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RESEARCH

Default mode and fronto-parietal 
network associations with IQ development 
across childhood in autism
Joshua K. Lee1,2,3*†  , An Chuen Billy Cho1,2†, Derek S. Andrews1,2, Sally Ozonoff1,2, Sally J. Rogers1,2, 
David G. Amaral1,2, Marjorie Solomon1,2† and Christine Wu Nordahl1,2† 

Abstract 

Background: Intellectual disability affects approximately one third of individuals with autism spectrum disorder 
(autism). Yet, a major unresolved neurobiological question is what differentiates autistic individuals with and without 
intellectual disability. Intelligence quotients (IQs) are highly variable during childhood. We previously identified three 
subgroups of autistic children with different trajectories of intellectual development from early (2–3½ years) to middle 
childhood (9–12 years): (a) persistently high: individuals whose IQs remained in the normal range; (b) persistently low: 
individuals whose IQs remained in the range of intellectual disability (IQ < 70); and (c) changers: individuals whose IQs 
began in the range of intellectual disability but increased to the normal IQ range. The frontoparietal (FPN) and default 
mode (DMN) networks have established links to intellectual functioning. Here, we tested whether brain regions within 
the FPN and DMN differed volumetrically between these IQ trajectory groups in early childhood.

Methods: We conducted multivariate distance matrix regression to examine the brain regions within the FPN (11 
regions x 2 hemispheres) and the DMN (12 regions x 2 hemispheres) in 48 persistently high (18 female), 108 persis-
tently low (32 female), and 109 changers (39 female) using structural MRI acquired at baseline. FPN and DMN regions 
were defined using networks identified in Smith et al. (Proc Natl Acad Sci U S A 106:13040–5, 2009). IQ trajectory 
groups were defined by IQ measurements from up to three time points spanning early to middle childhood (mean 
age time 1: 3.2 years; time 2: 5.4 years; time 3: 11.3 years).

Results: The changers group exhibited volumetric differences in the DMN compared to both the persistently low 
and persistently high groups at time 1. However, the persistently high group did not differ from the persistently low 
group, suggesting that DMN structure may be an early predictor for change in IQ trajectory. In contrast, the persis-
tently high group exhibited differences in the FPN compared to both the persistently low and changers groups, sug-
gesting differences related more to concurrent IQ and the absence of intellectual disability.

Conclusions: Within autism, volumetric differences of brain regions within the DMN in early childhood may dif-
ferentiate individuals with persistently low IQ from those with low IQ that improves through childhood. Structural 
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Background
Intellectual functioning, as assessed using standard-
ized intelligence quotients (IQ) or developmental quo-
tients (DQ), is highly variable in autistic1 children. The 
CDC estimates that 33% of autistic children have IQs in 
the range of intellectual disability (IQ < 70), 24% in the 
borderline IQ range of 70–85, and 42% with average or 
higher IQs (>85) [4]. The trajectory of intellectual func-
tioning across childhood is also highly variable [5–7]. 
For example, we previously investigated the change in IQ 
scores from 3 to 8 years of age and identified four autistic 
subgroups: two groups, comprising 26% and 18% of the 
sample, respectively, had mean IQs in the intellectual dis-
ability range at both time points (one lower, one higher); 
a third group (22%) had IQs in the average range or better 
at both time points. Of particular interest was a fourth 
group (which we called “changers”), comprising roughly 
one third of the cohort (35%). This changers group began 
the study with IQs in the range of intellectual disability 
but made significant gains (average of 34 points) to have 
IQs in the average range by ages 6–8 [8].

One of the major unresolved questions concerning 
the neurobiology of autism is what differentiates autis-
tic individuals with and without intellectual disability. 
While there have been hundreds of MRI studies of brain 
organization in autism, an incredibly small number have 
examined children with IQs below 85. A 2016 query of 
the National Database for Autism Research found that 
out of 47,400 total participants with autism, only 11% 
had IQs less than 85 and <1% of these had neuroimaging 
data available [9]. Accordingly, autistic individuals with 
intellectual disabilities are understudied, and very little is 
known about if and how their brains develop differently 
from autistic children without ID.

One notable exception is Reiter et  al. [10] who found 
resting state fMRI patterns of network organization 
were different between groups of autistic children (6–15 
years) with IQ < 85 and IQ > 115. The group with lower 
IQ demonstrated significant underconnectivity within 
the default mode network (DMN) and within the ven-
tral visual stream. The participants with higher IQ had 
reduced network segregation compared to typically 
developing controls (TD). Gabrielsen et  al. [11] studied 

7–17-year-old autistic children and reported that autis-
tic children with low verbal and cognitive performance 
had decreased within-network functional connectivity in 
default, salience, auditory, and frontoparietal networks 
and decreased interhemispheric functional connectivity 
than autistic children with normal verbal ability and cog-
nitive performance.

Historically, investigations of the neural bases of intelli-
gence have focused on positive correlations between total 
brain volume and intellectual functioning. This positive 
relationship has been reported both within the normative 
range of IQ [12, 13] and within the range of intellectual 
disability [14]. Voxel-based morphometry studies of gray 
matter density have associated higher IQ with increased 
gray matter densities across frontal, temporal, and poste-
rior cingulate cortices [15]. Other neuroimaging research 
has focused on the fronto-parietal network (FPN) (also 
referred to as the central-executive network). Structural 
differences in the FPN are associated with aspects of 
working memory [16], and both structural and functional 
differences in the FPN are associated with response inhi-
bition and set shifting [17]; these kinds of cognitive oper-
ations support fluid intelligence [18–20]. Consequently, 
the FPN forms the basis of a prominent conjecture, the 
parieto-frontal integration theory of intelligence [21]. 
More recently, functional connectivity of the default 
mode network (DMN) has also been implicated in intel-
lectual functioning [22]. In particular, the magnitude and 
quality of functional interactions between the DMN and 
FPN correlate with individual differences in IQ [22–27]. 
Although the DMN and FPN are often evaluated using 
resting-state functional scans, structural covariance stud-
ies have shown that gray matter volumes within the brain 
regions comprising the FPN and DMN networks covary 
[28, 29], consistent with developmental relationships 
joining structure and function in the brain [30].

In an extension of our previous work [8], which had 
identified IQ trajectory subgroups through 8 years of age 
in the UC Davis MIND Institute Autism Phenome Pro-
ject, we recently reassessed IQ trajectories through 12 
years of age using latent class growth analysis [31]. We 
identified three groups: those with (1) IQ scores in the 
normal range across childhood (persistently high IQ; 
P-high), (2) IQ scores in the range of intellectual dis-
ability across childhood (persistently low IQ; P-low), and 
(3) a group with low IQ in early childhood that made IQ 
gains that plateaued by age 12 (changers) [31].

differences in brain networks between these three IQ-based subgroups highlight distinct neural underpinnings of 
these autism sub-phenotypes.

Keywords: Autism spectrum disorder, Intellectual disability, IQ, MRI, Longitudinal, Default mode, Fronto-parietal

1 Our use of identity-first over person-first terminology is motivated by mem-
bers of the autism community [1–3].
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In the current study, we assessed associations between 
the volumes of anatomically defined regions within the 
FPN and the DMN at baseline (~3 years of age) between 
the IQ trajectory groups using multivariate distance 
matrix regression (MDMR) [32]. MDMR tests for asso-
ciations between phenotypic variables (e.g., age, sex, IQ 
group) and a distance matrix––a pair-wise matrix indi-
cating the degree to which individuals differ across a set 
of measurements, in the present case, volumes of regions 
of interest in the FPN and DMN. Complementing this 
analysis, we conducted MDMR effect-size analysis to 
assess which brain regions within the FPN and DMN 
contributed the most to group differences [33]. Prior evi-
dence suggests that there are functional connectivity dif-
ferences between autistic children with and without ID in 
the FPN and DMN [10]. On the basis that functional con-
nectivity and volumetric brain structure are developmen-
tally related [30], we predicted that we would observe 
volumetric differences in FPN and DMN brain regions 
across the three IQ-trajectory subgroups. Specifically, we 
hypothesized that differences in FPN and DMN structure 
at baseline are predictive of change in IQ scores across 
development and would differ between the changers and 
P-low IQ groups relative to the P-high group.

Methods
Participants
The current study includes 265 participants (89 
females/176 males) diagnosed with an autism spectrum 
disorder. Intellectual ability was assessed at up to three 
time points (time 1: M(SD)=3.2 (0.5) years; time 2: 5.4 
(1.0) years; time 3: 11.3 (0.5) years). At time 1 participants 
were assessed using the Mullen Scales of Early Learning 
(MSEL) [34] which provides developmental quotients 
(DQ). At time 2 and time 3 either the MSEL or the Differ-
ential Ability Scale (DAS) [35] was administered, depend-
ing on language ability. A longitudinal analysis of IQ was 
based on either the MSEL DQ score or the DAS General 
Conceptual Ability Standardized Score (GCA SS); each of 

these standardized scores has a mean of 100 and a stand-
ard deviation of 15. Demographic information, including 
family income and parental education, was collected at 
baseline.

Autism was diagnosed by research–reliable clinical 
psychologists at the UC Davis MIND Institute using the 
Autism Diagnostic Interview–Revised and the Autism 
Diagnostic Observation Schedule (ADOS)-Generic or 
ADOS-2 [36–39]. Participants were English-speaking 
without suspected vision, hearing, or neurological condi-
tions. All research activities were conducted at the Uni-
versity of California Davis MIND Institute and Imaging 
Research Center and were approved by the UC Davis 
Institutional Review Board. Parents or legal guardians 
provided informed consent prior to participation. The 
data described in the current research is available from 
the corresponding or senior authors upon reasonable 
request.

Identification of IQ trajectory groups through middle 
childhood
Autistic individuals were grouped according to IQ trajec-
tories based on recent findings [31]. Three IQ trajectory 
groups were identified via latent class growth analysis 
[26]: (1) persistently high IQ (P-high; n=59), individuals 
whose IQs remained within normal range throughout 
childhood; (2) persistently low IQ (P-low; n=167), indi-
viduals whose IQs remained low in the range of intellec-
tual disability throughout childhood; and (3) changers 
(n=147): individuals whose IQs began in the range of 
intellectual disability but increased over childhood. Mean 
IQs of each group at baseline and outcome time points 
are reported in Table 1, as well as other sample charac-
teristics. A full description of the analysis can be found in 
Supplement 1.

Imaging acquisition and processing
Structural MRI at time 1 was acquired during natural 
nocturnal sleep [40] on a 3 Tesla Siemens Trio with an 

Table 1 Sample Characteristics of Autistic Cohort

Means (SD) are reported; DQ/IQ Developmental /Intelligence Quotient, ADOS CSS ADOS Calibrated Severity Score

Persistent High
(n = 48)

Persistent Low
(n = 108)

Changers
(n = 109)

Males Females Males Females Males Females

Participants 30 18 76 32 70 39

Baseline DQ/IQ 97.8 (12.3) 97.3 (11.8) 46.5 (10.7) 44.0 (12.7) 66.5 (11.1) 70.3 (11.1)

Outcome DQ/IQ 106.0 (16.9) 106.0 (15.7) 46.5 (12.4) 40.2 (13.8) 84.3 (18.5) 79.3 (15.9)

Baseline ADOS CSS 6.8 (2.0) 6.3 (1.7) 7.9 (1.7) 8.4 (1.3) 7.2 (1.6) 7.0 (1.3)

Baseline Total Brain Volume 
 (cm3)

1,063 (68) 1,011 (90) 1,087 (103) 1,001 (112) 1,072 (93) 1,011 (121)
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8-channel head-coil (T1-weighted MPRAGE. TR 2170 
ms, TE 4.86 ms, FOV 256, 192 sagittal slices, 1.0-mm 
slice thickness, 8:46 acquisition time). Spatial inhomoge-
neity in images was distortion corrected using a calibra-
tion phantom acquired at each scan (ADNI MAGPHAM, 
The Phantom Laboratory; Image Owl, Inc., Greenwich, 
NY, USA, http:// www. phant omlab. com) [41]. Images 
were visually assessed for the quality using previously 
described quantitative procedures [42]. Overall, success 
rates for obtaining MRI scans were high (>86%). The 
changers group had a moderately higher success rate 
than the persistently low IQ group (94 vs 86%, z=2.1, 
se=.42, p=.033); success rates of other group compari-
sons were not significant (see supplement 2 for details of 
scanning success rates).

Identifiable information was removed from each 
MPRAGE, defaced, and then uploaded to MRICloud 
(https:// mricl oud. org) [43] for image segmentation. Gray 
and white matter labels defined by the LONI Proba-
bilistic Brain Atlas protocol (LPBA40) [44, 45] were 
segmented using multi-atlas image segmentation. Multi-
atlas image segmentation registers a set of age-appro-
priate anatomically labeled atlases onto a target brain 
image using diffeomorphic registration, which produces 
a set of candidate segmentations, and finally, consensus 
segmentations are produced using joint-label fusion, a 
voting procedure [46–48]. The authors have used these 
advanced segmentation routines in previous empirical 
publications [49–51].

Network definitions
Regions of interest (ROI) prototypical to the DMN and 
FPN were identified by overlaying the published intrinsic 
functional connectivity group maps from Smith et al. [52] 
onto a standardized brain and corresponding segmented 
image. The statistical maps of the DMN and bilateral FPN 
(Network 4, 9–10 from [52]) were thresholded at z ≥ 2.3. 
ROIs with complete overlap with the thresholded net-
work maps were included. ROIs with partial overlap were 
included if at least 75% of the voxels within the ROI were 
contained within the network map at the z=2.3 threshold 
and if the remaining 25% of voxels fell within the DMN/
FPN network maps from [52] defined by a more lenient 
statistical threshold (z ≥ 1.7).

FPN network
The FPN comprised the following bilateral ROIs: supe-
rior frontal gyrus (prefrontal cortex), middle frontal 
gyrus (posterior segment and dorsal prefrontal cortex), 
pars opercularis and pars orbitalis of the inferior frontal 
gyrus, precentral gyrus, supramarginal gyrus, angular 
gyrus, precuneus, inferior temporal gyrus, and the mid-
dle occipital gyrus.

DMN network
The DMN comprised the following bilateral ROIs: pos-
terior cingulate cortex, rostral anterior cingulate cor-
tex, precuneus, cuneus, middle temporal gyrus, angular 
gyrus, gyrus rectus, middle frontal orbital gyrus, the pre-
frontal and poles of the superior frontal gyrus, amygdala, 
and parahippocampal gyrus.

Analytic strategy
Multivariate distance matrix regression (MDMR) was 
used to identify associations between IQ trajectory 
groups and volumes of ROIs within the FPN and DMN 
networks at time 1. MDMR is a robust, person-centric, 
multivariate regression method with application in con-
nectomic, genomic, and ecological research [32, 53, 54]. 
MDMR regresses a Gower-transformed pair-wise dis-
tance matrix onto an explanatory model and residual 
term [32, 55]. The distance matrix is an index represent-
ing how much individuals differ from one another across 
a set of outcomes (e.g., brain measurements). When 
constructing a distance matrix, a distance metric must 
be chosen. Here, we chose the Manhattan “city-block” 
distance, as we have done previously [53], because it is 
more robust to extreme values than either Euclidean and 
Pearson’s distances, and can be a better choice for high-
dimensional datasets [56].

Interpretation of the results of MDMR regressions is 
aided by distance-based redundancy analysis, a data-
reduction ordination technique that constructs new axes 
comprising linear combinations of predictors of interest 
(e.g., IQ trajectory groups) that best explain variation 
in the distance matrix [57, 58], and by using Euclidean 
projection to estimate exact distances between group 
centroids in multivariate space [59]. Finally, we use a res-
ampling procedure (jack-knife) to estimate effect sizes for 
individual outcomes (e.g., brain regions within the net-
work) to each MDMR predictor [33, 53]. In brief, given 
predictors (Xn×p) associated with the multivariate out-
come (Yn×q), the effect sizes δ of each individual outcome 
comprising Y is estimated by systematically dissociating 
each outcome of Y from the predictors X via permuta-
tion (shuffling the elements of Y). In each permutation, 
a new distance matrix Dk is computed from each shuffled 
Yk and regressed onto X. Effect sizes are computed by 
estimating the change in the pseudo-R2 statistic (concep-
tually similar to the change in R2 in linear models) that 
results after comparing the pseudo-R2 of the permuted 
and unpermuted regressions. Critically, effect sizes are 
relative and scale with dimensionality and covariance of 
Y, and thus, δ should not be compared between studies.

Analyses proceeded through three steps: (1) identify 
the overall pattern of differences between groups (P-high, 
P-low, changers) separately across the FPN and DMN, 

http://www.phantomlab.com
https://mricloud.org
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(2) identify the specific brain regions within the network 
that contribute most to the multivariate difference using 
effect-size analysis, and (3) descriptively assess the nature 
and extent of volumetric differences between groups in 
ROIs with the largest effect sizes using univariate linear 
regression.

All analyses employed the following model: volume(s) 
= β0 + β1 (IQ trajectory groups) + β2(age) + β3(sex) 
[model 1]. Interactions between sex and trajectory groups 
were also tested. The volumes of each brain region were 
converted into proportions of the participant’s total brain 
volume, controlling for overall brain-size differences. The 
proportions for each brain region were then T-scored 
across participants to account for overall size differences 
between brain regions. We also investigate the impact of 
parental annual income [model 2] and educational attain-
ment [model 3] covariates on group differences in the 
FPN and DMN.

Results
Sample characteristics
Table  1 reports sample characteristics. Baseline ADOS 
calibrated severity scores (CSS) were significantly higher 
in P-low group compared to changers (b=.89, SE = .22, 
p < .0001) and the P-high group (b=1.4, SE = .29, p < 
.0001). ADOS CSS scores did not differ significantly 
between changers and the P-high group (b=.5, SE = 
.30, p = .089). Baseline DQ scores differed between all 
three groups (p < .0001). Baseline total brain volume did 
not differ between trajectory groups, F(2, 141) = 1.62, p 
= 0.20). Trajectory groups did not significantly differ in 
parental annual income (χ2(12) = 13.5, p = 0.34) or edu-
cational attainment (χ2(6) = 10.1, p = 0.12) at baseline; 
see Supplements 3 and 4, respectively.

MDMR analysis
FPN network
MDMR analysis demonstrated that FPN volumes in 
both the changers (β = .008, p = .010) and P-low (β = 
.008, p = .009) groups significantly differed from the 
P-high group, but that the P-low and changers did not 
significantly differ from each other (β = .003, p = .721) 
(Fig. 1A) (Table 2, model 1). Regional effect size analysis 
underlying these group differences is reported in Fig. 1B. 
The two largest effect sizes underlying the difference 
between changers and P-high groups were the left mid-
dle occipital gyrus and left inferior temporal gyrus. Post 
hoc regressions indicate that left middle occipital gyrus 
volumes were smaller (β = −0.65, SE = 0.17, p = .0002) 
and left inferior temporal gyrus volumes were larger (β 
= 0.44, SE = 0.17, p = .011) in changers compared to the 
P-high groups. The two largest effect sizes underlying dif-
ferences between P-low and P-high groups were also in 

the left middle occipital gyrus and left inferior temporal 
gyrus. Post hoc regressions indicated that left middle 
occipital gyrus volumes were smaller (β = −0.56, SE = 
0.17, p = .001) and left inferior temporal gyrus volumes 
were larger (β = 0.58, SE = 0.17, p = .0009) in the P-low 
group compared to the P-high group.

Biological sex also differentiated FPN volumes in autis-
tic individuals (β = .009, p = 0.003), although inter-
actions between sex and trajectory groups were not 
significant (β s ≤ .005, ps ≥ 0.166). Effect sizes underlying 
the sex differences within the FPN are reported in Sup-
plemental 5A. The two largest effect sizes were exhibited 
within the right angular and right middle frontal gyri. 
Post hoc regressions indicate that these regions were 
larger in autistic females than in autistic males (βs ≥ 
0.29, ps ≤ .01). Table 1 reports the p values of group dif-
ferences after inclusion of annual [model 2] and parental 
educational attainment [model 3] covariates. In the FPN, 
annual income and parental education did not substan-
tively alter group differences.

DMN network
MDMR analysis demonstrated that both the P-low (β = 
.008, p = .017) and P-high groups (β = .007, p = .023) 
significantly differed from the changers group in DMN 
volumes, but the P-low and P-high groups did not signifi-
cantly differ (β = .004, p = .391) (Fig. 1C) (Table 2). Effect 
size analyses are reported in Fig.  1D. The two largest 
effect sizes underlying the difference between changers 
and P-low groups were the left and right middle temporal 
gyri. Post hoc regressions indicate that both left and right 
gyri were smaller in changers (βs ≤ −0.35, SE = 0.13, ps 
≤ .018). The two largest effect sizes underlying the dif-
ference between changers and P-high groups were right 
middle temporal gyrus and left amygdala volumes. Post 
hoc regression indicates that both were smaller in chang-
ers (βs ≤ −0.39, SE = 0.17, ps ≤ .025). We note that the 
effect sizes distinguishing changers and P-high groups 
were relatively more diffuse than was seen in other group 
comparisons.

Biological sex-differentiated DMN volumes in autistic 
individuals (β = .007, p = 0.03). However, sex did not sig-
nificantly interact with the trajectory group (Bs ≤ .004, 
ps ≥ 0.498). Effect sizes underlying the sex differences 
are reported in Supplemental 5B. The two brain regions 
with the largest effect sizes were right angular and right 
parahippocampal gyri in females. Post hoc regressions 
indicated that these regions were larger in females than 
in males (βs ≥ 0.29 Z score, ps ≤ 0.025). Finally, we note 
that the angular gyri are constituents of both the FPN 
and DMN, suggesting a potentially interesting site for 
future studies of sex differences. Familial annual income 
and parental educational attainment covariates did not 



Page 6 of 10Lee et al. Journal of Neurodevelopmental Disorders           (2022) 14:51 

substantively alter the pattern of results in the FPN. Fam-
ily income also did not change the pattern of group dif-
ferences observed in the DMN. However, the inclusion of 
parental education attenuated the significant group dif-
ferences in the DMN, though was not by itself, a predic-
tor of DMN volumes.

Discussion
The present study utilized structural imaging to examine 
3 empirically defined autistic subgroups with differential 
IQ developmental trajectories from 2 to 12 years of age. 
Our aim was to identify the neurobiology which differ-
entiates subgroups with persistently high, persistently 

Fig. 1 Depictions of results from analyses of regional volumes from the fronto-parietal network (FPN) and default mode network (DMN) 
networks using multivariate distance matrix regression (MDMR) and effect size analysis. Ordination plots depict the significant MDMR differences 
between longitudinal IQ trajectory groups in the a FPN and b DMN. These plots were produced using distance-based redundancy analysis 
(dbRDA) to facilitate visualization of high-dimensional data. The black dots depict median centroid locations of the changers, persistent-low, and 
persistent-high groups on the first two dbRDA axes. The ellipsoids indicate the standard error of the locations of each group centroid on those two 
axes. Results of effect-size analyses of the c FPN and d DMN are depicted for the pair-wise differences between the changers, persistent low, and 
persistent high groups

Table 2 Paired Comparisons from Multivariate Distance Matrix Regressions

Network Effect Model 1 
(Age + Sex + 
Group)
p-value

Model 2 
(Age + Sex + Group + 
Annual Income)
p-value

Model 3 
(Age + Sex + 
Group + Parental 
Education)
p-value

Fronto-Parietal Persistent High vs Persistent Low 0.009 0.018 0.034

Persistent High vs Changers 0.010 0.027 0.063

Changers vs Persistent Low 0.721 0.631 0.693

Default Mode Persistent High vs Persistent Low 0.391 0.412 0.27

Persistent High vs Changers 0.023 0.041 0.27

Changers vs Persistent Low 0.017 0.019 0.27
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low, and improving IQ scores. Our multivariate analy-
ses found differences between the P-high subgroup ver-
sus the other two subgroups (changers, P-low) in the 
FPN and differences between the changers subgroups 
versus the other two subgroups (P-high, P-low) in the 
DMN. These findings support our hypothesis that volu-
metric differences in brain regions of the FPN and DMN 
at baseline may contribute to the differentiation of IQ 
trajectories.

Networks supporting intellectual ability and its 
impairment
The literature of the neural bases of intelligence has 
long focused on the functional activity of the FPN (also 
referred to as the central-executive network) [22], a 
task-positive functional network that exhibits increased 
BOLD activation and connectivity with increasing cog-
nitive load across a wide array of tasks involving multi-
ple demands [22, 60, 61]. More recently, there has been 
growing interest in the role of the DMN in supporting 
general intellectual functioning. In contrast to the FPN, 
the DMN is a task-negative functional network whose 
activations tend to be anti-correlated with those of the 
FPN, the strength of which has been associated with indi-
vidual differences in IQ measures [23–25]. Large num-
bers of imaging studies have examined the structural 
and functional neural correlates of intellectual function-
ing within the normal range [21]. Several studies have 
identified associations between functional activations in 
regions within the FPN and IQ in autistic children with-
out intellectual disabilities [62, 63]. Studies that include 
autistic children with intellectual disabilities are lim-
ited [10, 11]. The extant non-autism research frequently 
reports altered functional connectivity between the FPN 
and DMN in association with intellectual impairments, 
as well as structural alterations to gray matter density 
in the dorsomedial prefrontal cortex and other regions 
within the FPN [64]. However, these studies have largely 
focused on specific patient populations, for example, 
Down Syndrome and Williams Syndrome [65].

Here, we found that at time 1 (~3 years of age), prior to 
changes in IQ, both the P-low and changers groups dif-
fered from the P-high group in the volumes of left infe-
rior temporal and left middle occipital gyri of the FPN. 
These regions are broadly implicated in supporting lan-
guage, semantic knowledge, and sensory integration, 
including visual information and object recognition [66, 
67]. This suggests that low IQ in early childhood may be 
associated with alterations to processes of sensory and 
perceptual integration.

In the DMN network, both P-low and P-high groups 
differed from the changers group, indicating that the 
DMN may be involved in developmental compensatory 

mechanisms. The middle temporal gyrus appears to be 
the key hub region, as indicated by its prominence in 
the effect-size analyses. The middle temporal gyri are 
also notable in that they too subserve language function, 
semantic knowledge processing, and sensory integration 
[66, 67].

Research and clinical implications
Intellectual disability and other psychiatric and physi-
ological comorbidities do not occur evenly in the autism 
population, suggesting the presence of autism subtypes 
with distinct clinical profiles and etiologies [68]. In our 
recent work [31], we demonstrated that the three iden-
tified IQ trajectory autism subgroups also presented 
unique trajectories in autism symptom severity, adap-
tive functioning, and internalizing and externalizing 
characteristics. It may be possible that the present find-
ings not only serve as evidence of neurobiological dif-
ferences between the IQ trajectory subgroups, but also 
as endophenotypes linked to the expression and severity 
level of clinical characteristics [69]. As such, this study 
adds a piece of neurobiological evidence to the growing 
literature which suggests associations between autism 
and intellectual disability are accompanied by variation 
in brain structure [70]. Accordingly, this study also con-
tributes to the distal goals of early clinical screening and 
intervention, as the identification of early brain markers 
of IQ trajectories could potentially provide useful prog-
nostic information to parents and other caregivers that 
could be used to guide subsequent treatment or pro-
vide clues regarding the etiology of autism and autistic 
sub-phenotypes.

Limitations
The present research has several strengths, includ-
ing the use of empirically extracted subgroups based 
on longitudinal measurements of IQ in childhood 
to look at brain differences is a significant strength 
of this study, the use of a person-centric multivari-
ate approach that allowed us to examine differences 
across whole networks. However, several limitations 
merit consideration. First, we only examined volumet-
ric differences in brain structure between IQ trajectory 
groups at the time of study enrollment in early child-
hood. This was motivated by a desire to identify early 
neural predictors of subsequent behavioral change. 
Future research should examine the full relationship 
between concurrent changes in both the brain and 
behavior. Another limitation of our approach was that 
it did not allow for individual differences in the spatial 
topology of DMN and FPN canonical networks [52]. 
An alternative approach would be to uniquely identify 
each individual’s network topology using resting-state 
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MRI. However, this approach presents additional limi-
tations including, (a) test-retest reliability of these net-
works has intraclass correlation coefficients less than 
~0.60 [71], indicating substantial test-retest variabil-
ity that could dominate any downstream volumetric 
analysis, (b) more restricted sample sizes due to inher-
ent difficulties in acquiring quality resting-state data, 
especially in 3-year-old children, and (c) it is unclear 
how individually different topologies could be com-
pared volumetrically, other than by its total volume. 
In contrast, our approach allows for the straightfor-
ward analysis of group differences of regions within 
the group-level canonical network [52]. We also note 
that our individual regions of interest were defined 
by the LONI parcellation [43]; however, other parcel-
lation schemes (e.g., functional parcellations) could 
have been employed, which may have potentially led 
to different results, depending on the optimal degree 
of regional specificity. The future research could also 
forgo parcellations in favor of a voxel- or vertex-wise 
approach, which could more precisely adhere to the 
exact boundaries of each canonical network. The 
sampling variability remains high even in moderately 
large datasets, which can contribute to poor replica-
bility and/or inflated effect sizes [72, 73]; consortium-
sized datasets may present an opportunity for future 
research. Finally, this study cannot completely rule out 
environmental confounds and interactions, an area 
ripe for future research.

Conclusions
Here, we report structural brain differences in function-
ally defined networks associated with intellectual func-
tioning in three empirically derived, IQ trajectory autistic 
subgroups. The DMN may be important in differentiat-
ing individuals with persistently low IQ from those with 
more transitory low IQ that improve to moderate IQ 
through childhood. These results are potentially indica-
tive of successful compensatory processes which may be 
targeted by future interventions.
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