed mostly by the IBM, using

the repulsive potential only to prevent overlap.

For the situation involving shear flow over a densely-packed sediment bed, however,

particle-particle contact becomes ubiquitous [70]. Hard sphere models cannot maintain
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simultaneous collisions or enduring contacts between multiple interacting particles, but

instead represent sediment beds as particles in constant, minute motion [65]. However,

they have been used to reproduce critical erosion conditions for a laminar shear flow

[64]. The drawbacks of the RP model for the situation of sediment transport have been

clearly-elaborated by Kempe et al. [71]. Using the RP in the framework of the IBM

introduces an artificial gap of two times the grid cell size between colliding particles so

that the fluid in the gap between the particle surfaces can still be resolved [72]. For the

situation of sediment transport, however, the artificial gap also introduces an unphysical

protrusion of the particles into the horizontal flow, which is critical as the protrusion

has been acknowledged to be a very sensitive parameter for particle mobilization [73].

In addition, the RP model introduces a material stiffness kn which has to be calculated

a priori to design a collision model that is numerically stable. If the value of kn is

chosen too high, the repulsive force is overestimated and the particle would experience

an unphysical high rebound velocity. On the other hand, if kn is too low, the duration of

the particle collision would be too large. The resuspension mechanisms, however, generate

a high variety of particle impact velocities uin for the collisions, typically characterized

by the nondimensional Stokes number St = ρpuinDp/(9 ρf νf ), where ρp and ρf are the

particle and fluid density, respectively, Dp is the particle diameter, and νf is the kinematic

viscosity of the fluid. In fact, for bed-load transport in water the variety can span from

St � 10 (saltating particles, [74]) to St = O(10) (rolling particles, [8]) to St � 1

(enduring contact within the sediment bed). Hence, selecting a stiffness that is stable for

high-impact velocities results in excessively low stiffnesses within the bed, which acts as

an unphysical dampening of the system.

Although there are studies of particle-laden horizontal flows such as Shao et al. [75]

and Kidanemariam et al. [76] in which the model by Glowinski et al. [33] has been em-

ployed, these had to be limited to small volume fractions and conclusions about particle-
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particle interaction have not been possible. Kidanemariam and Uhlmann [29] used an

improved repulsive linear spring-dashpot model that solves the issues with calibrating

kn, but still relies on an artificial gap distance. Thus, in order to obtain appropri-

ate bulk sediment transport quantities, they calibrated the dry restitution coefficient

edry = −uout/uin, where uout is the rebound velocity as soon as the collision process is

finished, although this parameter can be set exactly as a material property. It describes

the dissipation of kinetic energy due to the inelastic mechanics of the dry contact and

is typically in the range of 0.8 ≤ edry < 1 for silicate materials Joseph et al. [77]. In

the study of Kidanemariam and Uhlmann [29], a rather unphysical value of edry = 0.3

was used to match the bulk transport rates of glass spheres from the experiments of

Aussillous et al. [19].

More recently, a more consistent approach has been advocated in the literature for

which the artificial gap size is no longer needed [78, 58, 79, 80, 81]. This approach uses

a lubrication force when the particles come in close contact (0 < ζn ≤ 2h, where ζn is

the distance between the two surfaces), and a contact force when the surfaces come in

contact and slightly overlap (ζn ≤ 0). The lubrication force, which is based on lubri-

cation theory, models the fluid forces acting on the particle that cannot be resolved by

the computational mesh. The contact force models material deformations and friction

through components that are, respectively, normal and tangent to the surface. Since

these models attempt to address the actual physics of the collision, they have had much

success in reproducing the desired restitution coefficients over a range of Stokes num-

bers for the experiments by Joseph et al. [77]. Simeonov and Calantoni [78] performed

a detailed analysis breaking down the individual effects from lubrication forces, contact

forces, and hydrodynamic forces. However, only Kempe and Fröhlich [58] and Costa et

al. [80] have demonstrated that their models were able to reproduce the trajectories of a

particle-wall impact provided by the benchmark experiments of Gondret et al. [82]. Both
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studies show that the good agreement with the rebound trajectories is made possible by

slightly stretching the collision process in time: long enough to resolve the response of

the fluid field to the particle kinematics but shorter than any relevant physical timescale

in the flow. In addition, both modeling approaches use an adaptive procedure to obtain

mathematically-rigorous solutions to the ordinary differential equations governing parti-

cle motion during contact. Using the model of Kempe and Fröhlich [58], a breakthrough

was achieved by Vowinckel et al. [28], who successfully carried out numerical simulations

of turbulent horizontal channel flow laden with tens of thousands of particles.

In this chapter, we build on the model proposed by Kempe and Fröhlich [58] to extend

it to situations of very dense packing fractions. For example, in order for their collision

model to work as designed, Kempe and Fröhlich [58] neglect the hydrodynamic forces

acting on a particle while it is in contact with another object. This was addressed implic-

itly by Kempe et al. [71], even though it was not stated in their paper, by including the

hydrodynamic forces in the equation of motion regardless of the type of collision (Kempe

& Fröhlich, 2016, private communication). Furthermore, their model for the tangential

contact force, which is designed to exactly enforce zero slip between particles, does not

converge to a steady-state configuration for enduring contact. While this model worked

well for simulations involving thin beds of particles at higher Reynolds numbers and

Stokes numbers, we would like to extend it to work for thick beds of particles at a range

of different Stokes numbers. At this point, models from the Discrete Element Method

(DEM) community, who simulate dry granular flows, seem to be more appropriate, as

they introduce a “memory” of the friction required to reach steady-state conditions [83].

Costa et al. [80] proposed a scheme with an enhanced treatment of lubrication forces,

which can also be applied to smaller Stokes numbers as well as a variety of impact angles

ψin. In this reference, however, they neither considered the situation of enduring contact

nor conducted a validation on a larger scale addressing the collective effects of particle
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motion.

Finally, another aspect that has received far less attention so far is the situation of

a sediment consisting of particles with varying particle diameters. Interestingly, all of

the references cited so far deal with spherical monodisperse particles. To our knowledge

the only study considering horizontal channel flows laden with polydisperse sediment has

been performed by Fukuoka et al. [84] using a front-tracking technique, but neither did

the authors account for the feedback of the particles on the flow nor have they provided a

validation for the experimental standard benchmark test cases such as particles settling in

an ambient fluid or colliding with a wall. The absence of studies addressing polydisperse

sediment with fully coupled IBM simulations is ever the more surprising, since its impact

has been acknowledged as a key issue in the development and evolution of bedforms by

segregation effects as reviewed by Charru et al. [85].

As a consequence, we aim to resolve the problems mentioned above. Among the key

challenges identified are i) deriving collision models for polydisperse sediment, ii) avoiding

the introduction of an artificial gap between colliding particles, iii) adaptively-calibrating

the particle stiffness to simulate a wide range of Stokes numbers in a consistent man-

ner, iv) introducing suitable criteria to extend existing models towards the numerically-

challenging situation of enduring contact for both normal and oblique collisions, and v)

minimizing the number of tunable parameters within the model framework. We achieve

our goals by presenting an implementation of collision models for polydisperse sediment.

We use the adaptive procedure proposed by Kempe and Fröhlich [58] for normal forces

and the tangential model of Thornton et al. [86], which stems from DEM. Furthermore,

we extend both of these approaches for the situation of enduring contact. In particular,

for enduring contact, we took care to retain all the governing terms of the momentum

balance of a particle, i.e. hydrodynamic forces, buoyant weight, and collision forces. This

measure turns out to be crucial when simulating flows over sediment beds, as the Shields
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a) b)

Figure 4.1: Regions where short-range interactions occur. Points on particle surface
represent Lagrangian markers. Red markers have been turned off. a) Lubrication re-
gion where red dashed circle illustrates support of Dirac delta function and b) Contact
region.

parameter is based on the ratio of hydrodynamic to buoyant forces. The proposed en-

hancements allow us to reproduce several laboratory benchmark test cases for binary

collisions.

The chapter is structured as follows. We briefly describe the structure of the collision

model in Section 4.1.1, followed by the mathematical description of the collision model

employed in Section 4.2. We then present necessary enhancements to the collision model

to deal with small Stokes numbers (Section 4.3) and to simulate dense granular packings

with the gross of the particles in enduring contact (Section 4.4). In sections 4.3 and 4.4

we also validate our methods using collisions between a single particle and a wall.

4.1.1 Structure of the collision model

As mentioned in the introduction, one of the major advantages of the IBM is the direct

computation of long-range interactions between the particles. Only short-range interac-

tions and collisions need to be modeled. For example, consider a particle approaching

and colliding with a wall, as shown in Figure 4.1. As the particle comes close to the wall,

two problems need to be dealt with: first, the smoothed Dirac delta functions used for
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the IBM overlap with the wall, and second, the discrete mesh can no longer resolve the

fluid being squeezed out from between the two surfaces.

We can solve the first problem by disabling Lagrangian marker points whose supports

overlap with the wall (red dashed circle in Figure 4.1a), as was done by Kempe and

Fröhlich [31]. This means that the forcing by these select markers on both the fluid

and the particles is ignored, preventing the particle from using undefined information

from outside of the domain and from competing with the wall for enforcing the no-slip

condition. Figure 4.1 illustrates the red markers that have been disabled. Similarly,

overlapping markers between two particles are disabled. We solve the second problem

by adding a lubrication force, which models the subgrid forces on the particle due to the

narrow gap and also accounts for some of the fluid forces from the disabled Lagrangian

markers. We apply this force when the particle-wall distance is less than two grid cells

(0 < ζn ≤ 2h), illustrated by the blue region in Figure 4.1a. Once the particle comes

into contact with the wall (ζn ≤ 0), we apply a contact force to prevent particles from

overlapping too much and to account for proper momentum transfer and energy loss.

This contact force involves components both normal and tangent to the two surfaces,

representing material deformations and friction, respectively.

Hence, the following case distinctions can be made for the normal collision forces

Fn =





0 ζn > 2h

lubrication model (4.5) 0 < ζn ≤ 2h

normal contact model (4.6) ζn ≤ 0

(4.1)
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Figure 4.2: Sketch of polydisperse particles in a mobile granular bed and the resulting
interactions due to collisions.

and the tangential collision forces

Ft =





0 ζn > 0

tangential contact model (4.10) ζn ≤ 0.

(4.2)

The interactions of a single particle with its environment, however, are in general more

diverse. Let us consider a particle p embedded in a mobile granular bed of polydisperse,

spherical particles (Figure 4.2). The dynamics of this particle are mainly determined by

all the collision forces exerted upon it by particles q, q 6= p as well as the wall. The total

force Fc,p acting on a particle p during the collision process may be decomposed as

Fc,p =

Np∑

q, q 6=p

(Fn,q + Ft,q) + Fn,w + Ft,w , (4.3)

where Np is the number of particles simulated, Fn,q and Fn,w are the normal collision

forces described by (4.1) with particle q and the wall, respectively, and Ft,q and Ft,w are

the tangential collision forces described by (4.2) with particle q and the wall, respectively.

In what follows, the mathematical expressions are formulated for both particle-wall and

particle-particle collisions, where the radii of the two colliding particles can be arbitrary.
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Whenever a distinction between particle-wall and particle-particle has to be made, a

reference to Appendix C.1 is given for brevity, providing all definitions and nomenclature

needed to distinguish between the two different cases.

The torque Tc,p on a spherical particle p generated by the tangential contact forces

is

Tc,p =

Np∑

q, q 6=p

Rp,cp n p,q × Ft,q +Rp,cp n p,w × Ft,w (4.4)

where n p,q and n p,w are the unit vectors pointing to the collision partner q or the wall,

respectively, and Rp,cp is the particle radius at the contact point as defined per Ap-

pendix C.1 in (C.6), which accounts for surface overlap. In the next section, we will

provide the mathematical description of the models used in PARTIES.

4.2 Collision modeling

4.2.1 Lubrication model

When the distance between the surfaces of two approaching particles becomes small,

the fluid is squeezed out of the gap. The fluid grid cannot resolve this process as soon as

ζn < 2h, where h is the grid cell size. Hence, we employ a lubrication model, which also

acts on particles rebounding after the collision, when fluid is drawn into the gap. The

lubrication force is dissipative, since it is always directed opposite to the relative velocity.

The model is based on the analytical derivation of Cox and Brenner [87], who solved for

the force under Stokes flow conditions

Fn = −
6πρfνfR

2
eff

max (ζn, ζn,min)
gn,cp, (4.5)
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where Reff is the effective radius accounting for polydisperse sediment and gn,cp the

normal component of the relative particle velocity as defined per Appendix C.1 in (C.1)

and (C.9) respectively. The original model scales as 1/ζn which introduces a singularity

as ζn → 0. This has been addressed by Simeonov and Calantoni [78] and Kempe and

Fröhlich [58], who set Fn = 0 for 0 < ζn < ζn,min, and Izard et al. [79], who have shifted

the denominator of (4.5) to ζn + ζn,min. In the present approach, as in the approach of

Costa et al. [80], lubrication forces are held constant as soon as the gap size becomes

smaller than the critical value ζn,min, which provides a continuous forcing on the particles

when they are close to sustained contact. This parameter can be interpreted as the micro-

texture of the particle surface, which acts as a surface roughness, as will be discussed

further in Section 4.3.4 below.

4.2.2 Normal contact model

To account for normal contact forces, we implemented the Adaptive Collision Time

Model (ACTM) proposed by Kempe and Fröhlich [58]. The main idea of the ACTM is to

use an adaptive procedure to obtain the desired restitution coefficient edry and to resolve

the collision on the timescale of the fluid solver. The ACTM is based on a nonlinear

spring-dashpot system

Fn = −kn|ζn|3/2n− dngn,cp, (4.6)

which involves empirical parameters for the coefficients of stiffness kn and damping dn.

Here, n is the normal vector pointing either towards the collision partner or towards

the wall as defined per Appendix C.1 in (C.3). The nonlinear term |ζn|3/2 arises from

Hertzian contact theory [88].

Since the timescale of a collision according to Hertzian contact theory is several

orders of magnitude smaller than the typical temporal discretization of the fluid solver,

40



Collision modeling Chapter 4

the collision event has to be stretched in time to maintain the efficiency of the numerical

procedure. This measure is also needed for the fluid to adapt to the sudden change in

the particle trajectory [58, 80]. However, the duration of contact Tc is mainly determined

by the stiffness parameter kn. This becomes of particular importance for the complex

situation of bed-load transport, where a broad range of impact velocities is encountered,

ranging from high-impact collisions at the top of the bed to enduring contact within the

bed.

The ACTM fixes this problem by adaptively calibrating the parameters kn and dn

depending on the impact velocity uin, the desired restitution coefficient edry, and the

desired collision time Tc. The latter is a parameter of the model and should be minimized

to avoid excessive particle overlaps and temporal stretching. Kempe and Fröhlich [58]

demonstrated that Tc = 10∆t is a suitable choice for the collision time given that all

timescales related to fluid and particle motion are significantly larger than the timescale

of particle contact. For glass and hard metals, edry = 0.97 is a typical value [89, 77, 82].

For immersed collisions, the restitution coefficient ewet, measured some small distance

away from the wall, becomes a function of the Stokes number [77]. The ACTM, however,

uses the IBM and lubrication model to account for ewet through additional dissipative

fluid effects.

In order to find values for kn and dn, we first neglect all non-contact forces acting

on the particle so that (2.9) and (4.6) together give the following nonlinear ordinary

differential equation:

meff
d2ζn
dt2

+ dn
dζn
dt

+ knζ
3/2
n = 0, (4.7)

where meff is the effective mass accounting for polydisperse sediment as defined per

Appendix C.1 in (C.2). Note that dζn/dt = −gn,cp · n. Together with (4.7) and initial

and final conditions, the constraints edry and Tc allow for determination of kn and dn
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using either an iterative procedure, as was done by Kempe and Fröhlich [58], or an

explicit formulation, as was proposed by Ray et al. [90]. In PARTIES, we implemented

the explicit formulation, which is provided in Appendix C.2. According to Ray et al. [90],

the error in uout increases with decreasing edry, but does not exceed 1.3% for edry > 0.7

or 3% for edry > 0.4, making this method useful for most sediment materials such as

silicate, glass, or even metal.

4.2.3 Tangential collision model

To account for frictional contact between the particles, we implemented a tangential

contact model based on the linear spring-dashpot model described in the review paper

of Thornton et al. [86]:

Ft,LS = −ktζt − dtgt,cp, (4.8)

which has stiffness and damping coefficients kt and dt. This model uses gt,cp, the tangen-

tial component of the relative surface velocities as described in (C.10) of Appendix C.1, as

well as ζt, the tangential spring displacement, which represents the accumulated relative

tangential motion between the two surfaces:

ζt =

∫ t

ti

gt,cp(t
′)dt′, (4.9)

where ti is the time of impact. The discretized form of (4.9) is described in Appendix C.3.

This model limits the maximum force based on Coulomb’s friction criterion:

Ft = min (||Ft,LS||, ||µFn||) t, (4.10)

where µ represents the coefficient of friction between the two surfaces (described further

in Section 4.4.3) and t = Ft,LS/||Ft,LS|| points in the direction of the tangential force.
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This model has two important features for simulating densely-packed beds. First, the

spring allows many particles to interact in a smooth, stable manner, provided the stiffness

is chosen properly. Second, the model has a memory of the friction force via the tangential

displacement ζt, which permits a steady-state frictional bed configuration. In contrast,

a model that only uses gt,cp, such as the one proposed by Kempe and Fröhlich [58], can

only react to slip, not predict it.

Similarly to the ACTM, we can adaptively compute kt and dt for each collision.

According to Thornton et al. [91], the stiffness can be set to

kt =
κmeff π

2

T 2
c

. (4.11)

Here, κ is based on Poisson’s ratio ν:

κ =
2(1− ν)

2− ν , (4.12)

which is a well-studied material property typically ranging between 0.22 < ν < 0.30

[89, 82, 92]. Hence, a value of ν = 0.22 was used in this chapter.

In addition, the damping is computed according to Thornton et al. [86] to account

for the inelasticity of the collisions

dt = 2
√
meff kt

−ln edry√
π2 + ln2edry

. (4.13)

Having created a uniform collision time Tc with the normal contact model, we obtain

the correct rebound characteristics for oblique impacts using these values for kt and dt,

as shown in Section 4.4.3. Consistently, the model does not require any calibration but

instead can be parameterized using material properties obtained from experiments.
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4.3 Enhancements to the normal contact model

4.3.1 Motivation

In order to obtain a good agreement with immersed collision experiments, we had to

implement a few enhancements to the normal contact model described in Section 4.2.2.

Both changing the time integration to a scheme of higher accuracy and adding more

timesteps to the integration of particle motion without changing the fluid timestep al-

lowed us to reproduce the collision trajectories of Gondret et al. [82] in a robust manner.

4.3.2 Improved time integration

The ACTM normal contact force Fc,p is a function of the surface distance ζn and

the relative velocity gn,cp, which in turn depend on the particle position xk−1
p and ve-

locity uk−1
p at the previous substep k − 1. We can write this functional dependence as

Fc,p(x
k−1
p ,uk−1

p ). Integrating the particle equation of motion with a Forward Euler/Crank

Nicholson scheme for the particle’s velocity/position, we obtain:

ukp = uk−1
p +

2∆tαk
mp

Fc,p

(
xk−1
p , uk−1

p

)
(4.14a)

xkp = xk−1
p + ∆tαk

(
ukp + uk−1

p

)
, (4.14b)

where k is the number of the RK-substep and αk is the RK-coefficient [53]. For now, we

ignore the hydrodynamic, gravitational, and lubrication forces in order to focus on the

contact forces alone. We conducted a simple test to analyze the accuracy of this scheme.

A particle of density ρp/ρf = 7.8 and with radius Rp = 10u∞∆t was initialized with a

velocity of up = (0, u∞, 0)T at a position yp > Rp above a wall at y = 0. Subsequently,

the particle was released and eventually collided with the wall. Neglecting hydrodynamic

effects as well as gravity yields an impact velocity of uin/u∞ = 1. Choosing the collision
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time to be Tc = 10∆t as suggested by Kempe and Fröhlich [58], gave good results for the

duration of the desired contact phase Tc, but rather large errors of the rebound velocity

were observed compared to the prescribed edry = 1. The value of uout = −edry uin was

overestimated by more than 12%.

Turning our attention to Figure 4.3, we can see that the discretization of (4.14) leads

to a poor estimation of the collision force ||Fc,p|| when compared to the simulation in

which 104 timesteps were used to resolve the collision, which can be taken as the exact

solution. This inaccuracy in the collision force was observed for a variety of simulations

using different Rp, ρp, uin, and edry. In order to reduce the error to 0.1%, a temporal

discretization of Tc = 1000∆t would be required, which is not feasible for simulations

of sediment transport. Hence, we implemented a temporal discretization scheme with

a higher order of accuracy. Utilizing the same three-step RK scheme that integrates

the Navier-Stokes equations, we reformulated the collision integration with a predictor-

corrector scheme:

ũp = uk−1
p +

∆t

mp

[
γkFc,p

(
xk−1
p , uk−1

p

)
+ ζkFc,p

(
xk−2
p , uk−2

p

)]
(4.15a)

x̃p = xk−1
p + ∆t αk

(
ũp + uk−1

p

)
(4.15b)

ukp = uk−1
p +

∆t αk
mp

[
Fc,p (x̃p, ũp) + Fc,p

(
xk−1
p , uk−1

p

)]
(4.15c)

xkp = xk−1
p + ∆t αk

(
ukp + uk−1

p

)
. (4.15d)

Here, tilde indicates predicted values, and γk and ζk are the RK coefficients for the explicit

third-order scheme according to Rai and Moin [53]. Hence, the velocity predictor step

(4.15a) is third-order accurate while the other steps use second-order Crank-Nicholson

schemes. A similar approach was taken by Costa et al. [80], but in this reference, the

predicted value is determined by an iterative scheme, which is computationally more

costly than the present scheme. In Figure 4.3 we can see that this predictor-corrector
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Figure 4.3: Collision forces vs. time for Forward Euler, Backward Euler, and predic-
tor-corrector schemes.

scheme yields a much better approximation of ||Fc,p|| compared to the Forward Euler

method, reducing the error of uout by almost two orders of magnitude to 0.17% for

Tc/∆t = 10. For completeness, we have also included a solution that uses the Backward

Euler method, which underestimates the rebound velocity by 11%. This improvement has

been achieved by a minimal increase of the computational costs, as the most expensive

part of (2.9) is the computation of the hydrodynamic forces Fh,p.

4.3.3 Temporal substepping

Having improved the accuracy of the contact model, we carried out simulations of

particle-wall collisions in a fluid to compare to the experiments of Gondret et al. [82]. The

details of the simulations, including the material properties as well as the physical and

numerical parameters, are summarized in Table 4.1. Gondret et al. [82] released particles

from heights large enough to accelerate to their terminal velocities before colliding with

the wall. For these simulations, the horizontal wall and vertical particle trajectories
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St 27 152
Rep 30 164
Rp (m) 0.003 0.0015
uin (m/s) 0.518 0.585
ρp/ρf 8.083 8.342
νf (m2/s) 1.036× 10−4 1.070× 10−5

edry 0.97 0.97
g (m/s2) 9.81 9.81
Domain size (m) (Lx × Ly × Lz) 0.08× 0.16× 0.08 0.02× 0.2× 0.02
Domain boundary conditions p × ns × p p × ns × p
Initial position of sphere center (m) 0.075 0.197
Grid cells in x-direction 256 128
Grid cells per diameter 19 19
Timestep ∆t = 2.5e-4 ∆t = 8.9e-5

Table 4.1: Simulation parameters to match the experiments of Gondret et al. [82].
Boundary conditions can be periodic (p), slip (s), or no-slip (ns).

allow us to only consider normal collision forces. To control the impact velocity uin, we

accelerated the particle in the numerical simulations according to the relation

u(t) = uin
(
e−40t − 1

)
, ζn > Rp. (4.16)

In other words, we prescribed the falling velocity of the particle so that it accelerated in

a smooth manner so that uin matched the Stokes number reported in Gondret et al. [82]

as shown in Table 4.1. Two scenarios were considered: one with a rather high Stokes

number St = 152 and one with a lower Stokes number of St = 27, the latter of which is

within the range of Stokes numbers that have been reported for the numerical simulations

of Kempe et al. [71]. Once the particle reached a distance of ζn = Rp, we turned off the

prescribed velocity, allowing the particle to move on its own volition according to the

hydrodynamic, buoyant, and collision forces acting on it.

While attempting to reproduce the experimental trajectories, the simulations pro-

duced large variations in the results from small changes to the initial conditions. To
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Figure 4.4: Sensitivity of rebound trajectories to initial position y0 for St = 27. a)
Trajectories computed without particle substeps and b) trajectories computed with
particle substeps.

show this, we executed five simulations for St = 27, varying only the initial position of

the particle y0 from the value recorded in Table 4.1 within the interval of one grid cell

h. Figure 4.4a shows the range of trajectories encountered. For St = 27, a substantial

variation in the rebound height of up to 83% can be observed. We would thus expect the

collision model to produce a variety of incorrect trajectories for the simulation of sedi-

ment transport in a horizontal channel flow. Even the mean of the variety of trajectories

is not able to fully reproduce the experimental trajectory.

To better understand the observed variability, we plot the time evolution of the colli-

sion forces, i.e. lubrication and contact forces, for the low Stokes number case St = 27 in

Figure 4.5. In this plot, we can see the particle approaching the wall with the lubrication

force growing as 1/ζn (phase I). Subsequently, the lubrication forces become zero during

the contact phase starting at t/tref = −0.1. During this phase (phase II), the contact

force grows and then decays with the particle-wall overlap as the particle changes direc-

tion to rebound. Finally, the particle experiences the lubrication force again during the

rebound phase starting at t/tref = 0 (phase III). At this time, lubrication is acting in the

opposite direction because lubrication is dissipative. The dotted line in Figure 4.5 shows
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Figure 4.5: Collision forces acting on the particle at St = 27 including: the lubrication
force during approach (phase I), the normal force during contact (phase II), and the
lubrication force during rebound (phase III). Vertical dashed lines indicate a change
in phase. Wbuoy = (1− ρf/ρp)mp g is the buoyant weight of the particle.

the forces acting on the particle for a time discretization based on CFL = 0.5 for the set-

tling velocity. As expected, the normal contact model with the modifications described

in Section 4.3.2 above is able to give a smooth evolution of contact forces with the time

step size of the fluid solver. However, it turns out that the lubrication forces remain

under-resolved during approach and rebound, especially as ζn approaches zero directly

before and after the contact phase. This leads to either more or less total impulse acting

on the particle, depending on where the timestep happens to land, which in turn results

in variability between simulations. This effect strongly depends on the Stokes number,

since the lubrication force decreases with increasing St. Hence, the ratio of the normal

contact force to the lubrication force increases when approaching dry contact conditions.

Since the lubrication model used is an algebraic relation that does not depend on the

surrounding hydrodynamics, we have implemented a substepping method that integrates

the particle motion with smaller timesteps than the fluid motion. This method works as
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follows:

1. We solve the fluid equations of motion, IBM, and hydrodynamic forces acting on

the particle as normal.

2. We divide the fluid RK substep k into a number of substeps Nsub,k = {8, 2, 5}.

This choice results in a total of 15 substeps of constant size per fluid timestep

(∆tsub = ∆t/15), which is most efficient since 2αk = {8/15, 2/15, 5/15} as used in

(4.15).

3. For each of the substeps, we solve the particle equations of motion with the three-

step RK method. As we update the particle velocities and positions, we re-evaluate

the collision (lubrication and contact) forces, but the hydrodynamic forces remain

constant. This compromise makes the present approach very efficient.

4. At the end of the 8, 2, or 5 substeps, we use the final particle position and velocity

for the next fluid RK substep.

This measure effectively increases the resolution of a collision to a timestep 15 times

smaller than the fluid timestep to integrate particle motion, allowing us to compute

the lubrication forces with higher accuracy. Since the contact duration of Tc = 10∆t

is maintained, the contact phase is now resolved with a total of 150 timesteps with

only a marginal increase to the computational cost. Substepping has also been used by

Kidanemariam and Uhlmann [29] and Costa et al. [80] but the authors did not illustrate

the variability we have observed for the trajectories of particle-wall collisions. Meanwhile,

Kidanemariam and Uhlmann [29] do not provide a comparison with the data of Gondret

et al. [82] at all. The scheme presented by Costa et al. [80] still relies on an iterative

procedure subdividing every fluid timestep into 50 substeps, which is less efficient than

the scheme presented here. The results of our approach can be appreciated in Figure 4.5.
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The solid line, which was resolved with fifteen times more timesteps, can be viewed

as a better approximation of the exact solution to the model we have implemented.

Figure 4.4b shows how this method almost eliminates the variability in the rebound

trajectories of the particle-wall collisions discussed above.

4.3.4 Choice of particle surface roughness

As shown in Figure 4.4, the improved integration scheme described in Sections 4.3.2

and 4.3.3 yields excellent results in reproducing the rebound trajectory of the St = 27

experiment of Gondret et al. [82]. Having obtained consistent results that are insensitive

to the initial condition, we can use the same setup of particle-wall collisions to select the

most suitable surface roughness ζn,min for the lubrication model (4.5). This is the only

parameter involved that requires calibration as an inverse problem. However, the range

of values that can be assigned to ζn,min should neither fall below the surface roughness

of the actual simulated particle nor exceed the length of a grid cell in order for the

lubrication model to make physical sense.

The impact of ζn,min on particle rebound trajectories for St = 27 is illustrated in Fig-

ure 4.6. A clear trend can be identified: decreasing the value of ζn,min also decreases the

rebound height due to more damping within the lubrication layer. However, the results

are moderately sensitive to the roughness value. For instance, note that changing the

roughness by an order of magnitude has a similar effect to excluding substeps (as shown

in Figure 4.4). Based on the present results, we selected ζn,min = 3e-3Rp to optimize

agreement with the experimental data. We have used this value for all simulations in

this chapter. Note that a surface roughness of 1e-4Rp has been reported by Gondret et

al. [82], and other authors have used the physical particle roughness length for this pa-

rameter [58, 80] to avoid the singularity in the lubrication force. Thus, we do not consider
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Figure 4.6: Effect of changing ζn,min on rebound trajectories for St = 27.

this parameter to be an exact physical representation of the actual surface roughness,

but rather as a parameter to be calibrated within a reasonable range (small enough to be

meaningful relative to the particle size and large enough to be resolved by the substeps).

4.3.5 Particle momentum balance for high Stokes number col-

lisions

Finally, we present a clarification to the ACTM as written by Kempe and Fröhlich [58].

As already mentioned in Section 4.2.2, the ACTM assumes that (4.7) represents the equa-

tion of motion for the particle in determining the coefficients kn and dn. In other words,

no fluid or gravitational forces act on the particle during the contact phase. Though

not stated in their paper, Kempe and Fröhlich [58] excluded hydrodynamic and buoy-

ant weight forces in order to reproduce the trajectories of Gondret et al. [82] (Kempe

& Fröhlich, 2016, private communication). Thus, during contact the non-disabled La-

grangian markers still affect the fluid, but not the particle momentum. This procedure

52



Collision modeling Chapter 4

−1 0 1 2 3 4 5 6 7 8

t/tref

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ζ n
/D

p

Gondret et al.

Dry contact

Wet contact

0.0 0.5 1.0 1.5 2.0

t/tref

0.0

0.1

0.2

0.3

0.4

0.5

ζ n
/D

p

Gondret et al.

Dry contact

Wet contact

a) b)

Figure 4.7: Effect of including (“wet”) or excluding (“dry”) fluid forces during contact
on rebound trajectories. a) St = 152 and b) St = 27.

is somewhat delicate for the situation of sediment transport in a horizontal channel

considering the fact that the governing nondimensional number is the ratio of the hy-

drodynamic stress to the buoyant weight of the particle. This characteristic number is

classically known as the Shields parameter Sh = τw/((ρp− ρf )gDp), where τw is the wall

shear stress [11]. It is, therefore, very desirable to include hydrodynamic and buoyant

forces in (2.9) during the contact phase. In our experience, including the gravitational

force during contact has a negligible effect in changing the desired Tc and edry. In fact,

the results presented so far have all been generated by including buoyant weight during

contact.

On the other hand, including the fluid forces during contact can lead to significant

drag on the particle throughout the collision. Figure 4.7 shows how excluding fluid forces

during contact gives us excellent agreement with the experimental results, while including

fluid forces during contact leads to excessive damping because the fluid surrounding the

particle has not been able to adapt to the change of the kinematics of the particle.

Indeed, the simulations of Simeonov and Calantoni [78] show coefficients of restitution

below experimental values for moderate Stokes numbers (20 < St < 100). Hence, we
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decided to follow Kempe and Fröhlich [58] and to exclude fluid forces during contact for

collisions with St� 1, redefining (2.9) as follows:

mp
dup
dt

=





Tf,p + Fg,p + Fc,p ζn > 0

Fg,p + Fc,p ζn ≤ 0.

(4.17)

Costa et al. [80] implemented a similar method for particle-wall collisions, but they

turned off fluid forces when the collision overlap exceeded the expected overlap due to

the particle’s weight, i.e. ζn < −(1− ρf/ρp)gmp/kn. For the cases shown in Figure 4.7,

the timescale of the contact phase is much smaller than the timescale of the general fluid

flow, i.e. the timescale of the particle rebound. Thus, while neglecting fluid forces has

an important effect on realizing the correct ewet, it has a minimal effect on the general

flow.

However, neglecting fluid forces can lead to unphysical situations for enduring contact,

which we define to be when the timescale of contact matches or exceeds that of the general

flow. Consider, for example, a single particle at rest and in contact with a wall. If we then

impose a shear flow over the particle, it should be swept up into the flow, or at the very

least be carried downstream. However, in a simulation using (4.17), because the particle is

in contact with the wall, it does not experience the hydrodynamic forces. It will therefore

continue to sit on the wall, oblivious to the flow around it, until another particle collides

with it. This was addressed in Kempe et al. [71] by switching on the hydrodynamic

forces for all collisions regardless of the Stokes number, even though it was not explicitly

mentioned in this reference (Kempe & Fröhlich, 2016, private communication). We

address this problem in detail in the subsequent Section 4.4 to introduce a suitable

threshold for the inclusion of the hydrodynamic forces in (2.9) and (2.10).
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4.4 Enduring contact model

4.4.1 Accounting for fluid forces

As shown in the results from Section 4.3, neglecting fluid forces acting on the particle

during contact produces a good match with the experimental data of Gondret et al. [82],

which involve collisions of finite duration. However, problems can arise in the limit of

enduring contact. We therefore propose to include fluid forces during contact below some

threshold Stokes number Stcrit. For collisions above Stcrit, the contact duration should be

finite (Tc = 10∆t) so that no major loss of physicality is encountered. For collisions below

Stcrit, the particle is not going to experience an appreciable rebound so that the particle

motion is not governed by collision forces during contact, but by hydrodynamic forces.

Neglecting hydrodynamic forces in the low-Stokes number regime introduces artifacts in

particle mobility. Indeed, this was observed in Vowinckel et al. [93] for the situation of

a horizontal turbulent open-channel flow laden with particles heavier than their critical

threshold of motion. Using the same method for collisions, these particles formed a closed

bed of resting particles. In this reference, it was shown that a collision with a fast moving

particle was necessary for almost all of the erosion events recorded to dislodge a particle

out of the sediment packing. However, it has not been possible to clarify to what extent

this triggering collision is merely a consequence of the collision procedure.

To investigate what the critical value for the Stokes number may be, we compared

particle-wall collisions that include hydrodynamic forces during contact (“wet” contact)

to those that exclude hydrodynamic forces during contact (“dry” contact), as illustrated

in Figure 4.8. For this scenario, we used the same parameters as those summarized in

Table 4.1 (St = 27) and repeated the simulations for ever-decreasing St. The Stokes

number was controlled by prescribing the particle’s velocity until it made direct contact

with the wall. Unlike the previous simulations, we did not allow the lubrication layer to
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Figure 4.8: Comparison of trajectories of particle-wall collisions without (“dry”)
and with (“wet”) hydrodynamic forces during contact for various Stokes numbers
a) St = 20, b) St = 15, c) St = 10, d) St = 5, where uin is measured at ζn = 0.

slow the particle before contact.

For the cases with higher Stokes numbers, we can clearly see how including hydrody-

namic forces during contact leads to significant undershooting of the rebound trajectory.

As the Stokes number decreases, however, the significance of this undershooting also de-

creases. For St < 5 (Figure 4.8d), there is no appreciable rebound, and we consider the

particle to be in enduring contact. Thus, based on these plots, we selected the critical

Stokes number to be Stcrit = 5. This value is consistent with the work of other researchers

[82, 77], who experimentally observed no rebounds for St < 10. Note that the Stokes
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numbers reported in Figure 4.8 and our resulting Stcrit are based on the particle velocity

at contact, i.e. when ζn = 0, whereas most other authors report Stokes numbers at some

distance from the wall, before the lubrication layer has fully slowed the particle. With

this enduring contact model, we can expand the particle equation of motion (4.17) to

mp
dup
dt

=





Fh,p + Fg,p + Fc,p, ζn > 0

Fg,p + Fc,p, ζn ≤ 0 ∧max{St} > Stcrit

Fh,p + Fg,p + Fc,p, ζn ≤ 0 ∧max{St} ≤ Stcrit,

(4.18)

where the max{St} function represents the maximum Stokes number among all active

collisions for particle p, and fluid forces acting on the particle are only included from

non-disabled markers. The same consideration applies for the angular momentum (2.10).

Using this scheme now allows us to include the full momentum balance for particles in

enduring contact, i.e. the hydrodynamic stresses as well as the buoyant weight of the

particle, so that the considerations of the Shields parameter become applicable.

4.4.2 Optimizing enduring particle overlap

In the case of St � 1, the impact velocity uin approaches zero. This means in turn

that the computed stiffness in (C.11d) would approach infinity. This problem is addressed

by Kempe and Fröhlich [58] who have introduced a critical Stokes number Stcrit, which

establishes a minimum impact velocity to limit kn for enduring contact:

uin,crit =
9Stcrit ρfνf

ρpDp

. (4.19)

In the present study, this critical impact velocity was used in (C.11d) and (C.11c) to

compute kn and dn, respectively, for such collisions. This implementation differs slightly
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from that of Kempe and Fröhlich [58], who do not apply any damping for collisions with

St < Stcrit, i.e. they have set dn = 0. We included this damping for enduring contact in

order to help reach steady-state conditions. Our implementation also differs in that we

use Stcrit = 5 whereas Kempe and Fröhlich [58] used Stcrit = 1.

Furthermore, we retain the buoyant weight forces in the equation of motion during

contact as outlined in Section 4.3.5. This means that, for particle packings several diam-

eters thick, the weight of a single sphere resting on another layer of particles is passed

along to deeper layers. This effect enhances the physical realism because frictional con-

tact forces increase with depth, but it also results in increasing particle surface overlap

with depth and ultimately in a change of porosity of the sediment bed, which has been

acknowledged as a crucial parameter to define the hydraulic resistance of a sediment to

the flow [28]. However, a flow with a lower Reynolds number would result in collisions

with lower Stokes numbers such that uin,crit could become large relative to the particle

size and relevant time scales. A large uin,crit would result in a low kn and hence a large

overlap between particles, which is undesirable. To prevent this large overlap, we enforce

a maximum overlap distance εRp through the following procedure: for a collision with

St < Stcrit, the stiffness is given by

kn =





meff√
uint5∗

uin > uin,crit

max (kn,crit, kn,grav) uin < uin,crit

(4.20)

where meff and t∗ are defined in (C.2) and (C.11b), respectively,

kn,crit =
meff√
uin,critt5∗

(4.21)
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Case Dry oblique collision Rolling in shear flow
Rp 0.00159 0.0625
ρp/ρf 2500 2.5
edry 0.83 0.97
ν 0.22 0.3
µk 0.11 0.15
µs 0.8 0.8
g 0 9.81
νf 0 0.02
Timestep ∆t = 2e−5 CFL = 0.5

Table 4.2: Simulation setup for oblique and rolling sphere simulations.

is the stiffness limited by the critical impact velocity, and

kn,grav = max
[
mpg(εRp)

−3/2, mqg(εRq)
−3/2

]
(4.22)

is the stiffness required for particle p (or q) to have a steady-state overlap of εRp (or

εRq) with a wall due to gravity. To have a minimal constant overlap we set ε = 10−3.

Thus, we ensure that a bed of particles contains a uniform set of collision stiffnesses that

minimize particle overlap.

4.4.3 Rolling and sliding motion

The coefficient of friction for a material can depend on whether the contact is rolling

or sliding [94]. The rolling condition implies zero slip at the contact point, i.e. ‖gt,cp‖ = 0

(cf. C.1). As a consequence, particle surfaces are in sticking contact for rolling motion

until a critical threshold of static friction Fs = µs‖Fn‖ is exceeded, where µs is the

coefficient of static friction. As soon as this condition is met, significant slip occurs and

the contact condition changes from sticking to sliding, so that the threshold for kinetic

friction Fk = µk‖Fn‖ must be used, where µk is the coefficient of kinetic friction, with µs

always greater than µk. Apart from the physical reasoning presented above, limiting the
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frictional forces also becomes important from a numerical point of view whenever two or

more collision partners are involved. Otherwise the multiple contact points competing

for no-slip conditions can lead to instabilities in the calculation of the frictional forces.

In PARTIES, the distinction between rolling/sticking and sliding is made by the

following scheme, which is comparable to that of Luding [95]:

• While the particle is sticking, i.e. ||Ft,LS|| < ||µFn||, we set µ = µs to test for the

onset of slipping.

• Once slipping occurs, i.e. ||Ft,LS|| > ||µFn||, we set µ = µk until the friction force

falls below the Coulomb friction force.

The aim of the present study is to simulate natural sediment. Hence we parametrized the

coefficients of friction with typical values of silicate materials, yielding µk = 0.15 based

on the work of Joseph and Hunt [92], who worked with glass spheres, and µs = 0.8 based

on the work of Dieterich [96], who found values ranging from 0.75 to 0.85 for different

rock materials like quartz, granite, and sandstone.

We have validated the tangential collision model using an oblique dry impact exper-

iment, i.e. neglecting hydrodynamic forces, by Foerster et al. [89], whose parameters are

summarized in Table 4.2. Figure 4.9 shows that our simulations compare well to the

experiments in reproducing the rebound angle

ψout =
ut,out
un,in

, (4.23)

which depends on the impact angle

ψin =
ut,in
un,in

. (4.24)

Here, un,in is the impact velocity normal to the wall, while ut,in and ut,out are the impact
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Figure 4.9: Rebound vs. impact angles for a particle-wall oblique collision.

and rebound velocities, respectively, of the particle’s contact point tangential to the wall

(ut = up+Rp ωp,z for a particle obliquely colliding in the x-direction). For a particle with

no initial rotation, ψin is the tangent of the angle the particle makes with the wall from

the normal (ψin = 0 means no relative tangent motion). The rebound angle is zero when

the contact is sticking perfectly at the time of release. However, the rebound angle is

negative when, at the point of release, |up| < |ωp,z| (since ωp,z < 0 for our example). The

linear-spring tangential collision model is able to perfectly capture these negative values

for ψout at low impact angles.

To test both situations, rolling and sliding, we simulated a particle in a Couette flow.

We placed a sphere of radius Rp/H = 0.0625 on the bottom wall of a channel of height

H. We initialized the particle at rest at a distance ζn/Rp = 1.6× 10−5 above the bottom

wall. We subsequently exposed the sphere to a linear shear flow, holding it fixed for

a short time (tU/H = 0.01) to allow the flow to develop around it before releasing it.

The numerical parameters are summarized in Table 4.2. We found that slipping motion
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Figure 4.10: Translational and rotational velocities of a particle exposed to a linear
shear flow. a) sliding motion for ReH = 10 and b) rolling motion for ReH = 50.

occurs for a lower Reynolds number of ReH = UH/νf = 10, where U is the lid velocity.

On the other hand, perfect rolling motion occurs at ReH = UH/νf = 50.

Figure 4.10 shows how the particle accelerates until it reaches a steady-state transla-

tional velocity. As soon as the particle makes contact with the wall, gravity holds it there

with a slight overlap according to the conditions defined in Section 4.4.2. Accounting

for fluid forces during contact allows the particle to accelerate to a steady-state speed

while in contact with the wall. As expected the particle achieves perfect rolling without

slip (Figure 4.10b), marked by the match between the translational velocity up and the

rotational velocity relative to the particle center −ωp,z Rp,cp. Accordingly, the particle

shows significant slip for the lower Reynolds number (Figure 4.10a), where the increased

viscosity leads to increased drag on the particle, which in turn overpowers the friction

from the particle’s weight.
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4.5 Conclusions

In this chapter, we presented and validated a contact model for the purpose of phase-

resolved Direct Numerical Simulations, in which the disperse phase is represented by the

Immersed Boundary Method. The present modeling approach allows for actual particle

contact and takes all relevant contact forces into account without introducing parameters

that require arbitrary calibration. These forces include lubrication forces for small inter-

particle gaps, normal repulsive forces to resolve inelastic collisions, and tangential forces

to represent particle friction. We demonstrated that an improved integration scheme is

necessary to obtain consistent results for particle-wall collisions. Subsequently, we pre-

sented enhancements that extend the model to deal with simulations of flows over dense

granular sediments. It turns out that these enhancements are crucial in order to deal

with thick sediment packings. The measures taken should allow us to generate sediment

packings several diameters thick that are numerically stable as the packing reaches a

steady-state condition. The simulations are performed by retaining the full momentum

balance of a particle in enduring contact, which includes the hydrodynamic forces and

the buoyant weight of a particle. Including these forces is crucial to represent phenom-

ena like erosion and resuspension of particles. Moreover, the enhanced model allows for

rolling and sliding contact, distinguishing between sticking and sliding conditions.

Altogether, the present approach yielded excellent agreement with the benchmark

test cases for binary collisions. In the next chapter, we will evaluate our approach for

situations involving many particles using benchmark cases for an erodible particle bed.
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Flow over a dense sediment bed

5.1 Introduction

In Chapter 3, we presented our implementation of the IBM, which couples the in-

teractions between the fluid and particles, and then validated it against experiments of

single sedimenting spheres. In Chapter 4, we developed a collision model for polydis-

perse spheres to account for close particle-particle and particle-wall interactions. We

then validated our collision model against experiments involving single spheres. We are

ultimately interested, however, in simulations of particle beds involving the interactions

of many particle. This chapter will focus on the validation of the hydrodynamic and col-

lisional interactions for thousands of particles in a sediment bed configuration, allowing

us to later analyze the physics of such flows.

For our validation, we will focus on a laminar flow over a bed of particles. Several

groups have conducted experiments for such flows. Lobkovsky et al. [17] and Aussillous

et al. [19] carried out pressure-driven experiments in a linear flume where they controlled

the fluid flow rate over a bed of particle that eroded over time. Houssais et al. [20] and

Allen and Kudrolli [97] conducted experiments in a circular tank sheared by a rotating
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lid, allowing them to study long-term steady-state bed behavior. The latter two studies,

however, involve time scales that would be computationally expensive to simulate with

our methods. For this reason and because they accounted for the effects of the side walls,

which allow our simulations with periodic boundaries to more closely match their results,

we have chosen to use the experiments of Aussillous et al. [19] as a benchmark study.

In this chapter, we will first carry out a convergence test for a laminar pressure-driven

flow over a bed of particles, which will establish the consistency of our methods and pro-

vide information regarding appropriate grid resolutions for similar types of simulations.

Then, we will present a detailed validation of our simulation results with wall-normal

profiles of the fluid and particle velocities as well as bulk flow quantities using the exper-

imental data of Aussillous et al. [19].

5.2 Convergence test

5.2.1 Simulation setup

The simulation we consider here involves a pressure-driven flow over a particle bed

that can be mobilized. The domain has dimensions Lx = 10Dp in the streamwise di-

rection, Ly = 20Dp in the vertical direction, and Lz = 10Dp in the spanwise direction.

We initialize the simulation by allowing Np,m mobile particles to settle under gravity

and without fluid (i.e. a “dry” simulation) onto a bed of Np,f fixed particles, which are

arranged in a hexagonal spacing pattern in the xz-plane and whose heights above the

lower wall vary randomly by Dp. The number of particles was chosen such that initially

the particle bed is about hp = 10Dp deep with a clear fluid height of hf = 10Dp above

it. A parabolic velocity profile was initialized in the clear fluid layer above the particles

with a bulk velocity of ubulk = 1
hf

∫ Ly

hp
u dy = 1 and a constant pressure gradient fb,x = 1
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Ga 0.850
Reref 3.16
Dp 0.1
ρp/ρf 2.1
νf (m2/s) 0.1
ζn,min/Dp 1.5e-3
edry 0.97
µk 0.15
µs 0.8
g (m/s2) 6.57
Domain size (Lx/Dp × Ly/Dp × Lz/Dp) 10.0× 20.0× 10.0
Domain boundary conditions p × ns × p
Np,m 1071
Np,f 100
Initial hf/Dp 10.0

Table 5.1: Simulation parameters for convergence test. Boundary conditions are pe-
riodic (p) or no-slip (ns).

N = Lx/h 96 128 192 256 384 512
Dp/h 9.6 12.8 19.2 25.6 38.4 51.2
∆t 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

Table 5.2: Grid resolutions for convergence test.

was applied to the flow. The particle bed, which was initially at rest, then began to

erode at the bed/clear fluid interface. Other parameters associated with the simulation

are provided in Table 5.1.

For the convergence test, the simulation was run at a variety of grid resolutions

ranging from Dp/h = 9.6 to Dp/h = 51.2, where h is the grid spacing. A constant step

size of ∆t = 5e-4 was used for all the simulations, which corresponds to a CFL value of

0.5 for the highest-resolution simulation.
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5.2.2 Results

To analyze the convergence rate, we will first consider the volumetric particle flux,

given by

qp =
1

LyLz

Np,m∑

p=1

Vpup,x, (5.1)

where Vp is the volume of particle p, and up,x is the velocity in the x-direction of particle

p. For nondimensionalization, we will use a reference length of Dp, a reference velocity,

uref =

√
fb,xDp

ρf
, (5.2)

which is based on the driving pressure gradient fb,x, and a reference time,

tref = Dp/uref. (5.3)

This reference velocity and time allow us to use concrete values based on the input

simulation parameters, rather than values obtained a posteriori from the simulation,

which may vary from one run to the next. We can then characterize the simulation using

a Reynolds number based on the reference velocity

Reref =
urefDp

νf
, (5.4)

and the Galileo number

Ga =

√
(ρp/ρf − 1)gD3

p

νf
, (5.5)

which are both shown in Table 5.1.

Figure 5.1 shows the flow rate as a function of time for the different grid resolutions.

There is an initial spike in the flow rate as the entire bed moves and reconfigures into a
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Figure 5.1: Particle flux, qp, as a function of time.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t/tref

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

q p
/(
u

re
f
D
p
)

Dp/h = 51.2

Dp/h = 38.4

Dp/h = 25.6

Dp/h = 19.2

Dp/h = 12.8

Dp/h = 9.6

Figure 5.2: Particle flux, qp, as a function of time during the initial bed movement.
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locked state, after which the flow rate drops and then slowly increases in time as the flow

pushes particles at the bed surface downstream. Aside from a marked difference in the

flow rate at Dp/h = 12.8, we cannot draw any conclusions regarding convergence from

this plot. The different trajectories arise from the system being chaotic; slight numerical

differences and even machine precision can result in particle moving in a different direction

after a collision. Thus, to show any reasonable convergence, we would have to run the

simulation for a very long time to reach statistical convergence, which would be very

costly.

If we look at the initial flow rate spike, however, we can see more of a pattern between

the different flow rates. Figure 5.2 shows a zoom on this region. Here we can clearly see

a convergence pattern when the flow is still deterministic. The simulation seems pretty

well converged at a resolution of Dp/h = 38.4, though the resolutions Dp/h = 25.6 and

Dp/h = 19.2 have reasonable errors, 7.5% and 19%, repectively (see Figure 5.3). In

order to obtain a quantitative measure, we can compare the convergence to the highest

resolution result (N = 512). We thus define the error in qp as

eqp =

√√√√
∫ Tf

0
(qp − qp,N=512)2 dt
∫ Tf

0
(qp,N=512)2 dt

, (5.6)

where the final time Tf/tref = 1.26 for the particle fluxes in Figure 5.2. The resulting

errors using this value for Tf are shown in Figure 5.3.

The error in the flow rate appears to follow a trend that is third-order accurate. This

result is a bit unexpected, since the methods we employ are generally second-order in

space. We could look at some other metrics for the error, such as the error in the average
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streamwise fluid velocity

eu =

√√√√√√

∫ Ly

0

(
〈u〉 − 〈u〉N=512

)2

dy

∫ Ly

0

(
〈u〉N=512

)2

dy
, (5.7)

where 〈u〉 is the x-component of the fluid velocity outside the particles averaged in the

streamwise and spanwise directions and time:

〈u〉 =
1

Tf

∫ Tf

0

(∫ Lz

0

∫ Lx

0
(1− φ)ux dxdz

∫ Lz

0

∫ Lx

0
(1− φ) dxdz

)
dt, (5.8)

where Tf/tref = 1.26 is the same averaging time as the one used for calculating eqp . We

can also look at the error in the volume fraction

eφ =

√√√√√√

∫ Ly

0

(
〈φ〉 − 〈φ〉N=512

)2

dy

∫ Ly

0

(
〈φ〉N=512

)2

dy
, (5.9)
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Figure 5.4: Fluid velocity profiles averaged in spanwise and streamwise directions and
time for different grid resolutions. Shown are a) the full velocity profile and b) a zoom
on the mobile bed layer. The reference velocity, uref is given by (5.2).

where 〈φ〉 is the solid volume fraction averaged in the streamwise and spanwise directions

and time:

〈φ〉 =
1

TfLxLz

∫ Tf

0

∫ Lz

0

∫ Lx

0

φ dxdzdt. (5.10)

Figure 5.3 likewise shows third-order convergence in the velocity and volume fraction

errors.

One possible explanation for the higher-than-expected convergence is our use of dis-

abling Lagrangian markers. Part of our collision strategy, as discussed in Section 4.1.1, is

that we turn off Lagrangian markers for two particles when their interpolation/spreading

stencils overlap. We implement this strategy in order to prevent markers from competing

for enforcing their respecting boundary conditions, which seems to work well, especially

when considering the situation of a single particle colliding with a wall. Problems arise,

however, for situations involving many particles in close proximity to one another, such

as in a sediment bed. In this case, many markers might be turned off. In fact, at low grid

resolutions, most of the markers might be turned off. As the grid resolution increases,

however, the percentage of turned-off markers decreases.
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One effect of markers being turned off within the bed is that a flow is permitted to

develop through the particles as if they were porous. This effect can be seen in Figure 5.4,

which shows the streamwise fluid velocity at the different grid resolutions. At the lowest

resolutions, Dp/h = 9.6 and Dp/h = 12.8, a significant porous flow exists within the

sediment bed due to the fluid moving through the gaps opened up by the turned-off

Lagrangian markers. This flow is significantly reduced for Dp/h = 19.2 and is almost

negligible above resolutions of Dp/h = 25.6. Thus, having more markers acting along

the particle surface can significantly increase the accuracy of the simulations, potentially

resulting in an accuracy that is higher than second-order. For simulations involving a

sediment bed, we will use grid resolutions of Dp/h = 20 to Dp/h = 25.

5.3 Validation with experiments

5.3.1 Physical setup

We presented a detailed validation of binary particle-wall collisions in Sections 4.3

and 4.4. To address the bulk behavior of a dense granular bed sheared by a laminar

Poiseuille flow, we carried out numerical simulations to reproduce the experimental results

of Aussillous et al. [19], who studied pressure-driven flows over glass spheres with a mean

diameter Dp = 1.1mm and a standard deviation of σ(Dp) = 0.1mm as sediment material.

This experimental work provides investigations over a range of submergences hf/Dp and

Reynolds numbers in the laminar regime, where hf is the height of the clear-water layer

above the sediment bed illustrated in Figure 5.5. We define hf to be the height above

which the average particle volume fraction φ < 0.05, which is the threshold for negligible

impact of particle-particle interaction on the flow [98]. We define the mobile bed height

hm to be the portion of the particle bed above which the mean particle velocity is higher
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Figure 5.5: Left plot: Instantaneous snapshot of a slice through the xy-plane for
case A10M. Contours show the streamwise component of the fluid velocity. Particles
are colored grayscale according to their velocity: black fast, white slow. Right plot:
Streamwise and spanwise averages of fluid and particle velocities. Arrows correspond
to the length scales for the clear fluid, hf , the particle bed, hp, the mobile bed layer,
hm, and the motionless bed layer, hc.
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Ga 0.397
Rp (m) 0.0444
ρp/ρf 2.1
νf (m2/s) 0.219
g (m/s2) 9.81
edry 0.97
ζn,min/Rp 3.0× 10−3

µk 0.15
µs 0.8
Domain size (m) (Lx × Ly × Lz) 1.0× 2.0× 1.0
Domain boundary conditions p× ns× p
Grid cells in x-direction 256
Dp/h 22.7
Volume fraction in center of bed 0.609
Timestep CFL = 0.1

Table 5.3: Simulation parameters to match the experiments of Aussillous et al. [19].
Boundary conditions are periodic (p) and no-slip (ns). The Galileo number Ga is
defined in (5.5).

than 1% of the value at the fluid/particle interface.

In their experiments, Aussillous et al. [19] filled a long chamber with particles and

then applied a constant pressure gradient, which eroded the particles from the chamber.

Initially, the fluid height hf was small and the pressure gradient drove a large number of

particles so that the height of the mobile bed layer, hm in Figure 5.5, was large. Since no

new particles were added to the chamber, hf increased as the particles eroded away until,

at long periods of time, the experiment reached a steady-state configuration where the

influx of particles into the observation window remained in equilibrium with the outflux.

Due to our use of periodic boundary conditions, we will only try to replicate the long-

term steady-state flow conditions, of which there are only a few data from Aussillous et

al. [19]

We executed several simulations in an attempt to match four of the experiments of

Aussillous et al. [19] at different flow rates and fluid heights. The physical and numerical
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Case A1 A2 A9 A10 A10M
Reb 0.301 0.402 1.01 1.15 1.15
hf/Dp (Exp.) 7.05± 0.5 8.15± 0.5 10.29± 0.5 11.27± 0.5 11.27± 0.5
hf/Dp (Sim.) 7.15 8.31 10.33 11.29 11.05
Sh (Exp.) 0.24± 0.03 0.24± 0.03 0.37± 0.04 0.35± 0.03 0.35± 0.03
Sh (Sim.) 0.224 0.222 0.358 0.343 0.357
qf (m2/s) 0.0659 0.0880 0.220 0.251 0.251
Np,m 2031 1870 1559 1419 1407∗

Np,f 132 132 132 132 132
Tavg (s) 139.5 137.9 126.2 127.3 111.0

Table 5.4: Parameters that vary between the different cases. The bulk Reynolds num-
ber Reb is defined in (5.11) and the Shields number Sh is defined in (5.12). The fluid
height hf (and hence Shields number) do not exactly match between the experiments
(Exp.) and simulations (Sim.). ∗Polydisperse particle diameters follow a Gaussian
distribution with a standard deviation of σ(Dp) = 0.1Dp.

parameters associated with these simulations are listed in Table 5.3, and the differences

between the four cases are listed in Table 5.4. These experiments can be characterized

by the Galileo number (5.5) and the bulk Reynolds number

Reb =
qf
νf
, (5.11)

where qf is the fluid flow rate, and the Shields number

Sh =
6Reb

Ga2

(
Dp

hf

)2

, (5.12)

which represents the ratio of the shear stress acting on the particle bed to the buoyant

weight of a particle. Aussillous et al. [19] reported an uncertainty for the determination

of the bed height as hf ± Rp, which we have included in Table 5.4 as the deviations in

hf and Sh, which depends on hf .

We required a low CFL = 0.1 in order to maintain the stability of the fluid-particle

coupling. This restricted CFL value was necessary to avoid numerical instabilities arising
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from the simultaneous particle-particle interactions of a multitude of particles within the

thick sediment bed. We also used a grid resolution of Dp/h = 22.7 to resolve the inter-

stitial flow, though we did not see any appreciable difference in the bulk flow properties

for a coarser discretization of Dp/h = 17.0.

We generated the initial sediment bed using a precursor simulation, in which we

randomly distributed Np,m particles in a computational domain with periodic x- and z-

boundaries above a layer of Np,f fixed particles, which we arranged in a hexagonal packing

with random heights varying from 0 < y0 < Dp. These fixed particles were used to avoid

over-idealized smooth conditions at the lower wall. We subsequently allowed the non-

fixed particles to settle under “dry” conditions, i.e. without considering hydrodynamic

forces. We then applied a large pressure gradient to produce a fluid flow rate 8 times that

of the final desired flow rate, mobilizing the entire bed. This mobilization also caused the

bed to dilate, or have the average local volume fraction decrease, which in turn decreased

hf . Once hf dropped to about 0.15Dp below the desired value, we immediately decreased

the flow rate to the final flow rate reported in Table 5.4, which is defined as

qf =
1

LxLz

∫ Lz

0

∫ Ly

0

∫ Lx

0

(1− φ)u dx dy dz, (5.13)

where φ is the particle volume fraction. We adopted this procedure because we noticed

a hysteresis in the particle flux between an increased flow rate and a decreased flow rate,

which has also been observed by Clark et al. [99]. Note that this procedure more closely

resembles the experiments, where the particle bed is largely mobilized and then settles

into a lower particle flux.

However, one problem with this procedure is that we cannot determine the final bed

height a priori. The dilation and contraction accompanying the two flow rates is difficult

to predict without executing an iterative procedure of running simulations with varying
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Figure 5.6: Wall-normal profiles of average fluid and particle velocities near the parti-
cle/fluid interface compared to the wall-normal particle velocity profile from Aussillous
et al. [19]. a) Case A1, b) Case A2 c) Case A9 d) Case A10.

numbers of particles. Due to the computational costs of the simulations, we did not

iterate on this method, but instead accepted the values we obtained for hf , which, with

the exception of case A10M, are larger than those in the experiments, as seen in Table 5.4.

5.3.2 Comparison of wall-normal profiles

In Figure 5.6 we compare the particle velocity profiles of the simulation to the exper-

imental results of Aussillous et al. [19]. We calculated the particle velocity profile 〈up〉

from our simulations by averaging the velocities of all the particles in the streamwise and
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spanwise directions whose center fell within a given range of heights. We used bins of

width Rp arranged such that the topmost bin extended from y = hp − Rp to y = hp.

We evaluated the fluid velocity profile by averaging the u-velocity field in the streamwise

and spanwise directions for each grid cell of the y-coordinate. For this calculation, we

used the particle cell volume fractions φ to exclude fluid velocities existing within the

particles:

〈u〉 =

∫ Lz

0

∫ Lx

0
(1− φ)u dx dz

∫ Lz

0

∫ Lx

0
(1− φ) dx dz

(5.14)

The fluid velocity profiles exhibit a parabolic shape in the clear fluid above the bed, as

shown in Figure 5.5. At the interface between the clear fluid and particle bed, we observe

some slip between the fluid and the particles, but within the bed the two velocity profiles

are very similar, with only a slight difference due to flow between the particles. The

particle velocity profiles from the simulations compare very well with the experiments

for cases A9 and A10, and reasonably well for cases A1 and A2.

Part of the discrepancy between our experiments and the simulations is due to the

differences in bed heights and Shields numbers as seen in Table 5.4. In this table, we

can see that cases A1 and A2 exhibit the largest differences in the fluid height between

the simulations and experiments, which may have resulted in the larger deviations in the

velocity profiles seen in Figure 5.6. Likewise, for these two cases we can also see larger

differences in the Shields number, which can be sensitive to the fluid height hf .

5.3.3 Comparison of bulk quantities

We ran the simulation until it reached a constant particle velocity flux qv, defined as

qv =

∫ Ly

0

〈up〉 dy, (5.15)
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Case Experimental value Simulation value
qv
−/qf qv/qf qv

+/qf qv/qf
A1 5.e-3 1.2e-2 1.9e-2 6.71e-3
A2 5.e-3 1.1e-2 1.6e-2 5.17e-3
A9 4.87e-3 8.20e-3 1.15e-2 7.61e-3
A10 5.17e-3 7.04e-3 8.91e-3 5.84e-3

A10M 5.17e-3 7.04e-3 8.91e-3 7.56e-3

Table 5.5: Comparison of the velocity flux qv between our simulations and the exper-
iments of Aussillous et al. [19]. qv

+/qf and qv
−/qf represent the mean qv/qf plus and

minus the standard deviation over the averaging time, respectively.

where 〈up〉 is the binned particle velocity profile as defined in the previous section. Unlike

qf , which had no variability in time, qv did vary as particles occasionally locked in place

or rolled over one another. We therefore evaluated a time-averaged value of the particle

velocity flux

qv =
1

Tavg

∫ tf

ts

qv dt, (5.16)

where tf is the time at the end of the simulation, ts is the time at which the particle

flux reached steady-state, and Tavg = tf − ts is the time interval over which the data was

averaged. The values of Tavg are given in Table 5.4.

In Table 5.5, we can see a good agreement between our numerical results and the

experimental values of the velocity flux qv. Because these quantities are derived from the

particle velocity profiles, we expect to see the similar trends, namely that we underesti-

mate the mean values from the experiments and obtain better matches for cases A9 and

A10. However, our results still fall within the margin of error of the experiments.

5.3.4 Polydisperse flow

Furthermore, we conducted another simulation to show the effect of polydispersity.

In experiments, it is impossible to have a perfectly monodisperse set of particles. In their

article, Aussillous et al. [19] reported having a set of spheres with diameters following
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Figure 5.7: Wall-normal profiles of average particle volume fractions.
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Figure 5.8: Wall-normal profiles of average fluid and particle velocities for the simu-
lation with polydisperse particles (case A10M).

a Gaussian distribution of mean Dp = 1.1mm and standard deviation σ(Dp) = 0.1mm,

which is almost 10% of the mean. We created a simulation containing this distribution of

particle diameters and a similar submergence depth to that of case A10. The parameters

used are listed under case A10M in Table 5.4.

In Figure 5.7, we do not see any appreciable changes in the particle bed volume

fractions between cases A10 and A10M. The average volume fraction within the bed is

φ = 0.609, which is consistent with a random sphere packing fraction. On the other
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hand, in Figure 5.8, we see a slightly increased velocity profile compared to that of case

A10 (Figure 5.6d). This is likely due to the decreased value of hf compared to that of

A10, which results in a higher Shields number, as shown in Table 5.4. Therefore, we

also obtain a velocity flux that overpredicts the mean experimental value, as shown in

Table 5.5. However, the particle velocity profile and velocity flux still agree very well

with the experimental results, and the results suggest that using monodisperse spheres

is a valid approximation to polydisperse spheres for this experimental setup.

5.4 Conclusions

We performed a convergence study on the pressure-driven flow over an erodible sed-

iment bed. We only analyzed the beginning of the flow because the system quickly

turned chaotic and would require a large amount of computational resources to reach a

statistically-converged state. In this startup region, the results converge at higher grid

resolutions. Using the highest resolution as a reference solution, we found that the simu-

lations exhibit third-order accuracy, which is not fully understood, but could result from

our disabling Lagrangian markers for nearby particles. We also observed that strong

unphysical porous flows can develop within the sediment bed at lower grid resolutions.

In order to avoid these porous flows and have minimal errors in the sediment flux, a grid

resolution of at least Dp/h = 20 is recommended, though Dp/h = 25 would be better.

We also validated the ability for PARTIES to accurately handle simulations involv-

ing many particles using the experiments of Aussillous et al. [19]. Indeed, as designed,

the strategies taken with the collision modeling in the previous chapter resulted in a

numerically-stable particle bed that could be eroded by a fluid flow while particles re-

mained in sustained contact. Furthermore, we obtained good quantitative agreement

with Aussillous et al. for the particle bed velocities under different flow conditions. In
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addition, we presented a first test case involving polydisperse sediment. The high degree

of accuracy achieved will now enable us to analyze phase-resolved numerical simulation

data in great detail.
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Chapter 6

Coarse-graining

6.1 Introduction

In order to develop or use a continuum model for a fluid/particle mixture, such as that

of Ouriemi et al.[16], we need to be able to describe the particle phase in a continuum

sense. One method is binning, or averaging these values within control volumes based

on the location of the particle center, which we used in Section 5.3. While simple to

implement, it requires a large sample size of particles, either using large bins, which

reduces the spatial resolution, or large time averages, which only works well for steady-

state configurations and can be computationally-expensive to obtain. It can also be

especially sensitive when particles are sparse, such as near the top of a particle bed.

Zhu and Yu [100] developed an alternative coarse-graining method for granular flows,

which transforms a discrete microscopic field (a set of particles) into a macroscopic con-

tinuum field (a particle continuum). This transformation is carried out in such a way as to

satisfy a set of equations of motion (mass and momentum) for the continuum field. While

Zhu and Yu envisioned coarse-graining over a large number of particles, Goldhirsch [101]

developed a similar methodology to represent the particles in a continuum sense that
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could even be on the scale of the particle size. Weinhart et al. [102] implemented Gold-

hirsch’s approach and extended it to include the effects of walls. They demonstrated

how the particle continuum field can be represented by a numerical mesh with a resolu-

tion finer than the particle size (10 grid cells per particle diameter or more) to show the

spatially-smooth variations in e.g. linear momentum. Weinhart et al. [103] later showed

how, for 3-D granular flows, this coarse-graining method can produce a complete stress

tensor for the particle phase. They also investigated the effect of different averaging vol-

umes, ranging from several particle diameters to a fraction of a particle diameter. Nott et

al. [104] developed a continuum framework for the particle phase that could incorporate

a coarse-graining function, but they did not implement it for any particular systems.

In this chapter, we discuss our implementation of the coarse-graining method, which

is based largely on the work of Weinhart et al. [102]. The novelty in our work is the

application of the method to particle-laden flows, whereas previous applications have

been for granular flows in which no fluid is present [102, 103, 105]. We also use a

different coarse-graining function, which will be described below, but this fact does not

change the underlying mechanics of the method. After describing our implementation

of the coarse-graining method, we will briefly show some results from an erodible bed

simulation to illustrate its capability. This method will then provide a useful tool for our

analysis in subsequent chapters.

6.2 Coarse-graining method

Goldhirsch [101] and Weinhart et al. [102] developed their coarse-graining methods

to exactly satisfy the equations of motion for the particle phase, including continuity and

momentum. However, it is not straightforward to extend these continuum equations of

motion to include the effects of hydrodynamic forces acting on the particle centers, which
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is information we would ideally like to use due to its low storage cost in simulations.

Instead, we use their ideas to obtain continuum fields for particular quantities. For

instance, we can obtain the particle volume fraction by

φcg(x, t) =

Np∑

p=1

VpW(x− xp(t)), (6.1)

where Np is the number of particles, Vp and xp(t) are the volume and position of the

center of particle p, andW is the conservative coarse-graining function, described further

in Section 6.2.1. We can similarly obtain a coarse-grained particle velocity field,

ucg(x, t) =
1

φcg(x, t)

Np∑

p=1

Vpup(t)W(x− xp(t)), (6.2)

where up(t) is the velocity of particle p.

For other quantities acting at the particle center, such as forces, we define the coarse-

grained quantity to be

Fcg(x, t) =

Np∑

p=1

Fp(t)W(x− xp(t)). (6.3)

For our analysis in later chapters, we will coarse-grain the forces acting on the particle

centers. We could alternatively coarse-grain the collision forces in a manner similar to

that of Weinhart et al. [102], which would give us the collision stress tensor

σcgij (x, t) =

Np∑

p=1

Np∑

q=p+1

Fc,pq,i(t) rpq,j(t)

∫ 1

0

W(x− xp(t) + srpq(t)) ds, (6.4)

where Fc,pq is the collision force acting on particle p from particle q, and rpq = xp − xq

points from the center of particle q to the center of particle p. The integral effectively
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spreads the contact force along the line connecting xp to xq. However, we can only use

hydrodynamic forces acting at the particle center of mass because, for computational

efficiency, PARTIES does not store information across the particle surface. Hence, for

consistency we will later limit our analysis to all quantities acting at the particle centers.

6.2.1 Coarse-graining function

The coarse graining functionW plays a very similar role to that of the delta functions

used in the IBM: smoothly spreading a quantity from one mesh to another. The main

properties identified by Weinhart et al. [103] are that
∫
R3W(r) dr = 1, which conserves

the spread quantity, and that W(r) has two continuous derivatives, which allows one

to evaluate gradients of the resulting coarse-grained fields analytically. While Weinhart

et al. [102] used a Gaussian coarse-graining function and Weinhart et al. [103] used

a polynomial coarse-graining function, we instead implement one based on the delta

function of Roma et al. [57]:

W(r) =
1

w3
δ(rx/w) δ(ry/w) δ(rz/w), (6.5)

where w sets the coarse-graining width and

δ(r) =





1
3

(
1 +
√
−3r2 + 1

)
|r| ≤ 0.5

1
6

[
5− 3|r| −

√
−3(1− |r|)2 + 1

]
0.5 < |r| ≤ 1.5

0 |r| > 1.5.

(6.6)

Thus, W(r) has a radius of influence of 1.5w and one continuous derivative. We chose

this function because it exhibits good conservation properties and because we do not

evaluate the coarse-graining expressions analytically and hence do not need multiple
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continuous derivatives. In order to implement the coarse-graining method, we must create

an Eulerian mesh on which to spread the Lagrangian (particle-centered) quantities. We

could set the coarse-grained mesh width, hcg, to match that of the fluid grid, i.e. hcg = h,

or we could set it to a coarser value, i.e. hcg > h, to reduce the computational cost of

the coarse-graining evaluation. The function we selected allows us to perfectly conserve

quantities when using coarser values of hcg. More precisely, this coarse-graining function

conserves quantities as long as w is an integer multiple of the coarse-graining mesh size,

hcg, i.e. w = nhcg for n ∈ Z. We have used w = hcg to w = 3hcg in our analysis, whereas

the Gaussian or polynomial functions, on the other hand, would require smaller values

for hcg, such as w = 10hcg, in order to get closer to conserving the spread quantities.

The coarse-graining width, w, determines the distance over which the particle-centered

quantities are spread. Weinhart et al. [103] studied the sensitivity of results to w, find-

ing that they did not change appreciably under two regimes: the sub-particle scale

w ≈ 0.05Dp and the particle scale w ≈ Dp. We will discuss our own findings regarding

the width further below.

6.2.2 Handling boundaries

When particles approach boundaries, some of their coarse-grained data can be lost

due to the coarse graining function (6.5) spreading information beyond the wall. For

example, consider the coarse-grained representation of the volume fraction for particle

p, which is sitting on the wall and has a coarse-grained width 1.5w > Rp, as shown in

Figure 6.1. The red dashed line shows the area over which the mass, and hence volume

fraction, will be spread. Because a portion of the mass is spread below the wall, it will not

be accounted for when taking spatial averages within the domain, and the overall volume

fraction will be underrepresented near the wall. We can account for this lost mass using
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a) b)

Figure 6.1: Reflection of coarse-grained quantities near a wall, whose radii of influence
are represented by dashed lines. Shown are (a) particle-based quantities, such as
volume fraction and velocity, and (b) collision-based quantities, which are spread
along lines of contact between particle centers.

the method of Zhu and Yu [100] and Sun and Xiao [106], who extended it to consider

corners of boundaries, by reflecting this particle across the wall (represented by the gray

particle) and including the coarse-grained values from this reflected particle (represented

by the blue dashed circle). We employ this method at the particle/fluid interface as well,

creating an artificial wall at y = yp, where yp is the height of the particle bed, only when

calculating the coarse-grained particle velocity field ucg .

6.3 Coarse-grained particle bed

6.3.1 Simulation setup

We will now explore how to choose a suitable coarse-graining width, w. Consider a

pressure-driven flow over an erodible particle bed similar to the one in Section 5.3. The

exact simulation setup is described by run Re8 in Section 7.2.2, but we briefly describe
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Ga 0.850
Reref 8.33
ρp/ρf 2.1
Timestep CFL = 0.5
Domain size (Lx/Dp × Ly/Dp × Lz/Dp) 20× 30× 10
Domain grid size (Lx/h× Ly/h× Lz/h) 512× 768× 256
Domain boundary conditions p × ns × p
Initial hf/Dp 10.0
Particle resolution, Dp/h 25.6

Table 6.1: Simulation parameters for the pressure-driven flow over a bed of particles.

Resolution w/Dp w/h hcg/h
Coarse 0.94 24 8
Medium 0.31 8 4
Fine 0.04 1 1

Table 6.2: Values of the coarse-graining width, w and the coarse-graining grid size,
hcg, used to generate a coarse resolution, in which the width is similar to the particle
diameter, a medium resolution, in which the width is similar to the particle radius,
and a fine resolution, in which the width is much smaller than the particles.

it here. The simulation domain has dimensions Lx = 20Dp × Ly = 30Dp × Lz = 10Dp

discretized with Dp/h = 25.6. The bed was generated similar to before by allowing 4339

particles to settle under gravity, without the influence of the fluid, onto a bed of 200 fixed

particles. The resulting bed fills the domain to a height of hp ≈ 20Dp so that a reference

length yref = 10Dp approximates hf , the clear fluid height above the particle bed. Other

parameters are given in Table 6.1.

To obtain a steady-state flow, we mobilized the bed with a large pressure gradient

and then decreased the pressure gradient. To nondimensionalize the simulation, we use

a reference Poiseuille flow based on the height yref, which would approximate the flow if

the initial bed were to remain motionless. The reference velocity is based on the average

fluid velocity of the reference flow, uref = −y2
reffb,x/(12µf ), where fb,x is the pressure

gradient of the final flow. From this reference velocity, we define the Reynolds number
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to be Reref = ρfurefyref/µf . We also define a reference stress, σref = −yreffb,x/2, to be the

wall stress from the reference case.

We will apply the coarse-graining method at an instantaneous point in time for the

simulation, demonstrating its ability to smooth data without averaging in time. We will

also study the effect of the coarse-graining width, w, using three different resolutions,

which vary from w = 0.94Dp to w = 0.04Dp and are given in Table 6.2.

6.3.2 Particle volume fraction

For this instantaneous flow field, Figure 6.2 shows the coarse-grained particle volume

fraction

〈φcg〉 =

∫ Lz

0

∫ Lx

0

φcg dxdz, (6.7)

which is averaged in the streamwise and spanwise directions, for different coarse-graining

widths w. Figure 6.2a shows a coarse-graining width that is close to the particle diameter,

which means that the radius of influence of the coarse-graining function is actually 1.5Dp.

In this case, the coarse-grained volume fraction is much smoother than the grid-resolved

volume fraction, which was obtained by directly calculating the particle volume fraction

on the fluid mesh. Oscillations in the grid-resolved volume fraction arise from the par-

ticles forming an ordered layering. With perfectly-random packing and a large enough

averaging volume, the grid-resolved volume fraction should become smooth. However,

this coarse-graining width can provide us with a smooth volume fraction field when the

grid-resolved volume fraction cannot. One downside, though, is that this width smears

the volume fraction at the interface between the particle bed and the clear fluid above.

Figure 6.2b shows a coarse-graining width similar to that of the particle radius. In

this case, the coarse-grained volume fraction is very similar to the grid-resolved volume

fraction. This width therefore does an excellent job capturing the fluid/bed interface,
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Figure 6.2: Coarse-grained particle volume fraction for (a) w = 0.94Dp, (b)
w = 0.31Dp, and (c) w = 0.04Dp compared with the volume fraction resolved us-
ing the fluid grid Dp/h = 25.6.
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a) b)

Figure 6.3: Coarse-grained particle collision stresses according to (6.4) for w = 0.94Dp.
(a) shows the shear stress σcg12/σref while (b) shows the wall-normal stress σcg22/σref.

but it is less useful if we desire a smooth coarse-grained field.

Figure 6.2c shows the results using a coarse-graining width much smaller than the

particle diameter. This coarse-grained volume fraction exhibits enormous oscillations,

rendering it useless for most applications. Although this width, in addition to the coarsest

width, was recommended by Weinhart et al. [103], it does not appear to be very useful

for this situation without significant time-averaging.

6.3.3 Collision stress

An important feature of the coarse-graining method, especially compared to binning,

is its 3-D spatial resolution. The coarse-grained volume fraction, for instance, does not

need to be averaged in the streamwise and spanwise directions, but could be averaged in

just the spanwise direction, or taken as a 3-D field. In Figures 6.3–6.5, we present 2-D

coarse-grained stress fields, obtained by averaging (6.4) in the spanwise direction alone.
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a) b)

Figure 6.4: Coarse-grained particle collision stresses according to (6.4) for w = 0.31Dp.
(a) shows the shear stress σcg12/σref while (b) shows the wall-normal stress σcg22/σref.

a) b)

Figure 6.5: Coarse-grained particle collision stresses according to (6.4) for w = 0.04Dp.
(a) shows the shear stress σcg12/σref while (b) shows the wall-normal stress σcg22/σref.

93



Coarse-graining Chapter 6

Figure 6.3a shows the shear stresses at the coarse resolution. The stresses appear to

form diagonal lines, which is consistent with expectations for a sheared particle bed [107].

In contrast, the stress chains for the vertical stress, shown in Figure 6.3b, form more

vertical patterns. These stress chains become more apparent in Figure 6.4, which uses a

coarse-graining width close to the particle radius. There are also negative shear stresses

in this figure, resulting from tensional lubrication forces. These tensional stresses are not

apparent at the coarsest resolution due to the smoothing. Finally, at the finest resolution,

the force chains are even more resolved. Thus, very small coarse-graining widths can still

be useful when considering collisional stresses.

However, notice that the magnitude of the stresses depends strongly on the coarse-

graining width. The finer-resolution widths result in much larger stresses because they

concentrate the stress into smaller volumes; averaging the stresses over large volumes

at different resolutions will result in the same stresses. As an illustration, compare the

coarse volume fractions in Figure 6.2a to the fine volume fraction in Figure 6.2c. While

the fine resolution exhibits much larger and smaller volume fractions at a given height

compared to the coarse resolution, both resolutions would average out to similar values

over larger volumes.

6.4 Representing the volume fraction

There are two ways that we can obtain volume fraction data: resolve it directly, such

as on the fluid grid, or use the coarse-graining method, i.e. (6.1). Resolving the volume

fraction directly captures the sharp interface between the particle bed and clear fluid layer

above, but it can also contain oscillations within the particle bed due to organization of

the particle layers, as shown in Figure 6.6a. The coarse-graining method, on the other

hand, perfectly smooths out the volume fraction within the particle bed, but smears out

94



Coarse-graining Chapter 6

0.0 0.1 0.2 0.3 0.4 0.5 0.6

〈φ〉
0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/y

re
f

Resolved

Coarse-grained

0.0 0.1 0.2 0.3 0.4 0.5 0.6

〈φ〉
0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/y

re
f

a) b)

Figure 6.6: Volume fraction from case Re17 (a) measured directly using the
fluid grid and the coarse-graining method and (b) measured using the hybrid re-
solved/coarse-grained method. Dashed lines indicate the y-coordinates used to (a)
create the hybrid volume fraction and (b) filter data for the rheology plots.

the volume fraction data at the bed/fluid interface, as shown in the same figure. We

could, however, use a hybrid technique that uses the resolved volume fraction at the

interface and the coarse-grained data within the bed.

To find the location at which we separate the two methods, notice that the coarse-

grained volume fraction crosses over the resolved volume fraction about halfway through

the bed/fluid interface. We therefore determine the point at which the coarse-grained

volume fraction goes to zero, indicated by the top dashed line in Figure 6.6a, and the point

at which the two volume fractions cross at the interface, indicated by the middle dashed

line in the same figure. The bottom dashed line, indicating the separation between

the two methods, is then placed such that the middle dashed line is exactly halfway

between the top and bottom lines. For our simulation results, this method produces

pretty reasonable, smooth curves, as shown by the resulting hybrid line in Figure 6.6b.

A blending algorithm could be used to smooth the transition from one method to the

other, but without blending this method produces smooth enough results for visualizing

the dependence of the rheological measurements on the volume fraction in Section 8.3.
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Finally, for the purposes of analyzing the bed rheology in Chapter 8, we apply filtering

to exclude data from the extremes of the domain. At the bed/fluid interface, we exclude

data for volume fractions 〈φ〉 < 0.05 to avoid division by small numbers in evaluating

some of the rheological quantities. At the lower wall, we exclude data for y < 4Dp, which

we selected by visual inspection of the volume fraction data to avoid the effects of the

lower wall. Notice in Figure 6.6a how volume fraction decreases and the oscillations grow

near the lower wall. The two criteria used to filter the rheological data are illustrated by

the dashed lines in Figure 6.6b.

6.5 Conclusions

We presented our implementation of the coarse-graining method, which allows us to

represent particle quantities in an instantaneous 3-D continuum field. We found that us-

ing a coarse-graining width, w, comparable to the particle diameter results in a smoothed

continuum field that also conserves quantities of interest. Thus, while the binning method

might be sensitive to particles jumping from one bin to the next, there is no such sensi-

tivity in the coarse-graining framework. In fact, this method can represent smooth fields

even for instantaneous data. The coarse-graining method can also provide a stress tensor

for collision stresses capable of visualizing force chains. However, other methods may be

more computationally efficient and quantitatively informative for analyzing force chains.

We have also decided to avoid the tensorial description of collision stresses for later analy-

sis, using instead forces acting at particle centers. While the coarse-graining method may

smear information at the fluid/particle interface, it will be useful for measuring forces,

velocities, and volume fractions of the particle phase.
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Momentum balance

7.1 Introduction

To test, validate, and enhance constitutive models for sediment transport, highly

resolved data is needed with a degree of detail that can hardly be achieved by experiments.

A starting point of a rigorous analysis should be the full description of the momentum

balance and the resulting stress budget of the fluid-particle mixture. This, however,

has proved to be challenging task due to the nontrivial coupling of the continuous fluid

phase, on the one hand, and the disperse particle-phase on the other [16]. Nevertheless,

this analysis will be crucial to measure the effective granular stress to characterize the

rheology of the sediment bed. Recently, various numerical studies of particle-resolving

Direct Numerical Simulations using the Immersed Boundary Method to couple the two

phases have been carried out to measure stresses within particle-laden flows in various

ways. Unfortunately, these studies were not specifically designed to decompose the stress

budget into its different components, nor have they been used to form or compare against

constitutive models. For example, Kidanemariam et al. [76] included a stress balance

for turbulent particle-resolved flows to justify a statistical steady-state by evaluating
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the average velocity profiles. Picano et al. [69] included a momentum balance for the

shear stress for a turbulent flow laden with neutrally-buoyant particles. They used the

stress balance developed by Zhang and Prosperetti [108], which is based on averaging

volumes containing many particles. Due to the neutrally-buoyant particles, however, a

sediment layer did not form. Vowinckel et al. [109, 110] developed momentum balances for

double-averaged turbulent flows over granular beds, which also require averaging volumes

containing many particles. Unfortunately, these latter two studies did not analyze the

interfacial stresses coupling the fluid stress to the granular stress.

This chapter addresses this issue in detail. We develop a momentum balance for

laminar flows, whose terms can be computed in a straightforward manner. This should

be true for the most simple scenario, which is a single particle in a shear flow, and

the much more complex situation of a thick sediment bed constituted of thousands of

particles that is fully or partially in motion. The newly-developed framework will allow

us to look carefully at the components that contribute to the stress balance of the fluid

and the particle. We apply our analysis to the data generated by grain-resolving DNS

using the IBM. After validating the concept for the simple single-grain case, we compute

the stress budget for a computational scenario that is very similar to the experimental

setup of Aussillous et al. [19] and the simulations performed in Chapter 5.

The chapter is structured as follows. First, we describe the computational setups in

Section 7.2. Subsequently, we present the derivation of the stress budgets for the fluid

and the particle phase in Section 7.3. Finally, results are presented for the single-particle

case as well as for the sediment bed with complex rheology in Section 7.4.
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a) b)

Figure 7.1: Fluid flow field along the particle center line (z/Lz = 0.5) at (a) t/tref = 0
and (b) t/tref = 4 for the simulation of a single rolling particle. Pseudocolor indicates
fluid velocity in the x-direction.

7.2 Simulation setup

We will apply our stress balance framework to two different configurations. The first

will involve the flow around a single sphere, where we can obtain a true steady-state flow.

This simple case will thus test the framework under ideal conditions and illustrate its

ability to resolve stresses on the particle scale. The second will be a more realistic case

involving a flow over a bed of thousands of particles. This complex case will illustrate

the type of information this framework can provide for general particle-laden flows and

how it can be useful for future studies.

7.2.1 Single rolling particle

One key feature of our analysis technique is that it should work just as well for

a single particle as for a large number of particles. As a simple case, we consider a

single sphere rolling along the bottom of a channel with a pressure-driven flow. In the

absence of the particle, there would be a laminar flow with a bulk (average) velocity of
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Ga 8.29
Reref 10
ρp/ρf 2.1
Timestep CFL = 0.5
Domain size (Lx/Dp × Ly/Dp × Lz/Dp) 2.0× 2.0× 2.0
Domain grid size (Lx/h× Ly/h× Lz/h) 48× 48× 48
Domain boundary conditions p × ns × p
Particle resolution, Dp/h 24.0
Coarse-graining grid size, hcg/h 1
Coarse-graining width, w/h 16

Table 7.1: Simulation parameters for a single rolling particle. Boundary conditions are
periodic (p) and no-slip (ns). Coarse-graining parameters are defined in Section 6.2.

uref = −L2
y/(12µf )fb,x and a Reynolds number of Reref = ρfurefLy/µf = 10, where Ly

is the channel height. The presence of the particle, however, changes the bulk velocity

and Reynolds number. The domain size is two particle diameters in each of the x-,

y-, and z-directions, discretized with 24 grid cells per particle diameter, so that the

particle has a significant influence on the flow field. We provide the other parameters

associated with this simulation in Table 7.1, where we define the Galileo number to be

Ga = ρf
√

(ρp/ρf − 1)gD3
p/µf . Parameters not listed in Table 7.1 are the same as those

in Chapter 4.

We initialized the flow velocity with the reference Poiseuille parabolic profile, shown

in Figure 7.1a. The particle started with a translational and rotational velocity obtained

from averaging the initial flow field within its volume. At this low Reynolds number,

the flow remains laminar, but takes time to develop because the presence of the particle

constricts and slows the flow. We ran the simulation until time t = 4tref, where tref =

Ly/uref, at which point the particle, rolling along the lower wall, had slowed to a constant

velocity in the streamwise direction, shown in Figure 7.1b. We therefore consider the flow

to be in a steady state from the reference frame of the particle.
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a) b)

Figure 7.2: Bed configuration at (a) t/tbase = 0 and (b) t/tbase = 10 for simulation
Re67 listed in Table 7.3. Lines indicate the average streamwise (x-direction) fluid
velocity (red) and particle velocity (yellow).

7.2.2 Sheared bed of particles

We are ultimately interested in understanding flows involving many (thousands or

more) particles. We therefore consider a setup very similar to the one in Section 5.3,

which involves a pressure-driven flow over a bed of particles. The domain has dimensions

20Dp × 30Dp × 10Dp and is discretized with 25.6 grid cells per particle diameter. We

formed the bed by allowing 4339 particles to settle under gravity, without the influence of

the surrounding fluid, onto a layer of 200 fixed particles whose centers randomly vary in

height above the bottom wall by Dp, providing an irregular roughness [27]. The resulting

bed fills the domain to about a height of hp ≈ 20Dp from the bottom wall, where hp is

the particle bed height, leaving a gap of about 10Dp between the top wall and the top
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Ga 0.850
ρp/ρf 2.1
Timestep CFL = 0.5
Domain size (Lx/Dp × Ly/Dp × Lz/Dp) 20× 30× 10
Domain grid size (Lx/h× Ly/h× Lz/h) 512× 768× 256
Domain boundary conditions p × ns × p
Initial hf/Dp 10.0
Particle resolution, Dp/h 25.6
Coarse-graining grid size, hcg/h 8
Coarse-graining width, w/h 24

Table 7.2: Simulation parameters for the pressure-driven flow over a bed of particles.

Simulation run Reref tsim/tbase tavg/tbase

Re67 66.7 [0, 10.0] −
Re17 16.7 [10.0, 47.2] [16.0, 47.2]
Re33 33.3 [10.0, 58.8] [44.0, 52.15]
Re8 8.33 [47.2, 92.05] [77.0, 92.05]

Table 7.3: Simulation parameters for different runs of the pressure-driven flow
over a bed of particles. The Reynolds number is based on the reference case,
Reref = ρfurefyref/µf . The simulation was run for the duration tsim. The momen-
tum balance was conducted using time-averaged data over the range tavg .
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of the particle bed, as shown in Figure 7.2a.

We will again use a predefined Poiseuille flow as a reference case for the simulation.

We define the reference length, yref = 10Dp = Ly/3, to be one-third of the domain height,

or the intended clear-fluid height above the particle bed. That is, if the particle bed were

to remain motionless, the reference case would represent the fluid flow fairly accurately.

The reference velocity, uref = −y2
reffb,x/(12µf ), represents the average fluid velocity of the

reference case. Finally, we define the reference stress, σref = −yreffb,x/2, to be the wall

stress for the reference case.

We are interested in studying the bed at different states, from those in which only a

few particle layers are moving to those where the entire bed is mobilized. We therefore

ran this simulation using different flow rates controlled by the volume force fb. However,

it can take a long time for these flows to reach steady-state when initialized from a

stationary bed. Therefore, we implemented the following procedure, which is similar to

the one used in Section 5.3. To initialize the flow, we applied a large pressure gradient

that mobilized the entire bed, as described by run Re67 in Table 7.3. By the end of this

simulation run, the bed dilated to a height of hp/yref ≈ 2.3, and the particles just above

the fixed layer at the bottom of the domain were moving, as shown in Figure 7.2b. After

this initialization phase, the pressure gradient was reduced to produce the simulation

runs Re17 and Re33. We carried out run Re8 by continuing Re17 with a lower pressure

gradient. As described in more detail in Section 7.4.2, this procedure allowed us to

quickly reach steady-state for runs Re8 and Re17, but not for run Re33.

In contrast to the single rolling sphere case, the steady-state configuration for the

moving bed is steady only in a time-averaged sense because particle collisions and posi-

tions continuously fluctuate. We therefore define the time average of a quantity θ to be
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θ =
1

tavg,2 − tavg,1

∫ tavg,2

tavg,1

θ dt, (7.1)

where we present the values for tavg,1 and tavg,2 in Table 7.3. These time-averaging win-

dows were chosen to capture the steady-state results when possible. For the unsteady

simulations, the windows were chosen to capture as large a time span as possible for as

similar a particle flux as possible. In order to compare the temporal evolution of the

simulations directly to each other in Section 7.4.2, we use a set of variables to nondi-

mensionalize the velocity, ubase = uref(Re67), and stress, σbase = σref(Re67), which are

based on the reference variables corresponding to run Re67. From these variables, we also

define a base time, tbase = yref/(1.5ubase), which does not vary between the simulations.

7.3 Theoretical stress balance

7.3.1 Fluid phase balance

In conducting a momentum balance of the fluid/particle system, we will look sepa-

rately at the fluid and particle phases. Later, we will try to combine these two methods

to obtain a momentum balance for the fluid/particle mixture, which implicitly accounts

for the interactions of the particles on the fluid and the fluid on the particles. We first

investigate the fluid phase alone, excluding the volume occupied by the particles and

the inter-particle forces. We do account for the effect of the particles, however, through

the stress the particles impart on the fluid at their boundaries. We conduct our stress

analysis in an integral sense using a control volume Ω+
CV that extends from the top wall

to an arbitrary height y in the vertical dimension, encompasses the entire domain in the

streamwise (x) and spanwise (z) directions, and excludes the volume within particles.

Figure 7.3a illustrates the control volume for the case of a single particle, whereas Fig-
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ure 7.4 illustrates the control volume for the general case involving many particles. We

can write the integral form of (2.1) over this control volume as

∫

Ω+
CV

ρf
∂u

∂t
dV +

∫

Ω+
CV

ρf∇ · (uu) dV =

∫

Ω+
CV

∇ · τ dV +

∫

Ω+
CV

fb dV. (7.2)

We did not include the IBM force term from (2.1) because the fluid stress at the

fluid/particle interface accounts for the effects of the particles. We do, however, in-

clude the forcing term fb, which represents the background pressure gradient used to

drive the flow. Application of the divergence theorem then gives us

∫

Ω+
CV

ρf
∂u

∂t
dV +

∫

Γ+
CV

ρf (uu) · n+ dA =

∫

Γ+
CV

τ+ · n+ dA+

∫

Ω+
CV

fb dV, (7.3)

where n+ is the normal vector pointing outwards from Ω+
CV , and τ+ is the stress tensor

of the fluid outside the particle. These volumes should be thought of as time-dependent

ones, i.e. Ω+
CV = Ω+

CV (t) and Γ+
CV = Γ+

CV (t). We are thus observing the fluid volume in

a Lagrangian sense as it moves around the particle volumes. We can consider a steady-

state to be one in which the fluid does not accelerate relative to the particle surface

and in which the fluid stresses at the particle surface are constant. In such a case, the

time-dependent term evaluates to zero, allowing us to balance the stresses by looking at

the advective terms and stresses at the boundaries, which are composed of the surfaces

Γ+
CV = Γw ∪ Γs ∪ Γ+

y ∪ ΓpCV , as shown in Figure 7.3a. Note that surface Γs encompasses

the periodic boundaries in both the x- and z-directions For the situation involving many

particles in motion, the fluid volume will continue to evolve, never reaching a true in-

stantaneous steady-state. In this case, we apply double-averaging (in time and space;

[111]) to eliminate the time-dependent term. In either case, due to the periodic boundary
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a) b)

Figure 7.3: Shaded control volumes for fluid (a) surrounding the particle and (b)
within the particle.

conditions on the x- and z-boundaries, all the terms along Γs cancel out. Furthermore,

the upper wall and particle surface impose a no-flux condition, i.e. (uu) · n+ = 0 at Γw

and ΓpCV . Thus, we can simplify (7.3) to

∫

Γ+
y

ρf (uu) · n+ dA =

∫

Γw∪Γ+
y ∪Γp

CV

τ+ · n+ dA+

∫

Ω+
CV

fb dV. (7.4)

All of these terms are straightforward to calculate, except for the fluid stress at the

particle surface. However, we can evaluate this term indirectly using the IBM force, as

was done to obtain the particle equations of motion (2.9) and (2.10). That is, the IBM

force acts as a jump in stress between the fluid outside and the fluid inside the particle:

∫

LCV

fIBM dV =

∫

Γp
CV

τ+ · n+ dA+

∫

Γp
CV

τ− · n− dA, (7.5)

where we are careful to distinguish between n+, the outward surface normal for the
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volume Ω+
CV , and n−, the outward surface normal for the volume Ω−CV , which point in

opposite directions. In reality, the particles are rigid objects, but in our simulations, the

particles have fluid inside them as a by-product of the IBM. Initially, we only considered

the fluid outside the particles, but, in order to determine the forces the particle imparts

on the fluid, our analysis now requires us to account for the fluid inside the particles due

to the mechanics of the IBM. To evaluate τ− ·n−, we can perform a stress balance on the

fluid inside the particle, shown in Figure 7.3b. The integral form of the Navier-Stokes

equations together with the divergence theorem give us

∫

Ω−
CV

ρf
∂u

∂t
dV +

∫

Γ−
CV

ρf (uu) · n− dA =

∫

Γ−
CV

τ− · n− dA+

∫

Ω−
CV

fb dV, (7.6)

where Γ−CV = ΓpCV ∪ Γ−y . We set the first term to zero because, at steady-state, the fluid

velocity within the particle does not change in time. The convective terms are zero at

the particle interface ΓpCV due to the no-slip condition. Then, (7.6) reduces to

∫

Γ−
y

ρf (uu) · n− dA =

∫

Γp
CV

τ− · n− dA+

∫

Γ−
y

τ− · n− dA+

∫

Ω−
CV

fb dV. (7.7)

Using (7.7) together with (7.5), we obtain

∫

Γp
CV

τ+ · n+ dA =

∫

LCV

fIBM dV −
∫

Γ−
y

ρf (uu) · n− dA+

∫

Γ−
y

τ− · n− dA+

∫

Ω−
CV

fb dV. (7.8)
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Figure 7.4: Shaded control volume for the general case involving multiple particles.
The indicated volumes and surfaces are all those required for (7.9)

Finally, combining (7.8) and (7.4) gives us

∫

Γw

τ+ · n+ dA+

∫

ΩCV

fb dV

︸ ︷︷ ︸
External force

= −
∫

Γ+
y

τ+ · n+ dA+

∫

Γ+
y

ρf (uu) · n+ dA

︸ ︷︷ ︸
Fluid force

−
∫

LCV

fIBM dV −
∫

Γ−
y

τ− · n− dA+

∫

Γ−
y

ρf (uu) · n− dA

︸ ︷︷ ︸
Particle force

, (7.9)

where ΩCV = Ω+
CV ∪Ω−CV . The left-hand side of (7.9) contains the external forces acting

on the control volume from the top wall, Γw, and the body force applied to the whole

volume, ΩCV . These external forces are balanced by fluid and particle forces within and

at the lower boundary of the control volume. Figure 7.4 presents an illustration of the

control volume for the general case involving multiple particles. The fluid force consists

of pressure and viscous stresses as well as convective flow, all of which act at the lower

boundary outside the particles, Γ+
y . The particle force consists of the IBM force, which
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acts throughout the control volume over LCV , and convective and fluid stresses, which

act at the lower boundary inside the particles, Γ−y . Note that the fluid inside the particles

is only considered for those particles cut by the control volume; for particles wholly inside

the control volume, the IBM force alone accounts for the effect of the particles acting on

the fluid.

Fluid phase momentum in the x-direction

We now consider the momentum balance over the control volume in the x-direction.

At the top wall, Γw, the pressure does not contribute to the x-momentum, and the

vertical velocity, v, is zero, so that only µf∂u/∂y contributes to the fluid stress. At

the lower boundary, Γy, the pressure again does not play a role, but we keep the com-

plete viscous terms and convective terms for generality. Due to the periodic boundaries,
∫

Γy
∂v/∂x dA = 0, but the integrals of this quantity in the separate domains Γ+

y and Γ−y

can be nonzero, so we leave the expression in the more general form:

∫

Γw

µf
∂u

∂y
dA+

∫

ΩCV

fb,x dV

︸ ︷︷ ︸
External force

=

∫

Γ+
y

µf

(
∂u

∂y
+
∂v

∂x

)
dA−

∫

Γ+
y

ρfuv dA

︸ ︷︷ ︸
Fluid force

−
∫

LCV

fIBM ,x dV +

∫

Γ−
y

µf

(
∂u

∂y
+
∂v

∂x

)
dA−

∫

Γ−
y

ρfuv dA

︸ ︷︷ ︸
Particle force

. (7.10)

It is important to note that here we are explicitly separating the stresses arising from

the fluid and particle phases. We could consider all the viscous and convective terms

acting along both Γ+
y and Γ−y to be the fluid stress terms and likewise consider only the

fIBM term to be the particle stress, as was done in Kidanemariam and Uhlmann [112].

However, while this method may be accurate in recovering the overall stress, it may not
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be accurate in apportioning the stress between the fluid and particle phases (unless the

viscous and convective stresses within the particles are negligible).

Dividing by the area of the domain and using the definition of the horizontal average,

〈θ〉 =
1

LxLz

∫ Lz

0

∫ Lx

0

θ dx dz, (7.11)

we can rewrite (7.10) as

µf

〈
∂u

∂y

∣∣∣∣
Ly

〉
+ fb,x(Ly − y)

︸ ︷︷ ︸
External stress

= µf

〈
γ

(
∂u

∂y
+
∂v

∂x

)

y

〉
− ρf

〈
γuv|y

〉

︸ ︷︷ ︸
Fluid stress

−
∫ Ly

y

〈fIBM ,x 〉 dy + µf

〈
φ

(
∂u

∂y
+
∂v

∂x

)

y

〉
− ρf

〈
φuv|y

〉

︸ ︷︷ ︸
Particle stress

, (7.12)

where γ is an indicator function for the fluid volume fraction (γ = 1 outside the particle

and γ = 0 inside the particle) and φ is an indicator function for the particle volume

fraction (φ = 1−γ), as was done in the volume-averaging of Nikora et al. [111]. We have

also used the fact that µf , ρf , and fb,x are constant throughout the domain.

Fluid phase momentum in the y-direction

For the y-velocity component, the pressure, in addition to the viscous stress, con-

tributes to the fluid stress tensor at the boundaries Γw and Γ+
y , but only the vv component
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contributes to the convective term, reducing (7.9) to the following:

−
∫

Γw

p dA+

∫

Γw

2µf
∂v

∂y
dA

︸ ︷︷ ︸
External force

= −
∫

Γ+
y

p dA+

∫

Γ+
y

2µf
∂v

∂y
dA−

∫

Γ+
y

ρfvv dA

︸ ︷︷ ︸
Fluid force

−
∫

LCV

fIBM ,y dV −
∫

Γ−
y

p dA+

∫

Γ−
y

2µf
∂v

∂y
dA−

∫

Γ−
y

ρfvv dA

︸ ︷︷ ︸
Particle force

. (7.13)

We have also set fb,y = 0. On the left-hand side, the external force consists of the pressure

and viscous stress acting at the top wall. This force is balanced on the right-hand side by

the fluid force, consisting of the fluid pressure, viscous stress, and convection outside the

particles at the lower boundary of the control volume, and the particle force, consisting of

the IBM force throughout the control volume as well as the pressure, viscous stress, and

convection of the fluid within the particles but by the lower wall of the control volume.

Again, dividing by the domain area and applying the averaging operator, we can reduce

(7.13) to

−
〈
p|Ly

〉
+ 2µf

〈
∂v

∂y

∣∣∣∣
Ly

〉

︸ ︷︷ ︸
External stress

= −
〈
γp|y

〉
+ 2µf

〈
γ
∂v

∂y

∣∣∣∣
y

〉
− ρf

〈
γvv|y

〉

︸ ︷︷ ︸
Fluid stress

−
∫ Ly

y

〈fIBM ,y〉 dy −
〈
φp|y

〉
+ 2µf

〈
φ
∂v

∂y

∣∣∣∣
y

〉
− ρf

〈
φvv|y

〉

︸ ︷︷ ︸
Particle stress

. (7.14)

7.3.2 Particle phase balance

Although the fluid stress analysis accounts for the effects of the particles through the

IBM force, we can also perform an analysis on the particle phase by itself in order to

ensure that the particle momentum also closes and to try to bridge the two balances into
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a single one for the mixture as a whole. Additionally, rheological descriptions require

information about the particle pressure, which we can only obtain by analyzing the

particle phase. We can apply the coarse-graining method to (2.9) to obtain

acg = Fcg
r + Fcg

IBM + Fcg
g + Fcg

c , (7.15)

where

acg(x, t) =

Np∑

p=1

mp
dup
dt
W(x− xp) (7.16)

is the coarse-grained local particle acceleration, and

Fcg
IBM =

Np∑

p=1

FIBM,pW(x− xp) (7.17)

is the coarse-grained IBM force (likewise for the other forces acting on the particle center

of mass). The coarse-graining function, W(r), spreads the particle-centered quantities

onto an Eulerian mesh, allowing us to treat them as a continuum field.

We also write the collision force Fc,p slightly differently from the previous expression

(4.3) in order to more clearly refer to its different components. Instead, we write

Fc,p = Fn,p + Ft,p + Fl,p + Fw,p, (7.18)

where Fn,p accounts for all normal contacts with the walls and other particles, Ft,p ac-

counts for all frictional contacts, and Fl,p account for all lubrication interactions. In this

chapter, we additionally consider Fw,p, which is the “wall force” required to hold a fixed

particle p in place, and is equal and opposite to the hydrodynamic and other collision

forces acting on the fixed particle. We include this force in order to close the momentum

balance for the flow over a particle bed, which uses fixed particles acting as a rough lower
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wall, in Section 7.4.2.

Similar to the fluid stresses, we can analyze the coarse-grained particle forces within

a control volume spanning the entire domain in the streamwise and spanwise directions

and extending from the top wall to an arbitrary height y. Integrating (7.15) over this

volume, we obtain

∫

ΩCV

acg dV =

∫

ΩCV

(
Fcg
r + Fcg

IBM + Fcg
g + Fcg

c

)
dV. (7.19)

We can again apply the averaging operator to recast (7.19) as a line integral in the

wall-normal direction:

∫ Ly

y

〈acg〉 dy =

∫ Ly

y

(
〈Fcg

r 〉+ 〈Fcg
IBM〉+

〈
Fcg
g

〉
+ 〈Fcg

c 〉
)

dy. (7.20)

If the particles are in a steady state, either naturally or through double-averaging, then

the acceleration term would be zero. We can also decompose the equation into compo-

nents in the x-direction,

∫ Ly

y

〈
F cg
r,x

〉
dy +

∫ Ly

y

〈
F cg

IBM ,x

〉
dy

︸ ︷︷ ︸
Hydrodynamic stress

+

∫ Ly

y

〈
F cg
c,x

〉
dy

︸ ︷︷ ︸
Collision stress

= 0, (7.21)

where the gravitational force is zero, and the y-direction,

−
∫ Ly

y

〈
F cg
g

〉
dy

︸ ︷︷ ︸
Bed weight

=

∫ Ly

y

〈
F cg
r,y

〉
dy +

∫ Ly

y

〈
F cg

IBM ,y

〉
dy

︸ ︷︷ ︸
Hydrodynamic stress

+

∫ Ly

y

〈
F cg
c,y

〉
dy

︸ ︷︷ ︸
Collision stress

. (7.22)
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7.3.3 Mixture balance

Instead of considering the fluid and particle phases separately, we could combine them

into a single mixture. For example, in the x-direction, equating the particle stress on the

fluid in (7.12) to the hydrodynamic stress on the particles in (7.21), we obtain

µf

〈
∂u

∂y

∣∣∣∣
Ly

〉
+ fb,x(Ly − y)

︸ ︷︷ ︸
External stress

= µf

〈
γ

(
∂u

∂y
+
∂v

∂x

)

y

〉
− ρf

〈
γuv|y

〉

︸ ︷︷ ︸
Fluid stress

−
∫ Ly

y

〈
F cg
c,x

〉
dy

︸ ︷︷ ︸
Collision stress

. (7.23)

This formulation has several advantages over the separate phase balances. First, the

collision information for the particles is generally more readily available from simulation

results than the Eulerian IBM data is. Second, we can reformulate the coarse-grained

collision stress as a stress acting over the lower surface of the control volume instead of

a force integrated over the volume:

∫ Ly

y

〈
F cg
c,x

〉
dy =

〈
σcgxy
〉
, (7.24)

where σcgxy is the xy-component of a coarse-grained particle collision stress, such as that

given by (6.4). While the collision force in (7.23) can only provide information in the

x-, y-, and z-directions and must be integrated over a volume, the stress tensor σcg can

provide more information about shear and normal stresses in the particle phase without

averaging over volumes, as shown in Section 6.3. However, for the momentum balance in

this chapter, we found (7.24) to be valid, allowing us to use the coarse-grained collision

force instead of the collision stress.
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7.4 Results

7.4.1 Stress balance of a single rolling particle

Stress balance of the fluid phase in the x-direction

Having established momentum balance relationships (7.12) (7.21), we will now apply

them to the single rolling sphere case described in Section 7.2.1. Figure 7.5 shows the

x-momentum balance of the fluid phase, given by (7.12). The stresses are a function of

the y-coordinate, where each value of σx corresponds to the control volume extending

from the top wall to the y-coordinate. The reference stress for these plots is the wall

shear stress for the reference case, σref = µfdu/dy|y=0.

Figure 7.5a shows the instantaneous particle, fluid, and external stresses at t = 2.5tref.

As expected, the external stress is in equilibrium with the total stress, which is the sum

of the fluid and particle stresses. Thus, the steady state of the simulation is valid for this

analysis, in which we neglected the time-dependent terms to obtain (7.12). For control

volumes above the particle (y/Ly > 0.5), the particle stress is zero, and the external

stress is balanced entirely by the fluid stress. However, in the lower half of the domain,

where the particle is located, the particle stress accounts for most of the stress in the

associated control volumes. Note that, in this simulation, the particle diameter fills half

the domain in the streamwise and spanwise directions (Lx = 2Dp, Lz = 2Dp). Thus,

the particle has a significant effect on the horizontally-averaged stresses. In contrast, we

would expect a single particle in a much larger domain to have a much smaller effect on

the flow and likewise to have a much smaller particle stress relative to the fluid stress.

Near the lower wall (y/Ly < 0.1), a decrease in particle stress and increase in fluid stress

indicates a transfer of x-momentum back to the fluid. The total drag on the particle,

given by the particle stress at the lower wall, is thus only a small fraction of the drag
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Figure 7.5: Single particle stress balance of the fluid phase in the x-direction according
to (7.12). The total stress is the sum of the fluid and particle stresses. The components
of (a) are further broken down for the (b) fluid stress and (c) particle stress.
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experienced by the upper half of the particle.

Based on our definition of σref, in the absence of the particle, the external stress in

Figure 7.5a would extend from σx/σref = −1 at y/Ly = 1 to σx/σref = 1 at y/Ly = 0. The

presence of the particle causes this curve to shift to the right, decreasing the magnitude

of the stress at the top wall and increasing the stress at the bottom wall. This rightward

shift results in a decrease in the fluid velocity in the upper half of the domain. At the

lower wall, the fluid stress is close to σx/σref = 1, while the rightward shift in the external

stress results from the particle stress at the lower wall. The collisional friction with the

lower wall, therefore, accounts for a large portion of the decrease in the flow rate relative

to the reference case.

The fluid stress in Figure 7.5a is further decomposed into its components in Fig-

ure 7.5b, which shows the relative contributions from the convective stress, −ρf 〈γuv|y〉,

and the viscous stress, µf 〈γ(∂u/∂y + ∂v/∂x)y〉, given in (7.12). The convective term is

negligible, so that the viscous term alone accounts for the fluid stress. Though we do not

show it here, we also found the ∂v/∂x term to be negligible.

Likewise, the particle stress in Figure 7.5a is further decomposed into its components

in Figure 7.5c, which include the IBM, viscous, and convective stresses comprising the

particle stress in (7.12). The IBM term is dominant, the convective term is negligible,

and the viscous term is detectable near the lower wall. In summary, we could remove the

negligible terms from (7.12) to obtain

µf

〈
∂u

∂y

∣∣∣∣
Ly

〉
+ fb,x(Ly − y)

︸ ︷︷ ︸
External stress

= µf

〈
γ
∂u

∂y

∣∣∣∣
y

〉

︸ ︷︷ ︸
Fluid stress

−
∫ Ly

y

〈fIBM ,x 〉 dy + µf

〈
φ
∂u

∂y

∣∣∣∣
y

〉

︸ ︷︷ ︸
Particle stress

. (7.25)
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Figure 7.6: Single particle stress balance of the particle phase in the x-direction
according to (7.21). The total stress is the sum of the hydrodynamic and collision
stresses.

Stress balance of the particle phase in the x-direction

Figure 7.6 shows the momentum balance for (7.21), in which the total stress, the

sum of the hydrodynamic and collision stresses, is zero. Thus, the hydrodynamic force

driving the particle in the positive x-direction is balanced by the collision forces acting

in the negative x-direction, indicating that the particle is not accelerating. For a single

particle, this figure shows only the net hydrodynamic force, Fr,p+FIBM,p, and net collision

force, Fc,p, smeared by the coarse-graining method. Thus, there exist stresses above the

particle diameter (y/Ly > 0.5) because the coarse-graining width we chose spreads values

beyond the particle radius. Furthermore, the stress at the lower wall represents the total

stress (e.g. Fc,p/(Lx Lz)) acting on the particle. At the lower wall, the particle stress

in Figure 7.5a matches the hydrodynamic stress in Figure 7.6, which is balanced by the

collision stress. Therefore, the particle stress at the lower wall in Figure 7.5a represents

the stress between the particle and wall due to collision forces.
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Figure 7.7: Stress balance in the x-direction for the fluid/particle mixture, given by
(7.23). The total stress is the sum of the fluid and collision stresses.

Stress balance of the fluid/particle mixture in the x-direction

We can also consider the momentum balance for the mixture, given by (7.23) and

shown in Figure 7.7. While the total stress, which is the sum of the fluid and collision

stresses, does match the external stress in the clear fluid layer above the particle and at the

lower wall, it does not match the external stress within the particle region. To understand

this imbalance, we have included in this plot the particle stress, which represents the local

hydrodynamic interactions that occur along the particle surface. The particle stress and

collision stress should be equivalent because the entire system is in equilibrium. However,

they match only at the lower wall because the coarse-graining method simply smears the

collision stress over the volume, and the collision stress matches the net hydrodynamic

stress acting on the particle center of mass, which does not account for local variations

along its surface. Thus, using hybrid fluid/coarse-grained quantities does not close the

momentum budget unless the entire particle is considered.
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Figure 7.8: Single particle stress balance of the fluid phase in the y-direction according
to (7.14). The total stress is the sum of the fluid and particle stresses. The components
of (a) are further broken down for the (b) fluid stress and (c) particle stress. Note
that “pressure” refers to the pressure term in (7.14), which is the negative pressure.
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Stress balance of the fluid phase in the y-direction

We present the results for the momentum balance of the fluid phase in the y-direction,

given by (7.14), in Figure 7.8. Figure 7.8a shows the balance between the external stress,

comprised of the pressure and viscous terms at the top wall, and the total stress, which

is the sum of fluid and particle stresses. Different from the x-momentum balance, the

external stress for the y-momentum fluid phase does not depend on the y-coordinate,

instead maintaining a constant value. All pressures evaluated here are relative to the

pressure at the lower wall. In (7.14) the stresses scale with the negative pressure, so

the positive external stress in Figure 7.8a thus indicates a lower, or negative, pressure

in the fluid at the top wall relative to the bottom wall. This stress is carried exclusively

by the fluid in the upper half of the domain and is then almost completely transferred

to the particle in the lower half of the domain. The particle stress represents the lift

force acting on the particle phase, and its value at the lower wall represents the total lift

acting on the particle. The majority of the lift stress occurs along the top of the particle

(0.4 < y/Ly < 0.5). The particle stress at the lower wall is equivalent to the external

stress or the fluid stress at the upper wall. Thus, the lift force on the particle is supported

by a negative pressure in the fluid at the upper wall. However, the maximum fluid stresses

for the y-momentum balance in Figure 7.8a are up to two orders of magnitude smaller

than those for the x-momentum balance in Figure 7.5a.

Figure 7.8b decomposes the fluid stress in Figure 7.8a into the pressure, viscous, and

convective terms, given by −〈γp|y〉, 2µf 〈γ∂v/∂y|y〉, and −ρf 〈γvv|y〉 in (7.14), respec-

tively. Similarly, Figure 7.8c decomposes the particle stress in Figure 7.8a into the IBM,

pressure, viscous, and convective terms comprising the particle stress in (7.14). Contrary

to the x-momentum balance, we find the pressure and convective stress to be significant
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Figure 7.9: Single particle stress balance of the particle phase in the y-direction ac-
cording to (7.22). The total stress is the sum of the hydrodynamic and collision
stresses.

and the viscous stress to be negligible. We can thus simplify (7.14) to obtain

−
〈
p|Ly

〉

︸ ︷︷ ︸
External stress

= −
〈
γp|y

〉
− ρf

〈
γvv|y

〉

︸ ︷︷ ︸
Fluid stress

−
∫ Ly

y

〈fIBM ,y〉 dy −
〈
φp|y

〉
− ρf

〈
φvv|y

〉

︸ ︷︷ ︸
Particle stress

. (7.26)

Note that the IBM stress matches the particle stress only at the lower wall; accounting

for the pressure and convective terms inside the particle is important for resolving the

particle stress throughout the domain.

Stress balance of the particle phase in the y-direction

Figure 7.9 shows the stress balance for the particle phase given by (7.22), in which the

bed weight is in equilibrium with the total stress, which is the sum of the hydrodynamic

stress and the collision stress. In this case, the bed weight represents the gravitational

force, Fg,p, smeared by the coarse-graining method. The fluid exerts a positive lift force on

the particle, but the vast majority of the particle’s weight is supported by the collision
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force with the lower wall. Comparing Figure 7.6 to Figure 7.9, we can see that the

hydrodynamic lift stress is a fraction of the drag stress, but the y-momentum collision

stress is six times larger than the drag stress. In fact, the bed weight and collision stress

are the only terms in the y-momentum balance that are comparable in magnitude to the

stresses in the x-momentum balance. Having validated these methods for a simple test

case, we will now apply them to simulations involving many particles.

7.4.2 Stress balance of a sheared particle bed

Time evolution of the particle bed

We conducted simulations of a Poiseuille flow over a particle bed at four different flow

rates: one to initialize the bed and three to study the bed under different flow conditions.

The time evolution of these simulations is shown in Figure 7.10. Figure 7.10a shows the

particle flux, qp, over time for the different simulation runs, where we use the volumetric

particle flux per unit width

qp =
1

Lx Lz

Np∑

p=1

Vpup,x. (7.27)

The particle flux rapidly increases during run Re67, and is accompanied by an increase

in the bed height, hp, or dilation of the particle bed, as shown in Figure 7.10b. We define

the bed height to be the location at which 〈φ〉 = 0.05 to be consistent with our definition

in Section 5.3. Upon resuming run Re67 at a lower pressure gradient, we can see that run

Re17 quickly reaches a steady-state configuration, characterized by a constant particle

flux and bed height, while run Re33 does not reach a steady-state since the particle

flux and bed height continue to increase in time. Run Re8, which was resumed from

run Re17, experiences a further decrease in the particle flux and bed height, reaching

a somewhat steady particle flux but a still slightly-decreasing bed height. Figure 7.11
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Figure 7.10: (a) Particle volumetric flux, given by (7.27), for the different simulation
runs. Dotted lines indicate the average particle flux over the averaging time for each
simulation. (b) Bed height, defined at 〈φ〉 = 0.05. (c) Spatially-averaged fluid pressure
at the top wall, relative to the lower wall and neglecting hydrostatics.
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Figure 7.11: Average particle volume fraction profiles for the different simulation runs.

shows the volume fractions of the beds for the three simulations, where the bed height

clearly increases for the higher flow rates. Accompanying this dilation is a decrease in

the volume fraction of particles within the bed. These three simulations provide an

opportunity to study the forces behind particle bed evolution. Clearly, the unsteady

flows experience some type of force imbalance that causes the bed to dilate or contract

in order to reach a steady state.

We will investigate the momentum balances of these simulations in part to understand

these bed transitions. We will primarily focus on runs Re8, which is at steady-state, and

Re33, which is not at a steady-state, due to their different flow conditions. Figure 7.12

shows the fluid and particle velocity profiles from the simulations together with the

velocity profile for the reference Poiseuille case. We can see that there is no slip between

the fluid and particle phases and that the reference velocity, uref, provides a reasonable

estimate for the fluid velocity in the clear fluid layer above the particles (y/yref > 2.3),

even when the entire particle bed is in motion. However, increasing the flow rate does
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Figure 7.12: Average fluid velocity profiles for the different simulation runs, along with
the average coarse-grained particle velocity profiles, given by (6.2), and the velocity
profile for the reference case.

increase the velocity profile relative to the reference case. There is a clear qualitative

difference between run Re8, whose velocity profile is concave and goes to zero within the

bed at y/yref ≈ 0.5, and run Re33, whose velocity profile is convex and goes to zero only at

the fixed particles at the lower wall. For brevity, we will neglect the momentum balance

for Re17, which is similar in bed morphology to Re33 and in steady-state characteristics

to Re8.

As described in Section 7.2.2, we use time averages to smooth out the fluctuations

due to particle-particle interactions. These time averages, which were used to generate

Figures 7.12 and 7.11 as well as the stress balance results, are given in Table 7.3 and

shown graphically by the dotted lines in Figure 7.10a. While this figure does not suggest

it, we will actually find the stress balance for run Re33 to be in equilibrium for this

time-averaging window. Considering that the particle flux and bed height change slowly

relative to the flow timescale, it makes sense that the “accelerations” responsible for the

change in particle flux and bed height are undetectable in the stress balance. However,

126



Momentum balance Chapter 7

we can observe the unsteady nature of the flows through the y-stress balance. Consider

the pressure at the top wall as a function of time, shown in Figure 7.10c. Recall from

Section 7.4.1 that a negative pressure at the top wall corresponds to a lift force acting

on the particle phase. Comparing Figures 7.10b and 7.10c, we can see a clear correlation

between a positive pressure during bed dilation (increasing hp), a negative pressure during

bed contraction (decreasing hp), and a slightly-negative pressure during steady-state.

Thus, when the particle bed tries to dilate, the fluid immediately responds with a negative

lift force, and in turn responds to bed contraction with a positive lift force. Alternatively,

we can imagine that, when the bed dilates, a positive pressure forms above the bed as

fluid flows into the bed to fill the void space, while, when the bed contracts, a negative

pressure forms above the bed as the particles squeeze fluid out of the bed.

Stress balance of the fluid phase in the x-direction

We now investigate the momentum balance for the simulations involving a bed of

mobile particles, focussing on runs Re8 and Re33 to get a sense of the results for different

flow conditions. In order to obtain steady-state results, we apply the time-averaging

operator, (7.1), to the x-momentum balances (7.12) and (7.21), resulting in double-

averaged equations akin to Nikora et al. [111] and Vowinckel et al. [110].

Figure 7.13 shows the momentum balance of the fluid phase, given by (7.12), for runs

Re8 (left side) and Re33 (right side), in which we expect the external stress to match

the total stress, which is the sum of the fluid and particle stresses. In Figures 7.13a

and 7.13b, the external stress at the top wall is close to 〈σx〉/σref = −1, which is the

stress at the top wall we would expect from the reference case. This result is consistent

with the observation that the velocity profiles in Figure 7.12 are similar to that of the

reference case, so that the chosen scaling seems appropriate. In the upper part of the

flow (y/yref > 2.3), there are no particles, and the fluid stress matches all of the external
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Figure 7.13: Particle bed stress balance of the fluid phase in the x-direction according
to (7.12). Subfigures (a), (c), and (e) correspond to run Re8 while (b), (d), and (f)
correspond to run Re33. The total stress is the sum of the fluid and particle stresses.
The components of (a) and (b) are further broken down in (c) and (d) for the fluid
stress and in (e) and (f) for the particle stress. The horizontal dashed line marks the
height of the particle bed, hp.
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stress. Within the particle bed (y/yref < 2.3), however, the majority of the external stress

is taken up by the particles.

Figures 7.13c and 7.13d show the terms in (7.12) that contribute to the fluid stress.

The viscous term alone contributes to the fluid stress, which is consistent with the obser-

vations for the single rolling sphere. Run Re8 differs from Re33 in that the fluid stress

reaches a higher positive value above the particle bed and quickly drops to zero within

the particle bed. The fluid stress for Re33, on the other hand, reaches a somewhat con-

stant value within the particle bed, increasing towards the lower wall. These results are

consistent with the velocity profiles in Figure 7.12, where the concavity of the profile

for Re8 results in a high shear stress at the fluid/particle bed interface and low stresses

within the bed, and the convexity of the profile for Re33 results in a large shear stress at

the lower wall.

Figures 7.13e and 7.13f, on the other hand, show the terms in (7.12) that contribute

to the particle stress. Again, similar to the single sphere simulation, the IBM term alone

contributes to the particle stress. The major differences in these curves between the two

simulations is that the stress for Re8 increases rapidly at the fluid/particle bed interface,

then gradually within the bed, whereas the stress for Re33 increases gradually at the

fluid/particle interface and within the bed, and rapidly at the lower wall. This result is

consistent with the locations of the sharp gradients in the fluid stress balance, so that

the fluid and particle stresses together close the x-momentum balance.

Stress balance of the particle phase in the x-direction

Figure 7.14 shows the coarse-grained particle phase stresses, given by the time average

of (7.21) for runs Re8 (left side) and Re33 (right side). In Figures 7.14a and 7.14b, the

hydrodynamic stress propelling the particles in the positive x-direction and the collision

stress slowing the particles in the negative x-direction are both zero above the particle
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Figure 7.14: Particle bed stress balance of the particle phase in the x-direction ac-
cording to (7.21). Subfigures (a) and (c) correspond to run Re8 while (b) and (d)
correspond to run Re33. The total stress is the sum of the hydrodynamic and col-
lision stresses. The components of the collision stresses in (a) and (b) are further
broken down in (c) and (d) according to (7.18). The horizontal dashed line marks the
height of the particle bed, hp.
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bed (y/yref > 2.3) and increase in magnitude deeper within the particle bed. The total

stress, which is the sum of the hydrodynamic and collision stresses, is zero, indicating

that the particle phase stress balance is also in equilibrium, even for the “unsteady” case,

Re33. The hydrodynamic stress, and, due to equilibrium, the collision stress, has larger

gradients at the fluid/particle bed interface for Re8 and at the lower wall for Re33, which

is consistent with the locations of the larger particle stress gradients in Figures 7.13e

and 7.13f.

Figures 7.14c and 7.14d show the terms in (7.18) that contribute to the collision

stresses for runs Re8 and Re33, respectively. In both simulations, the normal contact

forces dominate the collision stress, but the tangential contact (friction) and lubrication

stresses do play important roles as well. Comparing these figures to the velocity profiles

in Figure 7.12, we can see that the lubrication stress correlates with the shear rate, which

is largest at the fluid/bed interface for Re8 and at the lower wall for Re33. This result

is consistent with the fact that the lubrication force is dissipative and scales with the

relative velocity between particles, similar to a viscous stress. In fact, for this reason,

the fluid stresses within the particle beds in Figures 7.13c and 7.13d compare remarkably

well qualitatively to the lubrication stresses. The tangential contact stress plays a larger

role in the more static bed of run Re8, where the lubrication stress goes to zero, than

it does in run Re33, where the lubrication stress exists throughout the bed. Finally, the

wall stress, representing the force required to hold the fixed particles in place, is similar

for both simulations, but there is a larger discontinuity with the other collision stresses

for run Re33. As shown through the fluid phase balance, this result is due to the large

fluid stress acting at the lower wall.
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Figure 7.15: Particle bed stress balance in the x-direction for the fluid/particle mix-
ture, given by (7.23), for (a) Run Re8 and (b) Run Re33. Shown is the difference
between the external stress and the sum of the fluid and collision stresses. The hori-
zontal dashed line marks the height of the particle bed, hp.

Stress balance of the fluid/particle mixture in the x-direction

As we did in the case for the single rolling sphere, we can also look at the stress balance

for the fluid/particle mixture, given by (7.23). As with the single rolling sphere case, the

mixture balance does not close, so we present the imbalances (external minus fluid and

collision stresses) for runs Re8 and Re33 in Figure 7.15. Considering the magnitude of

stresses in the x-direction (Figure 7.13), these imbalances result in errors on the order

of 10%. Figure 7.15a shows that the imbalance for Re8 is greatest in the upper portion

of the particle bed. Figure 7.15b, on the other hand, shows a significant imbalance

between the total stress and the external stress throughout the particle bed for Re33.

Larger imbalances appear to correlate with larger shear rates in the fluid/particle velocity

profiles (Figure 7.12). Therefore, one possible explanation for the imbalance is the same

one we found for the single rolling sphere: the collision stress resolves the net fluid stress

acting on the center of mass of the particles, not the stress differences that act along

the upper and lower portions of the particles. This effect would be more pronounced in

regions with higher shear rates, where the upper and lower portions of the particles can
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experience stronger stress differences, which is what we observe. Finally, just as in the

case of the single rolling sphere, the stress balance does close for both simulations when

the entire domain is included within the control volume.

The x-momentum balance results for run Re17 (not presented for brevity) are both

qualitatively and quantitatively very similar to those for run Re33, given our scaling.

We might expect this result, given the similarities in their velocity profiles (Figure 7.12),

but it is also a little surprising because Re33 is not in a steady-state configuration. The

major differences between steady and unsteady beds, however, lie in the y-momentum

balance.

Stress balance of the fluid phase in the y-direction

We similarly apply the time-averaging operator, (7.1), to the y-momentum balances

of the fluid phase, (7.14), and the particle phase, (7.22). Figure 7.16 shows the stress

balance of the fluid phase for runs Re8 (left side) and Re33 (right side). Figures 7.16a

and 7.16b show the balance between the total stress, composed of the fluid and particle

stresses, and the external stress, which represents the stress at the upper wall since we do

not impose a body force on the fluid in the y-direction. Once again, the total stress is in

balance with the external stress, even for the unsteady simulation, Re33. Similar to the

results for the single sphere, the particle stress quickly takes up the stress from the fluid

within the particle bed (y/yref < 2.3). However, the stresses for run Re8 (Figure 7.16a)

are positive while those for run Re33 (Figure 7.16b) are negative, which stem from the

transient dilation and contraction of the respective beds, as explained with the next

subfigures.

Figures 7.16c and 7.16d show the terms in (7.14) that contribute to the fluid stress.

Different from the simulation from the single sphere, the convective term is negligible for

these simulations, so that only the pressure term plays a role. Recall that the stresses and
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Figure 7.16: Particle bed stress balance of the fluid phase in the y-direction according
to (7.14). Subfigures (a), (c), and (e) correspond to run Re8 while (b), (d), and (f)
correspond to run Re33. The total stress is the sum of the fluid and particle stresses.
The components of (a) and (b) are further broken down in (c) and (d) for the fluid
stress and in (e) and (f) for the particle stress. Note that “pressure” refers to the
pressure term in (7.14), which is the negative pressure. The horizontal dashed line
marks the height of the particle bed, hp.
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pressures in these figures correspond to the negative value of the pressure, according to

(7.14). Thus, simulation Re8 has a negative fluid pressure above the particle bed, while

run Re33 has a positive fluid pressure above the bed. This observation is consistent

with Figure 7.10, which revealed that the fluid pressure (relative to the lower wall) is

positive above dilating beds (e.g. Re33) and negative above contracting beds (e.g. Re8).

However, another interesting feature in Figure 7.16d is that, while the fluid pressure is

positive above the bed, it is negative within the lower portion of the bed (y/yref < 1.5).

This may be due to the unsteady nature of the flow.

Figures 7.16e and 7.16f show the terms in (7.14) that contribute to the particle stress.

Again, the convective terms do not contribute to the particle stress like they did for the

single rolling sphere, meaning only the pressure and IBM terms play a significant role.

The pressure terms for the particle and fluid stresses behave similarly, and are important

at the fluid/bed interface. Thus, only accounting for the IBM term can lead to an

incorrect evaluation of the particle stress.

Stress balance of the particle phase in the y-direction

Figure 7.17 shows the coarse-grained particle phase stresses, given by the time average

of (7.22) for runs Re8 (left side) and Re33 (right side). In Figures 7.17a and 7.17b, the

bed weight increases almost linearly from the top of the particle bed down to the lower

wall, balanced by the total stress, which is the sum of the hydrodynamic and collision

stresses. In contrast to the x-momentum particle phase results, the y-momentum results

show clear differences between runs Re8 and Re33. First, the hydrodynamic stress is

positive for Re8 and negative for Re33, so that the collision stresses are less than and

greater than the bed weight, respectively, for the stress balance to be in equilibrium.

This difference is directly related to the pressure and steady-state differences discussed

previously. Second, σref does not collapse the stresses for Re8 and Re33 into similar
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Figure 7.17: Particle bed stress balance of the particle phase in the y-direction ac-
cording to (7.22). Subfigures (a) and (c) correspond to run Re8 while (b) and (d)
correspond to run Re33. The total stress is the sum of the hydrodynamic and col-
lision stresses. The components of the collision stresses in (a) and (b) are further
broken down in (c) and (d) according to (7.18). The horizontal dashed line marks the
height of the particle bed, hp.
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ranges. In our simulations, the bed weight is approximately the same for the two runs,

but σref is larger for Re33, resulting in a smaller scaled bed weight for Re33. Therefore,

it should be easier for collision stresses to overcome the bed weight in run Re33 than in

run Re8.

Figures 7.17c and 7.17d show the terms in (7.18) that contribute to the collision

stresses for runs Re8 and Re33, respectively. In both simulations, the collision stress is

almost completely a result of normal contacts, which contrasts with the collision stresses

in the x-direction, which also had significant contributions from tangential contacts and

lubrication. Tangential contacts contribute slightly to support the bed weight near the

lower wall for run Re8 (Figure 7.17c) and throughout the bed for run Re33 (Figure 7.17d).

A slight negative lubrication force is present throughout the Re33 bed, indicating a net

motion of particles away from each other in the y-direction due to the fact that the

lubrication force is dissipative and proportional to the relative velocity between particles.

This observation is consistent with a dilating particle bed, where the space between

particles increases.

From Figures 7.14 and 7.17, we have seen that the normal contact forces play a

dominant role in both the x- and y-momentum balances for the particles, but these

forces are coupled by the geometry of the particle bed. For instance, two particles

colliding have a single normal contact force between them, but the relative force directed

in the x-direction or y-direction depends on where the point of contact occurs in the

coordinate system. In these simulations, the particle phase is driven in the x-direction

by the pressure gradient and hydrodynamic forces. At equilibrium, collisions balance

the driving force, and by geometry also provide a particle pressure in the y-direction

opposing the weight of the bed. A collision stress larger than the bed weight, as seen for

Re33 in Figure 7.17b, then causes the particle bed to dilate upwards. However, as seen in

the same figure, the hydrodynamic stress balances the excess collision stress, keeping the
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system in equilibrium and slowing the rate of dilation. Thus, the negative hydrodynamic

stress for the particle phase, or negative pressure measured at the top wall for the fluid

phase, indicates that a particle bed is still dilating in order to attain a collision geometry

that allows collision stresses to balance in both x- and y-directions.

7.5 Conclusions

We have derived a momentum balance for particle-resolved IBM simulations in order

to understand the stresses governing the motion of sheared particle beds. This balance

differs from others in that it fully accounts for the particle stress using the fluid contained

within the particles. We then validated the method against a simulation of a single rolling

sphere, showing that it works for situations that do not have a statistically significant

assemblage of particles. From this simulation, we found that the momentum balances for

the fluid phase, (7.12) and (7.14), and the particle phase, (7.21) and (7.22), are valid for

instantaneous flow fields at a steady-state relative to the particle. We have also shown

that these momentum balances are valid on a particle-resolved scale in which the control

volumes cut through a particle that is large relative to the total domain size. In contrast,

the methods of Zhang and Prosperetti [108] and Vowinckel et al. [110] require control

volumes that enclose many particles, functioning under a statistical-averaging framework.

From these momentum balances, we determined that the collision between the particle

and the wall played a large role in the flow, with friction slowing the flow from the

reference Poiseuille case and with normal contact supporting the particle’s weight. We

also explored the significance of the various terms comprising the fluid phase balance,

(7.12) and (7.14), which allowed us to simplify them into (7.25) and (7.26). Finally,

we investigated the momentum balance for a fluid-particle mixture, given by (7.23),

and found that it did not close because coarse-grained particle quantities cannot resolve
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changes in stress along the particle surface.

We applied time averages to the momentum balances for the fluid phase, (7.12) and

(7.14), and the particle phase, (7.21) and (7.22), finding that they close for simulations

involving flows with many particles, even those that did not attain a statistical steady

state. A reference case, a Poiseuille flow in the upper third of the domain where no

particle are present initially, provided a reasonable scaling of the velocities and stresses

in the x-direction, even when the entire particle bed was in motion.

We also investigated the terms comprising (7.12) and (7.14) for the simulations of the

particle beds, finding only the viscous term to be important for the x-momentum fluid

stress, only the IBM term to be important for the x-momentum particle stress, only the

pressure term to be important for the y-momentum fluid stress, and both the pressure and

IBM terms to be important for the y-momentum particle stress. Therefore, the simplified

expressions from the single particle balance, (7.25) and (7.26), would be equally valid for

these simulations, and could even be further simplified to exclude the viscous terms

from the particle stress and the convective terms from the fluid and particle stresses.

Furthermore, simulations involving similar flow conditions would be justified in using

only the IBM term to calculate the x-momentum stress, as was done in Kidanemariam

and Uhlmann [112] and Vowinckel et al. [109, 110]. In our experience, the viscous term

contributes to the particle stress only for much more viscous flows. However, the pressure

term must be included in the particle stress in the y-direction.

We also investigated the terms comprising the collision force, given by (7.18). For

the flow conditions for the present simulations, the normal contact force dominates the

x-momentum collision force and is nearly solely responsible for the y-momentum collision

force. Lubrication and tangential contact forces contribute similarly small amounts to

the collision forces in the x-direction.

With our scaling based on the reference Poiseuille flow, the x-momentum balances
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were very similar qualitatively and quantitatively for the various flows over a particle

bed, even though one of the simulations was in a transient state. We found that the

y-momentum balances were crucial in revealing transient behavior of the particle beds.

The fluid pressure at the top wall relative to the bottom wall (neglecting hydrostatics)

indicated whether the bed was dilating (positive pressure) or contracting (negative pres-

sure). Analyzing the forces on the particles within the bed also revealed fluid forces

acting to oppose the upward motion of the particles in a dilating bed.

We also applied the x-momentum balance of the fluid/particle mixture, (7.23), to

the sheared bed of particles. As with the case for the single sphere, we found that this

balance does not close unless the entire domain is considered, but we did find that the

gap in the closure is related to the local shear rate: higher shear rates led to larger gaps.

Further studies should be carried to understand this dependence, which may allow for a

closure of the mixture stress balance. It would then prove a powerful tool for measuring

the stresses in dense particle-laden flows.

Another extension of this work would be to include the time-dependent terms. The

real power in the accurate measurement of particle-fluid stresses would be to analyze

unsteady flows on short time scales. This could, for instance, allow us to study the rhe-

ology of transient particle-laden flows, such as the onset or cessation of erosion. Finally,

extending the time-averaged equations for use with turbulent flows would permit its use

for a broad range of important sediment transport problems.
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Rheology of a sheared particle bed

8.1 Introduction

Having developed all the tools necessary to simulate flows over dense sediment beds

and measure the stresses in the fluid and particle phases, we can now analyze the rheology

of these flows. Rheological descriptions of particle-laden flows began with a dilute-regime

asymptotic expansion by Einstein [113], which was further developed by Batchelor [114,

115]. However, theoretical frameworks do not work at higher particle concentrations

unless the particle motions are extremely energetic, at which point kinetic theory can

be applied [116, 14, 117]. Meanwhile, for flows involving high particle concentrations at

low granular temperatures, researchers have relied on empirical fits to experimental data.

Popular works include those of Eilers [118], Mooney [119], Krieger and Dougherty [120],

and, more recently, Morris and Boulay [121]. These studies developed rheological models

that specify an effective viscosity of the fluid/particle mixture, ηs, which depends on the

particle concentration.

The granular community, on the other hand, developed a separate framework to

describe granular flows (without fluid). The macroscopic friction coefficient, or µ(I)

141



Rheology of a sheared particle bed Chapter 8

rheology, relates the shear stress to the nondimensional inertia number I, which relates

the particle inertia to the confining pressure. This friction coefficient is different from

the values µk and µs used for particle-particle contacts. Indeed, frictionless particles

as a bulk medium can exhibit macroscopic friction due to normal contacts [122]. This

framework achieved great success in describing the bulk behavior for different types of

3-D granular flows [123], and has even been successful when coupled with constitutive

models for predicting granular flows down an incline [124]. However, this framework has

not been able to describe all types of granular flow geometries [125].

Cassar et al. [126] began to apply the macroscopic friction concept to particle-laden

flows with their study of submarine granular flows down inclined planes, which they

related to dry granular flows down inclined planes. Dijksman et al. [18] investigated this

approach for a “split-bottom” rheometer. Later, Boyer et al. [22] unified this framework

with the effective viscosity, developing a rheological model that worked in both situations

for their experimental data. DeGiuli et al. [24] have worked to unify the description of

the macroscopic friction coefficient for submerged and dry granular flows.

Ideally, we should be able to use established particle/fluid mixture rheologies to pre-

dict particle-laden flow velocities and mass fluxes. Aussillous et al. [19] attempted to

match the velocity profiles from their experiments with those from constitutive models,

achieving only mixed success. We have been unsuccessful in our own attempts to predict

our simulation flow profiles using constitutive models, so we have taken a step back to

look more closely at the rheological models upon which the constitutive models heavily

rely. Some fundamental questions still need to be answered before we can understand

why the constitutive models currently do not work well as predictive tools. Most of these

rheological models were developed using Couette flow experiments involving the shearing

of neutrally-buoyant particles over a gap size of at least 10 particle diameters. There-

fore, it is not clear if these models are applicable to our situation, which involves heavy
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particles whose granular pressure varies with the bed depth. Nor is it clear if the models

are applicable in a local sense, describing the flow everywhere instead of as a whole, or

in situations where the shear rate varies on the scale of a particle diameter. Some re-

searchers have begun to investigate these questions using heavy particles and measuring

the local rheology. Maurin et al. [5] found their simulations to match the model of Boyer

et al. [22], but they investigated a turbulent regime and did not fully resolve the particle-

fluid interactions. Houssais et al. [20] found their laminar Couette flow experiments to

match the Boyer et al. model, but they investigated creeping motion of the particle beds

at very large time scales. In this chapter, we will provide our own contributions to the

community for laminar flows using phase-resolved simulations. First we will describe the

rheological frameworks in more detail and briefly discuss existing rheology models. Then

we will calculate the local rheology from our own simulations of a pressure-driven over a

particle bed and compare our results to the models and experiments.

8.2 Description of rheology

8.2.1 Effective viscosity vs. µ(I)

Researchers have described particle/fluid mixtures within two different frameworks.

The first, used by Morris and Boulay [121], describes the mixture shear stress, τ , using

an effective shear viscosity, ηs:

τ = ηs(φ)ηf γ̇, (8.1)

where ηf is the fluid viscosity and γ̇ is the shear rate. These authors also describe the

particle pressure, pp, using an effective normal viscosity, ηn:

pp = ηn(φ)ηf γ̇. (8.2)
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These relationships assume that the effective viscosity depends only on the local volume

fraction of particles, φ, and have been written here assuming a one-dimensional flow. In

general, the mixture stress tensor, Π, is given by

Π = −pI + 2ηf γ̇ + Πp, (8.3)

where p is the isotropic fluid pressure, I the identity tensor, γ̇ = 1
2
(∇u + (∇uT )) the

shear rate tensor, and Πp the stress tensor contributed by the particles [21]. The particle

pressure is given by pp = −1
3
tr(Πp), though in practice, it is often measured as pp = Π22.

For simple shear flows, we can establish that τ = Π12. We can then obtain (8.1) from

(8.3) by letting ηs = 1 + ηs,p and assuming that Πp,12 = ηs,pηf γ̇.

On the other hand, Boyer et al. [22] and Aussillous et al. [19] used the µ(I) framework,

which relates the shear stress,

τ = µ(Iv)pp, (8.4)

to the particle pressure, pp, where µ is a macroscopic friction coefficient describing the

fluid/particle mixture. The other constitutive relationship is for the particle volume

fraction,

φ = φ(Iv). (8.5)

These two relationships state that the friction coefficient and particle volume fraction are

functions of the viscous inertia number

Iv =
ηf γ̇

pp
, (8.6)

which is a dimensionless number relating the viscous shear stress, which causes the par-

ticles to slide past one another in uniform rows, to the particle pressure, which locks
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the particles into tighter packing fractions. For large inertia numbers, particles follow

ballistic trajectories, whereas for small inertia numbers, particles tend to maintain static

contacts with their neighbors. This framework originated in the granular community,

where the absence of an interstitial fluid leads to the use of the granular inertia number,

I =
γ̇Dp√
ρppp

. (8.7)

Cassar et al. [126] and Trulsson et al. [127] describe that the transition from the granular

to the viscous inertia number depends on the Stokes number St = ρpγ̇D
2
p/ηf , where a

high Stokes number corresponds to a granular regime. Trulsson et al. [127] found that

particle collisions account for the stresses in the granular regime, whereas viscous forces

account for the stresses in the viscous regime. As shown from the x-momentum stress

balances in the previous chapter, our simulations reside in the viscous regime.

Boyer et al. [22] explained the equivalence of the two frameworks. To show this, we

can rewrite (8.4) and (8.6) as

τ =
µ(Iv(φ))

Iv(φ)
ηf γ̇ (8.8)

and

pp =
1

Iv(φ)
ηf γ̇. (8.9)

Thus, in terms of the effective viscosity,

ηs(φ) =
µ(Iv(φ))

Iv(φ)
(8.10)

and

ηn(φ) =
1

Iv(φ)
. (8.11)
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Though an equivalence exists, it is not always straightforward to transfer models from

one framework to the other. In the next section, we present a few existing models.

8.2.2 Rheology models

Many authors have developed rheological models based on a few theoretical principles

with empirical constants to fit experimental data [118, 120, 128, 121, 22]. The general

idea is that ηs → 1 as φ → 0 and ηs → ∞ as φ → φm, where φm is the maximum

packing fraction at which point the particles become locked in a structure that does

not allow them to slide over one another. In practice, various authors have used the

maximum packing fraction as another parameter to be tuned. Boyer et al. [22] found

φm = 0.585 to be the maximum volume fraction at which their suspensions could be

sheared. Morris and Boulay [121], on the other hand, use φm = 0.63 generally based on

the random close packing fraction, but adjust their model to use φm = 0.68 to match the

experiments of Phillips et al. [129]. Stickel and Powell [21] explain that φm can even be

expressed as a function of the shear rate, allowing for a model that depends both on the

shear rate and on the volume fraction. Recent work with dense suspensions suggests that

the maximum packing fraction decreases with increasing strength of frictional contacts

between particles, which can result from rougher particles or higher particle pressures [25].

At the dilute limit (φ → 0), some researchers have developed analytical solutions.

Einstein [113] derived a first-order approximation with

ηs = 1 + [η]φ+O(φ2), (8.12)

where [η] = 5
2

for hard spheres. Batchelor [114, 115] extended this to second order with

ηs = 1 + [η]φ+Bφ2 +O(φ3), (8.13)
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where B = 6.2 for any Brownian suspension and B = 7.6 for non-Brownian suspensions

in a pure straining flow. Other models generally try to obtain the behavior of (8.12) at

the dilute limit. One such model is that of Krieger and Dougherty [120]:

ηs =

(
1− φ

φm

)−[η]φm

. (8.14)

Another is that of Morris and Boulay [121]:

ηs = 1 +
5

2
φm

(
1− φ

φm

)−1

+Ks

(
φ

φm − φ

)2

(8.15)

ηn = Kn

(
φ

φm − φ

)2

, (8.16)

where the values Ks = 0.1 and Kn = 0.75 were obtained from wide-gap Couette flow

data.

Boyer et al. [22] derived their models for the µ(Iv) rheology:

µ(Iv) = µ1 +
µ2 − µ1

1 + I0/Iv
+ Iv +

5

2
φmI

1/2
v (8.17)

φ(Iv) =
φm

1 + I
1/2
v

, (8.18)

where µ1 = 0.32, µ2 = 0.7, I0 = 0.005, and φm = 0.585 are empirical values obtained

from their shear flow data. This model can readily be transferred to an effective viscosity

framework:

ηs = 1 +
5

2
φ

(
1− φ

φm

)−1

+ µc(φ)

(
φ

φm − φ

)2

(8.19)

ηn =

(
φ

φm − φ

)2

, (8.20)
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where

µc(φ) = µ1 +
µ2 − µ1

1 + I0φ2(φm − φ)−2
. (8.21)

Notice how this model bears a strong resemblance to that of Morris and Boulay [121].

Next, we will compare the simulation results to these models.

8.3 Results

The simulations from the previous chapter involving flow over a sediment bed provide

good cases for studying the rheology because we have already analyzed their stresses. In

particular, we will investigate the rheology of runs Re8, Re17, and Re33, which are

described in Section 7.2.2. Recall that runs Re8 and Re17 are at steady state and that

the beds in runs Re17 and Re33 are fully-mobilized. Thus, these simulations represent

different flow configurations. In the following sections, we will show our rheological

measurements of these simulations under the two frameworks.

8.3.1 Effective viscosity

First, we will look at the effective viscosity of the particle beds. From the stress

balance in Section 7.4.2, we have shown that the shear stress at a given y-coordinate is

τ = 〈τw〉+ fb,x(Ly − y), (8.22)

where τw is the shear stress at the top wall. We have also shown that the bed weight is

in equilibrium with the collision and hydrodynamic stresses, giving us

pp = −(ρp − ρf )g
∫ Ly

y

〈φ〉 dy. (8.23)
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Using these relationships together with the local shear rate obtained from the fluid ve-

locity profiles (Figure 7.12) and the relationships (8.1) and (8.2), we can evaluate the

local effective shear and normal viscosities for each y-coordinate, shown in Figures 8.1

and 8.2, respectively. For each simulation, we obtain a range of effective viscosities and

volume fractions, with the lower viscosities and volume fractions corresponding to the

particle data near the top of the bed, and the higher viscosities and volume fractions

corresponding to the data deeper in the bed near the lower wall. We evaluated the vol-

ume fractions using the method described in Section 6.4 in order to produce smoother

results. These plots also include experimental data from Boyer et al. [22], who used poly-

methyl methacrylate (PMMA) spheres and polystyrene (PS) spheres, and Dagois-Bohy

et al. [130], who used polystyrene spheres. The reported maximum packing fractions are

φm = 0.585 for the Boyer et al. experiments and φm = 0.59 for the Dagois-Bohy et al.

experiments. We used a maximum packing fraction of φm = 0.59 for all our simulation

data based on where our effective viscosities appear to diverge.

In Figure 8.1, the simulation data for the different flow rates collapse onto the same

curve for the effective shear viscosity. However, it does not match the curve following

the model of Boyer et al. or the experimental data. Instead, the simulation data appears

to compare more closely with the model of Morris and Boulay. Interestingly, the data

matches very well with the models tending towards low volume fractions, where the

effective viscosity is expected to approach ηs = 1. This is somewhat surprising, given

that this range of volume fractions exists only across a height of one or two particle

diameters (see Figure 6.6). Therefore, models for the effective shear viscosity do appear

to function on small spatial scales relative to the particle size.

Figure 8.2 shows that the simulation data also collapses for the effective normal vis-

cosity as a function of the volume fraction. However, the data again exhibits a systematic

shift down from the models and experimental data. Though the measured viscosity is
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Figure 8.1: Effective shear viscosity evaluated from time-and-space-averaged simula-
tion results. Colored lines represent simulation data, symbols represent experimental
data, and black lines represent rheology models.
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Figure 8.2: Effective normal viscosity evaluated from time-and-space-averaged simula-
tion results. Colored lines represent simulation data, symbols represent experimental
data, and black lines represent rheology models.
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Figure 8.3: Effective normal viscosity evaluated from time-and-space-averaged simula-
tion results. Colored lines represent simulation data, symbols represent experimental
data, and black lines represent exponential slopes.

about an order of magnitude lower than the experimental data, the behavior at high

volume fractions is similar. To see this more clearly, Figure 8.3 shows the same data with

a different scaling of the volume fraction to emphasize the limit as the volume fraction

approaches the maximum packing fraction. The offset is again clearly visible, but the

scaling between the simulations and experiments is the same, given by the −2 slope,

which corresponds to the exponent in (8.20).

At the lower volume fractions the simulation results differ both quantitatively and

qualitatively from the models. The models were derived, however, using experimental

data at high volume fractions only. Notice that experimental data only exists for φ/φm >

0.7. Thus, we cannot expect the models to behave well in this regime.

We do not know what causes the difference between the simulation data and experi-

ments/models. One possibility is that the rheological measurements of the experiments

are not valid for describing the local rheology of our simulations. Another possibility is
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that the experimental data for neutrally-buoyant spheres is not applicable to situations

involving heavy particles, though Maurin et al.[5] and Houssais et al. [20] found other-

wise. However, these other works were in different regimes, the former in a turbulent

flow and the latter using lighter particles (ρp/ρf = 1.13) at much longer time scales, so

the question remains open for further exploration.

8.3.2 µ(I) rheology

We can alternatively look at the results in terms of the macroscopic friction coefficient

framework, or µ(I) rheology. Using quantities measured from the simulations together

with (8.4) and (8.6), we obtain Figures 8.4 and 8.5, where, again, each point represents

time-and-space-averaged data from one y-coordinate of a simulation. In Figure 8.4, we

do not see the same collapse of the data as we did for the effective viscosities, but the

range of scatter is comparable to the scatter in the experiments. Indeed, the experiments

of Dagois-Bohy et al. [130] differ quite a bit from the PS experiments of Boyer et al. [22],

which were conducted with the same experimental configuration.

The inertia numbers we report here do extend to rather large values (Iv > 1), but

these result from the low particle pressure, pp, which scales inversely with Iv, near the

top of the particle bed. This good match at high viscous inertia numbers is consistent

with the good match of the effective shear viscosity at low volume fractions, since the

models in both cases emulate the Einstein effective viscosity. We did not have to use an

offset pressure P0, as suggested by Houssais et al. [20], to obtain this collapse at high

inertia numbers. We do see, however, that simulation Re8 asymptote towards a static

friction coefficient µs = 0.3 as Iv → 0, which is similar to the value µs = 0.32 measured

in the experiments of Boyer et al. [22]. However, Maurin et al.[5] report that µs can vary

depending on parameters such as the particle specific density or the flow Shields number
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Figure 8.4: Friction coefficient evaluated from time-and-space-averaged simulation
results. Colored lines represent simulation data, symbols represent experimental data,
and black lines represent rheology models.

and that low inertia number conditions can exhibit particle creep, which is a non-local

phenomenon. Houssais et al. [20] also observed creep, resulting in a µ(Iv) plot that did

not converge to a constant value at low Iv, but they were able to take measurements to

observe creep on a time scale much larger than that of the present simulations.

Figure 8.5, which shows the dependence of the volume fraction on the inertia number,

once again shows a collapse of the simulation data to the same curve. Consistent with the

results for the normal effective viscosity results, there is an offset between the simulation

and experimental data, though the qualitative behavior is similar. Houssais et al. [20]

experienced a poor comparison of their results to the φ(Iv) model of Boyer et al., but

their data for this plot did not collapse the way that ours did. Again, the model does

not represent the qualitative behavior at high inertia numbers (low volume fractions).
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Figure 8.5: Volume fraction evaluated from time-and-space-averaged simulation re-
sults. Colored lines represent simulation data, symbols represent experimental data,
and black lines represent rheology models.

8.4 Conclusions

Having examined the particle bed stresses in Chapter 7, we examined the rheology

of the fluid-particle mixture. Despite difference flow conditions, the data for the differ-

ent flows rates collapsed when observing the ηs(φ), ηn(φ), µ(Iv), and φ(Iv) relationships.

There was, however, a systematic offset between our simulation results and the mod-

els/experiments. On the other hand, the simulation results did compare reasonably well

to the effective shear viscosity proposed by Morris and Boulay [121], and to the µ(Iv)

rheology of Boyer et al. [22]. The shear viscosity and friction coefficient of the simulations

also behaved well near the fluid/bed interface where the particle volume fraction was low.

The simulation results also exhibited the same qualitative behavior as the models for the

ηn(φ) and φ(Iv) relationships at high volume fractions.

It is still not clear if the rheological measurements from Couette flows with neutrally-
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buoyant spheres are applicable to our situations involving pressure-driven flows over sed-

iment beds. Relationships for ηs(φ) and µ(Iv) appear to compare much better than those

for ηn(φ) and φ(Iv). In fact, models for the latter relationships still require development

to accurately handle low particle volume fractions. One advantage of the methods we

use, however, is that they can easily be implemented to analyze, for instance, the exper-

imental data of Aussillous et al. [19]. Such investigations could provide further insight

into a rheological description of sediment beds, which could ultimately result in better

predictive models.
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Outlook

Our goal was to make progress towards understanding flows interacting with sediment

beds. To that end, we developed PARTIES, a DNS code that employs the IBM to resolve

the flow around individual particles. Having validated the fluid-particle coupling against

settling sphere experiments, we developed and validated a collision model to accurately

simulate immersed particle-wall collisions while also accounting for situations involving a

bed of particles. Next, we demonstrated the code’s ability to reproduce experiments of a

pressure-driven flow over a sediment bed. Using this same setup, we then established the

tools necessary to analyze the flow in detail: the coarse-graining method for representing

particles as a continuum and the momentum balance for measuring stresses. Finally, we

applied these methods to measure the rheology of these sediment bed flows.

The momentum balance gave us a first glimpse at the mechanisms governing the

time-evolution of a bed of particles. Imbalances between collision forces and the bed

weight led to the bed dilating or contracting, but we still cannot a priori determine the

equilibrium bed height. Instead, we only measured whether or not the system was in

equilibrium. We hypothesized that changing the collisional geometry, i.e. the angles at

which collisions occur, of the bed allows the system to reach equilibrium, but to test
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and quantify this hypothesis we would need to implement other methods, such as a

pair-distribution function to measure the probabilities of particles colliding at different

angles.

We also found that the rheological measurements for three simulations with qualitatively-

different velocity profiles collapsed onto the same curve. Thus, a rheology model might

be able to provide some insight into what causes the velocity profiles to change from

concave to linear to convex. The mismatch between our simulation rheology and experi-

mental rheology requires further investigation. However, our approach to measuring the

rheology can be easily applied to experimental data, which could lead to more insightful

comparisons.

The phase-resolved momentum balance also revealed that fluid-particle hydrodynamic

interactions are most important at the interface between the particle bed and the clear

fluid layer above. Within the bed, particle-particle interactions largely govern the flow.

Thus, we could try to develop a hybrid simulation method that uses the IBM only at the

fluid/bed interface and relies on particle-particle interactions alone within the particle

bed. Such a method could significantly increase the efficiency of the simulations, whose

computational cost arises largely from the IBM.

PARTIES is also not limited to studying flows over sediment beds, but can also be

applied to a wide range of problems that require careful treatment of flows around parti-

cles on a small scale. Furthermore, our group has already begun implementing additional

methodologies to PARTIES, allowing it to simulate cohesive suspensions, active swim-

mers, and interactions between particles and passive scalar fields, such as temperature

or salinity. Thus, we will be able to study a plethora of environmental, biological, and

industrial particle-laden flows.
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Nomenclature

Roman Symbols
Dp diameter of particle p
dn normal contact damping coefficient
dt tangential contact damping coefficient
edry coefficient of restitution for dry contact
F force acting on a particle’s center of mass
Fl IBM force acting on Lagrangian marker l
Fb,p net body force acting on particle p
Fc,p net collision force acting on particle p
Ff,p net fluid force acting on particle p (hydrodynamic plus body force)
Fg,p net buoyancy force acting on particle p
Fh,p net hydrodynamic force acting on particle p
FIBM,p net IBM force acting on particle p
Fr,p net rigid body force acting on particle p
fb body force acting on fluid and particles (pressure gradient)
fIBM IBM force acting on fluid
g gravity; relative velocity in a collision
h grid spacing
hcg grid spacing for coarse-graining method
hf height of fluid layer above particle bed
hm height of layer of moving particles within the bed
hp height of particle bed
I inertia number
I identity tensor
Ip moment of inertia of particle p
Iv viscous inertia number
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Roman Symbols
kn normal contact stiffness
kt tangential contact stiffness
Lx domain length in the x-direction
Ly domain length in the y-direction
Lz domain length in the z-direction
mp mass of particle p
Nl number of Lagrangian markers for particle p
Np number of particles
n normal vector
p fluid pressure (without hydrostatic pressure)
pp particle pressure
qf fluid flux per unit width
qp particle flux per unit width
qv velocity flux per unit width
Rp radius of particle p
r position vector
T torque acting on a particle’s center of mass
Tc duration of collision
Tc,p net collision torque acting on particle p
Tf,p net fluid torque acting on particle p (hydrodynamic torque)
Th,p net hydrodynamic torque acting on particle p
TIBM,p net IBM torque acting on particle p
Tr,p net rigid body torque acting on particle p
t time
t tangent vector
Ul fluid velocity at Lagrangian marker l
Ud
l rigid body velocity of Lagrangian marker l

u x-component of fluid velocity
u fluid velocity
uin speed of particle before contact
uout speed of particle after contact
up translational velocity of particle p
Vl volume of influence of Lagrangian marker l
Vp volume of particle p
v y-component of fluid velocity
W(r) coarse-graining function
w coarse-graining width
Xl position of Lagrangian marker l
x domain coordinate
xp position of particle p
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Greek Symbols
αk, γk, ζk Runge-Kutta coefficients
γ fluid volume fraction
γ̇ shear rate
γ̇ shear rate tensor
Γp surface domain of particle p
Γy control volume surface at a height y
Γw control volume surface at the upper wall of the domain
∆t timestep
δ(r) Dirac delta function
δh(r) 3-D interpolation function
δ1D
h (r) 1-D interpolation function
ζn distance between surfaces in a collision
ζt tangential displacement vector
ηf fluid dynamic viscosity
ηs effective shear viscosity
ηn effective normal viscosity
µ macroscopic friction coefficient
µf fluid dynamic viscosity
µs coefficient of static friction
ν Poisson’s ratio
νf fluid kinematic viscosity
Π fluid/particle mixture stress tensor
Πp particle stress tensor
ρf fluid density
ρp particle density
σ stress tensor
τ fluid/particle mixture shear stress
τ hydrodynamic stress tensor
τw shear stress at the upper wall
φ particle volume fraction; pressure correction variable
φm maximum particle packing fraction
ϕ level-set function
ψin impact angle
ψout rebound angle
Ωp volume domain of particle p
ωp angular velocity of particle p
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Other Symbols
∇(·) gradient operator
∇ · (·) divergence operator
∇2(·) Laplace operator
| · | absolute value
|| · || Euclidian norm
〈·〉 averaging operator in the streamwise and spanwise directions
· averaging operator in time

Subscripts
cp property at contact point of two surfaces in a collision
CV subdomain of the control volume
i, j, k property at grid cell (i, j, k) of the Eulerian mesh
l property at Lagrangian marker l of particle p
n normal
p property related to particle p
q property related to particle q
ref reference variable
t tangential
x x-component of a vector
y y-component of a vector
z z-component of a vector

Superscripts
+ property of the fluid outside particles
− property of the fluid inside particles
cg coarse-grained quantity
k Runge-Kutta substep
T vector/tensor transpose

Abbreviations
ACTM Adaptive Collision Time Model
DEM Discrete Element Method
DNS Direct Numerical Simulation
IBM Immersed Boundary Method
PARTIES our code (PARTicle-laden flows via immersed boundarIES)
RHS right-hand side
RK Runge-Kutta
RP repulsive potential
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Parallelization of particles

B.1 IBM forcing

When a particle overlaps with a processor boundary, it encounters the problem of

extending beyond the reach of the information its host processor possesses. For example,

a particle whose center is on a processor boundary has half of its volume on one processor

and half on the other. The host processor could evaluate the fluid forces acting on this

particle only if it had enough ghost nodes to span the particle radius, which is impractical

for most simulations of interest, where the grid resolution has at least 20 grid cells per

diameter.

Instead, we implement a strategy in which each processor evaluates the IBM forces for

the portion of the particle contained within its domain. Consider the particle shown in

Figure B.1, which is owned by Processor 0 yet extends into Processor 1. The Lagrangian

markers are indicated by black and gray dots, with two markers highlighted in red, which

will be our example markers. The two important operations involving the Lagrangian

markers are interpolation of the fluid velocity onto the markers, given by (3.2), and

spreading of the Lagrangian forces onto the fluid field, given by (3.4). To minimize the
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Figure B.1: A particle, owned by Processor 0, crossing the boundary with Processor
1. The interpolation and spreading operations are shown from the viewpoints of
(a) Processor 0 and (b) Processor 1. Lagrangian markers that are close enough to
influence the local velocity field are colored black, while those that have no effect are
colored gray. For two markers colored red, the radius of influence due to the delta
function is given by the dashed circles. The cell velocities (horizontal arrows for the
u-velocity and vertical arrows for the v-velocity) influenced by the red markers are
also shown and colored blue if owned by the local processor and green if ghost cells.

number of ghost nodes and prevent double-counting of forces, we do the following:

1. The interpolation step (3.2) is conducted for all markers that are within “near” the

processor, i.e. within the radius of the delta function. These markers are colored

black for the respective processors in Figure B.1.

2. Correction forces are calculated for all of these markers according to (3.3).

3. Correction forces are spread back to the Eulerian grid according to (3.4). This

spreading only affects the processor’s local grid points, indicated by the blue points

in Figure B.1.

4. Correction forces are applied to the particle according to (3.5), but only if the

marker is contained within the processor’s boundaries.
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As an example, consider the top red point in Figure B.1, which is contained within

Processor 0. According to the method mentioned above, we would interpolate the velocity

field onto this point, using both local velocities (colored in blue) and ghost cell velocities

(colored in green). Then, we evaluate the IBM force from the mismatch between the

interpolated velocity and the rigid body velocity. Next, we would spread this force onto

just the local velocity field, indicated by the blue points. Finally, Processor 0 would also

add this force to FIBM,p, the total IBM force acting on the particle, because this point is

contained within its boundaries. Processor 1, on the other hand, would also interpolate

the velocity field and evaluate the correction force for the same point using its ghost cells.

Processor 1 would then spread the force onto its blue velocity nodes, but it would not

add the force to FIBM,p because the marker is not located within its boundaries.

The same procedure would be carried out for the lower red point in Figure B.1. Both

processors would interpolate the velocity field from their respective blue and green points,

evaluate the correction force, then spread the force onto their local blue velocity points.

Processor 1 alone would then add the force to FIBM,p because this point is located within

its boundaries. This force is later added back onto Processor 0 when all these forces are

reassimilated. This strategy thus ensures that the local velocity field is correctly modified

by the Lagrangian markers and that the IBM force on the particle is not double-counted

for markers at the boundary.

B.2 Particle communication

In order to move particles between processors and evaluate forces from collisions and

the IBM, particles are moved within their lists in a systematic way, as shown in Figure B.2.

In this section, a special font is used for variable and function names that are used within

PARTIES. Shown is the perspective from Processor 0, where the left-hand column shows
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Figure B.2: Communication routine by which the total force from all Lagrangian
markers acting on a particle is calculated, from the perspective of Processor 0.
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the progress of the particle list p_mobile_list, while the right-hand column shows the

progress of the foreign particle list p_list_foreign. Particles present within each list

are colored black, while those that are absent are dashed gray. At first, only “local”

particles are present on Processor 0, but a call to Particle_MPI_update() communi-

cates “foreign,” or neighboring, particles into the list. Calling Lagrangian_force()

then evaluates the forces on the local markers, which are shown in blue, as explained

in Appendix B.1. The mobile particle list is then separated into local and foreign

lists, p_mobile_list and p_list_foreign, respectively, through calls to the functions

Particle_list_copy() and Particle_list_remove(). Communicating the foreign list

with Particle_MPI_update() then adds particles from Processor 1 to the list, where the

forces on the green markers were evaluated. The function Lagrangian_collect_forces()

then adds the green marker contributions to the blue marker contributions for the local

particle. The result is that the total force acting on the top particle is evaluated on

Processor 0. The same procedure is performed on Processor 1, where the total force is

evaluated for the bottom particle.

B.3 Collisions

Collisions also require special treatment with multiple processors to ensure that they

are evaluated for all cases of overlapping particles, but not double-counted. To pre-

vent double-counting, we implemented collision ownership based on the point of contact.

Consider the collisions between six particles shown in Figure B.3. If the contact point,

indicated by the open circle at the intersection of two particles, is within a processor’s

boundaries, then it is responsible for calculating that collision. The different particle

lists should all be checked: local-local, local-foreign, and foreign-foreign collisions are all

possible. Processor 0 is responsible for all three collisions between the three particles in
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Figure B.3: Collision of a groups of particles from the perspective of (a) Processor 0,
(b) Processor 1, (c) Processor 2, and (d) Processor 3. For the respective processors,
black circles are local particles, gray circles are foreign particles, and dotted circles
are unknown (non-communicated) particles. Black lines with open circles indicate
collisions owned by the processor, while gray lines indicate possible collisions that
were determined to be owned by another processor. Dashed lines indicate local-local
collisions, dash-dot lines indicate local-foreign collisions, and dotted lines indicate
foreign-foreign collisions.
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the upper-left corner, which involve local-foreign and foreign-foreign collisions. Processor

1, meanwhile, is only responsible for a single local-local collision. Processors 2 and 3, on

the other hand, are aware of other collisions occurring between particles in their lists, but

have determined that they do not own all of those collisions. Wall collisions, however,

only need to be evaluated for local particles.
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Collision modeling

C.1 Definitions for particle-particle and particle-wall

collisions

In order to discuss collisions in a general manner, we provide definitions for several

variables that describe the contact. Some definitions will depend on whether the inter-

action is between particle p and a wall (particle-wall interaction, or P-W) or between

particle p and particle q (particle-particle interaction, or P-P). For most of the defini-

tions, collisions between a fixed particle and a mobile particle are handled identically to

particle-particle collisions, unless indicated otherwise (particle-fixed, or P-F).

• Reff – effective radius

Reff =
RpRq

Rp +Rq

(P-P) (C.1a)

Reff = Rp (P-W) (C.1b)
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• meff – effective mass

meff =
mpmq

mp +mq

(P-P) (C.2a)

meff = mp (P-W, P-F) (C.2b)

• xw – point on wall closest to particle

• n – unit vector normal to the surface of contact, points from xp to xq (P-P) or

directly towards the wall (P-W)

n =
xq − xp
||xq − xp||

(P-P) (C.3a)

n =
xw − xp
||xw − xp||

(P-W) (C.3b)

• ζn – distance between surfaces of the two bodies (negative value indicates overlap)

ζn = ||xq − xp|| −Rp −Rq (P-P) (C.4a)

ζn = ||xw − xp|| −Rp (P-W) (C.4b)

• xcp – location of contact point between surfaces, halfway between surface overlap

(P-P)

xcp = xp +

(
Rp +

ζn
2

)
n (P-P) (C.5a)

xcp = xw (P-W) (C.5b)

• Rp,cp – radius of particle p with respect to the contact point

Rp,cp = ||xcp − xp|| (C.6)
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• g – relative velocity between particle centers of mass

g = up − uq (P-P) (C.7a)

g = up (P-W) (C.7b)

• gcp – relative velocity of surface contact point

gcp = g +Rp,cp(ωp × n) +Rq,cp(ωq × n) (P-P) (C.8a)

gcp = g +Rp,cp(ωp × n) (P-W) (C.8b)

• gn,cp – component of gcp normal to surface

gn,cp = (gcp · n)n (C.9)

• gt,cp – component of gcp tangent to surface

gt,cp = gcp − gn,cp (C.10)

C.2 Calculating the normal contact model coefficients

In order to obtain the stiffness and damping coefficients kn and dn, Ray et al. [90] use

nonlinear transformations and a series expansion of (4.7) to yield the following algebraic

expressions:

λ =
1

α2τ 2
c,0

(
−1

2
Cη +

√
1

4
C2η2 + α2τ 2

c,0η

)
, (C.11a)
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t∗ =
Tc
τc,0

√
1− Aλ−Bλ2, (C.11b)

dn =
2λmeff

t∗
, (C.11c)

and

kn =
meff√
uint5∗

, (C.11d)

where A = 0.716, B = 0.830, C = 0.744, α = 1.111, and τc,0 = 3.218 are constants.

The parameter η = (ln edry)
2 accounts for the restitution coefficient, and we measure the

impact velocity to be uin = gn,cp · n at the first occurrence of ζn ≤ 0.

C.3 The tangential displacement vector

Tangential models based on spring systems require a displacement as defined by (4.9),

which represents the accumulated relative motion between two surfaces We calculate ζt

in a discrete sense as follows:

ζ̃t = ζk−1
t −

(
ζk−1
t · n

)
n (C.12a)

ζ̂t =
||ζk−1

t ||
||ζ̃t||

ζ̃t (C.12b)

ζkt = ζ̂t + 2αk∆tgt,cp. (C.12c)

Equations (C.12a) and (C.12b) rotate the displacement from the previous timestep onto

a plane tangent to the two surfaces. Luding [95] implemented this rotation to account

for the change in reference frame that can take place between two timesteps. Without

this rotation, the linear spring could contribute to the normal force acting between two

particles.
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Furthermore, when the two surfaces slip according to the Coulomb friction criteria,

the displacement vector should not grow as the two surfaces continue to slide past one

another. Instead, we reset the displacement to that which achieves the Coulomb friction

force:

ζt = −||µFn||t + dtgt,cp
kt

if ||Ft,LS|| > ||µFn||. (C.13)
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[12] M. H. Garćıa, Sediment Transport and Morphodynamics, in Sedimentation
Engineering, pp. 21–163. American Society of Civil Engineers, Reston, VA, may,
2008.

[13] J. M. Buffington and D. R. Montgomery, A systematic analysis of eight decades of
incipient motion studies, with special reference to gravel-bedded rivers, Water
Resources Research 33 (aug, 1997) 1993–2029.

[14] T.-J. Hsu, J. T. Jenkins, and P. L.-F. Liu, On two-phase sediment transport: sheet
flow of massive particles, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 460 (aug, 2004) 2223–2250.

[15] D. Berzi and L. Fraccarollo, Intense sediment transport: Collisional to turbulent
suspension, Physics of Fluids 28 (feb, 2016) 023302.
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[28] B. Vowinckel, T. Kempe, and J. Fröhlich, Fluidparticle interaction in turbulent
open channel flow with fully-resolved mobile beds, Advances in Water Resources
72 (oct, 2014) 32–44.

[29] A. G. Kidanemariam and M. Uhlmann, Interface-resolved direct numerical
simulation of the erosion of a sediment bed sheared by laminar channel flow,
International Journal of Multiphase Flow 67 (dec, 2014) 174–188.

[30] S. Tschisgale, T. Kempe, and J. Fröhlich, A non-iterative immersed boundary
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[67] C. Santarelli and J. Fröhlich, Direct Numerical Simulations of spherical bubbles in
vertical turbulent channel flow, International Journal of Multiphase Flow 75 (oct,
2015) 174–193.

[68] F. Lucci, A. Ferrante, and S. Elghobashi, Modulation of isotropic turbulence by
particles of Taylor length-scale size, Journal of Fluid Mechanics 650 (may, 2010)
5.

[69] F. Picano, W. P. Breugem, and L. Brandt, Turbulent channel flow of dense
suspensions of neutrally buoyant spheres, Journal of Fluid Mechanics 764 (2015)
463–487.

[70] S. Balachandar and J. K. Eaton, Turbulent Dispersed Multiphase Flow, Annual
Review of Fluid Mechanics 42 (jan, 2010) 111–133.
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