Lawrence Berkeley National Laboratory

Recent Work

Title

Multicusp Ion Source with External RF Antenna for Production for H- Ions

Permalink

https://escholarship.org/uc/item/5z23277b

Author

Mandrillon, Pierre

Publication Date

2006-05-17

Multicusp ion source with external RF antenna for production of H- ions

Taneli Kalvas¹, Sami Hahto¹, Hannes Vainionpää¹, Ka-Ngo Leung¹, Steve Wilde¹, Pierre Madrillon²

- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- AIMA-SA-Laboratoire du Cyclotron, 427 Avenue de la lanterne, 06000-Nice, France

A multicusp ion source with modular design was developed for production of H^- ions. The source consists of a front plate, two multicusp front chambers, a quartz flange with external 2.5 loop RF antenna and a rear multicusp chamber. The source has LaB₆ sputtering target on the rear chamber for lowering work function of the surfaces by coating them with LaB₆. The front plate of the source has an integrated collar and filter magnets for cooling plasma near the extraction. The collar also enables the use of cesium and LaB₆ surface effects. The source is equipped with three gas feed-throughs for two-gas operation and pressure measurements.

Current density of over 10 mA/cm^2 of H^- with only 1000 W of CW RF power has been achieved with the help of Xe gas mixing and LaB_6 deposition to the source surfaces. The source has also exceptionally good performance in producing H^+ when the filter magnets are removed. Current density of 110 mA/cm^2 with 1800 W RF power at 15 mTorr source pressure was measured with over 90 % atomic species. A long lifetime of source is excepted as the external RF antenna is not exposed to plasma.