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Abstract

Searching for Quasars and Beyond

by

Jessica Ann Kirkpatrick

Doctor of Philosophy in Physics

University of California, Berkeley

Doctor David Schlegel, Co-chair
Professor Saul Perlmutter, Co-chair

The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic
survey of 10,000 deg2, achieved first light in late 2009. One of the key goals of BOSS
is to measure the signature of baryon acoustic oscillations (BAO) in the distribution of
Ly↵ absorption from the spectra of a sample of ⇠150,000 z > 2.2 quasars in conjunction
with measuring the redshifts of 1.6 million luminous red galaxies with high completeness
to i ⇡ 19.9 at z ⇡ 0.7. One of the biggest challenges in achieving this goal is an e�cient
target selection algorithm for quasars in the redshift range 2.2 < z < 3.5, where their colors
tend to overlap those of the far more numerous stars. During the first year of the BOSS
survey, quasar target selection methods were developed and tested to meet the requirement of
delivering at least 15 quasars deg�2 in this redshift range, with a goal of 20, out of 40 targets
deg�2 allocated to the quasar survey. To achieve these surface densities, the magnitude limit
of the quasar targets was set at g  22.0 or r  21.85.

In this thesis I present a new method for quasar target selection using photometric fluxes and
a Bayesian probabilistic approach. For our purposes I target quasars using Sloan Digital Sky
Survey (SDSS) photometry to a magnitude limit of g = 22. The e�ciency and completeness
of this technique is measured using the Baryon Oscillation Spectroscopic Survey (BOSS)
data, taken in 2010. This “likelihood” technique was used for the uniformly selected (CORE)
sample of targets in BOSS year one spectroscopy to be realized in the 9th SDSS data release.
When targeting at a density of 40 objects deg�2 (the BOSS quasar targeting density) the
e�ciency of this technique in recovering z > 2.2 quasars is 40%. The completeness compared
to all quasars identified in BOSS data is 65%.

An extension of the “likelihood” technique is also described. This SDSS -XDQSO technique
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builds models of the distributions of stars and quasars in flux space down to the flux limit by
applying the extreme-deconvolution method to estimate the underlying density. I convolve
this density with the flux uncertainties when evaluating the probability that an object is a
quasar. This approach results in a targeting algorithm that is more principled, more e�cient,
and faster than other similar methods.

With BOSS’s new catalog of quasar and galaxy data, exciting new science can be done.
Whether luminous quasars reside in dark matter halos of the same mass and accrete at dif-
ferent rates, or live in halos of di↵erent masses and accretion is near the Eddington limit,
is still an open question. Here, I present measurements of the luminosity-dependence of
quasar clustering, using QSO data from the Sloan Digital Sky Survey (SDSS) Data Release
7, 2dF-SDSS LRG and QSO Survey (2SLAQ), and SDSS-III: Baryon Oscillation Spectro-
scopic Survey (BOSS). In my quasar sample I have 3100 spectroscopically confirmed quasars
with a redshift range of (0.5 < z < 1.0), luminosity range of (�27 < M < �21), down
to i�band 22.14. In my galaxy sample I have 5.23 million photometric galaxies brighter
than i�band = 23.50, selected from the CFHT (Canada-France-Hawaii Telescope) Survey of
Stripe-82 (CS82). The cross-correlation is well described by a power law with slope 1.77±0.1
and r0 = 5.05 ± 0.14 h�1 Mpc, which is consistent with previous findings. I determine a
large-scale quasar bias, bQSO = 1.46 ± 0.18, at redshift z = 0.7. When I divide the quasar
sample into low/high luminosity samples I find luminosity depended quasar clustering at a
4.56 � significance level.
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Chapter 1

Introduction

“The astronomical discovery that ordinary matter comprises only 4% of the mass-energy
density of the universe is the most dramatic in cosmology in the past several decades, and it
is clear that new physics will be needed to explain the non-baryonic dark matter and dark en-
ergy. At the same time, data from particle physics suggests a corresponding need for physics
beyond the Standard Model. Discovering and understanding the fundamental constituents
and interactions of the universe is the common subject of particle physics and cosmology. In
recent years, the frontier questions in both fields have become increasingly intertwined. The
emerging common themes that astrophysics and particle physics are addressing have crystal-
lized a new physics-astronomy community.” — LSST Science Book

1.1 Quasars as Astrophysical Tools

Quasi-stellar radio sources (quasars/QSOs) are very energetic and distant active galactic
nuclei. Quasars have been vital astrophysical tools since their discovery over forty years
ago (Matthews & Sandage 1963; Schmidt 1963). Individually, quasars provide examples of
energetic and extreme physics, e.g., the broad absorption line phenomenon, first characterized
by Bahcall & Goldsmith (1971); Weymann et al. (1981, 1991), and more recently by Gibson
et al. (2009); Allen et al. (2011). Quasars are also tracers of structure at large scales (Croom
et al. 2005; Myers et al. 2006, 2007a,b; Shen et al. 2007, 2009; Ross et al. 2009) and small
scales (Hennawi et al. 2006a; Myers et al. 2007b, 2008), providing constraints on their host
dark matter halos and the quasar phenomenon (Shankar 2009; Shen 2009). Indeed, due to
their intrinsic luminosity (⇠ few 1046 erg s�1) they can be seen to high (z ⇠ 6) redshifts
(Fan et al. 2006b; Willott et al. 2010), enabling constraints to be placed on the epoch of
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reionization (EoR; Fan et al. 2006a). Furthermore, there is now strong evidence that there is
a link between luminous AGN activity and the formation and evolution of massive galaxies
(see Cattaneo et al. 2009, for a review).

Quasars have proved to be cosmological “backlights” and the absorption features blueward
of the Lyman-↵ (1216 Å) emission line have been seen in traditionally bright, quasar spectra
(Rauch 1998, and references therein). The absorption between the Lyman-↵ and the Lyman-
limit (912 Å), caused by neutral hydrogen, is regularly referred to as the Lyman-↵ forest
(Ly↵F; Lynds 1971). The region between Lyman-↵ and Lyman-� is typically used for
Ly↵F science because it is not confused by Lyman-� absorption lines. Meiksin (2009) has
a contemporary review, with the importance of the Ly↵F in cosmology discussed by Croft
et al. (1998) and White (2003), and measured, via the (“1-D”) Power Spectrum, by Croft
et al. (2002) and McDonald et al. (2006).

The Ly↵-forest begins to be redshifted into in the near-UV/blue bands at z ⇠ 2. The
atmosphere extincts > 50% of the light below 3500 Å, and CCD detectors are also less
e�cient at those shorter wavelengths. If Ly↵F lines of sight are observed at high spatial
density, then they can be used to perform precise measurements of the expansion rate and
distance scale (and thus constrain cosmological world models, e.g. White 2003; McDonald
2003; McDonald & Eisenstein 2007; McQuinn & White 2011).

1.2 Quasar Target Selection

Previous quasar surveys, such as the Sloan Digital Sky Survey (SDSS; Schneider et al. 2010)
and the Ango-Australian Telescope (AAT) Two-Degree Field (2dF) QSO Redshift Survey
(2QZ; Croom et al. 2004), have historically performed quasar target selection by searching
for relatively bright quasars (i < 19.1, z < 3 objects for SDSS). However previous methods,
either the traditional “UVX” – selecting star-like objects with unusually blue broadband
colors, Sandage (1965) or “color-boxes” Richards et al. (2006); Croom et al. (2009), 3.3.1,
begin to fail at fainter magnitudes because they do not fully account for the large errors at
lower fluxes. This motivated our development of a selection technique which better handles
the flux errors as one approaches the flux limit.

Furthermore, at (z > 2) redshifts, broad-band optical color selections fail, since the colors
of these “mid-z” quasars are similar to those of stars (in particular early A and F stars, Fan
1999, Richards et al. 2002) and the quasars “pass over the stellar locus”. Simultaneously,
quasars become much fainter e.g., an Mg = �23 quasar at z = 2, has g-band ⇠ 21.7, and
thus the photometric errors are consequently larger.

With the final data release of the SDSS (Abazajian et al. 2009), an incredibly powerful
database of over 100,000 spectroscopically confirmed quasars (Schneider et al. 2010) and
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1,000,000 photometric potential quasar targets (Richards et al. 2009a) is now publicly avail-
able. In particular, the advent of a mega-quasar catalog is impressive, and the Richards
et al. (2009a) photometric sample consists of the largest sample of photometrically classified
z > 2.4 quasars in the literature. This catalog has also been the dataset of several cosmology
studies including: studies of cosmic magnification bias (Scranton et al. 2005a); the investi-
gation into the clustering of quasars on large (Myers et al. 2006, 2007a) and small (Hennawi
et al. 2006a; Myers et al. 2007b, 2008) scales; the Integrated Sachs-Wolfe (ISW) e↵ect (Gian-
nantonio et al. 2006; Giannantonio et al. 2008); binary quasars (Hennawi et al. 2006b, 2010;
Prochaska & Hennawi 2009; Shen et al. 2010); and the near infrared photometric properties
of quasars (Peth et al. 2011).

1.3 Searching for Quasars

The SDSS-III: Baryon Oscillation Spectroscopic Survey (BOSS; Eisenstein et al. 2011; Daw-
son et al. 2012) is specifically targeting z > 2.2 QSOs in order to observe 150,000 Ly↵F
lines of sight. The key aim of BOSS is to measure the absolute cosmic distance scale and
expansion rate with percent-level precision at three distinct cosmological epochs: redshifts
z = 0.3, 0.6 using luminous red galaxies (LRGs) and z ⇠ 2.5 using the Ly↵F, via the baryon
acoustic oscillation (BAO) technique. BOSS has dedicated 40 fibers per deg2 to QSO target
selection for measuring the BAO signal.

The BOSS Ly↵F/Quasar Survey targets objects thought to be z > 2.2 quasars to perform
a Ly↵F BAO measurement. Since the foreground Ly↵F is independent of the background
quasar, there is freedom to use multiple selection methods without biasing the BAO re-
sults. The methods used for BOSS targeting include the “Kernel Density Estimator” (KDE;
Richards et al. 2004), an “extreme-deconvolution” method (XDQSO; Bovy et al. 2011b),
and a Neural Network method (NN; Yèche et al. 2010). The BOSS QSO target selection
(Ross et al. 2012) combines all these di↵erent methods with di↵erent photometric catalogs
(SDSS, UKIDSS, GALEX and quasars found using their flux time-variability information
(Palanque-Delabrouille et al. 2011).

My thesis has involved extensive work on the BOSS quasar target selection team. I developed
a new target selection method (see Chapter 3) which was the primary target selection method
for BOSS during commissioning and year-one.
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1.4 And Beyond

There is tremendous interest today in understanding the formation of black holes and QSOs
to inform our understanding of galaxy formation. Central black hole masses (mbh) correlate
with galaxy masses and therefore (indirectly) with dark matter halo masses. However, using
quasars, we can only roughly estimate the mbh because the quasar luminosities (which we
measure directly) also depend on accretion rate. This creates a very interesting problem to
solve if we want to trace the build-up of mbh in the universe over cosmic time; understand the
role that massive black holes play in quenching star formation in galaxies; or use quasars as
precision tracers of large scale structure. There are competing theories for quasar accretion
rates: Some people (e.g., Ferrarese & Merritt 2000) say that the gas feeding should scale
with galaxy bulge mass and therefore mbh. This predicts that quasar luminosity should
correlate with halo mass and therefore that quasar clustering should depend strongly on
quasar luminosity. Others (e.g., Hopkins et al. 2006) say that gas feeding is highly variable,
in which case quasar clustering should not depend strongly on quasar luminosity.

In recent years, quasar catalogs have grown big enough in terms of the absolute number,
redshift, and luminosity range to accurately understand their clustering properties (Porciani
et al. 2004; Croom et al. 2005; Porciani & Norberg 2006; Hennawi et al. 2006a; Myers et al.
2007a,b; Shen et al. 2007; da Ângela et al. 2008) and distinguish between the above scenarios.
However, because quasars are extremely rare (n̄ ⇠ 10�6 h3 Mpc�3 at z ⇠ 0.5), their clustering
signal is dominated by shot-noise from Poisson fluctuations in the counts of objects.

With BOSS’s new catalog of quasar and galaxy data, exciting new science can be done. For
the first time there is enough quasar data to perform statistically significant measurements
of luminosity dependent quasar clustering. As part of my thesis work, I have detected (for
the first time ever) a luminosity dependent clustering signal (see Chapter 5).

1.5 Layout of Thesis

This thesis is has the following structure. In Chapter (2) I discuss an overview of quasar
target selection and the methods used for BOSS Quasar Target Selection. In Chapter (3) I
discuss in detail the two primary (CORE) BOSS quasar target selection algorithms: Likeli-
hood and it’s extension XDQSO. In Chapter (4) I discuss the results of BOSS quasar target
selection. In Chaper (5) is discuss a new measurement I performed with the BOSS quasars
which discovered luminosity dependent quasar clustering. In Chapter (6) I discuss the major
findings and conclusions of this thesis.
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Chapter 2

Quasar Target Selection

The BOSS quasar survey will pioneer a novel cosmological probe by mapping the large scale
distribution of neutral hydrogen by absorption in the Ly↵ forest. Measurements of BAO
in the three-dimensional correlation function in this neutral hydrogen will provide the first
direct measurements of angular diameter distance at redshifts z > 2. Constructing a map of
the distant Universe using QSOs as sight-lines is currently limited by the ability to observe a
large enough density of quasars. According to McQuinn & White (2011) in order to perfectly
map the BAO feature on 100h�1 Mpc scales, a surface density of ⇠35 quasars deg�2 in the
redshift range of 2 < z < 3 is required.

The BOSS team estimates a minimum of 15 quasars deg�2 at redshifts 2.2 < z < 3.5 and
g < 22.0 are required to make this measurement. The precision of the BAO measurement
shows an approximately linear improvement with the surface density of quasars, and the
BOSS team’s goal is to target as many quasars as possible. Fortunately, because the quasars
are nearly uncorrelated with the intervening density field, Ly↵ measurements are insensitive
to the exact details of quasar target selection and do not require the same uniform sample
that is essential to the galaxy BAO measurement.

The BOSS Ly↵F/Quasar Survey will target objects thought to be z > 2.2 quasars to perform
a Ly↵F BAO measurement. Since the foreground Ly↵F is independent of the intrinsic
properties of the background quasar, there is freedom to use multiple selection methods
without biasing the BAO results. The methods used for BOSS targeting include the “Kernel
Density Estimator” (KDE; Richards et al. 2004), the “Likelihood” method (Kirkpatrick et al.
2011, and Chapter 3) an “Extreme-Deconvolution” method (XDQSO; Bovy et al. 2011b, and
Chapter 3), and a Neural Network method (NN; Yèche et al. 2010). The BOSS QSO target
selection used for the first year of observations (Ross et al. 2012) combines all these di↵erent
methods, with di↵erent photometric catalogs such as the five-band optical photometry of
SDSS (York et al. 2000), the infrared photometry of UKIDSS (Lawrence et al. 2007), the
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Figure 2.1: Color-color diagrams of point sources drawn from 7 deg2 (the BOSS spectrograph
field of view) in the SDSS photometric database. (Left) 2,400 objects with 18.0 < g < 19.0,
and (Right) 7,000 objects with 21.0 < g < 22.0. Most of the objects shown are stars; low-
redshift (z < 2.2) quasars lie preferentially in the region u � g < 0.6, g � r > 0 where very
few stars are found. At z > 2.2, quasars become systematically redder in u � g as the Ly↵
forest moves into the u-band and Ly↵ emission moves into g. At z ⇠2.7, quasars have colors
similar to those of blue horizontal branch (BHB) stars. The larger photometric errors at faint
magnitudes broaden the stellar locus considerably (especially in the u-band for the reddest
stars, which gives rise to the spread at g � r ⇠ 1.5), illustrating the challenges involved in
selecting faint objects by their colors. Tracks for the quasar locus, as presented in Bovy
et al. (2011a) are also shown, with the corresponding redshift given by the color-bar legend.
Approximate surface densities are quoted, and stellar classifications are given as a guide.

ultraviolet photometry of GALEX (Martin et al. 2005) and quasars found using their flux
time-variability information (Palanque-Delabrouille et al. 2011).

The BOSS survey requirements are for spectroscopy of 15 or more z > 2.2 quasars deg�2

(150,000 quasars over the BOSS footprint of 10,000 deg2) (Eisenstein et al. 2011). Combining
calculations from McDonald & Eisenstein (2007) and McQuinn & White (2011) with the
luminosity function given by Jiang et al. (2006), it was found that targeting to a magnitude of
g < 22 with perfect completeness will provide a surface density of ⇠35, z > 2.2 quasars deg�2.
This magnitude limit is approaching the detection limit of SDSS photometry (Abazajian
et al. 2004), meaning that photometric errors will significantly broaden the stellar locus
(Figures 2.1, 2.3 and 2.4) and star-galaxy separation will be a factor. Contamination at
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Figure 2.2: This figure shows the spectroscopy of a quasar (black) and star (blue) with similar
photometry (ugriz histograms). This exemplifies why quasars are hard to distinguish from
stars using only photometry. Both these objects have very similar photometry, but look
vastly di↵erent when you compare their spectra.
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Figure 2.3: (Left ) Color-color (ug vs. gr) distribution of SDSS quasars, de-reddened with
i < 21 mag. The grayscale is linear in the density and the contours contain 68, 95, and
99 percent of the distribution. A sparse sampling of objects falling outside the outermost
contour is shown as individual black points. A twenty-percent random sampling of objects
with z � 2.5 in the SDSS DR7 quasar catalog (Schneider et al. 2010) is plotted as redshift
color-coded points according to the color-bar above (lower redshift quasars are omitted for
clarity). Higher redshift objects are plotted as larger points. A fit to the quasar locus from
Hennawi et al. (2010) is shown by the dashed black line, similarly color-coded to indicate
redshift. (Right ) Color-color (ug vs. gr) distribution of SDSS stars, de-reddened with i < 21
mag. A fit to the stellar locus using spectroscopically confirmed stars from Hennawi et al.
(2010) is shown in blue. Some representative classes of stars (M,K,C,F,A) along the stellar
locus from SDSS are shown as colored. From Bovy et al. (2011b).
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Figure 2.4: Same as Figure (2.3) but (ri vs. iz) and (gr vs. ri) color space. These figures
show the width of both the quasar (Left ) and stellar (Right ) loci. From Bovy et al. (2011b).
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both the bright and the faint end of the BOSS target range is mainly from metal-poor halo
A and F stars, faint lower redshift (z ⇠ 0.8) quasars, and compact galaxies.

To put these requirements into perspective, the final quasar catalog from the original SDSS-
I/II quasar survey (Schneider et al. 2010) contained 17,582, z > 2.2 objects over 9380 deg2,
while the 2dF-SDSS LRG And QSO (2SLAQ) survey (Croom et al. 2009), which observed
to g < 21.85 and concentrated on UV-excess objects, contained 1,110 such quasars selected
over 192 deg2. The original 2dF QSO redshift survey (2QZ; Croom et al. (2004)) focused
on the redshift range z < 2.1. Thus BOSS is attempting to observe almost an order of
magnitude more z > 2.2 quasars than those known from previous surveys.

This challenge required a new approach to quasar target selection. The first year of the
BOSS survey (“Year One”; 2009 September through July 2010) was devoted in part to
refining the algorithms for selecting these objects. The resulting sample of quasars at z >
2.2 is comparable in size to the SDSS high-redshift quasar sample, and of course reaches
much fainter magnitudes with much higher surface density. Thus the new sample itself
represents the best test of our selection algorithms, and the target selection team modified
those algorithms multiple times through the year. Year One included roughly three months
of commissioning of the upgraded BOSS spectrographs and instrument control software as
well as a steady ramp-up to full e�ciency operations, so it includes well under 20% of the
anticipated final sample for the five-year BOSS survey.

Background quasars have no causal influence on structure in the Ly↵F at the BAO scale.1

Hence the sample of quasars used for Ly↵F cosmological studies may be quite heterogeneous,
with the only consequence that the window function of the survey will depend on the distri-
bution of the quasars for which exist spectra. Since the precision of the BAO measurement
improves rapidly with the surface density of quasars (at fixed spectroscopic signal-to-noise
ratio (S/N)), the BOSS team has implemented a target selection scheme in BOSS that can
maximize the number of quasars found at z > 2.2 in any area of the sky, taking advantage
of any available information (e.g., auxiliary data). In Year One, the target selection team
explored a variety of methods, settling on our final target selection algorithms late in the
year.

At the same time, in order to use the quasars themselves for statistical studies (such as
luminosity functions or clustering analyses), BOSS must also produce a uniformly selected
sample over the full footprint and based only upon SDSS imaging, which is referred to
hereafter as CORE ( 2.2.1). However, the target selection team changed the definition of
the CORE sample several times over Year One, as we tested various algorithms. Therefore,
our fully uniform quasar sample will not include data from this first year of the survey.
However, statistical studies (luminosity functions, clustering, and so forth) can utilize all

1There may however be some measurement bias at the 0.1�1% level for the flux power spectrum, optical
depth and the flux probability distribution, due to gravitational lensing e↵ects, (see e.g., Loverde et al.
2010).
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five years of BOSS data by including moderate incompleteness corrections for Year One
selection relative to the final CORE algorithm (see 5.4). The evolution of our algorithms is
described in detail in Ross et al. (2012).

This chapter is organized as follows. 2.1 describes the SDSS photometry on which the
target selection algorithms are most heavily based. 2.2 summarizes the four main methods
used for selecting quasars (Richards et al. 2009a; Yèche et al. 2010; Kirkpatrick et al. 2011;
Bovy et al. 2011b). These four papers suggest di↵erent, but complementary, methods, and
the BOSS quasar target selection team has used a union of these techniques in di↵erent
combinations through the survey.

A cosmological model throughout this chapter with ⌦b = 0.046, ⌦m = 0.228, ⌦⇤ = 0.725 is
used (Komatsu et al. 2011). All optical magnitudes are quoted in, and based upon, the SDSS
approximation to the AB zero-point system (Oke & Gunn 1983; Adelman-McCarthy et al.
2006), while all near-infrared (NIR) magnitudes are based on the Vega system. Throughout
this thesis, “magnitude” refers to SDSS Point Spread Function (PSF) magnitudes (Stoughton
et al. 2002).

2.1 SDSS Photometry

BOSS uses the same imaging data as that of the original SDSS-I/II survey, with an extension
in the South Galactic Cap (SGC). These data were gathered using a dedicated 2.5 m wide-
field telescope (Gunn et al. 2006) to collect light for a camera with 30 2k⇥2k CCDs (Gunn
et al. 1998) over five broad bands - ugriz (Fukugita et al. 1996); this camera has imaged 14,555
unique deg2 of the sky, including 7,500 deg2 in the North Galactic Cap (NGC) and 3,100 deg2

in the SGC (Aihara et al. 2011). The imaging data were taken on dark photometric nights of
good seeing (Hogg et al. 2001), and objects were detected and their properties were measured
(Lupton et al. 2001; Stoughton et al. 2002) and calibrated photometrically (Smith et al. 2002;
Ivezić et al. 2004; Tucker et al. 2006; Padmanabhan et al. 2008), and astrometrically (Pier
et al. 2003).

Padmanabhan et al. (2008) present an algorithm which uses overlaps between SDSS imaging
scans to photometrically calibrate the SDSS imaging data. BOSS target selection uses data
calibrated using this algorithm from the SDSS Data Release Eight (DR8) database (Sec.
3.3; Aihara et al. 2011). The 2.5�-wide stripe along the celestial equator in the Southern
Galactic Cap, commonly referred to as “Stripe-82” was imaged multiple times, with up
to 80 epochs at each point along the stripe spanning a 10-year baseline (Abazajian et al.
2009). In Chapter 3, I will discuss how the commissioning phase of BOSS used co-added
catalogs in SDSS Stripe 82, generated by averaging the photometric measurements from ⇠20
individual repeat scans. Also, Roughly 50% of the SDSS footprint has been imaged more
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than once (Aihara et al. 2011); combining the photometric measurements in these overlap
regions further reduces the flux errors.

Using the imaging data, BOSS quasar target candidates are selected for spectroscopic ob-
servation based on their PSF fluxes and colors in SDSS bands. Fluxes that are used for
quasar target selection are corrected for Galactic dust extinction according to the maps of
Schlegel et al. (1998). All objects classified as point-like that are brighter than g = 22 or
r = 21.85 are passed to the various quasar target selection algorithms. The joint magnitude
limit was imposed due to concerns of the Ly↵F moving into the g-band at z ⇡ 2.3 resulting
in suppressed flux in g-band at redshifts greater than this. In practice, almost all the targets
satisfy both these conditions. Throughout this Chapter, magnitudes use the asinh scale at
low flux levels, as described by Lupton et al. (1999) although most cuts are imposed using
the linear fluxes rather than these magnitudes.

2.2 Methods for BOSS Quasar Target Selection

2.2.1 Philosophy of CORE and BONUS

The BOSS team divided the quasar targets into two samples CORE and BONUS, each with
approximately half the target fiber allocation.

The CORE sample is uniformly selected over the BOSS footprint and based only upon
SDSS imaging. This is used for statistical studies of quasars, such as measurements of the
luminosity function and the clustering of quasars. While these goals do not drive the survey’s
technical requirements to measure the BAO signal, BOSS will also provide an unprecedented
spectroscopic dataset for studies of quasars themselves. Thus, design choices that are roughly
neutral with regard to cost and impact on the cosmology goals are guided by these additional
science considerations.

Since the one (imaging) dataset that is available over the entire BOSS footprint is the SDSS
single-epoch photometry (including the new coverage in the SGC, Aihara et al. (2011)), we
define quasar CORE targets as a sample of 20 targets deg�2, which are selected only from
this single-epoch imaging data, using a uniform algorithm. As described below, the e�ciency
of the CORE sample is near our goal of 50% (i.e. ⇠10 out of 20 CORE targets deg�2 are
z > 2.2 quasars). The CORE sample is designed to have a well understood, uniform, and
reproducible selection function.

In contrast, the “BONUS” sample is selected using as many methods and additional data as
deemed necessary to achieve our desired quasar density. The BONUS sample has a target
density of 20 deg�2. The number of BONUS targets added in each region of sky is adjusted
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to assure that the total density of targets, CORE + BONUS, is uniform across the sky.
However, the number of BONUS targets was extended up to 60 targets deg�2 (and then
40 targets deg�2), during the BOSS Commissioning and early science phases, for a total
(CORE+BONUS) of 80 (and then 60) targets deg�2. The e�ciency of BONUS selection
is generally lower than that of CORE, despite the use of multiple algorithms and auxiliary
data, simply because the relatively “easy” targets have already been picked by CORE and
are therefore are not included in BONUS.

Prior to BOSS, there was no existant survey that successfully targeted z > 2.2 quasars to the
depth and surface density and with the e�ciency needed. The first year of BOSS spectroscopy
was therefore largely a commissioning year for quasar target selection, during which the team
gathered the quasar sample needed to test the various algorithms. In particular, it was only
at the end of the year that we settled on the final CORE and BONUS algorithms. Thus,
the nominal CORE-selected objects from the first year are not a uniformly selected sample.
Sec. 5.4 describes the completeness of the final CORE sample in Year One spectroscopy.

Through this first year, the team worked on and refined a variety of algorithms for BOSS
target selection, as it was not clear from the outset that any single method could meet our
scientific goals. These methods include:

• The Non-parametric Bayesian Classification and Kernel Density Estimator (KDE;
Richards et al. 2004, 2009a), which measures the densities of quasars and stars in
color-color space from training sets. Richards et al. (2009a) showed that this was able
to identify quasars at 2.2 < z < 3.5 from SDSS photometry with an e�ciency of
46.4 ± 5.8%, down to a magnitude limit of i = 21.3, approximately ⇠0.5 magnitudes
brighter than the BOSS limit.

• A likelihood approach (Kirkpatrick et al. 2011, and Chapter 3), which determines the
likelihood that each object is a quasar, given its photometry and models for the stellar
and quasar loci. This method was used as CORE in Year One of data taking.

• A Neural Network (NN) approach from Yèche et al. (2010), which takes as input the
SDSS photometry and errors.

• A variant of the likelihood approach, which accounts for the observational errors more
properly when determining the stellar locus, called “Extreme Deconvolution” (XDQSO
Bovy et al. 2011a). Bovy et al. (2011b) present full details on how the XDQSO
method can be used to describe a probabilistic quasar target selection technique, called
“XDQSO”, that uses density estimation in flux space to assign quasar probabilities to
all SDSS point sources. XDQSO was not used in Year One target selection, but it did
become the CORE method in Year Two.

Below are descriptions of each of these methods, and I introduce a variant of the NN, the
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“Combined Neural Network” (a.k.a. the NN-Combinator), which incorporates information
from all the methods and produces the BONUS sample. There are several ancillary methods
of selection, including objects associated with FIRST radio sources ( 2.2.8) and repeat
observations of previously known z > 2.2 quasars ( 2.2.9) which are outlined below.

2.2.2 Kernel Density Estimation and �2 Cuts

Kernel Density Estimation assigns each pixel in multi-dimensional color-color space an ex-
pected density of stars and quasars, allowing a probability that any given object is a quasar
to be estimated (Gray & Moore 2003; Gray & Riegel 2006; Riegel et al. 2008). Richards
et al. (2004, 2009a) have applied it to the SDSS imaging data to produce photometric quasar
catalogs with ⇡ 106 quasars. The principles of the KDE are as follows. A sample of ob-
jects of known classification (stars and quasars) serves as a training set, from which the
smoothed distributions of quasar and star probability as a function of color are constructed.
This allows one to compute the probability that any object of interest from the test set is a
star, “KDE-star-density”, or quasar, “KDE-quasar-density” (e.g. Figure 8 in Richards et al.
2009a). Based on these probabilities, the “KDE probability” is defined as:

KDEProb =
KDE-quasar-density

KDE-quasar-density + KDE-star-density
(2.1)

which can be used to decide whether a given object should be targeted as a quasar. As
described in Section 3.5 of Richards et al. (2009a), for my purposes, the quasar density is
defined as just for those objects with 2.2 < z < 3.5; all other quasars are put into the “star”
category.

Richards et al. (2004, 2009a) actually define two KDEs, split at g = 21, with separate
color loci (di↵erent “trainings”) for the bright and faint estimations. This approach crudely
accounts for the very di↵erent photometric errors of the two sets, given that the KDE method,
as implemented, does not take errors explicitly into account.

Roughly 45% of objects in the KDE catalog of Richards et al. (2009a) in the “mid-z” range
(i.e. the redshift range of interest to BOSS) are not stars (Table 4, Richards et al. 2009a),
based on an analysis of the classification e�ciency using clustering (e.g., Myers et al. 2006).
In the absence of significant contamination by galaxies at the faint end of the KDE catalog,
the KDE algorithm is thus about 45% e�cient at the Richards et al. (2009a) target density
of 18.6 mid-z quasars deg�2.

BOSS needs a higher e�ciency, so the target selection team applied an additional cut beyond
that of the Richards et al. papers to improve the e�ciency of the KDE method. This cut is
based on the �2

star statistic introduced by Hennawi et al. (2010), which quantifies how far a
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given object is from the stellar locus:

�2
star =

X

m=ugriz

[fm
data � Afm

model]
2

[�m
data]

2 + A2[�m
model]

2
(2.2)

where f is the flux in each of the five SDSS bands (m = ugriz) for the data and for the
model, �m

data is the flux error in each band, �m
model is the model uncertainty in each band, and

A is a normalization. Following Hennawi et al. (2010), the stellar locus is defined by a set of
⇡14,000 stars with accurate photometry from SDSS spectroscopic plates, on which all point
sources were targeted above a flux limit of i < 19.1 regardless of color (Adelman-McCarthy
et al. 2006). The minimum distance to the stellar locus, �2

star, can the be computed by
minimizing the value �2(A, g � i), where A is the normalization constant relating the data
to a model, fm

data = Afm
model, and g � i is the color chosen as a proxy for stellar temperature.

The distribution of the minimum distance to the stellar locus, i.e. range of �2
star, is shown

in Figure 3 of Hennawi et al. (2010). The crucial strength that the �2
star cut adds to our

KDE selection is the rejection of objects that have colors consistent with those of quasars,
but have flux errors that make them consistent with the stellar locus as well.

The key parameters for the KDE method are the minimum thresholds for selection in both
KDEprob and �2

star. Early in Year One, CORE objects were selected solely by the KDE
algorithm; at that time, a limit �2

star � 7 was applied. Later, when KDE was no longer the
CORE algorithm, this criterion was relaxed to �2

star � 3.

2.2.3 Likelihood Method

Full details of the Likelihood method, including an in-depth analysis of its performance, are
presented in Chapter 3 and Kirkpatrick et al. (2011). It is also summarized briefly here.
Like KDE, the Likelihood method starts with a sample of known quasars, and a sample of
“Everything Else” (EE in what follows), i.e., stars and galaxies, with ugriz photometry and
errors. One defines likelihoods that a given object with fluxes fm and errors �m (m = ugriz)
is drawn from the quasar or EE catalog by summing a �2-like statistic over the full training
set:

Lquasar =
X

i

Y

m

s
1

2 ⇡(�m
i )2

exp

 
� [fm � quasarm

i ]2

2 (�m)2

!
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LEE =
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exp
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2 (�m)2

!
. (2.4)

The sums are over all objects i in the training set. By restricting the sum to those training-set
quasars in a specific redshift range, one can define an equivalent likelihood that the object in
question is in this redshift range; in Year One, this was done by summing over those quasars
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with z > 2.2. Given these likelihoods, one defines a probability that the object is a quasar
to be targeted (compare with Equation 2.1):

P =
Lquasar(z > 2.2)/Aquasar

LEE/AEE + Lquasar(all z)/Aquasar

(2.5)

where the As normalize for the possibly di↵erent e↵ective solid angles of the quasar and EE
training sets. In the denominator, the likelihood sum is over quasars at all redshifts, not just
those at z > 2.2.

Like the KDE method above, this method makes use of the varying densities of objects in
color space, and includes a �2 selection. Note that it correctly utilizes the flux errors in
determining whether a given object belongs to the quasar or EE class. Potential quasar
targets can be ranked by their probability P . The Likelihood threshold is defined as (P �
0.234); all objects are targeted as quasars for P above this value. The Likelihood method
was chosen as the CORE algorithm near the end of Year One.

2.2.4 Artificial Neural Network

An Artificial Neural Network (NN) is used at two stages of the selection process. Full details
of this algorithm may be found in Yèche et al. (2010). As in the previous methods, the team
defines training sets of known quasars, and objects that are not quasars.

For the first stage, the NN is used with 10 inputs for each object (the SDSS g-band mag-
nitude, the five SDSS magnitude errors and the four SDSS colors). The training set for
non-quasars is a set of ⇠30,000 SDSS point sources from SDSS DR7 (Abazajian et al. 2009),
selected over the magnitude range 18.0 < g < 22.0 and with Galactic latitude b ⇡ 45� to
average the e↵ects of Galactic extinction. The training set for quasars consisted of spectro-
scopically confirmed quasars from the 2QZ (Croom et al. 2004), 2SLAQ (Croom et al. 2009),
and the SDSS (Schneider et al. 2010) quasar catalogs.

The NN developed for target selection has four layers of “neurons” (see Figure 3 of Yèche
et al. 2010). The fourth layer only has one neuron, providing a single output parameter,
yNN . The quantity yNN quantifies the probability that an input object is a quasar, although
since yNN can be greater than 1, it is not a probability in the formal sense. A photometric
redshift estimate, zpNN, is also generated (see Section 5 of Yèche et al. 2010), with a cut
placed on this photometric redshift estimate, zpNN > 2.1.
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2.2.5 Extreme Deconvolution

More details of the Extreme deconvolution (XDQSO Bovy et al. 2011a) method are pre-
sented in Chapter 3. XDQSO describes the underlying distribution function of a series of
points in parameter space (e.g., quasars in color space), by modeling that distribution as a
sum of Gaussians convolved with measurement errors. Bovy et al. (2011b) apply extreme
deconvolution to the problem of quasar target selection, using flux data from the SDSS DR8.
The so-called XDQSO method is conceptually similar to the Likelihood method, but explic-
itly models the non-uniform errors of the training set from which the quasars and stellar/EE
loci are derived. Indeed, the Likelihood method e↵ectively double-counts the errors of the
training set, since the observed distribution of fluxes from which the Likelihood training set is
built is the true underlying distribution convolved with the uncertainty distribution. XDQSO
avoids this double-counting by deconvolving the underlying distribution of the training set.

XDQSO constructs a model of the distribution of the fluxes of stars and quasars in di↵erent
redshift ranges based on training samples of known stars and quasars. XDQSO then builds a
model of the relative-flux distribution as a mixture of 20 Gaussian components and fits this
model to the training data, taking the heteroscedastic nature of the SDSS flux uncertainties
fully into account. The XDQSO model for the relative-flux distribution is fit in narrow bins
in i-band magnitude and combined with an apparent-magnitude dependent prior based on
star counts in Stripe-82 and the Hopkins et al. (2007a) quasar luminosity function. The
probability for an object to be a mid-redshift quasar (2.2 < z < 3.5) is given by the ratio
between the number density of mid-redshift quasars and that of stars plus all quasars at the
object’s fluxes (in the spirit of Equation 2.5). The probability that a given object is a mid-z
quasar is then:

P (QSOmidz|{fm}) / P ({fm/f i}|QSOmidz) P (f i|QSOmidz) P (QSOmidz) , (2.6)

where m indexes the fluxes and f i is the SDSS i-band flux. The first factor on the right is
given by the XDQSO model for the relative-flux (i.e., color) distribution of quasars, while the
second and third factors are obtained from the quasar luminosity function. The underlying
relative-flux distribution is convolved with the object’s flux uncertainties before evaluation.
The expressions for stars and high/low redshift quasars are similar. Probabilities are nor-
malized assuming that these classes exhaust the possibilities (P (QSOmidz) + P (QSOhiloz) +
P (star) = 1). Objects are ranked on their mid-redshift quasar probability for targeting.

Since XDQSO target selection properly takes the flux uncertainties into account both in the
training and the evaluation stage, it can be trained and evaluated on data of low signal-
to-noise ratio. It can also incorporate data from surveys other than SDSS in a straightfor-
ward way, as described for near-infrared and ultraviolet surveys below. The performance of
XDQSO using Stripe-82 data is given in Bovy et al. (2011b). The catalog of SDSS objects
selected by XDQSO is available through the SDSS-III DR8 Science Archive Server.2 The

2http://data.sdss3.org/sas/dr8/groups/boss/photoObj/xdqso/xdcore/

http://data.sdss3.org/sas/dr8/groups/boss/photoObj/xdqso/xdcore/
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XDQSO method was not used during Year One, but XDQSO was set and fixedas the CORE
method for Year Two and the remainder of the BOSS.

2.2.6 The UKIRT Infrared Deep Sky Survey

Lawrence et al. (2007) presents an overview of the United Kingdom Infrared Telescope
(UKIRT) Infrared Deep Sky Survey (UKIDSS). The UKIDSS is a collection of five sur-
veys of di↵erent coverage and depth using the Wide-Field Camera (WFCAM; Casali et al.
(2007)) on UKIRT. WFCAM has an instantaneous field of view of 0.21 deg2, and the various
surveys employ up to five filters, ZYJHK, covering the wavelength range 0.83-2.37µm. The
photometric system and calibration are described in Hewett et al. (2006) and Hodgkin et al.
(2009), respectively. The pipeline processing is described in Irwin et al. (2011, in prep.) and
the WFCAM Science Archive (WSA) by Hambly et al. (2008). The astrometry is accurate
to 0.100.

The UKIDSS Large Area Survey (ULAS) aims to map ⇠4,000 deg2 of the Northern Sky,
which, when combined with the SDSS, produces an atlas covering almost an octave in wave-
length. The target point-source depths of the survey are Y = 20.3, J = 19.5, H = 18.6, K =
18.2 (Vega); the ULAS does not image in the WFCAM Z-band. Unlike the SDSS, the
ULAS multiband photometry is not taken simultaneously (e.g. Sec. 5.2 of Dye et al. 2006;
Lawrence et al. 2007, Sec. 4.2), so the four bands have di↵erent coverage maps, with the H
and K bands obtained together, and Y and J obtained separately. For example, the ULAS
“DR8Plus”3 coverage is 2,670 deg2, 2,685 deg2, 2,795 deg2 and 2,810 deg2, in Y, J, H and K
respectively.

The UKIDSS NIR photometry was used to improve target selection in two complementary
techniques. The first is to classify quasars by their “K-excess” (“KX”; e.g., Warren et al.
2000; Croom et al. 2001; Sharp et al. 2002; Chiu et al. 2007; Maddox et al. 2008; Smail et al.
2008; Wu & Jia 2010; Peth et al. 2011). The power-law quasar SED has an excess in the
K-band over a blackbody stellar SED, allowing quasars to be identified (and stars rejected)
that would be normally excluded from an optical color-only quasar selection algorithm - even
for dust reddened quasars. Peth et al. (2011) investigated the KX method and provided an
SDSS-UKIDSS matched quasar catalog. However, the very low yield (from admittedly a
small target sample) caused the team to drop this method.

The second method of inclusion of NIR photometry is to improve quasar classification,
and of particular importance for BOSS, photometric redshift estimation, in the XDQSO
method. Including the NIR flux information removes many of the optically-based redshift
degeneracies known for quasars (see (Bovy et al. 2011a)). Models were trained for SDSS-only
fluxes and various combinations of SDSS+UKIDSS data. z ⇠2.5 quasars have (i�K) ⇠2.1

3http://surveys.roe.ac.uk/wsa/dr8 las.html

http://surveys.roe.ac.uk/wsa/dr8_las.html
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(e.g., Peth et al. 2011); thus given the BOSS quasar survey magnitude limit of i ⇠21.8, the
ULAS catalog is too shallow to guarantee 5� detections of all sources. We therefore measure
aperture magnitudes in the UKIDSS images at the positions of SDSS object counterparts;
even low-significance detections can be used by XDQSO . Bovy et al. (2011a) gives technical
details. The SDSS (optical) only model is used by XDQSO to generate targets for CORE,
where the upper limit of the mid-z bin is z = 3.5. For BONUS, the SDSS+UKIDSS model
is used to generate targets as an input to the NN-Combinator with an upper limit of the
mid-z bin extended to z = 4.0. This was implemented in BONUS from the middle of Year
Two onwards, with significant gains in the yield of z > 2.2 quasars.

2.2.7 GALEX: The Far and Near UV

The Far (1350 - 1750 Å) and Near (1750 - 2750 Å) ultraviolet (FUV and NUV respectively)
photometry from the GALEX Small Explorer mission (Martin et al. 2005) also provide
information that could help discriminate between hot stars and z ⇠0.8 quasars, both of
which should have considerably more flux in the UV than a z > 2 quasar because of Ly↵
absorption along the line of sight in the latter.

The XDQSO technique is trained on SDSS, UKIDSS and GALEX input data. Thus the team
can now perform 11-dimensional quasar target selection using the FUV/NUV,u, g, r, i, z, Y, J, H,K
bands. The relevant GALEX surveys are relatively shallow, e.g. mUV ⇡ 20.5 AB, so most
potential BOSS quasar targets are not detected at high significance. Despite this, our
tests (detailed in Ross et al. (2012)) confirmed that GALEX measurements—even at low
significance—do help with target selection.

2.2.8 Radio Selection

As in the SDSS-I/II quasar survey, objects that are detected in the FIRST radio survey
(Becker et al. 1995) are also incorporated in target selection. Radio stars are rare, thus most
radio sources with faint, unresolved optical counterparts are quasars. Optical stellar objects
with g  22.00 or r  21.85 which have FIRST counterparts within 100 are considered as
potential quasar targets, irrespective of the radio morphology.

In the early BOSS commissioning data, the team simply selected all such radio matches. This
approach targeted a substantial number of quasars with z < 2.2, and thus an additional color
cut as placed, (u � g) > 0.4, to exclude UV–excess sources at lower redshift. Bluer FIRST
sources are not rejected outright, but are required to pass one of the regular optical color
selections to be selected. Ross et al. (2012) describes this in more detail.
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2.2.9 Previously Known Objects

The density of z > 2.2 quasars known before BOSS started was ⇠2 objects deg�2. Given the
superior throughput of the BOSS spectrographs over those of SDSS-I/II, the team decided to
re-observe these objects for improved Ly↵ forest clustering signal. Moreover, this allows vital
checks of survey quality and uniformity, and the data can be used to study the spectroscopic
variability of quasars. We thus target previously known spectroscopically confirmed z > 2.15
quasars from the literature. Such objects are included as targets if they match a point source
in the target imaging to within 1.500, or if they match a point source in the target imaging
to within 200 and match the magnitude of that object to within 0.5.

The catalogs of previously known quasars used include the SDSS DR7 quasar catalog (Schnei-
der et al. 2010), the 2SLAQ quasar catalog (Croom et al. 2009), the 2QZ survey (Croom et al.
2004), the AAT-UKIDSS-SDSS (AUS) survey (Croom et al., in prep), and the MMT-BOSS
pilot survey.

To compare and check our moderate resolution spectra of generally fainter quasars to those
taken by 10 m class telescopes using high-resolution spectrographs (e.g. KECK-HIRES
and VLT-UVES), the team also mined the data archives (the NED4, the Keck Observatory
Archive5 and the ESO Science Archive Facility6) and added those quasars with z > 2.15
that were not included from the above catalogs.

The full sample of known quasars contains ⇠ 18, 000 z > 2.15 objects. Those objects in the
BOSS footprint are given the highest targeting priority in tiling (Blanton et al. 2003).

The team also vetos previously known low (z < 2.15) redshift quasars identified from the
SDSS-I/II, 2QZ, 2SLAQ and MMT surveys, never assigning them spectroscopic fibers. The
team is confident that we are not inadvertently rejecting any real z > 2.2 quasars, since the
vast majority of these objects were visually inspected and identified in the SDSS, 2QZ and
MMT surveys (Schneider et al. 2010; Croom et al. 2005).

2.2.10 Combinations of Methods

Combining results from several of the methods described above in target selection requires
a method to merge the (overlapping) ranked lists from these methods into a single ranked
catalog. The challenge is shown in Figure (2.5), which shows the surface density of the
union of those objects selected by the KDE, Likelihood, and NN methods with no further
refinement, to yield an average target density of ⇠ 60 targets deg�2. The tidal stream of

4http://nedwww.ipac.caltech.edu/
5http://www2.keck.hawaii.edu/koa/public/koa.php
6http://archive.eso.org/
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Figure 2.5: The BOSS quasar target surface density in Equatorial coordinates in the NGC,
from a run of the BOSS QTS with a selection made by combining the three Year One
methods, KDE, Likelihood and NN, in such a way that the average target density over the
full given NGC area was ⇠ 60 quasar targets deg�2. The color indicates the local number
density of targets per square degree. The tidal stream of the Sagittarius dwarf spheroidal
galaxy is prominent in the region 180� < ↵ < 240�, and 0� < � < +15�. The white lines
show the “Blind Test Area”, described in Ross et al. (2012).
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the Sagittarius dwarf spheroidal galaxy (Ibata et al. 1995; Belokurov et al. 2006) is quite
striking in this figure, spanning 180� < ↵ < 240� and 0� < � < +15�. The target density
in Figure (2.5) varies from 35 to 70 deg�2. A description of the tuning and ranking of these
various methods can be found in Ross et al. (2012).

NN-Combinator

The team found that the outputs of the three methods could be used as inputs into a neural
net to improve the yield of z > 2.2 quasars. This approach is called the NN-Combinator.
This approach can easily be expanded to allow input from additional selection techniques.

The NN-Combinator used the data from Stripe-82 obtained by BOSS as an input training
set. The NN-Combinator was the selection method for BONUS from for most of Year One
in the survey, drawing on the inputs of KDE, Likelihood, and NN.

In Year Two, with the advent of the XDQSO method, the results of this method were added
to the NN Combinator. In particular, near the end of Year Two, a version of XDQSO that
included data from UKIDSS ( 2.2.6) which selected targets to z = 4 was used; the version of
XDQSO used for CORE used SDSS single-epoch photometry only and did not incorporate
UKIDSS data.

2.2.11 Rationale and Summary

As the above makes clear, BOSS quasar selection has been through a complex series of
changes during its first two years. Here we recall the reasons for this complexity and sum-
marize the main points of this history.

BOSS quasar target selection is complex because

• for the survey’s defining science goal, measurement of BAO in the Ly↵ forest, the
primary requirement is a high surface density of quasars in the relevant redshift range,
not simplicity or homogeneity of selection,

• selection of quasars in the desired redshift range from single-epoch SDSS imaging is
di�cult because of proximity to the stellar locus and substantial photometric errors
near the magnitude limit for BOSS selection,

• pre-BOSS quasar samples provided inadequate training sets in the desired magnitude
and redshift range, so the quasars the team discovered in this first year allowed us to
refine our algorithms as the year proceeded.
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Roughly speaking, the e↵ective survey volume for measurement of Ly↵ forest clustering
shows an approximately linear improvement with the surface density of quasars, so even
modest gains in e�ciency have a significant science impact.

As discussed in 2.2.1, the goal of CORE selection is to provide a homogeneously selected
sample suitable for quasar science. Ideally, the team would have frozen the CORE algorithm
at the very beginning of BOSS, but the higher imperative of maximizing e�ciency has led
us to alter CORE as our algorithms improved. The team started by using KDE+�2 as the
CORE algorithm but switched to Likelihood based on its greater flexibility and simplicity.
Finally, we switched from Likelihood to XDQSO based on its better performance (at a
level of ⇠one additional high-z quasar deg�2). The team intends to maintain a fixed CORE
algorithm for Years 2�5 of the survey, and for many purposes we anticipate that completeness
corrections will allow use of Year One data in statistical studies of the quasar population
(see 5.4).

Beyond CORE, whatever combinations of data and methods can maximize our targeting
e�ciency are used, including known quasars, FIRST candidates, and the BONUS sample.
Because the methods described in 2.2.2-2.2.5 have complementary strengths, the team
draws on all of them in creating the BONUS sample. We have tried di↵erent methods of
forming a combined BONUS list during the first year, and the teamf settled on the NN-
combinator ( 2.2.10) as our primary tool for doing so. The individual methods feeding into
the NN-combinator use co-added SDSS photometry where it is available in overlap regions, in
contrast to CORE, which relies on single-epoch photometry to ensure uniformity. Auxiliary
data such as UKIDSS and GALEX photometry are fed into the XDQSO selection, which in
turn is fed into the NN-combinator.
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Chapter 3

Likelihood and XDQSO Target
Selection

The BOSS Ly↵F/Quasar Survey will target objects thought to be z > 2.2 quasars to perform
a Ly↵F BAO measurement. Since the foreground Ly↵F is independent of the intrinsic prop-
erties of the background quasar, there is freedom to use multiple selection methods without
biasing the BAO results. The methods used for BOSS targeting include the “Kernel Density
Estimator” (KDE; Richards et al. 2004), an “Extreme-Deconvolution” method (XDQSO;
Bovy et al. 2011b), and a Neural Network method (NN; Yèche et al. 2010). The BOSS QSO
target selection used for the first year of observations (Ross et al. 2012) combines all these
di↵erent methods, including the Likelihood method described in this chapter, with di↵er-
ent photometric catalogs such as SDSS (York et al. 2000), UKIDSS (Lawrence et al. 2007),
GALEX (Martin et al. 2005) and quasars found using their flux time-variability information
(Palanque-Delabrouille et al. 2011).

In this chapter, I describe a new method for quasar target selection. My method models
data in 5-filter flux space, then calculates likelihood estimates that a given object is a z > 2.2
quasar. Because a given survey has a finite number of spectroscopic fibers (observing time
allocation) to dedicate towards quasar targeting, this method attempts to prioritize selection
by calculating a probability that a potential target is a quasar based on these likelihood
calculations. Targets are ranked by likelihood probability. This method di↵ers from KDE in
that it incorporates the photometric errors for each object into the likelihood calculations;
also KDE only imposes a single magnitude prior and color-distribution, whereas I model the
QSO density as a function of magnitude and evolution of color distribution.

The layout of this chapter is as follows. 3.1 describes the method used to calculate the
likelihoods, and training catalogs that are generated and used for Likelihood target selection.
In 3.2 I give an overview of the BOSS Data and the performance of the Likelihood method
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using this data. In 3.3 I discuss testing and optimization of the method, as well as future
work and possible improvements. I use the terms “quasar” and “QSO” interchangeably to
refer to quasi-stellar, type-I broad line objects. All Right Ascension (RA) and Declinations
(Dec) discussed are J2000.

My Likelihood method was used for the uniformly selected sample (which I refer to hereafter
as “CORE”) in the first year of the BOSS QSO target selection (Ross et al. 2012) I released
my calculated likelihood probabilities as a data product in the SDSS Data Release 9.

3.1 Likelihood Method and Catalog Generation

3.1.1 Likelihood Method

Recent work has approached target selection within a Bayesian statistical framework over
more traditional color-box approaches (Richards et al. 2004; Bovy et al. 2011b; Mortlock
et al. 2012). Spectroscopic target selection can be viewed as a classification problem. Given
a set of photometric target objects (O) with attributes (a) and a discrete set of astronomical
object classes, one would like to assign a target to a particular class. For my purposes I am
simply interested in the question: “Is the object a quasar?” Thus I have two classes: quasar
(QSO) and non-quasar (i.e., all other observable objects: stars + galaxies + anything else)
hereby referred to as Everything Else (EE).

The probability that an object O is a quasar (in class QSO) given a vector of object attributes
a, is provided by Bayes’ theorem (Sivia & Skilling 2006):

P(O 2 QSO | a ) =
P( a | O 2 QSO) P(O 2 QSO)

P(a)
(3.1)

where P( a | O 2 QSO) is the conditional probability that given attributes a, object O
is a quasar; P(O 2 QSO) is the prior probability that O is a quasar (prior in the sense
that it does not take into account any information about the object attributes); P(a) is the
marginal probability of an object with attributes a occurring at all, and acts as a normalizing
constant. In my case:

P(a) = P( a | O 2 QSO) P(O 2 QSO) + P( a | O 2 EE) P(O 2 EE) (3.2)

because QSO [ EE contain all possible classifications (or outcomes) for object O.

I used the term “likelihood” to denote the conditional probabilities P( a | O 2 QSO) and
P( a | O 2 EE) in Equations (3.1) and (3.2). In the case where the attributes of a target
object are measured with a significant amount of uncertainty, one can imagine a is a noisy
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measurement of an underlying true attribute vector a0. I then calculated the likelihood by
marginalizing over all possible of values of a0: 1

P( a | O 2 QSO) =

Z
P( a, a0 | O 2 QSO) da0

=

Z
P( a | a0, O 2 QSO) P( a0 | O 2 QSO) da0

=

Z
P( a | a0) P( a0 | O 2 QSO) da0 .

(3.3)

For my purposes, P( a0 | O 2 QSO) is just the empirical distribution observed in a discrete
set of high signal-to-noise objects which are already classified to be either quasars or non-
quasars. The attributes are the photometric fluxes (f) in the five SDSS color filters (f =
{u, g, r, i, z}) and are independent of each other. Because the empirical distribution places
a �-function at each training example in Equation (3.3), the integral becomes a sum over all
objects (O0) with attributes a0 in the training sets:

Z
P( a | a0) P( a0 | O 2 QSO) da0 =

X

O0

P( a | a0) . (3.4)

Like other recent publications (Bovy et al. 2011b; Mortlock et al. 2012), I use a Gaussian
distribution, P( a | a0), for the uncertainties of the attributes. Thus a Gaussian distribution
is used for the errors (�f ) in the object fluxes, and fluxes f and fO0

for one of the target
object attributes (a) and training object attributes (a0) respectively. The likelihood (L) for
a single flux f then becomes:

L = P( f | O 2 QSO or EE) '
X

O0

s
1

2⇡�2
f

exp

"
� [f � fO0

]2

2�2
f

#
. (3.5)

When I consider all five SDSS fluxes, there is a multiplicative sum over these attributes and
Equation (3.5) becomes:

L = P({u, g, r, i, z} | O 2 QSO or EE) '
X

O0

Y

f=u,g,r,i,z

s
1

2⇡�2
f

exp

"
� [f � fO0

]2

2�2
f

#
(3.6)

Note that the above equations become equalities when the training catalogs completely
represent the object flux-space. For my target object fluxes (f), I used SDSS photometric
PSF fluxes from the SkyServer (http://www.sdss3.org/dr8/) under the standard SDSS data
releases.

1In the derivation of Equation (3.3), I assume the noisy observation a is independent of the classification
of O given a0, therefore: P(a | a0, O 2 QSO) = P(a | a0).
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All fluxes and their errors are corrected for Galactic extinction in the SDSS filters using the
prescription in Schlegel et al. (1998). Because the sum is done in flux space rather than color
space, object errors are independent. Also, my method preserves the luminosity function
information, whereas the absolute flux information is lost when using colors. My training
catalogs use stacked (co-added) fluxes (see Sections 3.1.3 and 3.1.4), whereas the targets are
single epoch fluxes (see Section 3.2.2). Therefore in the above equations, the errors in the
catalog fluxes (fO0

) are ignored because the signal-to-noise ratio of the catalog fluxes are
much greater than the signal-to-noise ratio of my potential target fluxes (f).

The QSO likelihood can separated into redshift bins (�z) so that I can tune Equation (3.1)
to a desired target redshift range. This simply requires having redshifts for the objects (O0)
in the QSO training catalog and subdividing this data into redshift bins. I used a width
�z = 0.1 (e.g. 0.5 ! 0.6, 0.6 ! 0.7 ... 4.9 ! 5.0). This results in the following final
equations for the QSO and EE likelihoods:

LQSO(�z) = P( f | O 2 QSO(�z)) '
X

O02QSO(�z)

Y

f=f

s
1

2⇡�2
f

exp

"
�(f � fO0

)2

2�2
f

#
(3.7)

LEE = P( f | O 2 EE) '
X

O02EE

Y

f=f

s
1

2⇡�2
f

exp

"
�(f � fO0

)2

2�2
f

#
. (3.8)

The Gaussian normalizations add a multiplicative constant to each likelihood (L), which is
the same for both Equation (3.7) and Equation (3.8) for a given target and cancel when
calculating the probabilities in Equation (3.1).

The prior probabilities in Equation (3.1) and Equation (3.2) are the relative surface den-
sities of quasars and everything else on the sky, and thus normalize Equation (3.7) and
Equation (3.8). I do this by defining the prior probabilities to be the inverse of the e↵ective
sky area (A) of the QSO and EE catalogs:

P(O 2 QSO) =
1

AQSO
, P(O 2 EE) =

1

AEE
. (3.9)

By inserting Equation (3.8), Equation (3.7), and Equation (3.9) into Equation (3.1) I can get
probability that a single potential target object (O) is a quasar (QSO) in a target redshift
range (�ztarget):

P(O 2 QSO(�ztarget) | f ) '

X

�ztarget

✓
LQSO(�z)

AQSO

◆

LEE

AEE
+
X

�zall

✓
LQSO(�z)

AQSO

◆ . (3.10)
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In the numerator, LQSO(�z) is summed over the desired quasar target redshift range (�ztarget),
whereas the denominator contains all objects in both catalogs summed over the entire red-
shift range (�zall). This probability is exact in the limit of perfect training catalogs (infinite
objects and zero errors). A probability is calculated for every potential target using the full
QSO and EE catalogs.

3.1.2 Imaging Data

BOSS uses the same imaging data as that of the original SDSS-I/II survey (York et al.
2000), with an extension in the South Galactic Cap (SGC). These data were gathered using
a dedicated 2.5 m wide-field telescope (Gunn et al. 2006) to collect light for a camera with
30 2k⇥2k CCDs (Gunn et al. 1998) over five broad bands - ugriz (Fukugita et al. 1996); this
camera has imaged 14,555 deg2 of the sky, including 7,500 deg2 in the North Galactic Cap
(NGC) and 3,100 deg2 in the SGC (Aihara et al. 2011). The imaging data were taken on
dark photometric nights of good seeing (Hogg et al. 2001), and objects were detected and
their properties were measured (Lupton et al. 2001; Stoughton et al. 2002) and calibrated
photometrically (Smith et al. 2002; Ivezić et al. 2004; Tucker et al. 2006; Padmanabhan et al.
2008), and astrometrically (Pier et al. 2003).

Padmanabhan et al. (2008) presents an algorithm which uses overlaps between SDSS imaging
scans to photometrically calibrate the SDSS imaging data. BOSS target selection uses these
“ubercalibrated” data from the SDSS Data Release Eight (DR8) database (Aihara et al.
2011). The 2.5� stripe along the celestial equator in the Southern Galactic Cap, commonly
referred to as “Stripe-82” was imaged multiple times, for up to 80 epochs spanning a 10-year
baseline (Abazajian et al. 2009). A coaddition of these data (Adelman-McCarthy et al. 2008)
goes roughly two magnitudes fainter than the single-scan images which make up the bulk of
the SDSS imaging data.

3.1.3 QSO Catalog

Because there are relatively few previously observed quasars in the desired BOSS redshift
range (z > 2.2) with su�ciently small flux errors to precisely describe the quasar color
locus, for my purposes the QSO Catalog is generated by a Monte Carlo technique (Hennawi
et al. 2010) to provide a less biased and more complete sample than is available from the
SDSS quasar catalog. The Monte Carlo simulation uses a model of the quasar luminosity
function based on the studies by Jiang et al. (2006) to compute the density of quasars as a
function of redshift and i�magnitude. The Jiang et al. (2006) luminosity function is used
because it extends fainter than the luminosity function of Richards et al. (2006) and thus
better matches the high redshift quasars in the BOSS redshift regime. SDSS Data Release
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5 spectroscopically confirmed quasars (DR5QSO; Schneider et al. 2007) are the photometric
inputs to the Monte Carlo. The simulation generates 9.94 million unique (i-magnitude,
redshift) pairs down to i = 22.5 (0.5�mag fainter than the BOSS magnitude limit) with a
distribution given by the luminosity function. Each simulated quasar (O0) is then matched
to the SDSS quasar (DR5QSO) with the nearest redshift to O0. The SDSS photometry of
the DR5QSO quasar is rescaled such that its i�magnitude matches that of the simulated
quasar (O0). I assume that quasar colors are not a function of magnitude in the redshift
range of interest, and thus can be extrapolated in this manner to deeper fluxes. Thus this
technique preserves the relative fluxes while providing a more complete coverage of the flux
space than only using known SDSS quasars. Objects with redshifts in the range desired for
BOSS targeting (z > 2.2) are included in the numerator of Equation (3.10). The location
in ugr color-color space of the z > 2.2 objects in the QSO Catalog is shown by the blue
contours in Figure (3.1).

3.1.4 Everything Else Catalog

The Everything Else (EE) Catalog is generated using stacked SDSS “Stripe-82” imaging,
allowing the construction of a large point source catalog with variability information and
smaller errors than possible using single-epoch SDSS imaging. Stripe-82 is the 2.5� wide
region on the celestial equator between RA= �45� and RA= 45� where SDSS repeatedly
scanned. Non-photometric data were ignored, and the photometric images were processed
with a version of the SDSS photometric reduction pipeline similar to that in data release eight
(Aihara et al. 2011). The photometric depth is r ⇠ 22.5 magnitude (5�) for point sources,
with high completeness and accurate star-galaxy separation to r ⇠ 22 magnitude. These
data were combined at the catalog level to produce co-added PSF photometry. Typically 20
observations were included for each object, resulting in a co-added catalog with typical errors
of 6.1%, 2.4%, 3.0%, 7.1% and 27% at 22nd magnitude in the u, g, r, i, z filters, respectively.

The EE Catalog is further trimmed to a clean sample of non-variable point sources for
inclusion in the likelihood calculations of Equation (3.10). The 23.9% of objects that are
blended with neighboring objects are rejected, thus reducing the e↵ective footprint of this
catalog from 225 deg2 to 171.2 deg2. Objects with high variability are explicitly excluded
from the catalog under the presumption that these are dominated by quasars (Schmidt et al.
2010), and I explicitly add quasars into the numerator and denominator of Equation (3.10)
such that the computed probability remains in the range [0,1]. These variable objects are
identified as those with a reduced �2 of the fit to a constant r-band flux exceeding 1.4.
This reduces the catalog to an e↵ective area of 150 deg2. The result is a catalog with
1,042,262 photometric fluxes that represent all non-quasar types of objects. I determined
the contamination of z > 2.2 quasars in this set is less than 0.5% by comparing this catalog
with those for which I have spectra. In Figure (3.1) the red contours show the urg color-color
space of the objects in the EE catalog.
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Figure 3.1: Contour plot of the u � g and g � r colors of the Everything Else (red) and
QSO (blue) Catalogs. The region of overlap, where target selection becomes di�cult, is at
u�g ⇡ 1 and g�r ⇡ 0. The error bars are the SDSS single-epoch g�r and u�g magnitude
errors at g=22 (black) and g=20 (grey).
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3.2 BOSS Data & Likelihood Performance

3.2.1 BOSS Stripe-82 Data

In September of 2009, BOSS started taking spectroscopic data. During the first year of
data taking, several target selection methods were employed. In addition to likelihood
method, three other selection techniques were deployed: the KDE method developed to
classify quasars by separating them from stars in color space (Richards et al. 2004), an
“extreme-deconvolution” method (XD Bovy et al. (2011b), Section 3.4) and a new approach
based on artificial neural networks (Yèche et al. 2010). Previously spectroscopically con-
firmed quasars, as well as objects with high variability (Palanque-Delabrouille et al. 2011)
over consecutive Stripe-82 runs were also targeted during this time.

Stripe-82 target selection used co-added catalog data from SDSS as the potential target
fluxes. Because the co-added photometry has a higher signal-to-noise ratio than any single-
epoch data run and the target fiber density in this region was higher than the rest of the
survey, BOSS QSO completeness is highest in this region. Once observed, all of the quasar
targets were automatically classified and then visually examined.

Based on the objects selected in Stripe-82, I found that the performances of the four methods
were not identical as a function of the magnitude and redshift of the objects (Ross et al.
2012). This behavior is likely due to the di↵erent strategies adopted in the training of the
methods.

3.2.2 Likelihood Performance

Although I targeted a number of tiles for spectroscopy during the first year of data taking,
observational success was varied. Due to a combination of poor observing conditions and
equipment glitches, spectroscopic completeness (the fraction of total spectroscopic obser-
vations in a tiling region which yielded a high confidence spectroscopic identification upon
visual inspection) was a strong function of the region in which a target was tiled. In this
thesis, I only test my method using observations in Stripe-82 regions with a spectroscopic
completeness of > 90%. In Figure (3.2) I show the tiles used for testing.

To test the performance of my likelihood method, I calculated probabilities using Equa-
tion (3.10) on single-epoch data in regions of Stripe-82 with high spectroscopic completeness
and compared that target list with the BOSS “truth table” (which includes targets from
all targeting methods, quasars targeted using variability, and all previously known quasars).
This is a fair test because targeting in this region was conducted using co-added photometry
and thus I am not testing the likelihood method on a region that was targeted with the same
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Figure 3.2: Right Ascension (RA) versus Declination (Dec) of BOSS QSO data used for the
likelihood method testing and luminosity function testing. Testing was done in the Stripe-82
calibration band with regions of high (> 90%) spectroscopic completeness. The blue points
are spectroscopically confirmed quasars and the yellow regions are the sky tiles that were
observed. Note that the vertical and horizontal scales are not the same.
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photometry.

Likelihood probabilities were calculated for 592,847 objects; of those, the top 7,757 likeli-
hoods were selected (P > 0.245) for a target density of 40 objects per deg2. Figure (3.3)
shows the distribution of the probabilities for the recovered2 and false-negative (missed)
QSOs as well as for the false-positive stars (wrongly) targeted by the method. I found an
e�ciency (E = Recovered QSOs / Total Targets) of 40% and completeness (C = likelihood
recovered QSOs / total BOSS recovered QSOs) of 65%. Figure (3.5) shows ugr color-color
plots of BOSS quasars recovered (magenta) and missed (cyan) by the likelihood method as
well as false positive contamination stars (red) that were targeted by the method.

There is of course the inevitable trade-o↵ between E and C. The more fibers given to
quasar targets, the more QSOs are found (greater C), but the accuracy of targeting a quasar
decreases (lower E). This is shown in Table (3.1) where the rate of new targeted QSOs is
shown to steadily decrease as a function of targets deg�2.

By comparing the target objects to the catalog contours in Figure (3.5), it is clear that the
likelihood method fails mostly in the region of overlap between the two catalogs. Figure (3.4)
shows the redshift distributions of the targeted and missed quasars and the limitation of
SDSS DR5 catalog at z > 2. Table (3.1) shows the detailed testing results.

3.3 Testing and Improvements

3.3.1 Likelihood versus Color-Box

In order to see how my likelihood method performed against the traditional “color-box”
selection, I compared the number of z > 2.2 quasars the likelihood method was able to
recover versus a simple color-box selection, using the BOSS data on Stripe-82 (the same
data set as in Section 3.2.2). Please note that my color-box, described below, is a relatively
simple selection in only (u� g) vs. (g � r) magnitudes color-space, designed to adequately
sample the location where z 2.7 QSOs reside. This color-box is not the same as the “inclusion
region” from Richards et al. (2002)(Section 3.5.2, Fig. 7) but the (g � r) < 0.43(u� g) cut
is inspired by their high-redshift color-selection.

The color cuts I used for my tests are:

[((g � r) < �0.13 · (u� g)� A) and ((u� g) > 0.3) and (r < 22.0)]

or

[((g � r) < 0.43 · (u� g) + B) and (0.3 < (u� g) < 2.0) and (r < 22.0)]

(3.11)

2I define recovered/missed QSOs to be quasars in the desired BOSS redshift range (z > 2.2).
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Figure 3.3: The probability (P) distributions of the likelihood method recovered QSOs
(magenta, 4617 total), false-negative QSOs that were missed by the likelihood method (cyan,
1566 total), and false-positive stars that were incorrectly targeted by likelihood method
(red, 5743 total). The vertical gray dashed line shows the likelihood P threshold used for
targeting (P > 0.245). The spike around P = 0 in the cyan curve are quasars that fall in
the midst of the stellar locus and therefore are found by the method to have a very low
probability of being QSOs. Most of these quasars are targeted because they are previously
spectroscopically confirmed QSOs or by their flux variability. The likelihood distribution of
the probabilities for the untargeted stars (true-negative) are not included in the plot, but
constitute an additional 742,662 objects.
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Figure 3.4: The redshift distributions of the likelihood method recovered QSOs (magenta)
and false-negative QSOs that were not targeted (missed) by the likelihood method (cyan),
compared with SDSS DR5 QSOs (blue).
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Figure 3.5: Color-color diagrams of BOSS QSOs recovered by the likelihood method (ma-
genta), false-negative QSOs that were not targeted (missed) by likelihood method (cyan),
and false-positive stars that were wrongly targeted by likelihood method (red). These plots
show recovered/missed (z > 2.2) QSOs. It is clear when comparing these plots with Fig-
ure (3.1) that the problematic region for likelihood targeting is where the two catalogs overlap
near u� g = 1, g � r = 0.25. For context the QSO Catalog and EE Catalog contours plot
from Figure (3.1) are included in the above plots. The error bars are the SDSS single-epoch
g�r and u�g magnitude errors at g = 22 (black) and g = 20 (grey). The targeting decisions
were computed in flux space rather than the color space shown in the figures.
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Table 3.1. Likelihood Stripe-82 Results, Jiang et al. (2006) Luminosity Function

Targets Likelihood P Total QSOs QSOs C E
per deg2 Threshold Targets Recovered Missed (%) (%)

5 0.974 969 669 3811 15 69
10 0.833 1938 1276 3227 28 66
20 0.535 3878 2166 2401 47 56
40 0.245 7757 3087 1657 65 40
60 0.136 11636 3595 1331 73 31
80 0.088 15515 3965 1108 78 26

100 0.063 19394 4219 980 81 22
140 0.037 27152 4618 806 85 17

Note. — The E and C as a function of dedicated target fibers (targets
deg�2). These values are for z > 2.2 recovered/missed QSOs. There is
a trade-o↵: the more fibers given to targets, the more QSOs are found
(greater C), but the accuracy of finding a quasar decreases (lower E). The
values for threshold, C and E will of course depend on Galactic latitude
(Ross et al. 2012). BOSS year-one data targeted using the likelihood
method at 20 targets deg�2 for the CORE sample.

where o↵sets A and B in Equation (3.11) are defined as:

A = (0.01 · k)� 0.32, B = �(0.01 · k)� 0.28 (3.12)

and k is an integer varying from 0 to 29, k = [0, 1, 2, · · · , 27, 28, 29].

In Figure (3.6) I show the above color cuts applied to the Stripe-82 potential quasar targets.
The red points are targets that are not selected by the color-box. The points that are
other colors at the bottom center of the figure are targets that were selected by the cuts in
Equation (3.11) with the di↵erent o↵sets from Equation (3.12). The color-box selection cuts
with the most targets (k = 0) are closest to the stellar locus (shown as grey contours). The
cuts then get more restrictive going down towards the x-axis, where less and less targets are
selected.

Figure (3.7) show the results of z > 2.2 quasars recovered by the above color cuts compared
to those recovered by the likelihood method. This is consistent with the results in Table (8)
of Ross et al. (2012) which shows 6.45 mid-z quasars are recovered from 20 targets deg�2

using their (slightly di↵erent) color-box selection. Likelihood out performs the color-box
selection method by recovering over twice as many BOSS quasars at 20 targets deg�2.
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Figure 3.6: A color-color diagram showing the cuts applied for color-box selection. The
red points are potential targets that were not selected by the color-box method. The other
colored regions are targets selected by the cuts in Equation (3.11) with the di↵erent o↵sets
from Equation (3.12). The color-box selection cuts with the most targets is at the top (closest
to the stellar locus, shown as grey contours), and the cuts get more restrictive moving towards
the x-axis.
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Figure 3.7: The number of BOSS z > 2.2 quasars recovered as a function of targets deg�2

for the likelihood method (red) and a traditional color-box technique (blue). Likelihood out
performs the color-box selection method by recovering over twice as many BOSS quasars at
20 targets deg�2
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3.3.2 Luminosity Function Testing

I tested the performance of three di↵erent quasar luminosity functions (LFs) as inputs to
the QSO Catalog. The LFs enter into the generation of the QSO Catalog by determining
the density of quasars as a function of redshift and i�band magnitude. All the other details
of the Monte Carlo remain the same as described in Section (3.1.3). The EE Catalog is not
dependent on these LFs so this catalog stays the same for these tests. The three functions
tested are from Jiang et al. (2006), Richards et al. (2006), and Hopkins et al. (2007a). The
inputs and results from this testing is shown in Figure (3.8).

The quasar redshift distributions for these three luminosity functions are shown in the left
panel of Figure (3.8). The performance of the method did not change significantly for the
three di↵erent LF priors. Figure (3.8, Center) shows the number of quasars successfully
recovered as a function of the number of dedicated QSO target fibers per deg2. Notice the
shape of this function, the rate of newly recovered quasars drops o↵ significantly beyond
40 targets deg�2. The performance of all three LFs is essentially identical up to 20 targets
deg�2. The redshift distributions of the recovered quasars are slightly di↵erent as shown in
Figure (3.8, Right), so using di↵erent LF could be used to help tune the targeting redshifts.
This method applied to BOSS targeting is not sensitive to uncertainties in the luminosity
function.

Ultimately it was decided that Jiang et al. (2006) was the best luminosity function for
my purposes because it was more e�cient at recovering z > 2.2 QSOs than Richards et al.
(2006) and Hopkins et al. (2007a). More detailed values for the performance of these di↵erent
luminosity functions can be seen in Table (3.2).

While I am not currently making a proper comparison of the redshift distributions of BOSS
quasars and the redshift distributions of these luminosity functions, a future improvement
would be to use a luminosity function generated from the redshift distribution of BOSS
quasars, properly adjusted for the targeting selection function imprinted upon it, as the
input to the Monte Carlo to see if this approach improves target selection. Another promising
modification would be to add the photometry from BOSS quasars to the inputs to the Monte
Carlo simulation.

3.3.3 Weighted Likelihoods

I also tested adjusting Equation (3.7) to incorporate a weighting factor to optimize (in
redshift-magnitude space) selection of objects with a high dark energy figure of merit (Al-
brecht et al. 2006). This weighting is done by simply adding a factor (wO0) inside the product
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Figure 3.8: (Top Left ) - Redshift distribution for Jiang et al. (2006) (red), Richards et al.
(2006) (blue) and Hopkins et al. (2007a) (green) luminosity functions. (Top Right ) - The
number of BOSS z > 2.2 quasars recovered as a function of targets deg�2 for the three
luminosity functions (i.e. di↵erent priors). The performance of all three LFs is almost
identical for target densities up to ⇠ 20 targets deg�2, at which point the Richards model
starts to perform sightly worse. The gray line shows 100% e�ciency, and emphasizes that
very high e�ciency is achieved if a small number of targets are selected. (Bottom ) - The
redshift distributions of the recovered z > 2.2 quasars for the three luminosity functions.
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Table 3.2. Likelihood Luminosity Function Testing

Luminosity Targets Likelihood P Total QSOs QSOs C E
Function per deg2 Threshold Targets Recovered Missed (%) (%)

Jiang et al. 20 0.535 3878 2166 2401 47 56
40 0.245 7757 3087 1657 65 40

Richards et al. 20 0.237 3978 2089 2466 46 54
40 0.079 7757 2939 1808 62 37

Hopkins et al. 20 0.383 3878 2154 2401 47 56
40 0.158 7737 3046 1676 64 39

Note. — The above table shows the completeness (C) and e�ciency (E) as a function of
dedicated target fibers (targets deg�2) for three di↵erent luminosity functions. The three
LFs tested are from Jiang et al. (2006), Richards et al. (2006), and Hopkins et al. (2007a).
These values are for z > 2.2 recovered/missed QSOs.

based on the value of the QSO catalog quasar flux (fO0
) and redshift (z):
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I tested adjusting the likelihood method in this manner with weights (wO0) calculated by
Pat McDonald (private communication, see Figure 3.9, and Table 3.3). Here the weight is
determined by the contribution of the quasar’s Ly↵F to the BAO signal; a higher weight
yields a higher signal-to-noise BAO measurement.

The weight is a functional derivative of the overall BAO distance error squared with respect to
the luminosity function. It can therefore be integrated over any achieved luminosity function
(or summed over a set of quasars) to produce an estimate proportional to the BAO distance
error squared that one would expect to achieve from that data set. There are two relevant
factors a↵ecting the value of a quasar: the noise level in the spectrum, and the density of
quasars at a given redshift. The low redshift cuto↵ comes primarily from the degradation in
the signal-to-noise ratio at the blue end of the spectrograph, while the high-z tail-o↵ comes
from the diminishing density of quasars with which to perform a cross-correlation for Ly↵F
calculations.

While using these weights did recover QSOs with a higher on average BAO signal, as ex-
pected fewer total quasars were recovered using this scheme, see Figure (3.10). Ultimately
it was decided to optimize the number of recovered quasars rather than the BAO signal for
BOSS target selection. Therefore this weighting scheme was not used in the final likelihood
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Figure 3.9: Weight representing the e↵ectiveness as a dark energy BAO probe of a QSO as
a function of magnitude and redshift. The lines are at 0.1 magnitude intervals. Brighter
quasars have a higher weight, and so do quasars centered around a z ⇠ 2.5. For a detailed
table of the numbers in this plot, see Table (3.3).
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Table 3.3. Likelihood Weights

r-mag z = 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5

17.5 0.00 0.487 0.822 0.713 0.570 0.441 0.334 0.250 0.162 0.162 0.162
18.1 0.00 0.476 0.818 0.712 0.569 0.441 0.334 0.250 0.161 0.161 0.161
18.7 0.00 0.464 0.814 0.710 0.568 0.440 0.333 0.250 0.161 0.161 0.161
19.3 0.00 0.446 0.807 0.708 0.567 0.439 0.333 0.250 0.161 0.161 0.161
19.9 0.00 0.411 0.794 0.704 0.564 0.438 0.332 0.249 0.161 0.161 0.161
20.5 0.00 0.350 0.758 0.692 0.557 0.434 0.330 0.247 0.159 0.159 0.159
21.1 0.00 0.288 0.698 0.665 0.541 0.424 0.323 0.242 0.155 0.155 0.155
21.7 0.00 0.198 0.565 0.597 0.499 0.401 0.307 0.227 0.144 0.144 0.144
22.3 0.00 0.113 0.381 0.446 0.388 0.331 0.269 0.196 0.118 0.118 0.118
22.9 0.00 0.041 0.187 0.254 0.247 0.231 0.173 0.109 0.061 0.061 0.061
23.5 0.00 0.008 0.045 0.054 0.049 0.046 0.026 0.015 0.004 0.004 0.004

Note. — Shown is a subsample of the values for the weights in Equation (3.13). For a full length,
downloadable, table of weights, please see the electronic version of the Likelihood paper Kirkpatrick
et al. (2011).

targeting algorithm. However, depending on the goals of the user, a weighting scheme could
be useful for future targeting purposes.

3.4 The XDQSO Likelihood Extension

The likelihood method inspired a similar targeting approach, extreme-deconvolution quasar
targeting (XDQSO ; Bovy et al. 2011b). The training sets used in XDQSO are almost
identical to the QSO and EE Catalogs used in the likelihood method. However, instead of
representing these catalogs as a discrete set of thousands (or millions) of objects, XDQSO
uses an extreme-deconvolution (XD) fit to these catalogs, such that they are represented by
a small set of Gaussian distributions. Below is a detailed description of the XDQSO density
model work done with Jo Bovy.
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Figure 3.10: (Top Left ) - The number of BOSS z > 2.2 quasars recovered as a function of
targets deg�2 for the likelihood method with and without weights. The gray line shows 100%
e�ciency, and emphasizes that very high e�ciency is achieved if a small number of targets
are selected. (Top Right ) - The redshift distributions of the recovered z > 2.2 quasars.
(Bottom ) - The weight distributions of the recovered z > 2.2 quasars. Notice that using the
likelihood + weights recovers QSOs with a higher BAO value.
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3.4.1 Extreme-Deconvolution Density Model

To estimate the density of stars and quasars in flux space we use XD3 (Bovy et al. 2011a).
At the faint end (i & 20 mag) of the magnitude range of interest here the flux uncertainties
in the training set are substantial, even though they are much smaller than the single-epoch
uncertainties. Deconvolution therefore avoids adding in uncertainties twice at the density-
evaluation phase. While XD can handle missing data as well, we do not need this feature
here. However, this capability of XD is crucial when we want to extend the current framework
to include near-infrared (NIR), ultraviolet (UV), or variability information, since these data
will not be available for every object in the training set (see Section 3.5).

XD models the underlying, deconvolved, distribution as a sum of K Gaussian distributions,
where K is a free parameter that needs to be set using an external objective. It assumes
that the flux uncertainties are known, as is the case for point-spread function (PSF) fluxes
for point sources in SDSS (Ivezić et al. 2003; Scranton et al. 2005b; Ivezić et al. 2007). XD
consists of a fast and robust algorithm to estimate the best-fit parameters of the Gaussian
mixture. For example, we were able to fit the color distribution of the full stellar catalog
of 701,215 objects in only a few hours using 30 four-dimensional Gaussians. It is robust in
the sense that even a poor initialization quickly leads to an acceptable solution. We are
interested not so much in the true underlying distribution function as in finding a good fit
to the observed density (after convolving the model with the data uncertainties) without
overfitting, so it is not absolutely necessary to find the exact best fit in the complicated
likelihood surface. Therefore, we use the simplest version of XD that does not use the
heuristic search extension or priors on the parameters (Bovy et al. 2011a).

The XD method works by iteratively increasing the likelihood of the underlying, K Gaussian
model given the data. It is an extension of the Expectation Maximization (EM) algorithm
for fitting mixtures of Gaussians in the absence of noise (A. P. Dempster & Rubin 1977)
to the case where noise is significant or there are missing data. The algorithm basically
iterates through an expectation (E) and a maximization (M) step. During the expectation
step the data and the current estimate of the underlying density are used to calculate the
expected value of (a) indicator variables that for each data point indicate which Gaussian it
was drawn from and (b) the true, noiseless value of each data point and its second moment.
In the maximization step, these expected values are used to optimize the amplitude, mean,
and variance of each of the K Gaussians. The E and M steps are iterated until the likelihood
ceases to change substantially. The algorithm has the property that after each EM iteration
the likelihood of the model is increased.

3Code available at http://code.google.com/p/extreme-deconvolution/ .

http://code.google.com/p/extreme-deconvolution/
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3.4.2 Construction of the Model

The full model consists of fitting the flux density in a number of bins in i-band magnitude
for the various classes of objects. We describe the model in a single bin first for a single
example class. Throughout we will use the EE class as the example.

We opted for a binning approach because the true five-dimensional distribution of fluxes has
a dominant power-law shape corresponding to the number counts as a function of apparent
magnitude. However, most of the information for discriminating between quasars and stars
is not in this power-law behavior, but in the behavior of colors or relative fluxes. While the
latter can be represented well by mixtures of Gaussian distributions (Equation 3.14), the
power-law behavior cannot without using large numbers of Gaussians. For this reason we
chose to take out the power-law degree of freedom, i.e., the overall behavior of the density
as a function of apparent magnitude. Neither the color distributions of quasars or that of
stars is a strong function of apparent magnitude, such that the binning described below
does not introduce strong assumptions about the behavior of the color distributions. Any
weak magnitude dependence of the color distributions is captured in our model since we use
narrow bins in i-band magnitude.

In a single bin in i-band magnitude, we separate the absolute flux from the flux relative to
i in the likelihood in Equation (3.3) as follows:

p({fj}|O 2 ‘star0) = p({fj/fi}|fi, O 2 ‘star0) p(fi|O 2 ‘star0) , (3.14)

where we now specify that the attributes {aj} are the ugriz fluxes {fj}, {fj/fi} are the
fluxes relative to i, and fi is the i-band flux. We model these two factors separately.

We model the first factor using XD in narrow bins in i-band magnitude described in detail
below. We use relative fluxes rather than colors—logarithms of relative fluxes—since the
observational uncertainties are closer to Gaussian for relative fluxes than they are for colors.
Except for the absence of a logarithm, relative fluxes are similar to colors and have the
same number of degrees of freedom, viz., four. The fact that fluxes must be larger than
zero while the Gaussian mixture model does not contain any such constraints, which is one
reason to model the logarithm of the fluxes rather than the fluxes themselves, does not
matter greatly here because most of the objects in the training set are at least five-sigma
detections. However, for z > 3 quasars the u-band has zero flux and the flux measurement
can be negative, in which case magnitudes are badly behaved; relative fluxes remain well-
behaved in this case. To evaluate the XD probabilities during training, we always convolve
the underlying model with the objects’ uncertainties. We assume that the relative-flux
uncertainties are Gaussian—which is a good assumption because the i-band magnitude is
always measured at a reasonable signal–to–noise ratio—such that the convolution of the
Gaussian mixture with the uncertainties results in a Gaussian mixture, with an object’s
uncertainty variance added to the model variance for each of the components.



Section 3.4. The XDQSO Likelihood Extension 48

Table 3.4. Total Number Counts in 17.75  i < 22.45.

z < 2.2 2.2  z  3.5 z > 3.5 Star
Quasar Quasar Quasar

Number counts (deg�2) 140.72 50.70 6.13 5209.38

We model the four-dimensional relative fluxes {fj/fi}, which each come with an individual,
non-diagonal, four by four uncertainty covariance, using 20 Gaussian components. The
number 20 was decided upon as follows. For a few bins we performed XD fits with 5, 10, 15,
20, 25, and 30 components. While fits with less than 20 components overly smoothed the
observed distribution, models with more than 20 components used the extra components to
fit extremely low significance features in the observed distribution. Because of the scale of the
full model (see below) no bin-by-bin objective method for setting the number of components
was pursued, although we did verify that all of the resulting fits were reasonable.

We model the second factor, p(fi|i 2 ‘star0), by first combining it with the number factor
P (i 2 ‘star0). This combined factor becomes the number density as a function of apparent
magnitude. This quantity will always be expressed in units of deg�2. For the EE class we
model the number density directly using the number counts of the training data, by spline
interpolating the histogram of i-band magnitude number counts per square degree. For the
‘quasar’ class we use a model for the quasar luminosity function (Hopkins et al. 2007b)
to calculate the number density of quasars as a function of apparent i-band magnitude; we
multiply these theoretical number densities with a simple model for the SDSS incompleteness
of point sources

I(i) =

✓
1 + exp

✓
i� 21.9

0.2

◆◆�1

, (3.15)

designed to reproduce the incompleteness as given in Abazajian et al. (2003). The p(fi|i 2
class) factors for the various target classes are shown in Figure (3.11). The total number
densities for the various classes are given in Table 3.4.

The full model consists of 47 bins of width 0.2 mag between i = 17.7 and i = 22.5, spaced
0.1 mag apart such that adjacent bins overlap. We further divide the ‘quasar’ class into
three subclasses corresponding to low-redshift (z < 2.2), medium-redshift (2.2  z  3.5;
the BOSS quasar redshift range), and high-redshift (z > 3.5) quasars. The XD fits for all
but the brightest bin for a given class are initialized using the best-fit parameters for the
previous bin. There are typically ⇡ 20, 000 objects in each bin for the stellar training data;
for the quasars there are 85,998 low-redshift, 14,060 medium-redshift, and 3,519 high-redshift
quasars in each bin.
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Figure 3.11: Number counts p(fi|i 2 class) for the various target classes. These have the
expected property that higher redshift quasars are fainter since they are more distant.
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In each of 4 ⇥ 47 bins we fit 20 four-dimensional Gaussians, yielding a total of 4⇥47⇥ (20⇥
15� 1) = 56, 212 parameters.

3.4.3 Comparison Between XDQSO and Likelihood

The Likelihood method is very similar to the XDQSO however instead of using a small series
of Gaussians to represent the data, it instead uses a delta function—corresponding to a model
of the underlying density consisting of delta functions centered at the location of each object
in the respective training set. These delta functions are convolved with the flux-uncertainties
at evaluation such that a smooth density is obtained nevertheless. The Likelihood technique
uses the same EE and QSO training data as the XDQSO catalog. Rather than simulating
relative fluxes only, a full quasar catalog with five-dimensional ugriz fluxes in the relevant
magnitude range is simulated.

The Likelihood technique uses the flux uncertainties to smooth the discrete underlying delta-
function distribution of its training sets. However, since it does not use an optimized band-
width, there is the danger that the density might be undersmoothed in certain regions. At
the faint end, where the training set has a significant contribution from the uncertainties,
the Likelihood method also e↵ectively convolves with the uncertainties twice. This follows
because the training set is a sample from the observed distribution of fluxes, rather than
the true underlying distribution; the former is the latter convolved with the uncertainty
distribution. Finally, the calculation of the quasar and star probabilities is extremely slow
compared to XDQSO. In our comparison below we use cached versions of the Likelihood
catalog created by the BOSS target selection team.

In Figure (3.12) we first compare the XDQSO quasar probabilities in the BOSS mid-redshift
range with the probabilities calculated using the Likelihood method for sources in Stripe-82.
We select targets at 20 targets deg�2 and show those targets selected by both techniques
or by only one of the techniques. While many of the targets cluster around the one-to-one
line, there is a distinct population of targets that receive high Likelihood probabilities, yet
low XDQSO probabilities. A similar population of high XDQSO-only targets is absent,
indicating that the Likelihood method indeed has problems with undersmoothing.

In Figure (3.13) we compare the XDQSO catalog with the Likelihood technique at di↵erent
target densities. The two methods perform similarly, with a slightly better performance for
the XDQSO catalog over the whole range.

A further comparison between the XDQSO and the Likelihood methods for medium-redshift
quasar selection was performed during the Fall of 2010 using BOSS observations of an ⇡ 200
deg2 region just north of Stripe-82. Both methods were given similar target densities to
allow for a direct comparison. As of 2010 November 22, XDQSO was given 4,593 targets,
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Figure 3.12: Comparison of the mid-redshift (2.2  z  3.5) quasar probability for the
XDQSO and Likelihood methods at 20 targets deg�2 for sources in SDSS Stripe-82. Targets
selected by both methods are on the upper right, Likelihood-only targets are on the lower
right, and targets exclusive to XDQSO are on the upper left.



Section 3.4. The XDQSO Likelihood Extension 52

Figure 3.13: Number of confirmed 2.2  z  3.5 quasars as a function of the target density
for di↵erent target selection methods used in the BOSS (XDQSO, Bovy et al. (2011b);
Likelihood, Kirkpatrick et al. (2011); NN, Yèche et al. (2010)). Input target densities relevant
to the BOSS target selection are highlighted. This uses BOSS observations of sources in
SDSS Stripe-82.
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while Likelihood received 4,853 targets. Of the 4,593 XDQSO targets 2,194 were classified
as 2.2  z  3.5 quasars, while of the 4,853 Likelihood targets only 2,056 turned out to
be medium-redshift quasars. From this test and that in Figure (3.13) we conclude that
the XDQSO technique’s performance is about 10 percent better than that of the Likelihood
method for the selection of medium-redshift quasars.

3.5 Further Extensions

One of the main advantages of the general target selection technique and in particular of
the specific Likelihood and XDQSO implementation described in this chapter is that it can
easily be extended in a variety of ways. These extensions can be changes to the model—such
as di↵erent number count priors, the addition to the model of other data such as NIR or
UV observations—or the combination of the flux-based selection described here with target
selection based on variability information. All of these extensions are described briefly here.

Most of these extensions involve only some of the factors in Equations (3.3) and (3.14).
Since we provide all of these factors separately in the method catalogs, extensions that do
not change all of the factors can use some of the information in the catalog. For example,
extensions that only change the number count priors, e.g., p(fi | i 2 EE) or P (i 2 EE), will
not need to re-calculate the relative-flux likelihoods—the most expensive of the factors in
Equation (3.14)–but can instead re-use the catalog values.

3.5.1 Additional NIR or UV data

Quasar selection from broad-band fluxes can be improved by the addition of NIR or UV
fluxes to the optical fluxes used to create the Likelihood or SDSS -XDQSO catalogs (e.g.,
Warren et al. 2000; Maddox et al. 2008; Richards et al. 2009b; Jimenez et al. 2009; Worseck
& Prochaska 2011). For example, the Galaxy Evolution Explorer (GALEX ; Martin et al.
(2005)) has completed a near full-sky survey in the ultraviolet (UV) and the UKIRT Infrared
Deep Sky Survey (UKIDSS ; Lawrence et al. (2007)) is observing a large part of the SDSS
footprint in the NIR. However, this situation is complicated by the fact that these surveys
are generally shallower than the optical fluxes available from SDSS, such that most of the
objects in the SDSS catalog are not detected at high significance in these surveys.

Since these surveys have point-spread functions that are worse than that of the SDSS, low
signal-to-noise measurements of the NIR and UV fluxes of many of the objects in the SDSS
catalog can be obtained by forced photometry of the GALEX or UKIDSS images at the
SDSS positions, which can be regarded as truth because of the di↵erence in resolution.
Because there are gaps in these surveys, it will still be the case that some objects in both
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the training set and the evaluation set will not have measured NIR or UV fluxes.

To use these low signal-to-noise or non-existent fluxes, it is necessary to employ a classifier
than can handle the data uncertainties correctly and that can handle missing data, both for
training and for evaluation of the quasar probabilities. The XDQSO method described in
here is the only technique to date that can do this task naturally and it is therefore the only
method available that—in a straightforward way—can use all of the available information
for an object to classify it as a star or quasar.

3.5.2 Variability

With the opening of the time-domain in the near-future with surveys such as Pan-STARRS
Kaiser et al. (2002); Morgan et al. (2008), LSST Ivezić et al. (2008); LSST Science Collabo-
ration (2009), Skymapper Keller et al. (2007), and WFIRST, the selection of quasars based
on their variability has recently received some attention (Kozlowski et al. 2010; Schmidt
et al. 2010; Butler & Bloom 2011; MacLeod et al. 2011). Some of these techniques currently
amount to drawing the equivalent of “color-boxes” in variability space to select quasars
(Schmidt et al. 2010; MacLeod et al. 2011), while others perform more sophisticated model
selection (Butler & Bloom 2011). However, it is clear that the variability technique could be
brought under the umbrella of probabilistic target selection by doing density estimation in
the space of variability attributes (such as parameters of the structure function) in a similar
manner as we did in flux space in this chapter.

The variability data can be used to form a variability-likelihood similar to the relative-flux
likelihood used in Equation (3.14). If we assume that the variability of a quasar is in-
dependent of its (relative) flux—not necessarily a good assumption—we can combine the
relative-flux and variability likelihoods by simply multiplying the quantities. Alternatively,
we can perform density estimation in the combined space of relative fluxes and variability
parameters, and use the combined likelihood instead of the relative-flux likelihood in Equa-
tion (3.14)—this will capture any (relative) flux dependence of the variability of quasars.
Combining variability and flux information is our best hope to create extremely e�cient
quasars surveys in the future that are free from the biases associated with color or variabil-
ity selection alone.

3.5.3 Other Extensions

The data used as inputs to Equation (3.14) can be further improved upon using existing
data and the XDQSO target selection technique. For example, we used a star count model
that is not a function of Galactic coordinates, but we know that the number density of stars
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is a strong function of Galactic latitude and Galactic longitude. Both the total stellar num-
ber counts in Table 3.4 and the stellar number counts as a function of apparent magnitude
in Figure (3.11) could be re-calculated using models for the stars counts in di↵erent direc-
tions. However, this will not lead to significant changes in the calculated quasar and star
probabilities, as the distribution on the celestial sphere of photometrically selected quasars
and stars already follows the expected celestial distributions of quasars and stars quite well
(Figure 3.14).

We also used relative-flux distributions for the stars that do not depend on the celestial
location of an object. However, the colors of stars do change with proximity to the plane
of the Galaxy. Therefore, we could have used a model that reconstructs the relative flux
distribution of stars as a function of the position on the sky. Such a model is hard to produce
from the current data, if we do not want to rely on theoretical models for this dependence,
since we have no way a priori to separate quasars from stars all over the sky. What we can
do is model the relative-flux distribution of all point sources as a function of position on the
sky, from the single-epoch SDSS fluxes available on the SDSS footprint. In order to use the
noisy single-epoch fluxes properly, it is again necessary to use a technique such as XDQSO
that uses the uncertainties correctly. Using the model for the quasar fluxes that we have
been using in this chapter we can calculate quasar probabilities by using the quasar model
in the numerator of Equation (3.2) and the model for all point sources in the denominator.
However, it is then possible for the probability to exceed one, since the probability is not
explicitly normalized.

We could also use a training set consisting of point sources over the entire SDSS footprint
rather than the 150 deg2 area of Stripe-82 to increase our sampling of rare stellar-locus
outliers. As mentioned above, red stellar-locus outliers outnumber high-redshift quasars and
are a significant contaminant for high-redshift quasar selection. Our current training set
does not contain enough of these red stellar outliers to model their relative flux distribution.
By extending our stellar training sample to the full ⇡ 104 deg2 SDSS footprint we would
have about 100 times more stellar outliers and we could model their color distribution. This
would significantly improve high-redshift quasar target selection.

3.6 Summary and Conclusions

In this chapter I :

• Developed a new “Likelihood” method for quasar target selection using photometric
fluxes and a Bayesian probabilistic approach;

• Demonstrated that this leads to the recovery of 15.9 (z > 2.2) quasars deg�2 from the
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Figure 3.14: Sky distribution of quasar (P (quasar) � 0.5) and star (P (star) � 0.95) targets.
The contrast for the star targets is saturated near the Galactic plane.
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SDSS Stripe-82 dataset when targeting at 40 targets deg�2, with a completeness of
65% and e�ciency of 40%;

• Showed that the likelihood method recovers twice as many quasars as traditional “color-
box” selection;

• Tested for the e↵ects of changing the input QSO catalog, using di↵erent luminosity
functions and adding a weighting scheme to the likelihood calculations.

• Discussed in detail an extension of the “Likelihood” method: XDQSO .

• Compared these two methods and their respective benefits and drawbacks.

• Described future extensions to these methods.

After a commissioning period in September-November 2009, the QSO targeting fibers were
divided into a uniformly selected CORE sample and a non-uniformly selected BONUS sample
(Ross et al. 2012). The likelihood method, using the Jiang luminosity function, was used
for targeting the CORE sample (20 targets deg�2) for the first year of BOSS data taking.
The rest of the fibers (BONUS sample) were targeted by a combination of the output of
the likelihood, KDE and NN methods using a neural network. This approach allows the
team to combine both di↵erent methods and di↵erent photometric catalogs (SDSS, UKIDSS,
GALEX) in the BONUS selection.

After the first year of data taking, the CORE sample targeting switched to using the XDQSO
method (Bovy et al. 2011b) and likelihood was then used in the BONUS sample as well as
one of the inputs to the NN. This switch was made because XDQSO performed slightly
better at recovering high-redshift quasars and the priority of the target selection team was
to maximize number of selected quasars. I released the probabilities from Equation (3.10)
in the project data releases of SDSS data.

The Likelihood and XDQSO target selection technique can be extended to include low
signal-to-noise data in NIR and UV filters and to include other information such as quasar
variability. It is the low signal-to-noise ratio regime at the faint edge of surveys that often
contains the most interesting objects. XDQSO is the only target selection technique currently
available that can calculate robust quasar probabilities taking the data-uncertainties fully
into account. Since the most successful photometric quasar catalogs are based on calculating
good photometric quasar probabilities (Richards et al. 2009a), these techniques or similar
will be essential to create the best and largest photometric quasar catalogs in upcoming
surveys such as Pan-STARRS and LSST.
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Chapter 4

BOSS QSO Target Selection Results

4.1 Results

This chapter presents the results of quasar spectroscopy carried out during the Year One of
BOSS data taking — from MJD 55176 (2009 December 11) through MJD 55383 (2010 July
06). These results are described in greater detail in Ross et al. (2012). The distribution of
BOSS Year One quasars on the celestial sphere is shown in Figure (4.1).

4.1.1 Global Properties and E�ciencies

There were 54,909 spectra of objects targeted as quasars, of which 52,238 were unique objects.
These were observed over over a footprint of 878 deg2, giving a mean surface density of 63.8
targets deg�2. Of the 54,909 (52,238 unique) spectra, 35,305 (33,556) had high-quality
redshifts. Of the 33,556 unique objects with high-quality redshifts, 11,149 are stars, while
13,580 are QSOs with z > 2.20. The remaining 8,827 objects are mostly quasars at z ⇠
0.84 and ⇠1.6, and low-z compact galaxies; see Figure (4.2). Of the 13,580 high redshift
objects, 2,317 were previously spectroscopic confirmed quasars; thus the first year of BOSS
observations resulted in the spectroscopic confirmation of 11,263 new z > 2.2 quasars.

Figure (4.2) shows the redshift distribution of BOSS quasars from the first year, and compares
it with that from the SDSS DR7 quasar sample (Schneider et al. 2010) and the 2SLAQ survey
(Croom et al. 2009). This plot is very similar, but not identical, to that shown in the SDSS-
III overview paper of Eisenstein et al. (2011). Of course, the DR7 sample is selected over the
full SDSS-II imaging area, approximately 9,380 deg2, while the BOSS Year One data come
from observations of 880 deg2. Already BOSS has slightly more quasars in the z = 2.2� 2.8
range, while at higher redshifts the DR7 sample remains larger.
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Figure 4.1: Sky distribution of the 14,287 quasars in the BOSS Year One quasar survey
(J2000 equatorial coordinates), in red. The nine regions (“chunks”) observed by BOSS are
labeled accordingly, and the dotted lines are drawn at Galactic latitudes b = ±25�. The
spectroscopically confirmed SDSS-I/II DR7 quasar catalog (Schneider et al. 2010) is shown
for comparison in black.

Degeneracies in the color-redshift relation of quasars lead to the selection of low-z quasars
in BOSS. The quasars at z ⇠ 0.8 have Mg ii �2800 Å at the same wavelength as Ly↵ at
redshift z ⇠ 3.1, giving these objects similar broad-band colors, while the large number of
objects at z ⇠ 1.6 is due to the confusion between �1549 C iv and Ly↵ at z ⇡ 2.3. We shall
come back to this feature when comparing the performance of the NN, KDE, and Likelihood
methods in 4.1.3. The tail of objects at z & 3.5 includes a significant contribution from
re-observations of previously known quasars.

Figures (4.3) and (4.4) present our key results, the e�ciency of the current target selection
algorithms. For these tests, we have constructed a control sample of targets on Stripe-
82, where our spectroscopy is more complete than anywhere else on the sky, albeit still
not perfect. Here we include data from Year Two, where Stripe-82 was retargeted using a
variability selection for quasars (Palanque-Delabrouille et al. 2011). Stripe-82 also has high
completeness because quasars are selected from co-added photometry, with much smaller
photometric errors.

For Figure (4.3), we select the quasar targets in our normal way from single-epoch data, with
the first 20 targets deg�2 selected by the XDQSO CORE algorithm. Targets are ranked
in order of probability, and the plot shows the number of z > 2.2 quasars deg�2 vs. the
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Figure 4.2: The redshift histogram of BOSS Year One quasars (solid red thick histogram).
The dashed red line represents those objects known prior to BOSS observations, while the
distribution of newly confirmed quasars is given by the thin red line. For comparison the
SDSS DR7 quasars from Schneider et al. (2010) (selected over a much larger sky area) are
shown by the black histogram, while the 2SLAQ quasar data (Croom et al. 2009), are in
blue.
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Figure 4.3: Cumulative number of quasars with z > 2.2 as a function of the rank of the
target for the Stripe-82 control sample with single-epoch photometry. At 20 fibers deg�2,
the XDQSO CORE algorithm selects 10.7 quasars deg�2, while previously known and FIRST
sources add an average of 1.5 quasars deg�2. At 40 fibers deg�2, the total surface density
of z > 2.2 quasars selected by our current algorithms from single-epoch SDSS photometry
is 15.4 deg�2. Note that these numbers represent an average over a wide range of Galactic
latitudes, and therefore stellar contaminations.
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Figure 4.4: Similar to Figure (4.3), but showing the impact of adding GALEX photometry,
UKIDSS photometry, or both to SDSS single-epoch photometry. This Figure is based on
Stripe-82 data and XDQSO selection for all targets.
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number of targets deg�2, with the slope of the curve indicating the e�ciency of selection.
The CORE algorithm selects 10.7 z > 2.2 quasars deg�2 from its 20 targets. We then
show the average contribution of KNOWN and FIRST quasars, totaling 1.6 high-z quasars
deg�2. This increment assumes a surface density of 0.9 known high-z quasars deg�2 (and
0.7 deg�2 from FIRST), which is consistent with our Year One data but lower than the
surface density of known pre-BOSS high-z quasars on Stripe-82, which is unusually well
studied. Finally, we add the BONUS targets from the NN-combinator, again in rank order.
At 40 targets deg�2, we are just above the minimum BOSS goal, with a mean density of
15.4 z > 2.2 quasars deg�2. Stripe-82 samples a wide range of Galactic latitude and thus
stellar density; we therefore anticipate that this test should be representative of selection
e�ciency averaged over the full BOSS survey region. We also found from early observations,
that adding additional fibers beyond the nominal 40 deg�2, led to only very minimal gains
in yield.

Figure (4.4) shows the impact of adding UKIDSS and GALEX data to single-epoch SDSS
photometry. For this test we use the XDQSO algorithm alone, since this is where these
auxiliary data sets currently enter our selection procedures, and we extend the e�ciency
curves up to 80 targets deg�2. At 40 targets deg�2, the e�ciency for XDQSO with single-
epoch SDSS imaging alone is 15.0 z > 2.2 quasars deg�2. Adding GALEX data improves the
e�ciency to 16.2 deg�2, adding UKIDSS improves it to 17.3 deg�2, and adding both improves
it to 18.6 deg�2. Thus, both of these data sets can significantly enhance the e�ciency of
BOSS quasar target selection in regions where they are available. Stripe-82 has medium-
deep (“MIS”) GALEX data, and the improvement with shallower (“AIS”) coverage will be
smaller, but our tests indicate that GALEX addition will still improve the selection.

Figure (4.5) shows the redshift distribution of all known quasars on Stripe-82 as a function
of redshift, as well as those selected by the single-epoch SDSS algorithms illustrated in
Figure (4.3) above. The ratio of the two measures the completeness of BOSS single-epoch
quasar selection relative to known quasars in this well studied region, ranging from 40% to
70% over our critical redshift range 2.2 < z < 3.5. Of course, this remains a lower limit to
the true completeness at the BOSS magnitude limit, though in the 2.2 < z < 3.5 redshift
range we anticipate that the BOSS Stripe-82 sample selected from co-added photometry and
variability has high completeness (Palanque-Delabrouille et al. 2011).

Figure (4.6) shows examples of BOSS spectra of quasar targets from the Year One data.
From top to bottom: a z > 5 quasar found by the Likelihood method (and not selected by
any other method); a newly discovered z = 2.6 quasar at a typical S/N; a z = 3.5 quasar
selected only by the KX method; a re-observed BAL quasar showing spectroscopic variability
over 3377 days in the observed frame; a star at our typical S/N; and a z = 1.5 quasar with
our typical S/N.
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Figure 4.5: Completeness of BOSS single-epoch target selection vs. redshift, on Stripe-82.
The blue histogram shows the redshift distribution of all spectroscopically confirmed quasars
on Stripe-82. The red histogram is for those quasars that pass the BOSS single-epoch target
selection for a threshold tuned to produce 40 targets deg�2. Purple points with Poisson error
bars show the ratio of the two, i.e., the selection completeness (right-hand scale).

4.1.2 Magnitude, Color and the L� z Plane

Figure (4.7) shows the distribution of quasar targets from the BOSS first-year data which
are spectroscopically confirmed as either stars or z > 2.2 quasars, in the (u-g) vs. g color-
magnitude plane. The distribution of stars at the bright end, g < 18, and the lack of bright
z > 2.2 quasars, led us to impose the bright i = 17.8 limit. Objects fainter than g = 22 are
brighter than our r band limit of 21.85 mag.

Figure (4.8) shows the SDSS (u � g), (g � r), (r � i), and (i � z) colors as a function
of redshift for the BOSS Year One data. Also shown are the mean color in redshift bins
(thin solid line), and the model of Bovy et al. (2011a) (thick colored line). This model
is systematically bluer than the data at low redshift; BOSS target selection systematically
excludes UV-excess quasars, and thus those low-redshift quasars that happen to enter the
sample are redder than the average quasar. The trends with redshift are due to various
emission lines moving in and out of the SDSS broadband filters, and the onset of the Ly↵
forest and Lyman-limit systems Fan (1999); Richards et al. (2002); Hennawi et al. (2010);
Bovy et al. (2011b); Peth et al. (2011); Prochaska & Hennawi (2009); Worseck & Prochaska
(2011). McGreer et al. (2012, in prep) will present a detailed analysis of this diagram, and
its implications for our completeness.
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Figure 4.6: Examples of spectra of BOSS quasar targets. The SDSS object name and pipeline
redshift are given in each panel (except for the star). From top to bottom: a z > 5 quasar
found by the Likelihood method; a newly discovered z = 2.6 quasar at the typical S/N; a
z = 3.5 quasar selected only by the KX method ( 2.2.6); a re-observed BAL quasar showing
spectroscopic variability (black line is the BOSS spectrum; red is from SDSS, a spectrum
taken 3377 days earlier); a star with our typical S/N and a z = 1.5 quasar with our typical
S/N. The feature at 5577Å in all spectra is a residual from a sky line.
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Figure 4.7: Color-magnitude diagram ((u� g) vs. g) for objects spectroscopically classified
as stars (red contours and points) and z > 2.2 quasars (blue contours and points). Only
objects with good spectra are shown. The quasars are systematically bluer; there are very
few quasars with g < 18.
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Figure 4.8: SDSS colors vs. redshift for quasars in the BOSS Year One data. The thin solid
line is the mean color in bins of redshift, while the thick colorful line is from the model of
Bovy et al. (2011a). The model is systematically bluer than the data at low redshift because
BOSS systematically excludes UV-excess sources.
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Table 4.1. The number of targets Year One Data

Selection # Quasar # with and with or are
Method targets good spectra z > 2.20 stars

Totals 52,238 33,556 13,580 11,149
KDE 34,503 (4794) 20,993 (2693) 9,050 (229) 7,607 (1,856)
NN 16,747 ( 975) 13,267 ( 710) 7,743 (135) 3,604 ( 504)
Likelihood 29,150 (2325) 21,975 (1647) 11,244 (447) 4,483 ( 724)

Note. — The number of unique quasar targets from the first year of BOSS
spectroscopy, broken down by the three key selection methods. Numbers in
parentheses indicate the number of objects selected by the indicated method
only. Because these methods were applied non-uniformly, this table is pro-
vided as an informational guide, and not as a direct comparison between
methods (see text for further explanation).

Figure (4.9) shows the SDSS color-color diagrams for the first year BOSS quasars, for all
quasars with good redshifts above z = 2.2. This figure illustrates the redshift dependence
of quasar colors as the Ly↵ emission line moves from the g band to the r-band at z ⇡ 3.5.
Quasars with 2.2 < z < 3.5 lie in the range �0.3 < (g� r) < 0.6, while objects with z > 3.5
generally have (g � r) > 0.8.

Figure (4.10) shows the distribution of objects in the redshift-luminosity (“L � z”) plane
for three recent large quasar surveys: SDSS (black points), 2SLAQ (cyan) and BOSS (red).
There are ⇡ 105, 000 objects in the SDSS DR7 catalog, and ⇡ 9, 000 g  21.85 low-redshift
quasars from the 2SLAQ Survey (Croom et al. 2009). We calculate the absolute i-band
magnitudes, Mi, using the observed i-band PSF magnitudes and the k-corrections given in
Table 4 of Richards et al. (2006). The three surveys together cover the L�z plane well, with
a dynamic range in luminosity of ⇡ 4 magnitudes at any given redshift up to z ⇠ 3.5. This
coverage will be vital for calculating the evolution of the faint end of the quasar luminosity
function, and placing strong constraints on the luminosity dependence of quasar clustering.

4.1.3 Comparison of Algorithms

The original motivation for the implementation of multiple target selection algorithms was
the lack of evidence prior to BOSS observations that a single method could select z > 2.2
quasars down to g ⇡ 22 with our required e�ciency. With the Year One data now in
hand, we can compare the e↵ectiveness of our di↵erent methods. However, due to the
continually changing nature of the BOSS QTS over this year, where di↵erent methods were
used as CORE and BONUS, these comparison will be generally qualitative in nature. The
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Figure 4.9: Color-color diagrams for the First Year data for all spectroscopically confirmed
quasars with good redshifts above z = 2.2. The stellar locus is shown as contours. (Top
Left ), ugr; (Top Right ), gri, (Bottom Left ), riz. The horizontal swath of both stars and
quasars at g � r ⇠ 1.5 in the u� g, g � r color-color diagram is caused by the large u-band
photometric errors in the reddest objects. The colors of points encode their redshifts; the
sizes of the points vary for clarity. The lower right panel shows the i magnitude as a function
of the g � r color.
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Figure 4.10: The L � z plane for three recent quasar surveys: SDSS-I/II, (black points),
2SLAQ (cyan) and BOSS (red). The luminosity assumes H0 = 70 km s�1 Mpc�1. There are
⇡ 105, 000 objects in the SDSS DR7 catalog and ⇡ 9, 000 g  21.85 low-redshift quasars
from the 2SLAQ Survey (Croom et al. 2009). The three surveys together give a dynamic
range in luminosity of ⇡ 4 magnitudes at any given redshift up to z ⇠ 3.5. The luminosity
corresponding to magnitude limits of i = 22 on the faint end and i = 18 on the bright end
are shown. The coverage here can be compared to Figure (5) in Croton (2009).

interested reader is referred to the discussions in Chapter (3) and Bovy et al. (2011b) for
further comparisons.

As an aid for our discussions, in Table 4.1 we list the number of targets from this first year,
broken down by the three key selection methods. Again, given the non-uniform selection
over this year, this table is provided as an informational guide only; it should not be used
as a direct comparison between methods.

The redshift distributions for objects with reliable redshifts selected by our three main meth-
ods (NN, KDE, and Likelihood) are given in Figure (4.11). Again, because of the non-uniform
manner in which these methods were applied during Year One, this plot should not be in-
terpreted as a quantitative comparison between the methods. There is substantial overlap
between the methods; many objects are selected by more than one technique. The three his-
tograms have similar shapes over the range 2.2 < z < 3.5. While NN avoids being confused
by z ⇠ 1.5 objects, and KDE avoids objects at z > 3.5, all three methods select a substantial
number of objects at z ⇠ 0.8.

Figures (4.12), (4.13) and (4.14) show the color-color and the color-magnitude distributions
of z > 2.2 quasars selected by the Likelihood, NN and KDE methods, respectively. The
figures show in orange and black the ratio of numbers of objects selected by each method to
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Figure 4.11: The BOSS quasar redshift distribution for objects with reliable redshifts, se-
lected by our three main methods from Year One. The green, blue and black histograms give
the redshift distributions for the Likelihood, NN and KDE methods, respectively. The red
histogram is the full sample from Figure (4.2). These methods were not applied uniformly
through Year One, so this plot is shown for qualitative and informative purposes only, and
should not be used as a direct comparison between the methods. The KDE, NN and Like-
lihood algorithms are not mutually exclusive, with many objects selected by more than one
method.
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the total number of Year One quasars, at each point in color space. This ratio is normalized
to the global ratio of targets from Column 4 of Table 4.1; thus a point in color space with a
value > 100% is one where the method in question outperforms the total selection on average.
The di↵erence between the three methods is clear in the (u� g) vs. (g � r) diagrams. The
contours for the Likelihood method are fairly flat away from the stellar locus. NN performs
well at (u � g) ⇠ 0.6, (g � r) ⇠ 0 and in those regions of color-color space corresponding
to higher-redshift quasars, but does more poorly elsewhere. KDE selects objects only over a
very narrow range in (g� r). From the (g� r) vs. i-band color-magnitude diagram (bottom
right panels of the figures), we see that the Likelihood method was more e�cient at selecting
fainter, i & 21.0 quasars, while the NN tends to select the brighter i <⇠ 20.0 objects at all
(g � r) colors.

These trends can be understood given the methodology of these algorithms. The Likelihood
method down-weights objects close to the stellar locus as the denominator of Equation (2.5)
gets large, which is why Likelihood selects few objects there. Otherwise, the Likelihood
method traces the overall BOSS Year One sample in color-color and color-magnitude space.
The Likelihood method did not place any cuts on photometric redshift, and hence samples
the high redshift distribution of the BOSS data well, especially at (g�r) & 1 (corresponding
to redshift z > 3.5). See 3.2.2 for full details of the Likelihood performance.

At the crux of an artificial neural network is the sample of objects used to train it (see Yèche
et al. (2010) and references therein, and Section 2.2.4). The training set for the NN we have
used was based on the SDSS quasar catalog and the 2SLAQ surveys, and did not use data
from the MMT pilot survey or the AUS survey. Thus, this training set was geared towards
brighter quasars (i < 20.2), giving rise to the tendency for NN to select the brighter quasars.

The KDE training set included only 2.2 < z < 3.5 quasars, and thus the redshift histogram
drops to zero at z = 3.5 (Figure 4.11). This is related to the fact that KDE quasars inhabit a
much narrower range of the (g� r) vs. (r� i) color-color plane than the other two methods.
In summary, Figures (4.12)-4.14 reflect the relative strengths and trainings of these methods;
ultimately, the three methods complemented each other well.

4.1.4 The Blind Test Area

After spectroscopy from the first few chunks had been analyzed, it became clear that the
survey would have to decide on a single method for the CORE, and that we would have to
restrict ourselves to the nominal target density of 40 targets deg�2. Thus, we designed a test
to decide which combinations of methods gave the best yields for the CORE and BONUS
selections.

The “Blind Test Area” is a region of sky of ⇠ 1000 deg2 in the NGC at high declination
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Table 4.2. Surface Density of BOSS Quasars by TS Method

Method Threshold Threshold Nquasar Nquasar Score Score
@20/deg2 @40/deg2 @20/deg2 @40/deg2 @20/deg2 @40/deg2

KDE 0.904 0.599 9.45 11.35 4.79 5.71
Likelihood 0.543 0.234 8.70 12.23 4.39 5.89
Weighted Like 0.262 0.108 8.89 12.33 4.58 5.98
NN 0.852 0.563 7.62 10.84 4.00 5.51
NN Comb. 0.853 0.573 9.37 12.81 4.69 6.26
Color Box n/a n/a 6.45 3.41

Note. — The surface density of spectroscopically confirmed 2.2 < z < 3.5 quasars from
early (Chunk 1, 2 and 3) BOSS spectroscopic data that would be recovered by various meth-
ods, and the thresholds of the key parameters required to yield a surface density of 20 or 40
deg�2 in the blind survey region ( 4.1.4). The Weighted Likelihood incorporated a weighting
function which optimizes the S/N of the Ly↵ forest clustering signal. The redshift and flux
distribution of the resulting quasar sample determines this signal, as quantified by the score
in the last two columns.

(� > +40�) and high Galactic latitudes, shown by the thin white line in Figure (2.5). This
area is used for tuning the threshold of each method to a particular target density. The
resulting thresholds were then applied to existing data to determine the selection e�ciency.

Table 4.2 summarizes these tests. This table gives the surface density of 2.2 < z < 3.5
quasars from early (Chunk 1, 2 and 3) BOSS spectroscopic data that would be recovered
by various methods at various thresholds of their key parameters when they are tuned to
yield a surface density of 20 or 40 deg�2 in the blind survey region. The e↵ectiveness of
each quasar spectrum for Ly↵ forest studies depends on its redshift (and thus the spectral
coverage of the forest) and its brightness (and thus the S/N of the spectrum). This “value”
is quantified by a score of each quasar, motivated by the checks performed in McDonald
& Eisenstein (2007); summing this over the expected quasars per square degree gives the
numbers in Table 4.2. These scores do not include contributions from quasars outside the
redshift range 2.2 < z < 3.5. “Weighted Likelihood” was an adaption of the Likelihood
method to maximize this score, as discussed in detail in 3.3.3.

We also tried selecting quasars using a simple color region isolating the region where z ⇠ 2.7
quasars are found, akin to the mid-z box used by Richards et al. (2002), but this did not
deliver an e�ciency close to our requirements.

Although Table 4.2 shows that the KDE method returns the most z > 2.2 quasars (9.45
deg�2) at the CORE target density of 20 deg�2, after much deliberation, we selected the
Likelihood method as CORE for the latter stages of Year One, since it is a simpler algorithm
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to understand and explain, it has a more uniform spatial selection, and is easier to reproduce.
Further tests showed that using the Neural Network in its “Combinator” mode for BONUS
would yield the highest number of high-z quasars overall. The di↵erence when weighting
by the Ly↵ forest score was too small to motivate us to include it; see the discussion in
McQuinn & White (2011).

However, tests of the Year One data with the XDQSO method (Bovy et al. 2011b) showed it
selected about 1 z > 2.2 quasar deg�2 more than Likelihood. Thus in Chunks 12 and 13 the
union of Likelihood and XDQSO was treated as CORE, allowing us to test them directly
against one another (Bovy et al. 2011b). In Chunks 12 and 13, 2426 out of 4710 XDQSO
targets had good spectra and 2.2 < z < 3.5, for an e�ciency of 52%, while Likelihood
obtained 2296 quasars from 5086 targets, for a 45% e�ciency. This result is our motivation
for declaring XDQSO to be CORE for the rest of the BOSS quasar survey.

4.2 The Completeness of CORE in Year One

Studies of clustering in the Ly↵ forest are not biased by the distribution of background
quasars used to illuminate Ly↵ forest absorption. Thus the Year One BOSS quasar sample
can be used for these studies. Indeed, Slosar et al. (2011) have performed a first clustering
analysis of Ly↵ forest flux from the BOSS Year One data.

However, given the changes in QTS throughout the first year, the quasar sample described
in this chapter is far from su�ciently uniform to be used directly for studies of the statistics
of the quasars themselves, such as measurements of their luminosity function or clustering.
The goals of the CORE sample is to have such a uniformly-selected sample of quasars, but
as the definition of CORE changed several times during commissioning, CORE objects in
the first year do not represent a statistical sample.

The project settled on the XDQSO algorithm ( 3.4; Bovy et al. (2011b)) for the CORE
method at the end of Year One, and will use it for the rest of the survey. It is therefore
useful to apply this algorithm to the photometry used in the Year One spectroscopy, and
determine the completeness of the Year One targeted chunks. Table 4.3 and Figure (4.16)
give the results of this test. Given the placement and overlap of the spectroscopic plates,
each chunk can be uniquely divided into sectors covered by a unique combination of plates.
The completeness of the targeting: i.e., the fraction of the XDQSO CORE sources that
were actually targeted in Year One, is measured for each sector separately. Encouragingly,
these targeting completeness values are generally 80% or higher, which indicates that sta-
tistical analyses of the final CORE sample should be able to incorporate Year One data by
introducing moderate weighting factors. The lower targeting completeness (65%) on Chunk
11 highlights a subtle point: the completeness for CORE-selected quasars should be higher
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Figure 4.12: Distributions in color-color and color-magnitude space for z > 2.2 quasars
selected by the Likelihood method in Year One. The black contours give the location of the
stellar locus, while the orange contours give the ratio, at each point of color space, of z > 2.2
quasars selected by Likelihood to all Year One BOSS quasars, normalized to the global ratio
of the two. Quasar numbers were smoothed with a tophat of width 0.10 mag in u � g and
g � r, and 0.05 mag in r � i and i� z, before taking ratios.
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Figure 4.13: As in Figure (4.12), for the NN method.
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Figure 4.14: As in Figure (4.12), for the KDE method.
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Table 4.3. BOSS Quasar Targeting Completeness

Chunk Area (deg2) E↵ective Area (deg2) Mean
C � 0.75 C � 0.75 C

11 70.6 58.2 0.654
2 130.1 120.4 0.905
3 85.9 79.4 0.830
4 246.1 230.4 0.861
5 243.0 232.0 0.952
6 182.6 171.2 0.933
7 205.0 185.8 0.836
8 75.5 65.7 0.814
9 84.1 71.6 0.822
10 71.7 60.7 0.813

Note. — C of objects that would have been targeted
by the a posteriori XDQSO CORE algorithm, which
were actually targeted, for each Year One chunk. Chunk
11 has greater area coverage than Chunk 1, thus we list
it instead. The second column gives the solid angle (in
deg2) of the region of each chunk in which the complete-
ness is greater than 0.75, the third column lists the same
value but for e↵ective area (i.e area ⇥ completeness) and
the fourth column tabulates the mean completeness over
the chunk. See also Figure (4.16).
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Figure 4.15: The targeting footprint for the SDSS-III:BOSS Ly↵ forest/Quasar Survey.
The various chunks are indicated by di↵erent colors. Chunks 16, 17 and 18 lie within the
footprint of Chunk 15. The full targeting footprint is 10,200 deg2, with a total of ⇡430,000
tiled targets. 180,000 of these targets had spectra by the end of Year Two observations. The
global Year One quasar target density is 60.4 targets deg�2, and the mean target density
over all chunks shown is 47.9 targets deg�2. The dashed line is at Galactic latitude b = 25�.

than the completeness for CORE targets as a whole, because the true quasars are the most
likely to also be selected by one of our other algorithms. In the case of Chunk 11, the
deeper Stripe-82 photometry eliminates many noisy stellar contaminants in the single-epoch
XDQSO target list, but it probably selects nearly all of the true quasars selected by CORE.

For calculations of the quasar luminosity function, one must also account for the incomplete-
ness of the XDQSO CORE sample relative to the full population of quasars. This can be
quantified, for example, using the extensive targeting on Stripe-82 (Palanque-Delabrouille
et al. 2011). Similarly, to determine completeness as a function of position on the sky for
quasar clustering work it is necessary to determine the fraction of quasars hiding among the
unclassifiable spectra. Ongoing visual inspections of these spectra will address this question
to some extent.
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Figure 4.16: The fraction of the objects would be targeted using the final version of the
XDQSO CORE quasar target selection, that were actually targeted in Year One. Each panel
shows the area covered by a Chunk (2-11) from Year One. We use Chunk 11 on Stripe-82
in place of Chunk 1 (top-left panel) as Chunk 11 has superior areal coverage. Note that in
some chunks, the scales on the RA and Dec axes are quite di↵erent. Color coding shows the
spectroscopic completeness of the a posteriori XDQSO CORE sample for each area. Those
areas in red have a targeting completeness above 0.75, orange have a completeness of 0.5–
0.75, green have a completeness of 0.25–0.5 and the few areas in blue have a completeness
below 0.25. The top right panel shows the cumulative area (blue solid line) and e↵ective
area (area ⇥ completeness; black dashed line) above a given level of targeting completeness
for the XDQSO CORE sample.
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Chapter 5

Quasar Luminosity Dependence

If one believes that quasars are the result of major galaxy mergers, than one can assume a
relationship between the quasar’s luminosity and the mass of the central black hole (mbh)
(Kau↵mann & Haehnelt 2000; Wyithe & Loeb 2003; Volonteri et al. 2003). The fraction
of gas accreted onto the black hole during each merger is chosen to match the observed
relation between the velocity dispersion of the bulge and mbh (Ferrarese & Merritt 2000).
This results in a correlation between the quasar luminosity and the mass of the host dark-
matter halo. Since the clustering properties of dark-matter halos strongly depend on their
mass, the quasar clustering amplitude is thus expected to depend on luminosity.

However, it is only recently that samples of quasars have grown big enough (in terms of
the number of objects) to study their clustering with some precision (Porciani et al. 2004;
Croom et al. 2005; Porciani & Norberg 2006; Hennawi et al. 2006a; Myers et al. 2007a,b;
Shen et al. 2007; da Ângela et al. 2008). One of the major problems with measuring the
clustering of quasars is that they are extremely rare (n̄ ⇠ 10�6 h3 Mpc�3 at z ⇠ 0.5). Shot-
noise from Poisson fluctuations in the counts of objects thus obscures their clustering signal.
At low redshifts, this problem is exacerbated, requiring measurements in very broad redshift
intervals.

To increase the signal to noise of the clustering signal, I use a cross-correlation technique
similar to that discussed in Padmanabhan et al. (2009). I measure the clustering of approx-
imately 3500, 0.5 < z < 1.0 quasars from SDSS, 2SLAQ and BOSS quasar surveys with a
sample of 5.23 million photometric galaxies brighter than i�band = 23.5 from the CFHT
(Canada-France-Hawaii Telescope) Survey of Stripe-82 (CS82). The galaxies have reliable
photometric redshifts, trace the matter distribution in a way that is well understood, and
have a much higher volume density (n̄ ⇠ 10�1 h3 Mpc�3) than the quasar sample. The cross-
correlation can thus be well measured and inverted, using the known redshift distribution,
to the underlying 3D clustering.
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Figure 5.1: Layout of the CS82 fields (166 images).

I have measured the luminosity-dependence of quasar clustering which span ⇠4 magnitudes
in luminosity, at a given redshift. I find a strong (4.56 �) detection of luminosity dependent
clustering in the cross-correlation. This is the first time that this signal has been detected.
This constrains several parameters in the halo occupation distribution (HOD) model and
their scaling with luminosity or black-hole mass. In order to interpret my observations,
which lie largely in the non-linear regime, I use the halo catalog from an N-body simulation
of the ⇤CDM family.

The layout of this chapter is the following: In 5.1, I discuss the various datasets I am
using and the di↵erent breakdowns of the QSO population. In 5.2, I discuss the statistical
methods used in this chapter for calculating the clustering properties. In 5.3, I present my
results and various tests done on the stability of these results. In 5.4, I compare my results
to previous work. My conclusions are in 5.5. Throughout this chapter I quote distances in
comoving coordinates, magnitudes in the AB system, use log to indicate base-10 logarithms
and ln to indicate natural logarithms.
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5.1 Data

In this section, I give the relevant details for the data that I used to perform my cross-
correlation measurements. The data is from various surveys, but it is all from observations
made in the field known as “Stripe 82”. Stripe-82 is a ⇠250 deg2 area stripe centered on the
celestial equator in the Southern Galactic Cap, and was imaged multiple times during the
SDSS-I/II (Abazajian et al. 2009). SDSS-III also performed spectroscopic observations on
Stripe-82, which resulted in the discovery of over 9400 confirmed quasars (see Chapter 4.1). I
describe the quasar spectroscopic sample below in 5.1.2. First, I discuss my galaxy sample,
which is derived from the “CS82” survey (Erben et al. 2013).

5.1.1 Galaxies: CFHT Stripe-82 Survey

The CFHT-Stripe-82, “CS82”, is a completed imaging survey that has taken medium-deep,
i < 23.7 data across 170 deg2 of Stripe-82, using the MegaCam imager on the 4.2 meter
Canada-France Hawaii Telescope on Mauna Kea (Hildlebrandt et al. 2012). The area of one
image is 1 deg2, and the total number of images is 166, with some minimal overlap between
exposures for calibration. Bright stars along the stripe are avoided. Figure (5.1) shows the
layout of the CS82 fields. The pixel size is 0.18700, and the imaging PSF varies from ⇠ 0.400

to ⇠ 0.800, with the median being around 0.600. Images are 4 dithers with a total exposure
time of 1640 seconds.

Catalog generation is performed by running Source Extractor (Bertin & Arnouts 1996). The
basic catalogs, before any quality controls, contain about 11 million objects. Image masks
are hand generated by the CS82 team, and cuts are made around bright stars, bad pixels,
and regions which have imaging artifacts. After removing objects in masks, the catalog
contains ⇠6 million objects, and has a total area of 124 deg2. The mean seeing is 0.6,
shown in Figure (5.2) along with the magnitude and photometric redshift distributions of
the galaxies.

5.1.2 QSO Datasets

My quasar dataset comes from three spectroscopic surveys; the Sloan Digital Sky Survey
(SDSS; York et al. 2000), the 2dF-SDSS LRG and QSO Survey (2SLAQ; Croom et al. 2009),
and the SDSS-III: Baryon Acoustic Oscillation Spectroscopic Survey (BOSS; Eisenstein et al.
2011). I give the necessary details of these three surveys below, and a summary of my QSO
dataset is in Table (5.1). The footprint in RA-Dec for the QSOs is shown in Figure (5.3),
the magnitude and photometric redshift distributions and the coverage in the luminosity-
redshift, L� z, plane are shown in Figure (5.4).
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Figure 5.2: (Top Left ) Histogram of the i�band magnitude distribution for CS82 data. (Top
Right ) The photometric redshift (photo-z) distribution (solid) for the CS82 data as well as
the best fit curve to the distribution (dashed). (Bottom ) The mean seeing for CFHT.
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SDSS QSOs

The SDSS used a dedicated 2.5 meter wide-field telescope (Gunn et al. 2006) to collect light
for 30 2k⇥2k CCDs (Gunn et al. 1998) over five broad bands - ugriz (Fukugita et al. 1996) -
in order to image ⇠ ⇡ steradians of the sky. The imaging data are taken on dark photometric
nights of good seeing (Hogg et al. 2001), are calibrated photometrically (Smith et al. 2002;
Ivezić et al. 2004; Tucker et al. 2006; Padmanabhan et al. 2008) and astrometrically (Pier
et al. 2003), and then object parameters are measured (Lupton et al. 2001; Stoughton et al.
2002).

Using the imaging data, quasar target candidates are selected for spectroscopic observation
based on their colors, magnitudes and detection in the FIRST radio survey (Becker et al.
1995), as described by Richards et al. (2002). Low-redshift, z <⇠ 3, quasar targets are
selected based on their location in ugri-color space and the high-redshift, z & 3, objects
in griz-color space. Quasar candidates passing the ugri-color selection are selected to a
flux limit of i = 19.1, but since high-redshift quasars are rare, objects lying in regions of
color-space corresponding to quasars at z > 3 are targeted to i = 20.2. Furthermore, if an
unresolved, i  19.1 SDSS object is matched to within 200 of a source in the FIRST catalog,
it is included in the quasar selection. A tiling algorithm then assigns these candidates to
specific spectroscopic plates, in order to maximize target completeness (Blanton et al. 2003).
No two fibers can be placed closer than 5500, corresponding to ⇠ 0.3 h�1 Mpc at hzi = 0.76,
the mean redshift of my sample.

For my analysis, I use the SDSS Data Release Seven (DR7; Abazajian et al. 2009) and select
quasars from the final version of the SDSS quasar catalog (DR7Q; Schneider et al. 2010).
This catalog consists of spectroscopically identified quasars that have luminosities larger than
Mi = �22.0 (measured in the rest frame) and at least one emission line with FWHM larger
than 1000 km s�1. Every object in the DR7Q had its spectrum manually inspected. There
are 105,783 confirmed quasars over the 9,380 deg2 spectroscopic DR7 print; the 19,137 DR7Q
quasars with redshifts 0.5 < z < 1.0 will be the SDSS sample I use in this investigation. Of
these 19,137 low-redshift quasars, 1,725 are on Stripe-82.

2SLAQ QSOs

Croom et al. (2009) gives full details of the 2SLAQ quasar survey. 2SLAQ was a deep,
18 < g < 21.85 (extinction corrected), sample aimed at probing in detail the faint end
of the broad line active galactic nuclei luminosity distribution at z < 2.6. The candidate
QSOs were selected from SDSS photometry and observed spectroscopically with the 2dF
spectrograph on the Anglo-Australian Telescope. This sample covers an area of 191.9 deg2

and contains spectra of 8764 QSOs, of which 7623 were discovered by 2SLAQ. Although the
2SLAQ targeted the two equatorial regions from the SDSS imaging data in both the North



Section 5.1. Data 86

Figure 5.3: Top: Alternative view of Figure (5.1). RA versus Dec for the CS82 galaxy
data. Bottom: RA versus Dec for the quasar data. The quasar dataset comes from three
spectroscopic surveys: SDSS DR7 (green), 2SLAQ (blue), and BOSS (red).

Galactic Cap and the South Galactic Cap, due to various factors (e.g. telescope scheduling,
weather), only ⇠1/3 of the 2SLAQ coverage, and hence catalog, was on Stripe-82. Imposing
the redshift range 0.5 < z < 1.0 results in 596 objects.

SDSS-III BOSS QSOs

The SDSS-III BOSS uses the same imaging data as that of the original SDSS-I/II survey,
but BOSS specifically targets objects thought to be at high redshifts, z > 2.2 (for Ly↵F
cosmology), and spectra were taken with the new BOSS spectrographs on the 2.5 meter
Sloan telescope (Eisenstein et al. 2011).

Chapter (2) and Ross et al. (2012) have full details on the quasar target selection methods
that were used for BOSS. In short, using the imaging data, BOSS quasar target candidates
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Figure 5.4: (Top Left ) Redshift distribution of quasar data. The quasar dataset comes
from three spectroscopic surveys: SDSS DR7, 2SLAQ, and BOSS. (Top Right ) Absolute
magnitude distribution of quasar data. (Bottom ) Distribution in the M � z plane.
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Table 5.1. Properties of Quasar Sample

Survey # QSOs z range z magnitude (M) range M

SDSS DR7 1717 0.50 < z < 1.0 0.75 �27.0 < M < �18.6 -22.9
BOSS 622 0.50 < z < 1.0 0.79 �25.5 < M < �19.6 -22.5
2SLAQ 514 0.50 < z < 1.0 0.76 �24.5 < M < �18.6 -22.2

Note. — Properties of the quasar sample broken down by data source.

are selected for spectroscopic observation based on their fluxes and colors in SDSS bands.
All objects classified as point like and having a magnitude limit of g  22 or r < 21.85 (PSF
magnitudes) are passed to the quasar target selection code.

Although the aim of BOSS is to target z > 2.2 quasars, degeneracies in the color-redshift
relation of quasars lead to the unintentional selection of low-z quasars in BOSS. Thus, BOSS
picks up a population of quasars at z ⇠ 0.8 which have Mg ii �2800 Å masquerading as Ly↵
emission at redshift z ⇠ 3.1, giving these objects similar broad-band colors. However, since I
am employing a cross-correlation technique, I am at liberty to select, and use in my analysis,
these heterogeneously selected low-z BOSS quasars. Details of the BOSS Quasar dataset are
given in Table (5.1).

5.1.3 Quasar k-correction

When calculating Absolute Magnitudes, I assume a (0.70, 0.30) = (⌦⇤, ⌦matter) cosmology
and I utilize the k-corrections from Richards et al. (2006), but normalizing to z = 0.0.
Richards et al. (2006) generate their k-corrections in two parts, first by assuming a general
power-law continuum (Kcont) and second, by modeling a set of quasar emission lines (Kem).
Thus the contribution to the k-correction due to the continuum at a given redshift z is
Kcont = �2.5(1 + ↵⌫) log(1 + z), where ↵⌫ is the power-law slope and is set to be �0.5 (e.g.,
Vanden Berk et al. 2001). Continuing to follow Richards et al. (2006) then gives:

Mi(z = 0) = Mi(z = 2) + 2.5(1 + ↵⌫) + log(1 + z) (5.1)

for my quasar sample to z = 0.0.

5.2 Methods for Clustering Calculation

I measure the clustering in configuration space, rather than Fourier space. For rare objects,
where shot-noise is an important or dominant piece of the error budget, configuration space
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estimators have the advantage of more nearly independent errors. I compute the angular
correlation function over a broad redshift range but replace the angular separation by the
transverse separation R computed assuming that the galaxies are the same redshift as the
quasar with which they are being correlated. I use the estimator:

w✓(R) =
QG(R)

QR(R)
� 1 , (5.2)

where QG and QR are the quasar-galaxy and quasar-random pairs, and my notation makes
explicit that I am binning in physical transverse separation, R, and not angle, ✓. The random
points reflect the imaging mask of the CS82 galaxies ( 5.1.1) and I use 5⇥ more random
points than galaxies. Assuming that wp(R) does not evolve over the redshift bin,

w✓(R) = hf(�)iwp(R) , (5.3)

where the average is done over the quasar redshift distribution and f(�) is the (normalized)
radial distribution of the galaxies. For a survey of solid angle ⌦,

dN = n̄(�)dV = ⌦ n̄(�) �2d� = ⌦

✓
c�2

H(�)

◆
n̄ dz (5.4)

or if I write N = N/⌦,

1

N

dN

dz
=

1

N
dN
dz

=
c�2

H
n̄
. Z c�2

H
n̄ dz =

c�2

H

n̄

N (5.5)

So that

f(�) =
n̄ �2

N =
1

N
dN
dz

dz

d�
=

H

c

1

N
dN
dz

=
H

c

1

N

dN

dz
(5.6)

Over a wide redshift interval I measure an “e↵ective” cross-correlation, ⇠12, between two
tracers which is

⇠12(r, ze↵) ' h⇠12(r)i =

R
dz (dN/dz)1(dN/dz)2(H/c�2) ⇠12(r, z)R

dz (dN/dz)1(dN/dz)2(H/c�2)
(5.7)

where ze↵ is defined with a similar average to ⇠. The single power of H/�2 arises because
the correlation function is defined in terms of a number times a number density. I can now
combine these equations to find

h⇠12(r)i =

R
dz (dN/dz)1[f2(�)/�2] ⇠12(r, z)R

dz (dN/dz)1[f2(�)/�2]
=

Z
dz W12(z)⇠12(r, z) (5.8)

Figure (5.5) shows f(�) for the CS82 galaxies at several di↵erent magnitude cuts.

I estimate the errors on my measurements by bootstrap resampling (e.g. Efron & Gong
1983). Specifically, I subdivide the survey into approximately equal area regions 2� ⇥ 2�
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Figure 5.5: f(�) for the CS82 galaxies at several di↵erent magnitude cuts.
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Table 5.2. QSO-Galaxy Cross-Correlation Fit

R Range (Mpc/h) hfi r0 � W

[0.3,3] 4.245 · 10�4 5.05 1.77 66.02

Note. — Luminosity dependent quasar clustering using a cross-
correlation technique between CS82 galaxies (M < 23.5) and SDSS,
BOSS, and 2SLAQ quasars (0.5 < z < 1.0). The cross-correlation
function was calculated in the R-range of [0.3-3.0] Mpc/h. A power-
law fit to the data using Equation (5.9) found that r0 = 5.05, and
� = 1.77. The collapsed single number from Equation (5.10) is W =
66.02.

spaced equally in right ascension. Both the average and error on any quantity is esti-
mated by bootstrap resampling the pair counts based upon a random draw of regions (with
replacement). Individual radial bins appear to be highly covariant, indicating that both
sample variance and shot-noise are contributing significantly to the error budget. I find that
individual bootstrap realizations for di↵erent radial bins and for di↵erent quasar samples are
positively correlated. The diagonal component of the correlation matrix increases rapidly
beyond a few Mpc (see Figure 5.6), because the geometry of the survey is narrow in the dec-
lination direction (the transverse dimension subtends approximately 50 h�1Mpc at z = 0.5),
and the bins become increasingly correlated as shot-noise becomes a smaller contribution
than sample variance.

I find that the cross-correlation functions are well fit by power laws over the range where
my constraints are tightest, as expected if quasars are hosted by massive halos1. If the 3D
clustering signal is a power-law, ⇠(r) = (r0/r)�, then the projected clustering

wp(R)

R
=

p
⇡ �[(� � 1)/2]

�[�/2]

⇣r0

R

⌘�

. (5.9)

Figure (5.7) shows the cross-correlation function wp(R)/R for the full quasar and galaxy
samples. This figure also shows the best fit power-law.

For � = 2 the prefactor is ⇡, however my results are better fit by a slope � = 1.77 for which
the prefactor is approximately 3.79. (Note the non-trivial sensitivity of the amplitude of wp

near R = r0 to the assumed slope.) Traditionally a power-law form is fit to the measured
signal, and I give fits for r0 holding � = 1.77 fixed in Table (5.2). However in what follows I
have chosen a di↵erent way of summarizing the data for two reasons. First, the interpretation
in terms of r0 is more complex for cross-correlations than for auto-correlations. Secondly

1The non-linear, scale-dependent bias of dark matter halos makes their correlation functions close to a
power-law on Mpc scales.
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Figure 5.6: Covariance matrix for the correlation function.

. .. . ..

Figure 5.7: (Left ) The cross-correlation function wp(R)/R for the full quasar and full galaxy
samples. The purple line is the best-fit power-law using Equation (5.9) with values � = 1.77
and r0 = 5.05. (Right ) The collapsed correlation function W shown in Equation (5.10) with
µ = �0.77.



Section 5.3. Results 93

a power-law fit requires us to estimate the covariance matrix and I have found that the
covariance matrix returned by the bootstrap can be quite noisy (see Figure 5.6). Given how
covariant the radial bins are, and how well the individual samples resemble a power-law, I
choose to “collapse” the measurement down into a single number per quasar sample:

W ⌘ 1

Npnt

X

i

✓
Ri

1 h�1Mpc

◆µ

wp(Ri) . (5.10)

where Npnt is the number of bins in the sum. As shown in Figure (5.7), µ is chosen such that
multiplying by Rµ flattens wp so that I am doing an unweighted average of the amplitude
at each scale. I can then determine the joint distribution of the set {W} (one for each
quasar sample) using the bootstrap technique. As the dimensionality of the data has been
reduced the results are much more stable. While this method does not optimally use the
data2, it allows us to make statistically meaningful statements. The increasing variance
and correlation of the large-R data points means that an unweighted average, such as this,
becomes increasingly noisy as larger and larger scales are included. For this reason I restrict
the sum to 0.3 < R < 3 h�1Mpc, (see 5.3.1 for more details).

5.3 Results

To measure the luminosity dependence of the QSO-Galaxy cross-correlation function, I split
my quasar sample into the 1/3 brightest and 2/3 dimmest quasars in terms of absolute magni-
tude. The bright and dim samples have di↵erent redshift distributions. In order to separate
e↵ects in clustering due to the di↵erent redshift distributions and due to luminosity di↵er-
ences, I weight the correlation function such that the redshift distributions of the two sets
are flat. This allows me to directly compare the two samples without contamination from
the redshift di↵erences ( Figure 5.8). More discussion of the e↵ects of this weighting are
discussed in 5.3.1 below. Table (5.3) gives the raw values for the weighted, cumulative,
magnitude distributions for the bright and dim quasar samples also shown in Figure (5.8).

I calculated the cross-correlation functions as described in 5.2. For hf(�)i I used the best fit
function to the galaxy redshift distribution (as shown in Figure 5.2). More discussion of the
e↵ects of using di↵erent fits are discussed in 5.3.1. When calculating the parameter W from
Equation (5.10) I use the entire quasar data set (not just bright or dim) to fit the value for µ.
Figure (5.9) shows !p(R)/R and W versus R for the bright and dim samples. The error bars
are calculated from bootstrap resampling of the data. Figure (5.10) shows the distribution
of the W for 10,000 bootstrap realizations of the data for the bright and dim samples. For
97% of the realizations Wdim < Wbright which corresponds to a 1.9 � detection of luminosity
dependent quasar clustering. Table (5.4) summarizes my findings. These numbers can be
improved with various cuts on the data sets (see below).

2This average would be optimal for shot-noise limited measurements with ⇠ / r�2.
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Table 5.3. Magnitude Distribution of Bright and Dim QSO Samples

Absolute Dim Bright Absolute Dim Bright Absolute Dim Bright
Magnitude Sample Sample Magnitude Sample Sample Magnitude Sample Sample

-25.99 0.00 0.01 -24.31 0.00 0.23 -22.63 0.43 1.00
-25.78 0.00 0.02 -24.10 0.00 0.32 -22.42 0.59 1.00
-25.57 0.00 0.03 -23.89 0.00 0.46 -22.21 0.72 1.00
-25.36 0.00 0.04 -23.68 0.00 0.62 -22.00 0.82 1.00
-25.15 0.00 0.06 -23.47 0.00 0.79 -21.79 0.91 1.00
-24.94 0.00 0.09 -23.26 0.01 1.00 -21.58 0.95 1.00
-24.73 0.00 0.12 -23.05 0.13 1.00 -21.37 0.98 1.00
-24.52 0.00 0.16 -22.84 0.29 1.00 -20.95 1.00 1.00

Note. — Shows the weighted, cumulative magnitude distribution for the bright and dim quasar
samples. The weighting is done such that both samples have the same redshift distribution (see
Figure 5.8).

Table 5.4. Cross-correlation Fit Details

QSO R Range Separation Resulthfi r0 � WDivision (Mpc/h) (%) Strength

1/3 Bright 4.24 · 10�4 6.19 96.05[0.3,3] 1.77 97 1.9 �
2/3 Dim 4.26 · 10�4 4.48 52.77

Note. — Luminosity dependent quasar clustering using a cross-correlation tech-
nique between CS82 galaxies (M < 23.5) and SDSS, BOSS, and 2SLAQ quasars
(0.5 < z < 1.0). The quasars were divided into the 1/3 brightest and 2/3 dimmest,
and a cross-correlation function was calculated between a range of [0.3-3.0] Mpc. A
power-law fit to the data of the form ⇠(r) = (r0/r)� found that � = 1.77 and r0 = 6.19
for the bright sample and r0 = 4.48 for the dim sample.
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Figure 5.8: (Top Left ) Redshift distribution of bright and dim quasar subsets. (Top Right )
Redshift distribution of the bright and dim quasar subsets after weighting is applied. (Bottom
Left ) Absolute magnitude distribution of quasar data, split into the bright and dim subsets.
(Bottom Right ) Weighted, cumulative probability vs. magnitude. Table (5.3) shows the raw
values from this figure.
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Figure 5.9: (Left ) The galaxy-quasar cross-correlation function wp(R)/R versus R for the
bright and dim samples. (Right ) W versus R for the bright and dim samples. The error
bars are calculated from bootstrap resampling of the data.

5.3.1 Testing

I did various tests to try and understand the stability of these results as well as the e↵ect of
changes to the various data sets. Here I present these tests. The tests performed involved
di↵erent divisions to the quasar sample, di↵erent magnitude cuts on the galaxy sample,
di↵erent correlation lengths, di↵erent methods of calculating hf(�)i, di↵erent redshift ranges,
and testing of the quasar weighting function.

Quasar Redshift Cuts

I first looked at the e↵ect of restricting the quasar redshift range on cross-correlation function.
The hope was that by applying a weight to the quasar data (Figure 5.8) I would separate
out any di↵erence in clustering strength of the quasar subsample due to redshift. However, I
felt it was important to test this explicitly, by doing the calculation both using the weighting
scheme and not, and also subdividing the quasar sets into di↵erent redshift bins and ranges.

First I looked at the e↵ect of doing the calculation described in 5.3 with and without
the weighting. As one would expect when doing the calculation over a small redshift bin
(�z = 0.1), performing the weighting does not have a huge e↵ect on the correlation functions
of the luminosity dependence. This is because the redshift distributions are fairly flat over
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Figure 5.10: The distribution of clustering strength, as estimated from 10,000 bootstrap re-
alizations, for the bright and dim quasar subsamples. The clustering strength is summarized
as the average of R�0.77 · wp(R) over the radial range 0.3 < R < 3 h�1Mpc. 97% of the
bright samples have a clustering strength greater than the dim samples. This results in a
1.9 � detection of luminosity dependent quasar clustering.
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Table 5.5. Quasar Redshift Cuts Testing

z Range # in Separation Result
r0 � WWeight Sample % Strength

0.5 < z < 1.0 3,518
Yes 6.19, 4.48 1.77 96.06, 52.77 96.97 1.87 �
No 6.34, 4.51 1.78 102.66, 54.05 99.59 2.66 �

0.6 < z < 0.9 2,078
Yes 6.56, 3.90 1.90 120.06, 44.92 99.98 3.56 �
No 6.49, 4.13 1.86 112.58, 49.09 99.60 2.73 �

0.6 < z < 0.7 606
Yes 5.17, 3.85 2.05 89.33, 46.80 87.73 1.16 �
No 5.10, 3.87 2.00 83.14, 45.94 86.34 1.07 �

0.7 < z < 0.8 708
Yes 9.37, 4.43 1.72 182.91, 50.43 100.00 4.44 �
No 9.39, 4.84 1.69 182.08, 57.81 100.00 4.30 �

0.8 < z < 0.9 770
Yes 3.18, 2.41 2.12 42.48, 27.66 65.56 0.39 �
No 3.47, 2.93 2.03 50.26, 36.03 64.63 0.39 �

Note. — Luminosity dependent quasar clustering with and without weighting and
using di↵erent quasar redshift ranges. All the above tests were done with the same
galaxy sample described in 5.3 with a galaxy magnitude cut of < 23.5. The two
values for r0 and W are the fits for the bright (Left ) and dim (Right ) samples. The
weighting has little e↵ect for smaller redshift ranges where the redshift distribution of
the bright and dim samples is fairly flat. It is interesting to note that the luminosity
dependent signal improves with some of the smaller redshift ranges: 0.6 < z < 0.9 and
0.7 < z < 0.8. I decided to use the range 0.6 < z < 0.9 moving forward, to maximize
separation, but also maximize statistics.

these ranges. However, for larger ranges the weighting does seem to have an e↵ect. The
results of this testing can be found in Table (5.5).

Next I looked at the e↵ect of doing the calculation using di↵erent quasar redshift ranges. I
found that certain smaller redshift ranges had a stronger separation of the bright and dim
clustering signals. The range 0.7 < x < 0.8 has the strongest followed by 0.6 < z < 0.9.
Because the number of QSOs in the 0.7 < x < 0.8 is significantly lower, I decided to use the
range 0.6 < z < 0.9 moving forward, to maximize separation, but also maximize statistics.
The results of this testing can be found in Table (5.5).
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Table 5.6. Galaxy Magnitude Cuts Testing

Galaxy # in Separation Result
r0 � WMag Cut Sample % Strength

< 23.75 6,317,666 5.02 1.82 68.25 99.92 3.24 �
< 23.50 5,230,545 4.90 1.90 69.53 99.98 3.56 �
< 23.25 4,301,764 5.12 1.83 70.30 99.97 3.55 �
< 23.00 3,520,689 5.11 1.84 70.79 99.69 2.88 �
< 22.75 2,873,080 5.19 1.85 72.78 99.99 4.14 �
< 22.50 2,336,058 5.49 1.79 78.27 100.00 4.15 �
< 22.25 1,894,427 6.05 1.76 89.32 100.00 4.56 �
< 22.00 1,532,691 6.32 1.75 93.97 100.00 3.89 �
< 21.75 1,236,255 6.09 1.70 87.55 99.99 4.05 �
< 21.50 994,165 7.17 1.60 107.79 99.95 3.51 �
< 21.25 795,861 7.30 1.59 112.48 100.00 4.10 �

Note. — Luminosity dependent quasar clustering with varying galaxy
magnitude cuts. The redshift range of the quasar sample is 0.6 < z <
0.9. The values for hfi, r0, � and W are for the full quasar sample
cross-correlated with the full galaxy sample less than the magnitude
cut. The separation and result strength are calculated the same way as
in Table 5.4 and represent the luminosity dependent quasar clustering
signal.

Galaxy Magnitude Cuts

I next looked at the e↵ect of galaxy magnitude cuts on the cross-correlation function. By
using brighter galaxies, my galaxy sample consists of higher-precision data, and thus the
cross-correlation has smaller errors. However, only using brighter galaxies reduces the num-
ber of objects in my galaxy catalog and thus increases the noise in the cross-correlation. Thus
there are competing factors at play, and the goal is to find a magnitude cut that maximizes
the cross-correlation separation. I performed the same calculation described in 5.3 but with
di↵erent magnitude cuts on the galaxy sample. Table (5.6) summarizes the results of the
e↵ect of these galaxy magnitude cuts on the strength of the luminosity dependent clustering
signal. Note that for this testing I am now using the quasar redshift range 0.6 < z < 0.9.

Correlation Length Testing

As I already discussed in 5.3, the correlation length (R) over which I calculate the cross-
correlation a↵ects the clustering separation between the dim and bright samples. This is
because at small R there are not very many objects, and so the poisson errors are large. At
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Figure 5.11: Geometric e↵ects on the number of pairs in the correlation. This figure show
the percentage of pairs in the cross-correlation calculation as a function of separation length.
100% means there is no e↵ect of the geometry on the pair counts (this happens at very small
separations). 50% means that 1/2 of the pairs are lost due to edge e↵ects of the geometry.
This is why the error bars get large with larger R in the cross-correlation function calculation.

large R, I start to lose signal because of the geometry of the stripe. Figure (5.11) shows the
e↵ects of the stripe’s geometry on the number of correlation pairs as a function of R and ✓.

I performed the cross-correlation at several di↵erent separation ranges, and this has a large
e↵ect on the results. Table (B.1) shows the calculation for several di↵erent correlation ranges,
and how this a↵ects the strength of the separation result. This table shows that the more
“central” I choose the separation bins, the stronger the bright and dim samples are separated.
Figure (5.11) demonstrates this as well.
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Table 5.7. Correlation Length Testing

Correlation Separation Result
r0 � WRange (Mpc) % Strength

0.01 < R < 100 5.64 1.67 84.58 98.03 2.0 �
0.1 < R < 10.0 5.18 1.79 71.02 99.79 2.9 �
0.3 < R < 3.0 4.90 1.90 69.53 99.98 3.6 �
1.0 < R < 2.0 4.16 2.49 82.65 100.00 3.7 �

Note. — Luminosity dependent quasar clustering with di↵er-
ent correlation lengths. All the above tests were done with the
same galaxy sample described in 5.3 with a galaxy magnitude
cut of < 23.5 and a quasar redshift range of 0.6 < z < 0.9. Fig-
ure (5.11) shows the collapsed correlation functions and density
plot for these four di↵erent correlation lengths.

Calculating hf(�)i

In order to translate from w✓(R) to wp(R) I need hf(�)i, the radial distribution of galaxies
(see Equation 5.3). The CS82 galaxy data is photometric, however the redshift distribution
is well understood by the CFHT team. In order to test the photometric redshifts, I used
several di↵erent fits to the distribution, from several di↵erent sources, to observe how these
fits e↵ect the cross-correlation calculation. Figure (5.12) shows the photometric redshifts
(photo-z’s) for the CS82 galaxies, as well as three fits to the data described below:

1. LSST Science Book Fit (LSST Science Collaboration 2009): Uses the LSST Science
Book galaxy distribution function:

z0 = 0.0417 · [Mag Limit]� 0.744

dN

dz
=

z2e�z/z0

2z0
3

(5.11)

2. SDSS Co-add Fit (Hu↵ et al. 2011): Uses a smoothed fit to the redshift distribution
calculated in (Hu↵ et al. 2011) based on the SDSS Coadded Photometric Catalogs.
The smoothing fit uses the following equation:

dN

dz
= (z/a)b · e�z/c (5.12)

where a, b, and c are the best fit parameters. See Appendix (A) for the raw redshift
distribution data from Hu↵.
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Figure 5.11: Luminosity dependent quasar clustering with di↵erent correlation lengths. All
the above tests were done with the same galaxy sample described in 5.3 with a galaxy
magnitude cut of < 23.5 and a quasar redshift range of 0.6 < z < 0.9. Table (B.1) shows
the details of these runs.
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Figure 5.12: The photometric redshifts (photo-z’s) for the CS82 galaxies with three fits to
the data. The fits are described by Equations (5.11,5.12,5.13)

3. CS82 Smooth Fit (Erben et al. 2013): Uses a smoothed fit to the photometric redshift
distributions calculated by the CS82 team. This fit uses the following equation:

dN

dz
= (azb + c)e�dze

(5.13)

where a, b, c, d and e are the best fit parameters. See Appendix (B) for the raw redshift
distribution data from the CS82 Team.

While the di↵erent redshift distribution fits give di↵erent values of r0, they do not have a
substantial e↵ect on the clustering separation (see Table 5.8). I use the CS82 Smooth Fit
for all other analysis/tests described in this chapter.

More Quasar Sample Divisions

Thus far I have discussed luminosity dependent quasar clustering, however I also tested to
see if there was a clustering dependence on other divisions of the quasar sample. I also looked
at the e↵ect of dividing by black hole mass, and redshift on the clustering dependence. None
of these other quasar sample divisions had as dramatic of an e↵ect on the clustering signal as
luminosity. Table (5.9) compares these other sample divisions with the luminosity/magnitude
division. In order to estimate the black hole mass, I did the following. First I used models
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Table 5.8. Redshift Distribution Fits Testing

Separation ResultFit Method r0 � W % Strength

LSST Science Book Fit 6.33 1.64 88.42 95.05 1.66 �
SDSS Coadd Fit 6.60 1.64 94.73 95.05 1.66 �
CS82 Smooth Fit 5.90 1.64 78.67 95.12 1.67 �

Note. — Luminosity dependent quasar clustering with di↵erent red-
shift distribution fits for the galaxy data. All the above test were done
with the same galaxy sample described in 5.3 with a galaxy magni-
tude cut of < 22.5 and a quasar redshift range of 0.5 < z < 1.0. Fig-
ure (5.12) shows the di↵erent fit functions which are also described by
Equations (5.11,5.12,5.13). While the di↵erent redshift distribution fits
give di↵erent values of r0, they do not have a substantial e↵ect on the clus-
tering separation. I use the CS82 Smooth Fit for all other analysis/tests
described in this chapter.

from Ian McGreer (McGreer 2012) to get the monochromatic luminosity from the observed
quasar flux magnitudes. The BOSS/SDSS spectroscopic pipeline provides the H� line widths.
I can then calculate the black hole mass, following Vestergaard and Peterson (Vestergaard
& Peterson 2006):

log

✓
MBH

M�

◆
= log

"✓
FWHM(H�)

1000 km s�1

◆2✓�L�(5100Å)

1044 egs s�1

◆0.50
#

+ (6.91 ± 0.02). (5.14)

While separating by black hole mass does seem to have a clustering dependence, it is not
as strong as that with luminosity. This is because using H� to calculate the line widths is
a rough estimate, and introduces noise into the signal. I did not find a significant redshift
dependence.

5.3.2 Luminosity Dependent Quasar Clustering

As discussed above changing the redshift range of the quasar sample, the magnitude cut of the
galaxy sample, or the correlation length over which I am calculating the cross-correlation
all e↵ect the strength of the luminosity dependent clustering signal. The best signal of
luminosity dependent quasar clustering occurs with the samples shown in Table (5.10) below.

Therefore, I find a 4.56 � detection of luminosity dependent quasar clustering. For this result,
I am cross-correlating 2,078 quasars in the redshift range 0.60 < z < 0.90 with 1,894,427
galaxies with a galaxy magnitude cut < 22.25. Figure (5.13) shows the correlation functions
for this best-result run.
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Table 5.9. Quasar Sample Divisions

Separation ResultSample Division r0 � W % Strength

Absolute Magnitude
1/3 Brightest, 2/3 Dimmest 6.19, 4.48 1.77 96.06, 52.77 96.97 1.87 �
1/3 Brightest, 1/3 Dimmest 6.19, 4.89 1.77 96.09, 62.07 92.05 1.40 �
1/2 Brightest, 1/2 Dimmest 5.09, 4.48 1.77 68.00, 53.07 75.33 0.68 �

Black Hole Mass
1/3 Largest, 2/3 Smallest 6.09, 4.45 1.77 91.73, 53.72 95.82 1.68 �
1/3 Largest, 1/3 Smallest 6.09, 4.96 1.77 91.73, 64.97 79.74 0.86 �
1/2 Largest, 1/2 Smallest 5.27, 4.68 1.77 71.56, 58.24 70.70 0.56 �

Redshift
2/3 Furthest, 1/3 Closest 5.43, 4.66 1.77 76.07, 58.11 84.14 1.00 �
1/3 Furthest, 1/3 Closest 5.07, 4.63 1.77 69.59, 57.36 74.83 0.67 �
1/2 Furthest, 1/2 Closest 5.12, 5.02 1.77 69.75, 64.92 60.79 0.28 �

Note. — Testing of di↵erent quasar sample divisions. All the above tests were done
with a correlation range R of (0.3 < R < 3.0), a quasar redshift range of (0.5 < z < 1.0),
and a galaxy magnitude cut of < 23.5.

Table 5.10. Luminosity Dependent Quasar Clustering Best Results

Redshift Galaxy Correlation Separation Result
r0 �Range Mag Cut Length % Strength

0.60 < z < 0.90 < 22.25 0.30 < R < 3.00 8.83, 4.43 1.76 100.00 4.56 �
0.70 < z < 0.80 < 22.50 0.30 < R < 3.00 11.74, 5.07 1.59 100.00 4.77 �

Note. — The above runs have the best signal of luminosity dependent quasar clustering. The
cross-correlation functions were calculated in the R-range of [0.3-3.0] Mpc/h. A power-law fit
to the data using Equation (5.9) found that r0 = 8.83/4.43 (for the bright/dim samples), and
� = 1.76. with a quasar redshift range of 0.60 < z < 0.90 and a galaxy magnitude cut of < 22.25.
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Figure 5.13: The strongest luminosity dependent quasar clustering cross-correlation signal.
I cross-correlate 2,078 quasars in the redshift range 0.60 < z < 0.90 with 1,894,427 galaxies
with a galaxy magnitude cut < 22.25. I cross-correlate in the range 0.3 < R < 3.0. This run
finds a 4.56 � detection of luminosity dependent quasar clustering.
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5.3.3 Calculating Bias

Quasars are biased tracers of the underlying dark matter. The linear scale-independent bias
factor is normally defined in terms of the auto-correlation function (Shen et al. 2009):

b2 = ⇠/⇠m (5.15)

where b is the sample bias, ⇠ is the auto-correlation function of the sample and ⇠m is the
matter correlation function. For a cross-correlation between two samples (1 and 2), I can
modify Equation (5.15) as follows:

b1 · b2 = ⇠(1,2)/⇠m (5.16)

where b1 and b2 are the biases of the two samples, ⇠(1,2) is the cross-correlation function, and
⇠m is the matter correlation function. Recall from Equation (5.9) that ⇠ / wp/R, therefore
I can write the quasar bias in terms of my projected cross-correlation function, wp:

b1 · b2 = wp(1,2)/wp,m ! wp(1,2) = b1 · b2 · wp,m (5.17)

) wp(QSO,CS82) = bQSO · bCS82 · wp,m. (5.18)

I can estimate wp,m by measuring the correlation function of a dark matter simulation at
the same redshift as my cross-correlation. However, Equation (5.18) still has two unknowns
(bQSO and bCS82). Therefore in order to determine the quasar bias, I needed to perform the
cross-correlation using a sample with a well-understood bias. I therefore perform a cross-
correlation with the BOSS CMASS galaxy sample, where the bias is well measured to be
bCMASS = 2.0. Thus I can find the quasar bias as follows:

wp(CMASS, CS82) = bCMASS · bCS82 · wp,m (5.19)

Inserting bCMASS = 2.0 into Equation (5.19) allows me to solve for bCS82:

wp(CMASS,CS82) = 2 · bCS82 · wp,m ! bCS82 = 1/2 wp(CMASS,CS82)/wp,m . (5.20)

Then I can solve for bQSO by inserting Equation (5.20) into Equation (5.18):

wp(QSO,CS82) = bQSO · bCS82 · wp,m (5.21)

wp(QSO,CS82) = 1/2 bQSO · wp(CMASS,CS82) (5.22)

bQSO =
2 · wp(QSO,CS82)

wp(CMASS,CS82)

. (5.23)

Figure 5.14 shows plots for wp(CMASS,CS82), wp(QSO,CS82), and wp,m for samples centered around
z = 0.7. As I mentioned above, wp,m is from a dark matter simulation. I determined the
quasar bias as a function of redshift for several di↵erent magnitude cuts on the galaxy sample
and show that this quasar bias is stable, see Table 5.11.
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Figure 5.14: Correlation functions used to calculate the quasar bias. First a cross-correlation
between the CMASS galaxies and the CS82 galaxies (red) is performed to determine the bias
of the CS82 galaxies. Then a cross-correlation between the quasars and the CS82 galaxies
(blue) is performed to determine the bias of the quasars. The bias of the mass is determined
by a dark matter simulation (green). All of these cross-correlations are done in a restricted
redshift range to reduce redshift e↵ects.

Table 5.11. Quasar Bias Calculation, Fixed Redshift

redshift Mag Lim wp,m wp(CMASS,CS82) wp(QSO,CS82) bCS82 bQSO

0.65 < z < 0.75 23.50 28.88 85.45 62.2585 1.48±0.37 1.46±0.18
0.65 < z < 0.75 23.00 28.88 92.45 69.3466 1.60±0.41 1.50±0.21
0.65 < z < 0.75 22.50 28.88 94.70 77.5768 1.64±0.43 1.64±0.18
0.65 < z < 0.75 22.00 28.88 99.01 81.3316 1.71±0.47 1.64±0.17
0.65 < z < 0.75 21.50 28.88 114.58 87.4214 1.98±0.58 1.53±0.22
0.65 < z < 0.75 21.00 28.88 124.07 90.5306 2.15±0.89 1.46±0.49

Note. — Numbers for calculating the quasar bias for various galaxy magnitude cuts. The bias
calculation is performed as outline in Equations (5.15) through (5.23). The quasar bias is stable
to within ⇠ 15%.
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5.4 Discussion

5.4.1 Previous Results

There has been a steady run of results regarding quasar clustering over the last decade or so
as large spectroscopic samples have become available. Several papers (Porciani et al. 2004;
Croom et al. 2005; da Ângela et al. 2008; Ross et al. 2009; Shen et al. 2009) measure the
quasar auto-correlation function, generally across 0.5 < z < 2.2 with a mean redshift closer
to z ⇠ 1.4.

Padmanabhan et al. (2009) measures a quasar-galaxy cross-correlation, as do Coil et al.
(2007). Donoso et al. (2010) in the same redshift range, also do a cross-correlation, but this
time with Radio-Loud AGN (RLAGN) and photometric SDSS LRGs. These authors find a
range of biases depending on how they divide their sample.

Table (5.12) summarizes my results compared with previously published work3. My results
strongly favor the general consensus that the bias of low-redshift quasars is ⇠1 with the bias
increasing slightly with increasing redshift (see Figure 5.15); this is also consistent with the
models of Hopkins et al. (Hopkins et al. 2007a) as well as the previous extrapolations by
Croom et al. (2005). There are two significant exceptions: First Myers et al. (2007a) find
1.93 ± 0.14 based on a photometrically selected sample of quasars. However, it is possible
that contamination by a high-redshift population could boost the measured bias values.
The more intriguing discrepancy is with (Mountrichas et al. 2009) who analyze a similar
sample to mine , also in cross-correlation with LRGs, and find biases between 1.90 ± 0.16
and 1.45 ± 0.11 depending on the particular LRG and quasar sample they cross-correlate
against. These results are also discrepant with da Ângela et al. (2008), Padmanabhan et al.
(2009), and Krumpe et al. (2010, 2012) (with whom I am consistent) who analyze the same
sample in auto-correlations. Furthermore, the scatter in the di↵erent subsamples analyzed
by Mountrichas et al. (2009) significantly exceeds their quoted errors, suggesting either a
systematic in their analysis or an underestimate of their errors. Using the observed scatter
between the di↵erent subsamples as an estimate of the error yields a value consistent with
my measurement.

I also compared my cross-correlation to a similar analysis done by Shen et al. (2012). Shen
cross-correlated DR7 quasars with BOSS galaxies. I find the same quasar bias as Shen (see
Figure 5.16) when I performed a cross-correlation using a quasar set with the same mean
redshift as Shen’s. Shen performed his cross-correlation with the CMASS galaxy sample,
which has a bias of bCMASS = 2.0. I performed my cross-correlation with the CS82 galaxy
sample, which has a bias of bCS82 = 1.5. Therefore if these two data-sets have the same

3I do caution the reader that the errors for a number of these measurements are simply Poisson errors,
and ignore correlations between di↵erent scales and are therefore likely underestimated.
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Figure 5.15: A summary of previous low redshift quasar clustering results, compared with
results from this work, scaled to the cosmology assumed here. The numbers refer to the data
described in Table (5.12). My results strongly favor the general consensus that the bias of
low-redshift quasars is ⇠1 with the bias increasing slightly with increasing redshift. There
are three significant exceptions (Myers et al. 2007a; Mountrichas et al. 2009; Donoso et al.
2010). These results are discrepant with da Ângela et al. (2008), Padmanabhan et al. (2009),
and Krumpe et al. (2010, 2012)– with whom I am consistent – who analyze the same sample
in auto-correlations.
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Table 5.12. Previous Quasar Clustering Results

z Lmin bQSO Reference

z < 0.3 0.4L? 0.97 ± 0.05 (1)
0.3 < z < 0.68 0.4L? 1.27 ± 0.20 (2)
0.7 < z < 1.4 0.1L? 1.09 ± 0.29 (3)
0.4 < z < 1.0 0.1L? 1.93 ± 0.14 (4)

z ⇠ 0.6 0.4L? 1.10 ± 0.20 (5)
z ⇠ 0.6 0.4L? 1.90 ± 0.16 (6)
z ⇠ 0.6 2.5L? 1.45 ± 0.11 (6)

0.25 < z < 0.6 L? 1.09 ± 0.15 (7)
0.07 < z < 0.16 ?L? 0.95 ± 0.13 (8)
0.16 < z < 0.36 ?L? 1.29 ± 0.15 (8)
0.36 < z < 0.50 ?L? 1.33 ± 0.07 (8)
0.40 < z < 0.80 ?L? 1.75 ± 0.10 (9)
0.65 < z < 0.75 ?L? 1.46± 0.18 (10)

Note. — A summary of previous low redshift quasar cluster-
ing results, compared with results in this work, scaled to the
cosmology assumed here. (1) Croom et al. (2004). (2) Croom
et al. (2005). (3) Coil et al. (2007). (4) Myers et al. (2007a).
(5) da Ângela et al. (2008) . (6) Mountrichas et al. (2009). (7)
Padmanabhan et al. (2009). (8) Krumpe et al. (2010, 2012).
(9) Donoso et al. (2010). (10) The work presented in this chap-
ter. For the results from (Coil et al. 2007), I scale the relative
bias presented there by the large scale bias b = 1.22 of all the
galaxies (Coil et al. 2007).



Section 5.4. Discussion 113

Figure 5.16: Comparison between my cross-correlation function (Kirkpatrick) to that done
by Shen et al. (2012) which is a cross-correlation of DR7 quasars and BOSS galaxies. Shen’s
sample has a larger r0 which is expected because the CMASS galaxy sample (that Shen
uses in his cross-correlation) has a larger bias than the CS82 sample (that I use in the
cross-correlation).

quasar bias, the r0 fits to our two cross-correlation functions should have the same ratio as
the two galaxy sample biases:

bCS82

bCMASS

=
1.5

2.0
= 0.750,

r0,Kirkpatrick

r0,Shen

=
4.7

6.2
= 0.758 (5.24)

Therefore my sample has the same quasar bias as Shen’s (within errors).

However, Shen did not measure a luminosity dependent signal with his cross-correlation
calculation (see Figure 5.17). This could perhaps be because Shen is using the 10% most
luminous quasars and comparing their clustering with the bottom 90%, whereas my calcula-
tion compares the top 33% with the bottom 66%. Also my galaxy sample is 35⇥ larger than
Shen’s galaxy sample and so my cross-correlation function has much smaller errors. When
I do the same analysis as Shen on my quasar sample (10%/90%), I do not see as strong of
a luminosity dependence (1.56 � result). Figure (5.18) shows my reproduction of the Shen
analysis side by side with Shen’s findings.
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Kirkpatrick 
Shen

Figure 5.17: This Figure shows the values of r0 in the fit given by Equation (5.9) as a function
of absolute i-band magnitude (Mi) for various samples using my cross-correlation technique
(red, Kirkpatrick) and that done by Yue Shen (green, Shen) which is a cross-correlation of
DR7 quasars and BOSS galaxies. The red points seem to have an increased r0 with increased
magnitude, whereas Shen’s do not.
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   (10%)
   (90%)

Figure 5.18: Reproduction of the Shen et al. (2012) result. Shen splits the sample by the 10%
brightest quasars and the 90% dimmest quasars. Shen (Bottom ) does the cross-correlation
between DR7 quasars and BOSS galaxies. I show this same bright/dim division but with
my quasar and galaxy sample (Top ). I adjust the quasar redshift range such that it has
the same mean redshift as Shen’s. I see a 1.56 � detection of luminosity dependence with
this division. To ease comparison I have put the “best fit” lines from my correlation (Top )
functions on the Shen plot (Bottom )
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5.5 Summary and Conclusions

I measured the cross-correlation of a sample of ⇠5.2 photometric galaxies from the CFHT
and a volume limited sample of ⇠2,078, 0.6 < z < 0.9 QSOs. The cross-correlation of QSOs
and galaxies is well described on all measured scales by a power law of slope 1.77±0.1 and a
scale length of 5.05± 0.05 h�1Mpc, consistent with observed slopes and amplitudes for local
galaxies.

The large scale bias is 1.46 ± 0.18 at redshift z = 0.7 and is consistent with most previ-
ous measurements and theoretical models, the exceptions being (Myers et al. 2007a) and
Mountrichas et al. (2009); possible reasons for this discrepancy are discussed in 5.4.

I see evidence for variations of the clustering/bias with luminosity. When I divide the quasar
sample into low/high luminosity samples I find luminosity depended quasar clustering at a
4.56 � significance level.
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Chapter 6

Conclusions and Future Prospects

I refer the reader to Chapter 4, 5.5, 3.6 for more detailed conclusions on the various topics
explored in this thesis. Below is I highlight my main results and some future plans:

6.1 Quasar Target Selection

This thesis describes the BOSS quasar target selection algorithms during the first two years of
BOSS observations. BOSS aims to obtain spectra of a sample of ⇠150,000 z > 2.2 quasars,
in order to probe structure in the Ly↵ forest to provide a percent-level measurement of
the expansion history of the Universe, by measuring baryon oscillations in the Ly↵ forest
clustering. This first year was a commissioning period for quasar target selection, and the
algorithms for identifying quasar candidates varied significantly over the year.

The target selection team’s key results are:

• We have performed quasar target selection (QTS) over 10,200 deg2 of the SDSS-III
imaging footprint, producing a list of 484,000 targets. These objects are selected to
be at redshift z > 2.2, motivated by the need to observe the Ly↵ forest in the BOSS
wavelength coverage.

• After a year of testing and evolution of the BOSS QTS, we settled on the XDQSO
method as our uniformly-selected subsample (CORE) and a neural network Combina-
tor for the BONUS sample.

• Having the BONUS selection allows us to implement improvements throughout the
survey, e.g., through auxiliary photometric data. This has already been achieved with
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the inclusion of NIR Y JHK photometry from the UKIDSS and UV data from GALEX,
increasing our z > 2.2 quasar yields by ⇠ 2� 3 deg�2.

• We obtained spectra of 54,909 objects selected by the quasar target selection algorithms
over a footprint of 878 deg2 during the first year of observations. The mean target
density is 63.8 targets deg�2.

• Of these 54,909 spectra, 33,556 were unique objects and had high quality spectra.
11,149 had redshifts z < 0.02, and 13,580 had redshifts of z > 2.20 (of which 11,263
were not previously known).

• Our mean z > 2.2 quasar surface density was 15.46 z > 2.20 quasar deg�2, with a
global e�ciency of 26.0%.

• The z > 2.2 objects selected by the three main methods used during Year One are
found in di↵erent regions in color-color and color-magnitude space, reflecting in part
the fact that the methods were trained for di↵erent redshift ranges. The three meth-
ods complemented each other well, and together select 60-70% of all quasars in our
magnitude range with 2.2 < z < 3.5.

• Working with single-epoch SDSS data, our current target selection algorithms slightly
exceed the BOSS technical goal of selecting 15 z > 2.2 quasars deg�2 from 40 targets
deg�2 (Eisenstein et al. 2011). The tests on Stripe-82 indicate an e�ciency of 15.4
quasars deg�2, of which 11.2 deg�2 come from known quasars plus the CORE selection
at 20 targets deg�2 (Figure 4.3). We anticipate that use of auxiliary imaging data,
including GALEX, UKIDSS, and additional SDSS epochs in overlap regions, will boost
our e�ciency by 1 � 4 quasars deg�2, significantly increasing the statistical power of
BOSS Ly↵ forest clustering measurements.

• All BOSS spectra from the first two years of observations, August 2009 through to
July 2011, will be made publicly available in the next SDSS data release, DR9.

The team continues to investigate ways to improve quasar target selection. We have already
described the incorporation of data from ultraviolet (GALEX) and near-IR (UKIDSS). Data
from the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) will provide pho-
tometry at mid-infrared wavelengths for our targets; it is deep enough to detect at least the
brighter quasars in the BOSS sample. Variability as measured from repeat scans is an impor-
tant method, independent of colors, to separate quasars from stars. Building on the SDSS
Stripe-82 study by Sesar et al. (2007), recent investigations (Palanque-Delabrouille et al.
2011; Butler & Bloom 2011; MacLeod et al. 2011; Richards et al. 2011; Koz lowski et al.
2011; Sarajedini et al. 2011) have re-invigorated the field of AGN identification through
variability selection.
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In addition to Stripe-82, roughly 50% of the SDSS imaging footprint has been imaged more
than once (Aihara et al. 2011), primarily in overlaps between adjacent stripes. However,
most of this area is observed only a few times, over timescales of days, rather than the
desired month or year baselines that lead to e�cient AGN selection.

In this regard, the Palomar Transient Factory (PTF; Law et al. 2009)1 could be a natural
dataset to use for this purpose. The PTF is an automated, wide-field imaging survey aimed
at the exploration of the optical transient sky. PTF uses the 1.2m Schmidt telescope at
Palomar Observatory with a 8 deg2 field-of-view to perform large area transient searches.
An area of several hundred deg2 can be imaged in one night, typically in the Mould R-band
but also in the SDSS g-band. We are actively investigating the inclusion of PTF imaging
data into BOSS QTS.

PTF could also potentially aid BOSS QTS by improving star/galaxy separation at the
faint end. Potentially any of the PTF variability methods could work with other tran-
sient/variability based surveys as well, e.g. the Pan-STARRS survey (Kaiser et al. 2002).

6.2 Luminosity Dependent Quasars

With BOSS’s new catalog of quasar and galaxy data, exciting new science can be done. In
this thesis I also presented measurements of the luminosity-dependence of quasar clustering
using QSO data from SDSS, 2SLAQ, and BOSS.

This was done by measuring the cross-correlation of a sample of ⇠5.2 photometric galaxies
from the CFHT and a volume limited sample of ⇠2,078, 0.6 < z < 0.9 QSOs. The cross-
correlation of QSOs and galaxies is well described on all measured scales by a power law of
slope 1.77 ± 0.1 and a scale length of 5.05 ± 0.05 h�1Mpc, consistent with observed slopes
and amplitudes for local galaxies.

I determined a large-scale quasar bias, bQSO = 1.46 ± 0.18, at redshift z = 0.7. When
I divide the quasar sample into low/high luminosity samples I find luminosity depended
quasar clustering at a 4.56 � significance level.

In the future, I hope to interpret my observations, which lie largely in the non-linear regime,
using a halo catalog from an N-body simulation. This will allow me to constrain the halo
mass of the bright and dim quasar’s host halos, which in turn can help us understand the
lifetimes of these QSOs (Cole & Kaiser 1989; Haiman & Hui 2001; Martini & Weinberg 2001)
and their duty cycles.

Please give me a PhD.

1http://www.astro.caltech.edu/ptf/
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Appendix A

SDSS Coadded Redshift Distributions
from Eric Hu↵

In Chapter 5 I discuss di↵erent redshift distribution fits used to calculate hf(�)i for the CS82
galaxy redshift distribution. One of the fits used is the SDSS Coadded redshift distributions
from Eric Hu↵ Hu↵ et al. (2011). Below are some data tables for the raw data from Hu↵.
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Table A.1. Hu↵’s Coadd Redshift Distributions

Redshift dN Redshift dN
(photo-z) (Normalized) (photo-z) (Normalized)

Magnitude cut: < 21.5 Magnitude cut: < 22.0
0.0 0.0 0.0 0.0

0.0394737 0.0379943 0.0394737 0.0355229
0.118421 0.0802963 0.118421 0.0725315
0.197368 0.0924514 0.197368 0.0824158
0.276316 0.113122 0.276316 0.100390
0.355263 0.106076 0.355263 0.0971328
0.434211 0.131585 0.434211 0.125494
0.513158 0.110114 0.513158 0.104105
0.592105 0.0992236 0.592105 0.0995395
0.671053 0.0650341 0.671053 0.0694157
0.750000 0.0607802 0.750000 0.0704682
0.828947 0.0446999 0.828947 0.0567152
0.907895 0.0194636 0.907895 0.0302315
0.986842 0.0177599 0.986842 0.0254004
1.06579 0.00988198 1.06579 0.0136944
1.14474 0.00422623 1.14474 0.00595355
1.22368 0.00296176 1.22368 0.00426750
1.30263 0.00208903 1.30263 0.00247040
1.38158 0.00181843 1.38158 0.00320377
1.46053 9.20902E-06 1.46053 0.000149467

Note. — Eric Hu↵s redshift distributions used to calculate hf(�)i for
the CS82 galaxy redshift distribution
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Appendix B

CS82 Redshift Distributions from
Hendrik Hildebrandt

In Chapter 5 I discuss di↵erent redshift distribution fits used to calculate hf(�)i for the
CS82 galaxy redshift distribution. One of the fits used is the CS82 Redshift Distributions
from Hendrik Hildebrandt. Below are some data tables for the raw data from Hildebrandt.
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Table B.1. Hildebrandt’s CS82 Redshift Distributions

Redshift dN
(photo-z) (Normalized)

Magnitude cut: < 23.5
0.0 0.0
0.08 2.627167072792613647e-02
0.13 3.134399509597542155e-02
0.18 3.529441409043507227e-02
0.23 3.870911392771612253e-02
0.28 4.300697810023142859e-02
0.33 4.547589529849720147e-02
0.38 4.382703621477411493e-02
0.43 4.612589672159694842e-02
0.48 4.873126363788367332e-02
0.53 4.824104089894157982e-02
0.58 5.094846918254932605e-02
0.63 5.164955866881062313e-02
0.68 5.343783400910655929e-02
0.73 5.535582916538753923e-02
0.78 5.184191591272272609e-02
0.83 4.553532800235304129e-02
0.88 3.796597880106748063e-02
0.93 3.153478676737584557e-02
0.98 2.640665009325228810e-02
1.03 2.199739336197466949e-02
1.08 1.803833677855539233e-02
1.13 1.496303561541872940e-02
1.23 1.117727293201613813e-02
1.28 1.003514352373161174e-02
1.33 9.504021877169642127e-03
1.38 9.048931557387797017e-03
1.43 8.151680663174594790e-03
1.48 7.065283285840166100e-03
1.53 5.977949074098860491e-03
1.58 4.942460079061231602e-03
1.63 3.958382586506919293e-03
1.68 3.159450839359128488e-03
1.73 2.631441988049393159e-03
1.78 2.291512369212071396e-03
1.83 2.042756280698197063e-03
1.88 1.849573886020138740e-03
1.93 1.694132308656104684e-03

Note. — Hendrik Hildebrandt redshift distribu-
tions used to calculate hf(�)i for the CS82 galaxy
redshift distribution
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