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Specific Aim: Provide an overview of the literature addressing major areas
pertinent to pain in transgender persons and to identify areas of primary
relevance for future research.
Methods: A team of scholars that have previously published on different areas of
related research met periodically though zoom conferencing between April
2021 and February 2023 to discuss relevant literature with the goal of
providing an overview on the incidence, phenotype, and mechanisms of pain
in transgender patients. Review sections were written after gathering
information from systematic literature searches of published or publicly
available electronic literature to be compiled for publication as part of a
topical series on gender and pain in the Frontiers in Pain Research.
Results: While transgender individuals represent a significant and increasingly
visible component of the population, many researchers and clinicians are not
well informed about the diversity in gender identity, physiology, hormonal
status, and gender-affirming medical procedures utilized by transgender and
other gender diverse patients. Transgender and cisgender people present with
many of the same medical concerns, but research and treatment of these
medical needs must reflect an appreciation of how differences in sex, gender,
gender-affirming medical procedures, and minoritized status impact pain.
Conclusions: While significant advances have occurred in our appreciation of
pain, the review indicates the need to support more targeted research on
treatment and prevention of pain in transgender individuals. This is
particularly relevant both for gender-affirming medical interventions and
related medical care. Of particular importance is the need for large long-
term follow-up studies to ascertain best practices for such procedures. A
multi-disciplinary approach with personalized interventions is of particular
importance to move forward.
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Background

The intersection of sex and pain has become a focus of

extensive research at the clinical and preclinical level. Numerous

sex differences exist in pain and its processing in humans (1)

However, pain research frequently conflates sex and gender. Sex

refers to biological aspects of maleness or femaleness. It is a

complex label used to describe the totality of distinguishable

characteristics of an organism, including its reproductive

structure, functions, phenotype, and genotype (2, 3). On the

other hand, gender refers to the psychological, behavioral, social,

and cultural aspects of being male, female, or another gender

identity. Expectations of gender differ by culture. However,

gender is frequently assumed on the basis of sex assigned at

birth; a difference in gender identity from that assumed/assigned

at birth is broadly referred to as being transgender (1). The pain

experience of transgender individuals has been poorly studied.

There are several reasons why pain experience may differ in

individuals who are transgender (trans). One reason is the stress

that many trans individuals experience due to a frequently

hostile social and political environment (4, 5). Many trans

individuals also experience gender dysphoria, defined as the

distress and emotional discomfort from their gender

incongruence, which is created and/or exacerbated by a societal

environment that does not consistently accept gender diversity

(6, 7). Social marginalization is a frequent risk factor for

suicidality (4). Indeed, a large study of transgender adults in the

United States, 40% endorsed a lifetime suicide attempt (8). The

compounding effects of distress generated by gender dysphoria is

also reflected in the high incidence of suicide and disabling

behavioral syndromes in transgender individuals in whom the

dysphoria is not addressed (4, 9, 10). As will be reviewed below,

it is widely appreciated in many human conditions that such

unmitigated stressors can lead to profound exacerbations of pain

phenotypes (11, 12) and this may have a strong sex/gender

component (13, 14).

Other differences in biology relevant to pain perception may

arise from gender-affirming clinical interventions. These

interventions may involve hormonal or surgical therapies to

assist in modifying a person’s primary and secondary sexual

characteristics. Such interventions can significantly impact the

psychological and physiological components of the pain

experience (15, 16). These variables suggest the complexity of

pain expression in the increasingly visible and diverse population

of transgender adults and youth, along with the appreciation that

transgender patients represent a medically underserved,

stigmatized population (6). This has led the Institute of Medicine

to identify transgender health as a research priority (17).

However, the landmark report of the Institute of Medicine on

pain published in the same year, did not address pain in
02
transgender patients (18), and there is an urgent medical need to

consider this important and understudied topic.
Overarching aims of the review

The aim of this review is to summarize key literature,

addressing variables related to pain in transgender individuals.

We review the background and note issues related to

categorization of gender identity. Specifically, we: (i) highlight the

impact of discrimination, life experiences, and hormonal and

surgical treatments on pain perception; (ii) consider aspects of

the biology of neural processing of pain and potential differences

in cis and trans individuals; (iii) consider the contribution of

preclinical studies to understanding of the nexus of sex, gender,

and biology. We also address the role of the NIH in supporting

issues pertinent to pain in transgender individuals, and directions

for future research. The breadth of the topic precluded an in-

depth review of each of the topical areas, but it is our aim to

address pivotal issues for which we feel information or answers

are not currently available and as such, point to future directions

of research. As a prelude to this discussion, it is important to

appreciate the complex interplay between medical issues and

associated pain issues that pertain to transgender patients. A

comprehensive listing of relevant concepts is presented in the

Appendix (Supplementary Table S1) of this paper.
Search strategies

A group of twenty-one participants formed the core of the ad

hoc study group (Pain in Transgender Patients). This group met

periodically though zoom conferencing between August 2021 and

February 2023. This group created a series of specific topics that

they considered to reflect essential issues relevant to the question

of pain in transgender patients. These topical areas were assigned

to individuals who have expertise in the respective areas. Each

created a series of topical paragraphs that drew from the

published and publicly available literature. These paragraphs were

compiled and editorially revised. Compiled drafts were

redistributed to the core group for revisions and corrections. The

final drafts were approved and submitted.
Transgender patient populations

Population estimates

As noted, gender-minoritized persons are an often

marginalized populations in the health system (19). Current

electronic health records in many health organizations are not

positioned or equipped to store and share gender-related
frontiersin.org
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information appropriately (20). Further estimates of the size of the

transgender population are complicated, as gender diverse

individuals do not represent a homogeneous population. Broadly

speaking, the World Professional Association for Transgender

Health (WPATH) Standards of Care defines gender

nonconformity or incongruence as “the extent to which a

person’s gender identity, role, or expression differs from the

cultural norms prescribed for people of a particular sex” (21).

Gender incongruence was previously coded in the International

Statistical Classification of Diseases and Related Health Problems

of the World Health Organization (WHO) as a ‘mental disorder’.

In the new International Classification of Diseases and Related

Health Problems (ICD-11), gender incongruence is coded under

’sexual health’ (22, 23). This replaces previous diagnostic

categories such as “transsexualism” and “gender identity disorder

of children” with “gender incongruence of adolescence and

adulthood” and “gender incongruence of childhood”.

A global survey in 2021 noted that 2% of respondents from 27

countries identified as transgender, non-binary/non-conforming,

or gender fluid (24). The Behavioral Risk Factor Surveillance

System (BRFSS) telephone survey in the US estimates that adult

transgender population range from 0.3% to 0.8% of the

population across several states (25, 26), whereas a review of

population-based surveys (2006–2016) found that 0.39% of

respondents identified as transgender when this was an option

(27). Transgender self-identification appears more common

among younger age groups (28). This may relate to decreases on

stigma and increased availability of services for trans individuals,

as well as changes in categories of gender.
Issues related to data collection in relation
to gender identity

The numbers quoted above, often used to estimate population

characteristics, have been challenged as underestimates for several

reasons (29). First, transgender identity is not often ascertained

in many federal census or national health surveys or is too

narrowly defined. Lett and Everhart (30) have introduced the use

of other sources to address transgender identity. These include

the Youth Risk Behavior Surveillance System (31), the National

Crime Victimization Survey (29), the General Social Survey (32),

and the National HIV Behavioral Surveillance System (33).

Second, determining gender identity through survey questions

depends upon self-identification. Responders may not identify

themselves as transgender on surveys, despite expressing a gender

that is different than their gender assigned at birth (30). Third, a

simple question and a one-step query methodology to determine

transgender identity may misclassify transgender people (30).

The absence of inclusive concepts, terms, and codes for gender,

sex, and sexual orientation has contributed to the inability to

correctly identify sex and gender minorities in data sets and

electronic health records. As a result, we can express only modest

certainty about and the prevalence of transgender identity and

more specifically about specific health needs and long-term

health outcomes among transgender individuals (34). Practically,
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the prevalence of transgender identity has been defined by

physical alterations as with medical or surgical transitions

(35–37). However, as will be reviewed below, while useful and

important measures, the complexity of gender identity, the effects

of hormonal therapies and the impact of the societal milieu

contributing to gender dysphoria, can complicate the linkage of

these physical characteristics with gender assignment, and there

is often little discussion considering general implementation of

such systems alongside self-identification (38, 39).

An important element in advancing our understanding of the

conditions and issues faced by transgender populations is the

development of gender-appropriate data collection tools and

healthcare records. It must be recognized that approaches

employing International Classification of Diseases (ICD) codes or

simple text linked to trans-related procedures prioritizes

populations of individuals who exhibit higher utilization of

gender-affirming therapies/surgeries, often with better insurance

coverage and lower poverty rates (2). For these reasons, it has

been argued that the gold standard for gender assignment in

patients is self-identification (21).
Pain in relation to gender identity

Differences in pain sensitivity/responsivity and incidence in

cisgender (cis) men and women groups are well documented,

wherein it is reported that women often display greater

sensitivity than men (5, 40). Such differences are frequently

noted in specific syndromes, such as migraine (41)

musculoskeletal pain (41, 42), temporomandibular joint

syndromes (43, 44), fibromyalgia (45, 46); rheumatoid, osteo-

and psoriatic arthritis (47–49); and Sjögren’s disease (50). Some

of these pain syndromes, such as migraine headaches, are more

frequent in cis women, and often overlap with other pain

conditions (51). Other pain syndromes, such as cluster headache,

as more frequent in cis men (52). Furthermore, several studies

have been conducted to highlight how gender biases in

pharmacological and non-pharmacological pain management

differ in cismen and ciswomen. Although significant differences

were found, the data often depended on both the treatment type

and pain characteristics. However, the etiology of these

differences is complex given differential treatment of men and

women in pain (5).

While there are differences in pain between cis men and

women, potential differences in trans individuals are much less

well characterized, and systematic work is scant. Survey-based

studies have suggested a higher prevalence of pain symptoms

among transgender people compared to the general population

(53), a difference which appears to be more pronounced for

trans men as compared to cis men than between trans women

and cis women (53–55). Aloisi and colleagues studied

transgender women and men who had undergone hormonal

treatment for at least one year, and retrospectively report

whether pain had changed from before to after treatment.

Approximately 30% of transgender women reported painful

conditions, and 80% of those stated that these painful conditions
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started after the onset of hormone treatment (55). In contrast,

approximately 60% of transgender men reported pain, but nearly

half of the participants reported that pain lessened after the

onset of hormone treatment (55). However, these studies

included very small sample sizes, and further study with much

larger samples is needed to confirm these potential differences

In a study involving 51 African-American cis and transgender

individuals living with HIV and chronic pain, Strath and colleagues

(56) reported that trans women and cis women demonstrated a

greater temporal summation for heat pain stimuli or stimulation

compared to cisgender men. Trans women showed greater

mechanical summation of the sensation produced by repeated

mechanical nociceptive stimulation than either cis women or

men. Similarly, trans and cis women reported greater chronic

pain severity as compared to cis men. Migraine prevalence in

trans women taking gender affirming hormone therapy was

similar to that of cis women in population estimates (57).

Many trans individuals undergo painful clinical interventions in

gender affirmation protocols, including hormone replacement and

surgeries (58–60). However, the impact of these interventions on

pain may differ by gender. A recent systematic review examining

the literature on gender minority health provides little information

specifically related to pain (61). Pain has been indicated as one of

the monitoring parameters for feminizing hormone therapy (62,

63). A study of 47 transgender women and 26 transgender men

reported that up to 25% of trans women developed chronic pain

with estrogen and/or anti-androgen therapy whereas 60% of trans

men experienced significant improvement in chronic headache

along with testosterone treatment (55). Trans women treated with

estrogen display a prevalence of migraine similar to that of cis

women, including aura (57, 64, 65). In contrast, a study that

recruited 115 transgender individuals from a specialized clinic in

Israel reported a high prevalence of fibromyalgia symptoms among

transgender individuals in general and in transgender men in

particular as compared to transgender women (53). A variety of

rheumatic pathologies are known to have a strong immune

mediated component, and sexual dimorphism occurs in innate

and adaptive immunity and contributes to differences in the

prevalence of rheumatic diseases (66). A recent review commented

on the limited literature on arthritis among trans individuals but

noted that, though the number of cases was only 14, eleven cases

of such immune mediated disorders occur in trans women (67).

In parallel with the functional significance of immune cells on

pain mechanisms, there is a greater predisposition to chronic pain

among individuals lacking a Y chromosome (68, 69). However,

gender identity in transgender patients may play as important a

role in the pain experience as the genetics associated with sex (56).
Medical care for transgender pain
patients

A prospective survey found that 90% of pediatric

anesthesiologists (n = 374) were comfortable interacting with

transgender patients but only 50% of the respondents felt

equipped with the knowledge to manage the surgical needs of
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demonstrate a fundamental need to understand pain mechanisms

in the pediatric transgender population and to provide specific

training for clinical care teams including anesthesiologists. In this

regard, Standards of Care are issued and updated by WPATH

(World Professional Association for Transgender Health),

providing health care guidelines for clinical outcomes in target

populations including transgender individuals (73).

Implementation of questions about pain perception and its

burden in transgender populations would provide detailed

information that includes, but is not limited to, age, medical

conditions, hormonal or surgical status, all of which may

enhance our understanding of pain in relation to gender.

Furthermore, the shifting paradigm in transgender and gender-

diverse populations needs to be embedded in health care (2).

Approaches to pain management should consider the significant

pharmacological and surgical interventions that many

transgender individuals receive. In the following section we

provide an overview of these interventions and their implications.
Gender affirming surgical interventions

Transgender patients may undergo a range of gender-affirming

surgical interventions (74). Procedures often thought of as

feminizing may include breast augmentation, facial feminization

(75–78), and gender-affirming pelvic surgery (GAPS), or

“bottom” surgery, which usually includes a penectomy (removing

the penis), bilateral orchiectomy (removing the testicles),

vaginoplasty (creating a vagina) (49, 79), clitoroplasty (creating a

clitoris from the penile glans), and labiaplasty (creating labia

minora and majora). Shallow depth vaginoplasty, or vulvoplasty,

is an alternative to full-depth vaginoplasty for women who do

not wish to engage in penetrating vaginal intercourse (80).

Procedures often thought of as masculinizing may include

mastectomy (chest or “top” surgery), masculinizing facial surgery,

and masculinizing “bottom” surgery which may involve a

hysterectomy with or without salpingo-oophorectomy (removal

of fallopian tubes and ovaries), vaginectomy (removing the

vaginal canal), phalloplasty (creation of a phallus using a pedicle-

based flap), metoidioplasty (creating a smaller penis from the

clitoris after it is elongated with testosterone therapy), and/or

scrotoplasty (creation of a scrotum from labia majora).

Many trans individuals also undergo vocal cord surgeries

including thyroplasty for transgender men, or glottoplasty for

transgender women (78, 81–83). These interventions are

rarely performed for transgender people under the age of 18

(84, 85) and are never performed under the age of 16,

despite prevalent misconception.

Gender-affirming medical and surgical treatments can increase

positive body image in trans individuals by aligning bodily

appearance with gender and desired sex, as a study on

transgender individuals in Zurich found (86). Gender affirming

hormone therapies have also led to an increase in body image

and self-esteem (87). Similarly, hair removal procedures (desired
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by nearly 90% of transgender people) were associated with

significant mental health benefits (88, 89).

In a comprehensive literature review, several insights were

provided regarding gender affirming surgery (GAS) and trends in

its use: (i) GAS is more common in transgender men than in

transgender women, and least common in gender non-binary or

nonconforming populations; (ii) Genital procedures are less

common than chest surgery, with prevalence rates for genital

procedures being about 25%–50% for transgender men and 5%–

10% for transgender women (28, 90, 91). Gender-affirming

mastectomy, or “top” surgery, is a common procedure for trans

men. The demand for top surgery by transmen has increased

15% since 2019, with 8,548 procedures performed in 2020 (92).

The incidence of GAS utilization among transgender people is

mainly influenced by age, income, and race, with the primary

variable for GAS utilization being income (90).

It should be noted that, while gender affirming surgeries are

commonly associated with transgender patients, many of these

procedures are similarly implemented in cis patients. For

instance, a cisgender woman undergoing a breast augmentation

may do so for gender affirming purposes, and cis men who have

had genital damage may seek cosmetic surgical changes as a

form of gender affirmation (93, 94). Individuals born with genital

differences may also undergo gender affirming procedures (95).
Future directions

A change in policy
Although gender-affirming medical (hormonal) therapy and

surgical treatments are associated with a significant improvement

in gender dysphoria (91, 96–98), there remains a paucity of data

measuring outcomes across the many treatment domains,

including complications and physical and mental health

outcomes. Section 1557 of the Affordable Care Act became

effective July 18, 2016, prohibiting discrimination in healthcare

on the basis of a number of protected characteristics, including

sex. The new regulations codified existing informal guidance

from the Department of Health and Human Services,

interpreting this provision to include protections from

discrimination based on gender identity and sex stereotyping.

Section 1557 regulations explicitly prohibit discrimination based

on gender identity—making it clear that most insurers cannot

deny or limit coverage because a treatment is related to an

individual’s gender transition. This change in codification, which

increased access to medical and surgical therapy relevant to

transgender individuals, resulted in a rise in the number of

gender affirming surgeries performed in the US (90), as well as

the number of gender health programs in this country.
Pain phenotypes in patients undergoing
gender affirmation surgeries

Despite the increasing incidence of gender affirming surgery

(GAS), few studies have analyzed the prevalence and severity of
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reviews are sparse and yield conflicting results. To date, there are

few reviews summarizing quality-of-life outcomes following

gender-affirming surgeries over periods of greater than 1 year

(99–101). Of the data that does exist, two long term follow up

studies, found that gender affirming surgery alleviates gender

dysphoria by improving quality of life, and psychological

symptoms but also that there are still high psychiatric morbidity

and suicide rates after gender reassignment surgery compared to

the general population (98, 102). Several informative reviews

focus on specific types of surgery, including phalloplasty

(103, 104), vaginoplasty (105, 106), and laryngoplasty (107, 108).

Furthermore, a recent review examined outcomes of chest, facial,

and vocal cord surgeries (101). The consensus across reviews is

that surgery improves transgender individuals’ quality of life.

These reviews, while informative, do not explicitly consider

longer term (i.e., > 1 year) quality-of-life outcomes following

gender affirming surgery, or compare outcomes for each type of

gender affirming surgery in transgender men and women.

Patients tend to report positive transitioning outcomes within the

first year after surgery (101, 109, 110). In a longer-term

evaluation of transgender women’s health and well-being after

feminizing surgery, Lindqvist (111) found that transgender

women reported increased health-related quality of life after

feminizing surgery, but health-related quality of life declined in

the following years. Hence, early evaluations (i.e., < 1 year), while

informative, need to be supplemented with information about

longer term functioning.

There is limited research on persistent postsurgical pain

following mastectomy for gender dysphoria, even though it is

well documented and common after mastectomy for breast

cancer (112). In oncologic mastectomies, the likelihood of

developing chronic pain is commonly appreciated and is often

associated with an enduring neuropathic phenotype (113, 114).

When breast tissue is surgically removed, sensory nerves

traveling through these tissues are transected, stretched, or are

caught up in scar during the healing process. These nerve

injuries can lead to chronic pain due to the development of

neuromas and/or scar contraction. Altered sensation, including

“pins and needles”, shock-like, burning, or stabbing pain provide

evidence of nerve injury as a cause for the pain. Response to

local anesthetic nerve blocks can confirm that the source of the

chronic pain is the injured nerves. The degree and frequency of

persistent pain has been linked to the intensity of acute

postoperative pain (115), pre-existing chronic pain conditions

(116), as well as psychological factors such as anxiety and

depression (117). Using acute postoperative pain scales and

opioid consumption, Verdecchia and colleagues (118) found that

the transgender top surgery patients consumed fewer opioids and

reported lower pain scores than cisgender breast reduction

patients. This may be explained by the effects of prior ongoing

gender affirming hormone therapy (GAHT) on pain scores but

more research is needed to confirm this (118). Similarly,

Robinson et al. (119) prospectively compared top surgery to

oncologic mastectomy without reconstruction and to

mammoplasty breast reduction. They found that patients who
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underwent oncologic mastectomy consumed similar quantities of

opioids to top surgery patients. In both studies, patients received

pectoralis nerve blocks. A retrospective chart review (120)

evaluated complication rates following top surgery, and surveyed

patients about their experience with persistent postoperative pain.

More than 25% of top surgery patients reported chronic pain,

but 95% (n = 77) of these patients did not require analgesics. The

potential role of concurrent hormone therapies in these studies

was unfortunately not indicated. Generally, all participants were

overprescribed opioids in the study. This may affect patients with

a higher potential for substance abuse, which may be the reason

these results conflict with Verdecchia and colleagues’ findings.

The limited and conflicting data describing the prevalence and

severity of pain following top surgery makes it challenging for

physicians to counsel their patients on their risk of developing

postoperative pain, as well as to predict opioid prescription needs.

Robust outcomes data after vaginoplasty and the prevalence of

long-term gynecologic issues is lacking (121, 122). A past study that

examined the prevalence of patient-reported symptoms and

adverse reactions in 80 patients undergoing vaginoplasty found

that 54% sought care within the first year after the procedure.

The most common adverse outcomes included impaired wound

healing / hypergranulation (13% / 39%), urinary dysfunction

(19%). Sexual dysfunction issues were noted (34%) with

anorgasmia (11%) and dyspareunia (11%) being most frequent

(123). In a systematic review and meta-analysis that examined

the outcome and complications of 3388 transgender females after

penile inversion vaginoplasty, the mean prevalence of reported

urinary complications ranged from 5.0%–11.9% with the most

common symptoms being splayed stream (11.7%), meatal

stenosis (6.9%), and irritative symptoms (frequency, urgency,

nocturia) (11.5%) (124). In trans men, phalloplasty and

metoidioplasty are the two most common genital surgeries (81,

125). Metoidioplasty is reported to have a complication rate of

10%–37% with postvoid dribble and/or a spraying stream (33%)

and urethrocutaneous fistulas (5%–23%) being the most common

(81). Phalloplasty may employ a free flap procedure, often with

the radial forearm providing the donor site and the target tissue

innervation. Most post operative reports on bottom surgery focus

on the recovery of sensory function in the genitalia whereas with

breast surgery a neuropathic phenotype has been readily

reported. Such neuropathic phenotype reports are virtually

nonexistent following vaginoplasty and penile construction.

procedures. Carlotta et al. concluded that recovery of bottom

sensation post-surgery suggests a greater sensory reinnervation,

both in magnitude and temporally of the genitalia than that

observed in the regeneration of limb afferents (126).

Hormone therapy can influence pain in transgender patients,

with testosterone therapy improving chronic pain in some

transgender men, for example (55). Furthermore, mood disorders

such as anxiety can help to predict persistent post-mastectomy pain

syndrome in women after oncologic mastectomy (127), yet similar

work has not been described in transgender individuals. Local nerve

blocks could be beneficial for pain management and deserve further

systematic study, as they have been demonstrated to improve pain

outcomes following oncologic mastectomy (128, 129).
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Future directions

Current insights into the characteristics of the pain phenotype

occurring following gender affirmation surgical procedures suffer

from: (i) limited attention to definitive descriptions and

characterizations of the pain being reported by the individual, (ii)

absence of long term follow up and appropriate and adequate

characterization of the techniques employed, and (iii) influence

of patients’ hormonal status on pain. Slow recognition of the

pain state following breast intervention in cis women makes it

unlikely that pain states in trans people will be evident unless

they are specifically characterized.

There appears to be a relative lack of persistence of pain and

ongoing pain phenotypes after gender affirming bottom surgery.

This stands in contrast to the time course of postoperative pain

for other surgeries of skin and bone, where significant pain may

persist and develop into a neuropathic phenotype. The rapid

reduction of pain that occurs in the bottom surgery patient

may be intertwined with relief of gender dysphoria and merits

further research (126).

Further, additional work characterizing anatomy and

neuroplasticity is essential for understanding the nature of pain

in transgender individuals. Such understanding is not only

important for clinical management and determination of

prognosis but is essential as a part of supporting the patient by

giving an explanation for their symptoms, both pain and

otherwise. Finally, it should be clear that predictions regarding

the pain state in transgender patients that are based solely on

those of the cis individual (as in mastectomy and breast

augmentation, or genital reconstruction/bottom surgery) do not

include the potential impact of transgender hormonal

therapeutics or the mental health impact of gender dysphoria,

societal marginalization, and social gender transition. Finally, as

noted in the following section, hormonal therapies are an

important component of the treatment regimens of the

transgender individual and the effects of such treatment on the

post operative pain state has been poorly considered, and future

work in this would importantly consider this interaction.
Hormone replacement therapy (HRT)
in adults

Hormone replacement therapy is a cornerstone of gender

affirming medical care to address gender dysphoria (62, 73, 130).

The National Transgender Discrimination Survey on Health and

Health Care reports gender-affirming hormone therapy (GAHT)

in up to 80% of transgender people. Other estimates suggest that

approximately 30%–68% of transgender persons in the US utilize

hormone therapy in pursual of congruent secondary sex

characteristics (36, 131–133). In gender-diverse people assigned

female at birth, GAHT primarily involves administration of

exogenous testosterone esters (130, 134) for masculinization. Many

transgender men use testosterone therapy to suppress estrogen

(134). In transgender women, hormone therapy includes use of a

synthetic estrogen, usually with anti-androgens to suppress
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testosterone (135), and occasionally progesterone, though the risk/

benefit ratio of progesterone use in trans women is understudied

(136). It is important to note that the trans population is

heterogeneous in therapeutic hormone use, and includes different

formulations dosages, and routes of administration (oral, injection,

patches). For example, while the clinical goal for some trans

women may be to maintain serum concentrations of estradiol

similar to those of cis women (100–200 pg/ml) (130), other

patients may seek the phenotypic and physiologic effects of lower

concentrations. Alternatively, trans people might have only

sporadic access to prescribed therapy or may obtain and utilize

hormone therapy outside of medical direction.
Hormone therapeutics and pain in
transgender individuals

Evidence describing the effect of hormone replacement therapy

on the experience of pain in transgender populations is

inconsistent and is often limited by small sample size and subject

to sampling bias. One exploratory study of trans men in Thailand

found that those undergoing testosterone therapy reported higher

bodily pain scores on the Short Form Health Survey 36 compared

with those not utilizing testosterone (137). Conversely, a

questionnaire-based study of 26 trans men found that 60%

reported a significant improvement in chronic headache symptoms

that had been present prior to the start of testosterone treatment

(55). Meanwhile, a study of Israeli trans men did not find a

significant difference between the prevalence of fibromyalgia

symptoms before and after the initiation of hormonal therapy (53).

A U.S. survey-based study of 100 trans men who had undergone

phalloplasty and who were taking testosterone found that 51% (48/

94) reported pain with sexual penetration. Pain was present before

initiation of testosterone in 41.7% (20 of 48), and no significant

correlation was found between pain scores and the duration of

time since initiating testosterone (60). In another survey-based

study of 183 trans men endorsing abdominopelvic pain, 69.4%

(127/183) reported new-onset pain following initiation of

testosterone GAHT, with a median time from testosterone

initiation to pain onset being 1 year (138). In summary,

insufficient data exist to definitively discern the specific effects of

testosterone GAHT on pain in trans men.

In contrast to the small number and heterogeneity of findings

observed in studies describing pain in trans male individuals, the

data describing trends in pain among trans women are more

consistent. Several studies have suggested that trans women

experience more pain than cis men and cis women, a phenomenon

that appears to be exacerbated by anti-androgen therapy and an

estrogen GAHT (54, 56, 138–140). In a study of 47 trans women,

chronic pain was observed in 29.8%, with breast pain and

headache onset occurring after initiation of estradiol and/or anti-

androgen therapy in 11 of 14 affected individuals (55). Further,

among trans women taking anti-androgens and high-dose

estrogens, the prevalence of migraine has been suggested to

increase, particularly among those taking high doses of oral

estrogens (55). A positive correlation has also been demonstrated
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between trans women’s time on GAHT and their experience of

bodily pain (54). Overall, the prevalence and severity of pain in

transgender women is associated with impaired mental health

outcomes, with Female Sexual Function Index Pain scores (e.g.,

pain associated with sexual activity) accounting for a significant

proportion of the Beck Depression Inventory depression score,

after controlling for age and general mental health levels (139).

Research investigating pain in transgender children and

adolescents is very limited. While injection site pain is a well-known

side effect of any injectable medication, it is unclear whether

gonadotropin releasing hormone (GnRH) agonists that some gender-

diverse youth use for pubertal suppression are associated with altered

pain experience. During initial cyclical administration of GnRH

agonist therapy, the pituitary is stimulated to produce gonadotropic

hormones which increase downstream gonadal steroid secretion.

Infusions of GnRH agonists produce an initial transient increase in

sex hormones, but with continued non-pulsatile stimulation, LH and

FSH synthesis are inhibited and estrogen and testosterone levels

decline (141). Of note, GnRH agonists have been used as a last line

of pain suppression in adolescent cis girls suffering from

dysmenorrhea, endometriosis, and chronic pelvic pain. However,

their study did not include gender diverse patients (142–144).
Hormone replacement and pain in adults

Here we briefly review the two primary classes of agents used in

GAHT and their effects on pain processing. We first examine the

current literature on the effects of the gonadal steroid hormones

on pain in animals and cis gendered men and women to

hypothesize their effects on pain in transgender individuals.

Testosterone & pain
Regarding androgenic influence on pain, one study collected

pain scores of 127 cis gender men and 145 cis gender women.

The study reported that testosterone levels were negatively

correlated with pain after knee replacement at the operated knee,

e.g., high testosterone was correlated with lower pain scores, in

both cisgender men and women osteoarthritis patients (145).

Similarly, androgen level has been reported in limited reports to

be negatively correlated with pain in a study of 40 cycling

women tested with noxious stimuli in the lab (146), as well as

negatively correlated with days/month of pelvic pain, menstrual

pain, and headache in 56 cycling women (147). In laboratory

rodents, exogenous testosterone administered to adults may

increase pain thresholds (i.e., decrease or delay response to

noxious stimuli) in gonadectomized males and females [e.g.,

(148)], although testosterone administered to gonadally intact

rodents may not alter pain in either sex [e.g., (149)]. Because

testosterone (or estradiol) administration to gonadally intact

animals triggers negative feedback to the hypothalamic-pituitary-

gonadal axis (thereby decreasing endogenous gonadal hormone

release) (150), exogenous hormone effects may differ in

gonadally intact vs. gonadectomized individuals. When

androgens do reduce pain, the reduction coincides with its

attenuating effects on inflammation (151). However, it has been
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shown that pelvic pain in transgender men often occurs after

initiation of testosterone therapy (152). Given the known

androgen sensitivity of the pelvic floor musculature (153), further

research into pelvic floor muscle dysfunction is warranted.

Estrogens & Pain
Menstrual cycle phase may alter pain in cisgender women with

migraine, fibromyalgia, and temporomandibular pain; typically, pain

worsens during periods of rapid estrogenic decline, such as during

the late luteal phase (154). However, there is disagreement among

studies examining the interactions between ovarian hormones and

pain (155). In women without chronic pain, somatosensory

thresholds are not systematically affected by cyclic changes in

ovarian hormones (154, 156). In laboratory rodents, estradiol may

increase pain-related behaviors in both sexes (157), but estradiol has

also been observed to decrease pain-related behaviors (e.g., in

gonadally intact females using a visceral pain model (149). It has

been suggested that estrogenic influence on pain depends on the

extent to which a given pain disorder involves immune, skeletal,

cardiovascular (and other) systems, because estrogens can influence

each of these systems differently (158). Estrogens have diverse effects

on peripheral organs and tissues, and in the brain as mediated by

estrogen receptor alpha (ERalpha, playing a critical role in

reproductive neuroendocrine function and behavior) and estrogen

receptor beta (ERbeta, present in populations of hypothalamic

GnRH, corticotropin releasing hormone, vasopressin, oxytocin, and

prolactin expressing neurons) (159).

Estrogenic modulation of painmay depend on the type of chronic

pain (or pain model in animal studies), whether the estrogen-treated

individual is gonadectomized, and, among other variables, whether

estrogens are combined with progestins (157, 159).

Other GAHT therapeutics
To support gender transition, anti-androgenic treatments are

sometimes used; these include 5α-reductase inhibitors, progestins,

and the mineralocorticoid receptor/androgen receptor antagonist

spironolactone which functions as a testosterone blocker (160).

Little is known about the impact of these drugs alone or in

combination with estrogens—which is how they would typically be

taken for gender transition—on chronic pain. Spironolactone in

isolation has been reported to decrease inflammatory pain-related

behavior in male mice (161) and neuropathic pain-related

behavior in rats (162), but it did not alter fibromyalgia pain in

women (163), or pain in human osteoarthritis patients of either

sex (164). Research is needed to determine whether combined

estrogens + anti-androgens are likely to affect chronic pain in

preoperative vs. postoperative trans individuals.
Future directions

It should be stressed that there is a relative paucity of data

substantiating the relationships between hormones and pain

expression in transgender and cisgender individuals. Additional

work in this area promises insight into effective pain management

for people, especially those receiving exogenous hormones.
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Mechanisms driving gonadal hormone
effects on pain

Aside from their effects on inflammatory cascades, steroid

hormones appear to modulate cortical processing of pain-related

stimuli (165–167), and preclinical studies using rodents have

shown differential excitability of CNS targets in male and female

organisms by the same endogenous steroid hormones (168).

Although steroid hormone action predominantly involves nuclear

signaling and regulation of gene expression, gonadal hormones

have also been shown to exert direct influence on the peripheral

and central nervous systems (158, 168–173). Mechanisms

potentially underlying these phenomena include pronociceptive

interactions between the G-protein coupled estrogen receptor, the

ionotropic 5HT3A serotonin receptor, NMDA receptors, and

glutaminergic signaling in the CNS (174–176). Estrogens may also

negatively regulate inhibitory neurotransmission through glycine

and GABA downregulation (177–179). Importantly, estradiol may

also negatively regulate the antinociceptive endocannabinoid and

opioid systems (180–182). Together, these mechanistic data

suggest a pronociceptive effect of estrogens that may contribute to

the higher levels and rates of pain in cisgender and transgender

women observed in cohort and population-based studies.

However, it should be noted that these studies have been

conducted in cisgender individuals, and their findings may not be

generalizable to transgender and gender-diverse individuals.
Hormone modulation of analgesic drug
action

Gonadal hormones can influence the potency/efficacy of some

analgesics and anesthetics. The extent of this influence among

transgender individuals who take exogenous hormones may also

depend on whether they stop hormones before surgery. In fact,

the practice of stopping hormones is losing popularity as the

literature grows with evidence that hormone cessation is not

necessary. For example, in male and female rats, testosterone can

increase morphine’s antinociceptive potency on some but not all

tests of acute pain (183). Estradiol also modulates morphine

antinociception in gonadectomized female rats, but the direction

of effect depends on estradiol dose, site of administration

(peripheral or central), and timing (184); these shifts are

paralleled by modest fluctuations in morphine potency across the

estrous cycle (185) but see (186).

Finally, the testosterone blocker spironolactone, commonly

used in the U.S., has been found to increase the antinociceptive

effects of morphine and oxycodone in male rats, and this

interaction appears to be pharmacokinetic (187, 188). Centrally,

the antinociceptive effects of morphine are mediated, in part, via

binding to the mu opioid receptor (MOR) within the midbrain

periaqueductal gray (PAG). Both androgen (AR) and estrogen

(ERα) receptors are located within the PAG, making this a likely

anatomical substrate whereby gonadal steroids influence pain and

analgesia (189). Several mechanisms have been proposed to

account for gonadal hormone modulation of opioid analgesia.
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First, estrogens have been shown to attenuate MOR signaling by

uncoupling MOR from its K + channel, thereby reducing

morphine-induced hyperpolarization (179, 190), and by

inducing MOR internalization resulting in reduced receptor

availability (191). Estradiol has also been shown to facilitate the

formation of MOR/KOR heterodimers in the spinal cord, thereby

augmenting morphine’s effects in females (192). Neuroimmune

factors have also been implicated. In rodents, low doses of

estradiol, comparable to normal circulating levels, increase

proinflammatory cytokine production (193), which is known to

reduce morphine antinociception in a TLR4-dependent manner

(194–196). Opioids are metabolized via glucuronidation to

produce two metabolites: morphine-6-glucuronide (M6G), which

has a high affinity for MOR and is considered pro-analgesic, and

morphine-3-glucuronide (M3G), which has high affinity for

TLR4 and opposes morphine action. In rodents, M3G levels are

2-fold higher in both plasma and PAG following systemic

morphine (197), which is likely why direct PAG administration

of the MOR-selective metabolite M6G results in a greater

analgesic response than morphine alone in females (195). Opioid

and barbiturate pharmacokinetics may be altered by both

androgens and estrogens as shown in rat models [e.g., (198–

201)]. Overall, a multitude of pharmacokinetic and

pharmacodynamic mechanisms underlie sex chromosome and

gonadal hormone modulation of analgesia and anesthesia, some

of which may be relevant to transgender individuals who have

chronic pain or undergo surgery.
Future directions

The preclinical model does not presume to mirror the

complexity of the estradiol and testosterone modulation of pain

in transgendered populations. However, the preclinical models

can offer direction for future studies to be observed in

transgender populations. Although there is a growing literature,

at least in laboratory animals, examining estradiol modulation of

pain in rodents identified as female at birth and testosterone

modulation of pain in rodents assigned male, there are few

preclinical studies on hormone reversal using gonadectomized

rodents and almost none in gonadally intact rodents. Both types

of studies, but particularly the latter, are needed to model the

biological effects of hormone treatment alone, or hormone

treatment with orchiectomy or oophorectomy, in transgender

patients. Additionally, in trans women, the use of estrogenic

treatment is often accompanied by an anti-androgenic treatment

(i.e., testosterone blockers), but very little is known about the

combination of estrogens plus commonly used demasculinizing

treatments on chronic pain in either clinical or preclinical

studies. Studies manipulating gonadal hormones are relatively

straightforward to conduct in laboratory rodents. Combining

these manipulations with a variety of chronic pain models that

have predictive validity (35) will greatly improve our

understanding of how interventions common to the human

gender transition process may affect pain associated with various

pathologies. Additionally, gonadal hormone manipulations in
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rodents that mirror those used for human gender transitions

could be used to further our understanding of how gonadal

hormones are likely to affect the potency and efficacy of

analgesics and anesthetics commonly used to treat pain clinically,

including in transgender individuals.

A second potentially important issue relates to age or

developmental stage of hormone exposure (as discussed above in

puberty suppressive interventions). We do not know whether age

influences the impact of hormones on pain and analgesia. This

question could be readily addressed via laboratory rodent studies

that examine the impact of hormone manipulation (via

exogenous hormone treatment with and without gonadectomy)

at pre-pubertal vs. post-pubertal ages (and for the latter, from

adolescent to older adult) on pain and analgesic potency/efficacy.

Nearly all pain research in rodents is currently conducted in

post-pubertal adolescents to young adults (37). Because

individuals may seek medical interventions for gender transition

at various ages, it is imperative to determine whether the impact

of typical hormone treatment regimens on pain and analgesia is

age-dependent. To the extent that sex differences in anesthetic

effects are known to change with age (202, 203), it might be

predicted that the impact of gender affirming hormone

treatments on pain and analgesia will depend on an individual’s

age. These observations in preclinical models are clearly

suggestive of the information and clinical research issues that

remain to be defined in transgender humans.
Hormone therapeutics for pubertal
suppression in transgender youth

An important focus of hormonal therapeutics is the use of

gonadotropin-releasing hormone analogues used to suppress

endogenous puberty in transgender adolescents. The incidence of

such therapy was reported to be 2.5% (∼515) of transgender

people (n = 20,619) in one study (204). In select cases, both

cisgender and transgender youth both utilize pubertal inhibition

(“puberty blocker”) therapy. It should be noted that this

therapeutic intervention is not new but has been utilized since

the 1950s for use in children with central precocious puberty

which results from premature activation of the hypothalamic-

pituitary-gonadal (HPG) axis, and for endometriosis. Because of

this, use in puberty suppression is explicitly an on-label use for

GnRH analogues (205–207).

Gonadotropin-releasing hormone (GnRH) agonists delivered

as slow-release depot formulations are prescribed to suppress

puberty for transgender adolescents. GnRH agonist therapy

inhibits gonadal sex steroid production by persistently activating

and desensitizing the GnRH receptor. This desensitization

suppresses luteinizing hormone and follicle-stimulating hormone

release from the anterior pituitary gland preventing the

progression of puberty for the duration of GnRH agonist use

(208). GnRH agonist use has been a component of therapy to

manage gender dysphoria in adolescents (209). However, because

GAHT is restricted to those above age 16 (recent guidelines

suggest potential for use as early as 14), pubertal inhibition
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therapy is provided following reaching Tanner stage 2 as an

intervening therapy. This provides the individual with more time

to decide what physical interventions they may prefer. Several

studies and reviews have suggested favorable mental health

outcomes of puberty blockade (210–212). The basis for these

outcomes is that pubertal suppression prevents gender-

incongruent changes which are not easily reversible (e.g., breast

development in trans boys, changes in voice and bone structure

in trans girls) (204, 213–215). Beyond mental health, liabilities of

pubertal suppression are poorly studied and controversial.

Preclinical data has shown GnRH to have multiple effects outside

of the hypothalamic-pituitary-gonadal (HPG) axis (216). While

pubertal suppression with long term use of GnRH agonist therapy

has been shown to have a positive effect on issues such as gender

dysphoria, a variety of long-term effects have been identified,

including polycystic ovary syndrome in trans boys, changes in

body composition, metabolic profiles and bone mineral density,

along with short term side effects such as headaches, hot flushes,

mood swings and injection site reactions (rashes, bruising and

sterile abscess formation) (217). Aside from the sequelae of acute

treatment, systematic assessments data of the long-term effect of

puberty suppression and pain biology is needed (218).

Research investigating pain in transgender children and

adolescents on pubertal blockers is limited. While injection site

pain is a well-known side effect of any injectable medication, it is

unclear whether GnRH agonists used for pubertal suppression

are associated with altered pain experiences in gender diverse

youth. Adults and post-pubertal adolescents may therefore

experience breast, pelvic, or testicular pain during the initial

steroid hormone administration within the first 3 months, while

recurring administration to achieve gonadal suppression may be

associated with a moderate incidence (<10%–20%) of arthralgias,

headaches, anxiety/depression/ irritability or dyspareunia among

individuals with vaginas (143, 144). In addition, as GnRH

agonists are first line therapy for the treatment of endometriosis,

initiation of this therapy may lessen endometriosis-related pelvic

pain, dyspareunia, and dyschezia in trans men (143). Despite the

complex interactions between GnRH agonists and other forms of

gender affirming hormone therapy, a retrospective case series of

8 youth (6 AFAB, 2 AMAB) diagnosed with gender dysphoria

during chronic pain treatment demonstrated improved scores on

the Pain Burden Interview, Functional Disability Inventory, and

Pain Catastrophizing Scales which coincided with synergistic

therapies focused on gender affirmation and pain (72). However,

a study that compared 4,778 transgender teens to 630,200

cisgender students in California middle and high schools found

on a self-report survey that transgender students were about 2

−1/2 times more likely than non-transgender students to have

used cocaine/methamphetamine and about 2.8 times as likely to

have experienced use of inhalant, twice as likely to have used

prescription pain medication and more than 3 times as likely to

use cigarettes (219). Additional research that examines possible

correlations among endogenous hormone suppression, exogenous

hormone administration, mental health, gender dysphoria, and

pain in transgender populations is needed. Further, is this

important to consider in relationship to other variables, such as
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surgical status, more complex regimens (including progesterone,

for instance), previous use of GnRH therapy, etc.? What might

these studies look like? What kind of patient profiles should be

detected? What about in cis women with low estrogen or cis

men with high estrogen?
Future directions

While puberty suppression is effective in managing the gender

dysphoria for many young transgender patients, there is little work

characterizing the long-term impact of this treatment on pain or

analgesia. The preclinical data reviewed here makes the case that

this issue should be studied in more depth due to this treatment

being used as a main suppressor of puberty. Further, will remain

important this important to consider. Pain expression and

phenotype in relationship to other variables, such as surgical

status, more complex regimens, previous use of GnRH therapy,

etc.? What might these studies look like? What kind of patient

profiles should be detected? What about in cis women with low

estrogen or cis men with high estrogen?
Sex differences in immune/
inflammatory processes

Considering the changes in patient biology that result from

gender affirming medical procedures in many transgender

individuals, it is worthwhile to briefly consider sexually

dimorphic responses to pathogens, immunizations, and

inflammation (66, 220). As examples, dendritic cells isolated

from cis women are generally associated with increased Type 1

interferon responses upon activation, as compared to dendritic

cells from men, while stimulated macrophages/monocytes in cis

women generally release significantly more pro-inflammatory

cytokines (220). These divergent inflammatory responses

contribute, in part, to the sex-specific differences observed in

HIV-1 (221) and SARS-CoV-2 (222, 223) pathologies, and they

have been attributed to (i) differences in gonadal hormones and

ii) genes located on sex chromosomes. Social factors also

contribute to one’s risk of infection, and gender has been shown

to play a role in behaviors associated with contracting COVID-

19, such as wearing masks.

Indeed, in addition to peripheral immune cells, estrogens can

influence inflammatory responses of CNS microglial cells and

astrocytes. It is hypothesized that estrogens can exert a

neuroprotective, anti-inflammatory effect in Parkinson’s disease,

by attenuating microglial and astrocyte responses to

inflammatory stimuli (224). In addition to observational studies

linking estrogens with reduced Parkinson’s risk, estrogens have

been used as a treatment for Parkinson’s disease symptoms

(224, 225). A similar mechanism is hypothesized for the

apparent effect of estrogen treatment to reduce neuropathic pain

(226, 227). That is, estrogen reduces microglial and astrocyte

inflammatory responses via activation of estrogen receptors

within these cells (226–229).
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Hormone replacement and immunity

Membrane-associated estrogen receptors (ESRs) act as G

protein-coupled receptors to rapidly alter gene regulation and

protein function (132, 230). Intracellular ESRs act as hormone-

dependent transcription factors. Thus, the presence or absence of

systemic estrogens directly influences immune cell transcriptome

and functional activity. Not surprisingly, medically guided

increases or decreases in circulating estrogens are highly relevant

to immunity and inflammation, as nearly every cellular subset of

the adaptive and the innate immune system express estrogen

receptors (ESRalpha /ESRbeta (231). The influence of estrogens

on immune cell function has been widely observed (220), with

estrogen associated with reduced cytotoxic functional capacity of

innate Natural Killer (NK) cells in animal models (232), e.g.,

lymphocytes that bind and kill tumor and virus-infected cells

without antigen stimulation. In humans, not only do circulating

NK cells isolated from cisgender women demonstrate reduced

killing compared to those isolated from cisgender men (233), but

cytotoxic capacity of NK cells isolated from those who take oral

contraceptives is lower than those who do not (233).

Furthermore, NK activity increases during menopause (234),

when estrogen levels are reduced, and decreases during

pregnancy (235), when estrogen levels increase. This ability of

gonadal hormones to directly modulate NK function could be

highly relevant within the context of neuropathic pain in

transgender persons utilizing GAHT (236, 237).

The gonadal hormone milieu in which immune cells mature

also influences their subsequent responsivity to estrogen. Latency

reversal agents can be used in vitro to induce CD4 +memory T

cells silently infected with HIV to produce viral RNA (238).

With cells isolated from HIV + cis men (cells that presumably

matured in a relatively “low estrogen” environment), the potency

of latency reversal agents is reduced by simultaneous treatment

with an estrogen. In contrast, in cells that matured in cis women,

a relatively “high estrogen” environment, this reversal was

completely abrogated by co-treatment with an estrogen. The

duration and consistency of GAHT in trans persons could

therefore result in a mosaic of gonadal hormone-responsive

immune cells. Relatively short-lived innate immune cells might

take on the associated transcriptome and phenotype of maturing

in their therapeutic environment relatively quickly, similar to

what is observed in post-menopausal cis women who utilize

hormone replacement therapy (234). Conversely, long-lived

adaptive and tissue-resident immune cells might retain the

phenotypic characteristics (e.g., hormone responsivity and

receptor expression) of the sex assigned at birth for more

extended periods. Central nervous system microglial cells, for

example, can persist for decades (239).
Future directions

Given the influence of gonadal hormones on immunity and

inflammation, ensuring that transgender populations are included

in basic, translational, and clinical research trials is important.
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Transgender persons who choose gender affirming therapies could

have immune and inflammatory profiles distinct from those of

cisgender individuals. Duration and consistency of GAHT should

be considered, and study entry criteria that excludes transgender

individuals from participation should be explicitly acknowledged.

Thus, while the influence of gonadal hormones on peripheral and

CNS inflammation and immunity has been investigated in a sex-

binary manner, similar studies examining gonadal hormones in

transgender persons are necessary (240).
Sex chromosomes

Consideration of the issues of pain patients (241, 242) requires

consideration of chromosomal status. Sexual differentiation of pain

sensitivity may begin very early in life in humans (243) and in

preclinical models (244). As discussed below, preclinical studies

show that chromosomal and gonadal hormonal (organizational

and activational) mechanisms robustly contribute to sexual

differentiation in the expression of the pain phenotype and

correspondingly interventions that down regulate the

transmission of the afferent signal and its integration, [e.g.,

analgesia (183, 245, 246)].

Healthy adult cis women typically show lower pain thresholds

and pain tolerance than men when tested with various noxious

stimuli (5, 242, 247), and when such evoked thresholds were

assessed in patients with mononeuropathies (248). As discussed

below binary differences have been typically reported in

preclinical models. In migraine, inflammatory phenotypes such

as rheumatoid arthritis, temporomandibular disorder, and

conditions of widespread pain such as fibromyalgia are likely due

to the role played by circulating immune complexes acting

though adaptive immune signaling. The incidence of these pain

conditions may be up to 2–3 times more common in women

than men (40, 241, 249–251). As a caveat, one must consider

that as discussed above, there is a confound in the sex dependent

differences given the influences of sexism and other social factors

where providers have been shown to dismiss, under-medicate,

and underreport women’s pain.

These observations are consistent with the appreciation that the

variation in human immune and inflammatory responses is

robustly influenced by sex chromosomes (252, 253).

Understanding the contribution of sex chromosomes to the pain

phenotype complicated by their organization. The sex

chromosomes are routinely considered in terms of their common

pairing as “XX” or “XY”. In fact, a multitude of potential

combinations exist, and often the number of X chromosomes

directly influences inflammation and immunity (254, 255). While

the X chromosome is not necessarily enriched for immune genes

as compared to autosomal chromosomes, it encodes for a

number of highly relevant genes, including genes associated with

the inflammatory transcription regulator, nuclear factor B (NF-

kB) (255, 256). In addition, mutations within these essential

genes can result in severe immune defects in individuals with

only one X chromosome, as for example in X-linked severe

combined immunodeficiency (XSCID) (257). Regardless of the
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number of X chromosomes present, additional X chromosomes are

typically silenced epigenetically (253, 258–260). In the absence of

mutations, the presence of more than one X chromosome is

broadly relevant to the immune and inflammatory phenotype

(258). Defining the impact of these different X pairings has been

a subject of interest in preclinical literature and will be discussed

further below.
Future directions

The interactions of chromosomal constituency and GAHT

must be defined scientifically in transgender populations.

Consideration of both gonadal hormones and sex chromosomes,

e.g., “estrogen rich XY” or “estrogen low XX”, will be of scientific

and practical importance in further elucidating sex- and gender-

specific pathways of inflammation and pain. It is important to

note that a variety of complexities serve to complicate the role of

chromosomes and pain. Thus, for example, what might be the

contributions of non-46,XX/46,XY chromosome combinations?

What is the role of the Y chromosome in activating a cascade or

does “silencing” the second X chromosome?
Environmental exposure: impacts of
chronic social stress

Transgender persons frequently navigate a “pro-inflammatory”

social environment which as reviewed at the outset have

demonstrably significant effect upon morbidity and quality of life

(261). Both acute and chronic exposure to social stressors, such as

rejection, isolation, and actual or anticipated threats of physical

assault have been shown to generate physiological inflammatory

responses (262, 263). Social stress induces expression of NF-kB,

leading to increased concentrations of circulating soluble markers

of inflammation, such as IL-6 and TNF-alpha (264–267). While

this is true for all individuals regardless of sex or gender, trans

persons disproportionately experience the burden of (i) negative

external stressors, (ii) the stress of hypervigilance in anticipation of

negative external stressors, and (iii) socially conditioned and

internalized stress (268).

Furthermore, the Gender Minority Stress and Resilience

(GMSR) model revealed that these chronic social stressors

encourage trans individuals to adopt negative coping behaviors

(e.g., substance abuse) which in turn also negatively influence

immunity, inflammation, and health outcomes (269).

It has therefore been hypothesized that chronic exposure to

social threats is a primary driver of systemic inflammation and

health disparities in sex- and gender-minority populations (263).

A study of trans men utilizing GAHT, typically testosterone

therapy to suppress estrogen, reported that serum C Reactive

Protein (CRP) concentrations, a measure of inflammation, were

associated strongly with the emotional stress related to being

misgendered and misnamed during daily activities. Examination

of diurnal cortisol functioning in transgender men undergoing

testosterone therapy revealed that elevated diurnal cortisol levels
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at awakening were associated with transition-specific social

stressors, such as those experienced during transitioning, coming

out and common life events such as utilization of gender-specific

public bathrooms (270). This is highly relevant to pain

experiences in transgender persons, as elevated concentrations of

circulating CRP have been associated with pain sensitivity (271);

however, this topic is largely underexplored within the literature.

Reviews of available literature have attempted to extrapolate

data associating stress in transgender men and women to

migraine incidence. These reviews have concluded that social

stress, particularly stress induced by stigma in an unsupportive

healthcare environment, in combination with GAHT, may

contributes to the higher rates of migraine in transgender

persons (272). This represents a substantial gap in the primary

research literature which should be addressed directly with

research addressing migraine in cis and trans populations (273).

For context, many classes of environmental and societal stressors

have been shown to have a direct impact on a number of

measured variables, including: psychological processing, concern

over financial well-being such as access to affordable housing

(274), general concern over health (275), access to health care

(276), and food insecurity (277).

While a survey of over 2,000 trans and gender non-conforming

participants found no differences in chronic health conditions or

health behaviors (278), these data are of limited utility as the

survey was phone-based, and thus excluded potential participants

who have experienced more severe social stress (poverty,

homelessness or incarceration). Furthermore, physiological effects

of social stress can be mitigated by familial and social support

(279). An exploratory study found no associations between gender

minority stress and resilience scales and circulating concentrations

of CRP in young trans persons receiving GAHT (279, 280).

Notably, 84% of these older teenagers and young adult participants

lived with their parents, indicative of stable familial support,

perhaps suggesting that a supportive familial structure is “anti-

inflammatory” in an otherwise “pro-inflammatory” society (281,

282). These observational studies highlight the importance of

family support for psychological wellbeing as well as for material

survival (adequate health insurance might only be possible through

parents or spouses, financial security through social security

income relies on traditional family structures). This is a challenge

for many transgender persons, many of whom lose their family

support structure when they transition (283).
Future directions

When examining inflammation and pain outcomes in

transgender populations, recruitment strategies, data analysis, and

conclusions should consider the pro-inflammatory influence of

social stress. Studies inclusive of transgender populations in the

United States could be dominated by recruitment within urban

areas, potentially overlooking the diversity of rural America. The

Movement Advancement Project (MAP) released a report in

2019, that included an original analysis of the unique challenges

and opportunities for transgender people in rural America.
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Although discrimination occurs as frequently in rural and urban

areas, the structural differences in rural America amplified the

effects of discrimination due to less employment opportunities

and healthcare options (284). For future studies addressing the

impact of social stress on transgender health, it will be important

to consider the diversity of different geographic areas globally and

to include both urban as well as rural populations. Recruitment

strategies (e.g., telephones, engagement with advertisements on

social media) could inadvertently exclude transgender persons who

have experienced or are currently experiencing severe social stress.

Recruitment, research, and clinical staff who interact with

transgender participants should receive appropriate training to

eliminate introduction of known pro-inflammatory social stressors

into the research process (e.g., mis-gendering, mis-naming, and

judgmental or exclusionary comments) and should preferably

contain transgender team members. Data analysis and study

conclusions must thoughtfully incorporate quantitative measures

of participant stress. Transgender identity is not pathological, nor

is it inherently a pro-inflammatory condition. However, stressors

that trans persons disproportionally experience are typically

considered to be pro-inflammatory, as indicated by endpoints such

as CRP, as noted above (270, 280).
Impact of emotion and body image on
pain in transgender people

The report of a pain state results from both peripheral

nociceptive signals and sensitization (e.g., tissue injury, joint

inflammation) and effects of attentional and emotional

elaboration in the brain (285). Attention heightens the perceived

intensity of pain (286), while negative emotions increase its

unpleasantness (287–289). Trauma, depression, and mood (290)

alter the brain’s emotional learning circuitry (291) and contribute

to pain chronification (292–294).

As reviewed in the preceding section, trans people face

disproportionate rates of violence (295, 296) and discrimination,

including in healthcare (297). Violence and discrimination have

significant biological consequences which are manifested in

heightened negative affect and psychopathology. The gender

minority stress model posits both external and internal stressors

related to gender minority status (272), leading to higher

prevalence of depression, anxiety, and suicidal ideation among

transgender individuals relative to the general population (298–

300). Prevalence of syndromes such as fibromyalgia, reflecting a

likely role for circulating immune complexes resulting in

amplification of pain processing, appears to be greatly heightened

in transgender men and women (53). Violence is a certain risk

factor for post-traumatic stress disorder (PTSD) (301), which in

turn increases the risk for opioid use disorder (302). Anti-

transgender bias and non-affirmation, which increase severity of

PTSD symptoms (303) and risk of opioid misuse, highlight the

need for systemic improvements in transgender inclusivity in

medical and behavioral healthcare (304) and in peer support (298).

Gender dysphoria and body dysphoria constitute additional

internal risk factors for heightened experiences of pain. Many
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transgender individuals experience significant gender-related body

dysphoria and avoidance, particularly for body parts associated with

sex differences (73, 292, 305, 306). For trans men, body dysphoria is

often focused on breasts, genitals, and lack of facial hair (307–309),

while in trans women, body dysphoria frequently focuses on the

genitals, face, and presence of facial hair (310). The effect of body

dysphoria and reduced bodily self-identification on the experience of

pain in transgender individuals is not known. However, there is

evidence that body satisfaction and body representation in general

modulate experiences of pain. Thematic analyses of transgender

persons’ descriptions of their body part-specific dysphoria have

highlighted independent themes of disconnection from the body

(feeling that a body part is viscerally wrong, deformed, or alien), and

emotional distress (negative emotional reactions and hyper fixation)

(311). Body avoidance and dissociation, which may be elevated in

transgender patients (312), may reduce pain perception due to

reduced attention to the body part, similar to patients with spatial

(hemi-) neglect (192). There have been reports that modulation of

pain perception can be induced by observing a rubber hand that was

perceived to be the observers own hand (313, 314). In contrast,

heightened negative affect surrounding a dysphoric body part may

increase pain perception. In patients with arthritis, negative body

image has been correlated with greater pain severity (315).

Conversely, laboratory studies using rubber limb coverings

mimicking an injured or hairy limb/hand appearance showed that

negative body image increases acute pain (316).

Conversely, positive emotions such as gender euphoria may

reduce experiences of pain. Transgender people appear to have

lower rates of phantom breasts and penises after gender-affirming

surgical procedures than cisgender individuals do after these body

parts are removed for medical reasons (317, 318). In addition,

transgender men exhibit lower pain and opioid consumption after

breast removal than do women after mastectomy for cancer or risk

of cancer; although hormone therapies may play a role, this

difference may reflect congruence/gender euphoria of breast

removal for trans men versus the distress and incongruence for

cisgender women (as well as negative emotions associated with

cancer) (118). An important caveat, however, is that these

procedures are not identical for transgender and cisgender

patients. Euphoria can also arise from phantom body parts aligned

with gender and from the use of prostheses, increasing positive

identification with the body (319, 320).

Concerns about bias or body dysphoria during clinical

encounters may lead patients to delay seeking care for acute

pain, elevating the risk of transition to chronic pain. Provider

misgendering and microaggressions are likely to amplify gender

dysphoria, leading to stress, and consequently, worsening or

prolonging the pain.
Future directions

We pose the following questions regarding the effects of body

image on pain in transgender individuals: (1) What are the direct

and indirect effects of gender and body satisfaction on pain in

transgender individuals, and what variables affect this
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relationship? (2) Are certain pain conditions disproportionately

experienced by transgender patients, and are they linked to

dysphoric body parts, and/or to strategies of body avoidance or

hyper fixation? (3) What is the impact of patient satisfaction

with gender-affirming procedures on existing pain conditions or

severity of postsurgical pain? (4) How can healthcare providers

reduce body-related bias and microaggressions, and what is the

effect of such improvements on body dysphoria and pain? (5)

Are there novel approaches to improving body image in

transgender individuals that might reduce acute or chronic pain?
Neuroimaging in the study of gender
identity and pain

A topic of enduring interest across many fields of neuroscience

relates to the influence of sex and gender on human brain anatomy

(321, 322), function, connectivity, and metabolism. Albeit the

additive impact that gene expression, own-body metabolism,

environment, and society can surely have on the behavioral

differences documented between cisgender men and women

(323), the question remains as to how putative anatomical,

functional, and metabolic brain regional characteristics might

also contribute—or be shaped by—gender identity and

expression. It is of note that the traditional illustration of the

body map in the brain, the homunculus, by Wilder Penfield

refers to males with testicles, penis, and no breasts. Only 10

years ago there was a call for the need to a full mapping of the

female brain with the production of a hermunculus as a first step

toward fully understanding neurological and physiological sex

differences related to pain conditions and pain management (324).

Gender and body dysphoria are associated with differences in

neural body representation. Prior to any surgical procedures,

some trans men have reported the sensation of having a penis

(317, 319, 320, 325)—similar to the phantom limbs that

frequently occur after amputation (326). This phenomenon may

suggest a strong representation of gender-congruent body sex in

the brain. Indeed, breasts that feel incongruent on trans men

elicit a lower somatosensory response in brain areas associated

with salience and body ownership, but increased activation in a

brain region associated with alarm, in comparison to the

activation imaging in cisgender people with congruent-feeling

breasts (327). Correlated differences in brain connectivity suggest

differences—whether innate or acquired—in body representation

(327). Similarly, neuroimaging studies have reported that trans

men show weaker connections between body perception and body

ownership networks (328), and decreased connectivity within the

default mode network (329, 330) and anterior cingulate cortex, the

latter related to lower ratings of “self” for gendered body images

(331). Body ownership refers to the perceptual status of the

observer’s own body, which makes bodily sensations seem unique

to oneself. A positron emission tomography (PET) imaging study

has indicated that this was related to activation of right posterior

insula and the right frontal operculum (329). Individual

differences in the report of body ownership have been associated

with the cortical thickness in the somatosensory regions, the
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temporo-parietal junction, the intraparietal areas, and the

occipitotemporal cortex (330). These studies cumulatively suggest

the possibility of decreased connection between sensory body

representation and brain areas involved in self-identification as the

potential neural correlate of the gender-related body dysphoria

experienced by many trans people.

Advances in neuroimaging techniques have enabled the

possibility of quantifying and studying in a great level of detail

neurobiological characteristics relating to brain structure, function,

connectivity, metabolite and neurotransmitter concentrations, and

nerve fiber tract integrity and activity-dependent changes in blood

flow (332), all which have been explored in relation to sex and

gender expression. Several studies reviewing investigations on the

topic (333–338) refer to structural, functional, and metabolic brain

features “exhibiting signs of masculinization or feminization”, as

the result of analyzing results from research comparing

transgender to cisgender groups of individuals. However, the very

basis of assuming that male and female brains are categorically

different is hugely controversial (339).

The existent literature reports sex differences in brain anatomy

on a global scale, regarding absolute volumes (340–342). Indeed, a

consistent observation in both pediatric (343, 344) and adult (341,

345–348) in vivo magnetic resonance imaging (MRI)-based

morphometric analyses is an approximate 9%–12% greater brain

size in males compared to females. Higher percentages of white

matter in males in comparison to females (341, 349) are also

frequently documented, as well as larger ratios of grey matter to

white matter in females, even after correcting for the effect of total

intracranial volume (345, 350). Studies also report sex differences in

the relative sizes and shapes of regional brain structures, with the

direction of the sex effect varying between regions, including the

Broca’s region (340), corpus callosum (351), amygdala, insula, and

hippocampus (342, 352). This notion has been, however, challenged

by meta-analyses that conclude the opposite (353, 354) after

accounting for differences in head size. Research efforts by Joel et al.

(339) into sex differences in the human brain have resurrected the

idea of the “human brain mosaic”, proposed by McCarthy and

Arnold four years earlier (355). Their findings, following analysis of

MRI data of 1,400 individuals from four different datasets,

revealed substantial overlap in the distribution of anatomical traits

between men and women in all brain regions and connections

examined. A wider study using data from 5,216 UK Biobank

participants cautiously highlights limited sex differences in

functional connectivity traits, while also referring to “considerable

distributional overlap between sexes” in regional anatomical

volumes, surface areas, and white matter microstructure (341). This

reinforces the idea that human brains cannot, in fact, be distinctly

categorized into two distinct classes, but rather that male and female

brains are composed of “unique mosaics” of features, some of which

are more common in one sex than the other and some that are

common in both. It has been suggested that computational meta-

analyses of MRI, personality, and behavioral studies have found

that human brains do not exist in a “male” or “female” state

(339, 356, 357). Yet, it is plausible that gendered constructions may

alter gene expression through epigenetic means to produce,

reinforce, or counteract endogenous sex differences (356) Given the
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plethora of conflicting and ambiguous results, the consistency and

etiology of sex/gender differences in human brain structure and

connectivity remain elusive (350).
Neuroimaging representation of pain

Pain depends on the integration of many sensory signals, and is

also influenced by biological, psychological, and social factors (358,

359). While molecular mechanisms of peripheral pain transduction

have been well developed over the last few decades (360), the

organization of central pain circuits is incomplete and far from

being well understood. A review on pain modulatory

mechanisms proposed a network involving predominantly medial

and frontal cortical brain areas, combined with specific

subcortical and brain stem nuclei to confirm a “key system” in

the modulation of pain (361), with the prefrontal cortex likely

intervening in the generation, maintenance, and integration of

pain relief (361). It has also been proposed that the central

processing of pain relates to the thalamus, despite evidence that

pain is also controlled by cortical mechanisms in areas such as

the cingulate gyrus and insular cortex (362).

Within the neuroimaging techniques, functional MRI (fMRI)

including resting-state (rs-fMRI), and positron emission

tomography (PET), have emerged as important tools that provide

a window into pain mechanisms, highlighting the essential role of

cortical and mesolimbic brain regions in modulating pain

responses (363). Neuroimaging studies have shown altered brain

structure and function in chronic pain states (364). Some

researchers support the hypothesis that opioids and the

orbitofrontal cortex modulate pain by hedonic experience, as the

ventral striatum and dopamine mediate motivation drive by a

painful stimulus (365). Others identify the posterior insular cortex

as an important pain center, targeted in deep brain stimulation

treatments to increase pain thresholds (366). Structural and

diffusion tensor neuroimaging studies of patients with chronic

musculoskeletal pain provide moderate and yet inconclusive

evidence that microstructural white matter and regional grey

matter volume in brain regions encompassing the cingulate cortex,

insula, and superior frontal and temporal gyrus relate to pain

intensity and sensitivity in these patients (367). Given the varying,

yet complementary, information that can be obtained from

different neuroimaging techniques, the complexities in assessing

and managing pain, and the lack of sensitivity and specificity of

individual pain biomarkers (neuroimaging included), a framework

that combines different neuroimaging modalities with non-

imaging data sources (i.e., actively and passively recorded bio- and

psychometrics) seems to be the way forward for personalized pain

diagnosis and management (368).
Brain neuroimaging in relation to
transgender identities

Neuroimaging studies suggest that, before GAHT, most

transgender individuals exhibit brain features that more closely
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resemble their assigned gender at birth (335–338). However,

some neuroimaging studies in transgender individuals have

found that cortical thickness (335, 338) and subcortical volumes

(337) may be more similar to those of their gender identity. This

is also the case with white matter microstructure (336–338),

especially in the inferior fronto-occipital white matter tract,

connecting the parietal and frontal brain areas that mediate own-

body perception (421), a finding confirmed by MRI studies

(369). One recent MRI study comparing 24 cis men, 24 cis

women, and 24 trans women (who had not undergone any

GAHT) suggested a shift away from the brain anatomy typical of

the cisgender men group towards the one typical of the cisgender

women group in the transgender women (370).

Conflicting results exist in regard to volumes of subcortical

regions like the nucleus accumbens and thalami in transgender

populations compared to cisgender individuals, with some

studies finding differences between both groups (371). A study

that enrolled 66 transgender individuals (33 trans men and 33

trans women) reported larger putaminal volumes in the

transgender group (especially trans women), compared to all

cisgender participants (372).

It is noteworthy that hormone-dependent decline in brain volume

has been reported to occur in postmenopausal females, or in females

receiving long term anti-estrogens (373, 374). Conversely, post-

menopausal females undergoing hormone replacement therapies

display significantly larger volumes as compared to menopausal

women without therapy, of several regions including superior/

middle/Inferior frontal gyri, hypothalamus, inferior temporal gyrus,

parahippocampal gyrus, hippocampus, cerebellar cortex, postcentral

gyrus, precuneus, angular gyrus, supplementary motor area,

superior occipital gyrus, and precentral gyrus (374).

Recent neuroimaging studies have shown functional,

metabolic, and structural differences in transgender populations

precisely in cortical areas that modulate pain and in sensori-

motor regions (Supplementary Table S2), some of which are

particularly relevant after hormonal treatment. Another study

found an increase in resting-state functional connectivity between

the left thalamus and the left sensori-motor cortex/putamen

following GAHT in individuals that had a gender-affirming

surgery, with an especially higher activation in a cluster within

the subcallosal cortex (375). These results suggest that the

hormonal therapy applied after gender affirming surgery may

modulate functional connectivity in regions engaged in emotional

and sensori-motor processes, which are part of the pain

modulatory network. This suggestion is consistent with the

research in preclinical models as discussed further below.
Limitations in the analysis of the
neuroimaging literature

It is difficult to establish causality between brain structural,

metabolic, and functional gender differences and psychological

stress factors. In other words, it is not known whether brain

appearance and function are determined by psychological stress

factors due to gender differences, or vice versa. Evidence from
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neuroimaging studies suggests that mental processes (e.g.,

thoughts, feelings, beliefs, volition) significantly influence various

levels of brain functioning (e.g., molecular, cellular, neural

circuit) and brain plasticity (376). Specifically, there is evidence

that sustained stress-related factors play a role in brain structure

and function (377), and that gonadal hormones influence

immunity and inflammation, both of which affect the brain,

directly and indirectly (378–380). A systematic review of

neuroimaging studies in relation to gender (333) excludes studies

on neurological diseases or aspects related with neurological

outcomes, while other studies on these populations limit their

analyses to sex differences assuming gender binarism and

congruence between the sex assigned at birth and gender identity

(381–383). It is also worth noting the complexity in the analysis

of factors influencing the representation of sexes in clinical trials,

even in diseases that are not supposed to be sex-related (381),

and the possibility of bias in the literature given the way results

are reported. Also, few original studies are truly exploratory in

the sense that they explore the whole brain, while most base

their analyses on hypotheses that involve only a surprisingly few

brain regions. This may contribute to unconscious selection bias

in any literature analysis that includes them.
Future directions

Varying sample sizes, recruitment of convenience samples,

duplicate reporting of findings in more than one publication,

alternative protocols, and processing in neuroimaging are among

the various potential factors responsible for inconsistencies in

existing literature surrounding sex and gender-related differences

in regional brain volumes (384). Considering that the surfeit of

studies examining differences across brain substructures are

typically underpowered and inconsistent (385), it is imperative

that larger sample sizes are used when testing hypotheses

regarding putative sex/gender differences in the human brain

(341). Given the differential effect that age has on human brains,

large-scale follow-up studies are crucial to delineate how sex/

gender differences develop and change throughout the lifespan.

In doing so, greater strides can be made in elucidating the

neuroanatomic substrates and sex/gender-related differences in

human behavior (349). Given individual differences in

expectancies and conditioning effects of brain networks that

modulate pain experiences, and the known effect of the

psychosocial context that accompanies any therapy, further

research is needed to estimate and document the degree of

expectancy of nocebo responses in relation to gender identity

and social factors (359, 376, 386). Neuromodulation, a technique

used in functional neurosurgery to restore the brain functions by

modulating the neuroanatomical and neurochemical circuits that

regulate them, albeit compensating functional disorders (e.g.,

pain), could also have an effect in neuronal circuits underlying

gender expression. Therefore, the impact of this technique on

identifying neural circuitry that covaries with gender expression

would also benefit from further investigation. Longitudinal

neuroimaging studies on gender expression are currently limited
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to short-term investigations of the effects of gender affirming

procedures (387–390) and cover a geographically limited sample.

Long-term neuroimaging studies on gender expression across the

lifespan, specifically in relation to pain, are needed.
Can variables reflecting the role of sex
be modeled in rodents?

In this final section, we raise the issue of future directions in

preclinical research relevant to the understanding of pain in the

context of biological variables underlying the development of sex

and gender. Here, we note that much of our predictive

understanding of the role of neural substrates in defining human

pain biology has arisen from preclinical studies. However, the

preclinical model does not presume to mirror the complexity of the

biological and psychological aspects of sex and gender in humans.

As reviewed in this manuscript, there is evidence for the

influence of hormones (391, 392), sex chromosome complement

(393), and early life experience (394–397) in the pain phenotype

expressed in human variables that are evident and controllable in

the preclinical models (Supplementary Figure S1). Given the

limitations posed by the study of experimental variables in humans

vs. animals, we cannot discern how the impact of these variables

on the human experience is impacted by each individual’s sex

characteristics or gender expectations. Even when sex chromosome

complement and hormonal profile are discordant, such as in

complete androgen insensitivity syndrome in which XY genotype

is accompanied by external female phenotype (398), we do not

know how much gendered expectations (e.g., induced by being

raised as a girl) impact brain organization and connectivity as they

are established during development. Modeling aspects of sex

differences in laboratory animals such as rats and mice may with

caution enable us to disentangle the impact of not only hormones

and sex chromosome complement (which can be distinguished in

rodents much more readily than in humans), but also to begin to

understand how environmental variables and gendered

expectations influence biology and behavior, including the pain

phenotype and the regulation of its expression. We have empirical

evidence regarding the role of hormones, chromosomes, and

experience (e.g., maternal care) in rodents, but this has not been

achievable in humans, leaving essential questions unanswered.
Sexual differentiation of the rodent and
human brain

The classic view of brain sexual differentiation begins with the

onset of androgen production by the fetal testis during the 2nd

trimester in humans and the last quarter of pregnancy in rats

and mice (399). In rodent models, decades of evidence confirm

the masculinizing impact of perinatal androgen exposure on the

size of entire brain regions, nuclei and subnuclei, as well as the

strength of projections, patterns of synaptic connectivity, and

neurochemical identity of select neural populations (400, 401).

These differences are established during a critical period that
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ends prenatally in humans and in the first few days of life in

rodents. The critical period is not the same as the sensitive

period, which is defined as the developmental window during

which the brains of genetic females remain responsive to

exogenous hormones (402). This sensitive period for hormonal

modulation is believed to end in utero in humans but in rodents

ends by the first week of life (403). By the time of birth in

humans and the first week of life in rodents, hormonally

induced, enduring sex differences in the brain, are firmly

established, even though the brain is still highly immature,

having decades left to refine in humans and almost a month in

rodents. The transition from puberty to reproductive maturity is

increasingly appreciated as a distinct critical/sensitive period

(404, 405), but the period prior to that—toddler-to-childhood in

humans and post-weaning in rodents—has been largely ignored

in regard to biological origins of sex differences. In humans this

period is characterized by exposure to strongly gendered

expectations. It provides a speculative hypothesis, that such

regional changes during this time may provide an opportunity to

address the role of evolving gendered expectations in driving

biological parameters such as circuit refinement, synaptic

strength, and connectivity. It is clear that even in this brief

overview, brain and behavioral development viz sexuality reflect

multiple variable that are difficult to deconvolute (399, 406).
Efforts to parse the relative influence of
hormones, sex chromosome complement,
and sex role expectations

In rodents, by comparing genetically modified mice to XY

males with testes and XX females with ovaries, gonadal hormone

effects can now be distinguished from sex chromosome effects.

This “4 core genotype” model has revealed specific sex

differences that are entirely determined by hormones, others that

are entirely determined by sex chromosomes, and others that

appear to be a blend of both. For example, sex differences in

heat pain thresholds in neonatal mice were found to depend on

sex chromosome complement and be independent of gonadal

status, whereas sensitivity to mu opioid agonists depended on the

presence of testes (245). The 4 core genotype model could be

used much more widely to untangle sex chromosome

complement vs. hormonal influences on chronic pain states, as

well as on analgesic sensitivity. Further research into the

influence of sex chromosomes and hormones on pain and

analgesia could help us to develop insights into transgender

individuals who elect to transition hormonally and/or surgically

at various points in development, vs. those who do not.
Impact of environmental context

Environmental context reflects conditions such as an enriched

or deprived stimulus, milieu, and social and physical components

of the environment in which the organism functions, but which

induce stress to the degree that the environment challenges the
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repertoire of the organism’s adaptive response. Aside from the

acute effect of such environmental cues, the rearing environment

has been noted to have prominent and enduring effects upon

brain function and behavioral responsivity and engagement in

humans and animals. In rodents, early environmental and

psychosocial stressors can robustly influence cortical morphology

and microglia resulting in adaptive responses at the level of

synaptic, circuit, and neuroimmune signaling (407, 408).

An interesting example of preclinical research that might arise

in this area relates to the question of being reared with gender

expectations. Preclinically, the question would be phrased as

assessment of the impact of sex role expectations on brain

function. Although rodents develop to reproductive maturity

much more rapidly than humans, they progress through

comparable stages with corresponding epochs of brain

development (Supplementary Figure S2). Human social systems

and gendered expectations are extremely complex and clearly

dependent on cultural differences. However, in preclinical

models, the strongest gendered expectations are most readily

modeled in animals and focus on nurturing. Male and female

rats as young as 24 days old will both retrieve and nest pups

(409). Juveniles sensitize to pups faster than adult virgin females,

but adult males rarely do so, instead shunning pups or

attempting to kill them (410, 411). Moreover, maternal behavior

can be readily induced in adult virgin females by mimicking the

hormonal milieu of pregnancy (412), but the same treatment in

adult males is without effect. Thus, divergence from a common

nurturing response in juvenile males and females to an opposite

response by adults provides an opportunity to model how a sex

role alters brain and behavior. This could be achieved by

rewarding juvenile animals while they engage in nurturing and

determining how that impacts adult brain and behavior. Thus,

will a naturally occurring nurturing response in prepubertal

males and females that diverges when they are adults shift when

a sex role is manipulated? If so, such a manipulation could be

utilized to begin to understand how gendered expectations early

in life (in addition to sex chromosome complement and gonadal

hormones) can influence brain and behavior and its impact upon

pain processing using a rodent model.

The influence of development environment on brain

connectivity and function extends beyond issues of sex and

gender. In humans, early life stressors can markedly influence

psychosocial reactivity, pain sensitivity and pain experience later

in life (394–397). Higher socioeconomic status shows covariance

of efficient cortical networks in adulthood with effects varying

with early age of exposure (413). While these early experiences

can have a learning component, these developmental experiences

can translate into lifelong changes in cerebral function and

behavior though the actions of circulating hormones. This leads

to, for example, microglial activation and changes in synaptic

pruning, an altering connectivity (408), or epigenetic activation

and silencing of DNA. Such changes lead to long term changes

affecting how our genes are read and transcribed, producing

enduring effects of early experience and the environment in

humans on brain function and on psychosocial function and

pain behaviors much later in life (414–416).
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Future directions

It should be stressed that the preclinical model does not presume

to mirror the overall complexity of the biological and psychological

aspects of sex and gender in humans. However, these models allow

one to systematically assess issues relevant to system function. In

the context of the present review, these issues include the impact of

hormone therapy on neural functioning or the response of the

system to surgical interventions and to environmental stressors.

The use of genetically and chromosomally modified animals in

conjunction with studies in humans may provide exciting insights

which can illuminate the contributions of biology, sex, gender, and

the environment in which the organism is born, nurtured, and

matured assuming ethical standards in these studies can be met. As

noted above, behavioral investigations of the environmental

context in which an animal is raised would have particular

significance in studies examining brain function and biology,

particularly as with the role of epigenetics in developmental

expression of sex related behavioral phenotypes. Continued

research into models such as the gonadectomized animal and

assessing depression-like symptoms displaying a sex-difference in

relationship to maternal care when young.
NIH focus on transgender health

The National Institutes of Health makes it abundantly clear in

its 2021–2025 Strategic Plan that it supports and promotes research

that considers “the effects of sex and gender in study design,

data collection and analysis, and dissemination of findings,”

which “will help to inform the development of prevention

strategies and interventions for everyone.” It goes on to elaborate

that “Underserved groups—including Black, Latin origin, and

Indigenous and Native American persons, Asian Americans and

Pacific Islanders, and other persons of color; members of religious

minorities; lesbian, gay, bisexual, transgender, and queer (LGBTQ+)

persons; persons with disabilities; persons who live in rural areas; or

persons otherwise adversely affected by persistent poverty or

inequality—have distinct health needs and often experience

disparities in health outcomes. NIH maintains that racial and ethnic

minorities, rural residents, people with low incomes, SGM, and

other populations experiencing health disparities should be included

in all relevant research, such that there is sufficient representation of

each population to conduct relevant analyses. Inclusivity in research

generates more broadly applicable information and improves

scientific understanding of the health and well-being of specific

population groups,” (417). Despite these efforts, the enrollment

reports for NIH-funded studies currently only allow reporting of 3

categories: male, female, and unknown/not reported.

As there is often no category for transgender identity in NIH

enrollment reports, data on this population are often omitted or

‘hidden’ under the categories male, female and unknown/not reported.

It will be critical to uniformly add categories for transgender identities

(and other underserved groups such as sexual minorities) into NIH

enrollment tables and to specify if “male” and “female” are meant to

refer to cisgender men and women, respectively, or if “female”
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includes cisgender and transgender women and “male” includes

cisgender and transgender men. This is essential so that the health

and the health needs of this population can be studied and compared

effectively throughout all NIH-funded studies.

The NIH, with the Office of Research on Women’s Health

(ORWH), developed the policy notice on Sex as a Biological

Variable (SABV) which states that the “NIH expects that sex as a

biological variable will be factored into research designs, analyses,

and reporting in vertebrate animal and human studies. Strong

justification from the scientific literature, preliminary data, or other

relevant considerations must be provided for applications

proposing to study only one sex…” (418). While the SABV policy

does not pertain to gender at this point, including gender analysis

in NIH research is being encouraged on many fronts. The ORWH

considers gender a critical variable in its strategic plan which states:

“…research focused on understanding scientifically important sex

and gender differences as well as investigations of the many factors

underlying the health of women are integral to NIH’s mission to

seek fundamental knowledge about the nature and behavior of

living systems and the application of that knowledge to enhance

health, lengthen life, and reduce illness and disability” (419).

In terms of pain research, the NIH Pain Consortium was

established in 1996. It informed the pain research field via its

flagship program announcement (PA), titled “Mechanisms,

Models, Measurement, & Management in Pain Research” (420).

This program announcement was first developed in 2006 and has

historically expressed and currently expresses the NIH interest in

pain, which considers sex and gender. For example, this PA asks

for “Mechanisms that underlie gender and cultural differences.”

This clearly provides a funding platform to address many of the

key variables that this review has sought to illuminate in

understanding pain and it mechanims and management in the

transgender individual
Summary commentary

We have sought to review the diverse literature on the intersection

between sex and pain with a focus on transgender individuals.

This literature has broadly focused on the diversity of the transgender

population, societal factors that impact pain in trans men and

women, medical interventions as with the use of gender affirmation

hormone therapies, pain phenotypes in patients undergoing gender

affirmation surgeries, outcome from neuroimaging assessments,

and the contributions of preclinical models. Many transgender

individuals seek medical interventions to change sexual features of

their bodies, to better align with their internal sense of self; the

interaction of these procedures with pain is clearly under studied.

The emotional consequences of gender dysphoria and societal stigma

present a very heavy emotional burden that has been associated with

high rates of depression in trans individuals, with significant

implications for pain. Our review highlights the need to further

explore the disproportionate effect of pro-inflammatory social

stressors together with the impact that physiological and epigenetic

factors may have (if any) to adequately address their impact on

mental health and influence on pain responses in transgender patients.
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Differences in gender identity, surgical interventions,

exogenous hormone administration, and minority stress may

result in significant differences in pain risk and pain experience

in transgender patients. There is limited but increasing evidence

that trans individuals may acquire pain phenotypes most similar

to cisgender individuals of the same gender. Accordingly, treating

and managing pain in transgender patients as in cisgender

patients requires appreciation of the roles played by all facets of

sex, gender, medical interventions, clinical conditions, and social

factors. It should be noted that we still lack data about pain

phenotypes in nonbinary people and how they may perceive pain.

While current clinical reports have largely revealed favorable

outcomes in patient quality of life, this review has also

emphasized the need for further long-term, large-scale, research

in pain mechanisms and clinical interventions in transgender

individuals, and, with it, the need for a concerted effort to

advance our understanding of the influence of the long term

outcomes of such interventions in the physiological and

emotional aspects underpinning pain responses. Similarly, more

research is required to better address pain phenotypes in

transgender patients undergoing hormonal and surgical

interventions. Advances in epigenetics will provide exciting

insights into the impact of life and environmental influences

(stressors) and their interaction with sex assigned at birth and

gender as it addresses the mechanism of pain, analgesia, and

other psychological parameters.

Due to the complexity of the factors that may affect pain

perception and considering the limitations of current research

data, every individual presenting with pain, acute or chronic,

requires a personalized approach to pain management that takes

into account the factors considered in this review. Future

research targeted at these issues is of paramount importance to

human welfare in general and to trans individuals in particular.
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SUPPLEMENTARY FIGURE S1

Relative contributions of variables to sex differences in brain and behavior. We
have empirical evidence regarding the role of hormones, chromosomes, and
experience (e.g., maternal care) in rodents, but this has not been achievable in
humans, leaving an essential question unanswered.

SUPPLEMENTARY FIGURE S2

Epochs of development in humans and rodents. Hormonal effects on the
developing brain are largely complete prior to birth and re-emerge at
puberty, but the intervening years are characterized by dynamic brain
development sensitive to modulation by environment and experience.

SUPPLEMENTARY TABLE S1

Concepts and terminology. It is appropriate that we here consider an
annotated nomenclature and associated concepts relevant to commentary
related to gender and sex characteristics.

SUPPLEMENTARY TABLE S2

Summary of the relevant findings of papers showing whether or not and in
which way the specific brain cortical areas that intervene in pain
modulation differ in relation to transgender identity. The papers showing
primary analyses were identified by searching Web of Science with the
terms “neuroimaging”, “transgender, *” and “cort*” on 26.01.2022 (i.e.,
reviews and opinion papers were excluded). MRI, magnetic resonance
imaging; fMRI, functional magnetic resonance imaging; rs-fMRI, resting
state fMRI; PET, positron emission tomography.
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