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Energy Planning for Progressive Estimation in
Multihop Sensor Networks
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Abstract—Multihop sensor networks where transmissions are
conducted between neighboring sensors can be more efficient
in energy and spectrum than single-hop sensor networks where
transmissions are conducted directly between each sensor and
a fusion center. With the knowledge of a routing tree from all
sensors to a destination node, we present a digital transmission en-
ergy planning algorithm as well as an analog transmission energy
planning algorithm for progressive estimation in multihop sensor
networks. Unlike many iterative consensus-type algorithms, the
proposed progressive estimation algorithms along with their
transmission energy planning further reduce the network trans-
mission energy while guaranteeing any pre-specified estimation
performance at the destination node within a finite time. We also
show that digital transmission is more efficient in transmission
energy than analog transmission if the available transmission
time-bandwidth product for each link and each observation
sample is not too limited.

Index Terms—Decentralized estimation, distributed estima-
tion, energy scheduling and planning, incremental estimation,
multi-hop sensor networks, power scheduling and planning,
progressive estimation, wireless sensor networks.

I. INTRODUCTION

W ITH the technological advances of microelectronics
and wireless communications, wireless sensor net-

works are being developed for a wide range of applications
such as target tracking in battle fields, environmental moni-
toring, security surveillance and space exploration. One of the
common objectives at the application layer of wireless sensor
networks is to estimate parameters of interest.

Because of limited spectrum and limited energy available for
communications between sensors, distributed estimation is an
important signal processing problem for wireless sensor net-
works. One of the leading recent efforts on distributed estima-
tion was reported in [1]. In this work, each sensor is allowed
to send a single bit to a fusion center where a desired scalar
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parameter is estimated. This work is followed by a number of
extensions. In [2], the noise variances at different sensors are
allowed to be different. In [6], the number of bits for uniform
quantization at each sensor is designed to further reduce energy
consumption. In [3] and [4], the distributed single-bit quantiza-
tion problem is further explored in terms of the maximum like-
lihood estimation of the desired parameter. In [5], an optimal
scalar quantizer is developed. For sensor networks where the
unknown is a vector parameter, a distributed linear compression
method is developed in [7]. This method relates to several earlier
works on optimal reduced-rank estimation as shown in [8]. The
idea of distributed linear compression is further explored in [9]
and [10]. In addition to the above signal processing efforts, there
has been information-theoretic research on the so called CEO
problem [29] which addresses the rate-distortion limit without
any constraints on delay and signal processing complexity. The
information-theoretic research is outside the scope of this paper.

However, all of the above referenced works are restricted to
single-hop networks where each sensor has a direct link to the
fusion center. Single-hop networks are not energy efficient un-
less the number of sensors is small and they are all near the fu-
sion center. For many applications, large-scale sensor networks
are needed to collect data from a wide area. For large-scale
sensor networks, providing a direct link from each sensor to the
fusion center is inefficient in terms of energy and spectrum. An
efficient way to transport information within a large-scale sensor
network is to transport information only between adjacent sen-
sors. Networks with multihop transmissions will be referred to
as multihop networks.

Distributed estimation for multihop networks has also
recently attracted strong interests. The main idea behind dis-
tributed estimation for multihop networks is that each sensor
performs a local estimation by combining the estimation from
its neighboring sensors and its local observation, and the esti-
mate from each sensor is transmitted to its neighboring nodes
for further processing. This in-network processing continues
until a termination criterion is met. There are a number of
studies on iterative algorithms for estimating common param-
eters in the network. In [11], a gradient-based algorithm is
proposed to solve an optimization problem where the global
cost function is a sum of the local cost functions. In [12], a non-
linearly coupled consensus-type algorithm is investigated. An
incremental scheme is proposed in [13], and a diffusion scheme
is shown in [14]. In [15], a distributed maximum likelihood
method is developed for estimating deterministic parameters.
In [16], a distributed maximum a posteriori algorithm is devel-
oped for estimating random parameters. Another perspective of
distributed estimation is shown in [19]. It should be noted that
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Fig. 1. A 2-D multihop sensor network with a routing tree. The destination
node (also referred to as the fusion center) is marked by the circle in the center.
Here, there are 400 sensors, each marked by �. This network is used for all
simulation examples.

there are two types of distributed estimation. One requires a
fusion center, and the other does not. The former is also referred
to as decentralized estimation. This paper addresses issues of
decentralized estimation in the context of multihop networks.

The above mentioned algorithms for multihop networks are
all iterative in nature. Their convergence to a desired estimate is
asymptotic, and their convergence rate depends on the network
topology. Without the knowledge of the network topology, there
is no guarantee of performance within any given time window.
For applications where there is a strict requirement of guaran-
teed performance, the network topology must be acquired and
exploited by a scheduler.

In this paper, we consider multihop networks where a routing
tree between all sensors and their destination node is known to
the scheduler. Such a network is illustrated in Fig. 1. The dis-
tributed estimation performed by each sensor is in a progressive
fashion. In other words, after each sampling instant, each sensor
computes an estimate of a desired time-varying space-invariant
unknown vector of parameters based on the estimates from its
upper stream sensors and its local observation, and the estimate
from each sensor is forwarded to its down stream sensor defined
by the routing tree. A key function of this scheduler is to de-
termine the amount of transmission energy to be consumed by
each sensor per sampling instant such that a pre-specified per-
formance of estimation at the destination node is guaranteed.
Unlike the iterative algorithms mentioned previously, the pro-
posed progressive scheme considered in this paper terminates
the computational process within a finite time for each sample
of the desired unknown vector. In applications, there can be mul-
tiple destination nodes (or fusion centers), and a routing tree for
each destination node can be assigned. In this case, the theory
showed in this paper can be applied separately to each pair of
the destination node and its routing tree.

It is important to add that our goal is to estimate and track
changing unknown parameters (such as positions of moving tar-
gets) by using a wireless sensor network whose routing tree and
channel state information can be exploited to minimize the en-
ergy consumption while guaranteeing any prespecified estima-

tion quality within a finite time. The existing works on con-
sensus-type algorithms are iterative and do not exploit the net-
work condition to the degree we require but, however, suffer the
uncertainty of the estimation quality especially when the un-
knowns to be estimated vary faster than the convergence rate of
these algorithms.

The transmission energy planning problem has also been ad-
dressed previously. In [6], the planning problem is limited to a
single-hop network. In [17], a planning algorithm is developed
for multihop networks and for estimating a scalar unknown pa-
rameter. The work in [18] is a preliminary version of this paper.

The original contributions in this paper include 1) a com-
parison of digital communication and analog communication in
terms of transmission energy and transmission errors; 2) an en-
ergy planning algorithm for progressive estimation in multihop
networks using digital communication; 3) an energy planning
algorithm for progressive estimation in multihop networks using
analog communication; and 4) the use of norm for both en-
ergy planning algorithms (with norm measuring the sum en-
ergy and norm measuring the peak energy). We will show
that digital communication is more efficient in transmission en-
ergy than analog communication unless the available transmis-
sion time-bandwidth product (i.e., or its integer part )
for each link and each observation sample is very limited. This
fundamental observation provides a useful perspective of the
prior works shown in [9] and [10] where analog communica-
tion is assumed between sensors and the fusion center. With
the time-bandwidth product for transmission of a message,
one can use parallel subchannels for digital transmission of
the same message, the importance of which has been somehow
overlooked in the literature on the modeling and analysis of
sensor network problems.

Our proposed digital transmission energy planning algorithm
is applicable to any (but no less than one). This is another
useful extension from [6] and [17] where the freedom of is not
utilized. The technique we will use for this extension is rooted
in the Hölder’s inequality. For both the digital and analog cases,
we will show that the energy planning algorithms developed in
this paper can save much energy in comparison to a uniform
energy planning scheme.

The rest of this paper is organized as follows. Section II de-
scribes the model of the data observed by each sensor and a
probabilistic uniform quantization scheme. Section III describes
the transmission energy models for both analog and digital com-
munications. Section IV compares the errors caused by analog
and digital communications. Section V presents several progres-
sive estimation algorithms for multihop networks with digital
communications. These algorithms are based on the best linear
unbiased estimation (BLUE), quasi-BLUE and a simple aver-
aging. The recursive inequality of the covariance matrices based
on the averaging algorithm is used for the design of the dig-
ital transmission energy planning to be shown in Section VI. In
Section VII, progressive estimation algorithms for multihop net-
works with analog transmissions are proposed, which are based
on BLUE and another simple averaging. The analog transmis-
sion energy planning is designed in Section VIII. The simulation
examples are given in Section IX, which is followed by the con-
clusion.
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II. DATA MODEL AND PROBLEM FORMULATION

In this paper, we consider a wireless sensor network where
each sensor can sense, compute, transmit and receive. We as-
sume that a data vector is observed by sensor at
(discrete) time , which is modeled as

(1)

where is a space-invariant
vector of parameters to be estimated, is a observation
matrix with and full column rank, and is the
observation noise vector. Here, denotes transpose. We assume
that has zero mean and a time-invariant covariance matrix

. Since both and are assumed to be known to a
scheduler, we can let without loss of generality. This is
because left-multiplying the square-root of to both sides of
(1) makes the noise vector whitened. We assume no knowledge
of the statistical distribution of except that each entry of

has a known upper bound and a known lower bound.
The estimation of the unknown parameter vector is done

in a distributed and multihop fashion. We assume that there is
a routing tree from all sensors towards a destination node as il-
lustrated in Fig. 1. There are many ways to establish a routing
tree. One example is the technique for finding Steiner tree or
the minimum distance tree [23]. But the minimum distance tree
may not be optimal for the purpose of distributed estimation.
Finding the best tree for distributed estimation remains an im-
portant research topic. The destination node in the routing tree
may also act as a scheduler which knows the observation ma-
trices of all sensors, plans the transmission energy to be con-
sumed by each sensor, and broadcasts all essential information
to all sensors. The purpose of the transmission energy planning
is to ensure a desired estimation performance at the destination
node while keeping the total energy cost as low as possible. The
process of routing tree establishment, transmission energy plan-
ning and decision broadcast are all done at a startup of the net-
work or when the network topology changes. With the decision
from the scheduler, each sensor in the network performs an es-
timation of corresponding to each sampling time instant
using both its own observation and the estimates obtained
by its upper stream sensors.

We assume that the time interval between and
is sufficiently long so that during this time interval

all communications between sensors and all computations at
each sensor can be completed for the estimation of at the
destination node. We assume that orthogonal or approximately
orthogonal scheduling is made for all links in the network.
Since only neighboring nodes are communicating with each
other, there can be concurrent and co-channel transmissions
without major interferences to each other. We also assume
that the network (including network topology and all channel
state information) is sufficiently stationary so that each energy
planning cycle can span a time window of at least many time
instants of and hence the overhead of the energy planning
is acceptable.

We will consider two different communication modes be-
tween sensors: analog communication and digital communica-
tion. When the digital communication is applied, we assume

that each sensor quantizes its local estimate using a uniform
quantization method. For example, if is a local estimate of a
scalar parameter and is bounded between , the quan-
tization of is uniform and probabilistic as follows. Let be
the number of bits used to quantize within , and

be the quantization interval. If
and , then is quantized

to with the probability and to
with the probability . As shown in [2], it is easy to verify that
the error of this quantization method has zero mean and the vari-
ance bounded as follows:

(2)

where the last inequality holds under . Note that if
is uniformly distributed within , then

.
We will not consider more advanced quantization methods

such as vector quantization, or quantization based on a statistical
knowledge of the random variables. The variance expression of
a practical vector quantizer is generally difficult to get. Even
for a single Gaussian random variable, the variance expression
of the optimal quantization errors is not expressive enough for
our purpose, e.g., see [20]. The simple distortion-rate expression
in [28] requires an ideal vector quantizer of many observation
samples, which is hard to implement. A recent work on source
quantization in the context of sensor networks with structured
trees is available in [21] where the knowledge of the joint sta-
tistical distribution of the source and the side data is required.

III. COMMUNICATION CHANNEL MODEL

Both analog communication and digital communication have
been considered in the literature on sensor network signal pro-
cessing. In this paper, we will provide a comparison of energy
consumption between the two. In order to do so, we need to
first establish the energy model for each communication mode
as follows.

We denote by and respectively the total time and band-
width available for communication for each link and each obser-
vation sample (i.e., for each and in ). We assume that
the radio frequency (RF) channels between neighboring sen-
sors have constant channel gains within the bandwidth and a
whole cycle of transmission energy planning. For a RF channel
of single-sided bandwidth , there is an equivalent complex
baseband channel of the double-sided bandwidth , which cor-
responds to a pair of in-phase and quadrature channels.

We let be the complex baseband channel gain from a sensor
to its downstream sensor. The channel noise is assumed to be
Gaussian with the power spectral density within the base-
band .

To transmit a complex symbol from one sensor to another
in the analog mode, we need to use to modulate (via am-
plitude, phase, frequency, pulse width, pulse position, etc.) a
waveform which has a time duration effectively no larger
than and a bandwidth effectively no larger than . Here,
we use the word “effectively” because if zero error is toler-
ated, then the time duration of any waveform must be infinite
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if the bandwidth is finite and vice versa. A fundamental con-
straint on and is . At the output of the baseband
channel, a demodulation is performed to obtain an estimate of
. The signal-to-noise ratio (SNR) of the estimated symbol at

the channel output is

SNR (3)

where denotes expectation, is the total transmitted energy
and is a parameter depending on the modulation
method. As shown in Appendix I, if the pulse amplitude mod-
ulation and the matched filtering demodulation are used, then

and where is the energy of the waveform
.

Note that the combination of the waveform modulator, the
continuous-time baseband channel and the waveform demodu-
lation (with sampling) constitute a discrete-time analog channel,
which is our model for analog communication of discrete-time
symbols. For background knowledge of modulation, demodula-
tion and sampling, there are many textbooks such as [25].

In order to transmit a complex symbol from one sensor to
another in the digital mode, we can use the above described dis-
crete-time analog channel preceded by a digital encoder and fol-
lowed by a digital decoder [25]. Furthermore, if the time-band-
width product of the RF channel is such that
where is an integer, then we can partition the original channel
into subchannels (in frequency and/or time). For each sub-
channel, we can apply the above mentioned modulation method
to yield an discrete-time analog channel with an output SNR
which is proportional to the input energy of the subchannel. In
other words, with , we can construct dis-
crete-time analog subchannels and the th channel has the output
SNR: SNR , where denotes the total trans-
mission energy over the subchannels. Then, the total number
of bits that we can transmit digitally over the RF channel within
the time and bandwidth (with negligible errors) is

SNR

(4)
where and are penalty factors
depending on the coding method [24]. This model is appropriate
even if the coding is done within a single observation time in-
terval of each link. Alternatively, we can write the transmission
energy in terms of the number of bits as follows:

(5)

Note that if the subchannels have different channel coefficients,
the transmitted energy can be more efficiently distributed ac-
cording to a water filling algorithm, which, however, will lead
to a more complicated expression of the transmission energy in
terms of the number of bits. For this reason, we will not consider
such a case in this paper.

The model (5) will be used to design the transmission en-
ergy planning for digital communication between sensors. The
model (3) will be used for the analog case. The energy planning
problem will be formulated as minimization of the transmission

energy within the entire network subject to that the mean square
error (MSE) of the estimate at the destination node is no larger
than a pre-specified value.

IV. ANALOG VERSUS DIGITAL TRANSMISSIONS

The communication between adjacent sensors can be digital
or analog in principle. Digital communication has many advan-
tages over analog communication, which includes modularity
and robustness. These two advantages appear very important
for large-scale multihop wireless networks. But from the pure
transmission energy point of view, the conclusion is not always
in favor of one over the other, which depends on the available
time-bandwidth product.

Transmitting a complex symbol from one sensor to another
by the analog mode introduces an additional noise term whose
variance is inversely proportional to the transmission energy
according to (3). More specifically, the variance of the additional
noise caused by the analog communication is

SNR
(6)

We now consider transmitting the same complex symbol
from one sensor to another by the digital mode using the same
amount of total energy . For digital transmission, there is an
additional noise due to quantization. The variance of this quan-
tization error using total bits for both real part and imaginary
part (each bounded between ) is upper bounded as fol-
lows according to (2) and (4):

(7)

We see that if , the exact value of (which de-
pends on the quantization method) can be larger than
even when the transmission energy is large. But if ,
the upper bound of decreases faster than as
increases. Furthermore, since , if
is large, we can write

(8)

Here, we see that the variance of the quantization error decreases
exponentially as the transmission energy increases.

We conclude that as long as there is a sufficient transmis-
sion time-bandwidth product for each link and each observa-
tion sample, the digital transmission is more efficient in trans-
mission energy than the analog transmission. The above anal-
ysis also suggests that otherwise the analog transmission can be
more efficient than the digital transmission. It should be useful
to note that an advantage of analog transmission over digital
transmission, as advocated in [26] and [27], was based on a
single-hop network, a fixed transmission time-bandwidth and an
increasing number of sensors. Their results and ours are com-
plementary to each other. The analog–digital comparison shown
in [30] assumes the use of a single channel for digital transmis-
sion, and the authors overlooked the importance of subdivision
of time-bandwidth product for digital transmission.
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V. PROGRESSIVE ESTIMATION WITH DIGITAL TRANSMISSIONS

We will let be the total number of sensors in the network,
be the number of the upper stream sensors of sensor , and

be the set of the indexes of the nodes that are the upper stream
sensors of sensor . Each sensor is assumed to be connected to
a destination node via a routing tree; see Fig. 1.

Since the estimation of the unknown vector is done for
each sampling time instant and its procedure is the same for
all , we will remove for convenience. At each sensor , the
estimation of the unknown vector is based on the local ob-
servation and the quantized estimates , , from the
upper stream sensors of sensor .

A. BLUE

Suppose that is an unknown deterministic vector, and
is the available data vector, where is a matrix of

full column rank and is a noise vector of zero mean and the
covariance matrix . Then, the best linear unbiased estimate
(BLUE) or equivalently the minimum variance unbiased linear
estimate of is known as , and the
covariance matrix of this estimate is , e.g., see
[22].

We now let be an unbiased quantized BLUE estimate at
sensor and be the covariance matrix of . If and
for are available at sensor , the BLUE of at sensor
is given by

(9)

and its covariance matrix is

. Here, denotes expectation and the super-
script denotes complex conjugate transpose.

Assume that both the real and image part of the th element
of is bounded between and quantized using
total bits. (Note that it is meaningful to have a different
range for a different element of . This range should be gov-
erned by the prior knowledge of the physical nature and reso-
lution requirement of each element of , which could be tem-
perature, wavelength, distance, etc.) Then the covariance matrix

of the quantized BLUE estimate at sensor is bounded
as follows:

(10)

where the th diagonal element of is denoted by
and given by . However, except for the
upper bound, the exact covariance matrix of the quantized es-
timate at each sensor is difficult to keep track of. Hence, the
exact BLUE is not feasible for our application. Nevertheless,
the above discussion is an important part of our systematic treat-
ment.

B. Quasi BLUE

Since the exact for are not available at sensor , we
now replace them by their upper bounds for . Using
these upper bounds, the following estimate will be referred to
as quasi-BLUE at sensor :

(11)

and the covariance matrix of this estimate is upper bounded by
. Consequently, we can compute the

upper bound of the covariance matrix of the quantized quasi-
BLUE estimate by

(12)

Our goal is to determine for all and such that the
total transmission energy can be significantly reduced subject to
a MSE constraint at the destination node. But according to the
recursion of the covariance matrices (12) of the quasi-BLUE,
the MSE at the destination is a very complicated function of

. Unless the network is very small, finding the optimal
for quasi-BLUE is not feasible.

C. Averaging

There is a simpler method for progressive estimation, i.e.,
taking a simple average of the quantized estimates from upper
stream sensors together with the BLUE estimate solely based
on . This estimate at sensor is given by:

(13)

If the th element of is quantized with bits and the
upper bounds of the covariance matrices of are denoted by

, then the corresponding upper bound of the covariance
matrix of the quantized estimate at sensor is given by

(14)
Note that the estimate given by (13) does not need the covari-

ance matrices of the estimates from upper stream sensors. Also
note that the recursion of the covariance matrices given by (14)
is much simpler than that in (12). It follows from the following
lemma that is simply an upper bound of , i.e., .
But as implied by a simulation example shown later, this upper
bound is quite loose generally.

Lemma 1: Given positive definite matrices ,
, we have

(15)

Proof: See Appendix II.
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VI. DIGITAL TRANSMISSION ENERGY PLANNING

In this section, we design an algorithm for computing the bit
allocations among all sensors. To design such an algorithm, for-
mulating a tractable optimization problem is essential.

The total number of bits used for the quantized estimate at
sensor is , where is the number of bits for
the th element of the estimated vector at sensor . From the
energy model (5), the transmission energy to be consumed by
sensor is given by

(16)

where , , and is the
squared channel gain from sensor to its down stream sensor.
For any positive real numbers , it is known that

. It follows that

(17)
where , which can be viewed as
the upper bound of the energy needed to transmit the th ele-
ment of the quantized estimation. We now define the following
cost function:

(18)

which is the th power of the norm of for all and all
. Note that at the destination node which is labeled as node ,

there is no need for quantization. Clearly, when , we have
, which is an upper bound on the total

(sum) transmission energy.
To formulate the MSE constraint at the destination node, we

use the linear recursion (14) of the covariance matrices. It fol-
lows from (14) that

(19)

where , and for . Note that
in order to compute for all , one should start with the sen-
sors nearest to the destination node and then proceed outwards
recursively. The actual values of depend on the routing tree.
Then, the MSE at the destination node is given by

MSE (20)

where which is in-
variant to . If MSE is the desired MSE value at the desti-
nation node, it is meaningful to set up the following constraint

(21)

where MSE .

The problem now is to find to minimize in (18) sub-
ject to (21). To solve this problem, we need the Hölder’s in-
equality: For , where , if ,
and , then,

(22)

where the equality holds if for some constant
and all . The equality condition is easy to verify by recognizing

.

By defining

and , the Hölder’s in-
equality implies

(23)

where the equality holds when

(24)

It is important to note that is independent of . The con-
straint (21) is equivalent to

. Then, using (18), (21), and (23), we have

(25)

The right-hand side of (25) is independent of and is also
the minimum of . This minimum is achieved if (24) holds and
the equality in (21) holds. But (24) along with the constraint

implies that

(26)

where . Using (26) in the equality of (21)
yields

(27)
where . The two equations (26) and
(27) need to be computed iteratively until convergence. The it-
eration starts with the computation of from (27) with a full set
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where for all and . After convergence, each
is rounded up into an integer.

We now show that the number of iterations between (26) and
(27) until convergence is finite. For any given , the solution
of from (26) is unique. If none of is zero after the
first iteration, the convergence is achieved. If one or more of

become zero, the set is reduced which in turn reduces
via (27). From (26), we see that does not increase as
decreases, which means that the previous zero will re-

main zero after another iteration. If there is no additional
becoming zero at the end of an iteration, the size of is not
changed and hence the convergence is achieved. Since the size
of the initial is finite, so is the number of iterations required
for convergence. It is obvious that the converged solution is in-
variant to the initial choices of as long as they are positive
for all and .

It is also useful to note that (26) and (27) constitute a “water-
filling” type algorithm. In other words, (26) can be compressed
into the form where resembles a “water
level” that is independent of the location parameters and
in a “water tank,” resembles the heights of the steps at the
bottom of the water tank, and is the depth of the water at
the location and .

The number of the subchannels is of great importance to the
energy planning. From (5) or (16), one can readily verify that the
transmission energy is a decreasing function of . However,
the effect of increasing on energy saving diminishes at large

. Taking the limit , the energy model (16) becomes

(28)

which is invariant to . Furthermore, as , (26) and (27)
can be rewritten as follows:

(29)

(30)

where . Both (29) and (30) are indepen-
dent of . Therefore, the energy planning is virtually invariant
to when is large. The simulation results shown later suggest
that is large enough for the energy planning to become
practically invariant to .

Another important factor is the norm used to formulate the
cost function (18). Selecting is to minimize the total
energy of the network. Using a larger implies that we want
to penalize the larger energy terms . In the extreme case
where , we minimize the maximum value among .
By taking , (26) and (27) can be rewritten as follows:

(31)

(32)

It then follows that unless ,

which is independent of and .

VII. PROGRESSIVE ESTIMATION WITH ANALOG TRANSMISSION

We now consider progressive estimation with analog trans-
missions between sensors. Recall the analog transmission model
discussed in Section III and Appendix I. We will assume
identical discrete-time analog subchannels between each sensor
and its downstream sensor and the subchannels are used to
transmit in parallel the elements of from sensor to its
downstream sensor. Applying (54) and (55), we can formulate
an effective channel model for analog transmission between any
two sensors as follows: the received symbol at the downstream
counterpart of sensor in the th subchannel is

(33)

where is the energy of the waveform used in modulation
for the th element of the estimate at sensor , and the
noise is a complex Gaussian random variable with zero
mean and unit variance. The transmission energy for the th
element is . Then, by combining all subchan-
nels, we have the vector channel model

(34)

where
and . For the analog trans-
mission, we allow the channel gains of the subchannels to
be possibly different from each other. Denoted by , the
total transmission energy for transmitting from sensor

to its downstream sensor using the analog mode is now

. The energy planning for analog
transmission is about the design of for all .

A. BLUE

Based on the local observation at sensor and the data
for received by sensor from its upstream sensors, the
BLUE of at sensor is

(35)

where , , and is the covari-
ance of . The covariance matrix of is given by

(36)
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Based on (36), the MSE at the destination node is a very compli-
cated function of the amplification matrices , .
It is not feasible to use (36) to design energy planning unless the
network is very small.

B. Averaging

Alternatively, at sensor , we can obtain an estimate of
by averaging the BLUEs of based on for and
individually, i.e.,

(37)

where for are needed at sensor . Denote the covari-
ance matrix of by . Then, the covariance matrix of is

, and the covariance matrix of is given by

(38)
The recursion (38) is linear and much simpler than the recur-
sion (36). We will use (38) for energy planning. It follows from
Lemma 1 that .

VIII. ANALOG TRANSMISSION ENERGY PLANNING

Using the recursion (38), the covariance matrix at the desti-
nation node, labeled as node , can be found as

(39)

where and for . Then, the
MSE at the destination node is

MSE (40)

where and
. Here, is the th diagonal element of ,

and is the th diagonal element of .
Then it follows that

(41)
where , which can be viewed as the upper
bound of the energy used to transmit the th element of .
The inequality comes with the assumption that both the real and
image part of or are bounded within ,
which is consistent with the digital transmission case.

Similar to the digital transmission energy planning, we define
the following cost function for the analog transmission energy
planning:

(42)

which is the th power of the norm of over all and
. And the analog transmission energy planning is formulated

as follows:

(43)

subject to the MSE constraint at node :

MSE (44)

We now define and
. Following the Hölder’s in-

equality, we have

(45)

where equality holds when there is a constant such that

(46)

Combining (44) and (45), we have

(47)

The right-hand-side of (47) is independent of and is the
minimum of . This minimum is achieved if the equality in
(44) is achieved and the equality (46) holds. From (46), one can
easily verify that

(48)

Applying this to the equality in (44) yields

(49)

Combing (48) and (49), we finally get

(50)

Similar to the digital case, the energy planning here is based
on the norm for any . If , (50) can be rewritten as
follows:

(51)
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where , and hence
, which is independent of and .

IX. SIMULATION RESULTS

The network we consider is shown in Fig. 1 where there are
nodes. The destination node is also referred to as

fusion center. This network was constructed in such a way that
the distance between a sensor and its upper stream sensor is
where is uniformly distributed within the range [0.5, 1.5] and
D is a normalizing factor.

Recall that for digital transmissions, the energy consumed by
sensor is denoted by in (16) and the -norm cost function is
denoted by in (18). And for analog transmissions, the energy
consumed by sensor is denoted by in (41) and the -norm
cost function is denoted by in (42).

In the simulation, we choose , , , and
. We also choose , , for

. We choose for randomly , and
each is a 20 10 matrix with elements randomly chosen
from a Gaussian distribution with zero mean and variance equal
to 10. Each entry of , both the real and image parts, is chosen
randomly from [ 1,1]. The squared channel gain from sensor

to its downstream sensor is , where is the
distance from sensor to its down stream sensor, and
is randomly chosen from an exponential distribution with mean
equal to one.

A. Analog Transmission

The scheme in Section VIII will be referred to as proposed
progressive (PP) energy planning scheme for multihop sensor
network with analog transmission. For comparison, we also con-
sider a uniform progressive (UP) energy planning scheme for
the same network. For the UP scheme, each sensor uses the same
transmission matrix where is chosen to achieve the
target MSE at the destination node, i.e., MSE MSE . In
simulations, once the transmission matrices , ,
are determined, we use the second term in (41) to calculate the
transmission energy at sensor .

Using the cost , Fig. 2 illustrates the total transmission en-
ergy consumed by the entire network (averaged over 100 real-
izations of ) versus the target MSE denoted by MSE . We see
that the PP scheme consumes much less total energy than the
UP scheme. We also see that for either the UP scheme or the
PP scheme, the BLUE estimation algorithm consumes less en-
ergy than the averaging estimation algorithm. To illustrate the
advantage of the multi-hop network over the single-hop net-
work in terms of the transmission energy consumption, Fig. 2
also shows a curve of the energy versus the target MSE based
on a single-hop tree for the same distribution of sensors shown
in Fig. 1. We see an enormously large gap of energy between the
single-hop tree and the multi-hop tree. The path loss exponent
is assumed to be four.

For MSE , Fig. 3 illustrates the transmission energy
consumed by each sensor versus the normalized distance (i.e.,
the distance divided by ) of the sensor from the destination
node. A single random realization of is used. For this figure,
the PP scheme uses , and the sensors close to the fusion center

Fig. 2. For the analog PP and UP schemes, the transmission energy consumed
by the network versus the target MSE . Note that the first curve on the top is
based on a single-hop tree for the same distribution of sensors shown in Fig. 1.
The path loss exponent is assumed to be four.

Fig. 3. For the analog PP and UP schemes, the transmission energy consumed
by each sensor versus the normalized Euclidean distance between the sensor
and the fusion center. MSE � ����. The analog PP scheme uses � .

needs to transmit much more energy than the sensors far away
from the fusion center. But if we choose a large (say,

) for , the PP scheme can yield a virtually constant energy
distribution and become virtually the same as the UP scheme.

Fig. 4 shows the effect of on the analog transmission energy
planning. We can see that as in the cost increases, the total
transmission energy (corresponding to ) increases. We also
see as expected that when , the PP scheme becomes
identical to the UP scheme. See (51).

Fig. 5 illustrates the actual MSE (averaged over 100
realizations of ) at the destination node versus MSE . For the
PP scheme (using ), the averaging algorithm always achieves
the target MSE at the destination, but the BLUE algorithm yields
a much smaller MSE than the target MSE. This is because the
covariance matrix of the estimate by averaging is not a tight
upper bound of the covariance matrix of the estimate by the
BLUE. In other words, the energy planning algorithm based on
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Fig. 4. Illustration of the effect of � in � for the analog PP scheme.

Fig. 5. For the analog PP and UP schemes, the actual MSE at the fusion center
versus the target MSE.

the averaging progressive estimation is rather conservative for
the BLUE progressive estimation.

B. Digital Transmission

We will compare the proposed progressive (PP) energy plan-
ning scheme shown in Section VI and a uniform progressive
(UP) energy planning scheme. The UP scheme here is such
that the number of bits allocated to each element of the esti-
mate by each sensor is a constant subject to the MSE constraint
MSE MSE at the destination node.

For , Fig. 6 illustrates the total normal-
ized transmission energy consumed by the network, i.e.,

, versus the target MSE. The energy
is computed based on (16). We see that the PP scheme with
small consumes much less energy than the UP scheme. But
with a large , the result of the PP scheme becomes similar to,
but not exactly the same as, that of the UP scheme.

Under MSE , and , Fig. 7 il-
lustrates the number of bits per element for each sensor, i.e.,

, versus the Euclidean distance (divided by D)
from the sensor to the destination node. We see that under the
PP scheme with , the number of bits allocated to each sensor

Fig. 6. For the digital PP and UP schemes, the transmission energy consumed
by the network versus the target MSE where � is as in � for the digital PP
scheme.

Fig. 7. The number of quantization bits allocated for each sensor per element of
the unknown vector versus the normalized Euclidean distance from the sensor
to the destination node. The target MSE at the destination node is MSE �

���� �� . The digital PP scheme uses � .

generally decreases with the distance from the sensor to the des-
tination node.

Under the same condition as for Fig. 7, Fig. 8 shows the
amount of the normalized transmission energy con-
sumed by each sensor versus the distance (divided by D) from
the sensor to the destination node. Note that unlike the analog
case, the transmission energy determined for each sensor for
the digital case is not affected by the estimation algorithm
(quasi BLUE or averaging).

Under MSE and , Fig. 9 shows the ef-
fect of a large on the bit distribution of the digital PP scheme.
And Fig. 10 shows the effect of a large on the energy distribu-
tion of the digital PP scheme. We see that the digital PP scheme
with a large is more effective than the digital UP scheme to
achieve a constant energy distribution. The digital UP scheme
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Fig. 8. Normalized digital transmission energy by each sensor versus the nor-
malized Euclidean distance from the sensor to the destination node. MSE �

���� �� . The digital PP scheme uses � .

Fig. 9. Same as Fig. 7 except � � �� for the digital PP scheme.

Fig. 10. Same as Fig. 8 except � � �� for the digital PP scheme.

can not achieve a constant energy distribution because of the
varying channel gains from sensor to sensor.

We now evaluate the effect of the transmission time-band-
width product . Under MSE , Fig. 11 shows the
total transmission energy of the network versus the ratio .
We see that as increases, less energy is consumed by any of

Fig. 11. Total digital transmission energy consumed by the network versus
��� with � � ��. ��� � ���� �� .

Fig. 12. For the digital PP and UP schemes, the actual MSE value at the desti-
nation node versus the target MSE ��� .

the two schemes (PP or UP). This figure suggests that if the net-
work has a large bandwidth, we should use a large to save
transmission energy. However, we also see from this figure that
the required transmission energy has a nonzero lower bound as

becomes very large, which is proved by (28). For the example
shown in Fig. 11, is practically large enough to ap-
proach the bound.

Fig. 12 shows the actual MSE value at the destination node
versus the target MSE value at the destination node. Such a
curve depends on both the energy planning algorithm and the
estimation algorithm. When the averaging algorithm is used, the
actual MSE is quite close to the target MSE, which is expected.
However, when the quasi-BLUE algorithm is used, the actual
MSE is much smaller than the target MSE. One should recall
that the quasi-BLUE algorithm requires each sensor to know
the upper bounds of the covariance matrices of the quantized
estimates from its upper stream sensors while the averaging al-
gorithm does not have this requirement. Yet, given the large gap
of the MSE between the two estimation algorithms as shown in
this figure, developing a more efficient bit allocation algorithm
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Fig. 13. Comparison between analog transmissions and digital transmissions:
total transmission energy versus the target MSE.

for the quasi-BLUE estimation algorithm remains a useful chal-
lenge.

C. Analog Versus Digital Transmissions

To compare the analog case with the digital case, we consider
the same network topology (Fig. 1), the same observation model
(1) and the same RF channel with the same the same .
Fig. 13 compares the energy consumptions between the analog
PP scheme and the digital PP scheme. We see that when ,
the analog transmissions (either with BLUE or averaging algo-
rithm) consume less energy than the digital transmissions. How-
ever, when , the digital transmissions consume less en-
ergy than the analog transmissions, which is essentially the same
conclusion from Section IV where was considered. The
energy saving by increasing becomes less significant when
is large, which is consistent with Fig. 11.

X. CONCLUSION

We have developed a digital transmission energy planning
algorithm and an analog transmission energy planning algo-
rithm for progressive estimation in multihop sensor network
with routing tree. The routing tree finding and the transmis-
sion energy planning are conducted at the startup of the network
or once the network condition changes. The network condition
(such as topology and channel state information) is assumed
to be constant during the time of interest for estimating and
tracking spatially invariant parameters. These transmission en-
ergy planning algorithms guarantee any pre-specified estimation
performance at the destination node. And at the same time, they
significantly reduce the required transmission energy for the en-
tire network. Unlike many other consensus-type algorithms, the
proposed progressive estimation algorithms along with their en-
ergy planning algorithms yield any desired result within a fi-
nite time although they require an operational overhead at the
startup. The energy planing algorithms shown in this paper pro-
vide an optimal energy planning for the proposed progressive
estimation algorithms based on averaging. For algorithms based
on BLUE or quasi-BLUE, the result of our energy planning al-
gorithms show a rather conservative gap. Whether or not this

gap can be narrowed by a more clever energy planning algo-
rithm remains a future research topic.

In practice, any sensor in the network can be a destination
node, and there could be multiple destination nodes in the net-
work. The theory and technique shown in this paper are appli-
cable to any given destination node and its associated routing
tree. We have seen that most of the energy should be distributed
relatively near the destination node (unless a large is used
in the norm). This fact should be taken into account when
a routing tree is searched for in a large network. Finally, we
note that the proposed algorithms are readily applicable to any
single-hop network (as a special case) where each sensor trans-
mits data directly to the destination node. In this special case,
no routing tree is needed.

APPENDIX I
PULSE MODULATION

Assume a complex baseband channel between two sensors
where the input and the output are related as follows:

(52)

where is a complex channel coefficient, is complex
Gaussian noise with the energy spectral density function

otherwise.
(53)

To transmit a complex symbol over this channel, we
can use the pulse amplitude modulation
where the waveform has the duration and the
double-sided bandwidth . Then, the output of the channel
is . To obtain the maximum likelihood
estimate of based on , we can first compute the sufficient
statistics which is also known as matched
filtering. It follows that

(54)

where is the energy of the waveform and
is a complex Gaussian random variable with

zero mean and the variance

(55)

where denotes expectation, is the autocorrelation func-
tion of . Since , it fol-
lows from (55) that

(56)

where is the Fourier transform of . Then, the max-
imum likelihood estimate of is which has the
signal-to-noise ratio

SNR

(57)
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where is the total transmitted energy, i.e., the energy
of within .

APPENDIX II
PROOF OF LEMMA 1

Proof: We first prove that

(58)

Denote the eigenvalue decomposition
. Then, (58) is equivalent to each of the following

inequalities:

(59)

(60)

(61)

(62)

(63)

where is the th element of the diagonal matrix . It is
easy to verify that (63) is equivalent to which
holds always.

We now assume that Lemma 1 holds for , i.e.,

(64)

Then, we can write

(65)

where and .
Then, it follows that

(66)

where the last inequality is due to (58). Using (66) in (65) yields

(67)

By the above induction, Lemma 1 is proven.
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