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Abstract

Because there are many situations in our daily life in which
the option space is not discrete but continuous, recently
developed decision models have been able to examine the
cognitive processes underlying choice in laboratory tasks with
a continuous outcome space. One of the most important of
these continuous models is the circular diffusion model (CDM)
by Smith ((Smith, 2016)), which has been shown to account
for continuous space data from a wide range of paradigms,
including color identification, orientation, brightness, pricing.
However, in addition to the inherent complexity of this model,
it has become more complex in order to predict reliable data
patterns, making it a tool only for experts. Here we propose a
more easy version of the CDM, the EZ version, to fit the model
on continuous scale data. The EZ-CDM for continuous choice
space tasks can estimate the parameter values for the cognitive
processes underlying without considering the response time
distribution but only using traditionally favored summary
statistics (i.e. the mean and variance of response time, and
angular variance of accuracy.) by simple formulas that can
be computed easily and needs neither theoretical knowledge
of model fitting nor much programming skills. Here, we
formulate the EZ method and show that, despite being easy and
fast to calculate, it’s performance in recovering true parameters
is acceptable.
Keywords: Decision making, Continuous response, Cognitive
model, Circular diffusion model, Response time, Complexity.

Introduction
Behavioral data is the main source of information in
psychological research. Experimental psychologists often
obtain behavioral data by conducting tasks that involve
decision making by subjects. At this point, researchers
confront two issues to make inferences from these behavioral
decision data. First, choice and response time data is often
variable (even in very similar trial conditions), and secondly,
different factors affect the results and the data comprise
mixture effects of these factors. The primitive approach
performed by researchers to extract stable information from
variable data is to use summary statistics of data, like
mean and variance. Although this approach deals with the
issue of variability, but still the statistics contain a mixture
of information about different factors. The remedy to
overcome both issues has been introduced by the cognitive
modeling approach. Cognitive models of decision making,
introduce a particular way of interaction between variability
and individual factors to generate data.

Diffusion Decision Model (DDM) of Ratcliff (Ratcliff,
1978; Ratcliff & Mckoon, 2008; Ratcliff & Rouder, 1998)

is one such model of choice and response time data generated
from underlying cognitive processes in simple two-choice
decisions. More precisely, this model is a quantitative
counterpart of the conceptual model, describing decision
making as an accumulation of information over time to
reach the criterion for choosing each alternative. The main
source of variability proposed by DDM, is a stochastic
diffusion process of information accumulation, and the main
influential factors are captured by: the systematic tendency
of the stochastic process to approach each alternative
(called drift rate) as the relative speed of information
accumulation in favor of alternatives; the criterion as the
amount of information needed to choose each alternative
(called boundary separation), and non-decision time as time
consumed by other processes than decision, like encoding
stimulus and executing response (Ratcliff, 1978). DDM has
been used numerous times in research involving a vast range
of decision tasks about different cognitive processes, and
successfully accounted for behavioral and neurophysiological
data (Evans & Brown, 2017; Ratcliff, Huang-Pollock, &
McKoon, 2018; Evans, Bennett, & Brown, 2018; Fontanesi,
Gluth, Spektor, & Rieskamp, 2019; Pedersen, Frank, & Biele,
2017; Krajbich, Lu, Camerer, & Rangel, 2012; Forstmann,
Ratcliff, & Wagenmakers, 2016; Gold & Shadlen, 2007).

Two-alternative decision tasks are mainly used in
psychological research, but recently there has been an
increasing interest in tasks involving continuous decision
alternative space (e.g. (Itti & Koch, 2001)). Unlike two-
alternative decisions, this allows getting distribution for
accuracy, instead of just a single correct response rate. Also,
there are many situations in our daily life in which the
option space is not discrete but continuous (Yoo, Hayden, &
Pearson, 2020). For example, when a driver needs to avoid a
dog that suddenly ran in the middle of a road, their options are
not discrete: the steering angle of a car is typically 60 degrees
wide. Many other activities, such as evaluating the selling
or buying price of a product (Kvam & Busemeyer, 2020),
involve selecting the best action from a continuous action
space. Therefore, these tasks could be more informative and
natural than traditional two-alternative decision tasks.

Recently, cognitive models with the concept of noisy
information accumulation have been proposed for continuous
tasks. The spatially continuous diffusion model (Ratcliff,
2018) is one such model, but it has conceptual and practical
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complexity (Smith, Saber, Corbett, & Lilburn, 2020). Also
multiple anchored accumulation theory (Kvam, Marley, &
Heathcote, 2021) and geometric similarity representation
(Kvam & Turner, 2021) have been proposed, but in addition
to being complex, they are somewhat general and need to
become specific suitably for the particular task at hand.

The circular Diffusion Model (CDM) (Smith, 2016) is
simpler, yet insightful model of circular tasks. Circular
decision tasks are commonly used as continuous tasks that
the subject has to choose one point on a circle. Examples of
such tasks are judgement about orientation, direction, shape,
location, or color of stimuli (Unsworth, Fukuda, Awh, &
Vogel, 2014). The circular diffusion model is based on the
same theory of DDM but extended to the continuous outcome
decisions and has almost the same parameters. It represents
information accumulation as a stochastic 2D Wiener diffusion
process on the interior of a disk whose bounding circle
represents the decision criterion.

Despite the obvious advantages of this model for
explaining the observed data in continuous scale tasks
based on underlying psychological meaningful processes,
unfortunately, it has not been used much so far. The use of
this model seems to be complicated due to the nature of the
model. In fact, in order to become commonly used, various
methods such as maximum likelihood estimation (MLE)
and Bayesian approaches are needed to fit the model and
extract parameter values from observed data. Theoretically,
the MLE and Bayesian approaches are suitable methods for
parameter estimation but they require some knowledge about
fitting routine and programming skills to some degree, which
remains the use of this model a suitable approach for experts.

This challenge also existed in the DDM of Ratcliff, which
is much simpler than the CDM, but (Wagenmakers, Van
Der Maas, & Grasman, 2007) were able to solve this problem
by introducing a simple approach named the ”EZ diffusion
model”. In EZ-DDM, the parameters are calculated from
summary statistics of data by quite simple formulas. Here,
we introduce a new EZ method for parameter estimation of
CDM where it enables the computation of CDM parameter
values, from mean and variance of response time and circular
variance of accuracy. We test the performance of the EZ
method by comparing its parameter recovery with the so-
called theoretically favored MLE method.

Circular Diffusion Model
CDM is a model of decision making in circular decision tasks,
proposing a procedure for generation of choice and response
time, from underlying cognitive components. It assumes that
decision is the result of a noisy accumulation of information
represented in 2D evidence space. State of evidence at
any time is represented by a point in a plane. Also, the
direction of this point could be thought of as representative
of the alternative with most evidence and its norm, as the
magnitude of evidence for that alternative (Kvam, 2019). As
the magnitude of evidence favoring one alternative, reaches a

criterion, a choice is made. So the decision criteria is a circle
of which each point corresponds to a decision alternative.
Furthermore, the radius of this circle determines the amount
of evidence needed to respond. Mathematically, dynamic of
evidence state in time is modeled by the following stochastic
differential equation:

dXt = vdt +σdWt , (1)

where Xt is state in time t, v is drift rate vector, σ is diffusion
coefficient, and Wt is a two-dimensional Wiener process.
The drift rate vector shows the systematic tendency of state
change over time. In fact, its direction and length, represent
identity and quality of inner representation of stimulus,
respectively. On the other hand, the diffusion coefficient
determines the range of noisy change in state. As it is a
scaling variable (multiplying v, a, and σ by constant term,
wouldn’t change the predictions of the model) it is taken
to be constant σ = 1. The process starts from origin of
zero coordinate in plane, and changes according to the above
dynamic equation until it reaches the boundary of the circle.
The point of intersection determines the choice alternative
and the time it takes from start to boundary hit, determines
the decision process time. Response time here is the sum of
decision process time and all other time-consuming processes
included in decision making, called non-decision time (Ter).
Figure (1) illustrates a schematic of the model in a circular
decision task sample.

EZ-circular diffusion model
The EZ-CDM proposed here is based on reparameterizing
the CDM with cumulants of predicted distributions and then
easily estimating these cumulants by summary statistics. To
do so, we need to get from these cumulants to original
parameters, but this is not straightforward. However,
the inverse operation (calculating cumulants from model
parameters) could be done more easily. So we first
formulate equations to get the cumulants of predicted
response time and accuracy distributions of CDM. As the
model has three parameters, three cumulants will be needed
for reparameterization. We use the first two cumulants
(expected value and variance) of response time and second
circular cumulant (circular variance) of accuracy.

By accuracy, we mean the angular distance of the chosen
point from the right answer point of the trial on the circle. For
the sake of simplicity in equations, from now on, we will use
the symbol v as the drift length, not the drift vector itself. We
will estimate only the length of the drift vector. Drift vector
direction (that represents bias) could be estimated by angular
mean of accuracy.

As stated in (Smith, 2016), the predicted distribution
of accuracy is a von Mises distribution with concentration
parameter av. So the angular variance of accuracy (VACC)
will be:

VACC = 1− I1(av)
I0(av)

, (2)
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Figure 1: CDM model in one trial of a typical circular
decision task. (a) Subject is presented with three different
colored squares. (b) The subject is asked to choose the
color of the probed square by moving the mouse pointer
to a position on the circle. (c) CDM model assumes that
the process of decision making consists of a 2D Wiener
diffusion process with a drift vector v, representing the
encoded stimulus. The process runs until it hits the boundary
circle of radius a. (d) The hitting point determines the decided
color and the response time is determined by the time it takes
for the process to hit the boundary plus non-decision time Ter.

where I0 and I1 are the first kind modified Bessel functions
of order zero and one, respectively. To calculate cumulants
of the predicted distribution of response time, we can use
its moment generating function (Laplace transform) given by
(see appendix in (Smith, 2016)):

E[e−λT ] =
e−λTer I0(av)

I0(a
√

2λ+ v2)
.

The first moment which equals mean reaction time (MRT),
can be calculated from the moment generating function as:

MRT = E[T ] =− d
dλ

E[e−λT ]
∣∣∣
λ=0

= Ter +
a
v

I1(av)
I0(av)

, (3)

where we have used the simple formula (d/dx)I0(x) = I1(x).
Also the second moment will be:

E[T 2] =
d2

dλ2 E[e−λt ]
∣∣∣
λ=0

=
1
I4
0

(
I4
0 t2

0 +2
a
v

I3
0 I1t0 +2

a
v3 I3

0 I1 −
a2

v2 I4
0

+2
a2

v2 I2
0 I2

1

)
,

where all Bessel functions are calculated at av and
superscripts are power. We used the fact that (d/dx)I1(x) =
I0(x) − I1(x)/x in the above calculations. Now we can
calculate the variance of response time (VRT):

V RT = E[T 2]−E[T ]2 =
a2

v2
I2
1 (av)

I2
0 (av)

+
2a
v3

I1(av)
I0(av)

− a2

v2 . (4)

Now we need to solve the algebraic system of three equations
(2), (3), and (4):

VACC = 1− I1(av)
I0(av)

,

MRT = Ter +
a
v

I1(av)
I0(av)

,

V RT =
a2

v2
I2
1 (av)

I2
0 (av)

+
2a
v3

I1(av)
I0(av)

− a2

v2 .

(5)

Now, we first solve the first equation for av and by means of
the third equation, we get the a and v, then calculate the Ter
from the second equation. It’s easier to take R = 1−VACC
and κ = av. So the first equation will be:

R =
I1(κ)

I0(κ)
.

Here, we use an approximate solution for this equation given
in (Banerjee, Dhillon, Ghosh, Sra, & Ridgeway, 2005):

κ =
R(2−R2)

1−R2 .

But this approximation is not accurate enough for our
purpose, so we use Newton-Raphson iteration as suggested
in the reference article:

κ1 = κ−
I1(κ)
I0(κ)

−R

1− I2
1 (κ)

I2
0 (κ)

− I1(κ)
κI0(κ)

.

It seems that one iteration is satisfactory for our use here as
the ratio of the estimate to the exact solution of the equation
is between 0.995 and 1 + 10−15 and we have checked that
this magnitude of error has no considerable effect on the
parameter recovery of the proposed EZ method.

Now we rewrite the third equation with respect to v, by
replacing the a with κ1/v, and I1(av)/I0(av) with R:

v4 =
1

V RT

(
κ

2
1R2 +2κ1R−κ

2
1

)
. (6)

So a could be computed as:

a = κ1/v. (7)

Then the Ter can be calculated from the second equation:

Ter = MRT − a
v

R. (8)
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Now that we completed the reparametrization of CDM to
cumulants, summary statistics can be used to estimate these
cumulants:

VACC = 1− R̄ = 1− 1
N

√( N

∑
n=1

cos(θn)
)2

+
( N

∑
n=1

sin(θn)
)2

,

MRT =
1
N

N

∑
n=1

tn,

V RT =
1
N

N

∑
n=1

(
tn −

1
N

N

∑
n=1

tn

)2

,

(9)
where N is the number of data points of response time t
and accuracy θ (in radian). It should be noted that the first
equation is the maximum likelihood estimation of circular
variance for von Mises distribution, and the R̄ above is
equivalent of R in previous calculations.

In summary, the procedure for EZ fitting consists of
calculating summary statistics (R̄, MRT and VRT) from (9)
and computing the parameter values in the following order:

κ =
R̄(2− R̄2)

1− R̄2 ,

κ1 = κ−
I1(κ)
I0(κ)

− R̄

1− I2
1 (κ)

I2
0 (κ)

− I1(κ)
κI0(κ)

,

v = 4

√
1

V RT

(
κ2

1R̄2 +2κ1R̄−κ2
1

)
,

a = κ1/v,

Ter = MRT − a
v

R̄.

(10)

The ”scipy.special.iv” function in Python and ”besseli” in
Matlab and ”BesselI” in Wolfram Mathematica could be used
to calculate the modified Bessel function of the first kind (I0
and I1) in the second equation above.

Results and comparison
Here, we analyze the ability of the EZ method to correctly
recover the true parameters of CDM. To do this, we
first simulate artificial data from CDM model and use EZ
method to recover the parameters and calculate the difference
between true, and estimated parameter values. To have a
reference for examining EZ performance, we also recover
parameters with MLE and compare the EZ results with
recovery results from MLE.

We use a span of parameter values containing previously
estimated values resulted from fitting CDM on empirical data
(Kvam, 2019; Smith et al., 2020; Zhou, Osth, Lilburn, &
Smith, 2021). Three values of 1,2,3 are used for criteria a,
and three values of 1.5,3,4.5 are used for drift length. Also
one additional value of zero is used for drift length to check
any possible deficiency in EZ performance in limiting cases
where drift length approaches zero. The non-decision time

is fixed to zero because it only shifts all response time data
points and this will just shift the recovered non-decision time
by both EZ and MLE methods.

For simulating a trial, we run a discrete random walk
version of dynamic equation (1) started from the origin and
changed according to:{

∆X (1)
t = v∆t +ξ

(1)
√

∆t,

∆X (2)
t = ξ

(2)
√

∆t,

where superscripts indicate coordinated components and ξ

is a sample of standard normal distribution. We used ∆t =
0.001 seconds and checked that the simulated data with this
value of ∆t is indistinguishable from finely grained data with
number of trials we use. The absence of drift component
in the second equation is because we take the drift vector
to lie on the horizontal axis, having zero component on
vertical coordinate. According to symmetry in the model, this
assumption does not reduce the generality of results.

The number of trials has three levels of 50, 150, and 800
which represents the number of trials taken from subjects in
psychological research and modeling analysis, respectively.
For every three levels of trial number and 12 parameter sets
(3 criteria × 4 drift), 100 data sets are simulated. Note that
the EZ method is implemented as procedure discussed above,
and MLE is performed using the Likelihood function given in
(Smith, 2016):

1
2πa2 exp

(
vacos(θ)− v2t

2

) ∞

∑
i=1

j0,i
J1( j0,i)

exp
(
−

j2
0,i

2a2 t
)
,

where J1 is the first-order Bessel function of the first kind and
j0,i is the i-th zero of the zero-order Bessel function of the
first kind. We simulated data with a drift vector of zero angle,
so we only entered the horizontal coordinate of the hitting
point in the above formula, restricting the estimated vector to
have angle zero. The infinite sum is calculated till 50 which
gives a good approximation of likelihood function, except for
values of very small t where actual likelihood will be so small
and we chose an infinitesimal constant value for these data
points. Also, the Nelder–Mead optimization method with
true parameter values is used to find the maximum likelihood
parameters.

Parameter recovery results are presented in Figures (2), (3),
and (4).

The middle points in the figures are representing the bias
and the error bars show the deviation in the recovery of
parameters. By increasing the number of trials, bias and
deviation of EZ method recovery are decreasing. The decline
in bias is very similar to the MLE method, except for v in
the case that the actual drift length was zero. As mentioned
this situation is not expected in real data. Also the deviations
are reasonably low and a little more than MLE deviations,
especially for v and a.

These results show that the EZ method is capable of
extracting true parameter values and detecting differences in
values of parameters.
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Figure 2: Parameter recovery results for drift length v. True
drift length parameter for each row is 0, 1.5, 3, and 4.5
from top to bottom. True criteria value parameter for each
column is 1, 2, and 3 from left to right. In each figure,
the three bars on left, show the results for the EZ method
in 50, 150, 800 trial number levels, and the bars in right
are for the MLE method. The middle point is the mean of
100 recovered parameter values for v and the error bars show
the one standard deviation above and below the mean value.
Horizontal lines show the true value for parameter v.

Discussion
The EZ-DDM facilitated the use of the cognitive decision
model in the psychology community for two-alternative
decision tasks. Here we proposed the basis for the same
facilitation for continuous decision tasks.

Previous experience from investigations on EZ-DDM,
shows some pros and cons of using this method. It could
face some problems when the data is contaminated (Ratcliff,
2008), or when there is some between trial variability in
parameters. But still, investigations show that it successfully
captures the differences between experimental conditions
and individual and group differences (van Ravenzwaaij &
Oberauer, 2009; Ratcliff & Childers, 2015; van Ravenzwaaij,
Donkin, & Vandekerckhove, 2017). We think these situations

Figure 3: Parameter recovery results for criteria value a.
True drift length parameter for each row is 0, 1.5, 3, and
4.5 from top to bottom. True criteria value parameter for
each column is 1, 2, and 3 from left to right. In each figure,
the three bars on left, show the results for the EZ method
in 50, 150, 800 trial number levels, and the bars in right
are for the MLE method. The middle point is the mean of
100 recovered parameter values for a and the error bars show
the one standard deviation above and below the mean value.
Horizontal lines show the true value for parameter a.

exist in EZ-CDM as well, but need to be carefully considered
in the future.

Another existing subject is guessing data. In currently used
circular tasks, there is an assumption that some proportion of
data is the result of guess. To use the EZ method, one needs
to separate this guess data from the rest, because they have
different nature. One way to do so, is to take confidence in
each trial and only enter the high confidence data into the EZ
fit procedure. The other method could be fitting the mixed
model of uniform plus von Mises distribution on accuracy
data and calculating the circular variance of von Mises part
of accuracy distribution (Zhang & Luck, 2008). The other
two statistics for response time could be calculated with all
data points as the successful fit of encoding failure model
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Figure 4: Parameter recovery results for non-decision time
Ter. True drift length parameter for each row is 0, 1.5, 3,
and 4.5 from top to bottom. True criteria value parameter
for each column is 1, 2, and 3 from left to right. In each
figure, the three bars on left, show the results for EZ method
in 50, 150, 800 trial number levels, and the bars in right are
for the MLE method. The middle point is the mean of 100
recovered parameter values for Ter and the error bars show
the one standard deviation above and below the mean value.
Horizontal lines show the true value for parameter Ter.

on empirical data, suggests that the response time for guess
and non-guess choices are nearly equal. But this should be
investigated further for different tasks.

Conclusion
Researchers traditionally base their inference on summary
statistics which summarize denoised information of data.
Because they are easy to compute, a stable summary of
variable data, but they lack meaningful information about
distinct underlying components, since the effect of these
components is mixed in them. For example important results
in visual working memory research come from investigating
variance of accuracy (e.g. (Zhang & Luck, 2008)) but as
discussed in (Smith et al., 2020), this quantity depends on

the multiplication of criteria value and drift length, so any
change in variance of accuracy should be traced to detect
the change in each parameter. The method of EZ enables
this separation of parameter values from traditionally favored
summary statistics by simple formulas that can be computed
easily and needs neither theoretical knowledge of model
fitting nor much programming skills. Here, we formulated
the EZ method and showed that, despite being easy and fast
to calculate, its performance in recovering true parameters is
acceptable.
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