
UCSF
UC San Francisco Previously Published Works

Title

Exposure to antenatal corticosteroids and infant cortisol regulation

Permalink

https://escholarship.org/uc/item/5z3229hs

Authors

Weiss, Sandra J
Keeton, Victoria
Richoux, Sarah
et al.

Publication Date

2023

DOI

10.1016/j.psyneuen.2022.105960
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5z3229hs
https://escholarship.org/uc/item/5z3229hs#author
https://escholarship.org
http://www.cdlib.org/


Exposure to antenatal corticosteroids and infant cortisol 
regulation

Sandra J. Weissa,*, Victoria Keetonb, Sarah Richouxa, Bruce Coopera, Sandra Niemanna

aDepartment of Community Health Systems, University of California, San Francisco, USA

bDepartment of Obstetrics, Gynecology & Reproductive Sciences, University of California, San 
Francisco, USA

Abstract

Administration of antenatal corticosteroids (AC) is the standard of care during pregnancy for 

women who are at risk of early delivery. Evidence indicates that AC improve survival and reduce 

morbidity for preterm infants. However, research suggests that infants whose mothers receive AC 

have an altered hypothalamic-pituitary-axis (HPA) response to stressors in early life. Results are 

mixed regarding the nature of these effects, with studies showing both suppressed and augmented 

HPA activity. In addition, research is very limited beyond the 4th month of life. The purpose 

of this study was to determine if AC exposure was associated with infant cortisol levels in a 

resting state or in response to a stressor at 1, 6 and 12 months postnatal. We also evaluated the 

moderating role of preterm birth in this association. 181 women and their infants participated 

in the study. Women were recruited during the 3rd trimester of pregnancy; at this time, they 

completed the Perceived Stress Scale and provided 8 salivary samples over a 2-day period for 

cortisol assay. They provided these data again at 6 and 12 months postnatal. At 1, 6, and 12 

months postnatal, salivary samples were collected from infants to examine their cortisol levels 

before and after participation in a ‘stressor protocol’. Data were extracted from the medical record 

on AC exposure, gestational age, maternal obstetric risk, and neonatal morbidity. Mixed effects 

multilevel regression modeling was used to examine the aims. Infants whose mothers received 

AC had significantly lower resting state (B = −2.47, CI: −3.691, −0.0484) and post-stressor (B = 

−.51, CI: −4.283, −0.4276) cortisol levels across the first year of life than infants whose mothers 

did not receive AC. There was no moderating effect of preterm birth on the relationship between 

AC exposure and cortisol. Results indicate a state of dampened HPA activation and cortisol hypo-

arousal that persists across the first year of life among infants who were exposed to corticosteroids 

in utero. Further research is needed to examine mechanisms responsible for any alterations that 

occur during development of the fetal HPA axis, including epigenetic and biochemical factors that 

control hormonal secretion, negative feedback, and glucocorticoid receptor function throughout 

the HPA axis. Findings warrant careful consideration by obstetric clinicians of the benefits and 

risks of prescribing AC.
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1. Introduction

1.1. Antenatal corticosteroids: benefits and risks

Since 1994, antenatal corticosteroids (AC) have been the standard of care for women 

who are fewer than 34 weeks gestation and experiencing threatened preterm birth. 

Guidelines have expanded recently to include women at later gestation with select 

risk factors (Society for Maternal-Fetal Medicine (SMFM), 2016). These synthetic 

glucocorticoids (betamethasone or dexamethasone) are given to mimic the surge in 

endogenous corticosteroids that is essential for development of many organ systems 

and prepares the fetus for extra-uterine life (Kemp et al., 2018). Substantial evidence 

demonstrates that a single course of AC improves survival and reduces morbidity for 

preterm infants (McGoldrick et al., 2020; Roberts et al., 2017). But research in animals 

and humans has raised concerns about potentially harmful long-term effects (Ilg et al., 2019; 

Tegethoff et al., 2009; Waffarn and Davis, 2012). Because AC expose the fetal brain to 

high levels of glucocorticoids (GC) early in development, they may exert programming 

effects on the hypothalamic-pituitary-adrenal (HPA) axis (McGowan and Matthews, 2018; 

Moisiadis and Matthews, 2014), influencing an infant’s general state of arousal or ability to 

regulate emotional distress (Davis et al., 2011; Niwa et al., 2020; Schäffer et al., 2009; Weiss 

and Niemann, 2015). Such programming could permanently alter an infant’s resilience or 

vulnerability to stress and thus compromise long-term health. These effects could be more 

significant for premature infants, whose neurodevelopment and biological readiness for 

stressors are immature at birth (Lammertink et al., 2020).

1.2. Effects of AC on cortisol and stress regulation

Human research examining the effects of AC on the HPA axis has focused primarily 

on infancy, although evidence is beginning to accumulate about longer-term effects in 

school-age children. Evidence in the early postnatal period has been somewhat mixed, with 

the majority of studies demonstrating that AC exposure is associated with a suppressed 

HPA axis response in infants shortly after birth (Buyukkayhan et al., 2009; Cabral et al., 

2013; Davis et al., 2004, 2006; Hwang et al., 2019; Karlsson et al., 2000; Schäffer et al., 

2009; Weiss and Niemann, 2015). However, others have found infants to exhibit elevated 

basal cortisol levels (Davis et al., 2011; Kajantie et al., 2004; Nykänen et al., 2007) or 

no significant associations at all (Ng et al., 2019; Teramo et al., 1980). Few studies have 

examined the influence of gestational age (GA) in effects of AC on cortisol, and those have 

only investigated samples of preterm infants. One study of very preterm infants (born at < 28 

weeks gestation) found that GA, but not AC, was significantly associated with basal cortisol 

levels (Ng et al., 2019), while two others reported no moderating effects of AC on basal 

cortisol (Ashwood et al., 2006; Karlsson et al., 2000).

Studies of older infants and school-age children demonstrate that suppression of basal 

cortisol levels does not appear to be present beyond the postnatal period. Instead, those 
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exposed to AC show either elevated (Erni et al., 2012; Glover et al., 2005; Niwa et al., 2020) 

or similar (Alexander et al., 2012; Gover et al., 2012; Ilg et al., 2019; Miller et al., 2004) 

basal cortisol levels when compared to children not exposed. The only study examining 

cortisol in adults who had been exposed to AC found no significant associations (Dalziel et 

al., 2005).

Evidence is more limited for associations between AC exposure and stress reactivity. 

Infants exposed to AC exhibit alterations to stress reactivity in response to immunization, 

demonstrated by either suppression (Glover et al., 2005) or upregulation (Niwa et al., 

2020) of the HPA axis. One study explored the moderating effect of gestational age on the 

relationship between AC and cortisol reactivity in a group of preterm vs. late preterm infants 

(Ashwood et al., 2006). Investigators found significantly greater suppression of cortisol in 

response to a stressor for infants born younger than 32 weeks gestation in contrast to late 

preterm infants, but there was no comparison to infants who had not received AC (Ashwood 

et al., 2006). Results of research beyond infancy indicate that school-age children exposed 

to AC have greater stress reactivity compared to those not exposed (Alexander et al., 2012; 

Erni et al., 2012), a finding that persists into adolescence (Ilg et al., 2019).

Taken together, most studies show an altered cortisol response in children exposed to AC, 

evident in the first days of life as HPA suppression and then re-emerging in school age 

and adolescence as increased stress reactivity. However, differential effects of AC on basal 

levels of cortisol versus effects on cortisol reactivity to stressors remain unclear. In addition, 

progression of potential cortisol dysregulation over the first year of life is understudied. 

Further research is needed to ascertain how long suppression may persist and explore the 

trajectory of HPA axis alteration from birth to one year of life. Virtually no studies have 

included samples of both term and preterm infants large enough to examine differential 

effects of AC on cortisol levels or reactivity of these two groups. Examining the potential 

moderating role of prematurity in any effects of AC is critical to better understand how 

prematurity and AC may interact in eliciting alterations in the HPA axis and to whom any 

effects of AC can be generalized.

Our study had two aims. Our primary aim was to determine if AC exposure is associated 

with infant resting state cortisol, post-stressor cortisol, or cortisol reactivity to a stressor 

at 1 month, 6 months, or 12 months postnatal. Our hypothesis was that infants exposed 

to corticosteroids would have significantly dampened cortisol at rest and in response to a 

stressor across all time periods, when compared with infants who were not exposed to AC 

during gestation. Our secondary aim was to determine if preterm birth status moderates the 

relationships between AC exposure and infant cortisol in a resting state or in reactivity to a 

stressor. We hypothesized that preterm infants would experience greater dampening of their 

cortisol levels and cortisol reactivity than term infants from exposure to AC.

2. Materials and methods

2.1. Study design and recruitment

This research was part of a larger longitudinal study that examined the effect of various 

risk factors during pregnancy on birth outcomes and the stress regulation of infants over the 
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first year of life. We performed a power analysis to determine needed sample size. Based 

on findings from our previous research and that of others, we estimated that the difference 

between AC exposed and not exposed infants would be a medium effect at baseline (d =0.5) 

and between a medium and large effect over time (d =0.64). The interaction between AC 

group and preterm status was estimated as a medium effect at baseline (d =0.5), and between 

a weak and medium effect over time (d =0.35). Power estimations were obtained with Monte 

Carlo simulations and carried out with 10,000 random draws. We determined that effects 

specified in our aims could be detected by enrolling a sample size of 136, with power at or 

above .80 and two-sided alphas at .05. Our actual sample size for this analysis was n = 181 

infants.

Mothers who were 18 years of age or older were recruited from two Obstetrics and 

Gynecology clinics affiliated with a large university medical center. Inclusion criteria were 

that women spoke English or Spanish, were in their third trimester of pregnancy (between 

24 and 34 weeks’ gestation) and were identified by their obstetric clinician as being at 

increased risk for preterm labor. Risk for preterm labor was based on factors such as history 

of preterm birth and current obstetric health status. However, women who delivered at term 

were retained in the study along with those who delivered prematurely. Women who had 

ongoing steroid use or a history of endocrine conditions, those who smoked, and women 

with serious medical problems (e.g. cancer, cardiomyopathy) or cognitive impairment were 

excluded. Additionally, infants with chromosomal and genetic anomalies, chronic lung 

disease, congenital heart disease, or other major neonatal illness were excluded. Data of 

children being treated with synthetic glucocorticoids after birth (e.g. for asthma) or who 

developed endocrine problems (e.g. congenital adrenal hyperplasia) were not included in 

the analysis. A member of the research team contacted eligible women to provide details 

about the study and obtain informed consent if they were interested. Proxy consent for their 

infants to participate was obtained from the pregnant women. The study was approved by 

the University Institutional Review Board for Human Research Protection.

During the week of recruitment, women completed a baseline sociodemographic 

questionnaire and the Perceived Stress Scale (PSS). They also received written, verbal, and 

behavioral guidance on how to provide saliva samples into a small vial. They provided saliva 

samples 4 times each day over a 2-day period during pregnancy, and again for 2 days at 

6 and 12 months postpartum. After the infant’s birth, we collected data from women and 

their infants during home visits at 3 timepoints: 1, 6, and 12 months of infant age. At each 

of these visits, a ‘stressor’ protocol was implemented (described below) to measure infant 

cortisol levels before and after the stressor. The researcher prepared mothers for the stressor 

ahead of the visit and discussed exactly what the protocol would involve. Mothers identified 

a suitable, quiet time and area in the home where the protocol could take place without 

disturbance by others living at the residence.

Data were extracted from the electronic medical records of mothers and infants to identify 

information about covariates for potential inclusion in testing of the study aims. Information 

was acquired regarding receipt of antenatal corticosteroids as part of obstetric care, overall 

maternal obstetric risk, infant gestational age, preterm birth status, extent of neonatal 

morbidity, and infant sex.
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2.2. Stressor protocol

Our standardized ‘stressor’ protocol differed in its format at 1 month versus 6 and 12 months 

of infant age to be developmentally appropriate. Research Assistants (RA) were trained in 

each protocol, including oral and written instructions, practice of the protocol until proficient 

in a simulated setting with feedback, and then accompanying an expert Clinical Research 

Coordinator on at least 2 actual visits where the protocol was administered. Each protocol 

had distinct baseline, stressor, and post-stressor periods and was administered between 10 

am and 12 pm to control for effects of circadian rhythm on cortisol levels. Mothers were 

present during the protocol but were only directly involved during the 6- and 12-month 

stressors.

2.2.1. Stressor protocol at 1 month postnatal—This protocol involved a previously 

tested caregiving procedure shown to elicit a broad distribution of stress responses from 

infants in their first month of life (Weiss and Niemann, 2015). Three ECG sensors and 

a respiratory belt were placed on the infant’s chest. The ECG data was used for another 

component of the larger research project but was part of the protocol that occurred. After 

placement of the sensors and belt, infants were positioned on their back with their head to 

one side and swaddled in a blanket. Following this, no procedures or social interaction took 

place for 15 min before the baseline period began. At the start of the baseline period, the 

infant’s blanket was gently removed from the infant’s upper torso so the arms could move 

freely. The infant was then left undisturbed for 5 min with observation from a distance. At 

the end of the 5 min, the ‘stressor’ period began. At the start of the ‘stressor’ period, a 

saliva sample was acquired. The end of a SalivaBio infant swab was placed in the infant’s 

mouth between the cheek and bottom gum on the side facing downwards to collect pooled 

saliva. The swab was left in place for 5 min, being repositioned if needed to assure that the 

swab was saturated. After the swab was removed and placed in a storage tube, infants were 

positioned on their back. The RA then took the infant’s temperature, removed the diaper, 

performed peri-care, and applied a new diaper. Near the end of this caregiving period, the 

infant was again positioned on the back with head to one side. A second saliva sample was 

then acquired for DNA analyses unrelated to the aims described in this paper using the 

same procedure described above. The stressor protocol lasted 15 min. After collection of 

this sample, the infant was covered with a blanket and a ‘post-stressor’ period began during 

which the infant was left undisturbed for 5 min. Then the final saliva sample was acquired, 

using the same method as described previously. Total time from the onset of the caregiving 

stressor until we began collection of the final salivary sample was 20 min.

2.2.2. Stressor protocol at 6 and 12 months postnatal—The ‘Repeated Still Face 

Paradigm’ (Mesman et al., 2009; Tronick, 2003) was used as the ‘stressor’ at 6 and 12 

months of infant age. The ‘Still Face Paradigm’ is a well-established ethical ‘stressor’ shown 

to reliably elicit a physiologic stress response in infants (Lester et al., 2018; Ritz et al., 

2020). During this procedure, mother and infant sat facing each other about 18–24 in. apart. 

Three ECG electrodes were placed on the chest of the infant who was given about 10 min 

to adjust to wearing them. Then the protocol was initiated. Prior to the start of the ‘Still 

Face Paradigm’, a saliva sample was acquired in the same manner as described for the 

1-month protocol. The RA then cued the mother to begin each of 5 segments: baseline 
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spontaneous play, 1st still face episode, another period of spontaneous play, 2nd still face 

episode, and final period of spontaneous play. In the spontaneous play segments, mother and 

infant interacted as they wished by talking, singing, or touching, but they could not use any 

toys and the infant could not be picked up. During the still face segments, the mother sat 

back in her chair and maintained a neutral expression. She continued to look at her baby’s 

face but was instructed not to talk, sing, smile, vocalize, or touch her baby (essentially to 

have a “poker” face). Each segment of the procedure lasted 2 min for a total of 10 min. At 

the end of this last spontaneous play episode, the infant’s EEG leads were removed by the 

mother and they began a period of free play. The purpose of the free play period was to 

support the infant’s transition to typical, usual interaction with the mother. The total time 

from the onset of the 1st still face episode until the end of the free play period was 20 

min. The final saliva sample was acquired at the end of the free play period, using the same 

method as described previously.

2.2.3. Procedures for managing excessive distress—Because our research 

involved infants, we developed a procedure (approved by our Institutional Review Board 

for Human Research) for managing any undue distress that might occur during the stressor 

protocols. If an infant became excessively distressed (e.g. strong ongoing crying with 

mottling or red face) during the stressor, we followed a series of steps which were discussed 

with the mother before the protocol began. The mother would briefly place her hand on the 

infant’s shoulder until the distress was minimized. During the stressor at 1 month postnatal 

only, mothers could alternately use their voice to soothe the infant. If this did not adequately 

address the distress, the mother would hold the infant briefly and then the protocol would 

be continued. If holding was necessary beyond 60 s and did not regulate the distress, the 

stressor protocol was discontinued and rescheduled for another day. During the stressor at 

1 month postnatal, 16.7 % of the infants required help with their distress. At 6 months, 4.5 

% required intervention, and 13.4 % at 12 months. We employed Mann-Whitney U tests to 

determine whether there were any differences in cortisol values for infants who deviated 

slightly from the standard protocol and those who did not. There were no significant 

differences between the two groups in any cortisol values. For baseline cortisol across the 3 

timepoints, significance levels ranged from p = .37 to p = .77. For post-stressor cortisol, they 

ranged from p = .50 to p = .63, and, for cortisol reactivity, significance levels for differences 

between groups ranged from p = .23 to p = .86.

2.3. Measures

2.3.1. Demographics—Information about women’s age, education, race and ethnicity, 

partnership and employment status, and financial security was acquired through a 

sociodemographic questionnaire. These data were used for description of the sample.

2.3.2. Antenatal corticosteroid exposure and preterm birth status—Mothers’ 

receipt of betamethasone during pregnancy (the antenatal corticosteroid used at participating 

clinics) was identified through review of the medical record. The infant’s gestational age 

was also acquired from the medical record, with preterm birth status defined as less than 37 

weeks’ gestation at birth.
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2.3.3. Infant salivary cortisol—Cortisol is a downstream measure of the body’s HPA 

axis response to stress. The first salivary sample (baseline resting state) and the final 

salivary sample (post-stressor) from each stressor protocol were used to assay average 

cortisol level of the infant prior to and after the stressor. To avoid contamination of cortisol 

samples, infants were not fed within 30 min prior to the RA’s arrival nor during the 

procedures. Biospecimens were stored at 20° Centigrade until they were sent to Salimetrics 

biochemical laboratory for analysis. At the lab, they were thawed to room temperature, 

vortexed, and centrifuged at 3000 RPM for 15 min prior to assay. Assays were performed 

with the Salimetric Salivary Cortisol Assay Kit, and high sensitivity salivary cortisol enzyme 

immunoassay (ELISA) used to analyze samples in duplicate. Sensitivity of the assay had 

a lower limit of .007 μg/dl, a standard curve ranging from 0.012 to 3.0 μg/dl, an average 

intra-assay coefficient of variation of 4.6, and an average inter-assay coefficient of variation 

of 6 %.

Infant cortisol level at resting state was the ug/dL value identified during the baseline period 

prior to the stressor while post-stressor cortisol was the ug/dL from the final sample after 

completion of the protocol. Infant cortisol reactivity was the difference between the ug/dL 

value at baseline and the value identified for the final post-stressor salivary sample. This 

change in cortisol levels indicates the magnitude of an infant’s response or amount of 

reactivity to the stressor.

2.3.4. Covariates—Data on four covariates were acquired to examine their potential 

confounding effects and adjust for these in final analysis if needed. Covariates included 

obstetric medical risk, mothers’ perceived stress during pregnancy, and mothers’ endogenous 

cortisol levels during pregnancy (both average cortisol level and overall amount of cortisol 

secretion).

The Obstetric Medical Risk Index (Lobel et al., 2000) was used to extract data from 

the medical record regarding risks and complications related to pregnancy (e.g., placenta 

previa, polyhydramnios, cigarette smoking, anemia). The index is a validated and reliable 

tool, showing excellent predictive validity for adverse birth outcomes (Lobel et al., 2008). 

Perceived stress was examined through maternal completion of the Perceived Stress Scale 

during pregnancy and at 6 and 12 months postpartum (Cohen et al., 1983). The PSS 

measures the degree to which respondents feel their lives are unpredictable, uncontrollable, 

and overloaded with stressors over the four weeks prior to its completion. The questionnaire 

has well-established predictive validity and reliability across cultures and with varied 

populations of women. Women’s endogenous cortisol levels were assessed at the time 

of recruitment during the third trimester of pregnancy as well as at 6 and 12 months 

postpartum. At these timepoints, women provided four saliva samples each day across 

two consecutive days. They were taught how to collect saliva samples using the passive 

drool method by a member of the research team who verbally described and modeled the 

procedure. Women were also given written and pictorial instructions to use when providing 

salivary samples and were reminded to provide their samples by phone and text at the 

times they were scheduled for completion. They were asked to rinse their mouth with water 

10 min prior to their sampling time. They drooled into a cryovial until 1 ml of saliva 

was accumulated as noted on the vial. Women provided samples when they awoke, 45 
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min after waking, around 4 pm, and just before sleep at night. They stored samples in 

their home freezer until they were either picked up by the RA or mailed to the research 

team. These cortisol samples were also assayed at the Salimetrics biochemical laboratory 

using procedures described earlier for infant cortisol samples. Two cortisol scores were 

developed from women’s saliva samples: their average cortisol level across the 8 sampling 

times over a two-day period, and the mean area under the curve (AUCG) for the 2-day 

samples. AUCG measured the amount of total cortisol output across the day, considering the 

difference between individual cortisol samples and the time between each sampling period. 

We calculated AUCG with the trapezoidal formula from Pruessner et al. (2003).

2.3.5. Data analyses—Descriptive statistics were used to characterize the sample. We 

used mixed effects multilevel regression to determine if fetal AC exposure during gestation 

was associated with infant resting state cortisol level, cortisol reactivity to a stressor, or 

post-stressor cortisol level at 1 month, 6 months, or 12 months postnatal. We employed Full 

Information Maximum Likelihood (FIML) methods to achieve unbiased estimates of the 

effects over time for data missing at random. A bias-corrected nonparametric bootstrap 

was employed with 1000 replications to accommodate non-normality. We employed 

nonparametric bootstrapping since standard approaches such as winsorizing of outliers and 

log transformation of cortisol variables were insufficient to correct for lack of normality 

in cortisol distributions. Excluding extreme values solely due to their extremeness can 

distort results by removing important information about variability inherent in the sample. 

Regardless, their removal did not effectively address skew for some variables. Bootstrapping 

techniques enable retention of all values when log transformations do not effectively address 

a skewed distribution. Thus, bootstrapping allowed us to capture the full variability of 

our dataset without violating assumptions of normality and to interpret results on the 

original scale. A Bonferroni adjustment to the confidence intervals (98.33 %) was also 

applied to account for multiple comparisons. Initial Spearman correlations were examined 

between each infant cortisol metric and the four continuous covariates: obstetric medical 

risk, maternal pregnancy stress, and maternal endogenous cortisol during pregnancy (both 

average cortisol level and overall amount of cortisol secretion). Covariates showing a 

significant relationship at p = .05 or less were included in the final regression models. 

In addition, we assessed the potential for infant sex differences in preliminary models, 

computing its main effect on cortisol levels and cross-level interactions between AC 

exposure and sex. To test Aim 2, we examined a cross-level interaction in the models 

between AC exposure and preterm birth status. We carried out statistical analyses with Stata 

16 (Stata Corp, 2019). We evaluated all tests of significance with a two-sided alpha of 0.05.

3. Results

3.1. Sample characteristics

Data from 181 mothers and infants were included in this analysis. Descriptive statistics 

for the sample are presented in Table 1. Mothers were an average of 33.11 years old and 

represented diverse racial and ethnic backgrounds. Just over half of the mothers identified 

their race as White/European-American (51 %), while 23 % identified as African American/

Black, 19 % as Asian American, 2 % as Hawaiian/Pacific Islander or Native American, 
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and about 4 % were unknown. About 24 % of mothers reported Hispanic/Latina ethnicity. 

Mothers in the sample were more likely to be well-educated and report relatively high 

annual household income levels. Infants had a mean gestational age of 36.6 weeks (range: 

27.3 – 43), 51 % of the sample were born preterm, and 39 % had been exposed to AC during 

gestation. 78 % (n = 141) of infants who were exposed to AC were born preterm. Sex was 

evenly distributed between males and females. Diversity in infant race and ethnicity was 

distributed similarly to the mothers.

3.2. Infant cortisol over the three timepoints

We examined the stability of infant cortisol levels from 1 month to 12 months of infant 

age. First, we calculated Intraclass Correlation Coefficients (ICC) for infant baseline and 

post-stressor cortisol as a measure of intra-individual stability over 1, 6 and 12 months 

of infant age. The ICC for baseline cortisol was .33 (SE:.06; 95 % CI:.2272,0.4613). For 

post-stressor cortisol, the ICC was .26 (SE:.06; 95 % CI:.1572,0.4003). Cortisol reactivity 

had an ICC of .06 (SE:.04; CI:.0136,0.2574). All coefficients indicate a high level of cortisol 

variability for infants across time, likely due to changes in environmental exposures and 

effects of development. We also used Friedman’s non-parametric test for repeated measures 

to assess stability of the entire sample’s cortisol data over time. After Bonferroni corrections 

for multiple testing, differences in baseline cortisol (χ2 = 3.47 (df=2), p = .17), post-stressor 

cortisol (χ2 = 6.86 (df=2), p = .03), and cortisol reactivity (χ2 = 0.946 (df=2), p = .62) 

were not significant across the 3 timepoints. Pairwise comparisons between timepoints did 

indicate trends toward a significant difference between 1 and 6 months of age for both level 

of baseline cortisol (z = 1.82, p = .07) and post-stressor cortisol (z = 1.79, p = .07) but not 

for cortisol reactivity. Table 2 provides data on cortisol values for baseline, post-stressor and 

reactivity metrics at the 3 developmental timepoints for infants exposed and not exposed to 

AC.

3.3. Infant response to the stressor protocols

For the sample as a whole, the stressor protocol at 1 month postnatal elicited a significant 

mean increase of .197 (0.08) from baseline (0.578 μg/dl) to post-stressor (0.775 μg/dl) based 

on t-tests estimated with the nonparametric bootstrap (95 % BC CI: 0.0578,0.3769). For 

the stressor protocol at 6 months postnatal, we did not find a significant increase from 

baseline to post-stressor for the entire sample of infants (95 % BC CI: 0.0676,0.2135). On 

average, infants increased by .062 (0.07) from baseline cortisol (0.587 μg/dl) to post-stressor 

cortisol (0.649 μg/dl). In contrast, the 12-month stressor protocol did show a significant 

mean increase of .259 (0.15) μg/dl (95 % BC CI: 0.0320,0.6439) from baseline (0.437 μg/dl) 

to post-stressor (0.697 μg/dl). We ran all bootstraps with 5000 repetitions.

3.4. Preliminary analyses of covariates

Preliminary correlations between maternal prenatal covariates and infant cortisol variables 

are shown in Table 3. Only women’s ‘Area Under the Curve’ (AUCG) for their cortisol 

during pregnancy was significantly associated with any infant cortisol variable. Infants 

whose mothers had a higher AUCG during pregnancy had a higher baseline resting state 

cortisol level as well as a higher post-stressor cortisol level at 12 months of age. Based on 

this relationship, we did include AUCG in our multilevel regression modeling to examine 
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the aims. However, AUCG had no relationship to any of the infant cortisol metrics when 

considered with other variables. For example, the direct effect of AUCG on infant resting 

state cortisol was B = 0.00 (CI: −0.0046,0.0147). The moderating effect of AUCG on 

the relationship between AC exposure and infant resting state cortisol was B = 0.00 

(CI: −0.0211,0.0041). Similarly, the direct effect of AUCG on infant post-stressor cortisol 

was B = 0.03 (CI: −0.0139,0.0767). The moderating effect of AUCG on the relationship 

between AC exposure and infant post-stressor cortisol was B = 0.01 (CI: −0.0801,0.0143). 

Consequently, AUCG was not included in the final models.

3.5. Testing of the aims

Results of the regressions for infant resting state (baseline) cortisol and cortisol after the 

stressor (post-stressor) are presented in Table 4. AC exposure was significantly associated 

with mean resting state cortisol of infants across the 12 months (B = −2.47, BC CI:− 3.691, 

−0.0484). Adjusting for preterm birth status, infants whose mothers received AC during 

pregnancy had significantly lower average resting state cortisol levels across the first year of 

life (x‾ = 0.52) than infants whose mothers did not receive AC (x‾ = 2.91). There were no 

unique interactions of AC exposure with any of the 3 age time points (1, 6, or 12 months) 

at which infant resting state cortisol was assessed. Fig. 1 highlights the differences in basal 

and post-stressor cortisol levels across the three timepoints. In contrast to AC, preterm birth 

was not associated with the infant’s resting state/basal cortisol level and did not moderate 

the relationship between AC exposure and cortisol level.

Findings for post-stressor infant cortisol support the same significant association with AC 

exposure as for infant resting state (B = −2.51, BC CI: −4.283, −0.4276). Infants whose 

mothers received AC during pregnancy had significantly lower post-stressor cortisol levels 

across the first year of life (x‾ = 0.43) than infants whose mothers did not receive AC (x‾ = 

3.09). There was no effect of preterm birth status on infants’ post-stressor cortisol (neither a 

direct nor moderating effect).

For cortisol reactivity, there was no association of either AC exposure or preterm birth to 

infant cortisol reactivity in response to a stressor (Table 5). The reactivity values shown 

in Table 2 suggest there may have been a difference between infants exposed to AC (x‾ 
= 0.01) and those not exposed (x‾ = 0.54) in their reactivity at 12 months. However, the 

bootstrapped correction for bias indicated a lack of significance between groups based upon 

98.33 % CI (B = −0.81, CI: −1.88, −0.27).

In examining the potential role of infant sex, we found no significant differences between 

male and female infants in any of the cortisol variables across the 3 timepoints, including 

average baseline cortisol (B = −0.53; CI: −2.29, 1.23), post-stressor cortisol (B = −0.71; CI: 

−2.62, 1.19), or cortisol reactivity (B = 0.22; CI: −0.45, 0.89). In addition, infant sex did 

not moderate the relationship between AC exposure and either baseline (B = 0.27; CI: 1.69, 

1.15), post-stressor (B = −0.47; CI: −1.19, 2.12), or cortisol reactivity levels (B = −0.25; CI: 

−1.22, 0.72).
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4. Discussion

4.1. AC and basal cortisol levels

Our results indicate that infants who were exposed to AC had lower resting cortisol levels 

and dampened cortisol levels after exposure to a stressor. These responses occurred at 1, 6, 

and 12 months of age, indicating a persistent hypo-arousal of their HPA axis throughout the 

first year of life compared with infants who were not exposed to AC. Our findings support 

previous research linking AC exposure to suppression of the HPA axis in the early postnatal 

period and provide new evidence that this effect may persist longer than previously known. 

Changes observed in exposed infants may result from fetal adaptations that influenced 

development of their HPA axis. In typical HPA axis development, the placenta protects the 

fetus by modulating exposure to maternal cortisol via the 11βHSD2 enzyme, which oxidizes 

cortisol into its inactive metabolite, cortisone. However, synthetic GC such as betamethasone 

and dexamethasone are not readily metabolized by 11βHSD2 (Reynolds, 2013; Tegethoff 

et al., 2009; Waffarn and Davis, 2012). They cross the placental barrier (Chatuphonprasert 

et al., 2018), leaving the fetus exposed to their effects. This could result in excessive 

glucocorticoid exposure at a critical juncture in development, precipitating alterations in the 

fetal HPA axis that yield greater suppression of hormonal secretion.

Research using animal models has shown that AC administration can have significant effects 

on the developing HPA axis (Kapoor et al., 2008). The fetal brain contains high levels 

of glucocorticoid receptors (GR) by the 3rd trimester, with some of the highest levels in 

areas of the brain that control secretion of CRH and ACTH production (Asztalos, 2012). 

Kapoor et al. (2008) note that prenatal exposure to AC leads to permanent changes in 

the expression of GRs and mineralocorticoid receptors (MRs), resulting in altered negative 

feedback sensitivity and altered set points for HPA function. The fetus is protected from 

exposure to elevated levels of cortisol via a negative feedback loop activated by GRs and 

MRs throughout the HPA axis. There is growing evidence that exposure to exogenous GC 

can lead to an alteration of these receptors in human infants (Chang, 2014; Davis et al., 

2006; Moisiadis and Matthews, 2014; Tegethoff et al., 2009; Waffarn and Davis, 2012). Our 

finding that cortisol hypoactivation persists throughout the first year of life indicates that 

the effects of AC exposure on HPA axis function of human infants may last longer than 

previously shown.

Previous evidence demonstrates that exposure to prenatal stress may also impact fetal 

HPA axis development, through exposure to elevated levels of the mother’s endogenous 

cortisol (McGowan and Matthews, 2018). Our findings that infant cortisol suppression was 

significant, even after controlling for mothers’ own endogenous cortisol levels, indicate 

that exogenous glucocorticoid exposure during the third trimester could be more salient 

in programming infant stress regulation than exposure to mothers’ stress hormones. These 

results may help in clarifying previous research that has noted difficulty untangling the 

impact of mothers’ own stress from the effect of AC (Hwang et al., 2019; McGowan and 

Matthews, 2018).
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4.2. AC and cortisol reactivity

Despite our findings that AC exposure significantly affected resting and post-stressor 

cortisol levels, this effect was not true for cortisol reactivity at any assessment time 

point. This could suggest that perturbations to fetal HPA axis development induced by 

AC likely targeted basal or tonic levels of activation rather than mechanisms underlying 

responsiveness to a specific stressor. Different types of exposure can be linked to distinctly 

different alterations in cortisol regulation (Epstein et al., 2021). Based on their synthesis of 

research, Henckens et al. (2016) propose that basal levels of cortisol and the stress-induced 

cortisol response involve different patterns of corticosteroid receptor activation and likely 

have differential neural correlates. Animal studies suggest that basal cortisol levels mainly 

involve activation of nuclear MRs which are more targeted to general neuronal homeostasis 

in readiness for stress, while the stress-induced rise in cortisol involves activation of low-

affinity MRs and GRs in the cell membrane that potentiate rapid response to stressors and 

arousal (Groeneweg et al., 2012).

Alternatively, contrasting patterns of cortisol reactivity among infants may have masked any 

effects of AC on our sample’s overall response to the stressor. In a review and meta-analysis 

of infant cortisol reactivity, Provenzi et al. (2016) found that infants in the first year of 

life show varied patterns of reactivity to stressor protocols, specifically the ‘Still Face 

Paradigm’. Cortisol levels of some infants increased when exposed to the stressor while 

others decreased and still others remained stable. Better understanding how exposure to AC 

may influence infants with distinct patterns of cortisol reactivity is an essential area for 

future research.

4.3. Effects of preterm birth

To our knowledge, this was the first study to examine the moderating effects of prematurity 

on AC exposure in a large sample that included term infants. Preterm birth status had no 

direct or interaction effects with AC exposure on infant resting state, cortisol reactivity, 

or post-stressor cortisol levels at any assessment time point. The lack of any moderating 

effect is congruent with findings from previous studies of preterm infants that gestational 

age does not moderate AC effects on cortisol (Ashwood et al., 2006; Karlsson et al., 2000), 

and extends the evidence to include a comparison with term infants. However, the absence 

of a direct effect of prematurity conflicts with findings in a previous study indicating 

that gestational age was a stronger predictor of cortisol level than AC exposure (Ng et 

al., 2019), although infants in their sample were younger than 28 weeks while premature 

infants in our sample were born around 34 weeks on average. Very young gestational age 

is accompanied by a less well-developed neuroendocrine system and greater likelihood 

of being exposed to stressful health care procedures for which an immature HPA axis 

is ill-equipped (Lammertink et al., 2021; Masumoto et al., 2019). It is possible that the 

interaction effects of gestational age with AC could be more pronounced for infants born 

extremely preterm.

4.4. Implications

Our results support previous research that AC exposure may have adverse consequences 

for fetal and infant health, calling attention to the need for careful consideration when 
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prescribing AC and for administration guidelines that maximize benefits while minimizing 

risks for the fetus. More robust research is needed to examine the interaction between 

exogenous and endogenous glucocorticoid exposure and their effects on stress regulation of 

children, avoiding attribution of fault to mothers by better accounting for external influences 

on fetal development of adrenocortical function. While our results support previous evidence 

of glucocorticoid programming effects on fetal HPA axis development (Moisiadis and 

Matthews, 2014), little is known about the complex mechanisms underlying these effects. 

In particular, it is essential to examine differential mechanisms that may explain why tonic/

basal cortisol is more affected by AC than is cortisol reactivity that is induced by stressors. 

Evaluating epigenetic alterations that may drive patterns of cortisol secretion, negative 

feedback processes, and receptor binding across the HPA axis may have particular merit.

Our findings provide new evidence that the impact of AC exposure on the HPA axis persists 

throughout the first year of life, but future research is needed to explore these associations 

in toddler and early childhood age groups where evidence remains sparse. While cortisol 

levels provide physiologic evidence of the impact of AC, studies need to relate alterations 

of the HPA axis to potential effects on infant emotional regulation, which has been closely 

linked to psychopathology in later childhood (Cook et al., 2019). A better understanding 

of this pathway could inform neonatal or pediatric interventions to mitigate adverse mental 

health outcomes, such as those that apply emotional regulation strategies to improve cortisol 

function.

4.5. Limitations and strengths

Findings should be interpreted in the context of the study’s limitations and strengths. Our 

sample consisted of mothers receiving prenatal care, with relatively high levels of education 

and income; generaliz-ability of our findings is limited to similar populations. The majority 

of preterm infants in our sample was late preterm, which may have limited our ability to see 

interaction effects for gestational age that might be more pronounced in younger and more 

vulnerable age groups. Finally, we performed the Still Face Paradigm on only one occasion 

at each of the 6- and 12-month time periods; multiple assessments would have increased the 

reliability of results.

However, the size as well as racial and ethnic diversity of our sample are strengths; many 

of the previous studies examining AC and infant cortisol involve smaller, more homogenous 

European populations. Experiences of stress and the circumstances of preterm birth are 

known to vary among diverse populations in the U.S. (Almeida et al., 2018); therefore, it 

is important that studies include varied representations. The study was also strengthened by 

our comparison to term infants when considering the overall moderating effect of preterm 

birth status.

5. Conclusions

AC may significantly reduce morbidity and mortality for infants delivered preterm; but 

the potential risks associated with their use must be considered along with their benefits 

during clinical decision making. Our results indicate a state of dampened HPA activation 

and cortisol hypo-arousal that persists across the first year of life among infants who 
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were exposed to corticosteroids in utero. More research is needed to understand critical 

developmental periods in HPA axis and stress regulation during which interventions may be 

most beneficial.
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Fig. 1. 
Infant cortisol levels before and after a stressor at 1, 6 and 12 Months of Age. Note: 

Baseline cortisol specimens were acquired after a 15-minute period when the infant had 

no procedures or unusual social interaction and immediately prior to onset of the stressor. 

Collection of post-stressor cortisol specimens began 20 min after the onset of the stressor.
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Table 1

Characteristics of the sample (N = 181).

Maternal Age (Years) - mean (SD) 33.11 (5.98)

Infant Gestational Age (Weeks) - mean (SD) 36.6 (2.76)

AC Exposure – n (%)

Non–exposed 110 (61)

Exposed 71 (39)

Infant Preterm Birth Status – n (%)

Preterm 92 (51)

Term 89 (49)

Infant Sex Assigned at Birth – n (%)

Male 91 (50)

Female 90 (50)

Mother–reported Hispanic/Latinx Ethnicity – n (%)

 Mother 43 (24)

 Baby 45 (25)

Mother–Reported Race – n (%)

Euro–American/White – Mother 92 (51)

Baby 89 (49)

African American/Black – Mother 41 (23)

Baby 41 (23)

Asian American – Mother 34 (19)

Baby 41 (23)

Hawaiian/PI/Native American – Mother 4 (2.2)

Baby 5 (3.6)

Unknown – Mother 8 (4.4)

Baby 1 (0.7)

Mother’s Highest Level of Education – n (%)

High school or less 40 (22)

Some college 37 (20)

College graduate 29 (16)

Graduate degree 55 (30)

Unknown 20 (11)

Income – n (%)

< 20k 46 (27)

21–50k 20 (11)

51–100k 7 (3)

101–150k 13 (8)

Above 150k 67 (36)

Unknown 28 (15)
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Table 2

Cortisol baseline, reactivity and post-stressor values (ug/dL) at 1, 6 and 12 months postnatal for infants 

exposed to antenatal corticosteroids and infants not exposed.

Exposed Not Exposed

Mean (SE) Range Mean (SE) Range

Infant Cortisol at 1 Month Postnatal

Baseline 44 (0.11) 0.06–3.28 0.4 (0.14) 0.07 – 5.18

Reactivity 0.12 (0.05) −0.93–0.47 0.20 (0.18) −7.21 – 3.60

Post-Stressor 0.56 (0.19) 0.07–3.83 0.69 (0.14) 0.06 – 8.82

Infant Cortisol at 6 Months Postnatal

Baseline 0.36 (0.10) 0.05 – 5.51 2.31 (0.95) 0.08 – 7.02

Reactivity 0.04 (0.06) −0.80 –0.47 0.13 (0.44) −5.40 – 3.62

Post-Stressor 0.40 (0.07) 0.09 – 3.71 2.44 (0.56) 0.08 – 9.33

Infant Cortisol at 12 Months Postnatal

Baseline 0.44 (0.04) 0.04 – 2.00 2.27 (0.84) 0.05 – 5.85

Reactivity 01 (0.13) −1.71 – 4.55 0.54 (0.31) −0.53 – 9.63

Post-Stressor 0.44 (0.26) 0.04 – 6.54 2.81 (0.97) 0.05 – 7.18
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Table 3

Spearman correlations between maternal prenatal covariates and infant cortisol metrics at 1, 6, and 12 months 

postnatal.

Obstetric Risk Maternal Stress Maternal Cortisol Average Level AUCG

Infant Cortisol at 1 Month Postnatal

Baseline 0.00 −0.06 −0.04 −0.01

Reactivity −0.01 −0.07 0.07 0.15

Post-Stressor −0.01 −0.00 −0.08 −0.11

Infant Cortisol at 6 Months Postnatal

Baseline 0.05 0.07 0.01 0.08

Reactivity 0.16 0.07 0.16 0.07

Post-Stressor −0.08 −0.02 −0.00 0.14

Infant Cortisol at 12 Months Postnatal

Baseline 0.00 0.04 0.09 0.26 *

Reactivity −0.16 −0.03 −0.01 0.02

Post-Stressor −0.08 −0.01 0.18 0.31 * *

AUCG = Area Under the Curve;

*
p = .05;

* *
p = .01
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Table 5

Multilevel model for relationships of antenatal corticosteroid (AC) exposure and preterm birth to infant mean 

cortisol reactivity in response to a stressor.

98.33 % Bootstrap Corrected Confidence Interval

Estimate Lower Bound Upper Bound

Model 1

6 Months of Age* − 0.13 − 1.43 1.16

12 Months of Age 0.99 0.06 1.93 * *

Model 2

AC Exposure 0.19 −0.51 0.89

Preterm Birth 0.29 −1.13 1.72

Model 3

AC Exposure × Preterm Birth −0.19 −1.75 1.36

Non-parametric bootstrapped bias-corrected confidence intervals (5000 repetitions). If zero is in the interval, the estimate is not significant. 
Standard errors and t or z statistics are not relevant for the nonparametric bootstrap.

*
Reference point is 1 month of life;

* *
Significant.
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