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ABSTRACT OF THE DISSERTATION

The Brauer-Siegel Theorem for Fields of Bounded Relative Degree

by

Aaron Wong

Doctor of Philosophy in Mathematics

University of California San Diego, 2007

Professor Harold Stark, Chair

In this dissertation, we undertake the study of the class numbers of fields of bounded

relative degree. Fix B > 1 and let B(B) be the set of all number fields M such that

M can be reached by a tower of fields, Q = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn = M such

that [Mi : Mi−1] ≤ B for 1 ≤ i ≤ n. Building on the work of Harold Stark [Sta74]

and Andrew Odlyzko [Odl75], we show that there for a fixed B there are only finitely

many CM fields M of degree greater than or equal to 387 with a given class number.

In the process of proving this, we also obtain lower bounds for the residue of Dedekind

zeta functions and L(1, χ). We also obtain some upper bounds for these functions by

mimicking some of Jeffrey Hoffstein’s calculations [Hof79].

xi



1

Preliminaries

This chapter is only meant to introduce the main ideas used in this dissertation.

Stark’s chapter in [WMLI92] gives a good exposition of these topics as well. For a gentle

introduction including many explicit examples, the reader should read [Mar77]. Both

[Lan94] and [Neu99] give a more formal presentation.

1.1 Algebraic Theory

The main algebraic structures we’ll be working with in this dissertation are

extensions of number fields and their associated invariants.

1.1.1 An Example

Before diving into formal definitions, we will start with an example. We begin

with the simplest example of a number field, the set of rational numbers,

Q =
{a
b

: a, b ∈ Z and b 6= 0
}
,

where

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The common term for Z is the set of integers, but we will be generalizing this word

soon so we will call Z the set of rational integers to avoid confusion. There is a special

subset of the rational integers, the primes. Usually in the context of the rational integers,

primes are taken to be positive. However, in the general context we will be considering,

we will not have a notion of “positive”, so that in the generalized definition, the rational

1
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primes will be paired off together as being the “same” prime,

P = {±2,±3,±5,±7,±11, . . .}.

We are interested in looking at extensions of number fields. We will extend the

field that we’re looking at by adjoining a root of an irreducible polynomial, a process

which is described below. For our example, we will adjoin α, a root of f(x) = x3 − 2.

Notice that there are three roots of this polynomial when its roots are viewed

over the complex numbers C. However, the algebraic structure is independent of which

root is chosen. The reason is that the only algebraic property we have is that f(α) = 0,

or α3 = 2. In other words, we cannot distinguish between the real root and the complex

pair of roots based on this properly alone. We will discuss the implications of this later.

Returning to the example, to adjoin α we will consider the collection of all

possible finite sums and products that can be built up from Q and α. We will write this

as Q(α). It is not hard to see that

Q(α) = {a+ bα+ cα2 : a, b, c ∈ Q}.

We know that the set is at least this big. If we have higher powers of α, we can use the

property that α3 = 2 to reduce the power. For example, α8 = (α3)2α2 = 22α2 = 4α2.

Therefore, Q(α) is exactly this set.

Viewing Q(α) as a vector space over Q (with basis vectors 1, α, and α2), we

see that we have a 3 dimensional vector space. We say that Q(α) is a degree 3 extension

over Q, and this is written [Q(α),Q] = 3.

As stated earlier, the algebraic property alone does not distinguish between the

various roots of the polynomial. To make the distinction between the roots, we must view

them as elements of C. Since f(x) is a real polynomial, we know that the roots will either

be real or come in complex pairs. For the specific example, there is one real root ( 3
√

2,

the real cube root of 2) and there is one complex pair of roots, (−1
2 ±

√
3

2 i)
3
√

2. For each

root, there is an embedding of the number field Q(α) into C. The number and types of

embeddings are important features, as we will later see. (The embeddings of a particular

field are also called its conjugate fields, and we will use these words interchangeably.)

We have briefly looked at Q(α), but have not answered two basic questions.

What are the integers of Q(α)? What are the primes? At this point, it is best to work

with the formal definitions.
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1.1.2 Field Basics

Keeping the previous example in mind, we will begin to build the formalism of

algebraic number theory by discussing general fields and their extensions. Any introduc-

tory algebra text will have this information.

Definition 1.1. A field L containing K is said to be an (algebraic) extension of K

if every element of β ∈ L is the root of some non-zero polynomial with coefficients in

K. We write L/K to denote that L is an algebraic extension of K. If fβ(β) = 0 and

fβ ∈ K[x] is irreducible over K, then we call fβ the minimal polynomial of β over K.

We use the word algebraic to distinguish this type of extension from a transcen-

dental extension. A transcendental extension has elements in it which are not the root

of a polynomial with coefficients in the lower field. An example of this is the extension

Q(π)/Q. We will not deal with transcendental extensions in this dissertation.

In the example, we looked at the extension Q(α)/Q. We did not show that

every element of Q(α) is the root of a polynomial with rational coefficients, we only

noted that α was the root of such a polynomial. However, it is a theorem that sums and

products of algebraic numbers (that is, roots of certain polynomials over a given field)

are also algebraic numbers.

Definition 1.2. The degree of an extension L/K is the dimension of L over K as a

vector space. The degree of L/K is denote [L : K].

We will only be working with finite degree extensions, so we will not discuss

infinite extensions here. We were able to come up with an explicit form of Q(α) in the

example that allowed us to quickly see its dimension over Q as a vector space. The ability

to find a single element such that its powers generate the basis for the vector space for

the field extension was not unique to this example. For the cases we are considering, it

is always true that for a finite degree algebraic extension L/K is of the form L(α) for

some α.

Definition 1.3. A number field is a finite (algebraic) extension of Q.

The reason we are interested in number fields is that we want to build on the

idea of primes, and the primes in Q are familiar and fairly well understood.

There are two special type of field extensions that we will be using repeatedly.

The first is the compositum of number fields.
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Definition 1.4. The compositum of number fields K1, K2, . . . , Kn, which we denote

by K1K2 · · ·Kn, is the field generated by all the Ki.

In this definition, we are ignoring some technical problems that arise in the

general situation since we can view all of our fields to be subsets of C. If we did not

allow ourselves that luxury, we would have to define the compositum of two fields by

taking the quotient of a certain tensor product and prove that this extends in a reasonable

way to taking the compositum of many fields.

Definition 1.5. A normal extension of a number field K is a field N such that

1. N ⊃ K

2. For any β ∈ K, if fβ is the minimal polynomial of β over Q, then all the roots of

fβ are contained in K.

If, furthermore, N has the property that it is contained in every other normal extension

N ′ of K, then N is called the minimal normal extension of K.

A normal extension of a number field K is a critical idea because the main

theorem that we use (Theorem 1.15) requires Galois theory, which can only be applied

to normal extensions.

The minimal normal extension of our example field Q(α) is N = Q(α, ω), where

ω is a primitive cube root of 1. This is a degree 6 field ([N : Q] = 6) that is degree 2

over Q(α) ([N : Q(α)] = 2). It is also the compositum of Q(α) and Q(ω). Notice that

[Q(α) : Q] = 3 and [N : Q] = 6 = 3!. In general, if N is the minimal normal extension

of K, then [N : Q] ≤ [K : Q]!.

1.1.3 Algebraic Integers and Unique Factorization

Definition 1.6. We define the set of algebraic integers to be the set

A = {β ∈ C : β is the root of a monic polynomial with coefficients in Z}.

Definition 1.7. The algebraic integers of a number field K is the set K ∩A.

We will show that the rational integers are indeed the algebraic integers of Q.

Since every element of Q is of the form a/b where a, b ∈ Z with b 6= 0, we see that every

element of Q is the root of a polynomial of the form f(x) = bx−a. The algebraic integers
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of Q are those which are the root of a monic polynomial, which means that b = ±1, and

this completes the proof.

In general, computing the algebraic integers of a number field can be compli-

cated task. To demonstrate this, we will compute the integers of Q(
√

5) = {a + b
√

5 :

a, b ∈ Q}. It is easy to check that a+ b
√

5 is a solution to

x2 − 2ax+ a2 − 5b2 = 0.

We want to find rational values of a and b so that this is a polynomial with coefficients

in Z.

From the x term, we can see that a = a′/2, where a′ is a rational integer. We

will now consider the constant term. We want

(a′)2

4
− 5b2 =

1
4
(
(a′)2 − 20b2

)
∈ Z.

We need the term on the right to be an integer divisible by 4. This means that b can

have at most a 2 in the denominator. We let b = b′/2 so that our condition is now

(a′)2 − 5(b′)2 ∈ 4Z.

If a′ is even, then b′ must also be even, and this is the case where a and b are

already rational integers. So we now consider the case where a′ is odd, which forces b′

to be odd. We will write a′ = 2k + 1 and b′ = 2j + 1, with k, j ∈ Z. Then we have

(a′)2 − 5(b′)2 = 4k2 + 4k + 1− 5(4j2 + 4j + 1)

= 4k2 + 4k − 20j2 − 20j − 4.

This is divisible by 4 for any choice of k and j. Therefore, we have shown that the

integers of Q(
√

5) are numbers of the form (a + b
√

5)/2 where a and b are either both

even or both odd.

In order to avoid a long discussion about ideals that will not directly be used

anywhere else in this dissertation, we will simply have a brief overview of the important

ideas, and the reader is advised to pick up a book on algebraic number theory for the

details.

The easiest way to view an ideal is that it is the set of all integral linear

combinations of a collection of elements. The notation will be understood by writing a

couple examples. In Q, we have

(8) = {8 · x : x ∈ Q ∩A}
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and

(10, 15) = {10 · x+ 15 · y : x, y ∈ Q ∩A}.

(Note that Q ∩A = Z, but we write it this way to illustrate the idea.) In the example

of Q(α), we have

(2 + α) = {(2 + α) · x : x ∈ Q(α) ∩A}

and

(1− α, 3) = {(1− α) · x+ 3 · y : x, y ∈ Q(α) ∩A}.

Ideals have divisibility based on containment. We say that an ideal a divides

an ideal b if a ⊃ b. (It is conventional to use a fancy German character to represent

ideals in number theory.) In the rational integers, this correspondence is pretty clear

upon considering an example. Comparing the ideals (3) and (6) we get

(3) = {3 · x : x ∈ Z} = {0,±3,±6, . . .} ⊃ {0,±6,±12, . . .} = (6),

and we know that 3 divides 6.

Products of ideals are obtained by multiplying all possible pairs of elements,

taking one from each ideal. For example,

(2) · (3) = {2x · 3y : x, y ∈ Z} = {6z : z ∈ Z} = (6).

It turns out that you can simply multiply the generators of the two ideals to get a list

of generators for the product ideal, such as

(6, 4) · (9, 3) = (54, 18, 36, 12).

To verify this, we can use what we know about linear combinations and divisibility in

the rational integers, namely that the collection of all integral linear combinations of a

set of elements is generated by the greatest common divisor of the elements. In this case,

the product reduces back to

(2) · (3) = (6).

Ideals which can be generated by a single element are called principal ideals.

The divisibility property gives us the definition of primes:

Definition 1.8. An ideal p 6= (1) is prime if whenever p divides ab, then p divides a or

p divides b.
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The algebraic integers of a number field all have unique factorization into prime

ideals. The need to generalize from elements to ideals is not immediately obvious. We

will work through a brief example to illustrate the problem that arises and how it is

resolved.

Consider the number field Q(
√
−5). The algebraic integers of this field are

everything of the form a+b
√
−5 where a, b ∈ Z. Consider the following two factorizations

of 6:

6 = 2 · 3 = (1 +
√
−5) · (1−

√
−5).

It does not take much effort to see that each of the two factorizations cannot be reduced

any further as numbers. As numbers, this shows a violation of unique factorization.

However, as ideals, the factorization can continue and thus preserve this nice property.

To understand how it works, it’s good to look at a case in the rational integers:

(60) = (6) · (10) = (4) · (15).

Pretend for the moment that you could not tell that you could factor the ideals on the

right any further, but you expected unique factorization to hold. For this to work, you

would have to surmise that there is a way that (6) splits such that part of it “belongs”

to (4), which we will suggestively denote as (6, 4), and the rest of it “belongs” to (15),

denoted (6, 15). By doing this to (10) as well, we would get another factorization of (60):

(60) = (6, 4) · (6, 15) · (10, 4) · (10, 15). (1.1)

Of course, we can see that this is

(60) = (2) · (3) · (2) · (5),

which confirms our suspicions in this case. Furthermore, by taking appropriate pairs, it

is possible to get both of the previous factorizations. For example,

(6, 4) · (10, 4) = (60, 24, 40, 16) =⇒ (2) · (2) = (4).

Returning to the Q(
√
−5) example, following the same process we get

(6) = (2, 1 +
√
−5) · (2, 1−

√
−5) · (3, 1 +

√
−5) · (3, 1−

√
−5).

This factorization behaves the same way as Equation (1.1), except that there is no single

number that generates the ideals on the right. In fact, the term ideal originated from

the context of saying that there is some ideal number which was the greatest common

divisor, so that unique factorization of numbers could still be true.
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(0, 0, 0) (0, 0, 1) (0, 0, 2)
(0, 1, 0) (0, 1, 1) (0, 1, 2)
(0, 2, 0) (0, 2, 1) (0, 2, 2)
(1, 0, 0) (1, 0, 1) (1, 0, 2)
(1, 1, 0) (1, 1, 1) (1, 1, 2)

...
...

...

Figure 1.1: 18 of the 27 congruences classes of the algebraic integers of Q(α) modulo (3).

1.1.4 Field Invariants

The term field invariant refers to a collection of values associated to a number

field K. These values are intrinsic to the structure of K and do not depend on any

particular choices, such as the set of generators. We will not discuss these invariants

in detail, but only point out the properties that are relevant to the remainder of the

dissertation.

We have already seen in theQ(α) example that α3 = 2 has three possible choices

when viewed over C. For any number field K, there are always as many embeddings as

the degree of the extension over Q. Furthermore, the complex embeddings (those which

are not contained in the real line) always come in complex conjugate pairs. We will

express this relationship as n = r1 + 2r2, where r1 is the number of real embeddings, r2

is the number of complex conjugate pairs of embeddings, and n = [K : Q].

The norm of an ideal a is the number of congruence classes of the algebraic

integers of K modulo a and is denoted by NK(a). We say that two algebraic integers

x and y are in the same congruence class if x − y ∈ a. It is easy to see that for a

rational integer n viewed in Q, NQ((n)) = |n|. The number field affects how the norm

is computed, as we will show in the next example.

We will continue to work with Q(α), with α3 = 2. We will compute NQ(α)((3)).

Note that

(3) = {3a+ 3bα+ 3cα2 : a, b, c ∈ Z}.

We can view these as 3-tuples of integers (a, b, c). Therefore, two algebraic integers are in

the same congruence class if each term in the difference between the 3-tuples is divisible

by 3. This observation allows one to write out all 27 congruence classes. The list is

started in Figure 1.1.
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It is also interesting to compute NQ(α)((1 + α)). Note that

(1 + α) = {(1 + α) · a+ (1 + α) · bα+ (1 + α) · cα2 : a, b, c ∈ Z}

= {(a+ 2c) + (a+ b)α+ (b+ c)α2 : a, b, c ∈ Z}.

The requirement for two algebraic integers to be in the same congruence class is much

more complicated. There are other methods to compute the norm besides this brute

force method, but we will not introduce them because they will not be used later. Using

the idea of 3-tuples again, we see that two algebraic integers are congruent modulo (1+α)

when their difference is in the Z-span of

{(1, 1, 0), (0, 1, 1), (2, 0, 1)}.

The Z-span of this set is difficult to discern in this form. However, if we do a Z-row

reduction, we get 
1 1 0

0 1 1

2 0 1

 ∼


1 1 0

0 1 1

0 −2 1

 ∼


1 1 0

0 1 1

0 0 3

 .

From this, we can see that any 3-tuple is equivalent to exactly one of

{(0, 0, 0), (0, 0, 1), (0, 0, 2)},

so that NQ(α)((1 + α)) = 3.

When the norm of an ideal generated by the element x is 1, so N((x)) = 1, we

call x a unit. In particular, it means that there is some other algebraic integer y such

that xy = 1. The units of a number field play a role in the computation of the regulator

of the number field. The regulator is computed by taking the determinant of a matrix

which represents the volume of a fundamental mesh in an (r1 + r2)-dimensional space

(where r1 and r2 correspond to the number of real and complex pairs of embeddings of

the number field into C). We will not work through the details of this calculation here

even though it will be necessary at one point in this dissertation. The curious reader

can read more about the regulator in the references given.

The different DK and the discriminant DK of a number field K are difficult

objects to define, but they have nice properties that we will discuss in the next section.

The important fact is that the norm of the different is the discriminant, NK(DK) = DK .
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The last invariant that we will discuss is the class number, denoted hK or h(K).

The class number is one of the two primary objects of study for this dissertation. Its

value reflects the failure of ideals to be principal ideals. There are several methods for

computing the class number, but the one we will use will have to wait for a few sections,

as there is more formalism that needs to be developed first.

1.1.5 Extensions of Number Fields

Up to this point, we have been focusing on extensions of Q. However, it is

possible to discuss field extensions of any number field. Basically everything we have

done over Q can be repeated starting with a different base field. There are analogous

notions of integrality, relative norms, relative differents, and relative class numbers. The

details of these constructions fill several chapters of a book on algebraic number theory,

so we will only touch on the essential properties.

We will be building towers of fields throughout this dissertation. If K ⊃ L ⊃M

are all fields, with K/L and L/M both finite algebraic extensions, then we have the

following properties:

1. The degree is multiplicative: [K : M ] = [K : L][L : M ].

2. The relative different is multiplicative: D(K/M) = D(K/L)D(L/M).

3. The relative norm respects composition: NK/M = NL/K ◦NM/L.

Furthermore, when the base field is Q, the relative objects reduce appropriately:

1. The relative different is the different: DK/Q = DK .

2. The relative norm is the norm: NK/Q = NK

1.1.6 CM Fields

There are two concepts to introduce before we can define CM fields:

Definition 1.9. A field is totally real if all of its embeddings are contained in the real

line. Alternatively, if n is the degree of the extension, then r1 = n and r2 = 0.

A field is totally complex if none of its embeddings are contained in the real

line. Alternatively, if n is the degree of the extension, then r1 = 0 and 2r2 = n.

Now we can define CM fields:
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Definition 1.10. A CM field is a totally complex quadratic extension of a totally real

field.

The term CM field comes from the theory of complex multiplication. Initially,

complex multiplication was almost a geometric theory: A lattice Λ in the complex plane

is said to have complex multiplication if there is a complex number δ ∈ C\R such that

δΛ ⊂ Λ. The idea of complex multiplication has been generalized to the theory of elliptic

curves. For our purposes, the definition alone is sufficient.

The reason we will want to study CM fields is to control the size of the ratio of

the regulators of the totally real field and the totally complex field. The only place this

calculation is applied is with Equation (3.4). This is taken directly from [Sta74], so the

details of the calculation are not included.

1.2 Analytic Theory

Analytic number theory seeks to gain information out of special complex ana-

lytic functions that can be built from number fields. We will begin with the Riemann

zeta function, which is the prototype for the Dedekind zeta functions.

1.2.1 The Riemann Zeta Function

There is much that can be said about the Riemann zeta function, but we will

confine ourselves to the relevant features.

For s ∈ C, s = σ + it, for σ > 1 we define

ζ(s) =
∞∑
n=1

n−s.

The unusual choice of symbols was introduced by Bernhard Riemann in his 1859 paper

where he discussed the properties of this function and demonstrated how information

about the primes can be obtained by understanding the behavior of this function.

The clue that information about primes is encoded into this function is found
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by rewriting the sum as a product over the (positive) rational primes:

ζ(s) = 1 +
1
2s

+
1
3s

+
1
4s

+
1
5s

+
1
6s

+
1
7s

+
1
8s

+
1
9s

+
1

10s
+ · · ·

= 1 +
1
2s

+
1
3s

+
1

(22)s
+

1
5s

+
1

2s · 3s
+

1
7s

+
1

(23)s
+

1
(32)s

+
1

2s · 5s
+ · · ·

=
(

1 +
1
2s

+
1

(22)s
+ · · ·

)(
1 +

1
3s

+
1

(32)s
+ · · ·

)(
1 +

1
5s

+
1

(52)s
+ · · ·

)
· · ·

=
(

1
1− 2−s

)(
1

1− 3−s

)(
1

1− 5−s

)
· · ·

=
∏
p

(
1− p−s

)−1
.

The product over primes is known as an Euler product. The reason this product works

out correctly is that each n−s term can be expressed uniquely as a product of (pai
i )−s

terms, and each combination of such terms appears exactly once in the final product.

The Euler product allows us to quickly compute the logarithmic derivative of

ζ(s):

ζ ′

ζ
(s) =

d

ds
log(ζ(s))

=
d

ds
log

(∏
p

(
1− p−s

)−1

)

= −
∑
p

d

ds
log(1− p−s)

= −
∑
p

log p · p−s

1− p−s

= −
∑
p

log p
ps − 1

.

We can also compute the logarithmic derivative a different way, by expanding out the

logarithm in a power series:

ζ ′

ζ
(s) = −

∑
p

d

ds
log(1− p−s)

= −
∑
p

d

ds

(
−

∞∑
m=1

p−ms

)

= −
∑
p

∞∑
m=1

log(p)p−ms

=
∞∑
n=1

Λ(n)n−s,
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where Λ(n) is known as the Von Mangoldt function and is defined by

Λ(n) =

log p, if n = pa for some prime p and integer a > 0

0, otherwise.

The sum diverges as s → 1+, which shows that there is a pole at s = 1. It

turns out that the pole is simple and has residue 1. In fact, the Riemann zeta function

is analytic everywhere except for this pole. We will see later that the residue of the

Dedekind zeta function gives information about the field invariants.

The Riemann zeta function satisfies a functional equation. If we define

ξ(s) = s(s− 1)π−s/2Γ(s/2)ζ(s),

then ξ(s) is an entire function satisfying ξ(s) = ξ(1− s). The functional equation can be

used to compute estimates for the value of ζ(s) for σ < 0 by relating them to the values

of ζ(s) for σ > 1, where we have formulas that allow us to make explicit calculations.

1.2.2 Dedekind Zeta Functions

To understand the transition from the Riemann zeta function to Dedekind zeta

functions, we need to reconsider the infinite sum in a different context. Instead of viewing

it as a sum over positive rational integers, we treat it as a sum over the ideals of Z:

ζ(s) = ζQ(s) =
∑
(n)

N((n))−s.

In the same way the sum over rational integers was expressed as a product over positive

prime integers, we can write this as a product over prime ideals:

ζQ(s) =
∏
p

(
1−N(p)−s

)−1
.

Definition 1.11. The Dedekind zeta function of a number field K is defined for σ > 1

by

ζK(s) =
∑

a

N(a)−s,

where s = σ + it and the sum is over all the ideals of K.

By the unique factorization property of ideals, we also have

ζK(s) =
∏
p

(
1−N(p)−s

)−1
.



14

The Euler product also gives us the logarithmic derivative:

ζ ′K(s)
ζK(s)

=
∑

p

logN(p)
N(p)s − 1

. (1.2)

Just like the Riemann zeta function, Dedekind zeta functions are analytic ev-

erywhere except at s = 1. The residue, κK , is given by

κK =
2r1(2π)r2hKRK
ωK
√
|DK |

, (1.3)

where r1 and r2 are the number of real and complex pairs of embeddings (respectively),

hK is the class number of K, RK is the regulator of K, ωK is the number of roots of

unity in K, and DK is the discriminant of K.

Dedekind zeta functions satisfy a functional equation which is similar in form

to the one satisfied by the Riemann zeta function. If we set

ξK(s) =
(
|DK |
22r2πn

)s/2
Γ(s/2)r1Γ(s)r2s(s− 1)ζK(s),

where n = [K : Q], then ξK(s) is an entire function satisfying ξK(s) = ξK(1− s).

1.2.3 Dirichlet L-Functions

Dirichlet L-functions are simpler than Artin L-functions. They can be under-

stood without any background in number theory at all, which cannot be said of their

complicated counterparts. A thorough discussion of Dirichlet L-functions will be given

as these are the type that arise from quadratic extensions, in particular from the CM

field situation.

Definition 1.12. A character χ of modulus m is a map from Z>0 into the complex

plane such that

1. χ(1) = 1.

2. χ(ab) = χ(a)χ(b).

3. χ(a) = 0 when (a,m) > 1.

4. χ is periodic with period m.

It is helpful to look at a few examples of characters to get a sense of how they

look. Table 1.1 provides a small sample of characters. The character χ0 is known as the

trivial character. Notice that the examples exhibit the following properties (which will

not be proven).
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Table 1.1: A complete table of characters modulo 4, 5, and 8. The names are not
standard.

mod 4 1 3 mod 5 1 2 3 4 mod 8 1 3 5 7
χ0 1 1 χ0 1 1 1 1 χ0 1 1 1 1
χ1 1 -1 χ1 1 -1 -1 1 χ1 1 -1 -1 1

χ2 1 i −i -1 χ2 1 -1 1 -1
χ3 1 −i i -1 χ3 1 1 -1 -1

1. The character table is always square.

2. The columns of each table are orthogonal when viewed as (complex) vectors.

3. The rows of each table are orthogonal when viewed as (complex) vectors.

4. All the columns of a particular table have the same norm when viewed as a (com-

plex) vector.

5. All the rows of a particular table have the same norm when viewed as a (complex)

vector.

From any character, we can construct the corresponding Dirichlet L-function:

Definition 1.13. Given a character χ, for σ > 1 (s = σ + it), we define

L(s, χ) =
∞∑
n=1

χ(n)n−s.

Because of the multiplicative property of the characters, we can factor this in

exactly the same way we factored the Riemann zeta function,

L(s, χ) =
∏
p

(
1− χ(p)p−s

)−1
,

and we get an expression for the logarithmic derivative,

L′

L
(s, χ) = −

∞∑
n

χ(n)Λ(n)n−s.

When χ = χ0 is the trivial character, this gives us a relationship between the Dirichlet

L-function and the Riemann zeta function:

ζ(s) =
∏
p|m

(
1− p−s

)−1
∏
p-m

(
1− p−s

)−1 =
∏
p|m

(
1− p−s

)−1
L(s, χ0).
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The analytic behavior of the L-functions mimics the behavior of the Riemann

zeta function. The L-function is analytic everywhere except possibly at s = 1 (the L-

functions corresponding to the trivial characters have a pole at s = 1 and the others are

analytic there).

The important feature of Dirichlet L-functions for us is that they arise from

CM fields. If K is a totally complex extension of a totally real field k, then then we have

ζK(s) = ζk(s)L(s, χ)

for some Dirichlet L-function L(s, χ). In fact, the factorization holds for any quadratic

extension K of any field k once the L(s, χ) concept is generalized to general number

fields. This can be understood in the more complicated context of the formalism of Artin

L-functions, but we will refrain from that discussion and present an explicit example.

Consider the CM field Q(i)/Q, where i2 = −1. It is not hard to show that the

algebraic integers of Q(i) are simply all the numbers of the form a + bi where a, b ∈ Z.

Furthermore, all the ideals of Q(i) are principal and the norm is given by N((a+ bi)) =

a2 + b2.

We want to compute the expansion for ζQ(i)(s). To do this, we need to know

the possible values of N((a + bi)) for all the primes of Q(i). Fortunately, this is well

understood:

1. There is one prime ideal of norm 2, namely (1 + i).

2. If p ∈ Z is a prime congruent to 1 modulo 4, then there are two distinct primes p

such that N(p) = p.

3. If p ∈ Z is a prime congruent to 3 modulo 4, then (p) itself is a prime ideal and

N((p)) = p2.
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Therefore, we have

ζQ(i)(s) =
∏
p

(
1−N(p)−s

)−1

=
(
1− 2−s

)−1
∏

p≡1 mod 4

(
1− p−s

)−2
∏

p≡3 mod 4

(
1− p−2s

)−1

=
(
1− 2−s

) ∏
p≡1 mod 4

(
1− p−s

)−2
∏

p≡3 mod 4

[(
1− p−s

)−1 (1 + p−s
)−1
]

=
∏
p

(
1− p−s

)−1
∏
p>2

(
1− (−1)(p−1)/2p−s

)−1

= ζQ(s)L(s, χ1),

where χ1 is the nontrivial character modulo 4 as shown in Table 1.1.

We can combine the factorization of ζK with the functional equation for the

Dedekind zeta functions to get a functional equation for L(s, χ). If we take K to be a

quadratic extension field k and [K : Q] = 2n, then we have

ξχ(s) =
ξK(s)
ξk(s)

=

(
|DK |

22ρ2π2n

)s/2
Γ(s/2)ρ1Γ(s)ρ2s(s− 1)ζK(s)(

|Dk|
22r2πn

)s/2
Γ(s/2)r1Γ(s)r2s(s− 1)ζk(s)

,

where the number of real and complex pairs of embeddings of k are r1 and r2, the number

for K are ρ1 and ρ2.

The complex pairs of embeddings of k all give rise to two complex pairs of

embeddings of K. The real embeddings of k may or may not continue to be real when

we move toK, but each real embedding will either give rise to two new real embeddings or

two complex pairs of embeddings. Let ρ′2 be the number of complex pairs of embeddings

that arose from a real embedding. Then we have the following relationships:

r1 =
1
2
ρ1 + ρ′2

ρ2 = 2r2 + ρ′2

Plugging in these values in the equation above gives

ξχ(s) =
(
|DK |
|Dk|

1
2ρ2+ρ′2πn

)s/2
Γ(s/2)ρ1/2Γ(s)(ρ2−ρ

′
2)/2

(
Γ(s)

Γ(s/2)

)ρ′2
L(s, χ).

It turns out that we can write |DK | = D2
kf , where f is the period of χ (which

is also the norm of the conductor of χ). Also, by using Legendre’s duplication formula
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(see [Dav00], for example),

Γ(2s)
Γ(s)

= 22s−1π−1/2Γ
(
s+

1
2

)
,

we can simplify the expression further:

ξχ(s) =
(

|Dk|f
2ρ2+ρ′2πn

)s/2
Γ(s/2)ρ1/2Γ(s)(ρ2−ρ

′
2)/2

(
2(s−1)ρ′2π−ρ

′
2/2Γ

(
s

2
+

1
2

)ρ′2)
L(s, χ).

After some rearranging, this is

ξχ(s) = 2−ρ
′
2π−ρ

′
2/2

(
|Dk|f

2ρ2−ρ′2πn

)s/2
Γ(s/2)ρ1/2Γ(s)(ρ2−ρ

′
2)/2Γ

(
s

2
+

1
2

)ρ′2
L(s, χ). (1.4)

Since ρ2 ≥ ρ′2, we see that all of the exponents on the gamma functions terms are

non-negative. This gives the form of the functional equation for L-functions.

In the special case of CM fields, we have r1 = n and r2 = 0 (since k is totally

real) and ρ1 = 0 and ρ2 = n (since K is totally complex). The relationships force ρ′2 = n

and we get

ξχ(s) = 2−nπ−n/2
(
|Dk|f
πn

)s/2
Γ
(
s

2
+

1
2

)n
L(s, χ).

1.2.4 Artin L-Functions

Artin L-functions are a generalization of Dirichlet L-functions. I have chosen

to discuss these separately because the level of detail for this section is significantly less

than the previous section. This section can be skipped if the reader intends to skip the

details of Brauer’s Theorem (Theorem 1.15). The statement of that theorem and its

applications can be understood without having any knowledge of Artin L-functions.

There is a more general notion of characters than what we have discussed.

A representation of a group is a map from the group into the group of invertible n-

dimensional matrices that preserves the group structure. A representation is called

irreducible if you cannot block-diagonalize the matrices into more than one block. From

the representation, one gets a character on the group by taking the trace of the repre-

sentative matrices. An irreducible character is a character derived from an irreducible

representation.

For the characters corresponding to the Dirichlet L-functions, we are looking

at representations of the cyclic group of order m. The characters are the traces of

one-dimensional matrices, which are simply the values of sole matrix entries.
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Let H be a subgroup of a group G. Given a character χ on G, it can be viewed

as a character on H by restriction, ψ = χ|H . It turns out that given a character ψ on

H, one can define another character on G in a well-defined manner, χ = ψ∗. This is

known as the induced character of G by χ (of H). A special case of this is the character

of the regular representation, χreg, which is the character induced from the character of

the trivial subgroup.

When the group is a Galois group of a field extension, then to each character

there is a corresponding Artin L-function. The definition of these L-functions is a bit

complicated and can be looked up in the references. It is enough to know that the L-

function depends on the character and the field extension (say K/k), and we denote it

by L(s, χ,K/k).

There are four major properties:

1. L(s, χ0,K/k) = ζk(s), where χ0 is the trivial character.

2. If χ1 and χ2 are characters of G, then

L(s, χ1 + χ2,K/k) = L(s, χ1,K/k)L(s, χ2,K/k).

3. If K ′ ⊃ K ⊃ k is a bigger Galois extension, and if χ is a character of G(K/k), also

viewed as a character of G(K ′/k), then

L(s, χ,K/k) = L(s, χ,K ′/k).

4. Let k ⊂ F ⊂ K be an intermediate field, and let ψ be a character of G(K/F ). Let

ψ∗ be the induced character of G(K/k). Then

L(s, ψ,K/F ) = L(s, ψ∗,K/k).

In the same way that we were able to factor ζK(s) into the product of an Dirich-

let L-function and ζk(s) in the CM field situation, there is a corresponding factorization

in general:

ζK(s) = ζk(s)
∏

χ irreducible

L(s, χ,K/k)χ(1),

where χ(1) is the evaluation of χ on the identity element of the group.

These L-functions are known to be analytic for all s 6= 1 for all characters

whenever the field extension is normal. Artin’s conjecture is that these L-functions are

analytic for all s 6= 1 for any field extension. If Artin’s conjecture were true, many of

the results of this dissertation could be strengthened.
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1.3 Brauer’s Theorem

An important key to some of the proofs in this dissertation is the ability to

locate a zero of the Dedekind function of one field by knowing the location of a zero of a

different Dedekind zeta function. In [Lan94], the main result needed to accomplish this

is called Brauer’s Lemma.

Lemma 1.14. (Brauer’s Lemma) Let G be a finite group and χreg be the character

of the regular representation. Then there exist cyclic subgroups Hj 6= 1, positive rational

numbers λj, and one-dimensional characters ψj 6= 1 of Hj such that

χreg = χ0 +
∑
j

λjψ
∗
j .

We will use this to prove what Stark refers to as Brauer’s Theorem:

Theorem 1.15. (Brauer’s Theorem) Suppose that K/k is a normal extension and

that ζk(s0) = 0. Then ζK(s0) = 0 as well.

Proof. Let G = G(K/k) be the Galois group of K/k. Then by Brauer’s Lemma (Lemma

1.14), we have

χ(reg,G) = χ(0,G) +
∑
j

λjψ
∗
j ,

where χ(reg,G) is the character of the regular representation of G, χ(0,G) is the trivial

character on G, λj are positive rational numbers, and ψ∗j are one-dimensional characters

induced from cyclic subgroups Hj ≤ G.

Consider the Artin L-function of K/k given by this character. On the left side,

we get

L(s, χ(reg,G),K/k) = L(s, χ∗(0,1),K/k) = L(s, χ0,K/K) = ζK(s).

On the right side, we get

L

s, χ(0,G) +
∑
j

λjψ
∗
j ,K/k

 = L(s, χ(0,G),K/k)
∏
j

L(s, ψ∗j ,K/k)
λj

= ζk(s)
∏
j

L(s, ψ∗j ,K/k)
λj .

Notice that s0 6= 1 and K/k is normal, so that the L-functions are all analytic

at s0. This implies the result.
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1.4 The Brauer-Siegel Theorem

In this section, we will briefly discuss the inspirations for the work contained

in this dissertation.

1.4.1 The Original Theorem

In [Lan94], Lang devotes a short chapter to this theorem.

Theorem 1.16. (The Brauer-Siegel Theorem) If ki ranges over a sequence of num-

ber fields Galois over Q, of degree ni and discriminant Di, such that ni/ log |Di| tends

to 0, then we have

log(hiRi) ∼ log |Di|1/2 as i→∞,

where hi and Ri are the class number and regulator of ki, respectively.

The proof of this theorem has two parts. The first is an upper estimate for the

residue of the Dedekind zeta function and the second is a lower estimate. The proof for

the upper bound is effective, which means that one could compute explicit numerical

values in the estimates. However, the proof of the lower estimate is ineffective, so that

the proof relies upon the mere existence of constants without providing a way to compute

them.

Notice that in situations where the regulator is well-behaved, this gives a rela-

tionship between the size of the class number and the size of the discriminant. We will

see this when we work with CM fields.

1.4.2 Some Effective Cases of the Theorem

In [Sta74], Stark provided a method with which one can compute an effective

lower estimate of the residue of the Dedekind zeta function in special cases.

Theorem 1.17. (Stark Theorem 1) There is an effectively computable constant c > 0

such that

κk >
c

ng(n)|Dk|1/n
.

Here, we have set n = nk and g(n) = 1 if there is a sequence of fields Q = k0 ⊂ k1 ⊂
· · · ⊂ km = k each normal over the preceding field and g(n) = n! otherwise. If k contains

no quadratic subfield, we even have

κk >
c

g(n) log |Dk|
.
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This lower bound can be used in place of the one used in the usual proof and

makes the entire proof effective.

1.4.3 Fields of Bounded Relative Degree

Stark uses towers of normal fields in the proof of Theorem 1.17. The work in

this dissertation is based on a similar idea. Instead of taking fields k where there is a

sequence of fields Q = k0 ⊂ k1 ⊂ · · · ⊂ km = k each normal over the preceding field, we

focus on fields of bounded relative degree.

Definition 1.18. Let B(B) be the collection of all fields M for which there is a sequence

of fields

Q = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mt = M

such that for each 1 ≤ i ≤ t, [Mi : Mi−1] ≤ B.

One of the primary goals is to prove the following:

Theorem 1.19. Fix B > 1. There exist only finitely many CM fields M ∈ B(B) with

any given class number.

We will trace the history of the improvements by Odlyzko ([Odl75]) and Hoff-

stein ([Hof79]) based on Stark’s original work with calculations performed on fields of

bounded relative degree. In the end, we will also obtain a number of explicit numerical

calculations which give us the values of many of the constants that arise throughout the

dissertation.



2

Generalizing Stark’s Calculations

The goal of this chapter is to generalize some of the results of [Sta74]. In

particular, we will be introducing parameters which will allow us to optimize our final

results and give us better values for our numerical computations.

2.1 General Lemmas

These first lemmas are stated in a very general form, but they will specifically

be applied to Dedekind zeta functions and L-functions. The first is a straightforward

calculation involving the functional equation and the Hadamard product formula and

is stated without proof (the proof is found in the original paper). The second is a

generalized version of a calculus lemma that was implicit in Stark’s paper.

Lemma 2.1. (Stark Lemma 1) Let f(s) be an entire function and let

g(s) = ηs/2Γ
(s

2

)a1

Γ(s)a2Γ
(
s

2
+

1
2

)a3

f(s),

where η > 0, ai ≥ 0 for i = 1, 2, 3. Suppose that f(s) is positive for real s > 1 and g(s)

is an entire function of order 1 whose zeros ρ = β + iγ all satisfy 0 < β < 1. Suppose

further that g(s) = g(1− s). Then∑
ρ

1
s− ρ

=
1
2

log η +
a1

2
Γ′

Γ

(s
2

)
+ a2

Γ′

Γ
(s) +

a3

2
Γ′

Γ

(
s

2
+

1
2

)
+
f ′

f
(s),

where the ρ and ρ terms are grouped together in the sum and are counted according to

their multiplicities.
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Figure 2.1: Graphs for the proof of Lemma 2.2.

We note that for a number field M of degree n, when f(s) = s(s− 1)ζM (s) we

have η = |DM |/(22r2πn), where a1 = r1 is the number of real embeddings, a2 = r2 is the

number of complex pairs of embeddings, and a3 = 0.

Lemma 2.2. Suppose δ > 0, c > 1, and let x0 = 1 + δ. Define

h(β,γ)(x) =
x− β

(x− β)2 + γ2

for 0 < β < 1, γ ≥ 0, and 1 ≤ x ≤ x0. Then for all (β, γ) except possibly for

(β, γ) ∈
[
1− δ

c− 1
, 1
)
×

0,
cδ

(c− 1)
(
c+

√
c2 − 1

)
 ,

we have h(β,γ)(x) ≤ ch(β,γ)(x0).

Proof. A quick calculation shows that for fixed (β, γ) with γ > 0, h(β,γ)(x) has a global

maximum at x = β+ γ and h(β,γ)(β+ γ) = (2γ)−1. We also find that h(β,γ)(x) increases

on [β, β+γ] and decreases on [β+γ,∞). We will consider three cases to prove the result.

Figure 2.1 graphically represents the three cases.

The inequality is trivially true when x0 ∈ [β, β + γ], for then

h(β,γ)(x) ≤ h(β,γ)(x0) < ch(β,γ)(x0)

since the function is increasing there. This translates to the region x0 ≤ β + γ since

x0 ≥ β is always true. This is region A in Figure 2.1.
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The inequality is also trivially true when ch(β,γ)(x0) ≥ (2γ)−1. Computing

directly, this happens when

β + γ
(
c−

√
c2 − 1

)
≤ x0 ≤ β + γ

(
c+

√
c2 − 1

)
.

This is region B in Figure 2.1.

We will compute the inequality explicitly for β + γ ≤ 1. In this range, the

function is decreasing so that the maximum value is attained at x = 1.

1− β

(1− β)2 + γ2
≤ c

x0 − β

(x0 − β)2 + γ2

=⇒ γ2(−(1− β)(c− 1)− cδ) ≤ (1 + δ − β)(1− β)((1− β)(c− 1)− δ).

Note that the left side is always nonpositive and when β ≤ 1 − δ/(c − 1) the right side

is nonnegative. This is region C in Figure 2.1.

Remark 2.3. In the original paper, the inequality was computed for c = 2. The allowed

region for the potential zero was weaker in γ than our result.

Lemma 2.4. (Stark Lemma 2) Suppose that f(s) satisfies the conditions of Lemma

2.1 and let n = a1 + 2a2 + a3. Suppose further that there exist b, c1, c2, and d such that

1. f ′

f (σ) ≤ 1
σ + 1

σ−1 + c1 log η for 1 ≤ σ ≤ 1.461,

2. d ≥ 3, d ≥ η, and log d ≥ c−1
2 n,

3. there is at most one zero of f(s) in the set S defined by

S =
[
1− b

log d
, 1
)
×
[
0,

b

log d

]
⊂ C.

If this zero exists, it is real and simple and we denote it as β0.

Let c > 1 be chosen so that

(c− 1)
(
c+

√
c2 − 1

)
c

b

log d
≤ 0.461. (2.1)

Let σ0 = σ0(c) = 1 + b(c− 1)(log d)−1(≤ 1.461) and set

E =


1−β0

σ0−β0
, if β0 exists

1, otherwise.
(2.2)

Then

f(1) ≥ c−1
3 Ef (σ0) ,

where c3 = c3(c) > 0 is computable from c1 and c2.
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Proof. We will follow the case where β0 exists.∑
ρ

1
σ − ρ

=
1

σ − β0
+
∑
ρ 6=β0

< 1
σ − ρ

,

where the we are allowed to take the real part because the sum groups complex conjugate

pairs together and for ρ = β + iγ,

1
σ − ρ

+
1

σ − ρ
= 2< 1

σ − ρ
= 2

σ − β

(σ − β)2 + γ2
.

We apply Lemma 2.2 with δ = b(c− 1)(log d)−1. Then for zeros outside of the

set [
1− b

log d
, 1
)
×
[
0,

c

c+
√
c2 − 1

b

log d

]
⊂ S

we have for 1 ≤ σ ≤ σ0 ≤ 1.461,

1
σ − ρ

≤ c
1

σ0 − ρ
.

All of the zeros except β0 lie outside of S, so we can apply this to all of them. Therefore,∑
ρ

1
σ − ρ

≤ 1
σ − β0

+ c
∑
ρ

1
σ0 − ρ

, (2.3)

where we have added back the β0 into the sum (it is positive since β0 < 1 < σ0).

By Lemma 2.1,

f ′

f
(σ) =

∑
ρ

1
σ − ρ

− 1
2

log η − a1

2
Γ′

Γ

(σ
2

)
− a2

Γ′

Γ
(σ)− a3

2
Γ′

Γ

(
σ

2
+

1
2

)
≤ 1
σ − β0

+ c
∑
ρ

1
σ0 − ρ

− 1
2

log η − a1

2
Γ′

Γ

(σ
2

)
− a2

Γ′

Γ
(σ)− a3

2
Γ′

Γ

(
σ

2
+

1
2

)
=

1
σ − β0

+
c− 1

2
log η − a1

2
Γ′

Γ

(σ
2

)
+
ca1

2
Γ′

Γ

(σ0

2

)
− a2

Γ′

Γ
(σ) + ca2

Γ′

Γ
(σ0)−

a3

2
Γ′

Γ

(
σ

2
+

1
2

)
+
ca3

2
Γ′

Γ

(
σ0

2
+

1
2

)
+ c

f ′

f
(σ0).

Notice that Γ′(x)/Γ(x) is monotonically increasing for x > 0 and is negative for 0 < x <

1.461. Then for 1 ≤ σ ≤ σ0 ≤ 1.461,

f ′

f
(σ) ≤ 1

σ − β0
+
c− 1

2
log η −

(a1

2
+ a2 +

a3

2

) Γ′

Γ

(
1
2

)
+ c

(a1

2
+ a2 +

a3

2

) Γ′

Γ
(σ0) + c

f ′

f
(σ0)

<
1

σ − β0
+

2cc1 + c− 1
2

log η − n

2
Γ′

Γ

(
1
2

)
+

c

σ0
+

c

σ0 − 1
,
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where we have used the first hypothesis and dropped the Γ′/Γ(σ0) term because it is

positive.

Integrating this on the interval 1 ≤ σ ≤ σ0, we get

log f(1) ≥ log f(σ0)− log
(
σ0 − β0

1− β0

)
− (σ0 − 1)

(
2cc1 + c− 1

2
log η +

c

σ0
+

c

σ0 − 1
− n

2
Γ′

Γ

(
1
2

))
.

But since σ0 − 1 = b(c− 1)(log d)−1 ≤ bc2(c− 1)/n and η ≤ d,

(σ0 − 1)
(

2cc1 + c− 1
2

log η +
c

σ0
+

c

σ0 − 1
− n

2
Γ′

Γ

(
1
2

))
≤ b(c− 1)

log d

(
2cc1 + c− 1

2
log η

)
+ c(σ0 − 1)

(
1
σ0

+
1

σ0 − 1

)
− bc2(c− 1)

n

n

2
Γ′

Γ

(
1
2

)
≤ b(c− 1)(2cc1 + c− 1)

2
log η
log d

+ c

(
2− 1

σ0

)
− bc2(c− 1)

2
Γ′

Γ

(
1
2

)
≤ b(c− 1)(2cc1 + c− 1)

2
+ 1.316c− bc2(c− 1)

2
Γ′

Γ

(
1
2

)
.

Exponentiating both sides gives

f(1) ≥ c3(c)−1

(
σ0 − β0

1− β0

)
f(σ0), (2.4)

where

c3(c) = c3 = exp
(
b(c− 1)(2cc1 + c− 1)

2
+ 1.316c− bc2(c− 1)

2
Γ′

Γ

(
1
2

))
. (2.5)

Notice that E is defined to be the middle term of Equation (2.4), so that the proof is

complete when β0 exists.

When β0 does not exist, the (σ − β0)−1 term does not arise in Equation (2.3),

and so can we take E = 1.

2.2 Results Near s = 1

The lemmas in this section are all calculations near s = 1. The first lemma

relies on the generality from Lemma 2.2. The next two lemmas are applications of the

first lemma, looking first at the residue of a Dedekind zeta function and then at the

value of an L-function at s = 1.
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Table 2.1: Allowed values of µ and ν, where σ is chosen to be 1 + k(log |DM |)−1.

k 0.83 0.83 0.84 0.84 0.90 0.95
µ 2.915 2.915 2.989 3 3.618 4.079
ν 1000 100 10 9.343 3.618 3

k 1.10 1.12 1.22 1.22 1.22 1.22
µ 8.826 10 100 1000 10000 100000
ν 2 1.949 1.688 1.668 1.666 1.666

Lemma 2.5. (Stark Lemma 3a) Let M be an algebraic number field of degree n =

r1+2r2 where M has r1 real conjugate fields and 2r2 complex conjugate fields. For σ > 1,

−ζM
ζM

(σ) <
1
σ

+
1

σ − 1
+

1
2

log
(
|DM |
22r2πn

)
+
r1
2

Γ′

Γ

(σ
2

)
+ r2

Γ′

Γ
(σ). (2.6)

Proof. This is a direct application of Lemma 2.1 with f(s) = s(s− 1)ζM (s).

Lemma 2.6. (Stark Lemma 3b) Let M be an algebraic number field of degree n > 1.

Then ζM (s) has at most one zero β in the region

1− (µ log |DM |)−1 ≤ β < 1 and |γ| ≤ (ν log |DM |)−1,

where µ and ν can be chosen according the Table 2.1. If there is such a zero, then it is

also simple.

Proof. We begin with Equation (2.6) and rearrange the terms to get

∑
ρ

1
s− ρ

=
1

s− 1
+

1
2

log |DM |

+
(

1
s
− n log π

2

)
+
r1
2

Γ′

Γ

(s
2

)
+ r2

(
Γ′

Γ
(s)− log 2

)
+
ζ ′M
ζM

(s). (2.7)

The sum runs over all the zeros ρ of ζM (s) with 0 < <(ρ) < 1. For s = σ > 1, note that

1
σ − ρ

+
1

σ − ρ
=

2(σ − β)
(σ − β)2 + γ2

> 0,

so that ∑
ρ

′ 1
σ − ρ

≤
∑
ρ

1
σ − ρ

,

where the
∑′ is a sum over any subset of the ρ such that if ρ is in the set then so is ρ.



29

Notice that for 1 < σ < 2.479 the terms in the second line of Equation (2.7)

are all negative, with the r2 term being the first term to change signs. Therefore,∑
ρ

′ 1
σ − ρ

<
1

σ − 1
+

1
2

log |DM |.

We will first consider the case where µ = 3 and ν = 9.343. Suppose that there

is a complex zero in the region. Then its complex conjugate must also be in the region.

Taking just these two zeros for
∑ ′ with σ = 1 + 0.84(log |DM |)−1, we get∑

ρ

′ 1
σ − ρ

≥
2
(

1
3 + 0.84

)
(log |DM |)−1(

1
3 + 0.84

)2 (log |DM |)−2 + 1
9.3432 (log |DM |)−2

> 1.690 log |DM |.

On the other hand,

1
σ − 1

+
1
2
(log |DM |)−1 = 1.690 log |DM |.

This gives a contradiction, so there cannot be a complex pair of zeros in this region.

Now suppose that there are two real zeros in the given range. Taking the same value of

σ as before, we have ∑
ρ

′ 1
σ − ρ

≥ 2 · 1(
1
3 + 0.84

)
(log |DM |)−1

> 1.704 log |DM |,

yielding the desired contradiction. Therefore, there is at most one real zero in the region.

The other cases are similar to this one, and the appropriate values of σ are

described in Table 2.1.

Remark 2.7. Throughout the dissertation, we will take µ and ν to be a fixed pair of

values given by this lemma. The specific choice will only be relevant when we attempt to

compute numerical values for our bounds. In our applications, the value of b in Lemma

2.4 will be the maximum of µ and ν.

Lemma 2.8. (Stark Lemma 4) Let M 6= Q be a number field and let κM be the

residue of ζM (s) at s = 1. Let β0 be the exceptional zero of ζM (s) if it exists, so that

β0 ≥ 1− (µ log |DM |)−1. Then for c > 1 chosen as in Lemma 2.4

κM >

c
−1
3

c−1
(c−1)+(bµ)−1 (1− β0) if β0 exists

c−1
3 b(c− 1)(log |DM |)−1, otherwise.
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Proof. We want to apply Lemma 2.4 to f(s) = s(s− 1)ζM (s) with η = |DM |. It can be

shown (see [Sta74]) that we can take c1 = 0 and c2 = 2/ log 3. Therefore,

f(1) ≥ c−1
3 Ef(σ0) (2.8)

where c3 = c3(c) is given by Equation (2.5), E is given by Equation (2.2), and σ0 =

σ0(c) = 1 + b(c− 1)(log |DM |)−1.

Note that f(1) = κM and

f(σ0) = σ0(σ0 − 1)ζM (σ0) > (σ0 − 1).

If β0 exists then

Ef(σ0) >
1− β0

σ0 − β0
(σ0 − 1)

≥ b(c− 1)(log |DM |)−1

b(c− 1)(log |DM |)−1 + (µ log |DM |)−1
(1− β0)

=
c− 1

(c− 1) + (bµ)−1
(1− β0)

Otherwise,

Ef(σ0) > (σ0 − 1) = b(c− 1)(log |DM |)−1.

Combining these results with Equation (2.8) gives the result.

Before we proceed to the next lemma, we will set some notation. Let k be a field

of degree n = r1 + 2r2 where k has r1 real conjugate fields and 2r2 complex conjugate

fields. Let K be a quadratic extension of k, so ζK(s) = ζk(s)L(s, χ). Define f ≥ 1 by

|DK | = D2
kf . Notice that f(s) = L(s, χ) satisfies the hypotheses of Lemma 2.1 with

η =
|Dk|f
22r2πn

since ρ2 = 2r2 + ρ′2 (under the notation of Section 1.2.3).

Lemma 2.9. (Stark Lemma 5) There is at most one real zero β0 of L(s, χ) in the

range 1− (µ logD2
kf)−1 ≤ β < 1. Further, for any σ1 with

1 + b(c− 1)(logD2
kf)−1 = σ0 ≤ σ1 ≤ 2,

where c is chosen as in Lemma 2.4, we have

L(1, χ) > c−1
4

z(c, β0)
σ1 − 1

|Dk|−
1
2
(σ1−1)

( √
π

Γ(σ1/2)

)r1 (2σ1−1

Γ(σ1)

)r2 (π 1
2
(σ1−1)

ζ(σ1)

)n
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where

z(c, β0) =


c−1

(c−1)+(bµ)−1 (1− β0), if it exists

b(c− 1)(logD2
kf)−1, otherwise

(2.9)

and c4 = c4(c) is effectively computable.

Proof. It is shown in [Sta74] that we can apply Lemma 2.4 with c1 = 1/2 and c2 =

1/ log 3, so that

L(1, χ) ≥ c−1
3 EL(σ0, χ), (2.10)

where E is defined in Equation (2.2).

It is also shown that

L(σ0, χ) > L(σ1, χ)
σ0(σ0 − 1)
σ1(σ1 − 1)

(
η

f

)− 1
2
(σ1−σ0)(Γ(σ0/2)

Γ(σ1/2)

)r1 (Γ(σ0)
Γ(σ1)

)r2
(2.11)

>
σ0(σ0 − 1)
σ1(σ1 − 1)

|Dk|−
1
2
(σ1−1)e−(σ0−1)n

( √
π

Γ(σ1/2)

)r1 (2σ1−1

Γ(σ1)

)r2 (π 1
2
(σ1−1)

ζ(σ1)

)n
(2.12)

Noting that c2 logD2
kf ≥ n, by the second hypothesis of Lemma 2.4 we have

exp(−(σ0 − 1)n) ≥ exp (−bc2(c− 1)) .

We also have σ0/σ1 > 1/2 and E(σ0−1) was computed in Lemma 2.8 (we get E(σ0−1) ≥
z(c, β0)). Bringing all these results together we get

L(1, χ) > c−1
4

z(c, β0)
σ1 − 1

|Dk|−
1
2
(σ1−1)

( √
π

Γ(σ1/2)

)r1 (2σ1−1

Γ(σ1)

)r2 (π 1
2
(σ1−1)

ζ(σ1)

)n
,

where c4 = c4(c) = 2c3 exp(bc2(c− 1)).

2.3 Other Results

These results are taken directly from [Sta74] without proof and are given here

for reference.

Lemma 2.10. (Stark Lemma 7) Let K1,K2, . . . ,Ka be number fields and let M =

K1K2 · · ·Ka. Then

DM |
a∏
i=1

D
[M :Ki]
Ki

.
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Lemma 2.11. (Stark Lemma 11) Let F be a quadratic field. There is an effectively

computable constant c5 > 0 such that ζF (σ) 6= 0 for σ > 1 −
(
c5|DF |1/2

)−1
. The value

of c5 can be taken to be π/6.

Theorem 2.12. (Stark Theorem 3) Let B be a normal extension of A and suppose

β is a real simple zero of ζB(s). Then there is a field F between A and B such that for

any field E between A and B, ζE(β) = 0 if and only if F ⊂ E. Furthermore, F = A or

F is quadratic over A.
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Application to B(B)

Having generalized the necessary results from [Sta74], we will now apply them

to our primary object of study.

3.1 A Lower Bound for κM

Our first goal is to obtain a lower bound for the residue κM of the Dedekind

zeta function ζM (s) associated to the number field M . To do this, we first show that

under certain hypotheses the a zero of ζM (s) can be “knocked down” to a quadratic field.

Combining this result with Lemma 2.11, we find that we have some information about

the location of the zero, which gives us information about the size of κM .

Lemma 3.1. Suppose M ∈ B(B) and there is a real β in the range

1− (µ(2B − 1)!(2B − 1) log |DM |)−1 ≤ β < 1

such that ζM (β) = 0. Then there is a quadratic field F contained in M such that

ζF (β) = 0.

Proof. We will prove the lemma by successively reducing the length of the sequence by

one or two until there are less than four fields remaining. Figure 3.1 will guide the proof

by graphically keeping track of the fields.

Suppose K ⊂ L ⊂M is a sequence of fields with [L : K], [M : L] ≤ B and such

that ζM (β) = 0 where β is in the range given in the statement of the lemma. We want

to show that there is a field F between K and M with ζF (β) = 0 and [F : K] ≤ B.

Then the sequence K ⊂ L ⊂ M can be replaced by K ⊂ F (note that |DF | ≤ |DM | so

that β is still in the required range).

33
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Figure 3.1: Field diagrams for the proof of Lemma 3.1.

Let N be the compositum of all the conjugates of M containing L. This is

clearly a normal extension of L. Since ζM (β) = 0, by Theorem 1.15 we have ζN (β) = 0.

By Lemma 2.10, DN |
(
D

[N :M ]
M

)[M :L]−1
, so that

|DN | ≤ |DM |([M :L]−1)!([M :L]−1) ≤ |DM |(2B−1)!(2B−1).

Note that

1− (µ log |DN |)−1 ≤ 1− (µ(2B − 1)!(2B − 1) log |DM |)−1 ≤ β < 1

so that by Lemma 2.6 we see that β must be a simple zero of ζN (s).

We can now apply Theorem 2.12 with A = L and B = N to produce a field P

contained in N such that ζP (β) = 0 and either P = L or [P : L] = 2. Note that P ⊂M

since ζM (β) = 0. If P = L, then we can take F = P and we have shortened the sequence

by one and the new sequence is K ⊂ L.

In the second case, let N ′ be the compositum of all the conjugates of P con-

taining K. This is a normal extension of K, so by Theorem 1.15, ζP (β) = 0 implies that

ζN ′(β) = 0. We use Lemma 2.10 as before to get |D′
N | ≤ |DP |(2B−1)!(2B−1). Then we

have

1− (µ log |DN ′ |)−1 ≤ 1− (µ(2B − 1)!(2B − 1) log |DP |)−1 ≤ β < 1

and so by Lemma 2.6, β is a simple zero of ζN ′(s).

Applying Theorem 2.12 with A = K and B = N ′, there is a field F contained

in N ′ such that ζF (β) = 0 and F = K or [F : K] = 2. If F = K then we are done, since

K ⊂ M by assumption. In this situation, we have managed to remove two fields from
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the sequence (only K remains). Otherwise, we note that ζP (β) = 0 implies that F ⊂ P

and so F ⊂M . Clearly, we have 2 = [F : K] ≤ B, so that the new sequence is K ⊂ F .

Suppose the sequence of fields is reduced to three terms, say Q ⊂ K ⊂ M .

Following the process above we find that there is a field P ⊂ M such that ζP (β) = 0

and either P = K or [P : K] = 2. In either case, we have a sequence Q ⊂ P and

[P : Q] ≤ 2B.

For a sequence of two terms, the desired quadratic field F is obtained by taking

N to be the normal extension of K as described above and following the same procedure.

The fact that ζQ(s) has no real zeros forces the field derived from Theorem 2.12 to be

quadratic.

We will now compute the lower bound for κM .

Theorem 3.2. If M ∈ B(B) and [M : Q] = n, then

κM > c−1
3

c− 1
(c− 1) + (bµ)−1

min
[
(µ(2B − 1)!(2B − 1) log |DM |)−1, (c5|DM |1/n)−1

]
.

Furthermore, if M has no quadratic subfields, then

κM > c−1
3 b(c− 1)(log |DM |)−1.

Proof. Suppose that ζM (β0) = 0 for some β0 in the range

1− (µ(2B − 1)!(2B − 1) log |DM |)−1 ≤ β0 < 1.

By Lemma 3.1, there is a quadratic subfield F of M such that ζF (β0) = 0.

If M has no quadratic subfields, then there cannot be such a zero. In this case,

we apply Lemma 2.8 to get

κM > c−1
3 b(c− 1)(log |DM |)−1.

If M has a quadratic subfield, then by Lemma 2.11,

β0 < 1− (c5|DF |1/2)−1 ≤ 1− (c5|DM |1/n)−1,

where the last inequality follows from the equation D(M/Q) = D(M/F )D(F/Q), where

D(A/B) is the relative different of A/B (take the norm of the equation). We are assuming

that β0 exists, so this implies that there are no zeros β such that

max
[
1− (µ(2B − 1)!(2B − 1) log |DM |)−1, 1− (c5|DM |1/n)−1

]
< β < 1. (3.1)
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Note that this statement is also true if ζM (s) does not have the exceptional zero. Then

by Lemma 2.8,

κM > c−1
3

c− 1
(c− 1) + (bµ)−1

(1− β0)

≥ c−1
3

c− 1
(c− 1) + (bµ)−1

min
[
(µ(2B − 1)!(2B − 1) log |DM |)−1, (c5|DM |1/n)−1

]
.

3.2 Class Number Bounds for CM Fields in B(B)

Let k be a totally real field in B(B) of degree n and let K be a totally complex

quadratic extension of k. Let ζK(s) = L(s, χ)ζk(s). Define f by |DK | = D2
kf . Define

g(B) =

4µ(B − 1)!(B − 1), if B > 2

µ, if B = 2.
(3.2)

If we were to apply Theorem 3.1 directly, we would have to take g(B) to be

significantly larger. The end result would be 4µ(2B − 1)!(2B − 1). If K is a CM field

of degree 2n, then K ∈ B(n), so that our improved result gives 4µ(n − 1)!(n − 1) =

4µ(1 − 1/n)n!. In [Sta74], Stark managed to reduce the corresponding factor down to

16n! for CM fields. This shows that the improvement is minimal when k has no subfields,

but could be significant when k has many subfields.

This lemma shows how the structure of CM fields allows us to reduce the

constant.

Lemma 3.3. Suppose k is a totally real field with k ∈ B(B) and K is a totally complex

quadratic extension of k. Suppose further that ζK(s) has a real (simple) zero β in the

range

1− (g(B) log |DK |)−1 ≤ β < 1

and that ζk(β) 6= 0. Then there is a complex quadratic field F contained in K such that

ζF (β) = 0.

Proof. As in the proof of Lemma 3.1, it is sufficient to shorten the length of the chain

and use induction to complete the argument. In Figures 3.2 and 3.3, the fields in the

left column are totally real and the fields in the right column are totally complex.
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Figure 3.2: Field diagram for the proof of Lemma 3.3.

We will first consider the case where B > 2. Suppose that L ⊂ k ⊂ K such

that [k : L] ≤ B, k is totally real, K is a totally complex quadratic extension of k, and

ζK(s) for has a real simple zero β in the given range. We want to produce a field P

which is a totally complex quadratic extension of L such that ζP (β) = 0 and this is a

simple zero.

We will first work with the case that [k : L] > 2. Let k(i) denote the conjugates

of k over L, where k(1) = k. Then let

M = k(1)k(2) · · · k([k:L]−1), N = MK = Kk(2)k(3) · · · k([k:L])−1.

Let K(i) denote the conjugate of K given by sending k to k(i) and let N (i) = MK(i). We

want to show that all N (i) are the same, that is N is normal over L.

Note that N is normal over K. Then by Theorem 1.15 we have ζN (β) = 0.

Let [M : k] = m. Then [N : k] = 2m since [N : M ][M : k] ≥ 2m (since N 6= M , N

being complex and M being real) and [N : k] = [N : K][K : k] ≤ 2m. By Lemma 2.10,

DN |Dm
K(D2m

k )[k:L]−2. Since D2
k|DK , this implies that DN |Dm([k:L]−1)

K . Since M is the a

normal extension of L and [M : L] = m[k : L] ≤ [k : L]!, we have m ≤ ([k : L] − 1)!.

This shows that

|DN | ≤ |DK |([k:L]−1)!([k:L]−1) ≤ |DK |(B−1)!(B−1). (3.3)

Therefore,

1− (µ log |DN |)−1 ≤ 1− (µ(B − 1)!(B − 1) log |DK |)−1 ≤ β < 1,
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Figure 3.3: A totally real field cannot contain a totally complex field.

which by Lemma 2.6 shows that β is simple zero of ζN (s).

Suppose for a contradiction that not all the N (i) are the same, say N (1) 6= N (2).

Let Q = N (1)N (2) and note that this is a biquadratic extension of M . In particular, this

allows us to factor the ζQ(s) as

ζQ(s) = ζM (s)L(s, χ(1), Q/M)L(s, χ(2), Q/M)L(s, χ(3), Q/M),

where the χ(i) are the irreducible characters of the Galois group of Q/M , with ζN(1)(s) =

ζM (s)L(s, χ(1), Q/M) and ζN(2)(s) = ζM (s)L(s, χ(2), Q/M), say. Thus, β is a multiple

zero of ζQ(s) or β is a zero of ζM (s).

By Lemma 2.10, DQ|D2
N(1)D

2
N(2) . By applying Equation (3.3), this shows that

DQ|D4(B−1)!(B−1)
K . Now we see that β satisfies

1− (µ log |DQ|)−1 ≤ 1− (4µ(B − 1)!(B − 1) log |DK |)−1 ≤ β < 1,

so that β is a simple zero of ζQ(s). Therefore, it must be the case that β is a zero of

ζM (s).

Since N = MK is normal over k and ζk(β) 6= 0, by Theorem 2.12 with A = k

and B = N , we see that there is a quadratic extension Q′ of k such that ζQ′(β) = 0,

Q′ ⊂ K, and Q′ ⊂ M (since ζK(β) = ζM (β) = 0). Note that [K : k] = 2 and Q′ ⊂ K

imply that K = Q′. But this gives a contradiction since K = Q′ ⊂ M is impossible as

K is complex and M is real. (See Figure 3.3.) Thus, all the N (i) are the same. This

shows that N is normal over L.

Finally, we apply Theorem 2.12 with A = L and B = N . There is a field P

which is degree 1 or 2 over L such that ζP (β) = 0. Since L ⊂ k ⊂ N and ζk(β) 6= 0,
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we cannot have ζL(β) = 0. Therefore, P must be quadratic over L. If P were real, then

P ⊂M so that P ⊂ k(i) for some i and ζk(i)(β) = 0. But the zeta functions of conjugate

fields are the same, so this implies that ζk(β) = 0, giving a contradiction. This shows

that P is complex.

Now suppose that [k : L] = 2. Then K is biquadratic over L, and in particular

it is normal over L. By Lemma 2.6, β is a simple zero of ζK(s). Therefore, we can apply

Theorem 2.6 directly with A = L and B = K to obtain a field P of degree 1 or 2 such

that ζP (β) = 0. But since ζk(β) 6= 0 and we cannot have P = L, so P is a quadratic

extension of L. Finally, since K is complex and k is real, the remaining two quadratic

fields over L are both complex, so P is a complex quadratic extension of L.

When B = 2, we can use the argument of the previous paragraph repeatedly

to get the result.

Before we continue, we will introduce some notation. Define

a(s) = 2Γ(s/2)ζ(s)π(2−s)/2.

Theorem 3.4. Suppose k ∈ B(B) is a totally real field and K is a totally complex

quadratic extension of k. Let σ1 satisfy

1 + b(c− 1)(log(|Dk|2f))−1 = σ0 ≤ σ1 ≤ 2,

where c is defined as in Lemma 2.4. If there is ζK(s) has a zero in the range

1− (g(B) log |DK |)−1 ≤ β < 1,

then

h(K) >
c− 1

(c− 1) + (bµ)−1

h(k)
c4(σ1 − 1)a(σ1)n

min

[
|Dk|1−

σ1
2 f

1
2

g(B) logD2
kf
, c−1

5 |Dk|1−
σ1
2
− 1

n f
1
2
− 1

2n

]
,

where h(M) is the class number of M . If there is no such zero then

h(K) >
h(k)b(c− 1)

c4(σ1 − 1)a(σ1)n
· |Dk|1−

σ1
2 f

1
2

logD2
kf

.

Proof. From Equation (31) of [Sta74],

L(1, χ) ≤ (2π)nh(K)
|Dkf |1/2h(k)

. (3.4)
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Let c be defined as in Lemma 2.4 and note that r1 = n and r2 = 0 since k is a totally

real field. Applying Lemma 2.9 we have

h(K) >
h(k)z(c, β0)|Dk|1−

σ1
2 f

1
2

c4(σ1 − 1)a(σ1)n
, (3.5)

where

z(c, β0) =


c−1

(c−1)+(bµ)−1 (1− β0), if it exists

b(c− 1)(logD2
kf)−1, otherwise.

Suppose that β0 exists and can be found in the range

1− (g(B) log |DK |)−1 ≤ β0 < 1.

By Lemma 3.3, there is a quadratic field F such that ζF (β0) = 0. Then by Lemma 2.11,

β0 < 1−
(
c5|DF |1/2

)−1
.

Since D(K/Q) = D(K/F )D(F/Q) and [K : Q] = 2n, we have |DK | ≥ |DF |n and

therefore

β0 < 1−
(
c5|DK |1/2n

)−1
.

This shows that

β0 < max
[
1− (g(B) log |DK |)−1, 1−

(
c5|DK |1/2n

)−1
]
. (3.6)

Then by Equation (3.5) combined with this result,

h(K) >
c− 1

(c− 1) + (bµ)−1

h(k)|Dk|1−
σ1
2 f

1
2

c4(σ1 − 1)a(σ1)n
min

[
(g(B) log |DK |)−1,

(
c5|DK |1/2n

)−1
]

>
c− 1

(c− 1) + (bµ)−1

h(k)
c4(σ1 − 1)a(σ1)n

min

[
|Dk|1−

σ1
2 f

1
2

g(B) logD2
kf
, c−1

5 |Dk|1−
σ1
2
− 1

n f
1
2
− 1

2n

]
.

If β0 does not exist, then we immediately get from Equation (3.5) that

h(K) >
h(k)b(c− 1)

c4(σ1 − 1)a(σ1)n
· |Dk|1−

σ1
2 f

1
2

logD2
kf

.

Remark 3.5. In [Sta74], Stark proved that for any fixed n > 2 and h ≥ 1, there are only

finitely many totally complex fields K of degree 2n with h(K) = h. By taking B = n,

we can reproduce this result. However, we cannot prove Theorem 1.19 for all n because

of the a(σ1)n factor in the denominator.
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Odlyzko’s Improvement

In [Odl75], Odlyzko improved Stark’s result by producing a more explicit growth

factor on the class number. We will apply his improvement to Stark’s method to prove

a partial result for Theorem 1.19.

4.1 Odlyzko’s Theorem

Odlyzko showed that by choosing the parameters carefully, it is possible to get

a better lower bound on the discriminant. Let K be a CM field with k as its maximal real

subfield, [k : Q] = n, and ζK(s) = L(s, χ)ζk(s). Also, let f be defined by |DK | = D2
kf

and define

ψ(s) =
Γ′

Γ
(s), Z(s) = −

ζ ′k
ζk

(s), Z1(s) = − d

ds
Z(s).

We will state the main lemma and the main theorem. The proofs are given in

full detail in the original paper.

Lemma 4.1. (Odlyzko Lemma 1) Suppose σ ≥ 1 and

σ̃ ≥ max

[
5 +

√
12σ2 − 5
6

, 1 + ασ

]
,

where

α =

√
14−

√
128

34
≈ 0.281.

41
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Then

σ − x

(σ − x)2 + y2
+

σ − 1 + x

(σ − 1 + x)2 + y2

≥
(
σ − 1

2

) y2 − (σ̃ − x)2(
y2 + (σ̃ − x)2

)2 +
y2 − (σ̃ − 1 + x)2(
y2 + (σ̃ − 1 + x)2

)2


for all x ∈ [0, 1] and all real y.

Proof. The proof is a long, but straightforward calculation.

Theorem 4.2. (Odlyzko Theorem 1) For any σ > 1 and σ̃ as in Lemma 4.1, we

have

log |Dk| ≥ r1

(
log π − ψ

(σ
2

))
+2r2 (log(2π)− ψ(σ))+(2σ−1)

(
r1
4
ψ′
(
σ̃

2

)
+ r2ψ

′(σ̃)
)

+ 2Z(σ) + (2σ − 1)Z1(σ̃)− 2
σ
− 2
σ − 1

− 2σ − 1
σ̃2

− 2σ − 1
(σ̃ − 1)2

.

Proof. The proof begins with Equation (2.7) and differentiates both sides with respect

to s. The differentiated equation then becomes an estimate for the sum over the zeros

in Equation (2.7) through Lemma 4.1. Some of these steps are shown in the proof of

Lemma 5.2.

Remark 4.3. We can take σ̃ = 1 + ασ as long as σ − 1 is sufficiently small. To see that

the first condition on σ̃ is satisfied, we must have

1 + ασ ≥ 5 +
√

12σ2 − 5
6

=⇒ (36α2 − 12)σ2 + 12ασ + 6 ≥ 0.

This implies that

σ ≤ 12α+
√

288− 720α2

24− 72α2
= α ≈ 1.014.

4.2 Three Lemmas

The first two lemmas are also taken from Odlyzko’s paper. However, he does

not compute values for the constants. The proofs presented here give the explicit choices

for the constants, which will be used in a later chapter (Chapter 6). The third lemma

is actually an implied calculation in the proof of Theorem 2 of the paper. Again, it’s

included here for the explicit computation of the constants.
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Lemma 4.4. (Odlyzko Lemma 2) For σ > 1,

Z(σ) ≥ log ζk(σ)− c6(σ − 1)n,

where c6 = −2(log 2)2 + log 2 ≈ −0.268.

Proof. If x ≥ 3 and σ > 1, then

log x
xσ − 1

=
∑
r≥1

(log x)x−rσ ≥
∑
r≥1

1
r
x−rσ = log(1− x−σ)−1.

In the case where x = 2, we want to find a bound of a similar form. We note that

f(σ) =
log 2

2σ − 1
− log(1− 2−σ)−1

satisfies f(1) = 0 and that

f ′′(σ) =
2σ(log 2)2

(2σ − 1)3
((1 + log 2)− 2σ(1− log 2)).

When this is positive, the tangent line approximation will be an underestimate of the

actual function. This is true for

1 < σ ≤ 1
log 2

log
(

1 + log 2
1− log 2

)
.

In fact, since f ′(σ) ≥ 0 for

σ ≥ 1
log 2

log
(

1
1− log 2

)
and

1
log 2

log
(

1
1− log 2

)
<

1
log 2

log
(

1 + log 2
1− log 2

)
,

the tangent line is an underestimate for all σ > 1. Therefore,

f(σ) ≥ (σ − 1)f ′(1),

which can be rewritten as

log 2
2σ − 1

≥ log(1− 2−σ)−1 − c6(σ − 1).

Using Equation (1.2),

Z(σ) =
∑

p

logN(p)
N(p)σ − 1

=
∑
N(p) 6=2

logN(p)
N(p)σ − 1

+
∑
N(p)=2

logN(p)
N(p)σ − 1

.
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The worst case scenario is that the rational prime 2 is totally ramified, in which case

there are n primes with N(p) = 2. Therefore,

Z(σ) ≥
∑

p

log(1−N(p)−σ)−1 − c6(σ − 1)n

= log ζk(σ)− c6(σ − 1)n,

where the sum is over all prime ideals and N(p) is the norm of the ideal p.

Lemma 4.5. (Odlyzko Lemma 3) There exist c7 and c8 = c8(c7) such that for 1 <

σ < σ′ ≤ 1 + c−1
7 , we have

Z(σ) ≥ (1 + (1 + c−1
8 ))(σ′ − σ)Z(σ′).

Proof. If x > e and 1 < σ < σ′ ≤ 2, then

log
xσ

′ − 1
xσ − 1

= log x
∫ σ′

σ

xu

xu − 1
du ≥ (σ′ − σ) log x.

Therefore, we have

1
xσ − 1

≥ xσ
′−σ

xσ′ − 1
>

1 + log x · (σ′ − σ)
xσ′ − 1

≥ 1 + (1 + ε) · (σ′ − σ)
xσ′ − 1

,

for any small ε > 0. Similarly,

log
2σ

′ − 1
2σ − 1

= log 2
∫ σ′

σ

xu

xu − 1
du ≥ 2σ log 2

∫ σ′

σ

du

2u − 1
≥ 2σ log 2

2σ′ − 1
(σ′ − σ),

so that

1
2σ − 1

≥ exp
(

2σ log 2
2σ′ − 1

(σ′ − σ)
)

1
2σ′ − 1

>

(
1 +

2σ log 2
2σ′ − 1

(σ′ − σ)
)

1
2σ′ − 1

.

So if we restrict to 1 < σ < σ′ ≤ 1 + c−1
7 < log(1 + log 4)/ log 2, then we have

1
2σ − 1

≥
(

1 +
2 log 2

21+c−1
7 − 1

(σ′ − σ)
)

1
2σ′ − 1

≥ 1 + (1 + c−1
8 )(σ′ − σ)

2σ′ − 1
,

where

c−1
8 =

2 log 2

21+c−1
7 − 1

− 1 > 0. (4.1)

Therefore,
1

N(p)σ
≥ (1 + (1 + c−1

8 ))(σ′ − σ)
N(p)σ′ − 1

,

which implies the lemma by multiplying by logN(p) and summing over the prime ideals.
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Remark 4.6. When c7 is large, c8 is small. This shows that if we restrict the values of

σ and σ′ to a smaller range, the we can take a larger constant in the inequality of the

lemma. We can compute an explicit range for c7, which will also give an explicit range

for c8. We have

1 < 1 + c−1
7 <

log(1 + log 4)
log 2

⇐⇒
(

log(1 + log 4)
log 2

− 1
)−1

= 3.926 < c7 <∞,

which implies that

(2 log 2− 1)−1 = 2.589 < c8 <∞.

Lemma 4.7. There exist constants c9 and c10 such that when n ≥ c9(σ1− 1)−1, c10(σ−
1) ≤ (σ1 − 1), and 1 < σ < σ1 ≤ 1 + c−1

7 then(
1− (σ1 − 1)− 2

n

)(
1 + (1 + c−1

8 )(σ1 − σ)
)
≥ 1,

where c7 and c8 are obtained from Lemma 4.5.

Proof. Since c8 > 0, we have

1 + (1 + c−1
8 )(σ1 − σ) > 1

for 1 < σ < σ1 ≤ 1 + c−1
7 . Suppose that c9 and c10 are chosen so that

(1 + c−1
8 )(1− c−1

10 ) > 1 + 2c−1
9 . (4.2)

This is possible for any fixed value of c8 if c9 and c10 are taken to be large enough. Notice

that

n ≥ c9(σ1 − 1)−1 ⇐⇒ − 2
n
≥ −2c−1

9 (σ1 − 1)

and

c10(σ − 1) ≤ (σ1 − 1) =⇒ σ1 − σ = (σ1 − 1)− (σ − 1) ≥ (1− c−1
10 )(σ1 − 1).

Therefore,(
1− (σ1 − 1)− 2

n

)(
1 + (1 + c−1

8 )(σ1 − σ)
)
≥(

1− (1 + 2c−1
9 )(σ1 − 1)

) (
1 + (1 + c−1

8 )(1− c−1
10 )(σ1 − 1)

)
.

This expression is of the form f(x) = (1 − a1x)(1 + a2x), where x = σ1 − 1. A quick

calculation shows that f(x) ≥ 1 with x is between 0 and (a2− a1)/(a1a2). Since σ1 > 1,

we want f(x) ≥ 1 for some interval with x > 0, which requires a2 > a1. But this is just

Equation (4.2), so the proof is complete.
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Remark 4.8. The right side of Equation (4.2) is always greater than one. For a fixed

value of c8, we see that we must have c10 > 1 + c8. Once c10 has been chosen, we can

pick c9 from Equation (4.2),

c9 >
2

(1 + c−1
8 )(1− c−1

10 )− 1
.

4.3 Computing the Lower Discriminant Bound

It is important for our application to obtain a sufficiently strong lower bound

on the discriminant. The reason is that we need it to grow fast enough to offset the a

(2π)n term in the denominator of our final result.

Theorem 4.9. For 1 < σ < σ1 sufficiently small and n sufficiently large,

|Dk|
1
2
− 1

2
(σ1−1)− 1

n ≥ c−1
11 ζk(σ1)(2π + c−1

12 )n,

where c11 and c12 are effectively computable.

Proof. We apply Theorem 4.2 with Remark 4.3 so that for 1 < σ < σ1 ≤ 1 + c−1
13 =

min(α, 1 + c−1
7 ) and

σ̃ ≥ max

[
5 +

√
12σ2 − 5
6

, 1 + ασ

]
,

the following inequality holds:

log |Dk|
1
2
− 1

2
(σ1−1)− 1

n ≥
(

1
2
− 1

2
(σ1 − 1)− 1

n

)
·

·

n(log π − ψ
(σ

2

))
︸ ︷︷ ︸

A

+(2σ − 1)
n

4
ψ′
(
σ̃

2

)
︸ ︷︷ ︸

B

+2Z(σ)︸ ︷︷ ︸
C

+(2σ − 1)Z1(σ̃)︸ ︷︷ ︸
D

− 2
σ
− 2σ − 1

σ̃2
− 2σ − 1

(σ̃ − 1)2︸ ︷︷ ︸
E

− 2
σ − 1︸ ︷︷ ︸
F

 . (4.3)

We will work each piece separately and combine them together in the end. Let

c9 and c10 satisfy Lemma 4.7. Then for n ≥ c9(σ1 − 1)−1 and c10(σ − 1) ≤ (σ1 − 1),(
1
2
− 1

2
(σ1 − 1)− 1

n

)
≥ 1

2
(
1− (1 + 2c−1

9 )(σ1 − 1)
)
.
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For term A, we note that ψ(σ/2) is a negative increasing function near σ = 1

which is concave up. We can calculate a number c14 > 0 so that for 1 < σ < 1 + c−1
13 ,

ψ
(σ

2

)
≤ ψ

(
1
2

)
+ c14(σ − 1).

We can take

c14 =
ψ
(

1+c−1
13

2

)
− ψ

(
1
2

)
1+c−1

13
2 − 1

2

.

Then we have

1
2
(
1− (1 + 2c−1

9 )(σ1 − 1)
)
n
(
log π − ψ

(σ
2

))
≥ n

2

(
log π − ψ

(
1
2

)
− c14(σ − 1)

)
− n

2
(1 + 2c−1

9 )(σ1 − 1)
(

log π − ψ

(
1
2

))
≥ n

2

(
log π − ψ

(
1
2

))
− n

2
(σ1 − 1)

(
c14 + (1 + 2c−1

9 )
(

log π − ψ

(
1
2

)))
. (4.4)

For term B, we use the fact that ψ′(σ̃/2) is a positive, decreasing, concave up

function for σ̃ > 0. Therefore,

ψ′
(

1 + ασ

2

)
≥ ψ′

(
1 + α

2

)
+
α

2
ψ′′
(

1 + α

2

)
(σ − 1).

Using this fact, we have

1
2
(
1− (1 + 2c−1

9 )(σ1 − 1)
) n

4
ψ′
(
σ̃

2

)
≥ n

8
ψ′
(
σ̃

2

)
− n

8
(1 + 2c−1

9 )(σ1 − 1)ψ′
(
σ̃

2

)
≥ n

8

(
ψ′
(

1 + α

2

)
+
α

2
ψ′′
(

1 + α

2

)
(σ − 1)

)
− n

8
(1 + 2c−1

9 )(σ1 − 1)ψ′
(

1 + α

2

)
≥ n

8
ψ′
(

1 + α

2

)
− n

8
(σ1 − 1)

(
(1 + 2c−1

9 )ψ′
(

1 + α

2

)
− α

2
ψ′′
(

1 + α

2

))
. (4.5)

Term C is controlled using Lemmas 4.4, 4.5, and 4.7. We get for n ≥ c9(σ1−1),

c10(σ − 1) ≤ (σ1 − 1), and 1 < σ < σ1 ≤ 1 + c−1
13 ,(

1− (σ1 − 1)− 2
n

)
Z(σ) ≥

(
1− (σ1 − 1)− 2

n

)
(1 + (1 + c−1

8 ))(σ1 − σ)Z(σ1)

≥ log ζk(σ1)− c6(σ1 − 1)n. (4.6)
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Term E is bounded by a constant,

−1
2
(
1− (1 + 2c−1

9 )(σ1 − 1)
)( 2

σ
+

2σ − 1
σ̃2

+
2σ − 1

(σ̃ − 1)2

)
≥ −1

2
(
1− (1 + 2c−1

9 )(1− 1)
)(2

1
+

2(1 + c−1
13 )− 1

(1 + α)2
+

2(1 + c−1
13 )− 1
α2

)
≥ −c15. (4.7)

Term F is easily estimated:

−1
2

(
1− (σ1 − 1)− 2

n

)
2

σ − 1
≥ − 1

σ − 1
+ c10(1 + 2c−1

9 ). (4.8)

We note that the D term is positive, so it can be dropped without damaging

the inequality. Combining Equations (4.3), (4.4), (4.5), (4.6), (4.7), and (4.8) we get

log |Dk|
1
2
− 1

2
(σ1−1)− 1

n ≥
n

2

(
log π − ψ

(
1
2

)
+

1
4
ψ′
(

1 + α

2

))
+ log ζk(σ1)− c15 −

1
σ − 1

+ c10(1 + 2c−1
9 )

−n(σ1−1)
(
c14

2
− α

16
ψ′′
(

1 + α

2

)
+c6+

1 + 2c−1
9

8

(
log π4 − 4ψ

(
1
2

)
+ ψ′

(
1 + α

2

)))
︸ ︷︷ ︸

c16

.

(4.9)

Note that we can explicitly compute that

log π − ψ

(
1
2

)
+

1
4
ψ′
(

1 + α

2

)
≈ 3.925.

We can now take the exponential of both sides of Equation (4.9) to get

|Dk|
1
2
− 1

2
(σ1−1)− 1

n ≥ e−c15−(σ−1)−1
ζk(σ1)

(
7.118

ec16(σ1−1)

)n
, (4.10)

subject to n ≥ c9(σ1− 1)−1, c10(σ− 1) ≤ (σ1− 1), and 1 < σ < σ1 ≤ 1+ c−1
13 . By further

restricting σ1 (say σ1 ≤ 1 + c−1
17 where c17 ≥ c13), it will always be possible to force

7.118
ec16(σ1−1)

> 2π.

We can then choose σ and σ1 subject to these constraints to get

c11 = exp
(
c15 + (σ − 1)−1 + c10(1 + 2c−1

9 )
)

and

c12 =
(

7.118
exp(c16(σ1 − 1))

− 2π
)−1

.
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4.4 Refining the Estimate

In this section, we will strengthen the lower bounds given on the class number

given in Theorem 3.4.

Theorem 4.10. Suppose k ∈ B(B) is a totally real field and K is a totally complex

quadratic extension of k. Let g(B) be defined as in Equation (3.2) and z(c, β0) be defined

as in Equation (2.9). Let β0 be the exceptional zero of L(s, χ) if it exists. For c > 1

chosen as in Lemma 2.4, if β0 exists then

h(K) > h(k)
c−1
18

ng(B)
|Dk|

1
2
− 1

2
(σ1−1)− 1

n

(2π)nζk(σ1)
f

1
2
− 1

2n ,

otherwise

h(K) ≥ h(k)
c−1
19

n

|Dk|
1
2
− 1

2
(σ1−1)− 1

n

(2π)nζk(σ1)
f

1
2
− 1

2n ,

where both c18 and c19 are effectively computable, n is sufficiently large, and 1 < σ < σ1

are sufficiently small.

Proof. In Equation (3.6) of the proof of Theorem 3.4, we proved that there are no zeros

β of L(s, χ) (and of ζK(s)) in the range

max
[
1− (g(B) log |DK |)−1, 1−

(
c5|DK |1/2n

)−1
]
< β < 1.

This implies that if β is a zero of L(s, χ), then

1− β ≥ min
[
(g(B) log |DK |)−1,

(
c5|DK |1/2n

)−1
]

≥ 1
g(B)

|DK |−1/2n min

[
|DK |1/2n

2n log |DK |1/2n
,
18
π

]

≥ 1
ng(B)

|DK |−1/2n min
[
e

2
,
18n
π

]
≥ c−1

20

ng(B)
|Dk|−1/nf−1/2n, (4.11)

where we have used ex/x ≥ e (with x = (log |DK |)/(2n)) and c20 = 2/e. Note that if we

had extra information about the size of |Dk| and n, we may be able to choose a better

value of c20.

Following Odlyzko, we will start with Equation (3.4),

L(1, χ) ≤ (2π)nh(K)
|Dkf |1/2h(k)

,



50

which can be equivalently written as

h(K) ≥ h(k)L(1, χ)
|Dkf |1/2

(2π)n
. (4.12)

We want to find a better bound for L(1, χ) than what was used in Theorem

3.4. Recall that the proof of Theorem 3.4 was dependent upon L(s, χ) satisfying the

hypotheses of Lemma 2.4 with c1 = 1/2 and c2 = 1/ log 3. We return to Equation (2.11),

but instead of using Stark’s estimate (L(σ1, χ) > ζ(σ1)−n), we use L(σ1, χ) > ζk(σ1)−1.

This is true since ζK(σ1) > 1 and ζK(s) = L(s, χ)ζk(s). With this as the only change

between Equations (2.11) and (2.12), we have for σ1 satisfying

1 + b(c− 1)(log(|Dk|2f))−1 = σ0 ≤ σ1 ≤ 2,

where c is defined as in Lemma 2.4 that

L(σ0, χ) >
σ0(σ0 − 1)
σ1(σ1 − 1)

|Dk|−
1
2
(σ1−1)e−(σ0−1)n

( √
π

Γ(σ1/2)

)n
(
π

1
2
(σ1−1)

)n
ζk(σ1)

 .

Notice that we have taken r1 = n and r2 = 0 so that this corresponds to the CM field

situation.

In our desired application, we will be using Theorem 4.9, which means we can

take a smaller range for σ1,

σ0 < σ1 < 1 + c−1
17 .

As before, we have that

exp(−(σ0 − 1)n) ≥ exp(−bc2(c− 1)),

and under the new restrictions on σ1, we have

σ0

σ1
>

1
1 + c−1

17

.

Applying these inequalities and rearranging the terms gives

L(σ0, χ) >
1

(1 + c−1
17 ) exp(−bc2(c− 1))

· σ0 − 1
σ1 − 1

(
πσ1/2

Γ(σ1/2)

)n
|Dk|−

1
2
(σ1−1)

ζk(σ1)
.

Combining this result with Equation (2.10),

L(1, χ) ≥ c−1
3 EL(σ0, χ),
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we get

L(1, χ) >
1

(1 + c−1
17 )c3 exp(bc2(c− 1))

· E(σ0 − 1)
σ1 − 1

(
πσ1/2

Γ(σ1/2)

)n
|Dk|−

1
2
(σ1−1)

ζk(σ1)

> c−1
21 z(c, β0)

|Dk|−
1
2
(σ1−1)

ζk(σ1)
, (4.13)

where the computation of E(σ0 − 1) is given in the proof of Lemma 2.8,

c21 = (1 + c−1
17 )c3 exp(bc2(c− 1)), (4.14)

and we’ve used the fact that

1 ≤ πσ1/2

Γ(σ1/2)
≤ π,

when 1 ≤ σ1 ≤ 2. Combining Equations (4.12) and (4.13), we get

h(K) > h(k)c−1
21 z(c, β0)f1/2 |Dk|

1
2
− 1

2
(σ1−1)

(2π)nζk(σ1)
. (4.15)

If there is an exceptional zero then by definition,

z(c, β0) =
c− 1

(c− 1) + (bµ)−1
(1− β0).

Then from Equation (4.15) combined with Equation (4.11) gives

h(K) > h(k)
c−1
18

ng(B)
|Dk|

1
2
− 1

2
(σ1−1)− 1

n

(2π)nζk(σ1)
f

1
2
− 1

2n , (4.16)

where

c−1
18 = c18(c)−1 = c−1

21 c
−1
20

c− 1
(c− 1) + (bµ)−1

.

If there is not an exceptional zero, then

z(c, β0) = b(c− 1)
(
logD2

kf
)−1

,

and we get from this and Equation (4.15)

h(K) > h(k)
b(c− 1)
c21

|Dk|
1
2
− 1

2
(σ1−1)f1/2

logD2
kf

1
(2π)nζk(σ1)

= h(k)
b(c− 1)
c21

|D2
kf |1/2n

2n log |D2
kf |1/2n

|Dk|
1
2
− 1

2
(σ1−1)− 1

n

(2π)nζk(σ1)
f

1
2
− 1

2n

≥ h(k)
c−1
19

n

|Dk|
1
2
− 1

2
(σ1−1)− 1

n

(2π)nζk(σ1)
f

1
2
− 1

2n , (4.17)

where we have once again used ex/x ≥ 1 with x = (logD2
kf)/(2n) and

c−1
19 = c−1

19 (c) =
b(c− 1)e

2c21
.



52

Remark 4.11. Notice that in both cases, we have the same general form for the bound

but with different constants. What remains is to compute the discriminant bound given

by Theorem 4.2.

4.5 Proof of Theorem 1.19

Fix B > 1. We will now prove that there are only finitely many CM fields

K ∈ B(B) of degree with a given class number.

Proof. For fields of fixed degree, Theorem 1.19 follows from [Sta74] (see Remark 3.5).

This was effective for degree ≥ 6 and ineffective for degrees 2 and 4. However, [GZ86]

makes the result effective for degrees 2 and 4.

In Remark 4.11, we noted that for a CM field K ∈ B(B) we had two estimates

on the class number, both in the form

h(K) ≥ h(k)
C

n

|Dk|
1
2
− 1

2
(σ1−1)− 1

n

(2π)nζk(σ1)
f

1
2
− 1

2n ,

where C is either (c18g(B))−1 or c−1
19 depending on whether there is an exceptional zero.

From Theorem 4.9, we see that for n ≥ 387,

|Dk|
1
2
− 1

2
(σ1−1)− 1

n

(2π)nζk(σ1)
≥ c11

(
1 +

c−1
12

2π

)n
.

Therefore, we have

h(K) ≥ h(k)C ′
(
1 + (2c12π)−1

)n
n

f
1
2
− 1

2n , (4.18)

where

C ′ =

(c11c18g(B))−1, if the exceptional zero exists

(c11c19)−1, if the exceptional zero does not exist.

This shows that h(K) → ∞ as n → ∞, so that given some h, there are no CM fields

K ∈ B(B) with h(K) = h whose degree is ≥ n0 for some n0. Therefore, there can only

be finitely many such CM fields of a given class number.
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Hoffstein’s Upper Bound

Hoffstein ([Hof79]) introduced techniques for both upper and lower bounds for

κK . We will mimic his upper bound techniques in a way that will allow us to make

numerical computations later. The techniques used here are very similar to the work we

did in previous chapters.

5.1 A Generalized Lemma

In Lemma 2.4, which was the basis for the calculations of Lemmas 2.8 and

2.9, we computed an effective lower bound of certain functions at s = 1. Hoffstein’s

first lemma is similar in form, except that he finds an upper bound instead. He applies

the calculation specifically with f(s) = s(s − 1)ζk(s). He also mimics some of the

calculations of [Odl75] to get a stronger constant. We will take a more generic approach

to his calculations, using the same level of generality as in Lemma 2.1.

Lemma 5.1. (Hoffstein Lemma 1a) Let f(s) be an entire function and let

g(s) = ηs/2Γ
(s

2

)a1

Γ(s)a2Γ
(
s

2
+

1
2

)
f(s), (5.1)

where η > 0, ai ≥ 0 for i = 1, 2, 3. Suppose that f(s) is positive for real s > 1 and g(s)

is an entire function of order 1 whose zeros ρ = β + iγ all satisfy 0 < β < 1. Suppose

further that g(s) = g(1− s).

For σ1 > σ ≥ 1, set

E =


σ−β0

σ1−β0
, if β0 is any real zero of ζk(s)

1, if no such β exists.
(5.2)
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Also, let

h(σ, σ1) = η
σ1−σ

2

(
Γ(σ1/2)
Γ(σ/2)

)a1
(

Γ(σ1)
Γ(σ)

)a2
(

Γ
(
σ1
2 + 1

2

)
Γ
(
σ
2 + 1

2

) )a3

. (5.3)

Then for σ1 > σ ≥ 1, we have

f(σ) < f(σ1)Eh(σ, σ1).

Proof. We have that

g(s) = A
∏
ρ

′
(

1− s

ρ

)
,

where the prime means the product is taken over all zeros of g(s) in complex conjugate

pairs. Taking the logarithmic derivative, this becomes

g′

g
(s) =

∑
ρ

′ 1
s− ρ

=
∑
γ≥0

′′ 2(s− β)
(s− β)2 + γ2

,

where the double prime means that the factor of 2 is omitted when γ = 0.

Suppose that ζ(β0) = 0 for 0 < β0 < 1. Then for real s > 1,

g′

g
(s)− 1

s− β0
=
∑
ρ 6=β0
γ≥0

′′ 2(s− β)
(s− β)2 + γ2

> 0. (5.4)

We integrate this from σ to σ1:

log
g(s)
s− β0

∣∣∣∣σ1

σ

> 0 =⇒ g(σ1)
σ1 − β0

>
g(σ)
σ − β0

.

Using Equation (5.1), this becomes

f(σ) < f(σ1) ·
σ − β0

σ1 − β0
· η

σ1−σ
2

(
Γ(σ1/2)
Γ(σ/2)

)a1
(

Γ(σ1)
Γ(σ)

)a2
(

Γ
(
σ1
2 + 1

2

)
Γ
(
σ
2 + 1

2

) )a3

,

which is the desired expression.

Note that if β0 does not exist, Equation (5.4) simply reads

g′

g
(s) > 0,

and the result follows by the same process.

The next lemma uses a calculation by Odlyzko to obtain a stronger bound when

σ and σ1 are both close to 1.
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Lemma 5.2. (Hoffstein Lemma 1b) Let f(s) and g(s) be as in Lemma 5.1 and E be

defined by Equation (5.2). Suppose that

σ̃ ≥ max

[
5 + (12σ2 − 5)1/2

6
, 1 + ασ

]
, (5.5)

where α is defined as in Theorem 4.2. Then for σ1 > σ ≥ 1, we have

f(σ) <
f(σ1)Eh(σ, σ1)((

e
1
8
ψ′( σ̃

2 )
)a1

(
e

1
2
ψ′(σ̃)

)a2
(
e

1
8
ψ′( σ̃

2
+ 1

2)
)a3

e
1
2

d
ds |s=σ̃

(
f ′
f

(s)
))(σ1−σ)(σ1+σ−1)

. (5.6)

Proof. We improve the estimate of Lemma 5.1 by taking a nonzero lower bound in the

calculations above. Assuming β0 exists,

g′

g
(s) =

∑
ρ

′ 1
s− ρ

=
1
2

∑
ρ

′
(

1
s− ρ

+
1

s− 1 + ρ

)
(5.7)

(this follows from the functional equation). Pulling out the β0 term as before, for s > 1

we have

g′

g
(s)− 1

s− β0
=

1
2

∑
ρ 6=β0
γ≥0

′′2
(

s− β

(s− β)2 + γ2
+

s− 1 + β

(s− 1 + β)2 + γ2

)
,

where the double prime means that the factor of 2 is absent if γ = 0.

We apply Lemma 4.1 with x = β and y = γ. Then we have

g′

g
(s)− 1

s− β0
≥ 1

2

(
s− 1

2

) ∑
ρ 6=β0
γ≥0

′′2

 γ2 − (σ̃ − β)2(
γ2 + (σ̃ − β)2

)2 +
γ2 − (σ̃ − 1 + β)2(
γ2 + (σ̃ − 1 + β)2

)2

 .

This becomes

g′

g
(s)− 1

s− β0
≥
(
s− 1

2

) ∑
ρ 6=β0

′ −1
(σ̃ − ρ)2

>

(
s− 1

2

)∑
ρ

′ −1
(σ̃ − ρ)2

, (5.8)

since when ρ = β0, the term added back into the sum is negative.

We estimate the sum on the right by differentiating Equation (5.7) with respect

to s and take s = σ̃:

g′

g
(s) =

1
2

log η +
a1

2
ψ
(s

2

)
+ a2ψ (s) +

a3

2
ψ

(
s

2
+

1
2

)
+
f ′

f
(s) =

∑
ρ

′ 1
s− ρ

=⇒ a1

4
ψ′
(
σ̃

2

)
+ a2ψ

′ (σ̃) +
a3

4
ψ′
(
σ̃

2
+

1
2

)
+

d

ds

∣∣∣∣
s=σ̃

(
f ′

f
(s)
)

=
∑
ρ

′ −1
(σ̃ − ρ)2

.

(5.9)
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Combining Equations (5.8) and (5.9), we get

g′

g
(s)− 1

s− β0
≥(

s− 1
2

)(
a1

4
ψ′
(
σ̃

2

)
+ a2ψ

′ (σ̃) +
a3

4
ψ′
(
σ̃

2
+

1
2

)
+

d

ds

∣∣∣∣
s=σ̃

(
f ′

f
(s)
))

.

We integrate this with respect to s from σ to σ1 to get

log
(

g(s)
s− β0

)∣∣∣∣σ1

σ

>(
s2 − s

2

)∣∣∣σ1

σ

(
a1

4
ψ′
(
σ̃

2

)
+ a2ψ

′ (σ̃) +
a3

4
ψ′
(
σ̃

2
+

1
2

)
+

d

ds

∣∣∣∣
s=σ̃

(
f ′

f
(s)
))

=⇒ g(σ1)
σ1 − β0

>

g(σ)
σ − β0

·
((

e
1
4
ψ′( σ̃

2 )
)a1

(
eψ

′(σ̃)
)a2

(
e

1
4
ψ′( σ̃

2
+ 1

2)
)a3

e
d
ds |s=σ̃

(
f ′
f

(s)
)) 1

2
(σ1−σ)(σ1+σ−1)

.

From Equation (5.1) this becomes

f(σ) <
f(σ1)Eh(σ, σ1)((

e
1
8
ψ′( σ̃

2 )
)a1

(
e

1
2
ψ′(σ̃)

)a2
(
e

1
8
ψ′( σ̃

2
+ 1

2)
)a3

e
1
2

d
ds |s=σ̃

(
f ′
f

(s)
))(σ1−σ)(σ1+σ−1)

.

5.2 Explicit Upper Bounds

By taking σ = 1 in Lemma 5.2 and combining the result with Lemma 2.4, we

find that under certain restrictions on σ0 and σ1 we have

Af(σ0) ≤ f(1) ≤ Bf(σ1),

where A and B are computable functions for which we have very explicit forms. We are

now going to compute upper bound analogs to Lemmas 2.8 and 2.9.

First, note that for σ = 1,

max

[
5 + (12σ2 − 5)1/2

6
, 1 + ασ

]
= 1 + α,

so that we can take σ̃ = 1 +α. This allows us to compute values for the denominator of

Equation (5.6):

e
1
8
ψ′( σ̃

2 ) ≈ 1.505, e
1
2
ψ′(σ̃) ≈ 1.784, and e

1
8
ψ′( σ̃

2
+ 1

2) ≈ 1.186.
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5.2.1 Bounding κM

As with Lemma 2.8, we will take f(s) = s(s − 1)ζM (s). Notice that in order

to use Lemma 5.2, we must derive an upper bound on ζM (σ1). Hoffstein accomplishes

this bound by building off Odlyzko’s main inequality (Theorem 4.2). We will follow

Hoffstein’s calculations, but give a presentation that allows for easy computations of

numerical values. The key idea is to first find a lower bound for the Z(σ) and Z1(σ̃) in

terms of ζM (s), then relate ζM (s) to the discriminant of M through Odlyzko’s formula.

Lemma 5.3. (Hoffstein Lemma 2) For 1 < σ1 ≤ σm and σ̃1 ≤ σ̃m both chosen to

satisfy Equation (5.5), there exists a constant cA(σm) such that

cA(σm) (2Z(σ1) + (2σ1 − 1)Z1(σ̃1)) ≥ log ζk(σ1).

Proof. Define cB(x, σ) by

cB(x, σ)
(

2 log x
xσ − 1

+
(2σ − 1)(log x)2xσ̃

(xσ̃ − 1)2

)
= − log

(
1− 1

xσ

)
.

Notice that if we can bound cB(x, σ) independent of x, then by setting x = N(p) and

summing over all prime ideals p of M we get a relationship of the desired form.

We write

cB(x, σ) =
cC(x, σ)

1 + cD(x, σ)
,

where

cC(x, σ) = −x
σ − 1

2 log x
log
(

1− 1
xσ

)
and

cD(x, σ) =
(2σ − 1)xσ̃(log x)(xσ − 1)

2(xσ̃ − 1)2
.

We want to determine the behavior of cC(x, σ) and cD(x, σ) in order to bound cB(x, σ)

independent of x.

Expanding the log term of cC(x, σ) in a power series gives

cC(x, σ) =
1

2 log x

(
1−

∞∑
n=1

x−nσ

n(n+ 1)

)
.

This shows that for σ > 1,

∂cC
∂σ

(x, σ) =
1
2

∞∑
n=1

x−nσ

n+ 1
> 0.
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Also, by fixing σ and writing u = xσ we get

cC(u) = − u− 1
2σ log u

log
(

1− 1
u

)
.

Then we have
dcC
du

(u) = − 1
2σ log u

− log(u− 1)
2σu(log u)2

.

Clearly, for u ≥ 2 this is negative, so that for x ≥ 2 and σ > 1,

∂cC
∂x

=
∂u

∂x

dcC
du

< 0.

For cD(x, σ), notice that when 1 < σ < σ̃ are fixed this function first increases

and then decreases for x > 1. Call the critical point x0 so that ∂cD/∂x > 0 when

1 ≤ x < x0. (x0 does not have a nice analytic expression.) As σ increases x0 increases

and as σ̃ increases x0 decreases.

For σm, pick a valid corresponding σ̃m according to Equation (5.5). For each

pair σ, σ̃ with 1 < σ ≤ σm and valid σ̃ ≤ σ̃m, there is a corresponding x0(σ, σ̃). As

we range over all values, we have that the minimum x0 is xm = x0(1, σ̃m), so that

∂cD/∂x > 0 for 1 ≤ x < xm and all σ, σ̃ in the range specified above.

We have

cB(x, σ) =
cC(x, σ)

1 + cD(x, σ)
,

and since cD(x, σ) > 0, ∂cC/∂x < 0, and ∂cC/∂σ > 0, for x ≥ xm,

cB(x, σ) ≤ cC(x, σ) ≤ cC(xm, σm).

For 2 ≤ x < xm, cD(x, σ) increases and cC(x, σ) decreases, so cB(x, σ) is a decreasing

function and

cB(x, σ) ≤ cB(2, σ).

Then for all x ≥ 2,

cB(x, σ) ≤ cA(σm)

where

cA(σm) = max
1≤σ≤σm

(cB(2, σ), cC(xm, σm)) .

So we have for 1 < σ ≤ σm and valid σ̃ ≤ σ̃m,

cA(σm)
(

2 log x
xσ − 1

+
(2σ − 1)(log x)2xσ̃

(xσ̃ − 1)2

)
≥ − log

(
1− 1

xσ

)
.
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We let x = N(p) and sum over all prime ideals p of M to get

cA(σm) (2Z(σ) + (2σ − 1)Z1(σ̃)) ≥ log ζM (σ).

Lemma 5.4. (Hoffstein Lemma 3) For 1 < σ1 ≤ σm and σ̃1 chosen as in Equation

(5.5),

ζM (σ1) <
(
|DM |
cE(σ1)n

)cA(σm)

where, in the notation of Theorem 4.2,

log cE(σ1) =
r1
n

(
log π − ψ

(σ1

2

)
− 2σ1 − 1

4
ψ′
(
σ̃1

2

))
+

2r2
n

(
log 2π − ψ(σ1) +

2σ1 − 1
2

ψ′ (σ̃1)
)

− 1
n

(
2
σ1

+
2

σ1 − 1
+

2σ1 − 1
σ̃1

2 +
2σ1 − 1

(σ̃1 − 1)2

)
.

Proof. Notice that from Theorem 4.2 we can write

log |DM | ≥ n log cE(σ1) + 2Z(σ1) + 2(σ1 − 1)Z1(σ̃1).

We now use Lemma 5.3 to get

log |DM | ≥ n log cE(σ1) +
log ζM (σ1)
cA(σm)

,

which is equivalent to the desired result.

We bring these results together to get a result which mimics the form of Hoff-

stein’s Theorem 1’.

Theorem 5.5. Let M be a number field with all of the usual notation. Then

κM <
|DM |cA(σm)+

1−σ1
2

cF (σ1, σm)n
· E,

where

log cF (σ1, σm) = cA(σm) log cE(σ1)

+ σ1(σ1 − 1)
(
−6.633
n

+
r1
n

(0.409) +
r2
n

(0.579)
)

+
r1
n

(0.572)

+ (σ1 − 1)
(r2
n

(0.693) + 0.572
)
− 1
n

log(σ1(σ1 − 1))

− r1
n

log
(
Γ
(σ1

2

))
− r2
n

log (Γ(σ1)) , (5.10)

and E is defined as in Lemma 5.1.
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Proof. We apply Lemma 5.2 with f(s) = s(s− 1)ζM (s). This gives

σ(σ − 1)ζM (σ) <
σ1(σ1 − 1)ζM (σ1)Eh(σ, σ1)((

e
1
8
ψ′( σ̃

2 )
)r1 (

e
1
2
ψ′(σ̃)

)r2
e

1
2

d
ds |s=σ̃

(
ζ′
M

ζM
(s)+ 1

s
+ 1

s−1

))(σ1−σ)(σ1+σ−1)
.

We let σ → 1 and σ̃ = 1 + α to get

κM <
σ1(σ1 − 1)ζM (σ1)Eh(1, σ1)(

(1.505)r1 (1.784)r2 e
− 1

2σ̃2−
1

2(σ̃−1)2
+ 1

2
d
ds |s=σ̃

(
ζ′
M

ζM
(s)

))(σ1−1)σ1
.

Fix σm and pick 1 < σ1 < σm. From the Dirichlet series, we see that

d

ds

∣∣∣∣
s=σ̃

(
ζ ′M
ζM

(s)
)
> 0,

we can drop this term from the denominator. Use Equation (5.3) to replace h(1, σ1) and

apply Lemma 5.4:

κM <
σ1(σ1 − 1)

(
|DM |
cE(σ1)n

)cA(σm)
E
(
|DM |

22r2πn

)σ1−1
2

((1.505)r1 (1.784)r2 (1.361 · 10−3))(σ1−1)σ1

(
Γ
(
σ1
2

)
√
π

)r1
Γ(σ1)r2 .

After rearranging the terms, this can be written as

κM <
|DM |cA(σm)+

σ1−1
2

cF (σ1, σm)n
· E,

where cF (σ1, σm) is defined in Equation (5.10).

In Chapter 6, we will pick numerical values for σm and σ1 and obtain an explicit

numerical upper bound for the residue.

5.2.2 Bounding L(1, χ)

We will now consider the case of a generic quadratic extension K/k. We take

χ to be the character satisfying ζK(s) = L(s, χ)ζk(s), [k : Q] = n, and define f so that

|DK | = D2
kf .

Theorem 5.6. Let K/k be described as above. Then

L(1, χ) <
(

D2
k|f |

cE(σm)n

)cA(σ1)
Eh(1, σ1)

((1.505)a1 (1.784)a2 (1.186)a3 (1.935 · 10−3))(σ1−1)(σ1)
,

where a1, a2, and a3 are chosen to make the functional equation for ξχ(s) (Equation

(1.4)) satisfy the hypotheses of Lemma 5.2.
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Proof. We apply Lemma 5.2 with f(s) = L(s, χ). Taking σ = 1 and σ̃ = 1 + α, we get

L(1, χ) <
L(σ1, χ)Eh(1, σ1)(

(1.505)a1 (1.784)a2 (1.186)a3 e
1
2

d
ds |s=σ̃

(
L′
L

(s,χ)
))(σ1−1)(σ1).

.

To bound L(σ1, χ) we will use a crude bound by combining Lemma 5.4 and the fact that

ζk(σ1) > 1:

L(σ1, χ) =
ζK(σ1)
ζk(σ1)

<

(
D2
k|f |

cE(σm)n

)cA(σ1)

.

To bound the (L′/L)(s, χ) term we note that,∣∣∣∣ dds
∣∣∣∣
s=σ̃

(
L′

L
(s, χ)

)∣∣∣∣ =
∣∣∣∣∣ dds

∣∣∣∣
s=σ̃

( ∞∑
n=1

χ(n)Λ(n)n−s
)∣∣∣∣∣

=

∣∣∣∣∣−
∞∑
n=1

χ(n) log(n)Λ(n)n−σ̃
∣∣∣∣∣

≥ −
∞∑
n=1

log(n)Λ(n)n−σ̃

= − d

ds

∣∣∣∣
s=σ̃

(
ζ ′

ζ
(s)
)

≈ −12.495.

Bringing these calculations together gives

L(1, χ) <
(

D2
k|f |

cE(σm)n

)cA(σ1)
Eh(1, σ1)

((1.505)a1 (1.784)a2 (1.186)a3 (1.935 · 10−3))(σ1−1)(σ1)
.

The following corollary follows immediately.

Corollary 5.7. If K is a CM field whose maximal subfield is k, then

L(1, χ) <
(

D2
k|f |

cE(σm)n

)cA(σ1)
Eh(1, σ1)

((1.186)n (1.935 · 10−3))(σ1−1)(σ1)
.
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Explicit Numerical Computations

This chapter is dedicated to computing specific values of the constants found in

the previous chapters. As best as we can, we will find the optimal values of the constants

and the most explicit expressions. We will proceed through the calculations in the same

order they are presented in this dissertation.

6.1 General Information

Before we begin into a long succession of calculations, it will be useful to review

all of the major constants that were introduced and describe their dependencies.

We began with a generalization of the lemmas found in [Sta74]. In Lemma 2.4,

we introduced four constants. The numbers c1 and c2 were values taken directly from

[Sta74] and had two different choices, depending on the situation. When working with

the residue of the Dedekind zeta function of an arbitrary field M , we have

c1 = 0 and c2 = 2/ log 3. (6.1)

When working with quadratic field extensions, we have

c1 = 1/2 and c2 = 1/ log 3. (6.2)

The value of b was related to the size of the exceptional box in which the functions

would have at most one zero. As noted in Remark 2.7, we take b = min[µ, ν], where

µ and ν are taken from Table 2.1 and control the vertical and horizontal dimensions of

the exceptional box, namely that there is at most one zero of the given function in the

region

1− (µ log d)−1 ≤ β < 1 and |γ| ≤ (ν log d)−1,

62
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for an appropriately chosen d. The value of c was a constant chosen in Equation (2.1) and

d > 1 ends up being the discriminant of some field (according to the specific application).

In the conclusion of Lemma 2.4, we obtain an effective constant c3 in Equation (2.5) and

we find c4 in Lemma 2.9, where it is related to the lower bound of L(1, χ). The value of

c5 is fixed, c5 = π/6, and is given by Lemma 2.11.

The next series of constants came from Odlyzko’s work. The value of c6 is fixed

and is part of the bound of the logarithmic derivative of ζk(s) for s > 1 (Lemma 4.4). We

find c7 and c8 in Lemma 4.5. The choice of c7 is made so that we can restrict the value of

the parameters σ and σ′. Once c7 is chosen, we immediately get c8 from Equation (4.1).

In Remark 4.8, we even computed the allowed range of values for these two constants.

Given these values, Lemma 4.7 introduces the two more constants as constraints. The

value of c9 affects the degrees of the fields that we are considering and c10 is a bound

that further affects our choice of σ and σ1 (in particular, it keeps them from getting too

close to each other). The result of Theorem 4.9 is the calculation of c11 and c12. Also,

in Theorem 4.10, we compute c18 and c19.

Finally, Hoffstein’s work is not so much the calculation of constants, but eval-

uating functions at specific values. The choice of σm gives the upper bound for the

parameter σ1, to which there is a corresponding σ̃1 given by Equation (5.5). The calcu-

lation of the functions cA(σm), cE(σ1), and cF (σ1, σm) are all given explicitly in the text

and are too involved to discuss here.

6.2 The Results of Stark’s Method

We will begin with the work from Chapter 2. These results are very straight-

forward, but serve as a good way to ease into the more complicated calculations that

follow.

6.2.1 The Lower Bound for κM

In Lemma 2.8, we showed that for an arbitrary number field M and c > 1

chosen such that
(c− 1)

(
c+

√
c2 − 1

)
c

b

log |DM |
≤ 0.461,
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that we have

κM >

c
−1
3

c−1
(c−1)+(bµ)−1 (1− β0), if β0 exists

c−1
3 b(c− 1)(log |DM |)−1, otherwise,

where c3 is taken from Equation (2.5),

c3 = exp
(
b(c− 1)(2cc1 + c− 1)

2
+ 1.316c− bc2(c− 1)

2
Γ′

Γ

(
1
2

))
.

Notice that we are in the situation of Equation (6.1), so that

c3 = exp
(
b(c− 1)2

2
+ 1.316c− b(c− 1)

log 3
Γ′

Γ

(
1
2

))
.

In a completely generic setting, we can do no better than to take M 6= Q so

that |DM | ≥ 3. Once we pick the values for µ and ν from Table 2.1, we immediately

have b, which leaves us with c as the only free variable.

Suppose that the exceptional zero exists. In this case, we have

κM >
1

exp
(
b(c−1)2

2 + 1.316c− b(c−1)
log 3

Γ′

Γ

(
1
2

)) c− 1
(c− 1) + (bµ)−1

(1− β0) = A1(1− β0),

where c must satisfy
(c− 1)

(
c+

√
c2 − 1

)
c

≤ 0.461 · log 3
b

. (6.3)

When there is no exceptional zero, we have

κM >
b(c− 1)

exp
(
b(c−1)2

2 + 1.316c− b(c−1)
log 3

Γ′

Γ

(
1
2

))(log |DM |)−1 = A2(log |DM |)−1,

where c must satisfy the same condition as above. In either situation, we can use a

computer to choose c so that the value of Ai is maximal, giving us the best lower bound.

The results of these calculations are given in Table 6.1.

Remark 6.1. Although the values for A1 appear to be significantly better than even the

optimal value of A2, notice that the exceptional zero must be within (µ log |DM |)−1 of

1, which makes the 1− β0 term very small. This will be a recurring theme in the rest of

these calculations.

6.2.2 The First Lower Bound for L(1, χ)

Suppose that K is a quadratic extension of k and define f by |DK | = D2
kf .

Suppose that k is a degree n field with r1 real conjugate fields and 2r2 complex conjugate
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Table 6.1: Values for A1 and A2 with the optimal choice of c.

A∗2 represents the optimal value of A2 over all c, not subject to Equation (6.3).

µ 2.915 2.915 2.989 3 3.618 4.079
ν 1000 100 10 9.343 3.618 3
c 1.120 1.085 1.083 1.083 1.067 1.075
A1 0.0639 0.0639 0.0650 0.652 0.0738 0.0771
c 1.120 1.120 1.117 1.117 1.099 1.117
A2 0.0420 0.0420 0.0422 0.0422 0.0437 0.422
A∗2 0.0427 0.0427 0.0429 0.0429 0.0446 0.0429

µ 8.826 10 100 1000 10000 100000
ν 2 1.949 1.688 1.668 1.666 1.666
c 1.081 1.079 1.034 1.011 1.004 1.001
A1 0.101 0.111 0.197 0.243 0.260 0.266
c 1.167 1.171 1.194 1.194 1.196 1.196
A2 0.0385 0.0382 0.0367 0.0365 0.0366 0.0366
A∗2 0.0388 0.0385 0.0369 0.0367 0.0367 0.0367

fields. Let L(s, χ) be defined by this extension, L(s, χ) = ζK(s)/ζk(s). In Lemma 2.9,

we showed that

L(1, χ) > c−1
4

z(c, β0)
σ1 − 1

|Dk|−
1
2
(σ1−1)

( √
π

Γ(σ1/2)

)r1 (2σ1−1

Γ(σ1)

)r2 (π 1
2
(σ1−1)

ζ(σ1)

)n
,

where

1 + b(c− 1)(logD2
kf)−1 ≤ σ1 ≤ 2,

c is chosen so that
(c− 1)

(
c+

√
c2 − 1

)
c

b

logD2
kf

≤ 0.461,

and

z(c, β0) =


c−1

(c−1)+(bµ)−1 (1− β0), if β0 exists

b(c− 1)(logD2
kf)−1, otherwise.

The value of c4 is given explicitly in the proof,

c4 = 2c3 exp(bc2(c− 1))

= 2 exp
(
b(c− 1)(2cc1 + c− 1)

2
+ 1.316c− bc2(c− 1)

2

(
Γ′

Γ

(
1
2

)
− 2
))

.
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In this case, there are two parameters to choose, c and σ1. The choice of each

is independent of the other, with c affecting the c4 and z(c, β0) terms and σ1 affecting

the rest. We can optimize c as before, however the choice of σ1 may vary with the

application. For example, if k is of small degree, it would be better to choose σ1 small

so that the (σ1 − 1)−1 term dominates the expression. However, if the field has a large

degree then by taking σ1 = 2 the last term is greater than one and this suggests that

L(1, χ) is very large.

We will start by choosing c following the pattern prescribed in the previous

section. We will take Dk ≥ 3 and f ≥ 1. We are in the situation where Equation (6.2)

applies. Therefore,

c4 = 2 exp
(
b(c− 1)(2c− 1)

2
+ 1.316c− b(c− 1)

2 log 3

(
Γ′

Γ

(
1
2

)
− 2
))

.

If the zero exists, then

L(1, χ) >
c−1

(c−1)+(bµ)−1

2 exp
(
b(c−1)(2c−1)

2 + 1.316c− b(c−1)
2 log 3

(
Γ′

Γ

(
1
2

)
− 2
))f(σ1)(1− β0)

= A3f(σ1)(1− β0),

where f(σ1) consists of all the remaining terms in the product and c is subject to

(c− 1)
(
c+

√
c2 − 1

)
c

≤ 0.461 · log 3
b

.

If β0 does not exist, then we have

L(1, χ) >
b(c− 1)

2 exp
(
b(c−1)(2c−1)

2 + 1.316c− b(c−1)
2 log 3

(
Γ′

Γ

(
1
2

)
− 2
))f(σ1)(logD2

kf)−1

= A4f(σ1)(logD2
kf)−1,

where c is subject to the same constraint. Table 6.2 gives the results of the numerical

computations.

Since there is no uniformly ideal manner in which to choose σ1, we will simply

take a few values and compute the results. But before we do this, we will rearrange the
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Table 6.2: Values for A3 and A4 with the optimal choice of c.

µ 2.915 2.915 2.989 3 3.618 4.079
ν 1000 100 10 9.343 3.618 3
c 1.073 1.073 1.071 1.071 1.057 1.065
A3 0.0281 0.0281 0.0286 0.0287 0.0327 0.0344
c 1.115 1.115 1.113 1.112 1.097 1.112
A4 0.0172 0.0172 0.0173 0.0173 0.0178 0.0173

µ 8.826 10 100 1000 10000 100000
ν 2 1.949 1.688 1.668 1.666 1.666
c 1.071 1.070 1.031 1.010 1.003 1.001
A3 0.0485 0.0510 0.0957 0.120 0.129 0.133
c 1.153 1.156 1.173 1.174 1.174 1.174
A4 0.0158 0.0157 0.0151 0.0151 0.0151 0.0151

Table 6.3: Values of A5, A6, A7, and A8 corresponding to choices of σ1.

σ1 1.01 1.05 1.10 1.25 1.50 2.00
A5 100 20 10 4 2 1
A6 0.005 0.0250 0.0500 0.125 0.250 0.500
A7 0.0101 0.0524 0.110 0.310 0.737 1.910
A8 0.0102 0.0547 0.119 0.380 1.083 3.820

terms:

f(σ1) =
|Dk|−

1
2
(σ1−1)

σ1 − 1

( √
π

Γ(σ1/2)

)r1 (2σ1−1

Γ(σ1)

)r2 (π 1
2
(σ1−1)

ζ(σ1)

)r1+2r2

=
|Dk|−

1
2
(σ1−1)

σ1 − 1

(
π

σ1
2

Γ(σ1/2)ζ(σ1)

)r1 (
(2π)σ1−1

Γ(σ1)ζ(σ1)

)r2
= A5|Dk|−A6Ar17 A

r2
8 .

These results can be found in Table 6.3. Notice these values confirm the suggestion that

larger values of σ1 are better for fields of large degree (so that r1 and r2 are large) and

smaller values of σ1 are better for fields of small degree.

6.2.3 First Calculations on B(B)

In Chapter 3, we computed some results for lower bounds on the residue κM of

arbitrary fields in B(B) and the class number h(k) of the maximal real subfield of a CM
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Figure 6.1: The web of dependencies for the constants in Chapter 4.

field K. However, an inspection of Theorems 3.2 and 3.4 shows that the major constants

in these results are exactly the same as those in the previous sections.

6.3 The Results of Odlyzko’s Method

As seen in Figure 6.1, there are about twenty constants and parameters intro-

duced in Chapter 4, so before we begin we will review the definitions and constraints

for everything. However, instead of presenting the information in the order it was pre-

sented in the proofs, we will present them in the order that makes sense for performing

numerical calculations.

6.3.1 An Overview of the Constants

The first constant introduced is

α =

√
14−

√
128

34
≈ 0.281,

which is a value that arises from the proof of Lemma 4.1 (which was not included in this

dissertation). From this, we get

α =
12α+

√
288− 720α2

24− 72α2
≈ 1.014,

which is an upper bound for the parameter σ that allows us to fix the value of another

parameter, σ̃ = 1 + ασ.
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We get

c6 = −2(log 2)2 + log 2 ≈ −0.268

from the proof of Lemma 4.4, which is a part of an estimate for the function Z(σ), which

is defined at the beginning of Chapter 4. From Lemma 4.5 and Remark 4.6, we get(
log(1 + log 4)

log 2
− 1
)−1

= 3.926 < c7 <∞

and

c8 =
(

2 log 2

21+c−1
7 − 1

− 1
)−1

,

where c7 is used as an upper bound and c8 contributes to another lower estimate of Z(σ).

By choosing c9 and c10 such that

(1 + c−1
8 )(1− c−1

10 ) > 1 + 2c−1
9 ,

then for 1 < σ < σ1 ≤ 1+ c−1
7 , n ≥ c9(σ1−1)−1, and c10(σ−1) ≤ (σ1−1), we can apply

the result of Lemma 4.7.

The process of computing c11 and c12 in Theorem 4.9 goes through 5 different

constants (c13 through c17). Instead of presenting them in the order presented in the

text, we will review them in an order that makes sense computationally. We start with

c13 ≥ max
(

1
α− 1

, c7

)
,

which is related to the restrictions on σ and σ1. In fact, we will simply take this to be

an equality for c13. From this we immediately obtain

c14 =
ψ
(

1+c−1
13

2

)
− ψ

(
1
2

)
1+c−1

13
2 − 1

2

.

This value comes out of bounding term A in the proof. Once c14 is computed, we get

c16 =
c14

2
− α

16
ψ′′
(

1 + α

2

)
+ c6 +

1 + 2c−1
9

8

(
log π4 − 4ψ

(
1
2

)
+ ψ′

(
1 + α

2

))
=
c14

2
+

3.925
c9

+ 1.840,

which arises from combining several terms together. We then pick c17 so that when

σ1 ≤ 1 + c−1
17 we have

7.118
ec16(σ1−1)

> 2π,
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which is equivalent to

(σ1 − 1) < c−1
16 log

(
7.118
2π

)
.

This implies that we want to take

c17 > c16

(
log
(

7.118
2π

))−1

.

We also want to have c17 ≥ c13, so that we can take

c17 > max

(
c16

(
log
(

7.118
2π

))−1

, c13

)
.

The value of c15 can be computed from previously obtained values:

c15 =
1
2

(
2 +

2(1 + c−1
13 )− 1

(1 + α)2
+

2(1 + c−1
13 )− 1
α2

)
.

In the end, we get that for 1 < σ < σ1 < 1 + c−1
17 , n ≥ c9(σ1 − 1)−1, and c10(σ − 1) ≤

(σ1 − 1),

c11 = exp(c15 + (σ − 1)−1 − c10(1 + 2c−1
9 ))

and

c12 =
(

7.118
exp(c16(σ1 − 1))

− 2π
)−1

.

Moving on to the calculation of c18 and c19 from Theorem 4.10, we find that

these are much more straight forward values to compute. We have c20 = 2/e from

Equation (4.11). From Equation (4.14),

c21 = (1 + c−1
17 )c3 exp(bc2(c− 1)),

where c1 and c2 are taken as in Equation (6.2). From these two values, we get

c18 = c21c20

(
c− 1

(c− 1) + (bµ)−1

)−1

and

c19 =
2c21

b(c− 1)e
.

It is not necessary to compute each constant explicitly. For example, the value

of c8 is given directly from knowing c7. Therefore, the results can be recomputed given

only a few of the many constants and parameters. Table 6.4 gives a few examples of

valid choices.
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Table 6.4: Examples of valid choices of the constants and parameters.

c7 3.927 70 70 1000 69.346
c9 40992 5.8 103 5.21 5.572
c10 10000 100 4 10000 25781
c17 70 70 70 1000 69.346
σ − 1 1.41 · 10−6 1.41 · 10−4 3.54 · 10−3 8.9 · 10−8 5.58 · 10−7

σ1 − 1 1.42 · 10−2 1.42 · 10−2 1.42 · 10−2 9 · 10−4 1.44 · 10−2

n ≥ 2.887 · 106 408.5 7253.52 5788.9 386.9

6.3.2 Another Lower Bound for L(1, χ)

Equation (4.13) in the middle of the proof of Theorem 4.10 gives another lower

bound for L(1, χ) which is an improvement over Lemma 2.9. For

1 + b(c− 1)(log(|Dk|2f))−1 = σ0 ≤ σ1 ≤ 1 + c−1
17 ,

where c is chosen so that

(c− 1)
(
c+

√
c2 − 1

)
c

b

logD2
kf

≤ 0.461,

we have

L(1, χ) > c−1
21 z(c, β0)

|Dk|−
1
2
(σ1−1)

ζk(σ1)
.

Notice that the exponent of |Dk| is of the same form, but instead of an explicit de-

pendence on the number and types of field embeddings, it depends on the value of the

Dedekind zeta function near s = 1.

If we plug in the formula for c21 we get

L(1, χ) >
2

(1 + c−1
17 )c4

z(c, β0)
|Dk|−

1
2
(σ1−1)

ζk(σ1)
,

and we already computed values for c−1
4 z(c, β0) in Table 6.2. We cannot obtain good

numerical bounds for the remaining terms because we do not have a bound for ζk(σ1)

except for ζk(σ1) < ζ(σ1)n. Since we cannot find choices of the parameters to allow us

to compute bounds for fields of very small degree, this bound is unhelpful to us and we

will not compute numerical values for them.
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Table 6.5: Possible values of B1 and B2 using the parameters given by Table 6.4.

B1 − 1 0.066 0.056 0.066 0.128 0.054
B2 10−303671 10−3025 10−124 10−4873707 10−763094

n ≥ 2.887 · 106 408.5 7253.5 5788.9 386.9

6.3.3 A Lower Bound for h(K) for CM Fields

In the proof of Theorem 1.19, where we show that

h(K) ≥ h(k)C ′
(
1 + (2c12π)−1

)n
n

f
1
2
− 1

2n ,

where

C ′ =

(c11c18g(B))−1, if the exceptional zero exists

(c11c19)−1, if the exceptional zero does not exist.

Notice that

c−1
18 =

2c−1
20

1 + c−1
17

A3 =
e

1 + c−1
17

A3

and

c−1
19 =

e

1 + c−1
17

A4,

so we can use the values from Table 6.2. This indicates that we only need to compute

B1 = 1 + (2c12π)−1

and

B2 =
e · c−1

11

1 + c−1
17

.

The results of these calculations are given in Table 6.5.

Remark 6.2. The first observation from this table is how poor these bounds are, especially

for B2. The reason that they are so bad is that we are attempting to obtain uniform

bounds for fields of both high and low degree.

In the last four columns we can also begin to see the various trade-offs that are

made between the degree of the field, the size of B1, and the size of B2.
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6.3.4 Application to Theorem 1.19

Our numerical calculations have shown that we can apply our main results to

fields whose degree is at least 387. We will analyze this lower bound on the degree and

explain the major obstacles to obtaining a result for smaller fields.

From Lemma 4.7, the condition on n is

n ≥ c9(σ1 − 1)−1.

We have that c9 is bounded below,

c9 >
2

(1 + c−1
8 )(1− c−1

10 )− 1
,

and by Remark 4.6 we know that c8 > (2 log 2− 1)−1, so that as we let c10 →∞ we get

c9 > 2(2 log 2− 1)−1 ≈ 5.177. The restriction

1 < σ < σ1 < 1 + c−1
17

gives us an lower bound on (σ1 − 1)−1, namely that this is greater than c17. By tracing

the inequalities, we find that

c17 ≥ c13 >
1

α− 1
≈ 69.345.

Therefore, the techniques we have developed can at best prove the result for fields with

n >
2

(2 log 2− 1)(α− 1)
≈ 359.02.

However, we are unable to even attain this ideal because to minimize c9 as above, we

must take c7 very large, which affects the choice of c17. In fact, if we take c7 = c17 and

let c17 approach (α− 1)−1 (still taking c10 →∞), we get

n >
2(2α − 1)

(2 log 2− 2α + 1)(α− 1)
≈ 386.34.

We can see from the last column of Table 6.4 that we have found explicit values of these

parameters to obtain this optimal value (since n is always an integer).

It is not a surprise that our efforts fail to prove get results for fields of small

degree. In [Sta74], Stark observed that finding effective values for the lower bound of

the residue of Dedekind zeta functions, and hence class numbers of CM fields, is very

difficult for fields of small degree.
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6.4 The Results of Hoffstein’s Method

6.4.1 An Overview of the Calculations

Starting from Lemma 5.3, we pick σm to be an upper bound for σ1, so that

1 < σ1 ≤ σm. From the choice of σm, we take σ̃m such that

σ̃m ≥ max

[
5 + (12σ2

m − 5)1/2

6
, 1 + ασm

]
.

In fact, we will take this to be an equality. For each σ1, we consider all possible choices

of σ̃1 < σ̃m subject to the corresponding restriction. We are seeking a value cA(σm) that

will give us the inequality.

In the proof of the lemma, there are three functions introduced,

cC(x, σ) = −x
σ − 1

2 log x
log
(

1− 1
xσ

)
and

cD(x, σ) =
(2σ − 1)xσ̃(log x)(xσ − 1)

2(xσ̃ − 1)2
,

which together give

cB(x, σ) =
cC(x, σ)

1 + cD(x, σ)
.

We defined x0(σ, σ̃) to be the critical point of cD(x, σ) when σ and σ̃ were

fixed. After analyzing the function, we determined that the smallest value of x0(σ, σ̃)

over the ranges 1 < σ ≤ σm and valid σ̃ ≤ σ̃m was xm = x0(1, σ̃m). Although there

is no closed form expression for this value, it can easily be obtained numerically. This

value then immediately gives cC(xm, σm), which is one part of the bound for cA(σm).

The second part of the bound for cA(σm) is another calculation. We 1 ≤ σ ≤ σm, we

want to maximize the function cB(2, σ). Once again, we do not have a closed form for

this, but we can do it numerically. We then take

cA(σm) = max
1≤σ≤σm

(cB(2, σ), cC(xm, σm)) .

Once this value is established, everything else is a matter of choosing σ1 such

that 1 < σ1 ≤ σm and σ̃1 such that

max

[
5 + (12σ2

1 − 5)1/2

6
, 1 + ασ1

]
≤ σ̃1 ≤ σ̃m,

then using a computer to calculate various values. Table 6.6 lists some possible choices

of σm and the values of the corresponding constants.
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Table 6.6: The values of σ̃m, xm, and cA(σm) for a given choice of σm

σm 2 1.5 1.3 1.1 1.01
σ̃m 1.926 1.615 1.485 1.348 1.284
xm 2.710 4.938 7.864 18.217 34.889

cA(σm) 0.466 0.400 0.385 0.365 0.354

6.4.2 An Upper Bound for κM

In Theorem 5.5, we showed that

κM <
|DM |cA(σm)+

σ1−1
2

cF (σ1, σm)n
· E,

where E is defined as in Lemma 5.1, cA(σm) as described above,

log cF (σ1, σm) = cA(σm) log cE(σ1)

+ σ1(σ1 − 1)
(
−6.633
n

+
r1
n

(0.409) +
r2
n

(0.579)
)

+
r1
n

(0.572)

+ (σ1 − 1)
(r2
n

(0.693) + 0.572
)
− 1
n

log(σ1(σ1 − 1))

− r1
n

log
(
Γ
(σ1

2

))
− r2
n

log (Γ(σ1)) ,

and

log cE(σ1) =
r1
n

(
log π − ψ

(σ1

2

)
− 2σ1 − 1

4
ψ′
(
σ̃1

2

))
+

2r2
n

(
log 2π − ψ(σ1) +

2σ1 − 1
2

ψ′ (σ̃1)
)

− 1
n

(
2
σ1

+
2

σ1 − 1
+

2σ1 − 1
σ̃1

2 +
2σ1 − 1

(σ̃1 − 1)2

)
.

While this form is very cumbersome, it turns out that after rearranging the terms, this

can be more simply expressed as

κM <
C1|DM |C2

Cr13 · Cr24

· E,
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Table 6.7: The values of the constants C1 through C5 for the choices of σm, σ1, and σ̃1.

σm 2 2 2 1.1 1.1
σ1 1.347 1.001 1.001 1.05 1.001
σ̃1 1.926 1.926 1.282 1.312 1.282
C1 166129 10867 10872 1.801 · 1022 10872

C2 0.639 0.466 0.466 0.390 0.366
C3 4.315 3.474 2.908 2.395 2.310
C4 29.293 13.017 16.284 10.018 8.919

with

C1 = σ1 · (σ1 − 1) · exp
[
(6.633) · σ1 · (σ1 − 1) +

2
σ1

+
2

σ1 − 1
+

2σ1 − 1
σ̃1

2 +
2σ1 − 1

(σ̃1 − 1)2

]
C2 = cA(σm) +

σ1 − 1
2

C3 = exp
[
cA(σm)

(
log π − ψ

(σ1

2

)
− 2σ1 − 1

4
ψ′
(
σ̃1

2

))
+(0.409) · σ1 · (σ1 − 1) + (0.572)− log Γ

(σ1

2

)
+ (0.572) · (σ1 − 1)

]
C4 = exp

[
2cA(σm)

(
log 2π − ψ(σ1) +

2σ1 − 1
2

ψ′(σ̃1)
)

+(0.579) · σ1 · (σ1 − 1) + (0.693) · (σ1 − 1)− log Γ(σ1) + (1.157) · (σ1 − 1)]

Table 6.7 has the results of some these constants with the explicit choices of the param-

eters.
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Future Work

This dissertation leaves the door open for many improvements and future in-

vestigations. There is plenty of room to improve this result and lots of places to begin

searching for inspiration. There was not enough time to attempt to replicate Hoffstein’s

lower bound methods and extend them to class number calculations and to B(B). This

would be the next logical step.

Stéphane Louboutin has done a large amount of work with ideas related to the

Brauer-Siegel Theorem and CM fields (see [Lou05], [Lou03], [Lou06] and their references),

and there are certainly many ideas and techniques that can be gleaned from those papers

and applied to our situation.

77



Bibliography

[Dav00] Harold Davenport. Multiplicative number theory, volume 74 of Graduate Texts
in Mathematics. Springer-Verlag, New York, third edition, 2000. Revised and
with a preface by Hugh L. Montgomery.

[GZ86] Benedict H. Gross and Don B. Zagier. Heegner points and derivatives of
L-series. Invent. Math., 84(2):225–320, 1986.

[Hof79] Jeffrey Hoffstein. Some analytic bounds for zeta functions and class numbers.
Invent. Math., 55(1):37–47, 1979.

[Lan94] Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, second edition, 1994.
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