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Abstract 

Temporal expectation for future events allows people to 
prepare more efficiently for the future. In sensorimotor tasks, 
it has been considered as an important factor that influences the 
accuracy and speed of responding to specific sensory events. 
However, there was no consensus whether the temporal 
expectation functioning in sensorimotor tasks is simply an 
emergent property of task-specific, low-level circuits, or an 
abstract representation shared by higher-level cognition. In 
four experiments, we asked whether two simultaneously 
processed tasks—one of lower-level and the other of higher-
level cognition—would be influenced by the same temporal 
expectation. One task was speeded response to a target 
stimulus, where the target was cancelled on 30% of the trials. 
The other task was a real-time gambling task, where 
participants needed to predict from time to time whether the 
current trial would end up with target or cancellation. Both the 
target and cancellation latencies followed specific 
distributions, with the distribution of cancellation latencies 
varied across blocks. Participants’ choices in gambling 
provided real-time measures of the updating of temporal 
expectation over time, which suggest imperfect representation 
of temporal distributions. Importantly, we found that on a trial 
when participants predicted an ending of cancellation instead 
of target, their subsequent response to the target was strikingly 
slower (up to 1/3 increase in response time). It implies temporal 
expectation is shared across higher-level and lower-level 
cognitive tasks. 

Keywords: Temporal expectation; Probability learning; 
Temporal distribution; Dual task; Ideal observer 

Introduction 

We often wait for events whose occurrence is uncertain but 

increasingly predictable. We update our temporal 

expectations from time to time and change our behaviors 

accordingly. For example, as a procrastinating academic, you 

are desperately waiting for the extension of a conference 

deadline. However, when it comes to the last week and you 

realize that an extension is improbable, you start to wake up 

early and stay up late, trying to squeeze out every minute to 

write. 

Temporal expectation works on many different time scales 

(McGuire & Kable, 2013). On the time scale of hundreds of 

milliseconds to seconds, it has long been found that people 

can perceive more accurately or respond faster when they 

learn the latency of the target event in advance (Niemi & 

Näätänen, 1981; Rohenkohl et al., 2012). In perceptual and 

motor tasks, temporal expectation also influences the 

allocation of attention (Ghose & Maunsell, 2002) or motor 

preparation (Cui et al., 2009) over time, and modulates other 

time-dependent behavioral phenomena such as priming 

effects (Wang et al., 2020). In light of psychophysical and 

neurophysiological evidence that sensory and motor timing 

on the scale of hundreds of milliseconds is largely task-

specific (Merchant et al., 2013), several theories propose that 

the effects of temporal expectation in lower-level cognitive 

tasks may be emergent properties from task-specific, low-

level circuits that involve no abstraction of temporal 

information (Burr et al., 2007; Dragoi et al., 2003; Jepma et 

al., 2012; Machado, 1997). 

However, it is largely unknown whether the temporal 

expectation implicit in lower-level cognition (i.e., 

sensorimotor tasks) is really task-specific, or is the same as 

that used in higher-level cognition. In other words, there are 

two alternative hypotheses: global temporal expectation 

hypothesis and local temporal expectation hypothesis, 

differing in whether temporal expectation is shared across 

lower- and higher-level cognition. 

To test between these two hypotheses, we designed a dual 

task where two tasks—a simple response task and a novel 

real-time gambling task—are based on the same temporal 

structure. In the simple response task, also known as 

foreperiod task in the literature (Niemi & Näätänen, 1981), 

participants make speeded response to a visual target 

presented after varying delays, whose response time (RT) 

provides a conventional but limited measure of temporal 

expectation. On some trials the target may be cancelled.  

When participants are waiting for the target, they also need 

to predict from time to time whether the target will be present 

or absent and will receive reward for correct prediction or 

penalty for incorrect prediction. This real-time gambling task 

provides a more direct and continuous measure of temporal 

expectations at different moments.  

The simple response task is considered as a lower-level 

cognitive task, for which temporal expectation is not 

explicitly required and can in theory only function in task-

specific local circuits. In contrast, the gambling task is a 

higher-level cognitive task, which would benefit from 

explicit expectation of how the probabilities of occurrence of 

different events change with time. If a global temporal 

expectation is shared across tasks, the performances of the 

two tasks should covary; otherwise, they should be 

independent of each other. 

We collected data from four Web-based experiments (371 

participants in total) that had the same temporal structure and 

simple response task but varied in the settings of the real-time 

gambling task. Our goal here was two-fold. First, 
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participants’ predictions in the real-time gambling task would 

allow us to measure their temporal expectations on a real-

time basis. Second, the relationship between participants’ 

predictions in the real-time gambling task and their RTs in 

the simple response task would allow us to distinguish 

between the global and the local hypotheses of temporal 

expectation. The results of our four experiments provided 

converging evidence for shared temporal expectation across 

higher- and lower-level cognition: when participants 

predicted that the trial would end up with cancellation, their 

subsequent response to the target was strikingly slower (up to 

1/3 increase in RT). 

Methods 

Participants 

A total of 371 English-speaking participants (aged 18 to 40, 

240 male, 125 females, 6 unknown) were recruited on the 

UK-based online platform Prolific. Participants had run our 

experiments on computers or laptops. Among them, 40 

participants were excluded from further analysis due to high 

invalidity rate (>5% premature and time-out responses) in the 

speeded response task. Our study had been approved by the 

ethics committee of School of Psychological and Cognitive 

Sciences at Peking University. All participants provided 

informed consent prior to experiments. Participants received 

a basic payment of 4.5 GBP and a performance-dependent 

bonus (mean of valid participants: 1.22 GBP). 

Stimulus presentation and data recording 

Experiments were implemented in PsychoPy, hosted on 

Pavlovia.org and run on Web browsers. The standard 

deviation of timing for visual duration and reaction time 

under this setting is under 5 ms (Bridges et al., 2020). 

We used a game-like interactive tutorial to provide task 

instructions to participants, whose answers to post-

experiment questionnaires as well as whose performances 

during the experiment showed that they had well understood 

the instructions. 

Task procedure 

According to our cover story, participants were asked to catch 

worms using magic cages (Figure 1A). On each trial, an open 

cage was presented for 1–7 s until being filled with a worm 

(if in harvest trial) or vanishing (if in cancellation trial). 

Participants needed to perform dual tasks, both of which 

provided performance-dependent bonus points that were 

additive. 

Speeded response task. In a harvest trial, a worm would 

appear in the cage and participants were instructed to close 

the cage by pressing the J key on keyboard as quick as 

possible. Their RT was recorded. Each valid response would 

Figure 1: Task procedure and temporal-context design. (A) For speeded response task, the participants were asked to capture 

worms by pressing J on keyboard as quick as possible when a worm appears in harvest trials. However, the worm would not 

appear in cancellation trials. And the participants did not which type of trial they were in. The participants need to gamble on 

whether a worm will appear before event onset. (B) The same two temporal contexts were used in all experiments. Red bars 

denote the trial proportion of harvest trial; blue bars denote the proportion of cancellation trials. The event latency of 

cancellation trials in early-cancelled context is more likely to be short than that in late-cancelled context. 
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result in a reward of +1 point. Time-out response (> 2 s) 

would incur a penalty of -1 point. No speeded response would 

be needed for a cancellation trial, where the cage vanished 

without a worm. 

Real-time gambling task. During the open-cage stage, 

whether the trial would be a harvest or cancellation trial was 

unknown to participants and they needed to decide whether 

to protect the cage with a protective spell. The choices of to 

protect and not to protect the cage would be favorable 

respectively for cancellation and harvest trials and will be 

respectively referred to as predicting cancellation and 

predicting harvest, for simplicity. In particular, there were 

four consequences: harvest trial with harvest predicted, 0 

point; harvest trial with cancellation predicted, –0.5 point; 

cancellation trial with harvest predicted, –1 point; 

cancellation with cancellation predicted, 0 point. Participants 

were explicitly informed of this payoff matrix before the 

experiment. The penalty ratio of incorrectly predicting 

harvest to incorrectly predicting cancellation was close to the 

proportion of harvest to cancellation trials (70% to 30%, see 

below), so that overall the two choices were almost equally 

profitable.  

Decision types and action mapping 

In different experiments, there were two decision types: 

participants made the prediction of harvest or cancellation 

either for one time or continuously during the open-cage 

stage. The four experiments also differed in whether pressing 

key was mapped to predicting harvest or cancellation. 

Decisions and their timing were recorded. 

One-time harvest (OneHarv) experiment. Participants may 

press the F key on keyboard once a trial at any time during 

the open-stage stage to choose predicting harvest. No key 

press was meant to choose predicting cancellation.  

Continuous harvest (ContHarv) experiment. Participants 

may switch their choices between predicting harvest (by 

holding down F) and predicting cancellation (by releasing F) 

as many times and at any time as they wish. Their payoff was 

determined by their final choice at the onset of the ending 

event (i.e., worm onset). 

One-time cancellation (OneCanc) experiment. The same 

as one-time harvest experiment, except that pressing F was 

for predicting cancellation and no key press for harvest. 

Continuous cancellation (ContCanc) experiment. The 

same as continuous harvest experiment, except that holding 

down F was for predicting cancellation and releasing F for 

harvest. 

Temporal-context design 

The same two temporal contexts (Figure 1B) were used in all 

four experiments. Each block consisted of 35 harvest trials 

and 15 cancellation trials (i.e., 70% and 30%). In harvest 

trials, the latency for worm appearing could be 1 s, 4 s, or 7 

s, whose trial numbers followed the ratio 4:1:2. In 

cancellation trials, the latency for cage vanishing could be 2.5 

s or 5.5 s for the early-cancelled context and 7 s or 5.5 s for 

the late-cancelled context, whose trial numbers followed the 

ratio 2:1. Harvest and cancellation trials with different event 

latencies were randomly mixed in each block. The temporal 

distributions of harvest and cancellation trials were chosen in 

such a way that the relative expected gain of predicting 

harvest versus cancellation would change with time to a 

considerable extent. Each participant completed four blocks, 

with two blocks for each temporal context. They were 

randomly assigned to the order of E(arly)L(ate)EL or LELE. 

There was a 30-second break between two blocks. 

Participants were not explicitly informed about the temporal 

structure of the experiment. 

Ideal observer analysis 

To evaluate participants’ choices in real-time gambling, we 

modeled an ideal observer who knows the temporal structure 

of each temporal context (i.e., joint probability distribution of 

trial type and event latency, as we describe above) but whose 

time perception is corrupted by a Gaussian noise following 

Weber's law (Jazayeri & Shadlen, 2010). 

At time 𝑡 of a trial, define 𝜑𝑡(𝜏′, 𝜏) as a Gaussian kernel 

centered at 𝜏  with standard deviation 𝑘𝑡  ( 𝑘  as Weber 

fraction): 

φ𝑡(𝜏′, τ) =
1

√2π𝑘𝑡
exp (−

(𝜏′ − τ)2

2(𝑘𝑡)2
). 

In continuous decision experiments where participants 

could change their choice at any time as they wish until the 

end of the trial, the ideal observer needs only to consider the 

outcome distribution at the next moment, i.e., given that the 

trial ends immediately after 𝑡. According to Bayes rule, the 

ideal observer’s posterior estimate at time 𝑡  for the 

conditional probability that the trial will be trial type 𝑇 

(harvest or cancellation) if it ends at time 𝑡 is 

𝑝(𝑇|𝑡, 𝑡end ≥ 𝑡) =
𝛴𝑖𝑇

𝑞𝑇,𝑖𝑇 ∫ 𝜑𝑡(𝜏, 𝜏𝑇,𝑖𝑇
)𝑑𝜏

∞

𝑡

𝛴𝑇𝛴𝑖𝑇
𝑞𝑇,𝑖𝑇 ∫ 𝜑𝑡(𝜏, 𝜏𝑇,𝑖𝑇

)𝑑𝜏
∞

𝑡

, 

where subscript 𝑖𝑇 indexes event latency of 𝑇-type, 𝑞𝑇,𝑖𝑇
 and 

τ𝑇,𝑖𝑇
 respectively denote the proportion and event latency of 

𝑇-type trials with the 𝑖𝑇-th latency in the temporal context.  

In one-time decision experiments where participants can 

only choose once, the ideal observer needs to consider the 

outcome distribution in all moments after 𝑡, thus computing 

𝑝(𝑇|𝑡, 𝑡𝑒𝑛𝑑 ≥ 𝑡) =
𝛴𝑖𝑇

𝑞𝑇,𝑖𝑇 ∫ 𝜑𝑡(𝜏, 𝜏𝑇,𝑖𝑇
)𝑑𝜏

∞

𝑡

𝛴𝑇𝛴𝑖𝑇
𝑞𝑇,𝑖𝑇 ∫ 𝜑𝑡(𝜏, 𝜏𝑇,𝑖𝑇

)𝑑𝜏
∞

𝑡

. 

Let 𝑝end(𝑇|𝑡) = 𝑝(𝑇|𝑡, 𝑡end = 𝑡 ) for continuous decision 

experiments and 𝑝end(𝑇|𝑡) = 𝑝(𝑇|𝑡, 𝑡end ≥ 𝑡)  for one-time 

decision experiments. The expected value of a specific choice 

(predicting harvest or predicting cancellation, denoted 𝐶) at 

time 𝑡 is thus 

(1) 

(2) 

(3) 
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𝐸𝑉(𝐶|𝑡) = ∑ 𝑟(𝐶|T)𝑝end(T|𝑡)
𝑇

, 

where 𝑟(𝐶|𝑇) denotes the payoff of choice 𝐶 given trial type  

𝑇 (see Figure 1A or see Task Procedure above for the payoff 

matrix). The ideal observer will choose the option that 

maximizes expected value. 

Statistical analysis 

For the simple response task, the mean and standard error of 

RT were calculated in logarithmic scale and presented in 

linear scale. For the real-time gambling task, predicting 

harvest and cancellation at each specific time point were 

respectively coded as status values 0 and 1. The probability 

of predicting cancellation at a specific time point was defined 

as the mean status value across trials for all trials that ended 

after the time point. 

Linear mixed-effects model (LMEM). We used LMEMs 

with Satterthwaite's approximate F test and Wald test for 

group-level statistical conclusions, where the random effects 

of LMEMs followed keep-it-maximal rule (Barr et al., 2013). 

To improve convergence and avoid singular fits, we 

identified and trimmed redundant random effects based on 

principal component analysis and the fitting of zero-

correlation models. RTs were transformed to log scale to 

improve normality. Decisions (predicting harvest or 

cancellation) were treated as binomially distributed random 

variables when entered as dependent variable in generalized 

LMEMs. All LMEMs and tests were implemented with R 

packages lmer and car. 

We applied Benjamini-Hochberg correction to multiple 

comparison p values to control the false discovery rate. 

Results 

Real-time behavioral measures of temporal 

expectation 

During the open cage stage of each trial, an ideal observer 

would keep updating her probabilistic estimate for the 

incoming event and change her choice accordingly (see 

Methods). Consider the ideal observer’s preference in the 

continuous decision experiments under the early-cancelled 

context (Figure 2B, green curve) as an illustrating example. 

At the beginning of the trial, the ideal observer prefers 

predicting harvest, because the first event on the time line is 

harvest at 1 s (Figure 1B). But when it passes 1.5 s and no 

event occurs yet, the ideal observer starts to prefer predicting 

cancellation, which corresponds to the next event (2.5 s) on 

the time line. That is, the temporal expectation of the ideal 

observer at each moment determines her choice in a real-time 

manner. In other words, if we assume human participants also 

seek to maximize expected reward, we can use their choices 

in the real-time gambling task as real-time measures of 

temporal expectation. 

A comparison of participants’ choices with those of the 

ideal observer allows us to see in what aspects participants' 

temporal expectation agrees with and in what aspects it 

deviates from the ground truth. For continuous decision 

experiments, an ideal observer should predict cancellation 

when the expected value (EV) difference is greater than 0 and 

predict harvest when the difference is less than 0. The ideal 

Figure 2: Temporal dynamics of gambling for an ideal 

observer and participants. (Cumulative) difference of 

expected value between two decision options in one-time 

gamble tasks (A) and continuous gamble tasks (B). See Ideal 

observer analysis for detail. Participants linear mixed-effects 

model. Green denotes early-cancelled context; purple 

denotes late-cancelled context. Shades indicates difference 

between two contexts. The color of the shades at each time 

poing denotes which context has higher (cumulative) EV 

difference favoring cancellation. (C-F) Probability of 

predicting cancellation was the average of real-time 

prediction at each time point (0, predicting harvest; 1, 

predicting cancellation). Upper panels, examples of status 

value change during a trial. The discrepancy between the EV 

difference curves and participants’ prediction curves 

indicates that the participants seem to have inaccurate 

representation of temporal distributions. Red vertical lines 

indicates the event latencies of harvest trials (1, 4, 7 s). Blue 

vertical lines denotes the latencies of cancellation trials (2.5, 

5.5, 7 s). Asterisks at five event latencies denote the 

significance of difference between contexts in LMEM 

analysis. ****, p < 0.0001; **, p < 0.01; *, p < 0.05. P values 

were corrected for multiple comparison.   

(4) 

600



observer's preferences for the two temporal contexts differ 

around 2.5 s and 7 s (indicated by colored shadings in Figure 

2B), but are almost identical for the rest of the time. In 

contrast, on one hand, participants’ choices showed 

significant across-context differences at 2.5 s in the correct 

direction (Figure 2D & F, significance marked by asterisks). 

On the other hand, their choices also showed significant 

differences at 4 s and lack of significant differences at 7 s, 

deviating from those of the ideal observer who has perfect 

knowledge of the generative temporal distributions.  

A remarkable bias in participants' choices was their 

increasing probability of predicting cancellation up to the end 

of the trial (Figure 2D & F; For participants' choice after 1s, 

ContCanc, χ2(1) = 222.29, p < 0.0001; ContHarv, χ2(1) = 

76.88, p < 0.0001) despite that cancellation would be 

impossible after 5.5 s in the early-cancelled context.  

In one-time decision experiments, participants made at 

most one key press per trial and we would not know whether 

their prediction ever changed after the key press. However, 

when we described participants’ choices on each trial as a 

step function, as if they stuck to the choice at the time of key 

press, the resulting curves (Figure 2C & E) surprisingly 

resembled their counterparts in continuous decision 

experiments (Figure 2D & F) and disagreed with the ideal 

observer’s preferences in one-time decision experiments. It 

suggests that even when having no opportunity to choose 

again, participants did not consider all possible events in the 

future but only focused on the next moment. 

RTs of speeded responses 

We then examined the RTs of the speeded response task, the 

more conventional part of our dual-task experiments, and 

performed LMEM analysis on RTs to test the effects of event 

latency and temporal context, separately for the four 

experiments. The RTs observed in our experiments (Figure 

3A) resembled previous simple-response studies with varied 

event latency (Luce, 1986), no matter in the mean response 

time or in the decrease of RT with increasing event latency 

(1, 4, 7 s), which was significant in three out of four 

experiments (OneCanc, F(1, 83.83) = 68.38, p < 0.0001; 

OneHarv, F(1, 83.94) = 101.48, p < 0.0001; ContCanc, F(1, 

82.01) = 0.42, p = 0.52; ContHarv, F(1, 80.93) = 25.50, p < 

0.0001). 

The RTs were also significantly influenced by temporal 

context (early-cancelled vs. late-cancelled), according to the 

main effect of temporal context (OneCanc, F(1, 83.22) = 

25.61, p < 0.0001; OneHarv, F(1, 83.83) = 1.87, p = 0.175; 

ContCanc, F(1, 81.77) = 6.58, p = 0.012; ContHarv, F(1, 

81.02) = 6.58, p = 0.012) or the interaction between event 

latency and temporal context (OneCanc, F(1, 83.70) = 3.43, 

p = 0.067; OneHarv, F(1, 11206.72) = 11.49, p < 0.001; 

ContCanc, F(1, 81.74) = 1.17, p = 0.28; ContHarv, F(1, 80.89) 

= 1.57, p = 0.21). That RTs were smaller in the early-

cancelled than in the late-cancelled context might be due to 

the shorter average trial duration of the former than the latter, 

which is consistent with the predictions of the temporal 

discounting theory of motor control (Shadmehr, de Xivry, 

Xu-Wilson, Shih, 2010). 

Evidence for shared temporal expectation across 

real-time gambling and speeded response 

Participants confronted the same time structure in the dual 

tasks of real-time gambling and speeded response. Did the 

temporal expectation revealed by the gambling task also 

influence participants’ response time on the same trial? 

We split harvest trials into two categories, harvest-

predicted vs. cancellation-predicted, depending on whether 

harvest or cancellation had been predicted in gambling. For 

continuous decision experiments, this classification was 

based on the decision immediately before worm onset. 

Figure 3: RT patterns under different temporal contexts (A) 

and predictions (B). (A) Response time decreased with event 

latency and differed between context, which was coherent 

with previous studies (e.g., Niemi & Näätänen, 1981). Green 

dots denote RT under early-cancelled context; purple dots 

denote late-cancelled context. Error bars denote standard 

error of mean. (B) Participants responded faster when they 

predicted harvest trials than when they predicted cancellation 

trials. The means and standard errors were calculated in 

logarithmic scale and plotted in linear scale. Red dots denote 

RT when participants predict a harvest trial; blue dots denote 

RT when participants predict a cancellation trial. Some error 

bars are too short to be seen.  
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We found that the RTs of cancellation-predicted trials were 

significantly longer than those of harvest-predicted trials 

(Figure 3B), for all four experiments (main effect of decision, 

OneCanc, F(1, 69.17) = 28.86, p < 0.0001; OneHarv, F(1, 

80.80) = 441.14, p < 0.0001; ContCanc, F(1, 82.42) = 26.89, 

p < 0.0001; ContHarv, F(1, 78.88) = 230.26, p < 0.0001). The 

effect size of this effect was striking: in some experiments, 

cancellation-predicted RTs were longer than harvest-

predicted RTs by 150 ms, up to 1/3 of the latter. 

Furthermore, the robustness of this effect in the four 

experiments with different decision types and action 

mappings allowed us to exclude many trivial explanations. 

For example, if the effect had been a motor artefact due to 

facilitation or inhibition of previous key press to later motor 

responses, the direction of the effect should have been 

opposite for experiments where action mappings were 

opposite (i.e., OneHarv and ContHarv vs. OneCanc and 

ContCanc).  

Though it is unknown whether the effect reflects an 

influence from gambling to speeded response, or the reverse, 

or a common cause for both, we may safely conclude that 

temporal expectation is shared, at least partly, across the two 

tasks. 

 

Discussion 

In the present study, we introduce a real-time gambling task 

to provide real-time behavioral measures for temporal 

expectation, through which we identify patterned deviations 

of participants’ temporal expectation from ground truth. We 

also combine real-time gambling with a traditional simple 

response task in the same trial to investigate whether 

participants’ temporal expectations are task-specific or 

shared across tasks. We find converging evidence in four 

experiments for shared temporal expectation across the two 

tasks. 

The real-time gambling and speeded response tasks can be 

considered as representative tasks respectively of higher- and 

lower-level cognition that involve temporal expectation. 

Though temporal expectation has been extensively studied in 

both higher-level cognition, such as value-based decisions 

(Frederick et al., 2002; McGuire & Kable, 2013), and lower-

level cognition, such as perceptual and motor tasks (Cui et 

al.,2009; Jepma et al., 2012), these two lines of research in 

the literature almost never cross, with a few exceptions 

(Shadmehr et al., 2010; Wang et al., 2020). It is probably 

because temporal expectations in higher- and lower-level 

cognition look so different: The former is often explicit, in a 

time scale ranging from minutes to years, while the latter is 

more implicit, ranging from milliseconds to seconds. It is 

even hardly realized that the two should be studied in a 

general framework.  

However, there are reasons to believe the two are actually 

not so different as they look to be. On one hand, task-specific 

mechanisms proposed for low-level tasks to substitute for an 

abstract representation of temporal expectation, such as 

motor adaptation, can only explain some but not all temporal 

context effects in simple response tasks (Los & Agter,2005). 

On the other hand, even animal conditioning studies suggest 

a more sophisticated representation of temporal expectation 

than that could be approximated by simple rules 

(Starkweather et al., 2017). 

Indeed, here we find that temporal expectation may be 

shared across higher- and lower-level cognition. It should be 

noted that shared and task-specific temporal expectations are 

not necessarily mutually exclusive, given that timing is 

implemented in the brain by a main core interacting with 

multiple task-specific brain regions (Merchant et al., 2013). 

What behaviors are guided by shared and what by task-

specific temporal expectations, how temporal expectations 

learned in one task may generalize to a second task, and 

whether the biases we observed in the real-time gambling 

task apply to all tasks, are all interesting questions for future 

research.  

Our results also shed light on how well people can learn 

temporal distributions from experience. Previous studies on 

how temporal expectation influences perceptual and motor 

processes often (implicitly) assumed that the participants 

have accurate representations of temporal distributions 

(Niemi & Näätänen, 1981; Rohenkohl et al., 2012), though 

there was little empirical evidence for this assumption. 

Instead, the considerable biases participants showed in our 

real-time gambling task suggest that people may not able to 

acquire accurate representations of temporal distributions, at 

least not through hundreds of trials.   

Meanwhile, the real-time gambling task we develop allow 

direct and continuous measures of participants’ temporal 

expectations. It can be further combined with pupillometry, 

microsaccades, and neuroimaging measures to deepen our 

understanding of human cognition. 
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