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Extracellular vesicles and their role in gestational diabetes
mellitus

Laura B. James-Allan”, Sherin U. Devaskar
Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA,
90095-1752, USA

Abstract

Gestational diabetes mellitus (GDM) is a complex disorder that is defined by glucose intolerance
with onset during pregnancy. The incidence of GDM is increasing worldwide. Pregnancies
complicated with GDM have higher rates of maternal and fetal morbidity with short- and long-
term consequences, including increased rates of cardiovascular disease and type Il diabetes for
both the mother and offspring. The pathophysiology of GDM still remains unclear and there

has been interest in the role of small extracellular vesicles (SEVS) in the maternal metabolic
adaptations that occur in pregnancy and GDM. Small EVs are nanosized particles that contain
bioactive content, including miRNAs and proteins, which are released by cells to provide
cell-to-cell communication. Pregnancy induces an increase in total and placental-secreted sEVS
across gestation, with a further increase in SEV number and changes in the protein and miRNA
composition of these SEVs in GDM. Research has suggested that these SEVs have an impact

on maternal adaptations during pregnancy, including targeting the pancreas, skeletal muscle and
adipose tissue. Consequently, this review will focus on the differences in total and placental SEVs
in GDM compared to normal pregnancy, the role of sEVs in the pathophysiology of GDM and
their clinical application as potential GDM biomarkers.
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1. Introduction

The extracellular vesicle (EV) field is novel, innovative and fast-moving and there have been
a number of reviews detailing the role of EVs in reproduction [1,2] and complications

of pregnancy [3-5], as well as focusing on placental EVs [6,7] and placental-derived
miRNAs packaged in EVs [8]. However, there is a shortage of reviews that focus on EVs

in gestational diabetes mellitus (GDM). The review published by lljas et al. [9] details the
original studies in this field followed by reviews by Nair et al. [10,11] and Floriano et al.
[12] detailing the roles of EVs in maternal insulin production and metabolism during GDM
and the translational aspect of EVs as therapeutic agents for GDM, respectively. Our present
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review expands upon the evidence that EVs play a key role in the pathogenesis of GDM,
focusing mainly on the miRNA and protein content of EVs, maternal-fetal communication
and the clinical applications of EVs in GDM.

2. Gestational diabetes mellitus

Gestational diabetes mellitus (GDM) is defined as glucose intolerance with onset or

first recognition during pregnancy. It affects ~2-14% of pregnancies worldwide and the
prevalence is increasing, with the number of cases up by 56% between 2000 and 2010

in the USA [13-15]. This increase is believed to be linked to the rising incidence of
obesity. There is also a racial and ethnic disparity in GDM cases, with non-white minorities
having a much higher prevalence of developing GDM [15-17]. Other risk factors besides
obesity, are advanced maternal age (AMA), a family history of diabetes and GDM in a prior
pregnancy [18]. Pregnancy is characterized by the development of relative maternal insulin
resistance that begins in mid-to late-gestation to allow for selective transport of maternal
nutrients across the placenta rather than into other maternal tissues, to support exponential
growth and development of the fetus through gestation. In GDM, there is pronounced insulin
resistance leading to episodic fasting and postprandial maternal and fetal hyperglycemia.
Consequently, this can lead to pregnancy-induced hypertension, premature rupture of
amniotic membranes, cesarean section and preterm delivery [19]. In the long-term, women
with GDM have an increased risk of developing type-2 diabetes and cardiovascular disease
subsequent to pregnancy [20-22]. Additionally, mild forms of GDM are associated with
fetal overgrowth, while moderate to severe GDM results in fetal growth restriction, both
conditions elevating perinatal morbidity and mortality and increasing the risk of adiposity/
obesity [23,24], cardiovascular disease [25] and type-2 diabetes [26] later in life for the
offspring. In female offspring, an increased chance of developing GDM themselves in
pregnancy leads to a self-perpetuating transgenerational cycle of pathology.

Despite the increasing prevalence of GDM, the pathophysiology is not fully understood,
including the inter-connectivity and molecular communication between the mother and
fetus. Consequently, it is crucial to understand this in more detail to reduce the overall
incidence and the morbidity associated with GDM, ultimately, improving diagnostic testing
modalities and advancing innovative treatment options. In doing so, this will improve both
short- and long-term health for women and infants born to GDM mothers.

3. Extracellular vesicles

Extracellular vesicles are nanosized particles that contain bioactive content, including
proteins, lipids and nucleic acids, enclosed by a lipid bilayer. They are released by most
cells and are found in a diverse range of bodily fluids, including blood, urine, breast milk,
amniotic fluid, cerebrospinal fluid, semen, ascites fluid, bile and saliva. The classification of
EVs is an ongoing matter of debate [27], however most commonly in the literature EVSs are
classified into three main groups—exosomes, microvesicles and apoptotic bodies. Exosomes,
which range from ~50 to 150 nm in diameter, are of endosomal origin and are released

as a consequence of multivesicular bodies (MVB) fusing with the plasma membrane. EVs
that are formed and released from the plasma membrane are generally termed microvesicles,
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also referred to as ectosomes, microparticles or shedding vesicles; these range in size from
~100 to 1000 nm in diameter. Apoptotic bodies are produced by cellular plasma membrane
blebbing that occurs with apoptosis and are typically >1000 nm.

The International Society of Extracellular Vesicles (ISEV) recommends the use of EVs as
the generic term for particles released by cells that have a lipid bilayer and do not replicate
[27]. 1t is known that cells release a heterogenous population of EVs; ranging in size, density
and content. However, EV isolation methods and characterization lack the specificity to
currently delineate specific subtypes of EVs, which often overlap in size and density. With

a lack of specific EV subtype markers [28] it has been suggested to use nomenclature that
pertains to physical characteristics, such as size, biochemical composition, or the cell of
origin [27]. Consequently, in this review we will use small EVs (SEVS) as a generic term for
both exosomes and microvesicles.

4. Extracellular vesicles in pregnancy

During pregnancy the syncytiotrophoblast layer of the placenta secretes SEVs into the
maternal circulation from as early as 6 weeks of gestation [29]. Placental EVs (pEVS)
are characterized by the presence of the syncytiotrophoblast marker placental alkaline
phosphatase (PLAP), found on the surface of SEVs released from syncytiotrophoblast
cells [30]. Salomon et al. have demonstrated that the circulating concentration of both
total and pEVs in maternal plasma significantly increase during pregnancy, and that the
concentrations of both total and pEVs are positively correlated with advancing gestation
[31].

Although sEVs predominantly traffic from the placenta to the maternal circulation, there is
evidence that maternal sEVs and pEVs transport to the fetal compartment during pregnancy
[32,33] and that fetal SEVs are able to traffic to maternal compartments [34]. Sheller-

Miller et al. have demonstrated that maternal SEVs can travel to fetal tissues leading to
functional changes during pregnancy therefore, indicating that SEVs can assist in paracrine
feto-maternal communication during pregnancy [33]. The discovery of fetal SEVs, as well
as pEVs, in the maternal circulation could lead to a noninvasive tool for identifying changes
in fetal and placental health. Such modalities can aid in developing earlier diagnostic tests
and provide possibilities for early interventions targeting prevention of pregnancy associated
complications, such as GDM.

The release and content of SEVs is dependent on the microenvironment; during gestation

the release of pEVs is regulated by certain metabolic factors, such as hypoxia and glucose
[35,36]. EVs released from the placenta contain a heterogenous array of proteins [37]

and miRNAs [38-44]. It is thought that pEVs modulate feto-maternal communication
essential for adaptations that are necessary during pregnancy. Conversely, it is known

that SEVs contribute to various pathologies observed in pregnancy, such as in GDM [12].
Consequently, SEVs provide a mode of maternal-fetal communication and vice versa during
gestation, by transferring their cargo, which in turn reflects the functional state of the cells of
origin, to recipient cells causing phenotypic changes observed in both healthy and abnormal
pregnancies.
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5. Extracellular vesicles in GDM

Pregnant women who go on to develop GDM display increased concentration of both

total and pEVs compared to their normoglycemic counterparts [45]. This GDM associated
increase in circulating sEVs continues throughout pregnancy, with a ~2-fold increase in

the number of circulating pEVs at term in GDM compared to healthy pregnancies [46].
GDM is associated with maternal hyperglycemia which in turn can stimulate the release and
bioactivity of pEVs [36,46].

Normal pregnancy is associated with inflammation, however this is further exacerbated in
GDM demonstrated by an increase in inflammatory markers [47]. Increased inflammation
is linked to a higher susceptibility of developing GDM and there is evidence that elevated
expression of pro-inflammatory cytokines may be linked to insulin resistance as observed
in GDM. Placental EVs have been shown to be bioactive and contribute to the maternal
pro-inflammatory state observed in GDM by stimulating the release of pro-inflammatory
cytokines from human umbilical vein endothelial cells [45]. Activation of endothelial cells
leads to an increased release of SEVs from these cells, which may mediate the fetoplacental
endothelial dysfunction observed in GDM. The release of vascular endothelial SEVs is
beyond the scope of this review but is described in more detail by Saez et al. [48].

Human pregnancy is characterized by changes in maternal metabolism to ensure preferential
allocation of nutrients to the fetus to fuel necessary growth and development. This process
is defined by changes in production, secretion and action of insulin on peripheral tissue
glucose uptake and utilization, leading to insulin resistance. However, in pregnancies
complicated with GDM there is insufficient maternal insulin secretion from pancreatic
B-islet cells causing marked insulin resistance as compared to normoglycemic pregnancies.
There is evidence that SEVs are involved in the metabolic adaptation that occurs in normal
pregnancy and in the metabolic dysfunction observed in GDM. This was demonstrated

in a study where total SEVs isolated from healthy pregnant women were infused into
healthy mice inducing pancreatic B-islet cell glucose stimulated insulin secretion resulting
in increased fasting insulin concentrations and skeletal muscle insulin resistance [49]. In
contrast, infusion of SEVs isolated from women with GDM in to healthy mice induced
glucose intolerance, failed to promote B-islet cellular glucose stimulated insulin secretion
and inhibited skeletal muscle insulin signaling [49]. This suggests that SEVS, at least in part
secreted by the placenta, contribute to the pathophysiology of GDM, including dysregulated
endogenous insulin secretion and insulin resistance in peripheral tissues. Additionally, pEVs
have been shown to modulate skeletal muscle cell migration and insulin sensitivity in normal
pregnancy, whereas in pEVs from women with GDM skeletal muscle cell migration was
reduced and insulin signaling was attenuated in skeletal muscle cells [38]. These results
suggest that pEVs have a significant effect on insulin signaling in skeletal muscle and the
altered composition of pEVs in GDM have an effect on the maternal metabolism observed in
GDM pregnancies.

During pregnancy, there is expansion of adipose tissue to support nutrient transport to the
fetus. However, GDM is associated with reduced adipocyte differentiation and adipocyte
hypertrophy, as well as downregulation of key insulin signaling regulators and adipogenic
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transcription factors, which leads to insulin resistance in this tissue. Jayabalan et al.
discovered that adipose tissue from women with GDM secrete an increased number of
SEVs compared to women with normal glucose tolerance during pregnancy. This increased
number of SEVs correlates positively with birthweight of the offspring, suggesting a
possible additional role in fetal overgrowth commonly observed in GDM [50]. Conversely,
Franzago et al. observed a lower concentration of adipocyte SEVs in maternal circulation
in women with GDM compared to normal pregnancies, however this group discovered

a correlation between adipocyte sEVs and total cholesterol levels in women with GDM
[51]. Despite the differences in these observations differential expression of SEV protein
cargo is associated with downregulation of the sirtuin signaling pathway and upregulation
of oxidative phosphorylation pathways and mTOR signaling in adipose tissue from women
with GDM suggesting that adipose tissue derived SEVs may contribute to the pathogenesis
of GDM [50]. Additionally, studies show that adipose tissue derived SEVs may mediate
metabolic communication between adipose tissue and the placenta and by doing so enhance
glucose uptake and metabolism in the placenta of women with GDM [50].

In addition to SEVs having an effect on maternal metabolism in GDM, studies have
demonstrated that maternal SEVs are able to traffic across the placental barrier from the
maternal circulation to the fetus, leading to functional fetal changes [32,33]. In GDM,
maternal SEVs cross the maternal-fetal barrier and are endocytosed by fetal tissues [52].
Differential expression of miRNAs in maternal SEVS is thought to contribute to the
congenital cardiac developmental deficits observed in the offspring born to GDM mothers
[52]. The discovery of SEVs with aberrant mRNA expression, associated with glucose
metabolism and growth signaling pathways, in umbilical cord blood of GDM pregnancies
suggests that these SEVs may target the fetus and have a role in fetal growth and metabolism
[53]. Although there is evidence of maternal-fetal communication in pregnancy, currently
there are few studies that have investigated how maternal SEVs and their cargo target the
fetus in GDM. However, studies have demonstrated that children from GDM complicated
pregnancies have altered expression of miRNAs associated with diabetes, cardiovascular and
cerebrovascular disease with associated links to cardiovascular disease [54]. Although this
study did not investigate sEV encapsulated miRNAs, these results suggest that GDM leads
to long-term changes in the miRNA profile of children born to GDM maothers, therefore
impacting the long-term health of these children. Consequently, future investigations are
required to elucidate the effect that maternal sEVs in GDM have on the fetus, including the
short-and long-term complications observed in infants born to GDM mothers.

SEV miRNAs in GDM

miRNAs are small non-coding single-stranded RNAs (21-24 nucleotides) that regulate gene
expression at the post-transcriptional level through sequence-specific base-pairing with the
3'-UTRs of target mRNAs. The placenta expresses a unique miRNA signature, including
three clusters, including C19 miRNA cluster (C19MC), C14MC and miR-371-3 cluster
[55,56]. Placentally expressed miRNAs have a predominant role in placental development
and function, including trophoblast cell proliferation, apoptosis, migration, invasion and
angiogenesis [57]. Studies have demonstrated that placenta derived miRNAs are released
from syncytiotrophoblasts into the maternal circulation in pEVs [58,59]. At term, the
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C19MC is highly expressed in SEVs released from trophoblast cells, whereas in early
gestation there is increased expression of C14MC released from sEVS, suggesting that these
sEV-encapsulated miRNAs have differing roles throughout gestation [55,60].

There is evidence that miRNAs released via SEVs are involved in GDM pathogenesis as
demonstrated by the differential expression of miRNAs during gestation in the maternal
circulation of women with GDM compared to healthy normoglycemic pregnancies.
Additionally, upregulation of Drosha and Dicer enzymes, key components of the mature
miRNA synthesis machinery, found in the circulation of women with GDM suggests
dysregulation of miRNAs [61]. GDM modifies the miRNA profile contained within sEVs
released from the placenta into the maternal circulation (Table 1). Dysregulation of many
miRNAs early in gestation, prior to the diagnosis of GDM at 24-28 weeks, suggests that
they are involved in the pathogenesis rather than being a consequence of the subsequent
development of metabolic changes characteristic of GDM. Nair et al. identified a set of
differentially expressed miRNAs in pEVs from women with GDM [38]. The authors found
evidence that in GDM pEVs release miRNAs that interact with genes associated with insulin
signaling within skeletal muscle cells thereby potentially contributing to insulin resistance
observed in GDM. Other studies have also identified miRNAs in the maternal circulation
that are deregulated in women with GDM, these miRNAs are associated with pathways
that are involved in GDM including, insulin signaling, type 2 diabetes signaling, mTOR
signaling, MAPK signaling, TGFp signaling and AMPK signaling [39,44].

Although the concentration of both total SEVs and pEVSs is higher in GDM in comparison

to normal pregnancy, the ratio of pEVs to total SEVs is lower in GDM suggesting increased
release of SEVs from non-placental tissue sources. Studies demonstrate that some of the
sEV-encapsulatated miRNAs found in the maternal circulation arise from the placenta [38].
However, many of these circulating miRNAs are not part of the placental-specific miRNA
clusters which suggests that either they are from other maternal tissue(s) or secreted from
placental SEVs while not being placenta-specific. However, without further analysis it is
unclear as to the source of these circulating miRNAs and future work in this field is required
to delineate the cellular source of SEVs and their miRNA cargo in normal pregnancy and
GDM.

SEVs, including pEVs, can be detected in the urine of pregnant women and the miRNA
expression in these sEVs differs across gestation, potentially to facilitate the differing needs
of the growing and developing fetus with advancing pregnancy [62]. SEVs isolated from
the urine of women with GDM have a distinct miRNA expression as compared to miRNAs
encapsulated in sEVs from normoglycemic pregnancies. miR-517-5p and miR-518-3p, part
of the C19MC, and miR-16-5p were found to be upregulated in urine collected at the
second trimester in women who subsequently developed GDM versus those who did not,
bearing normal pregnancies. Whereas, in the third trimester of pregnancy, downregulation
of miR-222-3p, miR-516-5p, miR-517-3p and miR-518-5p was noted in women with
GDM, these differences may have resulted due to the lack of adjustments in the study

for interventions (e. g. metformin, insulin) targeting GDM rather than GDM per se.
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5.2. sEV proteins in GDM

It is known that SEVs can also contain proteins as part of their cargo, and these proteins
contribute towards the cell-to-cell communication of SEVs. It has been shown that the
proteomic content of circulating sEVs from women with GDM is significantly different
from that of normal pregnancies (Table 2), influencing the maternal pathophysiology [37].
Using quantitative proteomics Jayabalan et al. found differential expression of proteins in
SEVs derived from women with GDM versus normoglycemic women. Further validation
provided evidence of downregulation of Pappalysin-1 (PAPP-A) and upregulation of
calcium/calmodulin dependent protein kinase Il beta (CAMK2p) in GDM sEVs [37]. PAPP-
A, a glycoprotein, is synthesized by cytotrophoblast cells with lower levels associated with
a reduced risk of developing GDM as PAPP-A concentrations in early pregnancy may

be linked to insulin sensitivity [76]. CAMK2 is a serine/threonine specific protein kinase
and targets insulin receptor signaling and thereby systemic insulin sensitivity, however

its specific role in GDM is yet to be determined. Kandzija et al. discovered that the
glycoprotein dipeptidyl peptidase IV (DPPIV) in its enzymatically active form is present in
SEVs released from the placenta [75]. DPPIV regulates insulin secretion which is important
for glucose metabolism. An eightfold increase in circulating DPPIV-positive pEVs was
observed in GDM, suggestive of a role in mediating maternal insulin sensitivity.

6. Extracellular vesicles - clinical applications in GDM

It is becoming more widely accepted that improving screening and diagnosis for GDM

and performing this earlier in gestation can lead to improved health for the mother and
offspring during childhood and in adult life. Currently, GDM is diagnosed by an oral glucose
tolerance test between 24 and 28 weeks of gestation [81] and the symptoms are subsequently
treated by lifestyle modifications, insulin or insulin-sensitizer drugs. It is known that GDM
management can have a positive impact on short-term symptoms but not the longer-term
complications associated with GDM [82,83]. This may be because by this point in gestation
the fetus has already been exposed to hyperglycemic conditions and placentation has
occurred. Therefore, there is little opportunity to reverse any placental changes that may

be influencing the maternal metabolic adaptations of GDM. Additionally, most women are
not aware of their glycemic status prior to testing that is undertaken during pregnancy.
Consequently, if screening and diagnosis could occur earlier in gestation, for example in the
first or early second trimester, interventions could be utilized earlier in pregnancy, reversing
disease onset and subsequently improving the outcomes and health of both the mother and
offspring.

Subsequently, there has been an increase in research investigating prospective biomarkers
for improved GDM diagnostics that can be performed earlier in gestation. Small EVs

are promising biomarker candidates as 1) the placenta releases SEVS in to the maternal
circulation from as early as 6 weeks of gestation; 2) the concentration of both total and
placental SEVs is increased in GDM and 3) circulating SEVs in women with GDM contain
a unique cargo, including miRNAs (Table 1) and proteins (Table 2) [31,45]. Many of the
studies to date have focused on miRNAs and there have been various studies investigating
miRNAs in maternal plasma in early gestation and in urine as potential predictors of
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GDM. The benefits of using urine in a clinical application are that it is available in large
quantities and collection is easy and non-invasive. Consequently, more studies are required
to investigate the use of miRNASs encapsulated in EVs from urine as a potential early
detection biomarker for GDM.

There have also been alternate biological fluid SEV biomarkers, for instance Monteiro et
al. who discovered a higher concentration of oral SEVs in gingival crevicular fluid (GCV)
in early gestation in women who went on to develop GDM compared to normoglycemic
women [84]. This suggests that the hyperglycemic and pro-inflammatory state of GDM
stimulates the release of SEVs into oral fluids. Therefore, these oral GCV sEVs could be a
potential first trimester biomarker for GDM in pre-symptomatic women.

The greatest limitations in many of these studies are 1) relatively small study sample

size and 2) differing methods used in isolating and characterizing the SEVs described,
which often leads to inter-study variation. Consequently, for a clinically applicable sEV-
derived GDM biomarker there needs to be more transparency and standardization in the
SEV isolation methodology and implementation of larger-scale investigations with adequate
power to negate the null hypothesis.

7. Conclusion

In summary, there is growing evidence that circulating sEVs have an important role in
pregnancy and the increase in both total and placental SEVs and the change in their cargo in
GDM leads to changes in maternal physiology, targeting maternal skeletal muscle, adipose
tissue and the pancreas, and therefore contributing to the GDM pathophysiology (Fig.

1). Subsequently, differentially expressed proteins and miRNAs enclosed in SEVs provide
possibilities of clinical applications for SEVs by developing improved diagnostic biomarkers
for GDM.
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ciomMmC Chromosome 19 miRNA cluster

c1iamcC Chromosome 14 miRNA cluster
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Fig. 1.
Schematic diagram of the release and actions of small extracellular vesicles (SEVSs) in

gestational diabetes mellitus (GDM) during pregnancy. In GDM there is an increase in the
concentration of total and placental SEVs in the maternal circulation across gestation. The
release of SEVs during pregnancy leads to communication between the maternal and fetal
systems via the placenta. In GDM, sEVs have been shown to play a role in the pathogenesis
of GDM by targeting adipose tissue, skeletal muscle and the pancreas in the maternal
system.
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