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FITTING MINIMA OF FLOWS VIA MAXIMUM LIKELIHOOD 

By Hugo A. Loaiciga,1 Associate Member, ASCE, and Miguel A. Marino,2 

Member, ASCE 

ABSTRACT: A statistical method for deriving frequency distribution 
functions of minima of streamflows is presented. An innovative feature 
of the proposed methodology is that it does not require the specification 
of a parent distribution for streamflows, i.e., it is distribution free. The 
only assumption necessary is that the realizations of streamflows be 
independent, identically distributed random variables. The validity of 
this assumption is established with a nonparametric test. The main use 
of the methodology developed herein is in estimating small quantiles of 
the flow distribution for water supply planning and low-flow investiga­
tions. An example is included to illustrate the applicability of the 
approach, using a record of annual flows. 

INTRODUCTION 

The method developed in this study is aimed at providing water resource 
analysts with a statistically consistent method to fit the lower tail of the 
cumulative distribution function (CDF) of streamflows. The potential uses 
of the proposed approach are in water supply stability studies, effluent 
design, wildlife habitat and fishery resources management, estimation 
of hydroelectric power potential, and assessment of environmental qual­
ity (Task Committee on Low-Flow Evaluation, Methods and Needs 
1980). 

The knowledge of streamflow characteristics is important for water 
resource planning purposes. Due to the annual, seasonal, and daily 
variability of streamflows, it is necessary to characterize their statistical 
properties for suitable allocation among competing uses. In this regard one 
must mention the work of Riggs (1972) dealing with the application of 
(statistical) parametric methods and regional analysis for low-flow inves­
tigations. MacMahon (1976) presented a survey of computational proce­
dures on low-flow analysis. In this study, a new method, which is classified 
as distribution free, is developed to estimate the lower tail of the cumula­
tive distribution function of streamflows. In contrast to the parametric 
methods based on some parent distribution (e.g., lognormal, gamma, or 
Gumbel), the distribution-free approach does not require a parent distri­
bution model. It will be shown herein that to estimate low-flow quantiles, 
it is enough to approximate the shape of the lower tail of the cumulative 
distribution function of streamflows by a parsimonious model involving 
only location, scale, and shape parameters. Subsequently, the maximum 
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*0.25 *0.75' 
FLOW, X (mVs) 

1000 

FIG. 1. Fitted CDF (three-parameter lognormal) to Streamflow Sample from Smith 
River, California 

likelihood (ML) method is used to obtain consistent estimators of those 
parameters, from which low-flow quantiles are readily derived. 

PROBLEM STATEMENT 

Suppose a sample of streamflows Xx, X2, . . . , XN is available. The 
objective is to fit a CDF to the observed sample, with the ultimate goal 
being to estimate lower quantiles. It is documented in the hydrologic 
literature that some of the popular density functions (e.g., lognormal or 
those from the gamma family) usually do not approximate the upper or 
lower tails of streamflow records well. The main difficulty in fitting a 
theoretical CDF to a streamflow sample is shown in Fig. 1. It is clear that 
the theoretical CDF (in this case, a three-parameter lognormal) provides a 
good approximation of the observed flows in the interquartile range 
*o.75-*o.25 > where P(X =£ x075) = 0.75 and P(X < x0.25) = 0.25. It is 
observed that fitted quantiles using a theoretical density function tend to 
underestimate (overestimate) observed flows in the upper (lower) tail of 
the CDF of streamflows. 

In either the upper or lower tail cases, the use of theoretically estimated 
quantiles usually leads to risky decisions in planning studies, in the sense 
that the computed quantiles give an overly optimistic picture of the 
streamflow distribution. For example, x0M is 250 m3/s from the theoretical 
curve, a value that most likely overestimates the actual 10th quantile. 

DISTRIBUTION-FREE APPROACH 

Suppose that the flow variates, i.e., Xy, X2, . . • XN, are ordered from 
smallest to largest, and the sorted record is Xw < XQ) < <X, (N) The 
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Fx<x)*(V)C 

Fx(x), actual CDF 

FLOW 

FIG. 2. Approximate and Actual CDFs 

next step in the distribution-free approach is to censor out the variates 
X(m+i) > • • • > X(N) > a n d t n e trimmed subsample Xa), Z ( 2 ) , . . . , Z (m) is 
used to fit the lower tail of the CDF. The purpose of censoring out X(m+l), 
X(m+2)> • • • > ^(AO is to derive an approximation to the lower tail of the 
CDF that is not adversely affected by the flow values above a threshold 
flow X(m) = x(m). Suppose that the CDF from which observations are taken 
satisfies the following condition (Rockette et al. 1974; David 1981) 

P(X < x) = Fx(x) * (Zj-ZJ (1) 

in which a = the lower bound to X; and b and c are positive constants. Eq. 
1 implies that the lower tail of the CDF of flows can be approximated by a 
power function that is defined by a location parameter a, and scale and 
shape parameters b and c, respectively. It is assumed that Eq. 1 is valid 
only as X approaches the lower bound a from above. Notice that Eq. 1 
does not correspond to any of the well-known CDFs, e.g., lognormal, 
gamma, etc. It is simply a parsimonious approximation (i.e., in terms of 
location, scale, and shape parameters only) to the lower tail of a theoretical 
CDF. Models such as that implied by Eq. 1 but involving only location and 
scale parameters have been used in the analysis of order statistics. The 
reader is referred to David (1981) for a survey of the subject matter. Fig. 
2 shows the idea behind the approximation given in Eq. 1. The actual CDF 
of X is given by the solid line, which is an unknown probabilistic model. 
The CDF is approximated by the dotted line, which corresponds to Eq. 1 
as x tends to a from above. The selection of the number of observations in 
the trimmed sample, m, is discussed in the model application section later. 

The objective is to derive consistent estimates a, b, and c of a, b, and c, 
respectively, and this is done by means of the ML method. 
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LIKELIHOOD FUNCTION 

From Eq. 1, differentiation with respect to x yields the approximate 
density function 

fx(x) = cb~ x — a 
(2) 

Since the random variables Xx, X2, • • • , XN are assumed to be indepen­
dent and identically distributed, it can be shown that the joint distribution 
of the trimmed sample Xm , Z ( 2 ) , . . . , X(m) is given by (David 1981) 

i x , , , , . . . . X (,„)(X<1)> • • • > x(m)> — 

N\ 
(N -m)l [1 - Fx(x(m))T (3) 

from which the log-likelihood function corresponding to Eq. 3 is 
m 

L = In JV! - In (N - m)! + £ lnfx(xm) + (N - m) In [1 - Fx(x(m))] (4) 

Substitution of Eqs. 1 and 2 into Eq. 4 yields 
m 

L = C + m In c - m In b + (c - 1) £ l n *m ~ a 

+ (N -m)lnh 

in which C = ln/V! - ln(./V-m)!. By letting 

Xt~,\ & 

z = 
v(m) 

(5) 

(6) 

a first-order Taylor series approximation to the function e z yields 

e~z~l-z (7) 

Replacing 1 - z by e~z in the last term of Eq. 5 results in the final 
expression for the log-likelihood function 

L = m In c — m In fo + (c — 1) J] In 
i = l 

*(Q ~ fl 

-{N -m) (8) 

where constant terms are omitted. The ML estimators of a, b, and c 
maximize L as given in Eq. 8. 

MAXIMUM LIKELIHOOD ESTIMATORS 

Differentiating Eq. 8 with respect to b, setting the resulting expression 
equal to zero, and solving for b yields 

r /N-m\1/c 

b = I I [x(m) - a] (9) 
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If h, as given in Eq. 9, replaces b in Eq. 8, one obtains the following 
expression 

Flf 

L(a, c) = m In c + (c - 1) £ In [x(0 - a] - m In (JV - m) 
i = i 

+ m In m — cm In [x(m) — a] — m (10) 

Differentiating Eq. 10 with respect to c, equating to zero, and solving for 
c, results in the following expression 

I In 
X(m) a 

(11) 

Replacing c in Eq. 10 by c as expressed in Eq. 11 leads to the concentrated 
log-likelihood function in terms of a only, i.e., 

f m 
L(a) = — m In < £ In 

( . i = i l _ A « ) ' 

X(m) fl 

j - I ln [x ( 0 -a ] (12) 
J i = i 

where constant terms are omitted. The function L{a), where 0 < a < xm , 
can be maximized by any univariate search technique (e.g., Fibonacci 
search) to find the ML estimator a. If one lets d -> xm , then L(d) becomes 
unbounded, i.e., L(d) —> +°°, implying thatx(]) is an inconsistent estimator 
of a. This follows from Eq. 11, since for a —> xm , c —> 0, and from Eq. 9, 
£ -* +oo, which clearly are inconsistent estimators of c and b. Therefore, 
one must search for a local maximizer of L(a) other than xm. As it is 
shown in the example given later, it is fairly straightforward to detect the 
location of such local maximizers by first plotting L(a) in the interval 0 £ 
a < xm. 

The steps to solve for the ML estimators d, b, and c are: (1) Plot L(a) m 
the interval 0 < a < xm to approximate a; (2) use an univariate search 
technique to locate a precisely; and (3) find S from Eq. 9 and c from Eq. 11. 
Having a, B, and c, the ML estimator of the pth quantile is obtained from 
Eq. 1, i.e., 

xp = d + B(p)^ (13) 

in which p = P(X s x) is close to zero. 

TESTING FOR INDEPENDENT IDENTICALLY-DISTRIBUTED FLOWS 

Test of Time Stationary Distribution 
The approach presented in this study hinges on the assumption that the 

XjS are independent and drawn from the same (but unknown) distribution 
function. Two plausible examples are annual flows and seven-day lowest 
mean flows. Intuitively, such flows are due to the cumulative effect of a 
large number of hydroclimatic factors, and the resulting observations will 
have the character of random, independent variables. If this is indeed the 
case, one must verify that the flow realizations over different periods of 
time have the same distribution. A suitable test of the null hypothesis 

H:Fl=F2 = ...=F„ (14) 
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i.e., that the distribution functions are the same, is a variation of the 
Mann-Whitney form of the Wilcoxon test, as suggested in Lehmann (1975). 

Suppose that a series of flow values x , , x2 , • • . , xN observed at times 
1,2,. . . ,N are available. If the observations are ordered from smallest to 
largest, each observation will have a rank corresponding to its location in 
the sorted sample, e.g., if xw is the second smallest, its rank is TN = 2, and 
so forth. Define the statistic 

D= I (Tt-t)
2

 ; (15) 

If the flows have an upward trend (over time), this means that the 
distribution functions change over time, violating Eq. 14. Thus, if indeed 
the flows have an upward trend, then large values of the ranks T, will tend 
to occur for large values of t, and small values of T, for small values of t, 
and the statistic D in Eq. 15 will be small. Therefore, when testing the null 
hypothesis in Eq. 14 against the alternative of an upward trend, the null 
hypothesis is rejected for small values of D. A similar argument indicates 
that the null hypothesis should be rejected for large values of D when 
testing against the alternative that flows show a downward trend. For 
sufficiently large N, it can be shown that under the null hypothesis, D is 
approximately normal, with expected value 

N(N2 - 1) 
£D = g • (16) 

, N2(N + 1)2(JV - 1) 
and variance a£ = — (17) 

36 

If the null hypothesis is tested against an upward trend, the rejection 
criterion is that the null hypothesis should be rejected if 

P(D <D) = p(z<D~ E°j (18) 

is small (i.e., less than 0.10), in which D = the computed statistic D from 
the actual data (see Eq. 15); andZ = a standardized normal variate. When 
testing against a downward trend, the null hypothesis (Eq. 14) should be 
rejected whenever 

/ D-ED\ 
P(D>D)= \-P\Z< - 1 (19) 

is small (i.e., less than 0.10). The rank test is illustrated later in the 
application example. 

Testing for Independent Flows 
Eqs. 18 and 19 permit the testing for a time stationary distribution of flow 

variates. In addition, one must test the assumption that flows are indepen­
dent. Flow series such as annual runoff and seven-day lowest mean flows 
are dependent on a large number of climatic and hydrogeologic factors so 
that consecutive flow variates can be treated as independent. If successive 
flow values are dependent, then there would be a tendency toward 

83 

 J. Water Resour. Plann. Manage., 1988, 114(1): 78-90 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
ta

 B
ar

ba
ra

 o
n 

09
/3

0/
24

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



clustering so that high or low values tend to occur together. In view of this, 
one plausible test for independence is to consider runs of like elements in 
a flow series, and to reject the independence hypothesis when the number 
of runs is too small. Suppose that the runs are defined by letting Z, be equal 
to zero or one, depending on whether X, is below or above the median of 
the Xts. Based on this criterion, there will be a total number of runs, say 
R, of zeroes and ones. The distribution of the statistic R, under the null 
hypothesis that successive flows are independent, has been derived by 
Wald and Wolfowitz (1940), and is given by 

/,-iyn-r 
p(R=2k)= Vfc- ;Afc- i , (20) 

2n 

and P(R = 2k+l) = ^ k /\k—lj- (21) 
2n> 
n 

in which n = the number of ones and the parentheses in the right-hand side 
of Eqs. 20 and 21 indicate binominal coefficients. The null hypothesis of 
independent random variables should be rejected whenever 

P(R<R) (22) 

is small (e.g., less than 0.10), in which R = the observed number of runs 
in the data set. The computation of the probability in Eq. 22 can be 
significantly simplified for large values of the total sample size iV by using 
the fact that the null distribution of R is approximately normal (Hogg and 
Craig 1978), with mean 

ER = n+ 1 (23) 

, n(n — 1) 
and variance ai = (24) 

2n — 1 

so that the required probability in Eq. 22 becomes 

P(R < R) = P(Z < ^-~A (25) 

and is readily available from standard normal tables. 

MODEL APPLICATION 

The methods developed earlier are illustrated with a series of annual 
runoff volumes in the American River, upstream of Folsom Lake, which is 
located in the foothills of the Sierra Nevada, northeast of Sacramento in 
northern California. The contributing drainage area at the gage station is 
approximately 4,980 km2 . Table 1 contains the 76-year long record. In this 
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TABLE 1. Annua! Runoff Volumes of American River Upstream of Folsom Lake, 
California 

Water 
yeara 

(1) 

1904-05 
1905-06 
1906-07 
1907-08 
1908-09 
1909-10 
1910-11 
1911-12 
1912-13 
1913-14 
1914-15 
1915-16 
1916-17 
1917-18 
1918-19 
1919-20 
1920-21 
1921-22 
1922-23 
1923-24 
1924-25 
1925-26 
1926-27 
1927-28 
1928-29 
1929-30 

Annual tota!b 

(k acre-ft) 

(2) 

2,024.5 
4,761.7 
5,7i0.4 
1,453.6 
4,544.6 
3,647.2 
5,477.7 
1,264.7 
1,433.7 
3,949.6 
3,061.3 
3,848.4 
2,831.7 
1,419.5 
2,155.0 
1,391.2 
3,221.5 
3,349.3 
2,750.2 

530.4 
2,759.0 
1,374.0 
3,627.9 
2,527.2 
1,156.3 
1,578.6 

Water 
year3 

(3) 

1930-31 
1931-32 
1932-33 
,1933-34 
1934-35 
1935-36 
1936-37 
1937-38 
1938-39 
1939-40 
1940-41 
1941-42 
1942^13 
1943.-44 
1944-45 
1945-46 
1946-47 
1947-48 
1948-49 
1949-50 
1950-51 
1951-52 
1952-53 
1953-54 
1954-55 
1955-56 

Annual total" 
(k acre-ft) 

(4) 

654.8 
2,574.1 
1,325.1 
1,128.8 
2,572.1 
3,414.6 
2,400.7 
4,522.0 
1,086.0 
3,442.1 
3,212.5 
3,990.7 
3,931.0 
1,537.0 
2,564.0 
2,857.7 
1,419.2 
2,262.5 
1,906.0 
2,704.9 
4,667.5 
5,030.2 
2,706.5 
2,067.9 
1,685.7 
4,781.3 

Water 
year* 

(5) 

1956-57 
1957-58 
1958-59 
1959-60 
1960-61 
1961-62 
1962-63 
1963-64 
1964-65 
1965-66 
1966-67 
1967-68 
1968-69 
1969-70 
1970-71 
1971-72 
1972-73 
1973-74 
1974-75 
1975-76 
1976-77 
1977-78 
1978-79 
1979-80 

Annual total6 

(k acre-ft) 

(6) 

2,296.6 
4,205.4 
1,315.4 
1,760.7 
1,180.5 
2,171.0 
3,386.6 
1,914.3 
4,421.3 
1,516.5 
3,987.0 
1,844.6 
4,548.8 
3,380.0 
3,040.4 
2,067.9 
3,093.1 
4,407.8 
2,785.7 
1,142.3 

356.0 
2,963.0 
2,346.5 
3,971.8 

"Water year spans from October 1 to September 30. 
bUnits are in k acre-ft; 1 k acre-ft =1.23 x 10s m3. 

section, the annual flow series is first tested for independence and 
stationary distribution, and subsequently, low quantiles are estimated. 

Test of Hypotheses 
In testing for independence according to Eq. 25, the number of runs was 

found to be R = 41 (i.e., k = 20) and the number of ones was n = 38 (i.e., 
an equal number of flows are above and below the median). The proba­
bility P(R < 4 1 ) [= P(R = 2) + P(R = 3) + . . . + P(R = 40)] is 
approximately 68%, and exceeds 0.10, and therefore the null hypothesis 
should not be rejected, i.e., the null hypothesis of independence of 
successive flows is supported by the available data. It was calculated that 
the hypothesis of independence should be rejected if the number of runs is 
less than 33. 

The test for stationary distribution, as stated in Eq. 14, was conducted 
by first testing against the alternative of an upward trend on the flows. The 
test statistic was obtained as D = 73,844, and P(D < 15) (see Eq. 18) was 
found to be approximately 53%; this exceeds 0.10, so the null hypothesis 
of stationary distribution is not rejected. The null hypothesis should be 
rejected only if 15 < 61,451. The test of the null hypothesis against the 
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alternative of an upward trend (see Eq. 19) indicated that the null 
hypothesis should not be rejected. In this case, rejection would occur if 23 
> 84,849. 

In conclusion, the available flow data support the basic assumption of 
independent identically distributed flows, and hence, the proposed meth­
odology for maximum likelihood estimates of quantiles is well founded. 

Results of ML Estimation 
The first step in the implementation of the estimation approach consisted 

of choosing an adequate value of m, the size of the trimmed sample. In this 
study, a semianalytical approach was used in which Akaike's (1974) 
information criterion (AIC) yielded a preliminary value of m and subse­
quently several additional values of m were tried in the estimation of 
low-flow quantiles to contrast their performance against observed data. 
The final choice of the trimmed sample size was based on the accuracy of 
the approximation to the observed data by the estimated quantiles for a 
given size of the trimmed sample. As will be seen later, different values of 
m appear to perform better, depending on whether the quantiles fall in the 
ranges p < 1/100 or p > 1/100 [recall that p = P (X < x)]. It must be kept 
in mind that the model Eq. 1 proposed for the approximation of the CDFs 
lower tail is theoretically valid only as quantiles approach the lower bound 
a of flows. In theory, this means that the procedure should be restricted to 
p < 1/100, but it is shown later that in practice it can be successfully 
applied to quantiles corresponding to p-values as large as 1/10. 

The preliminary scanning of the trimmed sample size according to the 
AIC indicated that m = 30. Nevertheless, a wide range of m-values from 
m = 5 to m = 40 was tested to acquire a clear understanding of the 
performance of the method. Fig. 3 shows a plot in logarithm scales of the 
flow quantiles 356.0, 530.4, 654.8, 1,086.0, 1,128.8, 1.142.3, 1,156.3, and 
1,180.5 (all units are in k acre-ft; 1 k acre-ft = 1.23 X 106 m3) corresponding 
to p = P{X < x) = 1/77, 2/77, 3/77, 4/77, 5/77, 6/77, 7/77, and 8/77, 
respectively. It is clearly seen that lower quantiles corresponding to p = 

10" 

Cl) 
O 10"-
«) 

X 

3f 10s 

o 

10 

4 5 6 7 8 

A : Observed data 

i : p - l / 77 , i -1 8 
— : Visual linear fit to CDF's lower tail 

» i n it n Mn fl , f l i .1 i * i m r imiT.nU 

10" io-' 10 •1 
10 l 

Probability, P(X < x) 

FIG. 3. Observed and Extrapolated Behavior of Lower Tail of CDF of Annual Runoff 
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TABLE 2, Results of Maximum Likelihood Estimation of Flow Quantiles Based 
on Annual Runoff Data 

ma 

(1) 

20 
25 
30 
35 

a 

(2) 

0 
0 
0 
0 

Parameters 

6 

l _ ( 3 ) 

2,194.3 
2,583,0 
2,643.7 
2,750.3 

e 
(4) 

3.1262 
2.3796 
2.1698 
1.8701 

1/77 

(5) 

547 
416 
357 

,270 

2/77 

(6) 

682 
557 
492 
390 

3/77 

(7) 

777 
660 
592 
485 

Quantiles, x;,
b 

4/77 

(B) 

852 
745 
677 
566 

5/77 

(9) 

915 
818 
749 
637 

6/77 

(10) 

970 
884 
815 
703 

7/77 

(11) 

1,019 
943 
876 
763 

8/77 
(12) 

1,063 
997 
931 
819 

am defines the value xlmj at which the sample is trimmed. 
"The quantiles are defined in terms of the Weibull plotting positions (r/TV+l = /777). The lowest and largest plotting 

positions considered are 1/77 = 1.3% and 8/77 = 10.4%, respectively. Units are in k acre-ft; 1 k acre-ft = 1.23 x 106 

The observed values of the quantiles from the flow record in Table 1 are 356.0; 530.4; 654.8; 1,086.0; 1,128.8; 
1,142.3; 1,156.3; and 1,180.5. 

1/77 and 2/77 fall in a fairly straight line that has been extrapolated to the 
quantile corresponding to p = 0.001. There is a clear transition from the 
quantile corresponding to p = 3/77 to that corresponding to p = 4/77. 
Evidently, the CDF shows a distinctive behavior forp < 2/77 and for/? > 
4/77. Notice that the extrapolated linear behavior of the CDFs lower tail in 
the logarithmic scales is in agreement with the power law structure in 
model Eq. 1, which was proposed as an approximation to the CDF for 
small values of p. A word of caution is warranted regarding the extrapo­
lation for p < 1/77, for it represents only a guess of actual behavior in the 
absence of further data points. 

Table 2 summarizes the results of ML estimation of the location (a), 
scale (b), and shape (c) parameters, and of low-flow quantiles. The results 
are given for several values of m. It was found that for values of m < 6, the 
log-likelihood function was monotonically increasing in the interval [0, 
x(1)], with a global, yet inconsistent, maximum at x(X). Notice that even 
though there were no observed data in the interval p < 0.01 the graphical 
plot in Fig. 3 suggests that the lower bound is not equal to xm = 356 k 
acre-ft but to some lower value. It is also emphasized that the linear 
behavior of the CDFs lower tail for/? < 1/77 represents only a hypothetical 
guess as to its actual behavior in that range. 

Several other values of m larger than six were tried, and those shown in 
Table 2 give a good summary of the dependence of estimates on m. For m 
= 20, 25, 30, and 35, the ML of the lower bound a was found to be equal 
to zero. Although on physical grounds it may be argued that zero runoff is 
not plausible, the estimate of a at a zero level is statistically consistent and 
maximizes the joint probability of having observed the runoff data. 
Certainly, Fig. 3 indicates an extrapolated behavior representative of a 
monotonic linear rate of decrease (in the logarithmic scales) of the 
distribution tail. Had we had a longer data set that included observed 
quantiles in the range p s 1/100, it could have been quite plausible to 
obtain nonzero estimates of the lower bound. For the observed data, and 
given the model proposed in Eq. 1, the nonzero estimates for the lower 
bound are statistically consistent and they lead to good approximations to 
observed quantiles, which is the ultimate goal of the estimation approach. 
Notice that in Table 2, quantiles associated with Weibull plotting positions 
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ranging from 1/77 = 1.3% to 8/77 = 10.4% were presented, although in 
theory, the model Eq. 1 of the CDFs lower tail is strictly valid as X 
approaches the location parameter a from above. From a theoretical point 
of view, this means that the approximation is valid, say, for p < 0.01. 
However, higher quantiles were included to explore the usefulness of Eq. 
1 away from the location parameter a. It is evident from Table 2 that for m 
= 20, the quantile estimates exceed observed quantities for/? < 3/77, but 
gave the better approximation for p s 4/77 than the other estimates 
corresponding to m = 25, 30, and 35. On the other hand, it is seen that the 
excellent approximation is obtained of the lower quantiles (p ^ 2/77) when 
m = 30. In fact, due to the validity of Eq. 1 as an approximation of the CDF 
of minima as X—> a, there is a strong indication that the proper value of m 
should be 30. Parametric models based on common distribution models 
usually fail to provide good estimates of low quantiles, and in this 
application it is apparent the suitability of Eq. 1 as a model for the lower 
tail of CDFs of streamflows. Even though the flow record is not long 
enough and the value corresponding to p = 1/100 is not available, its 
extrapolated estimate using m = 30 yields that x00l = 316 k acre-ft (= 390 
x 106 m3), which is to be contrasted with the graphical value of 300 k 
acre-ft (= 370 x 106 m3) obtained from Fig. 3. Therefore, the flow value, 
which is likely to be observed in the long run once every 100 years is 316 
k acre-ft. For m = 25, estimates are reasonably accurate, with an 
overestimation of observed values for/? =£ 3/77, and an underestimation of 
the actual quantiles for p > 4/71. When m = 35, an accentuated bias to 
underestimate observed quantiles is clear for the range of considered 
plotting positions. 

The estimation results suggest that quantile estimates for p < 0.02 
should be computed using m = 30, whereas estimates for 0.05 < p < 0.10 
should be based on m = 20. For 0.02 < p < 0.05, m = 25 appears to yield 
the better estimates. 

SUMMARY AND CONCLUSIONS 

An approach for estimating low-flow quantiles was developed in this 
study. Its innovative feature is that it is a distribution-free methodology 
based on a parsimonious approximation of the CDFs lower tail, involving 
location, scale, and shape parameters only, and does not depend on any 
particular probabilistic model (e.g., lognormal or gamma-type densities). 
The approach is suitable for estimating low-flow quantiles, i.e., return 
periods larger than or equal to 10, in arbitrary time units, and hinges on the 
assumption of independent identically distributed flows. Two nonparamet-
ric tests based on ranks were used to test for independence and stationary 
distribution function, showing the suitability of the assumption on a record 
of annual flows. 

The estimation of location, scale, and shape parameters, as well as 
low-flow quantiles, was done via maximum likelihood using a trimmed 
sample that included the first m-order statistics, i.e., Xm , Z ( 2 , , . . . ,X(m). 
The computational example analyzed the behavior of the estimates for a 
broad range of values of m. It was found that different values of the 
trimmed sample size m were associated with the better low-flow quantile 
estimation in the ranges/; < 0.02, 0.02 < p < 0.05, and 0.05 < p < 0.10. 
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Even though the proposed model Eq. 1 to the CDFs lower tail is valid as 
the lower bound is approached, its application to cumulative probabilities 
p :S 10 yielded quite accurate estimates. Evidence in the research literature 
points to the severe difficulty in accurately estimating low quantiles, and 
the example described herein indicates that such flow minima are well 
approximated using the distribution-free method advanced herein. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper. 

a = 
a = 
b = 
B = 

CDF = 
c = 
c = 

D = 
D = 
E = 

Fx = 
fx = 
L = 

location parameter; 
estimate of location parameter; 
scale parameter; 
estimate of scale parameter; 
cumulative distribution function; 
shape parameter; 
estimate of shape parameter; 
test statistic in test for stationary distribution; 
observed or computed value of D; 
expected value; 
cumulative distribution function of X; 
probability density function of X; 
log-likelihood function of trimmed sample; 
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ML 
m 
N 
P 
R 
R 
T, 
t 

X 
X(f) 

X 
x(i) 

z 
a2 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

maximum likelihood; 
number of observations in trimmed sample; 
total number of flow observations; 
value between 6 and 1 defining quantiles, p = P(X < x); 
number of runs in test for independence; 
observed value of/?; 
rank of flow value at time t; 
time (t = 1, 2, . . . , N); 
flow variate; 
/th-order statistic of X; 
realization of flow variate; 
observed value of rth-order statistic; 
standard normal variate; and 
variance. 
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