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ABSTRACT: Random heteropolymers (RHPs) have been
computationally designed and experimentally shown to recapit-
ulate protein-like phase behavior and function. However, unlike
proteins, RHP sequences are only statistically defined and cannot
be sequenced. Recent developments in reversible-deactivation
radical polymerization allowed simulated polymer sequences based
on the well-established Mayo−Lewis equation to more accurately
reflect ground-truth sequences that are experimentally synthesized.
This led to opportunities to perform bioinformatics-inspired
analysis on simulated sequences to guide the design, synthesis, and interpretation of RHPs. We compared batches on the order
of 10000 simulated RHP sequences that vary by synthetically controllable and measurable RHP characteristics such as chemical
heterogeneity and average degree of polymerization. Our analysis spans across 3 levels: segments along a single chain, sequences
within a batch, and batch-averaged statistics. We discuss simulator fidelity and highlight the importance of robust segment definition.
Examples are presented that demonstrate the use of simulated sequence analysis for in-silico iterative design to mimic protein
hydrophobic/hydrophilic segment distributions in RHPs and compare RHP and protein sequence segments to explain experimental
results of RHPs that mimic protein function. To facilitate the community use of this workflow, the simulator and analysis modules
have been made available through an open source toolkit, the RHPapp.

■ INTRODUCTION
Utilizing and mimicking protein function is a key approach to
unlocking advanced, robust, cheap, and scalable functional
materials. Heteropolymers are routinely used for surfactants,1−5

hydrogels,6,7 polyelectrolytes,8−10 gene delivery,11−13 and
more.14−17 Chemistry diversification through monomer incre-
ments, side-chain modifications, or block copolymerization have
been unsystematically explored as the primary design criteria for
material functionalization. However, a more general chemical
heterogeneity framework for rational design of protein-like
heteropolymers is still lacking. Random heteropolymers (RHPs)
are composed of more than two monomers, with sequences that
are statistically defined. In comparison to proteins, RHPs are
synthetic, and polydisperse in molecular weight and composi-
tion. RHPs can have batch-to-batch variations but cannot yet be
sequenced with monomeric specificity. Despite key differences,
several computational and experimental studies have demon-
strated the ability for RHPs to recapitulate protein-like
behaviors.18−30 Unlike sequence-specific heteropolymers,31−34

the lack of RHP sequence information significantly hampers our
ability to further leverage the full potential of this unique class of
polymers for precisely tailored functionality. Synthetic break-
throughs in reversible-deactivation radical polymerization
(RDRP) have made it possible to synthesize heteropolymers
with improved reproducibility and control over the probability
of each monomer along the polymer chain.35−43 This narrows
the gap between theoretically ideal polymerization and
synthesized heteropolymers.

Since the 1940s there have been numerous efforts to simulate
heteropolymers using experimental inputs such as monomer
concentrations and reactivity ratios.44−54 Among those,
Compositional Drift, a Monte Carlo method RDRP simulator,
has been developed to simulate RHP sequences based on the
Mayo−Lewis model.55 RDRP synthesis input parameters
provide direct handles to tune key batch level characteristics
such as monomer composition and average degree of polymer-
ization. Synthetic control of batch level properties can be
experimentally verified using common instrumentation such as
nuclear magnetic resonance spectroscopy (NMR) and gel
permeation chromatography (GPC). Matching these exper-
imentally measurable, batch level, key characteristics in reality
and theory allows for simulated outputs to be useful once
abstracted from the level of monomeric precision to an analysis
on the batch level of statistical distributions and sequence
patterns. Prior works have shown the use of RDRP synthetic
parameters to design RHPs with statistically controlled
sequences as protein mimics with a wide variety of promising
applications inclusive of enzyme stabilization, biodegradable
plastics, and selective ion transport.4,6,10,25,26,55,56
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Sequence analysis is routinely performed for proteins to
evaluate statistical distributions of residues along a chain,
identify key motifs, and assess similarity across proteins.57−62

Applying similar analysis to RHPs will advance our ability to
design functional polymeric materials. Here we demonstrate a
bioinformatics-inspired sequence analysis on batches of
simulated RHP sequences. Specifically, we present the RHPapp,
a more comprehensive version of the Compositional Drift
simulation software, integrated into a suite of analytical modules
for RHP design and analysis. Through the RHPapp, the
synthesis of batches of RHPs with varying experimentally
measurable, batch level characteristics are simulated. Common
methods such as binarizing sequences by hydrophobicity and
plotting hydropathy are applied to the simulated RHP
sequences. To fully understand the heterogeneity of RHPs, we
highlighted the importance of analyzing simulated outputs at
multiple levels of abstraction: single chain segments (segment
level), across sequences (sequence level), and across batches
(batch level). Current results revealed that given appropriate
evaluation metric selection and segment length definition,
sequence analysis on simulated RHP sequences can help to
rationalize experimental findings, guide subsequent experimen-
tal design in an iterative fashion, and realize designed function
without the need for full sequence specificity or sequencing
technology.

■ METHODS
We simulated RHP polymerization over ranges of values for each input
parameter to RHPapp and compared batches across various modular
metrics for evaluation and 3 levels of statistical heterogeneity: (1) single
chain segments (segment level), (2) across sequences (sequence level),
and (3) across batches (batch level). Target % conversion and
polydispersity (PDI) of batches of simulated RHP sequences are
tunable parameters. However, for all RHP sequences in this work
conversion is fixed to 50% and polydispersity (PDI) is kept low (below
1.2) to reflect previous experimental results. Reactivity ratios used in
this work are presented in Table S1. All oligomers (sequences of degree

of polymerization (DP) < 15) are neglected, as they are removed
experimentally in the purification process of RHP synthesis, as is
described in prior works.25 Currently, 4 evaluation metrics have been
implemented as Python modules, with which RHP sequences are
analyzed. These metrics are modular; thus, the addition of new metrics
as future work is straightforward.

1. Chemical heterogeneity: analysis of how monomers along the
sequence vary. Subsets of sequences from simulated batches are
visualized for segment level comparison along a single chain
(Figure 1a). On the sequence level, kernel density estimate
(KDE) plots show the distribution of monomers across all
chains in a single batch. A curve fitted to a histogram is plotted
for each unique monomer to show the distribution of monomer
fractions on each chain in a single batch of simulated polymer
(Figure 2a). For each batch, the full width at half-maximum
(FWHM) of the peaks in KDE plots is calculated, normalized by
each monomer feeding fraction (nFWHM), and visualized on a
single scatter-line plot (Figure 2b). The x-axis of nFWHM
batch-to-batch level comparison plots can be varied to probe
trends across different input parameters such as number of
sequences and average degree of polymerization.

2. Segmental hydrophobicity: sequences are binarized into hydro-
phobic or hydrophilic monomers and grouped into segments.
The hydrophile−lipophile balance (HLB) value was used to
evaluate the solubility of monomer side-chains through group
contribution theory. Using the equation HLB = 7 + ∑iniHLBi,
where ni is the number of the ith chemical group in the molecule
with corresponding value HLBi.

63 The HLB value for each
monomer side chain used in this work was estimated as
HLB[methyl methacrylate (MMA)] = 8.45, HLB[2-ethylhexyl
methacrylate (EHMA)] = 5.12, HLB[poly(ethylene glycol)
average Mn 500 (OEGMA)] = 11.4, HLB[3-sulfopropyl
methacrylate potassium salt (SPMA)] = 18.5, and HLB[styrene
(STY)] = 4.865. Lower HLB values indicate higher hydro-
phobicity, and a higher value means greater hydrophilicity. A
hydrophilic−hydrophobic cutoff value (HLB-threshold) of 9
was set to distinguish hydrophobic and hydrophilic monomers.
A hyrophobic (or hydrophilic) segment is considered to be a
contiguous run of hyrophobic (or hydrophilic) monomers.
These segments can be visualized on sampled subsets of

Figure 1. Random heteropolymer (RHP) and protein sequence comparison. (A) Random sequences sampled from a simulated 4 monomer RHP of
50% methyl methacrylate (MMA), 25% poly(ethylene glycol) average Mn 500 (OEGMA500), 20% 2-ethylhexyl methacrylate (EHMA), and 5% 3-
sulfopropyl methacrylate potassium salt (SPMA) (B) RHP sequences binarized to hydrophobic and hydrophilic. (C) Full sequence forBurkholderia
cepacialipase (BC-Lip), segmented and translated to RHP sequence space and then binarized to hydrophobic and hydrophilic units.
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binarized sequences (Figure 1b). Sequence level heterogeneity
is analyzed by counting the hydrophobic segments of each block
length on each chain. The number of hydrophobic segments is
then averaged per chain. For visualization, the average
frequencies per chain for select segment lengths (i.e., 1, 3, 5,
and 10 monomers long), which is the same as the block length
for this analysis, are plotted (Figure 2c). Segment length and
count frequencies on each chain can also be summed (rather
than averaged) across all chains in a batch for a batch level
heterogeneity comparison of total segment distributions (Figure
3b).

3. Sliding window analysis: sliding window analysis is routinely used
for protein sequence analysis to reduce random noise and obtain
coarse-grained but more obvious characteristics at the segment
level. We thus applied a level of convolution to RHP sequences
prior to segmental hydrophobicity analysis. Average segmental
HLB values are continuously calculated for a window sliding
from the alpha to the omega ends of the simulated RHP chains.
The window is advanced by one monomer each time. We used a
span containing odd numbers of monomers and assigned the
average HLB value of that span to its middle monomer. Various
window sizes of 5, 9, and 15 were adopted from previous works

to study the effects of small, medium, and large numbers of
neighbor monomers, respectively.57−60 Hydropathy plots were
generated to visualize randomly sampled sequences for each
RHP composition and window size (Figure S1). The hydro-
phobic/hydrophilic segments were identified using the same
definition from Metric 2, except that the HLB value for each
monomer was replaced with window-averaged values. At the
sequence level, hydropathy plots were averaged across all chains
within a batch and distribution statistics were plotted (Figure
S2).

4. Specif ic segment search: distributions of specific segments of
interest are analyzed. This metric is similar to Metric 2 in that
sequence level analysis averages chain distributions and batch
level comparisons sum the distributions. However, instead of
hydrophobic/hydrophilic segments, segments are specifically
defined by a desired chemical (monomer) pattern. An example
module has been implemented that searches for hydrophobic
segments containing 1 embedded OEGMA monomer that is 2
or more monomers away from the end of the segment. For
sequence level analysis, manually selected segment lengths of 5,
8, 10, and 13 are plotted. For batch level analysis, kernel density

Figure 2. Varying the number of chains (NC) simulated, for a simulated 4 monomer RHP of 50% methyl methacrylate (MMA), 25% poly(ethylene
glycol) average Mn 500 (OEGMA), 20% 2-ethylhexyl methacrylate (EHMA), and 5% 3-sulfopropyl methacrylate potassium salt (SPMA). (A)
Sequence level monomer distributions for batches of NC = 100, 15000, and 100000 (left to right). (B) Normalized full width at half-maximum
(nFWHM) plots of batch level monomer feed ratio distributions for increasing degree of polymerization (DP) of 50, 100, and 300 (left to right). (C)
Sequence level hydrophobic segment distributions, highlighting segments of lengths 1, 2, 3, and 5 for batches of NC = 100, 15000, and 100000 (left to
right).
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distribution of the specific segments for the given batch are
plotted (Figure 5c).

Any combination of evaluation metrics may be used for a given
sequence analysis. To generate reaction schematics that physically
realize this desired sequence distribution, the corresponding input
parameters and additional information about the reaction scale,
monomer molecular weight, monomer density, initiator, chain-transfer
agent, and solvent, are solved in a system of equations. Accordingly, the
required volumes and masses of each reagent are output.
Protein Sequences. Protein sequences can be analyzed through

the same workflow for direct comparison to the RHP sequences. A
dictionary is created mapping amino acids into groups of roughly
corresponding RHP monomers by hydrophobicity/hydrophilicity/
charge. The dictionary is applied to convert protein primary sequences
into RHP-monomer equivalent sequences�a dimensionality reduction
from an alphabet size of 20 (AA residues) to between 2 and 5 (synthetic
monomers). A specific protein sequence is then split into overlapping
segments governed by a segment length = 100 and offset (spacing
between segment start monomers) = 10. An example is shown in Figure
1c. These segments are passed in as simulated RHP-sequence
equivalents into the workflow for direct comparison.
Software. All code used for calculation and visualization in this

work are provided as an open-source repository (https://github.com/
ivanjayapurna/RHPapp), and key features have been implemented as a
web application (https://www.ocf.berkeley.edu/xugroup/rhpapp) to
serve as a tool for community use.

■ RESULTS AND DISCUSSION
Simulation Scale and Fidelity. The entire premise of RHP

design by simulation is based on the assumption of a controlled
link between synthetic design and actualized statistical
monomer distribution. RHP sequence simulation can only be
insightful when a polymerization retains its livingness such that
synthesis is predictable. To experimentally verify synthetic
control, we conduct routine characterizations on synthesized
materials by nuclear magnetic resonance spectroscopy (NMR)
and gel permeation chromatography (GPC). With these two
common characterization techniques we confirm in our samples
(1) bounded polydispersity that confirms good RDRP control,
(2) reaction conversion percentage that confirms no composi-
tional drift, (3) achieved targeted molecular weight, and (4)
approximate composition percentages (Figure S3). However, an
important caveat is that both in-lab and in-silico experiments
only probe a tiny subpopulation of statistically possible RHP
sequences. To illustrate the scale of our materials in number of
polymer chains, let us assume the synthesis of 1 g of a
hypothetical methacrylate-based RHP, with an average mono-
mer molecular weight of 100 g per mole and an average degree of
polymerization (DP) of 100. This would yield on the order of
1018 polymer chains synthesized. GPC or NMR will use on the
order of 1 mg of sample, which is on the order of 1015 chains.
Thus, when characterizing with GPC or NMR, we make the
assumption that an approximately 0.1% sample is representative

Figure 3. Varying the number of unique monomers. For simulated RHP batches of average degree of polymerization 100 with varying number of
uniquemonomers from 2 to 5 of methyl methacrylate (MMA), poly(ethylene glycol) averageMn 500 (OEGMA), 2-ethylhexyl methacrylate (EHMA),
and 3-sulfopropyl methacrylate potassium salt (SPMA). (A) Sequence level monomer distributions for each simulated batch with initial guess
monomer feeding ratios of 70:30, 51:27:22, 50:25:20:5, and 45:20:15:5:15 (left to right). (B) Batch level hydrophilic and hydrophobic segment
distribution heterogeneities of initial guess monomer feeding ratios. (C) Batch level hydrophilic and hydrophobic segment distribution heterogeneities
after iterative adjustment of monomer feeding ratios to 70:30, 50:29:21, 50:25:20:5, and 43:25:14:5:13 (left to right). (D) Sequence level monomer
distributions for iteratively designed 5 monomer RHP with 43:25:14:5:13 feeding ratio.
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of the total batch synthesized. A similar approximation will need
to be made computationally.
A key parameter in stochastic (Monte Carlo) simulators is the

minimum sample size required for simulated results to converge
to a stable value. For the RHPapp, the key parameter is the
number of chains simulated (NC). Computational performance
limits our ability to simulate 1018 chains, an approximate
magnitude of a real synthesis of a batch of RHP. A similar
subsampling approximation as was made for experimental
characterization (roughly 3 orders of magnitude lower) must be
done for in-silico characterization. In a good stochastic
simulation of polymerization, results should converge to the
same, stable value regardless of how many sequences are
simulated. The optimal NC is the minimum required to
converge to a stable distribution of results to maximize
simulation accuracy and minimize computational time. As an
example to illustrate finding an NC minimum for a batch of 4-
monomer methacrylate-based RHPs of DP of 100, we simulated
multiple batches with varied NC while keeping all other
simulation parameters fixed.
Using chemical heterogeneity as a metric, there is visible lack

of smoothness in the KDE fitting when only 100 sequences are
simulated, when compared to 15000 and 100000. However, the
important high-level features across all 3 batches of varying NC
such as peak location, height, and width remain similar (Figure
2a). The normalized full width at half-maxima (nFWHM) of all
peaks from the KDE plot were estimated (Figure 2b). For an
average DP of 100, although the differences in chemical
heterogeneity are minor between the number of sequences
simulated, the monomer of lowest feed ratio (SPMA) has a
convergence of initial nFWHM oscillation at around NC =
15000. This minimum threshold is approximately 14 orders of
magnitude lower than a real experimental RHP synthesis and is
acceptable as it requires minimal compute power to simulate at
NC ≥ 15000. The minimum NC is a parameter intrinsically
linked to co-input parameters and may vary significantly when

other parameters change, such as molar feed ratios or number of
monomers. However, in some cases, such as increasing or
decreasing average DP of our example system and keeping all
else constant, the minimum NC is similar. Although the actual
nFWHM values for average DP 50 and 300 differ significantly
from those of DP 100, all initial oscillations stabilize at a similar
NC threshold.
The minimum NC can also be estimated using sequence

hydrophobic/philic segmental distributions, as seen in the
binarized sequences in Figure 1b. Comparing different NC
simulations at the sequence level within batches of DP 100
RHPs, there is no shift in the primary peak mean or heights in
the average frequency per chain distributions of hydrophobic
and hydrophilic segments. However, there is a noticeable gain in
smoothness of fits and disappearance of misleading minor peaks
as NC increases (Figure 2c). As the increase in fit smoothness is
negligible between 15000 and 100000 NC, the segmental
hydrophobicity metric at the sequence level suggests NC =
15000 is sufficient for stable, accurate simulation distributions.
Analysis at the batch level shows a negligible difference in batch
level frequency and distribution of segments normalized by
number of sequences (Figure S4). Thus, NC was set to 15000
for all 3 subsequent example use-cases using the same 4
monomer methacrylate RHP presented in this work.
Sequence Analysis to Guide Random Heteropolymer

Design. Panganiban et al. proposed that 4 monomer RHPs can
stabilize proteins in aqueous and organic solutions when they
have both (1) chemical heterogeneity and (2) hydrophobic/
hydrophilic block length and count distributions that mimic
those of intrinsically disordered proteins.25 We used simulated
RHP sequences to decouple these two hypotheses and assist in
the design of RHP sequences of a varying number of unique
monomers that still retain the same hydrophobic/hydrophilic
segment distributions as the original 4 monomer RHPs. The two
fixed monomers are MMA and OEGMA, with EHMA added for
monomer 3, SPMA for monomer 4, and STY for monomer 5.

Figure 4. Varying the monomer feed ratio. Batch level hydrophilic segment distribution heterogeneities for a simulated 4 monomer RHP of methyl
methacrylate (MMA), poly(ethylene glycol) average Mn 500 (OEGMA), 2-ethylhexyl methacrylate (EHMA), and 3-sulfopropyl methacrylate
potassium salt (SPMA) of degree of polymerization 100: (A) varying MMA:OEGMA feed ratios and fixed 20% EHMA and 5% SPMA; (B) varying
MMA:EHMA feed ratios and fixed 25% OEGMA and 5% SPMA. (C) Batch level statistics after sliding windows of sizes 5, 9, and 15 (left to right) are
applied, and the resulting sequence level segment information is averaged by sequence position.
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Styrene was chosen to represent a common non-methacrylate
monomer to demonstrate the potential for monomeric diversity
in this design framework. Initial guesses of appropriate
monomer feeding ratios for each RHP were made to
approximate similar hydrophobic/hydrophilic segment length
and count distributions. Figure 3a shows that the sequence level
chemical heterogeneities of RHP batches of varying monomers
are vastly different. However, despite the disparity in chain
chemistry, at the binarized hydrophobic/hydrophilic level, the
segmental distributions for the 2 and 4 monomer RHP batches
are nearly identical, suggesting no need to alter initial guess
monomer feeding ratios (Figure 3b). This evaluation metric was
used to further fine-tune the designs of the 3 and 5 monomer
RHPs for a more precise distribution match. An iterative design
approach on our initial guesses of the 3 and 5 monomer RHPs
enabled precise monomer feeding ratio alterations to preserve
the targeted chemical heterogeneity (Figure 3d) while
minimizing the disparity in theoretically predicted hydro-
phobic/hydrophilic segment length distributions between each
RHP batch (Figure 3c). Thus, when designing an RHP synthesis
for a materials application, analysis of simulated RHP sequences
can serve as an in-silico prescreening, to inform and accelerate
the rational design of compositions to experimentally character-
ize.
Importance of Robust Segment Definition. DelRe et al.

demonstrated that RHPs can nanoencapsulate and preserve the
activity of enzymes in solid polymeric matrices. RHP
composition was shown to regulate substrate binding and active
site availability.4 However, only a few RHP compositions were
tested, due to the lack of high throughput material synthesis and
characterization. Simulated sequence analysis can assist in data
deficient modeling, analysis and serve as a useful tool to suggest
explanations for experimental findings. The 4 monomer RHP
used has 2 hydrophobic and 2 hydrophilic monomers, giving
several handles to tune. The first we chose to modulate is the

MMA:OEGMA ratio. MMA is our proxy for segmental
hydrophobicity and OEGMA for segmental hydrophilicity.
Tuning this handle yields clear differences in segment length
distributions (Figure 4a) that could be compared to differences
in enzyme nanoencapsulation behavior based on enzyme surface
hydrophilic and hydrophobic patch distribution patterns.
However, polymer−protein interactions are sensitive and

complex. Rather than leading to improved performance, too
drastic of a change in RHP composition could overshoot the
scale of differentiation between enzyme chemical distributions
resulting in worse chaperone performance or even polymer
gelation issues as not all RHP compositions can be
synthesized.29 To tune with higher sensitivity the MMA:EHMA
ratio can be varied. Although both of these monomers are
considered hydrophobic by the HLB threshold parameter of 9,
in reality this binarization is just an artifact of analysis. A lower
HLB threshold that would split EHMA and MMA could be
chosen that would yield different results. In the current analytical
setup, adjusting the MMA:EHMA ratio has no apparent effect
(Figure 4b), contrary to experimental results. To more subtly
fine-tune using a method that is more robust to threshold
parameter selection, we redefine what it means to be a
hydrophobic/hydrophilic segment. A level of sliding window
convolution prior to binarizing into contiguous hydrophobic/
hydrophilic segments adds an abstraction layer from monomer
specificity, which is inherently stochastic and noisy. Sliding
window analysis allows us to loosen the rigid prior definition of
what is considered a segment. The results of the analysis
suggested that, within a batch, window average HLB
distributions are invariant to central monomer position along
the chain, with the exception of increased variance at the omega
end of simulated chains, where due to polydispersity there are
fewer data points to average and converge to the expected
statistical distribution (Figure S2). Thus, sequences can be
further averaged across positions along the chain to make

Figure 5. Protein and RHP comparison. 6 proteins were convolved into RHP sequence space, segmented to form a batch, and analyzed through the
RHPapp. Proteinase K (ProK), lipase from Burkholderia cepacia (BC-Lip), lipase fromCandida antarctica (CA-Lip), Aquaporin Z (AquaporinZ), POT
family transporter (PepTSo), and green fluorescent protein from Aequorea victoria (avGFP) were compared to a simulated 4 monomer RHP of 50%
methyl methacrylate (MMA), 25% poly(ethylene glycol) averageMn 500 (OEGMA), 20% 2-ethylhexyl methacrylate (EHMA), and 5% 3-sulfopropyl
methacrylate potassium salt (SPMA). All sequences are of average degree of polymerization 100. (A) Sequence level monomer distributions for
AquaporinZ, PepTSo, and RHP (left to right). (B) Batch level hydrophilic segment distributions. (C) Batch level kernel density estimate of
hydrophobic segments with 1 OEGMA per chain.
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cleaner batch-average segmental (window) hydrophobicity
comparisons. Differences can be observed in batch level
segmental distribution statistics, where segments are now
defined by window average HLB values (Figure 4c). The
mean values and trend of increasing window average HLB as the
MMA:EHMA ratio increases are consistent across varying
window sizes. Although variance reduces with increasing
window size, here we have demonstrated that applications
where we primarily consider the resulting trends in average
values, such as this RHP−enzyme interaction analysis, are
invariant and thus robust to the range of window sizes selected.
Protein and RHP Sequence Comparison. Protein

sequences can be convolved into corresponding RHP sequence
space, segmented to form a batch, and then analyzed through the
RHPapp workflow for direct comparison to RHP sequences. Six
sample proteins (3 enzyme hydrolases, 2 transmembrane
proteins, and 1 β barrel structure protein) were analyzed
through the RHPapp to demonstrate facile comparison to a 4
monomer methacrylate-based RHP (Figure S6). On the
sequence level, proteins each have characteristic chemical
heterogeneities despite functional and evolutionary similarity.
Membrane proteins AquaporinZ and PepTSo have different
chemical heterogeneities despite similar function (Figure 5a).
Despite the chemical heterogeneity differences, all 6 proteins
display similar hydrophobic segment distributions on the
sequence level (Figure 5b). This may suggest a degree of
generality in the design of RHPs, as was demonstrated by
Panganiban et al. where a single RHP design stabilized various
proteins in solutions. Chemical heterogeneity differences may
explain why DelRe et al. observed that different RHPs were
required for optimal nanoencapsulation of different hydrolases
(Figure S5).
In addition to interfacing with proteins as binders, Jiang et al.

showed RHPs can independently mimic membrane protein
function to undergo rapid and selective proton transport across
lipid bilayers at a rate similar to those of natural proton
channels.26 Specific RHP segments of critical importance to
recapitulating transport function are hydrophobic segments
containing 1 embedded OEGMA monomer that is 2 or more
monomers away from the end of the segment. All functional
chains contained this pattern within their random sequence.
This functional RHP of DP 100 has a different chemical
heterogeneity profile compared to both membrane proteins
Aquaporin Z and PepTSo (Figure 5a), suggesting global
chemistry is nonessential to mimicking protein function. A
more local analysis of the proton transport specific segment
pattern was done comparing the RHP to 6 proteins at the batch
level (Figure 5c). Of the sampled proteins, only the 2 membrane
proteins display a similar distribution to the functional RHP.
Specifically, the distributions suggestive of selective proton
transport function display a lower density peak at specific
segment length 9 and a longer tail with sizable population
between 20 and 30 segment length. This example demonstrates
the comparison of statistical distributions of specific segment
motifs on RHPs to those on proteins to explain experimentally
the observed protein-like function.

■ CONCLUSION
We demonstrate a viable path toward guiding the rational design
of RHPs as synthetic proteinmimics through the combination of
RDRP polymerization simulation and bioinformatics-inspired
sequence analysis. The RHPapp, more than an open-source
toolkit, is a design and analysis approach that can be applied to a

diverse range of impactful projects well beyond the methacrylate
backbone monomers presented herein. More complex random
heteropolymers with monomers of varied reactivity ratios could
further enhance control by incorporating partial blocky features
into the statistical randomness to create more complex repeating
motifs similar to those found in natural proteins. Mirroring the
nature of RHPs, the RHP design approach and software
presented are general in principle for broad applicability, but also
modular and easily fine-tuned to suit projects with exact
specificity. Our vision is for the RHPapp to take as input a
protein sequence and desired function as a starting point, from
which an ideal sequence distribution to target can be designed
and translated into controllable RDRP synthetic parameters to
be experimentally realized. This analysis framework for
simulated heteropolymer sequences couples powerfully with
advances in high throughput synthesis and characterization. Just
as bioinformatics, the inspiration for our work, has trended
toward the realms of big data and more sophisticated statistical
modeling techniques, analysis, and machine learning, we
propose that this emergent field of macromolecular chem-
informatics is ripe to follow suit.
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(34) Szymanśki, J. K.; Abul-Haija, Y. M.; Cronin, L. Exploring
Strategies To Bias Sequence in Natural and Synthetic Oligomers and
Polymers. Acc. Chem. Res. 2018, 51, 649−658.
(35) Perrier, S. 50th Anniversary Perspective: RAFT Polymer-
ization�A User Guide. Macromolecules 2017, 50, 7433−7447.
(36) Chiefari, J.; Chong, Y. K. B.; Ercole, F.; Krstina, J.; Jeffery, J.; Le,
T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.;
Rizzardo, E.; Thang, S. H. Living Free-Radical Polymerization by
Reversible Addition-Fragmentation Chain Transfer: The RAFT
Process. Macromolecules 1998, 31, 5559−5562.
(37) Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski,
K.; Boyer, C. Reversible-deactivation radical polymerization (Con-
trolled/living radical polymerization): From discovery to materials
design and applications. Prog. Polym. Sci. 2020, 111, 101311.
(38) Szwarc, M. ‘Living’ Polymers. Nature 1956, 178, 1168−1169.

Biomacromolecules pubs.acs.org/Biomac Article

https://doi.org/10.1021/acs.biomac.2c01036
Biomacromolecules 2023, 24, 652−660

659

https://doi.org/10.1007/s00018-003-3169-6
https://doi.org/10.1007/s00018-003-3169-6
https://doi.org/10.1021/acsami.8b18484?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/adma.202105707
https://doi.org/10.1002/adma.202105707
https://doi.org/10.1038/s41586-021-03408-3
https://doi.org/10.1038/s41586-021-03408-3
https://doi.org/10.1002/adma.202202177
https://doi.org/10.1002/adma.202202177
https://doi.org/10.1039/D0PY01696A
https://doi.org/10.1039/D0PY01696A
https://doi.org/10.1021/acsnano.1c04955?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.1c04955?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-017-01249-1
https://doi.org/10.1038/s41467-017-01249-1
https://doi.org/10.1021/acscentsci.9b00087?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.9b00087?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D1ME00076D
https://doi.org/10.1039/D1ME00076D
https://doi.org/10.1039/D1ME00076D
https://doi.org/10.1002/bip.22658
https://doi.org/10.1002/bip.22658
https://doi.org/10.1021/acsnano.0c08549?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.0c08549?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.0c08549?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacsau.1c00467?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacsau.1c00467?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacsau.1c00467?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja044205+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja044205+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja077288d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja077288d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/B809333B
https://doi.org/10.1039/B809333B
https://doi.org/10.1038/s41467-017-01421-7
https://doi.org/10.1088/0305-4470/22/10/019
https://doi.org/10.1088/0305-4470/22/10/019
https://doi.org/10.1021/ma00049a034?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma00049a034?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma00049a034?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.96.21.11707
https://doi.org/10.1073/pnas.96.21.11707
https://doi.org/10.1021/ma012008e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma012008e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.5b02639?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.5b02639?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41598-017-04720-7
https://doi.org/10.1038/s41598-017-04720-7
https://doi.org/10.1073/pnas.1806207115
https://doi.org/10.1073/pnas.1806207115
https://doi.org/10.1126/science.aao0335
https://doi.org/10.1126/science.aao0335
https://doi.org/10.1038/s41586-019-1881-0
https://doi.org/10.1038/s41586-019-1881-0
https://doi.org/10.1021/acs.macromol.0c01886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.0c01886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.1c00119?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.1c00119?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/adma.202201809
https://doi.org/10.1002/adma.202201809
https://doi.org/10.1002/adma.202201809
https://doi.org/10.1021/acs.macromol.1c02411?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.1c02411?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.1238149
https://doi.org/10.1126/science.1238149
https://doi.org/10.1002/anie.201406766
https://doi.org/10.1002/anie.201406766
https://doi.org/10.1002/marc.201700582
https://doi.org/10.1021/acs.accounts.7b00495?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.7b00495?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.7b00495?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.7b00767?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.7b00767?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma9804951?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma9804951?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma9804951?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.progpolymsci.2020.101311
https://doi.org/10.1016/j.progpolymsci.2020.101311
https://doi.org/10.1016/j.progpolymsci.2020.101311
https://doi.org/10.1038/1781168a0
pubs.acs.org/Biomac?ref=pdf
https://doi.org/10.1021/acs.biomac.2c01036?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(39) Matyjaszewski, K.; Gaynor, S.; Greszta, D.; Mardare, D.;
Shigemoto, T. ‘Living’ and controlled radical polymerization. J. Phys.
Org. Chem. 1995, 8, 306−315.
(40) Hawker, C. J.; Bosman, A. W.; Harth, E. New Polymer Synthesis
by Nitroxide Mediated Living Radical Polymerizations. Chem. Rev.
2001, 101, 3661−3688.
(41) Matyjaszewski, K. Transfer Radical Polymerization (ATRP):
Current Status and Future Perspectives. Macromolecules 2012, 45,
4015−4039.
(42) Gauthier, M.; Gibson, M.; Klok, H.-A. Synthesis of Functional
Polymers by Post-Polymerization Modification. Angew. Chem., Int. Ed.
2009, 48, 48−58.
(43) Pelegri-O’Day, E. M.; Maynard, H. D. Controlled Radical
Polymerization as an Enabling Approach for the Next Generation of
Protein−Polymer Conjugates. Acc. Chem. Res. 2016, 49, 1777−1785.
(44) Mayo, F. R.; Lewis, F. M. Copolymerization. I. A Basis for
Comparing the Behavior of Monomers in Copolymerization; The
Copolymerization of Styrene and Methyl Methacrylate. J. Am. Chem.
Soc. 1944, 66, 1594−1601.
(45) Bruns, W.; Motoc, I.; O’Driscoll, K. F. In Monte Carlo
Applications in Polymer Science; Berthier, G., Dewar, M. J. S., Fischer,
H., Fukui, K., Hall, G. G., Hartmann, H., Jaffé, H. H., Jortner, J.,
Kutzelnigg, W., Ruedenberg, K., Scrocco, E., Eds.; Lecture Notes in
Chemistry; Springer: Berlin, 1981; Vol. 27.
(46) Klumperman, B.; O’Driscoll, K. F. Interpreting the copoly-
merization of styrene with maleic anhydride and with methyl
methacrylate in terms of the bootstrap model. Polymer 1993, 34,
1032−1037.
(47) Wulkow, M. Computer Aided Modeling of Polymer Reaction
Engineering-The Status of Predici, I-Simulation. Macromol. React. Eng.
2008, 2, 461−494.
(48) Zapata-González, I.; Saldívar-Guerra, E.; Ortiz-Cisneros, J. Full
Molecular Weight Distribution in RAFT Polymerization. New
Mechanistic Insight by Direct Integration of the Equations: Full
Molecular Weight Distribution in RAFT Polymerization. Macromol.
Theory Simul. 2011, 20, 370−388.
(49) Drache, M.; Drache, G. Simulating Controlled Radical
Polymerizations with mcPolymer�AMonte Carlo Approach. Polymers
2012, 4, 1416−1442.
(50) Ting, J. M.; Navale, T. S.; Bates, F. S.; Reineke, T. M. Precise
Compositional Control and Systematic Preparation of Multimono-
meric Statistical Copolymers. ACS Macro Lett. 2013, 2, 770−774.
(51) Zapata-González, I.; Hutchinson, R. A.; Matyjaszewski, K.;
Saldívar-Guerra, E.; Ortiz-Cisneros, J. Copolymer Composition
Deviations from Mayo-Lewis Conventional Free Radical Behavior in
Nitroxide Mediated Copolymerization: Copolymer Composition
Deviations fromMayo- Conventional Free Radical Behavior.Macromol.
Theory Simul. 2014, 23, 245−265.
(52) Fortunatti, C.; Sarmoria, C.; Brandolin, A.; Asteasuain, M.
Modeling of RAFT Polymerization using Probability Generating
Functions. Detailed Prediction of Full Molecular Weight Distributions
and Sensitivity Analysis: Modeling of RAFT Polymerization using
Probability Generating Functions.Macromol. React. Eng. 2014, 8, 781−
795.
(53)Mastan, E.; Li, X.; Zhu, S. Modeling and theoretical development
in controlled radical polymerization. Prog. Polym. Sci. 2015, 45, 71−
101.
(54) Pintos, E.; Sarmoria, C.; Brandolin, A.; Asteasuain, M. Modeling
of RAFT Polymerization Processes Using an Efficient Monte Carlo
Algorithm in Julia. Ind. Eng. Chem. Res. 2016, 55, 8534−8547.
(55) Smith, A. A. A.; Hall, A.; Wu, V.; Xu, T. Practical Prediction of
Heteropolymer Composition and Drift. ACS Macro Lett. 2019, 8, 36−
40.
(56) Steube, M.; Johann, T.; Barent, R. D.; Müller, A. H.; Frey, H.
Rational design of tapered multiblock copolymers for thermoplastic
elastomers. Prog. Polym. Sci. 2022, 124, 101488.
(57) White, S.; Jacobs, R. Statistical distribution of hydrophobic
residues along the length of protein chains. Implications for protein
folding and evolution. Biophys. J. 1990, 57, 911−921.

(58) Rao, N.; Lei, X.; Guo, J.; Huang, H.; Ren, Z. An efficient sliding
window strategy for accurate location of eukaryotic protein coding
regions. Comput. Biol. Med. 2009, 39, 392−395.
(59) Fares, M. A.; Elena, S. F.; Ortiz, J.; Moya, A.; Barrio, E. A Sliding
Window-Based Method to Detect Selective Constraints in Protein-
Coding Genes and Its Application to RNA Viruses. J. Mol. Evol. 2002,
55, 509−521.
(60) Chen, K.; Kurgan, L.; Ruan, J. Optimization of the Sliding
Window Size for Protein Structure Prediction. 2006 IEEE Symposium
on Computational Intelligence and Bioinformatics and Computational
Biology 2006, 1−7.
(61) Brendel, V.; Bucher, P.; Nourbakhsh, I. R.; Blaisdell, B. E.; Karlin,
S. Methods and algorithms for statistical analysis of protein sequences.
Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 2002−2006.
(62) Karlin, S.; Brendel, V. Chance and Statistical Significance in
Protein and DNA Sequence Analysis. Science 1992, 257, 39−49.
(63) Davies, J.; et al. A quantitative kinetic theory of emulsion type, I.
Physical chemistry of the emulsifying agent.Gas/Liq. Liq./Liq. Interface,
Proc. Int. Congr. Surf. Act., 2nd. 1957, 6−438.

Biomacromolecules pubs.acs.org/Biomac Article

https://doi.org/10.1021/acs.biomac.2c01036
Biomacromolecules 2023, 24, 652−660

660

https://doi.org/10.1002/poc.610080414
https://doi.org/10.1021/cr990119u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr990119u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma3001719?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma3001719?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/anie.200801951
https://doi.org/10.1002/anie.200801951
https://doi.org/10.1021/acs.accounts.6b00258?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.6b00258?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.6b00258?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01237a052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01237a052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01237a052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0032-3861(93)90226-Z
https://doi.org/10.1016/0032-3861(93)90226-Z
https://doi.org/10.1016/0032-3861(93)90226-Z
https://doi.org/10.1002/mren.200800024
https://doi.org/10.1002/mren.200800024
https://doi.org/10.1002/mats.201100023
https://doi.org/10.1002/mats.201100023
https://doi.org/10.1002/mats.201100023
https://doi.org/10.1002/mats.201100023
https://doi.org/10.3390/polym4031416
https://doi.org/10.3390/polym4031416
https://doi.org/10.1021/mz4003112?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/mz4003112?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/mz4003112?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/mats.201300137
https://doi.org/10.1002/mats.201300137
https://doi.org/10.1002/mats.201300137
https://doi.org/10.1002/mats.201300137
https://doi.org/10.1002/mren.201400020
https://doi.org/10.1002/mren.201400020
https://doi.org/10.1002/mren.201400020
https://doi.org/10.1002/mren.201400020
https://doi.org/10.1016/j.progpolymsci.2014.12.003
https://doi.org/10.1016/j.progpolymsci.2014.12.003
https://doi.org/10.1021/acs.iecr.6b01639?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.6b01639?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.6b01639?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmacrolett.8b00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmacrolett.8b00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.progpolymsci.2021.101488
https://doi.org/10.1016/j.progpolymsci.2021.101488
https://doi.org/10.1016/S0006-3495(90)82611-4
https://doi.org/10.1016/S0006-3495(90)82611-4
https://doi.org/10.1016/S0006-3495(90)82611-4
https://doi.org/10.1016/j.compbiomed.2009.01.010
https://doi.org/10.1016/j.compbiomed.2009.01.010
https://doi.org/10.1016/j.compbiomed.2009.01.010
https://doi.org/10.1007/s00239-002-2346-9
https://doi.org/10.1007/s00239-002-2346-9
https://doi.org/10.1007/s00239-002-2346-9
https://doi.org/10.1073/pnas.89.6.2002
https://doi.org/10.1126/science.1621093
https://doi.org/10.1126/science.1621093
pubs.acs.org/Biomac?ref=pdf
https://doi.org/10.1021/acs.biomac.2c01036?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as



