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Abstract

Essays on the Continuous Double Auction in General Equilibrium

by

Brett Williams

The continuous double auction (CDA) has found itself in a state of ubiquity in today’s

market landscape. Such presence has motivated a vast literature on the double auction,

spanning theoretical, experimental and empirical works alike. Despite the century or

so of research into the underpinnings of the double auction and its many variations,

much is left to discover in terms of convergence and its determinants. This disser-

tation investigates the driving forces of the continuous double auction institution, as

well as mechanisms for equilibrium-achieving trader behavior, all set in simple general

equilibrium settings.

Chapter 1 presents a model of zero intelligence trading in the continuous double

auction, though set in a general equilibrium economy and unconstrained to the point of

reaching a lower level of ‘zero’ than prior literature. Much like Gode and Sunder (1993),

the model’s intent is not to give a prescription for what traders do in the world, but to

better understand the driving power and mechanisms underlying the CDA in a more

complex environment. To fully understand the implications of the model, the institution

and the economic setting, I simulate several variations of the market hundreds of times.

Chapter 2 pushes further into the wilderness of bounded rationality, question-

ing how price accessibility in a CDA impacts trader behavior. Do they respond to

orders being posted and traders being made, and if so, how? To investigate, I run a

ix



set of laboratory experiments which vary the accessibility of prices in the orderbook

and transaction history. I pair the experiment with another general equilibrium adap-

tation of a classic CDA agent-based model (Gjerstad and Dickhaut (1998)), one which

assumes traders perfectly choose orders based on their beliefs on how acceptable prices

are. Chapter 3 postulates a trader behavior model which is able to encapsulate the

models of Chapter 1 and 2, and also provide one mapping of the intermediate levels of

minimal intelligence between them. In addition to holding beliefs on prices, traders also

abide by reservations that allow for disequilibrium trade, and select orders imperfectly

via logit choice.
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Chapter 1

Zero Intelligence in an Edgeworth Box

1.1 Introduction

In a discussion on economic modeling and agent behavior, J. Doyne Farmer

recently suggested “the main stream (of models) for the last 50 years has entered the

wilderness of bounded rationality through the rationality gate... there have been a

few who have entered through the other (zero intelligence) gate... though we need

‘tunnelers’ from both directions and we don’t have enough coming from the minimal

intelligence direction.” (2020)1 Agent-based models have been a prominent process by

which researchers have entered the zero/minimal intelligence gate. The study of trader

behavior and price formation in markets, including the continuous double auction (CDA)

institution, can especially benefit from such simple, parsimonious modelling given how

easily a market’s underpinnings can become over-complicated.

Gode and Sunder (1993) postulated a model for double auction behavior which

1This quote is from The First Conference on ZI/MI Intelligence Agents in 2020, in a discussion on
agent-based modelling in economics.
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enters through the gate of no intelligence in a quite literal sense, introducing ”zero

intelligence” traders to the literature.2 Zero intelligence traders provide a counter to the

traditional rational traders who hold perfect utility maximizing capabilities when placing

orders. Instead, prices are randomly chosen within the set of feasible prices [0,M ],

or some no-loss constrained subset of this. Both the partial equilibrium and general

equilibrium (Gode, Spear and Sunder(2004)) versions of the model provide glimpses

into the natural equilibrating tendencies of the CDA. However, the models rely on a

few restrictive assumptions, either institutional or behavioral in nature.

This paper postulates a more generalized lower-bound model of zero intelli-

gence in a continuous double auction set in the general equilibrium environment of an

Edgeworth box. In continuity with Gode et al. (2004) (GSS henceforth), agents act

as two-way traders in a simple two good economy, participating in a series of market

periods where their endowments are reset at the beginning of each period. The main de-

parture of this paper’s model lies in the intelligence given to traders when “randomly”

placing orders. GSS provides traders with three major choice tendencies: (1) a con-

straint restricting traders from selecting orders which would allow them to lose utility,

(2) an order choice method which has prices chosen via a uniform draw over a set of or-

der vector slopes (in radians3), and (3) a set step-size on the length of the order vector.

The model presented in this paper relaxes all of the constraints, thus imparting traders

with a much lower, truer level of ‘zero’ intelligence. Traders instead select bundles over

2Hurwicz et al. (1975) was likely the first proposal of minimal or zero intelligence in a pure exchange
setting. Many thanks to John Ledyard for the reference.

3A uniform draw over this set places substantially more weight on lower prices. For example if
(π/2, π) is the feasible set of angle choices, half of the support yields prices between 0 and 1, while the
other half covers (1,∞).
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the set of feasible ‘next’ allocations on the side of entry, via uniform draw from a fine

lattice.

A stream of other agent-based models emerged in the late 20th century along-

side Gode and Sunder (1993). Wilson’s (1987) game theoretic venture, while informa-

tive, showed the limitations complexity places on a strategic approach to modelling CDA

trader behavior. Friedman (1991) and Easley and Ledyard (1993) both posited non-

strategic models with variations on a reservation price mechanism, yet differed in the

dynamics of interest. Friedman studied within-period pricing dynamics, while Easley

and Ledyard focused on across-period dynamics. Gjerstad and Dickhaut (1998) pro-

posed a belief-based model shortly after, though moving away from zero intelligence

towards higher complexities of trader intelligence. Each model in this group is oriented

in a partial equilibrium setting; very few models (or even non-theoretical works) have

focused on general equilibrium dynamics in these simple CDA markets (Gode and Sun-

der (2004) and Crockett et al. (2008a) are a couple such papers). This paper adds to

the general equilibrium sub-literature, with the hope of growing the discussion moving

forward.

Much research has addressed the assumptions made in Gode and Sunder

(1993). Cliff and Bruten (1997a) provide insight into the funneling power of the mar-

kets containing strictly decreasing demand schedules and increasing supply schedules,

while Gjerstad and Shachat (2021) contends the convergence of prices in ZI simula-

tions and calls into question how ‘harmless’ the no-loss constraint really is. The second

main contribution of this paper lies in an expansive investigation into how impactful

the model assumptions, market rules and setting attributes are on market efficiency

3



when supposedly unimpeded by trader behavior. At the model level, I test variation

in assumptions over the set of feasible orders and the choice process placed over them.

Each of the assumptions made, both alone and interacted with one another, crucially

impact the behavior of the traders and the performance of the market. Evidence of

convergence to equilibrium predictions is increased across the board when enforcing any

of the assumptions.

Section 2 defines the institution and environment in focus, while Section 3

recounts the zero intelligence models of Gode and Sunder (1993) and Gode, Spear and

Sunder (2004). An alternate general equilibrium model of zero intelligence is postulated

in Section 4. Section 5 maps out and analyzes a vast simulation investigation into the

underlying determinants of the model and environment. Section 6 concludes.

1.2 Double Auction

The double auction is one of the most ubiquitous institutions used in markets

around the world. The most common variety is the continuous double auction. In this

section, I’ll give a brief formal overview of the institution.

A double auction implies at least one agent attempts to buy some amount of a

good, while another agent wishes to sell said good. Each agent provides the price he is

willing to pay or receive, respectively. If the payment (or bid) made by the buying agent

exceeds the price requested (ask) by the seller, the agents transact the good. There are

many conventions for determining the price to be paid; the one selected in this paper,

and many other market focused papers, is the crossed price convention. In this case,

4



whoever posted the price first between the two transacting agents has his price granted.

The continuous part of this institution is the ability for any agent in the market

to place an order at any given time, regardless of whether an order exists on the other

side of the market or not. Orders can also be cancelled or replaced at any moment in

time. Two main restrictions are generally imposed, however. First, the agent must be

able to completely fill their part of a transaction at the time of crossing, meaning he

cannot post an ask for more units than he currently owns or a bid for a price at which

he is not liquid. The second restriction is dependent on the timing convention of orders.

The CDA studied in this paper does not allow for expiration times on orders, meaning

an order only leaves the market if cancelled, replaced or filled. As such, the market

restricts the trader to at most one order on each side of the market at any given time.4

1.3 Zero Intelligence

Partial Equilibrium

Gode and Sunder (1993) took the pattern of reducing intelligence in non-

strategic trader behavior models for the double auction to the limit, creating the “zero

intelligence” model. While most of the related models assume some kind of history- or

time-dependent driving force behind pricing decisions, ZI agents pay no mind to the

state or history of the market. The model can be briefly summarized as follows.

Traders are given roles as either buyers or sellers. Buyers all hold redemption

value schedules {r1, .., rnb
} where nb denotes the number of units the buyers hold at the

4In markets with limit orders that contain expiration times, order-shredding (or submitting multiple
limit orders with staggered expirations) is feasible.
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beginning of the market. Sellers place orders to recover unit costs for their ns units of

the single good, following the cost schedule {c1, .., cns}. In the base form of the model,

all traders choose their order price from U [0,M ] via i.i.d. draws. A preferred version,

ZI-Constrained (ZI-C), suggests that agents participate in a market which enforces order

placement conducive with unit resale at no-loss to the agents. This means buyers draw

from U [0, ri] and sellers draw from U [cj ,M ].

Orders are restricted to single unit quantities and must reduce the best bid-ask

spread to be placed. Units are transacted in order (i.e. lowest redemption value and

highest cost first). After a bid crosses an ask, or vice versa, the orderbook is reset.

Traders are held from re-entry until all traders have traded their kth unit. Simulated

markets with these traders are run until all intramarginal units have been cleared, elim-

inating one of the two main drivers of inefficiency.5

General Equilibrium

Gode, Spear and Sunder (2004) returned to the ZI paradigm about a decade

later to bring zero intelligence to general equilibrium settings (I refer to this model as

GSS henceforth). Their environment of choice was the simple two-good Edgeworth box.

Adjustments to the original partial equilibrium model are described below.

Traders may participate on either side of the market, and in fact, participate on

both sides simultaneously at each entry. Instead of redemption value and cost schedules,

traders are induced with Cobb-Douglas preferences. Utility function parameters and

initial endowments determine whether traders are more inclined to buy or sell. As in

5The other main driver being the trade of extramarginal units in place of intramarginal ones.
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ZI-C, traders obey a no-loss constraint in which they will only place orders above their

current indifference curve.

The price selection process is predicated on choosing some angle (i.e. relative

price) that satisfies the no-loss constraint. For example, with no restriction on quantity,

the angle may lie anywhere in [MRSc, 1/2π] in radians, where MRSc is the marginal

rate of substitution at the trader’s current allocation. The step-size of the order in

the Edgeworth box, however, is restricted. The length of the order vector is set via

r =
√
x2 + y2, where r is constant for the duration of the market across all traders.6

This means the price choice space is restricted further, such the lowest price is that of

the order vector which lies secant to the trader’s current indifference curve on the side

of entry.

1.4 Model

I present an alternative version of zero intelligence in the Edgeworth box.

While the flavor of the 1993 and 2004 models remains, the majority of their assumptions

are relaxed to consider more generalized environments. The model rests in a two-good

(X and Y ) Edgeworth box with two types of traders, with rule and trader behavior

adjustments as follows.

Traders are induced with constant elasticity of substitution (CES) preferences

u(xi, yi) = c∆((a∆xi)
r∆ + (b∆yi)

r∆)
1

r∆ (1.1)

which, depending on r, can represent other popular preferences such as Cobb Douglas

6x and y are the quantity of x and y to be traded in the event the order is crossed.
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(r → 0), Leontief (r → ∞) or perfect substitutes (r = 1). Each trader can be either a

natural buyer or natural seller. As in GSS, such a distinction is determined via the utility

parameters (here c, a, b and r) and initial endowments. Note that ∆ denotes the type

of trader, with ∆ = b for natural buyers and ∆ = b for natural sellers. Alternatively, a

natural buyer (seller) can be described as a trader whose marginal rate of substitution is

greater (less) than the competitive equilibrium (CE) price when evaluated at his initial

endowment.

Traders randomly enter the market one at a time. When a trader enters, he

determines the side he will place an order on by flipping a weighted coin. The weights

are the relative areas7 on either side of the market available for order placement.8 The

trader then uniformly randomly chooses an (x, y) bundle from the feasible set. As no

no-loss constraint is imposed on the trader, this feasible set can be defined as follows

for bids and asks:

Buy : [Xcurrent,i, Xendow,b +Xendow,s]× [0, Ycurrent,i] (1.2)

Sell : [0, Xcurrent,i]× [Ycurrent,i, Yendow,b + Yendow,s] (1.3)

Xcurrent,i is the X holding of trader i in his current allocation, and Xendow,b +Xendow,s

denotes the total X holding of a buyer-seller pair at the inception of a market.

The exchange does not enforce a spread reduction rule, allowing any order

7Area, here, is the size of the rectangle representing all bundles that satisfy a weak improvement in
one good and a weak loss in the other (i.e. a proper bid or ask).

8This is admittedly a mild improvement in intelligence over the natural choice of an evenly weighted
coin flip. First, this choice is made to help avoid runs of entries on the same side of the market (especially
in certain treatments of the simulation panel to be described in Section 1.5). Second, I argue that this
decision imbues far less control over the capabilities of the traders and the convergence of the market
compared to enforcement of an assumption like a no-loss constraint.
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choice to be post-able to the orderbook. In the same vein, the orderbook is not reset

upon an order crossing, meaning the book lives the length of the market trading period.

1.5 Simulations

In this section, I present a panel of simulations. Each assumption or rule

housed in the model, market, and/or setting is incrementally varied, yielding market

outcomes for each potential iteration. The reason for such an expansive investigation

is two-fold: (1) it provides a proper test of the model presented in this paper, and (2)

it creates the most complete test of the zero intelligence paradigm in a single paper.

Below, I give the design for the panel, followed by analysis of each environment at the

market level.

1.5.1 Design

Two defining assumptions of the model are primed for variation. First, the

set of admissible orders is determined by the inclusion/exclusion of a (budget) no-loss

constraint. Prior research (Gjerstad and Shachat (2021)) has pointed out the importance

of the budget constraint in funneling ZI-C traders to equilibrium. Second, the selection

process is one of the main deviations in this model from Gode, Spear and Sunder. The

sequential process of angle (price) and quantity selection is tested against the likely less

advantageous lattice choice method.

With regards to the market, Gode and Sunder (1993) made three distinct

choices about the rules defining their double auction: (1) orders must be for a single
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unit,9 (2) the orderbook is refreshed after any clearing takes place, and (3) trades are

priced at that specified in the earlier of the crossing orders. The first two present

differences in ZI and the model presented in this paper, and thus are prime variation

candidates. The third assumption matches that of this paper, and is also less interesting

to test10; as such, it is not tested here. A major assumption made in ZI (as well as a vast

array of other such models) which could be considered either feature of the institution

or choice of the model is the spread reduction rule. I test the (lack of) enforcement of

such a rule.

Wholly, these factors combine to create a full factorial (simulated) experimen-

tal design with a total of 25 treatments. The five main effects and and 27 interactions

are tested in Section 1.5.2, with the version described in Section 1.4 representing the

control/holdout. Each of the ‘factors’ in the design are named for analysis as follows:

spread reduction (SR), single unit (SU), lattice/angle (LA), orderbook reset (OBR),

and no loss (NL).

For each of the 32 variations, I run 250 simulations. Each simulation has 3600

market entries across 12 rounds. Eight computerized traders make up each market, half

induced to be natural buyers and half as natural sellers.11 At the beginning of each

round, the endowments of each simulated trader is reset, as is the exchange history.

9In GSS (2004), this is amended to have the order vector maintain some uniform length, such that
the step-size on the market path is fixed. Assuming single unit order size in general equilibrium can be
thought of as a halfway point between full dominion over order choice, and being constrained to a set
arc of potential orders. Any results found for the single unit restriction can be expected to inflate if a
step-size rule was instead enforced.

10The natural alternative here is an even split between the crossing prices, however this just adjusts
the split of the gains from trade. While it is feasible this could impact trader behavior and potential
shading strategies, zero intelligence traders are incapable of such response, making the factor relatively
uninteresting to test.

11Buyer endowments are (x = 3, y = 23) with utility parameters (c = 0.113, a = 0.825, b = 0.175, r =
0.5). Buyer endowments are (x = 11, y = 3) with utility parameters (c = 0.099, a = 0.6875, b =
0.3125, r = 0.5).
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1.5.2 Analysis

Model Performance

Mean St.Dev.

Price 2.27 1.89
|Price− CE| 1.45 1.86

Alloc. Eff. 0.66 0.17
Dist. Eff. 0.33 0.13
# Trades 20.13 5.18

RMSE 2.05 8.35
SellerMRS 2.03 0.46
BuyerMRS 3.07 0.63

Table 1.1: Outcome means for the main model in its intended form: no spread reduction,
multiple divisible units, lattice choice, no orderbook reset, and no no-loss constraint.

Table 1.1 provides an overview of the model, ZI-G, in its intended form (as

described in Section 4). Each estimate shows the average outcome across the 250 sim-

ulations ran for this state of the model. As shown, the model performs well in price

space. The average round-average price falls within 0.17 units of the general CE price

of 2.44 (though rather imprecisely). Average per-trade deviation in price from CE is

relatively tight, with the majority of prices falling between 1 and 4 units. The root

mean-squared error is moderately acceptable and reports a similar sentiment.

In allocations, the performance of this model variety varies depending on the

statistic. Allocative efficiency, measured as the sum of utility gained relative to the sum

of gains in equilibrium, shows mild convergence at 0.66, while distance efficiency, or

the proportion of the distance from initial endowment to equilibrium traveled by the

market, is quite poor at 0.33.12 The marginal rate of substitution of the traders’ final

allocations can provide another viewpoint on convergence in allocation space. Here, the

12One consolation for these measures is their likely dependence on the length of the market; I report
simulations with much longer-lived periods at the end of the section to check this.
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seller (buyer) MRS reported is the MRS of the final allocation of an aggregated seller

(buyer) agent who aggregates over all natural sellers (buyers) in the market, so as to

appear in a standard Edgeworth box. Table 1.1 reports the round-end MRS for these

aggregated agents. In equilibrium, both measures should equal the general CE price; in

this measure the market performs relatively well, with buyers and sellers lying around

0.5 units away on either side. Thus, while the distance efficiency measure suggests the

market has a long way to travel, the allocative efficiency and MRS measures suggest

the market has moved enough to have realized a majority of the gains from trade.

Panel Investigation

Dependent variable:

Price |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Spread Reduction (SR) −0.298 −0.267 −0.249 −5.930∗∗∗ 7.145∗∗∗ −0.220∗∗∗ 0.029∗∗∗ −0.035∗∗∗ 0.007∗∗

(0.732) (0.732) (6.918) (1.738) (0.108) (0.013) (0.008) (0.012) (0.003)

Single Unit (SU) 12.885∗∗∗ 11.272∗∗∗ 12.008∗ −13.942∗∗∗ 9.230∗∗∗ −2.235∗∗∗ −0.264∗∗∗ 0.636∗∗∗ −0.014∗∗∗

(0.732) (0.732) (6.918) (1.738) (0.108) (0.013) (0.008) (0.012) (0.003)

Lattice/Angle (LA) −0.643 0.208 2.092 23.201∗∗∗ 136.953∗∗∗ −1.161∗∗∗ 0.042∗∗∗ 0.013 0.012∗∗∗

(0.732) (0.732) (6.918) (1.738) (0.108) (0.013) (0.008) (0.012) (0.003)

OB Reset (OBR) 0.857 0.817 2.098 −0.139 −5.112∗∗∗ 0.314∗∗∗ −0.048∗∗∗ 0.041∗∗∗ 0.028∗∗∗

(0.732) (0.732) (6.918) (1.738) (0.108) (0.013) (0.008) (0.012) (0.003)

No Loss (NL) 0.155 −0.816 −1.368 0.352 −18.100∗∗∗ 0.324∗∗∗ −0.715∗∗∗ 1.292∗∗∗ −0.303∗∗∗

(0.748) (0.748) (7.069) (1.738) (0.108) (0.013) (0.008) (0.013) (0.003)

...
Constant 2.268∗∗∗ 1.447∗∗∗ 2.054 14.942∗∗∗ 20.132∗∗∗ 3.155∗∗∗ 2.035∗∗∗ 3.066∗∗∗ 0.656∗∗∗

(0.518) (0.517) (4.892) (1.229) (0.076) (0.009) (0.005) (0.009) (0.002)

Observations 95,424 95,424 95,424 96,000 96,000 95,424 95,422 95,424 96,000
R2 0.024 0.020 0.003 0.019 0.989 0.826 0.464 0.596 0.607
Adjusted R2 0.023 0.020 0.002 0.019 0.989 0.826 0.464 0.596 0.607

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.2: Interaction regression results. First order effects are reported here, the rest
are in tables to follow.

Tables 1.2-1.4 present the treatment analysis of the full factorial design (along

with Appendix A). Each of the five assumptions/rules being tested is given an indicator,

I(rule), with a value of 1 representing the presence of the constraint in the simulations.
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The estimation process is represented by the following interaction design:

Yi = α+
∑

i∈Rules

βiI(i = 1)+
∑

i∈Rules

∑
j∈Rules/{i}

βijI(i = 1)I(j = 1)+ · · ·+ βijklm

∏
i∈Rules

I(i = 1)

(1.4)

The main effects of the model, i.e. first summation from 1.4, is provided in

Table 1.2.13 Prices seem to be more sensitive to interactions of the main assumptions, as

opposed to having only one included. Round-average price, price deviation from CE, and

RMSE all show insignificant effects for all assumptions aside from a constraint imposing

single unit orders. Collapsing the lattice of possible bundles to a subset of bundles

along the line q = 1 naturally increases likelihood of higher prices, yielding the massive

increase in price and price variation when only the SU assumption is imposed. As

might be anticipated, imposing a spread reduction (while leaving all other assumptions

unimposed) seems to funnel activity in the market, leading to a very tight MRS spread

(∼0.10 on either side of the CE price) and a mild, but significant, improvement in

allocative efficiency. From the control, swapping to an angle choice process has a similar

impact on activity, though with a slightly larger efficiency gain and no improvement in

final buyer allocations. Resetting the orderbook in an otherwise unconstrained market

sees the largest gain in efficiency, though a larger spread in final MRS, likely pointing to

less even gains across traders with a few seeing larger gains. Adding a no-loss constraint

on its own seems to be harmful to the success of the market, however this is likely due

to its interaction with the lattice choice method. Forcing bundles to be chosen above

the indifference curve naturally imposes higher likelihoods for prices less likely to result

in trades; as is reflected in the 90% reduction in trade count.

13By construction, the constants report the estimates from Table 1.1.
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The second order interactions are reported in Table 1.3. Much like Table 1.2,

prices see little adjustment (of any significance) aside from a few interesting interactions.

Swapping to an angle choice procedure while SU is imposed (and all other assumptions

relaxed) essentially reverses the massive inflation in prices seen in SU estimates from

Table 1.2. Weak utility improvement imposition in a single unit order market provides

the same regression in prices. Resetting the orderbook in a lattice choice market (with

no other constraints) doesn’t allow for funneling of prices, leading to price inflation.

Adding a second constraint systematically reduces round-average trade counts across

the board, with the lone exceptions both involving orderbook resetting.

Allocation adjustments seem to be the main beneficiary of imposing a second

assumption. All significant estimates except for seller MRS being positive, paired with

all-but-one significant estimates being negative implies convergence in allocation space.

A few act as recoveries, with the damage of orderbook resetting, the no-loss constraint

and single unit orders being reclaimed by inclusions of a second constraint. Angle choice

and spread reduction restrictions are especially effective in progressing NL markets to

a more successful final allocation. Similarly, the vast majority of interactions reflect in

an increase in efficiency. Larger improvements are reflective of reversals for NL markets

mostly, while smaller improvements are most often continuations of efficiency gain in

SR and LA markets.

Third and fourth order interactions are reported in Appendix A.1. Tertiary

interactions (Table A.1) show mostly decays in market success. Most, if not all, of

the improvements seen in Table 1.3 are reversed when adding a third assumption to the

market (assuming the remaining two assumptions are relaxed). As most of the measures
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Dependent variable:

Price |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

...
SR:SU 0.347 0.336 0.267 5.930∗∗ −4.172∗∗∗ 0.226∗∗∗ −0.009 −0.017 0.006

(1.035) (1.035) (9.784) (2.458) (0.153) (0.018) (0.011) (0.017) (0.005)

SR:LA 1.082 1.117 7.618 −20.169∗∗∗ −19.542∗∗∗ 0.159∗∗∗ 0.011 0.020 0.003
(1.035) (1.035) (9.784) (2.458) (0.153) (0.018) (0.011) (0.017) (0.005)

SR:OBR 0.911 0.808 2.823 2.910 −4.815∗∗∗ 0.256∗∗∗ 0.015 −0.028 0.017∗∗∗

(1.035) (1.035) (9.784) (2.458) (0.153) (0.018) (0.011) (0.017) (0.005)

SR:NL 0.156 0.091 0.091 0.237 −4.473∗∗∗ −0.083∗∗∗ 0.441∗∗∗ −0.938∗∗∗ 0.269∗∗∗

(1.046) (1.046) (9.891) (2.458) (0.153) (0.018) (0.011) (0.018) (0.005)

SU:LA −13.252∗∗∗ −11.392∗∗∗ −14.385 −23.201∗∗∗ −71.869∗∗∗ 1.134∗∗∗ 0.141∗∗∗ −0.674∗∗∗ 0.212∗∗∗

(1.035) (1.035) (9.784) (2.458) (0.153) (0.018) (0.011) (0.017) (0.005)

SU:OBR −1.097 −0.987 −1.680 0.139 1.625∗∗∗ −0.315∗∗∗ 0.054∗∗∗ −0.071∗∗∗ −0.025∗∗∗

(1.035) (1.035) (9.784) (2.458) (0.153) (0.018) (0.011) (0.017) (0.005)

SU:NL −11.234∗∗∗ −10.236∗∗∗ −10.908 −0.352 −7.365∗∗∗ −0.244∗∗∗ 0.174∗∗∗ −0.219∗∗∗ 0.086∗∗∗

(1.047) (1.047) (9.899) (2.458) (0.153) (0.018) (0.011) (0.018) (0.005)

LA:OBR 7.055∗∗∗ 7.068∗∗∗ 61.778∗∗∗ −4.222∗ −64.725∗∗∗ −0.388∗∗∗ 0.004 −0.065∗∗∗ 0.038∗∗∗

(1.035) (1.035) (9.784) (2.458) (0.153) (0.018) (0.011) (0.017) (0.005)

LA:NL 0.213 −0.186 −2.006 −35.880∗∗∗ −108.977∗∗∗ −1.817∗∗∗ 0.355∗∗∗ −0.976∗∗∗ 0.464∗∗∗

(1.047) (1.046) (9.893) (2.458) (0.153) (0.018) (0.011) (0.018) (0.005)

OBR:NL −0.855 −0.812 −2.095 0.178 4.852∗∗∗ −0.131∗∗∗ 0.014 0.038∗∗ −0.045∗∗∗

(1.059) (1.059) (10.009) (2.458) (0.153) (0.019) (0.011) (0.018) (0.005)

...
Constant 2.268∗∗∗ 1.447∗∗∗ 2.054 14.942∗∗∗ 20.132∗∗∗ 3.155∗∗∗ 2.035∗∗∗ 3.066∗∗∗ 0.656∗∗∗

(0.518) (0.517) (4.892) (1.229) (0.076) (0.009) (0.005) (0.009) (0.002)

Observations 95,424 95,424 95,424 96,000 96,000 95,424 95,422 95,424 96,000
R2 0.024 0.020 0.003 0.019 0.989 0.826 0.464 0.596 0.607
Adjusted R2 0.023 0.020 0.002 0.019 0.989 0.826 0.464 0.596 0.607

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.3: Interaction regression results for second order interactions. This is a contin-
uation of the regression estimates in Table 1.2.

have one or two seemingly negatively-associated assumptions, and each assumption is

enforced in six of the ten tertiary interactions, a systematic mild decay is not overly

surprising. Quaternary interactions are reported in Table A.2.

Table 1.4, which reports the quinary interaction, provides an interesting con-

nection to the literature. As the GSS model enforces all five assumptions, flipping the

signs in Table 1.4 allows the coefficients to represent the average impact of relaxing a

single assumption in their model. A slight tightening (∼0.17 reduction) of the MRS
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Dependent variable:

Price |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

...
SR:SU:LA:OBR:NL −3.235 −3.403 −33.996 10.169 4.865∗∗∗ 0.170∗∗∗ −0.072∗∗ 0.099∗∗ −0.004

(2.937) (2.937) (27.764) (6.952) (0.431) (0.052) (0.031) (0.049) (0.014)

Constant 2.268∗∗∗ 1.447∗∗∗ 2.054 14.942∗∗∗ 20.132∗∗∗ 3.155∗∗∗ 2.035∗∗∗ 3.066∗∗∗ 0.656∗∗∗

(0.518) (0.517) (4.892) (1.229) (0.076) (0.009) (0.005) (0.009) (0.002)

Observations 95,424 95,424 95,424 96,000 96,000 95,424 95,422 95,424 96,000
R2 0.024 0.020 0.003 0.019 0.989 0.826 0.464 0.596 0.607
Adjusted R2 0.023 0.020 0.002 0.019 0.989 0.826 0.464 0.596 0.607

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.4: Interaction regression results for fifth order interaction. This is a continuation
of the regression estimates in Table 1.2.

spread, along with minimal change in allocative efficiency on average results from a

relaxation of one of the five assumptions. As Table 1.5 will show, however, individual

comparisons reveal relaxing the angle choice provides most of this variation.

Treatment level averages are reported in Table 1.5; each entry being the sum-

mation of the relevant coefficients from Tables 1.2-1.4, A.1 and A.2. For each of the

measures representative of convergence or market success, the best performing treat-

ment’s mean is bolded in black, the worst performing is highlighted in red. SR:SU:OBR

markets performed the worst in price measures, with the mix of lattice-choice-single-

unit price inflation and lack of price funneling (as the orderbook can’t properly age)

results in prices well above CE. A no-loss constraint as the lone assumption produced

round-average prices just 0.02 units away from CE. Average price deviation and root-

mean-squared error were both minimized by an NL market type, though paired with a

spread reduction rule now. NL markets not paired with an angle choice method seemed

to perform poorly in allocation measures, likely due to higher variation in prices and thus

more frequent deviation from the equilibrium path. Markets that are fully restricted,
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Outcome:

SR SU LA OBR NL Price |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff. Dist. Eff.

0 0 0 0 0 2.27 (1.89) 1.45 (1.86) 2.05 (8.35) 14.94 (1.04) 20.13 (5.18) 3.15 (0.68) 2.03 (0.46) 3.07 (0.63) 0.66 (0.17) 0.33 (0.13)

0 0 0 0 1 2.42 (0.61) 0.63 (0.36) 0.69 (0.38) 15.29 (0.87) 2.03 (1.19) 3.48 (1.39) 1.32 (0.28) 4.36 (0.68) 0.35 (0.19) 0.26 (0.15)

0 0 0 1 0 3.12 (3.09) 2.26 (3.05) 4.15 (11.78) 14.8 (1.02) 15.02 (3.38) 3.47 (0.84) 1.99 (0.41) 3.11 (0.54) 0.68 (0.15) 0.34 (0.13)

0 0 0 1 1 2.42 (0.64) 0.64 (0.38) 0.69 (0.40) 15.33 (0.89) 1.77 (0.98) 3.66 (1.49) 1.29 (0.27) 4.44 (0.66) 0.34 (0.19) 0.25 (0.15)

0 0 1 0 0 1.62 (1.78) 1.66 (1.77) 4.15 (21.39) 38.14 (289.29) 157.09 (9.88) 1.99 (0.20) 2.08 (0.57) 3.08 (0.60) 0.67 (0.17) 0.15 (0.16)

0 0 1 0 1 1.99 (0.16) 0.65 (0.11) 0.77 (0.11) 2.61 (0.21) 30.01 (4.69) 0.50 (0.08) 1.72 (0.11) 3.40 (0.18) 0.83 (0.06) 0.60 (0.06)

0 0 1 1 0 9.54 (155.42) 9.54 (155.42) 68.02 (1476.74) 33.78 (210.17) 87.25 (5.77) 1.92 (0.26) 2.03 (0.48) 3.06 (0.53) 0.73 (0.14) 0.16 (0.15)

0 0 1 1 1 1.96 (0.19) 0.80 (0.12) 0.93 (0.13) 2.67 (0.26) 24.39 (3.96) 0.53 (0.11) 1.57 (0.12) 3.65 (0.24) 0.76 (0.08) 0.52 (0.07)

0 1 0 0 0 15.15 (1.53) 12.72 (1.53) 14.06 (1.67) 1.00 (0.00) 29.36 (4.58) 0.92 (0.05) 1.77 (0.24) 3.70 (0.69) 0.64 (0.17) 0.24 (0.08)

0 1 0 0 1 4.07 (0.46) 1.67 (0.43) 1.79 (0.39) 1.00 (0.00) 3.90 (1.55) 1.00 (0.00) 1.23 (0.15) 4.78 (0.40) 0.42 (0.14) 0.24 (0.09)

0 1 0 1 0 14.91 (1.75) 12.55 (1.73) 14.48 (1.99) 1.00 (0.00) 25.87 (3.96) 0.92 (0.05) 1.78 (0.25) 3.67 (0.71) 0.64 (0.18) 0.24 (0.09)

0 1 0 1 1 4.07 (0.47) 1.68 (0.43) 1.80 (0.39) 1.00 (0.00) 3.75 (1.51) 1.00 (0.00) 1.21 (0.15) 4.81 (0.39) 0.41 (0.14) 0.23 (0.09)

0 1 1 0 0 1.26 (0.22) 1.53 (0.11) 1.77 (0.25) 1.00 (0.00) 94.45 (5.23) 0.89 (0.03) 1.95 (0.22) 3.04 (0.22) 0.87 (0.06) 0.53 (0.08)

0 1 1 0 1 1.94 (0.20) 0.72 (0.11) 0.84 (0.12) 1.00 (0.00) 18.41 (1.80) 1.00 (0.00) 1.96 (0.13) 3.05 (0.17) 0.91 (0.04) 0.71 (0.06)

0 1 1 1 0 1.67 (0.28) 1.85 (0.20) 2.43 (0.51) 1.00 (0.00) 71.05 (4.48) 0.90 (0.04) 1.95 (0.22) 3.05 (0.29) 0.84 (0.08) 0.50 (0.10)

0 1 1 1 1 1.99 (0.20) 0.77 (0.11) 0.90 (0.13) 1.00 (0.00) 17.54 (1.73) 1.00 (0.00) 1.91 (0.13) 3.11 (0.17) 0.90 (0.04) 0.69 (0.06)

1 0 0 0 0 1.97 (1.61) 1.18 (1.58) 1.80 (8.77) 9.01 (1.43) 27.28 (5.19) 2.93 (0.52) 2.06 (0.46) 3.03 (0.56) 0.66 (0.17) 0.36 (0.13)

1 0 0 0 1 2.28 (0.32) 0.45 (0.20) 0.53 (0.22) 9.60 (2.29) 4.70 (1.51) 3.18 (0.82) 1.79 (0.35) 3.39 (0.59) 0.63 (0.15) 0.48 (0.13)

1 0 0 1 0 3.74 (13.55) 2.81 (13.54) 6.72 (46.79) 11.78 (1.21) 17.35 (3.31) 3.50 (0.76) 2.03 (0.41) 3.04 (0.50) 0.71 (0.15) 0.35 (0.13)

1 0 0 1 1 2.33 (0.36) 0.52 (0.22) 0.61 (0.26) 11.28 (1.88) 3.34 (0.97) 3.77 (1.08) 1.64 (0.31) 3.64 (0.58) 0.61 (0.16) 0.46 (0.13)

1 0 1 0 0 2.41 (8.12) 2.51 (8.12) 11.51 (100.31) 12.04 (123.6) 144.69 (8.52) 1.93 (0.21) 2.12 (0.58) 3.06 (0.69) 0.68 (0.17) 0.13 (0.16)

1 0 1 0 1 2.04 (0.15) 0.61 (0.11) 0.74 (0.12) 1.37 (0.26) 35.39 (4.50) 0.46 (0.06) 1.82 (0.10) 3.23 (0.14) 0.87 (0.04) 0.65 (0.05)

1 0 1 1 0 7.35 (33.47) 7.34 (33.46) 43.49 (299.96) 19.97 (42.80) 82.36 (4.97) 1.89 (0.27) 2.07 (0.44) 3.02 (0.51) 0.75 (0.13) 0.16 (0.15)

1 0 1 1 1 1.93 (0.17) 0.84 (0.11) 0.96 (0.12) 2.28 (0.26) 26.67 (3.33) 0.50 (0.09) 1.59 (0.10) 3.60 (0.18) 0.78 (0.06) 0.53 (0.06)

1 1 0 0 0 15.20 (1.52) 12.79 (1.52) 14.08 (1.59) 1.00 (0.00) 32.33 (4.27) 0.93 (0.05) 1.79 (0.23) 3.65 (0.68) 0.66 (0.17) 0.24 (0.08)

1 1 0 0 1 4.63 (0.37) 2.21 (0.35) 2.27 (0.30) 1.00 (0.00) 4.49 (1.57) 1.00 (0.00) 1.34 (0.15) 4.54 (0.40) 0.52 (0.14) 0.29 (0.09)

1 1 0 1 0 15.27 (1.73) 12.92 (1.71) 14.97 (1.98) 1.00 (0.00) 28.19 (3.84) 0.92 (0.05) 1.79 (0.25) 3.64 (0.72) 0.65 (0.18) 0.24 (0.09)

1 1 0 1 1 4.53 (0.40) 2.13 (0.36) 2.21 (0.30) 1.00 (0.00) 4.41 (1.55) 1.00 (0.00) 1.32 (0.15) 4.58 (0.40) 0.50 (0.14) 0.29 (0.09)

1 1 1 0 0 1.42 (0.25) 1.66 (0.15) 2.04 (0.37) 1.00 (0.00) 87.40 (4.70) 0.90 (0.03) 1.97 (0.22) 3.03 (0.24) 0.86 (0.06) 0.52 (0.09)

1 1 1 0 1 1.91 (0.20) 0.74 (0.12) 0.86 (0.12) 1.00 (0.00) 19.90 (1.76) 1.00 (0.00) 2.05 (0.13) 2.93 (0.15) 0.94 (0.03) 0.75 (0.06)

1 1 1 1 0 1.73 (0.29) 1.90 (0.21) 2.53 (0.52) 1.00 (0.00) 72.48 (4.29) 0.90 (0.04) 1.96 (0.22) 3.03 (0.29) 0.85 (0.07) 0.50 (0.09)

1 1 1 1 1 1.99 (0.20) 0.78 (0.11) 0.91 (0.12) 1.00 (0.00) 18.78 (1.67) 1.00 (0.00) 2.00 (0.13) 3.00 (0.16) 0.92 (0.03) 0.73 (0.06)

Table 1.5: Outcome averages by treatment. Observations are at the round-average or
round-end level. The left panel shows the assumptions enforced. Black bolded estimates
are the ‘best’ in the column, while red are the ‘worst’.
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aside from orderbook resetting, lead the pack in both measures of efficiency, as well as

buyer MRS. GSS markets outperform ZI-G markets in both measures of efficiency and

both measures of price variation, with MRS splits being within 0.1 of each other and

the ZI-G average price mildly outperforming GSS prices (though insignificantly).

Panel Main Effects

While a full factorial analysis is informative of the incremental response to

variation in the market’s design, the main effect of relaxing or enforcing an assumption

may be hard to discern. Tables 1.6 and 1.7 show such an effect for efficiencies and prices,

respectively.

Allocative Efficiency
Mean (I=0) Mean (I=1) Difference P-Value

Spread Red. 0.67 0.72 0.06 0.00
Single Unit 0.67 0.72 0.05 0.00
Angle Choice 0.57 0.82 0.25 0.00
OB Reset 0.70 0.69 -0.01 0.00
No Loss 0.72 0.67 -0.05 0.00

Distance Efficiency
Spread Red. 0.37 0.72 0.35 0.00
Single Unit 0.36 0.72 0.36 0.00
Angle Choice 0.30 0.82 0.52 0.00
OB Reset 0.41 0.69 0.29 0.00
No Loss 0.31 0.67 0.36 0.00

Table 1.6: Efficiency. T-tests to show main effect of each treatment factor on allocative
and distance efficiency.

In first differences, allocative and distance efficiencies show quite different

trends, though with a unifying mechanism. Spread reduction and single unit assump-

tions show small, yet significant improvements in allocative efficiency while orderbook

resetting and no-loss constraints lead to mild reductions. Angle choice leads to a rather

large improvement, likely driven by the more CE-localized trade prices and increased
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trade count. Distance efficiency on the other hand sees substantial improvements across

the board. Such a mild response in one measure and improvement in the other points

towards a more equitable redistribution of gains from trade in utility-terms so as to

bring the path traveled by the market closer to the equilibrium path.

Average Trade Price
Mean (I=0) Mean (I=1) Difference P-Value

Spread Red. 4.42 4.42 -0.00 0.99
Single Unit 3.10 5.74 2.64 0.00
Angle Choice 6.19 2.67 -3.52 0.00
OB Reset 3.92 4.92 1.00 0.00
No Loss 6.16 2.66 -3.51 0.00

Table 1.7: Price Main Effects.

Prices are less consistently impacted by the enforcement or relaxation of the

tested assumptions. Spread reduction inclusion sees zero adjustment in average price;

Figure A.1 confirms the distributions are nearly identical. The other four assumptions

are split in their direction of change. Single unit order and orderbook reset constraints

both inflate prices on average, though with much different responses in their distribu-

tions. A massive redistribution, or flattening, occurs with single-unit-order constrained

markets, while orderbook resetting markets see a small shift right in price (as shown in

Figure A.1). Markets with traders who either use an angle choice process for their or-

ders or follow a no-loss constraint report nearly identical adjustments in average round-

average price, over halving the estimates from above 6 units of y per unit of x, to relative

prices just over 0.2 units above the CE prediction. Distributional changes, however, are

quite different between these two sets of markets. Figure A.1 shows the mass of the

distribution funnelling quite close to the mean for angle-choice markets, however the
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support for the distribution remains unchanged. No-loss constrained markets also show

tighter mass near the CE-price price. The massive reduction in the size of the support

is perhaps the more remarkable result when giving traders the intelligence to always

obey their own preferences.

1.6 Conclusion

Understanding both the implications of the rules implied by a market insti-

tution and the underlying behavior defining trader behavior in said market are crucial

tasks in economic research. The main issue plaguing such an endeavor is the clear en-

tanglement between the two. One way to isolate the first study is to place traders with

no strategic behavior in the market, so as to let market outcomes be only guided by

the rules of the institution. Gode and Sunder (1993) proposed such a model and test in

a partial equilibrium setting, and then brought the model to a general equilibrium via

the Edgeworth box (Gode, Spear and Sunder (2004)). The proposed zero intelligence

traders however either abided by potentially influential behavioral assumptions (such

as a no-loss constraint or an order choice process giving more weight to less aggres-

sive prices), or participated in markets with rules that may guide the allocation path.

This paper provides (1) a more generalized, lower-‘zero’ version of zero intelligence in

an edgeworth box, and (2) a test of the assumptions made in this model and those

mentioned.

Agents participate as two-way traders in a CDA, where there are two goods

and two types of traders (thus constructing an Edgeworth box). Despite being induced
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with CES preferences, and predisposed to prefer one order type to another based on the

curvature of said preferences, traders enter the market (and particular side) randomly.

Orders are uniformly drawn from a fine lattice placed over the set of all bundles satisfying

the properties of a transaction occurring (a gain in one good and loss in the other), with

no regard for gains or losses in utility from trade.

Empirically, I test the major assumptions made in ZI models, as well as those

made in the models’ respective CDA markets, via a novel, expansive simulation proce-

dure. All combinations of the five assumptions either relaxed or enforced are simulated

with traders from this paper’s model. Each variation was simulated 250 times with

each run containing 3600 entries, yielding a data set of 28.8 million market entries and

order placements across 96,000 trading periods in 8000 simulated markets. First differ-

ences show an improvement across the board when imposing one of the five restrictions,

as well as a reorganization of gains from trade resulting in systematic improvements

in distance efficiency. An interactions model reports the incremental impact of these

assumptions in the full factorial design.

Compared to the traders and setting of Gode, Spear and Sunder (2004), this

model is shown to provide a much lower level of zero intelligence in a much less con-

strained version of general equilibrium (despite also residing in an Edgeworth box).

Allocative and distance efficiencies are 0.28 and 0.42 units lower than those found in

Gode, Spear and Sunder, while average price is slightly (though insignificantly) closer

to CE and price volatility is twice as large in the lower-zero model. When paired

with another price-funneling-prone assumption, both spread reduction and no-loss rules

provide large improvements in market performance. Interestingly, markets with either
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pairs of enforced rules or at most one relaxed assumption exhibit the most equilibrating

tendencies. Rather unsurprisingly, markets in which traders’ order choice behavior is

dictated by an angle-choice process or a no-loss tendency benefit immensely in market

performance from the added intelligence.

Hopefully, this project displays the benefits of and need for modelling ventures

into the wilderness of bounded rationality via the minimal intelligence gate. Many

subfields of economics outside of markets could benefit from such practice. Additionally,

investigations in more complex, general equilibrium settings are needed and should be

pursued moving forward. The world doesn’t usually operate in stylized environments

with well-known supply and demand schedules or traders content with the exchange on

one indivisible unit of a single good.
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Chapter 2

Opening the Book: Price Information’s

Impact on Market Efficiency in the Lab

2.1 Introduction

Markets provide a service to their agents by creating, receiving, aggregating,

and disseminating information. The structure and rules that define a market determine

the type of information and how and when this information is transferred or received.

One such piece of information, potentially the most integral to a market, is the price

associated with an order. If one considers the set of orders in a market, their associated

prices, and the structure the market places on how these orders are presented to the

traders, one can order a market based on the amount of price/order information is given

to the traders. Naturally, this means there is some minimum and maximum amount

of price information accessible to traders. An understanding of the performance of

structures that yield differing levels of price accessibility is thus crucial, as new markets
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are rapidly appearing and old markets are ripe for improvement. This paper aims

to investigate prominent information structures in one of the most popular market

institutions, the continuous double auction (CDA), and document the efficiency and

trader behavior associated with each.

Given the question of ‘which level of information accessibility is best’, a com-

mon and natural response might be ‘maximum accessibility’. Why not give all of the

price and order information to traders in the market? Shouldn’t this make the market

as efficient as possible? In response to the former, information inclusion may not be

cost-less, either financially to the central body, or behaviorally to the traders. It may

be the case that a structure which yields less accessibility may be just as effective as

the maximum.

To the latter, while potentially true, this is not fully known. The efficiency

associated with each potential structure has not been fully mapped, and the relationship

between accessibility and efficiency may not be strictly positive. Take, for example, the

introduction of the Openbook subscription software by the New York Stock Exchange

(NYSE) in early 2002. The platform released order prices and quantities for the full

book, as well as transactions, to traders away from the trading floor (information which

previously had not been accessible in such a state). Boehmer et al. (2005) analyzed

trading data from NYSE before and after the introduction of Openbook, finding a

significant increase in cancellation rate and reduction in order size. A similar platform

adjustment in the Toronto Stock Exchange a few years earlier, though with less of an

increase in information accessibility (only the best bid and offer, as well as the depth,

were made transparent), revealed wider post-platform spreads and increased volatility
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(Madhavan et al. (2005)).

Evidence of changing market outcomes due to adjustments in price accessibility

is also seen in markets outside of finance; one example is the Kerala fishing market.

Prior to a massive mobile phone rollout, studied by Robert Jensen (2007), the market

experienced high levels of price volatility, likely due to the lack of knowledge about the

prices on land and the amount of fish being supplied by the fisherman on the lake or

being bought at the market. The access to phone service, rolled out in three waves to

three separate lake regions, allowed for easier access to on-shore prices across multiple

small fishing markets. In each case, the roll-out of the phone service provided (nearly)

immediate, drastic reductions in price volatility. Despite the difference in trader types

(specialized versus two-way), good type (durable or non-durable), or unit type(single,

divisible, or multiple), adjustments in price accessibility lead to meaningful (though not

always beneficial) adjustments in market performance.

This project explores the impacts of different levels of accessibility on mar-

ket outcomes in a controlled environment through a series of laboratory CDA markets.

Two-way traders induced with utility preferences through a novel interface (first imple-

mented in Crockett et al. (2021)) trade in a two-good Edgeworth box general equilibrium

setting, with markets varying in their level of orderbook and transaction history price

accessibility. Most markets reveal moderate levels of convergence in price and alloca-

tion, with symmetry in accessibility (low in the book and the history or high in both)

being important for outcomes such as allocative efficiency. Asymmetrically accessible

markets hamper efficiency levels in exchange for more intense price discovery behaviors,

including much higher order and trade frequencies. This experiment adds to a vast and
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well-known experimental market literature.

A long history of tests of market equilibrium behavior in the lab exists, starting

with Chamberlin (1948) and Smith’s (1962) seminal oral outcry markets. The two ex-

periments differed in their outcomes, with the latter finding convergence to equilibrium

predictions and the former not. Aside from a difference in formalism, the main reason

appears to be the better access to prices in Smith’s version.

The laboratory markets literature, particularly on simple versions of the CDA

or call market, has flourished since then, with hundreds of market experiments being

run over the past 50 years. The bulk of the literature resides in the partial equilibrium

(PE) space, with simple one-way (specialized) agents trading single units of a single

good based on cost and redemption value schedules. Among the expanse of PE papers,

this paper relates to those investigating adjustments in market information and its

relation to efficiency and price formation. Smith (1980) tests the existence of complete

information (for value and cost schedules among traders) in a series of experiments

with supply and demand schedules yielding extreme asymmetry in potential gains from

trade. Results suggest the increase in information leads to inconsistent occurrences of

convergence (contrary to the consistent convergence of earlier markets with incomplete

information). Inspired by these findings, Kimbrough and Smyth (2018) provides a

replication of a market similar to that from Smith and Williams (2000), testing complete

and incomplete information. The papers finds the existence of complete information is

not enough to cause deviation from competitive equilibrium, but adding in symmetric

market power along with complete information is enough.

Even closer to the sentiment of the paper I present now, a couple papers
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test the information present in the orderbook. Kirchsteiger et al. (2005) endogenize

the accessibility of the markets in their experiments, allowing subjects to choose which

traders on the same side and opposite side of the market have access to their orders. Ikica

et al. (2018) tests numerous market formats across hundreds of experimental markets, a

subset of which test the difference in efficiency between full orderbook and transaction

history accessibility and a black-box setting. Both papers suggest the accessibility

of order or trade prices may have substantive impacts on market outcomes. Arifovic

and Ledyard (2007) test call markets with either a closed and open orderbook using

simulated traders, finding closed book markets outperform open book markets in both

efficiency and price volatility.

Studies centered around market transparency or information accessibility are

also prominent in a more complex market format, namely dealer markets. These markets

are comprised of standard one-way traders, as well as market makers who set orders

on both sides of the market via a spread and help provide liquidity to the market.

Laboratory experiments in this literature (Bloomfield and Libby (1996), Pagano and

Röell (1996), Flood et al. (1999), Bloomfield and O’Hara (1999)) generally agree in

their findings (transparency provides more desirable market outcomes), while empirical

studies, including those discussed above (Madhavan et al. (2005) (TSE), Boehmer et al.

(2005) (NYSE), Board and Sutcliffe (1995) (LSE)), tend to have conflicting findings.

Another notable, though much smaller, sub-thread of experimental market

papers that this project contributes to is the general equilibrium (GE) sub-literature.

Early works naturally followed suit with the PE experiments, providing extensions close

in sentiment to Smith (1962). Williams et al. (2000) induce buyers with constant elas-

27



ticity of substitution (CES) preferences across two markets with two batches of sellers

(driven by cost schedules), while Plott provides a GE replication of Smith’s original ex-

periments in Plott (2000) and follows up with a multi-market study of his own in Plott

(2001) (experimentally applying the setting of Gale (1963)). Early theoretical contri-

butions in the space received GE experimental attention from other projects as well.

Anderson et al. (2004) and Goeree and Lindsay (2016) experimentally test the unique

setting presented in Scarf (1960), and Crockett et al. (2011), much like Plott (2001),

pays respects to Gale (1963) via a series of experimental tests. Much like many papers

in this literature, the laboratory markets I run are situated in a two good Edgeworth

box economy, providing the first test of price accessibility adjustment in this simple GE

setting.

A new GE expansion of classic CDA trader behavior is also modelled in this

paper. The first wave of such models appeared in the late 80’s and early 90’s. Wilson

(1987) began the influx with likely the most complex model of the bunch, modelling the

continuous double auction game theoretically through the use of bilateral bargaining

dynamics. Friedman (1991) and Easley and Ledyard (1993) follow Wilson with simpler

models, both equipping traders with reservation prices,. Friedman positions traders

as playing a Bayesian game against nature and Easley and Ledyard assume traders’

reservations adjust over the course of a period to their true valuations. Gjerstad and

Dickhaut (1998) follow up with a similarly non-strategic model, with players playing in

essence against nature, though with traders updating their beliefs on trade success in a

frequentist manner as opposed to Bayesian (as in Friedman (1993)). Newer simulation

based models have appeared in the last couple decades, including the individual evolu-
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tionary learning model (IEL) of Arifovic and Ledyard (2011) and Anufriev et al. (2013),

Crockett and Oprea’s (2012), Crockett and Oprea (2012) reference dependence model,

and the timing-focused expansion of IEL in van de Leur and Anufriev (2018).

A closely related group of papers containing minimal intelligence agent-based

models became popularized after Gode and Sunder’s (1993) zero intelligence (ZI) model

was introduced. The model provided agents with entirely random order choice pro-

cesses (in the commonly used ZI-C version, these were given slightly more guidance

via a budget constraint which restricts price submissions to weakly surplus increasing

options), asserting that the efficiencies found in simulations were thus driven entirely

by the structure of the CDA. Several papers proposed adjustments to the model, either

slightly increasing the intelligence of the traders (e.g. profit margin targeting in the

ZI-P model of Cliff and Bruten (1997b)), or adjusting an attribute of the market format

(e.g. the addition of an orderbook in Bollerslev and Domowitz (1993)). Models pro-

viding slightly more intelligence have thus been deemed as having traders with minimal

intelligence. General equilibrium extensions of ZI have also been proposed, including

Gode et al. (2004) and Crockett et al. (2008b), with Hurwicz et al. (1975) possibly being

an early predecessor. I use the model of Williams (2021), another extension of the sort,

though adjusted for more complex rules within the standard two-good Edgeworth box,

as a benchmark for this paper’s human markets to compare against.

The rest of the paper continues as follows. Section 2 lays out the environment

as well as a newly adjusted general equilibrium agent-based model build on Gjerstad

and Dickhaut (1998). Section 3 articulates the methodology for the human laboratory

experiments. Section 4 presents price and allocation adjustments, efficiencies, and an
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adjusted version of Gode and Sunder’s (1993) ZI agent-based model. Section 5 concludes

the paper.

2.2 Environment

This section provides the market design and microstructure employed in this

paper, as well as an agent based algorithm for general equilibrium trader behavior in a

continuous double auction.

2.2.1 Two-Good Edgeworth Box Economy

This paper highlights a market containing a set N of traders who partake in the

buying and selling of two non-durable goods, x and y. Each trader is endowed with some

non-negative amounts of both x and y to begin each period of trading. Traders each have

their own utility function, which is monotonically increasing and twice differentiable in

both goods.

Each trader is allowed to act as both a buyer and a seller in the market within

a trading period. The set N is partitioned between two subtypes of these two-way

traders, namely the set of “natural” buyers B and the set of “natural” sellers A. “Nat-

ural” buyers, in this sense, are traders with a marginal rates of substitution at their

endowment point that is higher than the competitive equilibrium price. An analogous

definition holds for “natural” sellers.

Each trader i’s objective is to maximize her utility given her budget constraint,

for some prices px and py over single units of x and y and endowment m. The budget

constraint can be simplified assuming y is a numeraire, yielding the constraint px+y = m̂
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where p is px/py (the price of a unit of x in terms of units of y) and m̂ ≡ m/py.

max
(xi,yi)

ui(xi, yi) s.t. pxi + yi = m̂ (2.1)

For the purpose of this paper, model and the accompanying experiments, I

allow the traders to have constant elasticity of substitution preferences ui(xi, yi) =

ci((aixi)
ri + (biyi)

ri)
1
ri . At the beginning of trade, as well as after each trade in the

market, trader i’s excess demand can be defined as

ZX
i (p|(xi,o, yi,o)) =

aγi(yi,o + pxi,o)

p(aγi + pγibγii )
− xi,o (2.2)

where (xi,o, yi,o) is the initial bundle of trader i and γi =
ri

1−ri
. Solving

ZX(p|(xo, yo)) =
N∑
i=1

ZX
i (p|(xi,o, yi,o)) = 0 (2.3)

yields p∗, a competitive equilibrium price. Plugging this back into each trader’s ZX
i

gives their desired change in x, determining the net trades in competitive equilibrium.

2.2.2 Continuous Double Auction

The market type of choice in this paper is likely the most prolific, academically

and in practice, the continuous double auction. Traders in this institution may actively

submit or accept orders at any time, so long as their allocations can accommodate

the trade(s). An order in this setting consists of price, quantity and time fields; in

this paper, I delegate the time choice to be the length of the market’s trading time

(unless the trader wishes to cancel or replace it). As mentioned above, each trader can

participate on both sides of the market, submitting both bids and asks at their leisure.
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Orders placed in the book that do not immediately cross with an existing order are

analogous to a limit order with no expiration time. Additionally, market orders can be

mimicked in this market through the ability to instantly accept orders in the book.

Contrary to the majority of previous lab experiments and many CDA trader

behavior models, orders may be non-unitary in both senses of the word: (1) the quantity

field accepts values larger than 1, and (2) non-integer values (i.e. partial units) are

acceptable. A second order characteristic present in this market that is not overly

common is the existence of retrade. Both X and Y can be “retraded” without limit,

unimpeded by traditional unit ordering restrictions.

2.2.3 Agent Algorithm

The model described in the following subsection is set in the environment laid

out above. The algorithm and beliefs which drive the behavior in this model are based

heavily on those found in Gjerstad and Dickhaut (1998), with adjustments made to fit

the model to the desired environment.

A set of two-way traders, N , are partitioned into natural buyers, B, and natural

sellers, A. Each trader has some endowment (xi, yi) of goods X and Y . Traders place

orders over the length, T , of the period of trade, where orders are defined as 3-tuples

containing a price, quantity and time message, {p, q, t}. The price p and quantity q

elements of an order are chosen by the trader. The time t field represents the time in

the trading period at which the order was placed. Orders essentially are infinitely lived;

however, can be removed from the exchange by either directly cancelling the order or by

replacing it. As trader’s in this algorithm do not cancel an order as a stand-alone action,
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this can only occur through order replacement. An order’s p is bounded naturally below

by 0 and artificially above by some real number M .1 Similarly, the q field of an order

is bounded above by a trader’s current allocation of goods if the order is an ask, or by

the trader’s allocation of goods divided by the p element of the order if buying.

The set of orders that have been posted to the orderbook or transacted over

the duration of the market (up until the current state of the market) is Ω. The elements

of Ω are indexed in terms of submission to the orderbook, with ok being the kth order

placed in the orderbook.

Traders are guided by an algorithmic trading behavior which can be defined

in four main steps: (1) entry, (2) belief updating, (3) order selection, and (4) wait time

selection for the next entry.

2.2.4 Entry

Traders enter the market one at a time. At the inception of the market, all

traders make an uninformed random draw of price and quantity. Price is drawn from

[0,MRSi] if trader i is a natural buyer and [MRSi,M ] if he is a natural seller.2 Quantity

is similarly drawn uniformly randomly.

The surplus (gained utility) associated with each (p, q) choice is multiplied by

the probability that it will be accepted. As no price information is available yet in the

market, this is just p/M for bids and (M − p)/M for asks. (Later, I will define these

probabilities as functions of the relative acceptability of potential order prices, written

1This is common in the agent-based literature for CDA trader behavior. The value of M can be
relatively low, though the gap between equilibrium price and M is usually larger than the lower half of
the price domain.

2MRSi refers to the marginal rate of substitution of trader i.
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as pa(a) for sell prices and pb(b) for buy prices.) After finding the expected surplus of

each trader’s randomly drawn potential order, traders make a decision on how long they

will wait to make their first move. The trader with the lowest wait time enters. Once

the entrant is scheduled to enter, the history (re)observed to establish a base for the

entrants belief updating process.

2.2.5 Beliefs

Let ΩH be the set of orders, and P be the set of submitted prices, contained

in the trader’s limited history of the market. For each price ρ ∈ P , trader i can check

the total number of orders o in ΩH whose p is equal to ρ. In Gjerstad and Dickhaut

(1998), this count is denoted TA(ρ). The set of orders satisfying such a constraint shall

be called τA(ρ). This measure of traded orders equally weights all orders that have been

filled or accepted in some manner. For the original model, this is appropriate, as the

setting only allowed single unit orders and traders; however, the setting of this paper

is much more general. To accommodate the idea of partially filled orders, I propose a

weighted version of this count TA(ρ). Each order, instead of receiving a guaranteed

count of 1, receives a count of
√
qk

qk,traded
qk

, where qk is the original quantity of order ok

and qk,traded is the number of units accepted in the trade. TA(ρ) can then be written

as

TA(ρ) ≡
|τA(ρ)|∑
k=1

√
qk

qk,traded
qk

(2.4)

An analogous definitions is presented for bids in the remembered history at

price ρ in the original model. τB(ρ) is the set of bids in the remembered history at
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price ρ, and TB(ρ) is the weighted count of accepted bids at ρ. The weighted number

of rejected asks (bids) at price ρ, termed RA(ρ) (RB(ρ)), is defined similarly. Each

rejected order is weighted again by the portion of the trade that was cancelled (and

scaled by the square root of the size of the order).

With weighted versions of TA, TB, RA, and RB now defined, the beliefs of

a trader on the acceptability of an order can be defined. Traders consider the set of

orders in ΩH which yield information on the previous performance of a certain price.

Consider an ask at price a. The success of all asks at worse prices than a, the number of

bids filled at prices above a (i.e. the bids of buyers revealing a willingness to pay higher

than the price in question), and the failure of all asks at more competitive prices than

a all reveal information to the trader. Thus, the function pa(a) can be defined (in the

same form as Gjerstad and Dickhaut’s original model) as the probability of success for

an ask at price a:

pa(a) =

∑
ρ≥a TA(ρ) +

∑
ρ≥a TB(ρ)∑

ρ≥a TA(ρ) +
∑

ρ≥a TB(ρ) +
∑

ρ≤aRA(ρ)
(2.5)

The analogous function pb(b) for bids at price b is defined as

pb(b) =

∑
ρ≤b TB(ρ) +

∑
ρ≤b TA(ρ)∑

ρ≤b TB(ρ) +
∑

ρ≤b TA(ρ) +
∑

ρ≥bRB(ρ)
(2.6)

A trader who has entered the market with the intent to sell (buy) solves

for pa(a) (pb(b)) for each unique price contained in the orders of τA (τB). Since

pa(τA) ≡ {pa(a) : a ∈ τA} is a discrete monotonically increasing set3, a piece-wise

linear interpolation is used to complete the trader’s beliefs on acceptability. These

3See Gjerstad and Dickhaut (1998) for discussion on characteristics of p(a), including monotonicity.
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beliefs are over the domain [0,M], with pa(0) = 1 and pa(M) = 0.

2.2.6 Order Choice

Once the entrant has updated his beliefs over the acceptability of each of the

prices in his remembered history on the side of the market he entered, he can go through

the process of choosing an order to submit. As with the original model, the entrant’s

main goal is to choose an order that maximizes his expected surplus. Unlike the original

model, this task is now more tedious, as utility is used instead of cost/redemption

schedules and orders are not restricted to have single unit quantity.

The maximized expected surplus of the entrant, trader i, is written simply as

Sk
i = max{max

ρ∈P
(ui(xi,k, yi,k)− ui(xi,k−1, yi,k−1)) · p(ρ), 0} (2.7)

where k refers to the kth (potential) transaction taken in the market (in some future

time in the period, tk). Here, the entrant’s current utility is that which is associated

with his (x, y) bundle in time tk−1 (the time of the last transaction in the market).

Given the desire to improve utility, it is natural to restrict the entrant’s considered

prices to [0,MRSi,k−1], or from the lower bound to his current marginal rate of substi-

tution, if entering with the intent to buy. If the entrant is selling, the domain becomes

[MRSi,k−1,M ].4 The entrant considers a fine grid of prices in this domain.

For each price considered, the entrant must determine an appropriate quantity,

before determining the expected surplus. To do so, he considers a fine grid of quantities

from zero to his current holdings of x (or his current holdings of y adjusted by the

price being considered if buying), call this quantity q̄. He solves for the utility gained

4The entrant’s marginal rate of substitution in this sense can be considered a reservation price.
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from having the order fully accepted at each point on the grid. This set of quantities

can naturally be partitioned into quantities which yield utility gains and utility losses.

Given the concavity of the trader’s utility function, this partition occurs at a single

price, call it q̃, where q̃ ∈ [0, q̄]. The set of utility weakly improving quantities is thus

[0, q̃]. Within this set, a quantity, q̂ exists which yields a maximum utility improvement,

meaning after this quantity, such a choice would have decreasing marginal gains. In

other words, any q > q̂ would be considered over trading. As such, the final reduced

set of quantities considered by the entrant is contained in [0, q̂]. To make his decision,

the trader chooses randomly from this final set of quantities, with the weight associated

with each q being that q’s relative utility gain (q’s utility gain divided by the sum of all

utility improvements for the quantities in the reduced set).

Now that the entrant knows the set of ordered pairs (p, q) to maximize over,

he selects the order which yields Sk
i when fully accepted. Once selected, the order is

submitted to the orderbook. If it crosses with an order(s) currently in the market, it

will fill the order(s) until either all crossing orders are filled or the order the entrant

posted has fully filled. This finishes the actions of the entrant and begins the process

of determining the next entrant.

2.2.7 Timing

To determine the next entrant (and the associated elapsed wait time), each

trader needs to re-evaluate the current landscape. All traders update their remembered

histories of the market to account for the most recent action (taken in time tk), and

perform the belief updating and order choice process described above for both sides
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of the market. After doing so, each trader i has two ordered pairs in consideration,

an ask which yields some maximum expected surplus Sk+1
a,i and a bid yield a maximum

expected surplus Sk+1
b,i . To determine the side of entry, each trader flips a weighted coin.

Trader i’s chance of entering on the sell side of the market is
Sk+1
a,i

Sk+1
b,i +Sk+1

a,i

, and
Sk+1
b,i

Sk+1
b,i +Sk+1

a,i

for the buy side.

Elapsed wait times are determined via draws from trader specific exponential

distributions. The distribution parameter for trader i is a function of the expected

surplus for their proposed next order, defined as αa,i = Sk+1
a,i · T

T−tk
for the sell side and

αb,i = Sk+1
b,i · T

T−tk
. Traders are then ranked by their elapsed wait time draws, with the

lowest draw determining the next entrant.5

2.3 Design

The experimental design of this paper rests upon the continuous double auc-

tion, straddling various bundles of price accessibility.

2.3.1 Information Treatments

I impose variation in the price information presented in the open portion of

the book as well as the transaction history. Within the bids/asks columns of the book,

I test the upper bound (full), as well as the most externally relevant intermediate case:

best bid and offer (BBO). The transaction history is partitioned in a similar manner.

The higher accessibility level is a full transaction history, while the lower level of this

factor is a common piece in financial markets from a decade or two ago: ticker tape (the

5If all traders draw times outside the duration of the trading period, the current period ends.
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most recent trade in the market, updated and replaced with each new trade).

2.3.2 Session Setup

I employ a between-subject full factorial design with two factors: transaction

history and order book accessibility. Transaction history and orderbook accessibility

each have two levels, full history and ticker-tape and full book and best-bid-and-offer,

respectively. I run eight laboratory sessions, two in each of the four level combinations:

Full-Full (FF), Full - Ticker-Tape (FT), BBO-Full (BF), and BBO - Ticker-Tape (BT).

Figure 2.1: Edgeworth box displaying nat-
ural buyer and seller preferences. Type 1
refers to buyers, 2 to sellers.

Buyers Sellers

c 0.113 0.099
a 0.825 0.6875
b 0.175 0.3125
r 0.5 0.5
xo 3 11
yo 23 3
xeq 8.2 5.8
yeq 10.31 15.69

Table 2.1: CES param-
eters, starting endow-
ments and equilibrium
allocations.

Each session has 6-8 subjects who participated as two-way traders in 12-14

three-minute periods. Between periods, subjects can see an interim screen for 30 sec-

onds. The traders are split evenly into natural buyers and sellers. All natural buyers

have the same endowment and heatmap (i.e. CES parameters) to begin each period;

similarly, sellers match at the beginning of each period. Traders keep their role for all

periods in the session. The utility parameters and endowments, as well as the equilib-

rium allocations, for each trader type are displayed in Figure 2.1 and Table 2.1.
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2.3.3 Laboratory Realization

Figure 2.2: User interface for laboratory market sessions. Contains an orderbook, pref-
erences heatmap, allocation box and error log box.

I use an updated version of the novel user interface first displayed in Crockett

et al. (2021). Traders are induced with preferences through a large, continuous heatmap,

as seen in Figure 2.2. Higher utility-yielding bundles are associated with warmer colors

on the map. The traders are made aware of the indifference curve associated with their

current endowment, and can see the indifference curve associated with any bundle they

hover over. The map can be clicked to prompt an order placement in the orderbook,

which takes up the the remainder of the user interface (aside from an error box which

flags attempted market orders that are not feasible). A bids column, asks column and

trades column make up the orderbook in the laboratory interface. Own orders and

trades are highlighted red if the trader is buying x and green if selling x.
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2.3.4 Implementation

Subjects were recruited via Orsee (Greiner, 2015), the overwhelming majority

of whom were students of UC Santa Cruz6. Each session was comprised of eight sub-

jects, with the exception of two sessions which each featured six person markets due to

participation complications7.

All sessions were run virtually, with subjects joining a zoom call for the dura-

tion (roughly 90 minutes) of the session. The average payment per subject was $19.38,

the maximum payment being $37.68. All payments were made via venmo, with pay-

ment amounts determined via the following equation: Pay = showup fee +
∑N

i=1(α ∗

gained utility + β ∗ initial utility), where (α = 2, β = 0.4).8

2.4 Results

The following set of experimental results will discuss the equilibrating ten-

dencies of the laboratory markets in both price and allocation space, as well as the

differential impacts price accessibility has on price discovery.

6The vast majority of subjects come from majors in buildings close to the economics department,
e.g. computer science, biology and engineering. One subject in the inexperienced subject pool was from
UC Berkeley; this subject was not included in the experienced subject pool

7These occur in mirrored treatments(BF and FT), so each level in the main 2x2 square was impacted
equally.

8Concern over the single vs multiple round payment discussion can be felled as losses in utility and
thus payment within trading rounds was achievable. While round payments could be negative, this was
relatively rare in inexperienced rounds and very rare in experienced. Additionally, the sum of round
payments was floored at the show-up fee.
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2.4.1 Prices

Price trends within and across trading periods are a key (and aside from ef-

ficiency, likely those most studied) class of indicators for market performance. In this

section, I interpret the trade price dynamics and qualitative characteristics, first at an

individual trade level and then at a round-average level.

Figure 2.3: Individual transaction prices. Trades with prices above 5 units of y per unit
of x are plotted as outliers (triangles along the p = 5 line). The black line plots the
round-start competitive equilibrium price.

Figure 2.3 plots all trades9 in each session against the time the exchange

marked the transaction. A qualitative inspection of the price trends presents evidence

towards greater stability and lower trade sizes in high accessibility sessions. Outlier

trades over triple the equilibrium price appear far more often in sessions with Ticker-

Tape transaction histories. As commonly seen in other market CDA’s, buyers exhibit a

9The top 2% of trades, all over twice the equilibrium price, are excluded from this graph and the
subsequent analysis.
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bargaining advantage, with a majority of prices appearing below the equilibrium price

line.

Figure 2.4: Round-average transaction prices. Shaded region shows 95% confidence
interval. Columns show levels for orderbook factor. Rows show levels for transaction
history level.

A round-average depiction of the prices seen in Figure 2.3 can be found in

Figure 2.4. Congruent with the individual price findings, Full-Full markets converge

quickly; however, not much is gained over the BBO-TT markets. Where performance

diverges is in the markets with asymmetric levels of accessibility. BBO-Full markets con-

verge, though not without substantial oscillatory behavior. Full-TT sessions perform

much poorer, demonstrating divergent trends in later periods. Two main qualitative

results can be summarized from these figures:

Result 1a: Prices that largely deviate from equilibrium p∗ are more prevalent in markets

with lower transaction history. This holds for both levels of orderbook accessibility, and

increases in severity when in BBO.

Result 1b: Introducing full transaction history accessibility without a full orderbook

43



yields divergent behavior. All other treatments converge (or at least oscillate).

BBO Full
All Rounds Second Half All Rounds Second Half

Price 2.29(0.39) 2.35(0.24) 2.35(0.51) 2.44(0.33)
|Price− CE| 0.71(0.56) 0.69(0.55) 0.72(0.95) 0.71(0.72)

SD 0.77(0.28) 0.71(0.25) 0.79(0.56) 0.56(0.20)
RMSE 0.86(0.34) 0.75(0.12) 0.91(0.13) 0.64(0.05)

Full # Orders 139.12(29.60) 141.71(21.32) 108.27(14.41) 113.21(12.87)
Order Size 2.10(0.50) 2.20(0.38) 2.11(0.37) 1.94(0.34)
# Trades 35.33(6.68) 35.17(6.11) 23.58(3.90) 22.83(4.17)
Trade Size 1.28(0.41) 1.39(0.41) 1.78(0.23) 1.79(0.22)
Seller MRS 2.19(0.33) 2.35(0.32) 2.15(0.29) 2.21(0.33)
Buyer MRS 2.82(0.34) 2.63(0.29) 2.81(0.40) 2.74(0.45)

Price 2.29(0.37) 2.39(0.19) 2.19(0.34) 2.19(0.28)
|Price− CE| 0.87(0.96) 0.92(1.00) 1.04(2.40) 1.12(2.72)

SD 0.97(0.37) 0.80(0.16) 0.82(0.30) 0.74(0.25)
RMSE 1.02(0.36) 0.79(0.16) 0.91(0.25) 0.82(0.19)

TT # Orders 88.77(20.57) 88.07(19.34) 107.35(47.54) 122.43(53.44)
Order Size 1.62(0.43) 1.81(0.40) 2.25(0.36) 2.24(0.29)
# Trades 22.42(10.96) 17.36(8.33) 19.35(8.35) 18.29(9.22)
Trade Size 1.23(0.48) 1.46(0.44) 1.92(0.53) 2.13(0.53)
Seller MRS 1.98(0.30) 2.09(0.25) 1.97(0.34) 1.99(0.28)
Buyer MRS 3.07(6.68) 2.88(0.33) 3.04(0.53) 3.01(0.40)

Table 2.2: Descriptive Statistics at the round-level. Estimates are shown for all rounds
and the rounds in the second half of sessions. The four quadrants relate to data from
the four treatments, with the vertical panels denoting levels in the orderbook factor and
horizontal panels representing levels of the transaction history factor. Seller MRS and
Buyer MRS are using round-end estimates, while the rest of the outcomes are in round
averages or averaged round totals.

Using BBO-TT markets as a reference point, a descriptive analysis of the

adjustment from low to high accessibility in one or both dimensions in these outcomes is

outlined. Table 2.2 can be segmented into three clear outcome types: price convergence
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as represented by the first four rows, price discovery (the next three rows), and allocative

convergence in the final two rows. First, prices show no improvement when transitioning

to BBO-Full, but drop significantly when moving to Full-TT. Moving to Full-Full shows

a slight improvement from BBO-Full, while the move from Full-TT to Full-Full alleviates

the initial reduction from BBO-TT and surpasses the original price by a moderate, but

significant margin. The massive decline in price from BBO-TT to Full-TT may be driven

by the sudden realization of how much competition as in the book. Buyers are naturally

more aggressive early in trading periods10; the urgency induced by a realization of more

competition, as well as the reinforcement of low prices (since traders would only see the

most recent trade price, along with their own) may be the driving mechanism behind

this mitigation in price level and convergence.

The next three rows provide a grouping of outcomes indicative of price variation

or volatility. All three measures of volatility show improvement in performance as

accessibility is increased, with the sole exception of average price deviation in Full-TT

(which is quickly explained by the divergent behavior shown in Figure 2.4).

Order frequencies exhibit behavior similar to that found in the empirical lit-

erature of the early 2000’s (e.g. Boehmer et al. (2005), Madhavan et al. (2005)). All

treatments with full accessibility in at least one dimension see higher order frequency,

though the more interesting differences appear when order of improvement is consid-

ered. Consider, first, right and then up in Table 2.2 (thus from BBO-TT to Full-TT

to Full-Full) as a potential improvement path, markets show a monotonic progression

10Common mechanisms for this include the existence of a natural lower bound for prices at 0, or the
general fact that humans participate in society far more as buyers which leads to a better understanding
of how to bargain on the buy side in environments like a laboratory market.
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in order count. However, following the other path from BBO-TT to Full-Full creates

a non-monotonic adjustment in order frequency. Order and trade frequencies are in-

dicative of price discovery and the efforts of the traders to aggregate information on

their own. The massive increase in order and trade frequency in BBO-Full is likely in-

duced by traders attempting to post a spread reducing order. The increased visibility of

trades makes the importance of having a BBO order more apparent, as these are (most

often) the trades appearing in the transaction history. The uptick in orders (and espe-

cially spread-reducing orders) essentially mechanically induces the increase in trades in

these BBO-Full markets. Once the orderbook is fully accessible (Full-Full markets), and

traders realize they can place non-spread-reducing orders that may either become BBO

orders later in the round, or may be taken up in larger trades by aggressive traders on

the opposite side.

Result 2. Order frequency increases in all three treatments with higher accessibility,

relative to BBO-TT markets. Price discovery behavior is associated with the order in

which accessibility is improved; increasing orderbook accessibility first leads to a smoother

transition in order frequency, though at the cost of price convergence.

The final two rows present the average marginal rate of substitution for ag-

gregated agents who represent the set of four natural buyers and sellers in the market,

respectively. Each buyer’s (seller’s) action is scaled by the number of similar traders

(in this case each trade change in y and x for a given buyer is quartered and taken

as the change in allocation for the aggregated buyer). Transactions between traders
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of the same natural side yield a null movement for the aggregated agent for that side.

As explained in a much deeper sense later in Section 2.4.4, ideally the MRS of these

aggregated agents (and each individual trader) will be equal to the competitive equilib-

rium price. Table 2.2 suggests that an increase in transaction history visibility yields

a large reduction in the final spread between the marginal rates of substitution of the

aggregated natural buyer and seller. An increase in orderbook accessibility paired with

no change in the accessibility of the the transaction history, however, yields no apparent

improvement in MRS convergence to CE.

For further discussion on pricing tendencies in these laboratory markets, in-

cluding within- and across-period dynamics, see Appendix B.2.

2.4.2 Allocations

The reallocation of goods throughout a market’s existence, with the simulta-

neous movement of multiple goods and both sides of the market, is a defining factor of

general equilibrium; and the final reallocation being just as indicative of the market’s

convergent behavior as its prices.

Figure 2.5 presents Edgeworth box depictions of each market’s (trading period)

final allocation, categorized by treatment. The box maps the average movement of

natural buyers in their x and y holdings after each trade, with the lower horizontal

axis and left vertical axis marking each respectively. The average movement of natural

sellers is mapped similarly, as the average seller allocation is the average amount of x

and y left in the market.

Three criteria for performance in Figure 2.5 are: tightness of cluster, deviation
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Figure 2.5: Round-end allocations.

from endowment-to-equilibrium path, and existence in the space of preferable points

(between the two initial indifference curves). When considering the set of all peri-

ods, clustering is similar across all treatments. All treatments with at least one factor

with less than full accessibility show at least one period outside the set of mutually

preferred allocations. Perhaps more interesting, markets with either high accessibility

in both dimensions or low accessibility in both exhibit re-allocations close to the the

endowment-to-equilibrium path. Markets with asymmetry in their accessibility, how-

ever, appear to favor one player type: natural buyers in BBO-Full and natural sellers in

Full-TT. The phenomenon likely ties in with the differences in price discovery behavior

discussed in Section 2.4.1. Higher order and trade frequencies in BBO-Full11, driven

by aggressive traders (often buyers) trying to make large gains (at low prices) early in

rounds and spread-reducing orders throughout, are conducive to the better yields for

buyers. Such behavior can be summarized as

11Lower price information accessibility benefiting one side of the market disproportionately is not
unsurprising, as Ikica et al. (2018) saw buyer advantages appearing in “black box” settings.
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Result 3. Markets with symmetric levels of accessibility reallocate on average near

the endowment-equilibrium path. Asymmetric accessibility treatments favor one trader

type over the other. All markets reallocate, on average, to a similar distance from the

equilibrium, with late rounds finishing near the contract curve relatively often.

The information portrayed in Figure 2.5 is compressed and re-imagined in

terms of distance from the equilibrium allocation in Figure 2.6 and Table 2.3. Distances

are measured using the average Euclidean distance for each trader after normalizing the

y dimension by the equilibrium price. Across-round final distance dynamics are esti-

mated through a log-linearized regression representing the exponential decay function

dt = d1e
γt. Log(distance) is thus regressed on log(round) and presented numerically in

the upper panel of Table 2.3 and via a best fit line in Figure 2.6.

Figure 2.6: Round-end distance of final allocations from equilibrium allocations.

The plots show linear decay in the majority of sessions, with session FF-2
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Distance
BBO Full

Sess1 Sess2 Sess1 Sess2
Round-End

Full -0.01 -0.17 0.22 -0.09
(0.89) (0.06) (0.04) (0.75)

TT -0.04 -0.11 -0.09 -0.04
(0.78) (0.08) (0.33) (0.84) )

Timing
Full -0.05 0.08 0.04 -0.08

(0.36) (0.40) (0.64) (0.77)

TT -0.02 -0.03 -0.09 -0.08
(0.89) (0.58) (0.23) (0.68)

Table 2.3: Estimates from regressing log(outcome) on log(round), where outcomes where
final distance from equilibrium allocation (upper panel) and timing of shortest distance
in each round (lower panel). () denotes p-values. Bold estimates are statistically signif-
icant at at least the 0.1 level.

being the closest to being exponential. FF sessions also displayed the steepest decay.

Table 2.3’s upper panel corroborates these claims, with estimates for γ being low and

generally insignificant. What if the time at which each market reaches its minimum

distance from equilibrium is not the final moment of the market’s life? Given trader’s

propensity to learn in these laboratory markets, this is not unlikely. The lower panel of

Table 2.3 shows estimates for a regression of the same form as before, but with time of

shortest distance instead of distance itself. Markets show weak decay in this outcome

as well, showing trader’s are learning to converge allocations faster across periods in

all treatments. Decays is slightly stronger in markets with full orderbook accessibility,

though insignificant.
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2.4.3 Efficiency

Given the mission of laboratory market experiments is often to test theoretical

predictions over competitive equilibria, tests and measures of efficiency are crucial.

Traditionally, allocative efficiency is measured by comparing the surplus gained by the

set of traders to the the market’s gained surplus theoretically maximum. In partial

equilibrium, an equivalent depiction of the numerator is the aggregate of each trader’s

sum over the prices they traded at and the costs(cj,s)/values(vi,b) for each of the traded

units
B∑
b=1

Pb∑
i=1

(pi,b − vi,b) +

S∑
s=1

Ps∑
j=1

(cj,s − pi,s)

where B and S are the cardinalities of the buyer and seller sets, and Pb and Ps are the

number of buyer and seller units at the inception of a market.

For general equilibrium with induced utility functions, this definition can be

adjusted in a natural way. Instead of summing over the surplus gains, I consider the

sum of utility gained by all market traders divided by the theoretical utility gain of the

market in competitive equilibrium. The numerator can be written as follows:

N∑
n=1

(un(xn,F inal, yn,F inal)− un(xn,Endow, yn,Endow))

where N=B+S.

Before presenting the experimental results, I establish a simple theoretical

benchmark. The next subsection provides a short synopsis of the well-known agent-

based zero intelligence (ZI) model (Gode and Sunder (1993), adjusted for the general

equilibrium setting Williams (2021).
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2.4.3.1 Benchmark: Zero-Intelligence

First introduced in 1993 (Gode and Sunder), and then adjusted to accom-

modate over-simplified versions of general equilibrium, the zero intelligence (ZI) model

provides a solid theoretical floor for human behavior in a continuous double auction. In

the original partial equilibrium version, traders randomly choose prices uniformly over

a specified range. ZI-Constrained (ZI-C) amends this decision space by raising the floor

for sellers from 0 to their current unit-cost, and lowering the ceiling for buyers from

the max m to their resale value. The model can aptly be summarized (along with the

above) by the following set of rules:

• Each trader is either a one-way buyer or seller, endowed nb and ns units re-

spectively. Buyers have resale value schedules {v1, .., vnb
}, and sellers have cost

schedules {c1, .., cns}.

• Units are ordered by price, such that vi > vk and cj < ck for i, j < k. Each unit

must be traded in this order (i.e. a seller must buy their highest cost unit first).

• Orders are single-unit only.

• Spread reduction: Only the best bid and ask are kept in the book, with new orders

only being posted if they improve the best bid-ask spread.

Gode and Sunder, along with Spear (2004), provide an amended version of

this model, adapted to suit a two-good pure exchange economy. Many of the above

conditions still hold in Gode et al. (2004), with orders still being having an artificial

step-size setand a spread reduction rule still existing. The resale and cost schedules

are naturally replaced with utility functions. The major change, aside from the setting
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itself, is the method by which traders select their price (the number of units of the

numeraire the trader is willing to send/receive for one unit of the commodity). Traders

uniformly randomly select prices for both sides of the market. Prices are chosen as an

angle in radians. On the sell side, the angle is bounded between π/2 and the angle of

the step-size length vector that begins at the trader’s current allocation and is secant to

the trader’s indifference curve. On the buy side, bounds of 0 and the angle of a similarly

defined secant vector are used.

Williams (2021b) provides a more generalized version of the 2004 model, in

which the quantity entry of the normal order tuplet is not restricted to be a uniform

step-size unit. Traders instead select a (p, q) ordered pair uniformly randomly from a fine

lattice over the space of orders on the side of the market entered. A constrained version

of ZI in this context (ZI-G from here) is thus choosing over a constrained subset of this

lattice where all ordered pairs are weakly utility improving.12 Each of the remaining

rules of ZI are also generalized or relaxed in some way in ZI-G:

• Traders are two-way traders, with natural dispositions towards one side of the

market.

• Units are not ordered, and may be retraded within a trading period.

• Spread reduction is not enforced, and all orders (up to one per trader on each

side) are stored in the book.

Along with the goal of generalization and relaxation of simplifying restrictions,

12The angle choice method used in Gode et al. (2004), when adjusted for variable quantities, produces
more intelligence than desired. Uniform random choice of quantity after an angle is chosen does not
create a uniform distribution over the feasible set of ordered pairs (instead orders closer to the current
endowment are much more likely to occur).
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the above rules were chosen to match those enforced on the laboratory traders.

2.4.3.2 Estimates

Table 2.4 presents the average allocative efficiency and distance efficiency (or

one minus the percentage of the original distance between the endowment and equilib-

rium left to be travelled at the end of a period) for all rounds (first column in block) and

rounds in the second half of the sessions (second column). Zero Intelligence simulation

(1000 runs) outcomes are also reported and used as a baseline.

BBO Full
All Rounds Second Half All Rounds Second Half

Full Alloc Eff 0.77(0.12) 0.79(0.14) 0.74(0.24) 0.83(0.16)
Distance Eff 0.56(0.10) 0.57(0.12) 0.60(0.21) 0.69(0.16)

TT Alloc Eff 0.80(0.09) 0.84(0.07) 0.71(0.15) 0.73(0.10)
Distance Eff 0.63(0.11) 0.68(0.09) 0.49(0.11) 0.53(0.08)

ZI Alloc Eff 0.83 0.83 0.83 0.83
Distance Eff 0.65 0.65 0.65 0.65

Table 2.4: Round-level efficiencies. Allocative efficiency is the sum of utility gained in
the market divided by the total utility gain if equilibrium is achieved. Distance efficiency

is calculated as 1− ||(xeq ,yeq)−(xT ,yT )||
||(xeq ,yeq)−(xo,yo)|| , where the norm is average Euclidean distance from

final allocation to equilibrium for each trader (normalized in the y dimension by price).

BBO-TT markets show respectable levels of efficiency (in both allocation and

distance), with allocative efficiencies landing in the realm of other studies in the lit-

erature. These low accessibility markets yield estimates remarkably close to those of
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the ZI-G markets.13 This is not to say that human traders behave similarly to ZI

agents in these markets, but that BBO-TT levels of accessibility do not hamper the

equilibrating powers of the market institution any more than minimally intelligent ZI

agents. Improving both factors to full accessibility provides no significant improve-

ment in either measure of efficiency. Possibly even more interesting, both market types

with asymmetric levels of accessibility exhibit estimates noticeably worse than markets

with symmetric accessibility and markets with ZI agents. Traders in these markets

are substituting efficiency in an effort to accommodate more aggressive price discovery

behaviors.

Efficiency Gap

BBO-TT BBO-Full Full-TT Full-Full
Sess1 Sess2 Sess1 Sess2 Sess1 Sess2 Sess1 Sess2

-0.16 -0.32 -0.02 -0.18 -0.15 -0.15 -0.39 -0.32
(0.02) (0.05) (0.78) (0.04) (0.02) (0.14) (0.01) (0.01)

Timing of Smallest Gap

BBO-TT BBO-Full Full-TT Full-Full
Sess1 Sess2 Sess1 Sess2 Sess1 Sess2 Sess1 Sess2

-0.12 -0.72 -0.24 -0.58 -0.21 -0.50 -0.65 -0.75
(0.52) (0.04) (0.26) (0.03) (0.02) (0.08) (0.06) (0.02)

Table 2.5: Estimates from regressing log(outcome) on log(round), where outcomes in-
clude 1 minus final allocative (surplus) efficiency (upper panel), as well as d timing of
highest efficiency in each round (lower panel). () denotes p-values. Bolded estimates
are statistically significant at at least the 0.1 level.

13Traders in the version of ZI-G run here place orders subject to a no-loss constraint. Also, no market
level spread reduction rule is enforced (to match the rule choice in the experiments). However, ZI-G
traders did abide by an internal ‘spread reduction’ process in that they would only place a new draw if
the draw improved their current order in the market.
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Much like with final allocation distances (Table 2.3), end-of-round estimates

may not be telling the whole story. Table 2.5 displays exponential decay coefficients

for the gap in allocative efficiency at the round level, as well as decay for time of least

inefficiency across rounds. All treatments show some signs of significant decay for both

outcomes. In efficiency gap, Full-Full markets show the strongest decay coefficients.

In timing estimates, sessions with full orderbook accessibility show marginally stronger

decay than those without.

Cumulative density functions for the round-end trader-level difference in utility

gained and expected utility gain in equilibrium are reported in Figure B.1. Relative gains

are close on average for all four treatments, however, symmetric accessibility treatments

(BBO-TT and Full-Full) appear to second order stochastically dominate asymmetric

treatments.

Result 4. Performance in efficiency standards correlates with the symmetry of acces-

sibility of a market. Symmetric treatments (BBO-TT and Full-Full) outperform asym-

metric treatments (BBO-Full and Full-TT). Individual estimates of relative utility gain

follow a similar trend.

2.4.4 Inefficiency in Two-way Trading

In the more classical partial equilibrium setting, there are two driving forces

that can lead to inefficiencies in the market: (1) extramarginal traders (units) being

involved in trades, and (2) intramarginal traders (units) not all trading. Given the

standard value and cost schedule set up of partial equilibrium theory and experiments,

checks for either force is straight forward. The same cannot be said for a general
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equilibrium setting, as there are no simple cost or value schedules assigned to traders

for their one or handful of single-unit trades over one good. A natural analog to this

PE idea of intra- and extra-marginal units or traders can come from the analysis of

marginal rates of substitution. Traders begin with MRS’s away from the equilibrium

MRS shared by all traders, namely that equivalent to the competitive equilibrium price.

As trader’s adjust their bundles through trade, their MRS’s adjust, moving closer to

the equilibrium MRS assuming they are making good trades.

At any point in a trading period, if a trader has not reached the equilibrium

MRS, the trader is considered to be an intra-marginal trader as he still has an incentive

to trade and room to provide competitive prices. Once the trader reaches or crosses the

equilibrium MRS, he is deemed extra-marginal as he has essentially over-traded in his

desired direction and can no longer provide competitive prices in his natural side of the

market. In a setting with traditional one-way traders, this trader would be considered

extra-marginal for the remainder of the trading period; however, with two-way traders,

this trader would transition to become intra-marginal on the opposite side of the market

compared to their natural preference.

If, by the end of a trading period, a trader’s final MRS has not reached its

equilibrium value, the trader can be classified to have under traded, or “left trades on

the tabl”. If instead, the trader has surpassed the desired endpoint, and become and

extra-marginal trader on their natural side, then we can say they have over traded.

Figure 2.7 displays the MRS for the aggregated natural buyer and natural seller

across rounds averaged between sessions for each treatment. As discussed in Section

2.4.1 and summarized in Table 2.2, markets with higher transaction history accessibil-
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Figure 2.7: Marginal rate of substitution at the end of each round, averaged across ses-
sion within treatment. Estimates are for aggregated buyer and seller traders who, after
each transaction occurs, adjust their allocations by the average individual adjustment
made by the natural buyers and sellers, respectively. Dashed lines show the session level
round-end estimates.

ity display significantly lower MRS spreads than those with lower accessibility (while

holding orderbook accessibility constant). Symmetry in accessibility provides more sta-

ble improvement across periods, as BBO-TT and Full-Full show decreasing trends in

spread, while BBO-Full shows an over-trading inefficiency and Full-TT spreads diverge

in later rounds.

Result 5. Consistent improvement in MRS spread is associated with symmetric acces-

sibility, while MRS spread magnitudes overall are lower in markets with full transaction

history accessibility.
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2.4.5 Treatment Effects

Table 2.6 provides regression analysis for the main outcomes discussed in sec-

tions 2.4.1-2.4.4. Main effects in the price regressions corroborate the story told in

Section 2.4.1, with variation slightly increasing, though insignificantly, as accessibility

increased. The large negative estimate on ‘FullOB’ in column 2 matches the markedly

low prices shown for Full-TT in Table 2.2, with the large positive increase of 0.160

matching the jump from Full-TT to Full-Full.

Dependent variable:

|Price− CE| Price Variance Orders Trades RMSE Distance Alloc Eff

(1) (2) (3) (4) (5) (6) (7)

FullOB 0.053 −0.101 −0.310∗∗∗ 18.577 −3.077 −0.109∗∗ 0.761∗∗∗ −0.090
(0.108) (0.090) (0.109) (31.836) (8.037) (0.046) (0.255) (0.087)

FullT 0.046 0.005 −0.402∗∗∗ 50.346∗ 7.423 −0.160∗∗∗ 0.406 −0.032
(0.072) (0.155) (0.078) (28.986) (7.067) (0.058) (0.321) (0.020)

Round −0.029∗∗∗ 0.018 −0.089∗∗ 1.794∗∗ −0.341 −0.051∗∗∗ −0.073∗∗∗ 0.014∗∗

(0.007) (0.013) (0.041) (0.851) (0.282) (0.013) (0.025) (0.006)

FullOB:FullT 0.043 0.160 0.577 −49.423 −9.538 0.165 −0.997 0.058
(0.126) (0.307) (0.485) (41.104) (9.906) (0.165) (0.716) (0.141)

Constant 0.491∗∗∗ 2.161∗∗∗ 1.688∗∗∗ 76.140∗∗∗ 24.822∗∗∗ 1.380∗∗∗ 2.418∗∗∗ 0.701∗∗∗

(0.065) (0.090) (0.294) (13.766) (6.093) (0.108) (0.298) (0.042)

Observations 104 104 104 104 104 104 104 103
R2 0.221 0.051 0.137 0.264 0.256 0.314 0.274 0.159
Adjusted R2 0.190 0.012 0.102 0.234 0.226 0.286 0.245 0.124

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.6: Regression estimates using round-level data. BBO-TT is the control in this
setup. () denote standard errors, which are clustered at the session level.

Price discovery impacts prove to be the strongest, with impressive main effects

matching the surge in aggressive price discovery behavior in asymmetric accessibility

markets and the equally large interaction effect showing the reversal in this behavior

once both factors have high levels of accessibility and symmetry is restored. Similarly

main effects in the final column support reductions in efficiency in asymmetric acces-
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sibility markets and an interaction effect which returns estimates to those of BBO-TT

levels in Full-Full markets by the end of the session, though now without significance.

Estimates for the time control ‘Round’ are significant and in the direction associated

with improvement/convergence in all all of the reported regressions.

2.5 Conclusions

The rapid progression of technology and increasing interconnectedness of eco-

nomic agents has provided a constantly changing landscape for markets, making the

investigation of market formats and their attributes’ impacts on market outcomes in-

creasingly valuable. An interesting and likely impactful class of attributes are the levels

of price accessibility the market format offers. While the option of full accessibility

seems like the obvious choice for a format, giving full access to all price information in a

market is not always achievable or helpful. Providing such information is not necessarily

costless, as realizations of larger financial markets may be mentally taxing to traders,

or information dissemination may be excessively costly to the central agent or market

itself in developing markets and countries.

In this respect, an understanding of the benefits and costs of adjusting price

information accessibility in two major aspects of a market, namely its orderbook and

history of transactions, is crucial. This paper presents a laboratory market experiment

testing popular levels of price accessibility in the orderbook and history in a continuous

double auction. A much more generalized, less restrictive (or guided) environment is

implemented, with traders being induced with CES utility functions over the two goods
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of a simple pure exchange economy. Additionally, order quantities are highly flexible

and optional market rules that generally provide (potentially too much) structure, such

as the common spread reduction rule, are relaxed. A new general-equilibrium adjusted

trader behavior algorithm is also presented to provide insights into market and trader

responses to changes in accessibility.

Laboratory markets reveal a few of insightful impacts price accessibility ad-

justment has on CDA market outcomes. First, prices are more likely to have large

deviations in markets with lower transaction history accessibility, though increasing

accessibility here without full orderbook accessibility leads to an inability to converge

in prices. Second, more aggressive price discovery tendencies appear in markets with

asymmetric levels of accessibility between the book and history, coming at the cost of

allocative efficiency. Third, improvement in accessibility between symmetrically acces-

sible markets leads to improvements in volatility but no perceivable gains in efficiency.

This project reveals non-monotonic gains in efficiency and other main market

outcomes when improving price accessibility. As such, there are clear implications for

markets, their choice of format, and what options more advanced markets could give

to their traders to limit their own accessibility (and reduce the mental load). More

information bundles within this framework and market format attributes outside of it

should be studied to provide a more clear picture of how efficiency maps from across

formats or bundles. Additionally, more trader behavior and agent-based models could be

brought to more complex (yet still tractable) settings such as the two-good Edgeworth

box, as the vast majority still reside in a partial equilibrium framework.
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Chapter 3

Expanding Minimal Intelligence in the

Double Auction

3.1 Introduction

For markets to converge, must traders be perfectly rational agents choosing

orders subject to some expected utility paradigm? Or, can traders who intentionally

deviate for the sake of future gains from trade still guide a market to equilibrium pre-

dictions?

Classical agent-based models have provided several mechanisms for how traders

achieve equilibrating play and market convergence, though with nearly all assuming

some form of utility-improvement restriction. Traders are presumed to perfectly kite

along the utility-improving side of their indifference curves (or, analogously, remain

on the surplus improving side of their cost or redemption value schedules). Labora-

tory experiments, however, have repeatedly shown evidence, especially in more complex
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settings, that traders in a continuous double auction routinely break this assumption.

There are few potential reasons for this. The mechanism privy to the model in this

paper is that traders occasionally intentionally taking utility losing trades in order to

set themselves up for future trades on both sides of the market.

Such a mechanism, when modelled, can find itself in the oft-mentioned ‘wilder-

ness of bounded rationality.’ A vast expanse of deviations from perfect rationality have

been explored, with many more yet to be charted. Two gates to this wilderness, or

maze, are typically recognized: that which assumes perfect rationality and that which

imparts no (or very minimal) intelligence upon the economic agents.

Models and implications at both entrances are numerous, though admittedly

with a larger mass at the rational end. A mapping between gates, however, is less

so explored. The main goal of this paper is to present a model that provides one

such mapping. I propose a new agent-based model of CDA trader behavior in an

Edgeworth box economy. The flavor of two influential assumptions on trader activity

are incorporated: (1) beliefs on the acceptability of prices (Gjerstad and Dickhaut,

1998), and (2) reservation prices which adjust within-period (Friedman, 1991). Traders

place orders by applying logit choice probabilities to each admissible1 order; the logit

choice parameter allows a trader’s choice to capture precision anywhere between the

random choice of zero-intelligence traders and the traders of Gjerstad and Dickhaut.

Section 2 presents a summary of past CDA trader behavior models. A wave

of influential models at the end of the 20th century provide the design motivation for

much of this paper’s model (as well as a vast experimental and applied literature over

1Nomenclature taken from Friedman (1991). Here admissible will mean satisfying a utility analog of
reservation price.
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the last twenty years). Section 3 proposes the setting of this paper. The double auction

institution and general equilibrium setting are invoked to provide a test bed for the

theorized agents.

A tractable model of trader behavior is presented in Section 4. Agents make

use of reservation prices and logit choice probability to select and/or accept orders as

two-way traders conscious of their positioning for both sides of the market. Section 5

proposes a simple design for a test of the model via simulations. Measures of efficiency

are impressively high, which, when paired with convergence in allocations, hints at

relatively equitable reallocations near a point on the contract curve. Section 6 concludes

the paper.

3.2 Prior Theory

A few literatures are relevant for providing a background for this project, as

well as framing its contribution overall. Theoretical work surrounding the continuous

double auction price dynamics has arrived in two distinct waves over last fifty years.

First, a batch of partial equilibrium models were proposed in the late 80’s and through-

out the 90’s. Then, a newer wave of more generally applicable model were given in

the ’00’s and ’10’s. Here I’ll present a synopsis of both waves, as well as a selection of

related research in the intermediate period.

Wilson (1987) began the first wave with a game theoretic model, positing a

strategic multilateral setting where each trader’s actions directly impact the pricing

strategies of the other traders. Though highly plausible in smaller markets, strategic
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Easley and Ledyard (1993) took a less complex route to defining double auction play,

entirely removing the strategic interaction. Traders participated in the market under

the assumption their own decisions have no impact on the order placement/acceptance

of others, all the while guiding their own orders via an across-period deterministic reser-

vation price. Friedman (1991) similarly took on a game against nature stance, however

with traders administering a more sophisticated within-period reservation price bid-

ding/selling strategy. Gode and Sunder (1993) simplified trader behavior even further

(hence its running name of “zero intelligence”) by having order price be randomly cho-

sen, supposedly leaving the only driving factor of price formation being the underlying

rules of the double auction itself. Much closer to the perfectly rational gate, Gjerstad

and Dickhaut (1998) models traders who develop beliefs on the acceptability of prices,

and then select the price which yields the maximum expected surplus.

The literature from this point split over the last couple decades. A batch of

parsimonious, tractable, often heuristic-driven models entered the learning model liter-

ature. Though not directly designed for markets, the following models can naturally

be bent to account for the more complex setting. Roth and Erev (1995) provide a re-

inforcement learning model designed for dynamic games, with an emphasis on testing

performance and convergence in the intermediate term. Agents develop choice propen-

sities for each strategy, with successful outcomes increasing a strategy’s propensity to

be chosen in future decisions.2 Fudenberg and Levine (1995) postulate a theory of

’cautious fictitious play’, which places beliefs over the probability of opponent’s playing

given strategies. Agents use these beliefs to make their own strategy, each strategy

2The model was tested across three game types, with one being a simple market.
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being chosen with some logit choice probability.3 Camerer and Hua Ho (1999) house

reinforcement-based learning and belief-based learning as special cases of a more com-

plex experience-weighted attraction learning model; some flexible convex combination

of the two is shown to generally be a better fit to game data than either of the two as

stand-alone models.

A strain of models imposing higher levels of complexity in behavior or more

complex market settings, or both, have also been proposed recently. One such model

that is highly malleable in terms of its application and setting is the individual evolution-

ary learning model (IEL) of Arifovic and Ledyard (2011). Economic agents maintain

an evolving pool of potential choices which they draw from subject to a probability

distribution that is constantly updating via experimentation and replication stages. A

few years later, Anufriev et al. (2013) applied IEL to the continuous double auction

setting, in a partial equilibrium environment.4 General equilibrium adaptions of the ZI

model were promoted by Gode et al. (2004) and Crockett et al. (2008a) a decade or so

after the original model was published. The former features an price-angle order choice

process, while the latter proposes a learning process by which the allowable subset of

the contract curve is restricted round after round. Williams (2021a,b) bring two models

from the first wave to a general equilibrium setting. A competing model to that of

Gode, Spear and Sunder (2004), Williams (2021b) postulates a GE-based zero intelli-

gence (from here, ZI-G) model with a lower sense of ‘zero’ intelligence. Williams (2021a)

3Feltovich (2000) tested these two models in the laboratory where subjects played a two-stage game
with asymmetric information. The reinforcement model better predicted choice probability of a subject’s
next action, while the belief-based model proved better more often for aggregate trends in play.

4The timing in the paper lends itself more to an analysis of multiple iterations of a call market as
opposed to a double auction in continuous time. A timing adjustment suggested in van de Leur and
Anufriev (2018) better aligns the model with continuous time.
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brings the belief-based process of Gjerstad and Dickhaut (1998) to general equilibrium

to better understand impacts price information may have on market convergence.

3.3 Environment

3.3.1 Message Space

Here, I lay out the space encompassing all exchange related information the

traders are given: the message space. This space is a crossing of several one dimensional

sets (yielding information in the form of order n-tuples) to be described below.

Prices: P ⊂ R+ s.t. elements p ∈ P denote per unit prices

Quantities: Q ⊂ R/{0} s.t. elements q ∈ Q denote desired unit adjustment

Time: T ≡ [0, T ] ⊂ R+ s.t. elements t ∈ T denote time a market period

The above create the 3-dimensional space which defines the standard elements

of orders: the per unit price, the desired adjustment in units of the commodity, and the

time in the markets life at which the order was placed. Here I will assume orders are

infinitely-lived, only expiring if the market’s duration ends or if a trader replaces their

order with a new one.

This typical 3-tuple order will be augmented to store information about the

trader’s involved. The set of traders, N , is split into two subsets: natural buyers,

B = {1, ..., NB}, and natural sellers, S = {NB + 1, ..., NB + NS}. The set N satisfies
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N = B ∪ S and B ∩ S = {0}.5. Natural buyers are traders whose marginal rate of

substitution at the inception of a market is greater than the competitive equilibrium

price for the initial allocation of goods across the market. Natural sellers are defined

similarly, with their MRS residing below the initial CE price.

With trader identities defined, we can define the standard notation for orders

in this framework:

o∆,a = (pa, qa, ta, ba, sa)

where a denotes the action number (the ath action taken in this market), with a ∈ A ⊂

N . Actions are defined as an order placement or order acceptance. Also, ∆ denotes the

side of the market the order is being placed, with

∆ =


b, q > 0

s, q < 0

For any ordering being placed in the orderbook, ba or sa must be 0.

The set of bids and asks can thus be defined as follows:

Buys : ΩB := P×Q×T ×N ×{0} ≡ {ob,a : pa ∈ P, qa ∈ Q, ta ∈ T , ba ∈ N , sa ∈ {0}}

Sells : ΩS := P×Q×T ×{0}×N ≡ {os,a : pa ∈ P, qa ∈ Q, ta ∈ T , ba ∈ {0}, sa ∈ N}

Note that ba and sa can lie in all of N , as opposed to B or S, as all traders

have the capacity to place orders and trade on either side of the market (we refer to

them as two-way traders). The set of orders is defined as Ω ≡ ΩB ∪ ΩS .

5∥N∥ = ∥B∥+ ∥S∥ = NB +NS = N̄
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3.3.2 Exchange Definitions

Every message which enters the market, or exchange, lives in the message space

laid out above. Below, I define the characterizing elements/processes that make up the

exchange.

Orders: An order is a single message sent to the exchange by a trader, of the form

o∆,a. Orders may be submitted at any time t ∈ T .

Asks/Bids: Asks satisfy qa < 0, ba = 0, sa ̸= 0 s.t. os,a ∈ ΩS . Bids similarly satisfy

qa > 0, ba ̸= 0, sa = 0 s.t. ob,a ∈ ΩB.

Orderbook (ΩO): Any order o∆,a which satisfies ba = 0 or sa = 0 exists in the ex-

change’s orderbook.

To accommodate the idea of trading units or filling orders, an amendment to

the notation of orders is needed, as well as a definition of how orders are filled. An

order, oκ∆,a, has κ = 0 if the order is newly posted to the orderbook, κ ∈ (0, 1] if the

order was (partially) filled. The value of κ in the latter case is equal to the proportion

of units that were filled out of qa. If κ = 1, order oκ∆,a has been fully filled, and thus is

removed from the orderbook.

Cross/Accept: An order o∆,a crosses order o∆′ ,a′ (for a
′
< a) if:
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1. ∆ ̸= ∆
′
and

2. pa ≤ pa′ if ∆ = s or pa ≥ pa′ if ∆ = b

Also, define aT : N → A as the mapping from the ordering of crossings/traders

to the action at which the crossing/trade occurred.

3.3.3 Histories

While the orderbook provides a snapshot of the present state of the exchange,

a system for (1) referencing older orders no longer in the book, and (2) providing context

for the expanse of trader’s memories within the market must be defined to track the

adjustment of the market.

History: The set of all orders (past and present) and trades in the lifetime of the

market. The full history can be split into three types of orders:

• Trades (ΩT ) −→ The set of orders oκ∆,a which satisfy ba, sa ∈ N and κ = 1.

• Cancelled Orders (ΩC) −→ The set of orders oκ∆,a which satisfy ba = 0 or sa = 0,

and κ = 1

• Orderbook (ΩO; as defined above)

A useful union of these subsets for the purpose of understanding trader be-

havior is ΩT ∪ΩC , which houses all past, or closed, orders in the history of the market.

Also, note that this union is the definition of history (ΩH) in Gjerstad and Dickhaut

(1998).
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The history, as just defined, shows the entirety of the exchange’s life, from

the perspective of the exchange (in the sense that the history is full/complete). Each

trader, however, may or may not have the capacity (or desire) to maintain as complete

of a history. In the vein of Gjerstad and Dickhaut (1998), traders can remember all past

orders within the last L successful trades6:

Memory: The set of traded orders and cancelled orders that have occurred in the last

L orders (where the most recent trade was the jth trade in the market) , ΩM(L) ≡

{oκ∆,a ∈ ΩH : a < aT (j − L)}.

3.3.4 Trader Preferences

Much like the ZI-G and GD-G general equilibrium models, traders are moti-

vated via utility functions. This is opposed to the cost and redemption-value schedules

driving traders in more classical partial equilibrium settings. Generally, the standard

assumptions on the utility function of trader i, ui, are assumed: ui is twice differen-

tiable, decreasing and quasi-concave. For the remainder of this paper, I’ll focus on the

constant elasticity of substitution functional form:

ui(x, y) = ci((aix)
r + (biy)

r)
1
r (3.1)

For simplicity, I normalize relative preference parameters a and b such that they sum

to one and are both non-negative. The curvature parameter r is also assumed to lie in

(−∞, 1] to satisfy the quasi-concavity requirement.

6
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I add the flavor of reservation prices to trader’s, though through an avenue

more appropriate for general equilibrium. Traders maintain reservations around the

utility gained at each price (or quantity change in x). As agents are two-way traders,

they develop these reservations as both buyers and sellers. These reservation utilities

are captured via parameter η, where η(t) is a function of within-period time t.

The reservation adjustment η takes the form:

η(t) =

(
T − t

T

)
min{a, b}
max{a, b}

min{a, b} (3.2)

and enters into the trader’s utility function as follows

ui,b(x, y|η) = ci((ai + η)rxr + (bi − η)ryr)
1
r (3.3)

ui,s(x, y|η) = ci((ai − η)rxr + (bi + η)ryr)
1
r (3.4)

Here ui,b is the buyer reservation utility for trader i, and ui,s is the seller reservation

utility. Some natural (and necessary) comparative statics arise from for η(t). First,

η is decreasing in t. This implies that both ui,s and ui,b collapse to the trader’s true

indifference curve ui as a period progresses. Second, the adjustment is decreasing in

relative “side”, or good, preference, as min{a, b}/max{a, b} is decreasing in |a − b|.7

Thus, traders greatly preferring one good to the other will have weaker reservation

adjustments.8 Finally, the last part of equation 3.2 implies that preferences for both

goods remain positive (as η can’t surpass a or b in magnitude).

7Holding |a+ b| constant.
8This means ui,∆ will be more accepting on the ∆ side, and ui,−∆ will be less influential. The trader

is less inclined to submit increasingly utility-reducing (relative to ui) offers in this case.
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Figure 3.1: Reservation Utility. The black curve shows an indifference curve (IC) of
ui. The green and red dotted curves show IC’s for ui,b and ui,s, respectively. BA and
BB (blue dotted lines) show best ask and bid prices in the market. The shaded region
shows the space in which this trader would automatically accept a posted ask, were he
to enter as a buyer.

A few special cases should be mentioned as well. First, with respect to func-

tional form, perfect substitutes (r = 1), perfect complements (r → −∞) and Cobb-

Douglas (r → 0−,+) are naturally folded into CES preferences. Both perfect substitutes

and perfect complements provide interesting responses/interpretations when including

η as in equations 3.3 and 3.4. The former, graphically, mimics reference prices from

the partial equilibrium literature of the 90’s, as the slope of the IC gives a natural

reservation price. The latter is analogous to an adjustment in the desired complement

ratio.

3.4 Agent-Based Model

This section lays out the details of the model, now that the environment has

been established. Much like the GD-G model from Williams (2022), four main processes

determine the flow of the market and trader behavior in this model. These are entry,
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belief updating, market interaction, and re-entry determination.

Entry refers to the actions taken and snapshot of the market received by the

trader who enters the market in time t. In all times aside from the inception of the mar-

ket, entry is actually the second step of a two-part market entry/exit flow process along

with the re-entry determination phase. The belief-updating phase takes the snapshot of

the market in the entry phase and allows the entrant to readjust his interpretation on

which prices my potentially be successful moving forward. Market interaction defines

the order selection and submission process, as well as potential clearing. The re-entry

determination phase sees all traders briefly evaluate their holdings, beliefs and the state

of the market to evaluate their desire for re-entry. Below, each of these will be fleshed

out in much greater detail.

3.4.1 Entry

Entry (and re-entry) into this environment’s markets can take a couple of

different forms depending on the age of the market and the potential entrant’s previous

participation in the market. The inception of the market (i.e. the first entry in the first

iteration, or period, of the market) is unique in that no prior history exists. As such,

this is the only instance in which entry is entirely random. Similarly, the first entrant

of any period after the first is uniformly drawn.

The second (and far more common) entry situation is any entry after the first

in any market period. To foreshadow the re-entry process discussed in section 3.5.1,

the trader who wins the re-entry draw (with re-entry probabilities being dependent on

average utility gain above a given trader’s reservation utility) enters the market next.
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In this case, the trader drawn to (re)enter checks the market’s best bid and ask against

their own current reservation utilities and begins the belief updating process before

making a decision on how they wish to use their entry.

3.4.2 Belief Updating

First, lets recall the belief formation and updating process of Gjerstad and

Dickhaut (1998). Here, traders establish beliefs over the acceptability of certain prices

on either side of the market. Traders recall a portion of the history, ΩH , and tally the

success and failure rate of each price, ρ, seen for each side of the market, TA(ρ) for asks

and TB(ρ) for bids.

In Gjerstad and Dickhaut’s original setting, these tallies were defined as counts

with a count of 1 given to each order that satisfied the criteria (traded or cancelled)

of interest. This was appropriate as each order in their partial equilibrium setting was

required to be for a single indivisible unit. However, uniform counts are not attuned

to settings with multiple and/or divisible units. Williams (2021) provides a general-

equilibrium-adjusted version of Gjerstad and Dickhaut’s model (from here referred to

as GD-G), in which each order is given weight equal to the proportion of the original

quantity successfully traded,
√
qk

qk,traded
qk

. A similar weighted count is defined for the

rejected (cancelled) portions of orders, RA(ρ) and RB(ρ).

Traders aggregate over the success of orders at less desirable (to the rest of

the market) prices than one they may be considering. This is assessed relative to the

success of these worse prices along with the failure of prices placed on the desired side
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at more desirable prices. For some bid ρ,

pb(ρ) =

∑
ρ≤b TB(ρ) +

∑
ρ≤b TA(ρ)∑

ρ≤b TB(ρ) +
∑

ρ≤b TA(ρ) +
∑

ρ≥bRB(ρ)
(3.5)

represents the probability of acceptance. Each trader holds such a belief for each price

represented in ΩH . Note that beliefs are over the domain [0,M], with pb(0) = 0 and

pb(M) = 1 for bids and the reverse for asks.

3.4.3 Market Interaction

Contrary to ZI-G and GD-G, this model considers the use of two types of

order placement strategies, accepting orders directly and placing orders in the book.

While both of the prior models can achieve both strategies via only the latter (as orders

placed in the book which cross, essentially accept another order directly), a couple of

distinctions should be made. First, in a setting where orders can have multiple and/or

partial unit quantities, crossing orders won’t always interact as cleanly in the orderbook

as an accept. Second, it seems natural to consider the two actions as responding to

separate lines of intent for the trader, with accepts being very short-term, heuristic

driven choices and orderbook additions being more long-term plays. Establishing such

distinctions between the two also provides a nice analog to the ideas of market orders

and limit orders in the financial literature.

The market interaction, in concert with the above, is a two part process: check-

ing for and interacting with orders that may be desirable immediately, and submitting

an order to the exchange to add to the existing book. Note that the second step is only

reached if the trader does not satisfy the “interacting” portion of the first step. Below
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are the processes of accepting and placing orders explained in detail.

Accepting Orders

Upon entry, even before the belief updating process has occurred, the trader

has an idea of their reservation utility on their selected side of entry. Consistent with

previous reservation price models, traders have an incentive and desire to accept with

certainty an order on the contra-side of the market which is greater than their reserva-

tion. This means the trader would be checking first if the current book leaves any room

between the best order on the entered side and his current reservation utility, or:

|BP∆ −MRSui | − |MRSui,∆ −MRSui | > 0 (3.6)

A check with evidence of a contra-side order in this region induces the entrant to accept

the order outright. If multiple orders exist in this region, the order with the highest

resultant utility is chosen. A null result from the check leads the trader to stage two of

their market interaction, described below.

Placing an Order

While on side ∆, the trader has three indifference curves to consider: the curve

for ui,∆, the curve for ui and the curve for ui,−∆. Functionally, only two of these will

be considered. The more restrictive reservation utility, ui,∆, has already been shown to

be used as a bound for immediately-acceptable orders. The weaker reservation utility,

ui,−∆, provides a lower bound for the bundles necessary to be at least as happy in

future entries (especially if entering on side −∆ in their next interaction). The curve

associated with ui is left to serve as a target for activity very late in the market’s life,
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with ui,∆ and ui,−∆ providing “goal posts” moving over time as a reflection of a trader’s

continuation value.

Using this lower goal post as a criterion for utility-improving orders, the trader

considers any bundle on the ∆ side that is weakly better than their current reservation

utility ui,−∆. This set of orders lies in

Pui,−∆
×Qui,−∆

≡(min{|MRSui,−∆
|,Boundary∆}, max{|MRSui,−∆

|,Boundary∆}]×(0,x̄(∆)] (3.7)

Pui,−∆ takes an open lower bound at the marginal rate of substitution at the

trader’s current endowment on the contra-side reservation utility ui,−∆ and a closed

upper bound at the boundary price on that side (0 if ∆ = b and M if ∆ = s). Qui,−∆ is

more tedious to define, as the upper bound must take both current allocation and the

non-zero9 intersection point between the indifference curve and line associated with the

best price on that side, BP∆, into account. The upper bound on Qui,−∆ is dependent

on both the intersection between ui,−∆ and the price vector extending from the trader’s

current allocation (call this x̂) and the trader’s current holdings of x. When ∆ = b,

x̄ is generally equal to x̂; however, if x̂ is non-existent or sufficiently large, then x̄ is

bounded above by the total x remaining in the market. For ∆ = s, x̄ is the minimum

of the total y remaining in the market divided by the price of the order and x̂.

For each potential bundle, oz ∈ Oz := Pui,−∆ × Qui,−∆ , the trader considers

their belief on the acceptability of the given price. Each bundle thus has an expected

level of utility improvement. The trader considers the possible bundles with logit choice

9The “zero” intersection here would be at the trader’s current allocation.
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probability:

Pr(oz|xk, yk,ΩM ) =
exp[λp∆(oz)(ui,−∆(oz)− ui,−∆(xk, yk))]∑

o′zϵOz
exp[λp∆(o

′
z)(ui,−∆(o

′
z)− ui,−∆(xk, yk))]

(3.8)

The parameter λ implies some preciseness over the trader’s ability to choose

the expected utility-gain maximizing order. Reservation adjustment aside, λ = 0 would

yield a uniform distribution over the orders, much like ZI-G. Similarly, λ → ∞ would

imply perfect choice as in GD-G.

3.4.4 Re-entry Determination

Now that the current entrant has entered, updated and (attempted to) place

their order, and the exchange has updated the book and/or processed a transaction,

the rest of the market (and the entrant herself) can individually reflect and gather their

potential gains on either side of the market were they to enter next. To do so, a trader

checks equation (3.6) for each side of the market , though with ui,∆ replacing ui,−∆.

If (3.6) fails, the trader gives a value of 0 for that side of the market. Otherwise, the

trader performs the same process as was taken by the entrant when placing an order.

A couple minor adjustments to the process are needed however.

For side ∆, each trader considers ui,∆ when determining the set of admissible

orders (those which are immediately acceptable) Pui,∆ ×Qui,∆ . Each admissible order is

given an expected utility gain using the trader’s developed beliefs for price acceptability.

The trader averages over the expected gains of all admissible orders, giving them an

idea of the expected gain for entering on that side. Each trader-side is treated as a

separate draw for the next entry into the market, with each draw’s probability being
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the draw’s expected gain divided by the sum of all trader-side expected gains.

3.5 Simulations

3.5.1 Implementation

The performance of the model presented here is demonstrated via a set of

simulated markets. A group of eight computerized traders are placed in a simulated

CDA, playing in multiple periods of a single market. This multi-period-life market is

simulated many times, completely refreshed at the inception of each simulation.

The main assumptions of the model, institution and equilibrium are applied

to the traders; a series of 40 markets are simulated under these conditions (and with

the parameters described below). Each market lives twelve periods of identical length.

A market period is comprised of 200 market entries, with the entrant being determined

via the draw described in Section .10

Each computerized trader has CES preferences over two goods, with parameter

sets:

c a b r (xEndow, yEndow)

Buyers 0.113 0.825 0.175 0.5 (3,23)
Sellers 0.099 0.6875 0.3125 0.5 (11,3)

Table 3.1: Simulated Agent Parameters.

All traders maintain a memory of L = 5, implying they can perfectly recall

10As in the model, no market level spread reduction rule is enforced. However, traders have ‘internal’
spread rules, only replacing their own order if its better than one currently in the market. As this still
allows for order placement at prices worse than the best bid and ask, I don’t feel such a restriction is
overly influential in market success. These internal rules are the only impediment on orders not being
placed in the book. In the batch of simulations discussed here, 79.4 out of 200 orders were placed per
period.
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all transactions and order cancellations in the market within the last five transactions.

This memory may span across market periods within the same run, however may not

carry over between runs.11 Additionally, when conducting his logit choice procedure

over the set of feasible orders, each trader will have a logit choice parameter, γ, of 0.75.

This places traders’ choice precision between uniformly random and perfect, leaning

more on the side of random.

3.5.2 Performance

Mean St. Dev. Range

I. Prices
Price 2.32 0.22 (1.68, 3.48)
|Price− CE| 0.56 0.14 (0.23, 1.23)
RMSE 0.69 0.19 (0.26, 2.15)
Final 5 Prices 2.35 0.23 (1.68, 3.48)

II. Allocations
Final Distance 0.76 0.48 (0.01, 5.78)
Seller MRS 2.41 0.18 (1.09, 3.16)
BuyerMRS 2.53 0.21 (2.04, 4.77)

III. Efficiencies
Allocative 0.96 0.04 (0.39, 1.00)
Distance 0.79 0.06 (0.26, 0.92)

Observations 480 480 480

Table 3.2: Simulation Outcomes. Observations at the round-average level. Panel I
shows price related estimates. RMSE is the root-mean-squared error. Panel II reports
outcomes in allocation space. MRS here is the marginal rate of substitution at the final
allocation of aggregated representative agents. Panel III lists estimates for two measures
of efficiency.

Table 3.2 records the main performance measures for the simulated markets. A

quick glance shows evidence of surprisingly successful markets. Estimates show promis-

11This assumption is tested in a batch of simulations with trader memories that refresh at the begin-
ning of every period.
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ing levels of convergence in both allocation and price space, with markets tracking

remarkably well around the equilibrium path.

All estimates are means of round-average (in the case of all price measures) or

round-end (in the case of allocation and efficiency measures) level observations. Average

price lies just 0.12 below the CE prediction from market inception, which, when accom-

panied with low volatility, implies transaction prices lying in an impressively tight band

around the CE price. Figure 3.2 confirms not only the round-averages, but the individ-

ual transaction prices across the markets are closely bound. Convergence within period,

however, requires tighter bounds on the time in focus. The final batch of transactions in

a period provide an idea of traders’ desire to trader and urgency to lack thereof to reap

more gains from trade. I find an estimate even tighter to the CE prediction, suggesting

prices not only lie close to the equilibrium, but tighten and converge in some smaller

bound as the period ends.

Even so, prices can only provide so much of a picture of the full success of the

market. Panel II gives two distinct pictures of how these simulated traders reallocate

the two goods among themselves. The first is how far away the market is as a whole

from the equilibrium set of allocations. To examine this, I collapse12 the two types of

traders into representative agents. These agents can aptly be fully represented in the

Edgeworth box. On average, the final distance13 the pair lies away from equilibrium

12For example, the four natural buyers can be aggregated into a single agent by averaging over each
transaction made by one (or two) of the traders. If a buyer transacts with a natural seller, the adjustment
in the representative buyer’s allocation will be a quarter of that realized by the individual trader. If
two natural buyers transact, the representative sees no adjustment in his allocation.

13The Euclidian distance that the representative buyer (and equivalently, seller) is away from the
equilibrium allocation in the Edgeworth box. The y contribution to the distance is deweighted by the

equlibrium price. The distance function is thus dist(·) =
√

(xi − xCE)2 + ( 1
pCE

(yi − yCE))2.
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allocation bundle pair is within a unit radius of the final. Allocations approach the

contract curve, on average lying in nearly Pareto optimal final resting places.

Figure 3.2: Kernel density for prices. Red line shows round-averages, while red-dotted
shows individual transaction prices. The black vertical line is the mean of the round-
averages, and the blue dotted line is the CE price of 2.44.

The marginal rate of substitution of market participants presents gives a proxy

of convergence in allocative efficiency, as a trader’s MRS should equal the CE price in

equilibrium. Natural buyers are characterized by their initial MRS being above the

equilibrium prediction; natural sellers lie on the other side of the price. As such, the

traders, and their representative agents, should reallocate resources throughout the

market period to collapse their MRS to the CE-price. The average final allocations of

the representatives approach encouragingly close to 2.44, with sellers 0.03 below and

buyers 0.08 above. Despite large ranges of round-end estimates for this spread, tight

standard deviations suggest poorer MRS spreads are rather uncommon.

Two measures of efficiency are estimated. Allocative efficiency in this GE
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Figure 3.3: Final Allocations. Each grey dot represents the final allocation of the
representative agents in the Edgeworth box. The red dot shows the equilibrium bundles,
while the green dot represents the geometric mean of the scattered grey dots. The CE-
price de-weighted distance between the red and green dots is 0.47 units. The dotted lines
show the indifference curves of the representative agents evaluated at the endowment
allocation. The dashed line shows the set of Pareto optimal allocations.

setting is adapted from the sum of profits over expected sum in equilibrium to the sum

of utility gains relative to expected gains in equilibrium. The measure captures whether

the market as a whole could reap the full gains from trader available, but is subject

to ignoring disparities in gains between traders. This is less so true in GE, however,

thanks to properties of the trader’s preferences. Clearly, these traders are capable of

capturing most of what the market has to offer, as average allocative efficiency is 0.96.

For reference, simulated traders from the general-equilibrium zero intelligence models of

Gode, Spear and Sunder (2004) and Williams (2021), as simulated in Williams (2021),

yield allocative efficiencies of 0.92 and 0.66 in markets with even longer periods (300

84



entries).

Figure 3.4: Cumulative Density Functions for Efficiency.

Distance efficiency is measured by the difference in the distance between the

equilibrium and endowment allocations and distance between the final and equilibrium

allocations, divided by the distance between the equilibrium and endowment alloca-

tions.14 Geometrically, this means any point lying on the surface of the ball BDist.Eff.

has the same value, thus penalizing deviation from the equilibrium path in much the

same way as under or over trading along the path would be. The simulated markets

perform quite well, with an average distance efficiency of 0.79, and max efficiency of

0.92. Estimates of both efficiency measures are tightly grouped, as shown in Figure

3.4, with allocative efficiency first order stochastically dominating distance efficiency.

The Spearman rank correlation between the estimates is 0.80, which, given such high

14Distance here is the average of the 2-space GE-price-de-weighted Euclidean distance for each of the
eight traders.
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measures in both, suggests most markets en relatively close to a Pareto optimal alloca-

tion, but deviate to lie closer to other points on the contract curve than the equilibrium

allocation. Figure 3.3 gives some weight to this claim.

3.6 Concluding Remarks

This paper models market dynamics in an Edgeworth box where trader’s have

‘imperfect’ choice procedures when placing orders in a CDA. Traders have the capacity

to remember a portion of the history of the market, developing beliefs over the accept-

ability of order prices. Beliefs account for the relative success of each past price based

on order size. Agents recognize that they may participate on both sides of the market,

and develop reservations depending on which side that enter. As traders maintain some

utility preferences over their holdings, these reservations are held in terms of utility

(as opposed to reservations on price as in Friedman (1991)). A curvature parameter η

(which is a function of the time remaining in the market) determines what orders are

immediately acceptable on the entered side and what orders satisfy the trader’s reser-

vation were they to enter on the contra-side in their next entry. Such a process allows

traders to maker order selections that appear to be utility-reducing relative to their true

preferences, though allow the trader to position themselves as to better perform as a

two-way trader.

A set of simulations test the performance of markets with computerized traders

imbued with the behavior described in the model. Prices near the equilibrium prediction

consistently. Round-averages remain slightly below equilibrium, creating tight bounds
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but not quite converging. Allocations, both in 16-space and 2-space, regularly lie in

impressively close to Pareto optimal allocations along the contract curve at round’s

end, often very close to the equilibrium allocation bundle. Given rounds are not run

intentionally until allocations are Pareto optimal, achieving nearly this so consistently is

promising. Seller and buyer marginal rates of substitution provide supporting evidence

for convergence in allocations as well. Efficiencies, both allocative and distance, are

repeatedly high, suggesting gains from trade are often equitably spread and mostly

drawn from the market.

The major implication of the findings of this project is the feasibility of indi-

vidually irrational (though deliberate) order placement decisions in markets that show

convergent tendencies. Strategic repositioning in the orderbook, and in anticipated

holdings, is a legitimate consideration traders may be making in double auctions. This

paper confirms such a consideration is not as harmful as some perfectly rational purists

may suspect; in fact, estimates here perform near or level with some more complex

models. Furthermore, the model provides a mapping from the zero intelligence gate

(beginning with ZI) through the wilderness to a model fit much closer to the perfectly

rational gate (this being Gjerstad and Dickhaut’s belief-driven model).

A few natural adjustments to this model exist. First, individualized η func-

tions, dependent on arguments such as current holdings, within-round and market-life

earnings, and overal time in the market (aggregated across periods), is an interesting

adaptation. Estimation of functional form for variations on η via laboratory experimen-

tation could be illuminating for the external validity of this model’s mechanism. Given

the results of Williams (2021a), an inclusion of prices in the orderbook in the belief
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updating process would likely improve fit. Finally, and more in the vein of a substitute

instead of an adjustment, a heuristic-based version of this model that maintains the

driving mechanism without the tenuous book-keeping by the traders could provide a

more tractable and lab-friendly testbed.
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Appendix A

Chapter 2 Appendix

A.1 Regression Table Continued

89



Dependent variable:

Price |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

...
spreadRed:singleUnit:lattAng −0.972 −1.059 −7.362 20.169∗∗∗ 9.522∗∗∗ −0.163∗∗∗ −0.017 0.019 −0.018∗∗∗

(1.464) (1.464) (13.837) (3.476) (0.216) (0.026) (0.015) (0.025) (0.007)

spreadRed:singleUnit:obReset −0.599 −0.503 −2.349 −2.910 4.158∗∗∗ −0.258∗∗∗ −0.026∗ 0.048∗ −0.028∗∗∗

(1.464) (1.464) (13.837) (3.476) (0.216) (0.026) (0.015) (0.025) (0.007)

spreadRed:singleUnit:noLoss 0.352 0.381 0.376 −0.237 2.091∗∗∗ 0.077∗∗∗ −0.350∗∗∗ 0.757∗∗∗ −0.192∗∗∗

(1.473) (1.473) (13.920) (3.476) (0.216) (0.026) (0.015) (0.025) (0.007)

spreadRed:lattAng:obReset −3.887∗∗∗ −3.856∗∗∗ −34.719∗∗ 9.380∗∗∗ 12.323∗∗∗ −0.230∗∗∗ −0.022 0.003 −0.010
(1.464) (1.464) (13.837) (3.476) (0.216) (0.026) (0.015) (0.025) (0.007)

spreadRed:lattAng:noLoss −0.888 −0.983 −7.494 24.618∗∗∗ 22.250∗∗∗ 0.101∗∗∗ −0.374∗∗∗ 0.789∗∗∗ −0.236∗∗∗

(1.472) (1.472) (13.914) (3.476) (0.216) (0.026) (0.015) (0.025) (0.007)

spreadRed:obReset:noLoss −0.861 −0.745 −2.747 −1.269 3.711∗∗∗ 0.153∗∗∗ −0.130∗∗∗ 0.206∗∗∗ −0.018∗∗∗

(1.481) (1.481) (13.998) (3.476) (0.216) (0.026) (0.016) (0.025) (0.007)

singleUnit:lattAng:obReset −6.404∗∗∗ −6.580∗∗∗ −61.530∗∗∗ 4.222 44.816∗∗∗ 0.394∗∗∗ −0.008 0.100∗∗∗ −0.065∗∗∗

(1.464) (1.464) (13.837) (3.476) (0.216) (0.026) (0.015) (0.025) (0.007)

singleUnit:lattAng:noLoss 11.544∗∗∗ 10.423∗∗∗ 13.354 35.880∗∗∗ 58.409∗∗∗ 1.844∗∗∗ 0.190∗∗∗ −0.090∗∗∗ −0.203∗∗∗

(1.472) (1.472) (13.919) (3.476) (0.216) (0.026) (0.015) (0.025) (0.007)

singleUnit:obReset:noLoss 1.092 0.992 1.689 −0.178 −1.509∗∗∗ 0.132∗∗∗ −0.035∗∗ 0.031 0.028∗∗∗

(1.482) (1.482) (14.009) (3.476) (0.216) (0.026) (0.016) (0.025) (0.007)

lattAng:obReset:noLoss −7.090∗∗∗ −6.924∗∗∗ −61.623∗∗∗ 4.236 59.364∗∗∗ 0.238∗∗∗ −0.120∗∗∗ 0.244∗∗∗ −0.092∗∗∗

(1.481) (1.481) (13.998) (3.476) (0.216) (0.026) (0.016) (0.025) (0.007)

...
Constant 2.268∗∗∗ 1.447∗∗∗ 2.054 14.942∗∗∗ 20.132∗∗∗ 3.155∗∗∗ 2.035∗∗∗ 3.066∗∗∗ 0.656∗∗∗

(0.518) (0.517) (4.892) (1.229) (0.076) (0.009) (0.005) (0.009) (0.002)

Observations 95,424 95,424 95,424 96,000 96,000 95,424 95,422 95,424 96,000
R2 0.024 0.020 0.003 0.019 0.989 0.826 0.464 0.596 0.607
Adjusted R2 0.023 0.020 0.002 0.019 0.989 0.826 0.464 0.596 0.607

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.1: Interaction regression results for third order interaction. This is a continu-
ation of the regression estimates in Table 1.2.
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Dependent variable:

Price |Price− CE| RMSE Order Size # Trades Trade Size Seller MRS Buyer MRS Alloc. Eff.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

...
spreadRed:singleUnit:lattAng:obReset 3.474∗ 3.474∗ 34.067∗ −9.380∗ −3.183∗∗∗ 0.228∗∗∗ 0.029 −0.019 0.028∗∗∗

(2.070) (2.070) (19.568) (4.916) (0.305) (0.036) (0.022) (0.035) (0.010)

spreadRed:singleUnit:lattAng:noLoss 0.197 0.399 6.771 −24.618∗∗∗ −11.336∗∗∗ −0.098∗∗∗ 0.363∗∗∗ −0.714∗∗∗ 0.185∗∗∗

(2.076) (2.076) (19.628) (4.916) (0.305) (0.037) (0.022) (0.035) (0.010)

spreadRed:singleUnit:obReset:noLoss 0.454 0.348 2.205 1.269 −2.985∗∗∗ −0.150∗∗∗ 0.139∗∗∗ −0.228∗∗∗ 0.029∗∗∗

(2.083) (2.083) (19.694) (4.916) (0.305) (0.037) (0.022) (0.035) (0.010)

spreadRed:lattAng:obReset:noLoss 3.757∗ 3.869∗ 34.709∗ −10.169∗∗ −14.317∗∗∗ −0.169∗∗∗ 0.057∗∗∗ −0.073∗∗ −0.014
(2.082) (2.082) (19.683) (4.916) (0.305) (0.037) (0.022) (0.035) (0.010)

singleUnit:lattAng:obReset:noLoss 6.501∗∗∗ 6.474∗∗∗ 61.427∗∗∗ −4.236 −40.185∗∗∗ −0.244∗∗∗ 0.097∗∗∗ −0.258∗∗∗ 0.121∗∗∗

(2.083) (2.083) (19.691) (4.916) (0.305) (0.037) (0.022) (0.035) (0.010)

spreadRed:singleUnit:lattAng:obReset:noLoss −3.235 −3.403 −33.996 10.169 4.865∗∗∗ 0.170∗∗∗ −0.072∗∗ 0.099∗∗ −0.004
(2.937) (2.937) (27.764) (6.952) (0.431) (0.052) (0.031) (0.049) (0.014)

Constant 2.268∗∗∗ 1.447∗∗∗ 2.054 14.942∗∗∗ 20.132∗∗∗ 3.155∗∗∗ 2.035∗∗∗ 3.066∗∗∗ 0.656∗∗∗

(0.518) (0.517) (4.892) (1.229) (0.076) (0.009) (0.005) (0.009) (0.002)

Observations 95,424 95,424 95,424 96,000 96,000 95,424 95,422 95,424 96,000
R2 0.024 0.020 0.003 0.019 0.989 0.826 0.464 0.596 0.607
Adjusted R2 0.023 0.020 0.002 0.019 0.989 0.826 0.464 0.596 0.607

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.2: Interaction regression results for fourth order interaction. This is a contin-
uation of the regression estimates in Table 1.2.

A.2 Round-Average Price Densities
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Figure A.1: Round-average price densities. Blue line is CE price and black line is subset
average.
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Appendix B

Chapter 3 Appendix

B.1 Distributional Tests

B.1.1 Tests for Descriptive Statistics

BT→ BF BT→ FT BT→ FF BF→ FT BF→ FF FT→ FF

Price 0.54(∼) 0.04(-) 0.73(+) 0.13(-) 0.54(+) 0.08(+)
|Price− CE| 0.54(-) 0.04(+) 0.73(-) 0.13(+) 0.54(∼) 0.08(-)

SD 0.23(-) 0.54(-) 0.00(-) 0.60(∼) 0.11(∼/-) 0.04(-)
RMSE 0.43(-) 0.73(-/∼) 0.03(-) 0.31(+) 0.38(+/-) 0.02(∼/-)

# Orders 0.00(+) 0.18(+) 0.00(+) 0.16(-) 0.21(-) 0.60(∼/-)
Order Size 0.00(+) 0.00(+) 0.21(+) 0.70(∼) 0.04(∼/-) 0.01(-)
# Trades 0.00(+) 0.91(-/∼) 0.82(∼/+) 0.00(-) 0.00(-) 0.93(+)
Trade Size 0.63(∼) 0.00(+) 0.03(+) 0.00(+) 0.01(+) 0.08(-)
Seller MRS 0.01(+) 0.45(∼) 0.19(+) 0.01(-) 0.43(∼/+) 0.10(+)
Buyer MRS 0.06(-) 0.54(∼/-) 0.18(-) 0.01(+) 0.77(∼) 0.16(-)

Table B.1: Wilcoxon test p-values for outcomes in Table 2.2. () denote the direction of
change when moving from Treatment A → Treatment B in the column.
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B.1.2 Utility Gain CDFs

Figure B.1: Cumulative density functions for the round-end trader-level difference in
utility gained and expected utility gain in equilibrium.

B.2 Across and Within Period Price Dynamics

B.2.1 Across Period Estimates

∆p1 γ s.d.(γ)

Session
BF-2 -0.17 0.38 0.18
BF-1 0.10 -0.49 0.15
BT-2 -0.06 0.31 0.27
BT-1 -0.16 -0.27 0.28
FF-2 0.36 -0.17 0.31
FF-1 -0.21 0.43 0.05
FT-2 -0.51 -0.23 0.26
FT-1 -0.07 0.45 0.16

Table B.2: Estimates for one period lagged price deviation (from time 0 competitive
equilibrium price, p∗).
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B.2.2 Within Period Estimates

BBO-TT BBO-Full Full-TT Full-Full

Period Session ∆p1 γ s.d.(γ) ∆p1 γ s.d.(γ) ∆p1 γ s.d.(γ) ∆p1 γ s.d.(γ)

1 (1) 0.21 -0.35 0.15 -0.82 0.12 0.56 -0.66 0.01 0.98 -0.26 0.43 0.03
(2) -0.68 0.11 0.72 -2.17 -0.39 0.32 -0.70 0.17 0.55 0.56 0.26 0.46

2 (1) 0.36 0.49 0.01 -0.67 0.04 0.85 0.36 0.15 0.45 -0.07 -0.04 0.89
(2) -0.94 -0.05 0.84 1.28 -0.13 0.83 -0.55 0.18 0.46 -0.99 -0.27 0.54

3 (1) -0.00 0.48 0.00 -0.40 0.40 0.08 -0.04 0.10 0.60 -0.02 0.18 0.43
(2) -0.47 0.14 0.48 0.76 -0.06 0.80 -0.34 -0.07 0.78 -0.73 0.05 0.87

4 (1) 0.08 0.05 0.80 -0.26 0.10 0.69 -0.55 0.03 0.89 -0.40 -0.07 0.79
(2) -0.33 0.21 0.47 1.33 -0.67 0.40 -0.30 0.04 0.84 0.10 0.04 0.93

5 (1) 0.26 0.08 0.70 -0.31 0.12 0.60 -0.06 0.03 0.85 -0.31 0.13 0.51
(2) -0.58 0.09 0.69 -0.12 -0.59 0.07 0.79 -0.11 0.77 -0.51 -0.32 0.26

6 (1) -0.15 0.66 0.00 -0.77 -0.38 0.10 -0.33 0.06 0.72 -0.11 0.15 0.39
(2) 0.29 -0.07 0.85 0.27 0.14 0.74 -0.43 0.08 0.64 -1.09 -0.59 0.10

7 (1) 0.12 0.19 0.27 -0.52 -0.11 0.72 -0.17 0.06 0.75 0.36 -0.01 0.96
(2) -0.30 0.27 0.35 0.28 -0.37 0.39 -0.25 -0.25 0.47 -0.03 0.17 0.66

8 (1) -0.29 0.16 0.41 -0.45 -0.27 0.30 0.27 -0.45 0.15 0.18 -0.19 0.36
(2) 0.11 0.35 0.12 0.06 -0.24 0.36 0.20 0.40 0.17 0.19 -0.06 0.86

9 (1) 0.17 0.42 0.01 -0.16 0.27 0.23 0.14 0.05 0.83 -0.19 -0.27 0.29
(2) 0.03 0.07 0.78 0.45 0.60 0.09 -0.18 0.48 0.28 -0.66 0.05 0.91

10 (1) -0.09 0.67 0.00 -0.32 0.18 0.46 -0.20 -0.20 0.38 -0.41 -0.06 0.73
(2) -0.59 -0.04 0.83 0.03 -0.09 0.85 0.06 0.04 0.92 -0.46 -0.41 0.44

11 (1) 0.14 0.13 0.47 -0.12 0.16 0.45 0.07 -0.30 0.17 -0.31 -0.27 0.31
(2) -0.04 -0.13 0.51 0.91 -0.65 0.16 -0.42 -1.18 0.01 -0.26 0.55 0.29

12 (1) -0.12 0.43 0.03 -0.37 0.39 0.08 -0.11 0.08 0.61 -0.22 -0.17 0.41
(2) -0.32 -0.36 0.07 0.18 0.15 0.68 0.38 0.75 0.22 -1.14 -0.09 0.87

13 (2) -0.23 0.31 0.16 0.66 0.13 0.74 0.67 0.02 0.95 -1.62 -1.21 0.01

14 (2) -0.34 0.07 0.70 0.52 -0.68 0.06 -0.20 -0.21 0.56 -0.45 -0.21 0.53

Table B.3: Within-period price adjustment.

B.3 Within-Period Allocation Adjustment

Figure B.3 presents Edgeworth box depictions of each market (trading period)

for each treatment. The box shows the average movement of natural buyers in their
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x and y holdings after each trade, with the lower horizontal axis and left vertical axis

marking each respectively. The average movement of natural sellers is mapped similarly,

as the average seller allocation is the average amount of x and y left in the market.

Figure B.3 plots the allocation adjustment path for each period in all eight

sessions. Much like with prices, a trend of slow improvement appears for most sessions.

Included within this trend is a tendency to improve quickly and then revert back to

poor progression, as if traders are readjusting their price discovery patterns to achieve

greater gains. More occurrences of this in sessions with lower accessibility supports this

potential mechanism. Outside of session FT-2, however, the markets appear to converge

relatively well in at least half of the periods.
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Figure B.2: Within-period allocation adjustment plotted in Edgeworth boxes. The
shade of the allocation dot fades later in the period.
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B.4 Utility-Losing Behavior

Figure B.3: Counts of utility-losing orders placed, partitioned by trader type.
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Figure B.4: Counts of utility-losing orders placed, partitioned by trader type and market
side.
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Dependent variable:

utilLoss

distFromCenter 0.019∗∗∗

(0.008)

FullT −0.044
(0.192)

FullOB −0.306∗∗∗

(0.105)

FullT:FullOB −0.156
(0.181)

Constant −1.305∗∗∗

(0.150)

Observations 9,208
Log Likelihood −4,566.272
Akaike Inf. Crit. 9,142.545

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.4:
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Appendix C

Chapter 4 Appendix

C.1 Robustness Checks

Table C.1 shows simulation results for markets with various adjustments for

the purpose of robustness. As seen in the left panel, allowing memories to straddle

periods is not driving the impressive results in the paper. In fact, resetting the history

(and thus memories) each period yields slight improvements in most outcomes relative

to the markets examined in the main text. Means for round-average prices and final

prices fall just a few tenths short of the main simulations, though with tighter ranges.

Measures of final distance and both efficiencies are just slightly improved in the markets

with resetting memories; buyer and seller MRS actually shows a much tighter spread.

Where history-resetting markets see mild improvements in market success,

even milder regressions (or very often, pushes) are seen in markets with no internal

spread reduction rule. While this is not surprising as lower quality draws are forced

into the orderbook, meaning a few will find their way into trades when the market is
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very thin. On average however, there is essentially no impact on market success, just a

forced increase in the number of order placements and cancellations.

History Reset No Internal SR
Mean St. Dev. Range Mean St. Dev. Range

I. Prices
Price 2.28 0.17 (1.84, 2.92) 2.34 0.26 (1.64, 3.47)
|Price− CE| 0.52 0.12 (0.20, 0.99) 0.62 0.17 (0.28, 1.14)
RMSE 0.65 0.17 (0.24, 1.74) 0.77 0.24 (0.37, 2.07)
Final 5 Prices 2.32 0.20 (1.77, 2.94) 2.34 0.28 (1.64, 3.69)

II. Allocations
Final Distance 0.73 0.36 (0.07, 1.84) 0.89 0.53 (0.05, 3.97)
Seller MRS 2.46 0.15 (2.01, 2.89) 2.38 0.22 (1.49, 3.06)
BuyerMRS 2.48 0.14 (2.15, 2.97) 2.56 0.24 (2.00, 3.87)

III. Efficiencies
Allocative 0.97 0.02 (0.91, 1.00) 0.95 0.04 (0.64, 0.99)
Distance 0.80 0.05 (0.66, 0.92) 0.75 0.06 (0.43, 0.87)

Observations 240 240 240 240 240 240

Table C.1: Simulation Outcomes for Markets with Robustness Checks. Left Panel:
markets with history reset at period start. Right Panel: markets where traders have no
internal spread reduction rule
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