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RICCI FLOW AND CONTRACTIBILITY OF SPACES OF
METRICS

RICHARD H. BAMLER AND BRUCE KLEINER

Abstract. We show that the space of metrics of positive scalar curvature
on any 3-manifold is either empty or contractible. Second, we show that the
diffeomorphism group of every 3-dimensional spherical space form deformation
retracts to its isometry group. This proves the Generalized Smale Conjec-
ture. Our argument is independent of Hatcher’s theorem in the S3 case and in
particular it gives a new proof of the S3 case.
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1. Introduction

This paper is a continuation of earlier work on Ricci flow through singularities
[KL17, BK17b, BK17a]. While the focus in [KL17, BK17b] was on analytical
properties of singular Ricci flows, such as existence and uniqueness, the aim of
[BK17a] and the present paper is to apply the flow to topological and geomet-
ric problems. One of the main contributions in this paper is a new geomet-
ric/topological method for using families of flows with singularities to produce
families of nonsingular deformations. This method is new and may be applicable
to other settings that are unrelated to Ricci flow.

We now present our main results. Let M be a connected, orientable, closed,
smooth 3-manifold. We denote by Met(M) and Diff(M) the space of Riemannian
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2 RICHARD H. BAMLER AND BRUCE KLEINER

metrics on M and the diffeomorphism group of M , respectively; we equip both
spaces with the C∞-topology, and let MetPSC(M) ⊂ Met(M) denote the subspace
of metrics with positive scalar curvature.

Our first result settles a well-known conjecture about the topology of the space
of metrics with positive scalar curvature:

Theorem 1.1. MetPSC(M) is either empty or contractible.

For our second main result consider the subset MetCC(M) ⊂ Met(M) of metrics
that are locally isometric to either the round sphere S3 or the round cylinder
S2 × R. We will show:

Theorem 1.2. MetCC(M) is either empty or contractible.

By a well-known argument, Theorem 1.2 implies the following conjecture about
the structure of diffeomorphism groups:

Theorem 1.3 (Generalized Smale Conjecture). If (M, g) is an isometric quotient
of the round sphere, then the inclusion map Isom(M, g) →֒ Diff(M) is a homotopy
equivalence.

We now provide a brief historical overview, before discussing other results.
Theorem 1.1 was inspired by the work of Marques [Mar12], who showed that

MetPSC(M) is path connected. The analogous statement in dimension 2 — the
contractibility of MetPSC(S

2) — can be proven using the uniformization theorem,
or by Ricci flow. Starting with the famous paper of Hitchin [Hit74], there has
been a long history of results based on index theory, which show that MetPSC(M)
has nontrivial topology when M is high dimensional; we refer the reader to the
survey [Ros07] for details. Theorem 1.1 provides the first examples of manifolds
of dimension ≥ 3 for which the homotopy type of MetPSC(M) is completely
understood.

Regarding Theorem 1.3, Smale made his original 1961 conjecture for the case
M = S3; this is the first step toward the larger project of understanding Diff(M)
for other 3-manifolds, which was already underway in the 70s [Hat76, Iva76].
We recommend [HKMR12, Section 1] for a nice discussion of the history and
other background on diffeomorphism groups. Theorem 1.3 completes the proof
of the Generalized Smale Conjecture after prior work by many people. Cerf
proved that the inclusion Isom(S3, g) → Diff(S3) induces a bijection on path
components [Cer64a, Cer64b, Cer64c, Cer64d], and the full conjecture for S3 was
proven by Hatcher [Hat83]. Hatcher used a blend of combinatorial and smooth
techniques to show that the space of smoothly embedded 2-spheres in R3 is con-
tractible. This is equivalent to the assertion that O(4) ≃ Isom(S3, g) → Diff(S3)
is a homotopy equivalence when g has sectional curvature 1 (see the appen-
dix in [Hat83]). Other spherical space forms were studied starting in the late
1970s. Through the work of a number of authors it was shown that the inclusion
Isom(M) → Diff(M) induces a bijection on path components for any spherical
space form M [Asa78, Rub79, CS79, Bon83, RB84, BO91]. The full conjecture
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was proven for spherical space forms containing geometrically incompressible one-
sided Klein bottles (prism and quaternionic manifolds), and lens spaces other than
RP 3 [Iva82, Iva84, HKMR12]. The methods used in these proofs were of topolog-
ical nature. In our previous paper [BK17a], we used Ricci flow methods to give
a unified proof of the conjecture for all spherical space forms, except for RP 3.
This established the conjecture for the three remaining families of spherical space
forms: tetrahedral, octahedral, and icosahedral manifolds. Although the tech-
niques in [Iva82, Iva84, HKMR12] and [BK17a] were very different, these results
all relied on Hatcher’s resolution of the S3 case.

It has been a longstanding question whether it is possible to use techniques
from geometric analysis to give a new proof of Hatcher’s theorem for S3. There
are several well-known variational approaches to studying the topology of the
space of 2-spheres in R3 (or S3); however, they all break down due to the absence
of a Palais-Smale condition, because there are too many critical points, or be-
cause the natural gradient flow does not respect embeddedness. Analogous issues
plague other strategies based more directly on diffeomorphisms. The argument
for Theorem 1.2 is independent of Hatcher’s work and applies uniformly to all
spherical space forms; in particular it gives a new proof of the Smale Conjecture
based on Ricci flow.

We believe that the methods used in this paper may be readily adapted to
other situations where a geometric flow produces neck-pinch type singularities,
for instance 2-convex mean curvature flow and (conjecturally) mean curvature
flow of 2-spheres in R3 [BHH16, Whi02, Bre16] or to study the space of metrics
with positive isotropic curvature in higher dimensions [Ham97, Bre19b].

We now present some further results.
Applying Theorem 1.2 in the case of manifolds covered by S2×R, one obtains

the following corollaries:

Theorem 1.4. Diff(S2 × S1) is homotopy equivalent to O(2) × O(3) × ΩO(3),
where ΩO(3) denotes the loop space of O(3).

Theorem 1.5. Diff(RP 3#RP 3) is homotopy equivalent to O(1)× O(3).

Theorem 1.4 is due to Hatcher [Hat81]. While Theorem 1.5 can be deduced
directly from Theorem 1.2, there is also an alternate approach based on a result
of [Hat81], which reduces it to Theorem 1.3 in the RP 3 case.

Theorems 1.3, 1.4, and 1.5 describe the structure of Diff(M) when M has
a geometric structure modelled on S3 or S2 × S1. In [BK] we will use Ricci
flow methods to study Diff(M) when M is modelled the Thurston geometry Nil.
Combined with earlier work, this completes the classification of Diff(M) when M
is prime [Hat76, Iva76, Iva82, Iva84, Gab01b, HKMR12, MS13].

Theorems 1.1 and 1.2 are deduced from a single result, which involves fiberwise
Riemannian metrics on fiber bundles. A special case is:

Theorem 1.6 (See Theorem 9.1). Let M be a connected sum of spherical space
forms and copies of S2 × S1, and K be the geometric realization of a simplicial
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complex. Consider a fiber bundle π : E → K with fibers homeomorphic to M and
structure group Diff(M).

Suppose that gs is a Riemannian metric on the fiber π−1(s) for every s ∈
K, such that the family (gs)s∈K varies continuously with respect the fiber bundle
structure. Then there is a family of Riemannian metrics (hst )s∈K,t∈[0,1] such that:

(a) hst is a Riemannian metric on π−1(s) for every s ∈ K, t ∈ [0, 1], and the
family (hst )s∈K,t∈[0,1] varies continuously with respect to the fiber bundle
structure.

(b) hs0 = gs for all s ∈ K.
(c) hs1 is conformally flat and has positive scalar curvature for all s ∈ K.
(d) If for some s ∈ K the manifold (π−1(s), gs) has positive scalar curvature,

then so does (Ms, hst ) for all t ∈ [0, 1].

As a corollary we have:

Corollary 1.7. If π : E → K is as in Theorem 1.6, then there is a continuously
varying family of fiberwise Riemannian metrics (hs)s∈K such that (π−1(s), hs) is
conformally flat and has positive scalar curvature.

Let MetCF (M) ⊂ Met(M) denote the subspace of conformally flat metrics.
Theorem 1.6 and Corollary 1.7 are indications that the space MetPSC(M) ∩
MetCF (M) has simple topology, and suggest the following question in confor-
mal geometry:

Question 1.8. Is MetPSC(M)∩MetCF (M) always empty or contractible? Equiv-
alently, is the space of conformally flat metrics with positive Yamabe constant
always empty or contractible?

The fundamental work of Schoen-Yau [SY88] on the geometry of individual
metrics g ∈ MetPSC(M) ∩MetCF (M) should be helpful in addressing this ques-
tion. To our knowledge, the current understanding of the corresponding Te-
ichmuller space of conformally flat structures is rather limited. The connec-
tion between Question 1.8 and the preceding results is that the contractibility of
MetPSC(M) ∩MetCF (M) logically implies Theorem 1.6 and Corollary 1.7.

Discussion of the proof. To give the reader an indication of some of the
issues that must be addressed when attempting to apply Ricci flow to a de-
formation problem, we first recall the outline of Marques’ proof [Mar12] that
MetPSC(M)/Diff(M) is path-connected, in the special case when M is a spheri-
cal space form (see also [BHH16], which was inspired by [Mar12]). Starting with
a metric h ∈ MetPSC(M), one applies Perelman’s Ricci flow with surgery to ob-
tain a finite sequence {(Mj, (gj(t))t∈[tj−1,tj ])}1≤j≤N of ordinary Ricci flows where
g1(0) = h. Since h has positive scalar curvature, so does each of the Ricci flows
gj(t). Marques shows by backward induction on j that the Riemannian metric
gj(tj−1) on Mj can be deformed through metrics of positive scalar curvature to a
metric of constant sectional curvature. In the induction step he carefully analyzes
Perelman’s surgery process, and shows that one may pass from (Mj+1, gj+1(tj))
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to (Mj , gj(tj)) by means of a geometric connected sum operation, which is com-
patible with deformations through metrics of positive scalar curvature. In other
words, the Ricci flow with surgery can be seen as a sequence of of continuous
curves in MetPSC(Mj), whose endpoints are related by a surgery process. Mar-
ques’ work was to join these endpoints in order to produce a single continuous
curve.

Let us now consider a family of metrics (hs)s∈K depending continuously on
a parameter s. If one attempted to use the above strategy for such a family,
then one would immediately run into the problem that the resulting Ricci flows
with surgery starting from the metrics hs may not be unique or may not depend
continuously on the parameter s. Moreover, the locations and times of the surgery
operations may change as s varies — possibly in a discontinuous fashion. As we
vary s, the order in which these operations are performed may change and some
surgery operations may even appear or disappear. In particular, this means that
the underlying topology of the flow at some (or most) positive times may not be
constant in s. So in summary, every single metric hs defines a Ricci flow with
surgery, which can be turned into a continuous metric deformation. However,
there is little hope of producing a useful topological object based on the collection
of all such flows for different s. In addition, since our second goal is to study the
structure of diffeomorphism groups, we are faced with the complication that the
argument from the previous paragraph only works modulo the diffeomorphism
group.

We address these issues using a number of new techniques. First, we employ
the singular Ricci flow (or “Ricci flow through singularities”) from [KL17] in lieu
of the Ricci flow with surgery. In [BK17b] we showed that this flow is canonical.
Based on a stability result from the same paper, we show that any continuous
family of metrics (hs)s∈K can be evolved into a continuous family of singular Ricci
flows. Here the word “continuous” has to be defined carefully, since the flows are
not embedded in a larger space.

Our use of singular Ricci flows ameliorates some of the issues raised above,
however, the underlying problem still remains. More specifically, our notion of
continuous dependence of singular Ricci flows still allows the possibility that sin-
gularities, which are the analogues of the surgery operations from before, may
vary in space and in time and may appear or disappear as we vary the parameter
s. While these phenomena are now slightly more controlled due to our conti-
nuity property, we now have to deal with singularities that may occur on some
complicated set, possibly of fractal dimension.

One of the main conceptual novelties in our proof is a new topological notion
called a partial homotopy, which can be viewed as a hybrid between a continuous
family of singular Ricci flows and a homotopy in the space of metrics. On the
one hand, this notion captures the phenomenon of non-constant topology as the
parameter s varies by neglecting the singular part, whose topological structure
may be “messy”. On the other hand, if a partial homotopy is “complete” in a
certain sense, then it constitutes a classical homotopy in a space of metrics. The
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notion of a partial homotopy is not inherently restricted to to 3d Ricci flow. It
may therefore also have applications in higher dimensions or to other geometric
flows.

A large part of our paper will be devoted to the development of a theory that
allows us to construct and modify partial homotopies through certain modification
moves. We then combine this with the theory of continuous families of singular
Ricci flows. Roughly speaking, we will use a continuous family of singular Ricci
flows as a blueprint to carry out the modification moves of a partial homotopy,
with the goal of improving it towards a complete one.

In order to relate partial homotopies to continuous families of singular Ricci
flows, we have to do some pre-processing. More specifically, we will study the
continuous dependence of the singular set of singular Ricci flows and equip a
neighborhood with a continuous family of “R-structures”. These R-structures
limit the dependence of the singular set on the parameter and are used to relate a
partial homotopy to a family of singular Ricci flows. In our pre-processing step we
also produce a “rounded” family of metrics, which are part of these R-structures.
Taking a broader perspective, our partial homotopy machinery will ultimately
enable us to “weave” these metrics together to produce the desired homotopy in
the space of metrics.

Our theory of partial homotopies brings together and generalizes a number of
technical ingredients that have existed in the fields of topology and geometric
analysis. Most notable among these are: a surgery technique generalizing con-
nected sums of conformally flat structures to arbitrary metrics and a notion of
positivity of the Yamabe constant relative boundary.

Organization of the paper. In Section 3, we briefly recapitulate the most
important definitions and results related to singular Ricci flows. In Section 4
we formalize the idea of a continuous family of singular Ricci flows (Ms)s∈X ,
where the parameter lies in some topological space X ; using results from [KL17,
BK17b], we prove the existence of a unique continuous family of singular Ricci
flows with a prescribed family of initial conditions. In Section 5, we implement a
“rounding” procedure to construct R-structures, which characterize the geometry
and topology of the singular part and provides a family of metrics, whose high
curvature part is precisely symmetric. In Sections 7 and 7, we set up and develop
the theory of partial homotopies. In Section 8, we apply this theory to our
families of R-structures from Section 5. More specifically, given a continuous
family (gs,0)s∈K of Riemannian metrics parametrized by a simplicial complex K,
we will construct a continuous metric deformation (gs,t)s∈K,t∈[0,1], where gs,1 is
conformally flat for all s. Based on this result, we prove the main theorems of
this paper in Section 9.

Acknowledgements. The first named author would like to thank Boris Botvin-
nik for bringing up the question on the contractibility of spaces of positive scalar
curvature and for many inspiring discussions.
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2. Conventions

Unless otherwise noted, all manifolds are assumed to be smooth, orientable and
3-dimensional. Whenever we refer to a continuous family of functions or maps,
we will always work in the smooth topology C∞, or C∞

loc in the non-compact case.
So continuity means that all partial derivatives vary continuously in the C0-sense.
The same applies to the terminology of “transverse continuity” (compare with
the discussion after Definition 4.10, Definitions 4.13, 5.8), which will always mean
“transverse continuity in the smooth topology”.

If (gt)t∈I is a family of Riemannian metrics on a manifold M , then we denote
by B(x, t, r) the distance ball with respect to the metric gt.

If (M, g) is a Riemannian manifold and X ⊂ M is a measurable subset, then
we denote by V (X, g) its volume with respect to the Riemannian measure dµg.

We will denote by Bn(r), Dn(r) ⊂ Rn the open and closed balls of radius r
around the origin. Moreover, we will set Bn := Bn(1), Dn := Dn(1) and denote
by An(r1, r2) := Bn(r2) \Dn(r1) the annulus of radii r1, r2.

We will say that a Riemannian metric g is conformally flat if e2φg is flat for some
smooth function φ. In dimension 3 this condition is equivalent to the Cotton-York
condition, see Remark 6.25 and the discussion in Subsection 6.5.

3. Preliminaries

In this section we collect some preliminary material, including background
required for Sections 4 and 5.

3.1. κ-solutions. The singularity formation in 3-dimensional Ricci flows is usu-
ally understood via singularity models called κ-solutions (see [Per02, Sec. 11]).
The definition of a κ-solution consists of a list of properties that are known to be
true for 3-dimensional singularity models.

Definition 3.1 (κ-solution). An ancient Ricci flow (M, (gt)t≤0) on a 3-dimensional
manifold M is called a (3-dimensional) κ-solution, for κ > 0, if the following
holds:

(1) (M, gt) is complete for all t ∈ (−∞, 0],
(2) |Rm| is bounded on M × I for all compact I ⊂ (−∞, 0],
(3) secgt ≥ 0 on M for all t ∈ (−∞, 0],
(4) R > 0 on M × (−∞, 0],
(5) (M, gt) is κ-noncollapsed at all scales for all t ∈ (−∞, 0]

(This means that for any (x, t) ∈M × (−∞, 0] and any r > 0 if |Rm| ≤
r−2 on the time-t ball B(x, t, r), then we have |B(x, t, r)| ≥ κrn for its
volume.)

Important examples of κ-solutions are the round shrinking cylinder
(
S2 × R, (gS

2×R
t := (1− 2t)gS2 + gR)t≤0

)
,



8 RICHARD H. BAMLER AND BRUCE KLEINER

the round shrinking sphere
(
S3, (gS

3

t := (1− 4t)gS3)t≤0

)

and the Bryant soliton [Bry05]
(
MBry, (gBry,t)t≤0

)
.

We recall that MBry ≈ R3 and the flow (gBry,t)t≤0 is invariant under the standard
O(3)-action. We will denote the fixed point of this action by xBry ∈ MBry. By
parabolic rescaling we may assume in this paper that R(xBry) = 1. The flow
(gBry,t)t≤0 is moreover a steady gradient soliton. For the purpose of this paper,
it is helpful to remember that the pointed (MBry, gBry,t, xBry) are isometric for all
t ≤ 0. We will set gBry := gBry,0. For more details see the discussion in [BK17b,
Appendix B].

The following theorem states that these examples provide an almost complete
list of κ-solutions.

Theorem 3.2 (Classification of κ-solutions). There is a constant κ0 > 0 such
for any κ-solution (M, (gt)t≤0) one of the following is true:

(a) (M, (gt)t≤0) is homothetic to the round shrinking cylinder or its Z2-quotient.
(b) (M, (gt)t≤0) is homothetic to an isometric quotient of the round shrinking

sphere.
(c) (M, (gt)t≤0]) is homothetic to the Bryant soliton.
(d) M ≈ S3 or RP 3 and (M, (gt)t≤0) is rotationally symmetric, i.e. the flow

is invariant under the standard O(3)-action whose principal orbits are
2-spheres. Moreover, for every x ∈ M the limit of (M,R(x, t)gt, x) as
t ց −∞ exists and is isometric to a pointed round cylinder or Bryant
soliton.

Moreover, in cases (a)–(c) the solution is even a κ0-solution.

Proof. See [Bre18, BK19, Bre19a]. �

We also recall the following compactness result for κ-solutions, which is inde-
pendent of Theorem 3.2.

Theorem 3.3. If (M i, (git)t≤0, x
i) is a sequence of pointed κi-solutions for some

κi. Suppose that limi→∞R(xi) > 0 exists. Then, after passing to a subsequence,
either all flows (M i, (git)t≤0) are homothetic to quotients of the round shrinking
sphere or we have convergence to a pointed κ∞-solution (M∞, (g∞t )t≤0, x

∞) in the
sense of Hamilton [Ham95].

Proof. See [Per02, Sec. 11]. �

The following result will be used in Section 5.

Lemma 3.4. For any A < ∞ there is a constant D = D(A) < ∞ such that the
following holds. If (M, (gt)≤0) is a compact, simply-connected κ-solution and

∫

M

R(·, 0)dµg0 < AV 1/3(M, g0),
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then diam(M, g0) < DR−1/2(x, 0) for all x ∈M .

Proof. Assume that the lemma was wrong for some fixed A. Then we can find a
sequence of counterexamples (M i, (git)t≤0, x

i) with

diam(M i, gi0)R
1/2(xi, 0) → ∞. (3.5)

It follows that (M i, (git)t≤0) is not homothetic to a round shrinking sphere for
large i.

Claim 3.6. There are constants C, I <∞ such that for all i ≥ I and y ∈M i we
have

R−1/2(y, 0) ≤
∫

B(y,0,CR−1/2(y,0))

R(·, 0)dµgi0. (3.7)

Proof. Assume that, after passing to a subsequence, (3.7) was violated for some
yi ∈ M i and C i → ∞. Since the lemma and (3.7) are invariant under parabolic
rescaling, we can assume without loss of generality that R(yi, 0) = 1. Apply
Theorem 3.3 to extract a limit (M∞, (g∞t )t≤0, y

∞) with
∫
M∞ R(·, 0)dµg∞0 ≤ 1,

which would have to be compact, in contradiction to our assumption (3.5). �

Fix some i ≥ I for a moment. By Vitali’s covering theorem we can find points
y1, . . . , yN ∈ M i such that the balls B(yj, 0, CR

−1/2(yj, 0)) are pairwise disjoint
and the balls B(yj, 0, 3CR

−1/2(yj, 0)) cover M
i. It follows that

diam(M i, gi0) ≤
N∑

j=1

6CR−1/2(yj, 0) ≤ 6C

∫

M i

R(·, 0)dµgi < 6CAV 1/3(M i, gi0).

By volume comparison this implies that there is a uniform constant c > 0 such
that V (B(z, 0, r), gi0) ≥ cr3 for all r < diam(M i, gi). After parabolic rescaling to
normalize R(xi, 0), the pointed solutions (M i, (git)t≤0, x

i) subsequentially converge
to a non-compact κ-solution satisfying the same volume bound. This, however,
contradicts the fact that non-compact κ-solutions have vanishing asymptotic vol-
ume ratio (see either [Per02, Sec. 11] or Theorem 3.2). �

Lastly, we recall:

Lemma 3.8. On (MBry, gBry) the scalar curvature R attains a unique global max-
imum at xBry and the Hessian of R is negative definite at xBry.

Proof. This follows from the soliton equations Ric+∇2f = 0 and R + |∇f |2 =
R(xBry) (see [BK17b, Appendix B] for more details.). If the ∇2R at xBry was
not strictly negative definite, then it would vanish due to symmetry. This would
imply

0 = ∇2|∇f |2 = 2|∇2f |2 + 2∇3f · ∇f = 2|∇2f |2 = 2|Ric|2,
in contradiction to the positivity of the scalar curvature on (MBry, gBry). �
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3.2. Singular Ricci flows — Definition. In the following we recall terminol-
ogy related to singular Ricci flows. In order to keep this subsection concise, our
discussion has been simplified to fit the needs of this paper. For more details, see
[BK17b, Sec 5].

Singular Ricci flows were introduced by Lott and the second author in [KL17].
In the same paper the existence of a singular Ricci flow starting from compact
initial condition was established. Subsequently, uniqueness was shown by the
authors in [BK17b]. The definition of a singular Ricci flow provided in this
paper differs slightly from the original definition in [KL17]. It is a priori more
general, however, the uniqueness result in [BK17b] implies that both definitions
are equivalent.

We first introduce a broader class of Ricci flow spacetimes. A singular Ricci
flow will be defined as a Ricci flow spacetime that satisfies certain conditions.

Definition 3.9 (Ricci flow spacetimes). A Ricci flow spacetime is a tuple (M,
t, ∂t, g) with the following properties:

(1) M is a smooth 4-manifold with (smooth) boundary ∂M.
(2) t : M → [0,∞) is a smooth function without critical points (called time

function). For any t ≥ 0 we denote by Mt := t
−1(t) ⊂ M the time-t-

slice of M.
(3) M0 = t

−1(0) = ∂M, i.e. the initial time-slice is equal to the boundary of
M.

(4) ∂t is a smooth vector field (the time vector field) on M that satisfies
∂tt ≡ 1.

(5) g is a smooth inner product on the spatial subbundle ker(dt) ⊂ TM. For
any t ≥ 0 we denote by gt the restriction of g to the time-t-slice Mt (note
that gt is a Riemannian metric on Mt).

(6) g satisfies the Ricci flow equation: L∂tg = −2Ric(g). Here Ric(g) denotes
the symmetric (0, 2)-tensor on ker(dt) that restricts to the Ricci tensor of
(Mt, gt) for all t ≥ 0.

Curvature quantities on M, such as the Riemannian curvature tensor Rm, the
Ricci curvature Ric, or the scalar curvature R will refer to the corresponding
quantities with respect to the metric gt on each time-slice Mt. Tensorial quanti-
ties will be imbedded using the splitting TM = ker(dt)⊕ 〈∂t〉.

When there is no chance of confusion, we will sometimes abbreviate the tuple
(M, t, ∂t, g) by M.

We emphasize that, while a Ricci flow spacetime may have singularities — in
fact the sole purpose of our definition is to understand flows with singularities
— such singularities are not directly captured by a Ricci flow spacetime, because
“singular points” are not contained in the spacetime manifold M. Instead, the
idea behind the definition of a Ricci flow spacetime is to understand a possibly
singular flow by analyzing its asymptotic behavior on its regular part. This will
always be sufficient for our applications.

Any (classical) Ricci flow of the form (gt)t∈[0,T ), 0 < T ≤ ∞, on a 3-manifold
M can be converted into a Ricci flow spacetime by setting M = M × [0, T ),
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letting t be the projection to the second factor and letting ∂t correspond to the
unit vector field on [0, T ). Vice versa, if (M, t, ∂t, g) is a Ricci flow spacetime with
t(M) = [0, T ) for some 0 < T ≤ ∞ and the property that every trajectory of ∂t
is defined on the entire time-interval [0, T ), then M comes from such a classical
Ricci flow.

We now generalize some basic geometric notions to Ricci flow spacetimes.

Definition 3.10 (Length, distance and metric balls in Ricci flow spacetimes).
Let (M, t, ∂t, g) be a Ricci flow spacetime. For any two points x, y ∈ Mt in
the same time-slice of M we denote by d(x, y) or dt(x, y) the distance between
x, y within (Mt, gt). The distance between points in different time-slices is not
defined.

Similarly, we define the length length(γ) or lengtht(γ) of a path γ : [0, 1] → Mt

whose image lies in a single time-slice to be the length of this path when viewed
as a path inside the Riemannian manifold (Mt, gt).

For any x ∈ Mt and r ≥ 0 we denote by B(x, r) ⊂ Mt the r-ball around x
with respect to the Riemannian metric gt.

Our next goal is to characterize the (microscopic) geometry of a Ricci flow
spacetime near a singularity or at an almost singular point. For this purpose, we
will introduce a (curvature) scale function ρ : M → (0,∞] with the property
that

C−1ρ−2 ≤ |Rm| ≤ Cρ−2 (3.11)

for some universal constant C <∞. We will write ρ(p) = ∞ if Rmp = 0 at some
point p. Note that ρ has the dimension of length. In Subsection 3.4 we will make a
specific choice for ρ, which will turn out to be suitable for our needs. The notions
introduced in the remainder of this subsection will, however, be independent of
the precise choice of ρ or the constant C.

We now define what we mean by completeness for Ricci flow spacetimes. Intu-
itively, a Ricci flow spacetime is called complete if its time-slices can be completed
by adding countably many “singular points” and if no component “appears” or
“disappears” suddenly without the formation of a singularity.

Definition 3.12 (Completeness of Ricci flow spacetimes). We say that a Ricci
flow spacetime (M, t, ∂t, g) is complete if the following holds: Consider a path
γ : [0, s0) → M such that infs∈[0,s0) ρ(γ(s)) > 0 and such that:

(1) The image γ([0, s0)) lies in a time-slice Mt and the time-t length of γ is
finite or

(2) γ is a trajectory of ∂t or of −∂t.
Then the limit limsրs0 γ(s) exists.

Lastly, we need to characterize the asymptotic geometry of a Ricci flow space-
time near its singularities. The idea is to impose the same asymptotic behavior
near singular points in Ricci flow spacetimes as is encountered in the singularity
formation of a classical (smooth) 3-dimensional Ricci flow. This is done by com-
paring the geometry to the geometry of κ-solutions using the following concept
of pointed closeness.
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Definition 3.13 (Geometric closeness). We say that a pointed Riemannian man-
ifold (M, g, x) is ε-close to another pointed Riemannian manifold (M, g, x) at
scale λ > 0 if there is a diffeomorphism onto its image

ψ : BM(x, ε−1) −→M

such that ψ(x) = x and
∥∥λ−2ψ∗g − g

∥∥
C[ε−1](BM (x,ε−1))

< ε.

Here the C [ε−1]-norm of a tensor h is defined to be the sum of the C0-norms of
the tensors h, ∇gh, ∇g,2h, . . . , ∇g,[ε−1]h with respect to the metric g.

We can now define the canonical neighborhood assumption. The main state-
ment of this assumption is that regions of small scale (i.e. high curvature) are
geometrically close to regions of κ-solutions.

Definition 3.14 (Canonical neighborhood assumption). Let (M, g) be a (pos-
sibly incomplete) Riemannian manifold. We say that (M, g) satisfies the ε-
canonical neighborhood assumption at some point x ∈M if there is a κ > 0,
a κ-solution (M, (gt)t≤0) and a point x ∈M such that ρ(x, 0) = 1 and such that
(M, g, x) is ε-close to (M, g0, x) at some (unspecified) scale λ > 0.

We say that (M, g) satisfies the ε-canonical neighborhood assumption
below scale r0, for some r0 > 0, if every point x ∈ M with ρ(x) < r0 satisfies
the ε-canonical neighborhood assumption.

We say that a Ricci flow spacetime (M, t, ∂t, g) satisfies the ε-canonical neigh-
borhood assumption at a point x ∈ M if the same is true at x in the time-slice
(Mt(x), gt(x)). Moreover, we say that (M, t, ∂t, g) satisfies the ε-canonical neigh-
borhood assumption below scale r0 (on [0, T ]) if the same is true for each
time-slice (Mt, gt) (if t ∈ [0, T ])

Using this terminology, we can finally define a singular Ricci flow.

Definition 3.15 (Singular Ricci flow). A singular Ricci flow is a Ricci flow
spacetime (M, t, ∂t, g) that has the following properties:

(1) M0 is compact.
(2) (M, t, ∂t, g) is complete.
(3) For every ε > 0 and 0 ≤ T < ∞ there is a constant rε,T > 0 such that

(M, t, ∂t, g) satisfies the ε-canonical neighborhood assumption below scale
rε,T on [0, T ].

We say that (M, t, ∂t, g) is extinct at time t ≥ 0 if Mt = ∅.
We remark that we have added Property 1 in Definition 3.15 in order to make

it equivalent to the definition in [KL17]. All flows encountered in this paper
will have compact and non-singular initial data. The property could potentially
be dropped or replaced by requiring (M0, g0) to be complete and possibly have
bounded curvature. In addition, it can be shown that there is a universal constant
εcan > 0 such that Property 3 can be replaced by one of the following properties
(due to the results in [BK17b, Bam18]):
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(3′) For every 0 ≤ T < ∞ there is a constant rT > 0 such that (M, t, ∂t, g)
satisfies the εcan-canonical neighborhood assumption below scale rT on
[0, T ].

(3′′) (M, t, ∂t, g) satisfies the εcan-canonical neighborhood assumption below
some scale r0 > 0.

This aspect is, however, inessential for this paper.

3.3. Singular Ricci flows — Existence and Uniqueness. The following re-
sults establish the existence of a unique (or canonical) singular Ricci flow starting
from any compact Riemannian 3-manifold (M, g).

The existence result is from [KL17, Theorem 1.1].

Theorem 3.16 (Existence). For every compact, orientable, Riemannian 3-man-
ifold (M, g) there is a singular Ricci flow (M, t, ∂t, g) with the property that
(M0, g0) is isometric to (M, g).

The uniqueness result is from [BK17b, Theorem 1.3].

Theorem 3.17 (Uniqueness). Any singular Ricci flow (M, t, ∂t, g) is uniquely
determined by its initial time-slice (M0, g0) up to isometry in the following sense:
If (M, t, ∂t, g) and (M′, t′, ∂′

t
, g′) are two singular Ricci flows and φ : (M, g0) →

(M′, g′0) is an isometry, then there is a diffeomorphism φ̃ : M → M′ that is an
isometry of Ricci flow spacetimes:

φ̃|M0 = φ, t = t
′ ◦ φ̃, ∂t = φ̃∗∂′

t
, g = φ̃∗g′.

In this paper we will often identify the given initial condition (M, g) with the
initial time-slice (M0, g0) if there is no chance of confusion. We will view M as
the “unique” singular Ricci flow with initial time-slice (M0, g0) = (M, g).

3.4. The curvature scale. We will now define a curvature scale function ρ that
satisfies (3.11). This subsection can be skipped upon a first reading. For most
applications we could simply take ρ := |Rm|−1/2, however, it will turn out to
be convenient at certain points in our proof to work with a slightly different
definition. More specifically, our main objective will be to ensure that ρ = R−1/2

wherever ε-canonical neighborhood assumption holds for a small enough ε.
To achieve this, observe that there is a constant c0 > 0 such that the following

holds: Whenever Rm is an algebraic curvature tensor with the property that its
scalar curvature R is positive and all its sectional curvatures are bounded from
below by − 1

10
R, then c0|Rm| ≤ R. We will fix c0 for the remainder of this paper.

Definition 3.18 (Curvature scale). Let (M, g) be a 3-dimensional Riemannian
manifold and x ∈M a point. We define the (curvature) scale at x to be

ρ(x) = min
{
R

−1/2
+ (x),

(
c0|Rm|(x)

)−1/2}
. (3.19)

Here R+(x) := max{R(x), 0} and we use the convention 0−1/2 = ∞.
If (M, t, ∂t, g) is a Ricci flow spacetime, then we define ρ : M → R such that

it restricts to the corresponding scale functions on the time-slices.
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The following lemma summarizes the important properties of the curvature
scale.

Lemma 3.20. There is a universal constant C <∞ such that

C−1ρ−2(x) ≤ |Rm|(x) ≤ Cρ−2(x). (3.21)

Moreover, there is a universal constant ε0 > 0 such that if x satisfies the ε-
canonical neighborhood assumption for some ε ≤ ε0, then R(x) = ρ−2(x).

Proof. The bound (3.21) is obvious. For the second part of the lemma observe
that for sufficiently small ε we have R(x) > 0 and sec ≥ − 1

10
R(x) at x. So

R
−1/2
+ (x) ≤ (c0|Rm|(x))−1/2. �

In all our future references to the ε-canonical neighborhood assumption, we
will assume that ε ≤ ε0, such that R = ρ−2 is guaranteed.

Note that in [BK17b] a factor of 1
3
was used in front of R+ in (3.19). We have

omitted this factor for convenience, as it is inessential for the purpose of this
paper.

3.5. Singular Ricci flows — further definitions and properties. The fol-
lowing definitions and results, which are of a more technical nature, will be used
in this paper.

Let us first discuss the concept of parabolic rescaling for Ricci flow spacetimes.
For this purpose, recall that if (gt)t∈(t1,t2) is a conventional Ricci flow and a > 0,
then (a2ga−2t)t∈(a2t1,a2t2) satisfies the Ricci flow equation as well and we refer to
this flow as the parabolically rescaled Ricci flow. Similarly, if (M, t, ∂t, g) is a
Ricci flow spacetime, then so is (M, a2t, a−2∂t, a

2g), which we will refer to as the
parabolically rescaled Ricci flow spacetime. If (M, t, ∂t, g) is a singular
Ricci flow, then so is (M, a2t, a−2∂t, a

2g). Moreover, if (M, t, ∂t, g) (locally or
globally) corresponds to a conventional Ricci flow (gt)t∈(t1,t2), as discussed after
Definition 3.9, then both notions of parabolic rescaling are the same.

Next, we introduce some more useful terminology, which helps us characterize
the local geometry of singular Ricci flows. Let in the following (M, t, ∂t, g), or
simply M, be a Ricci flow spacetime; for the purpose of this paper, we may also
take M to be singular Ricci flow.

Definition 3.22 (Points in Ricci flow spacetimes). Let x ∈ M be a point and
set t := t(x). Consider the maximal trajectory γx : I → M, I ⊂ [0,∞), of the
time-vector field ∂t such that γx(t) = x. Note that then t(γx(t

′)) = t′ for all t′ ∈ I.
For any t′ ∈ I we say that x survives until time t′ and we write

x(t′) := γx(t
′).

Similarly, if X ⊂ Mt is a subset in the time-t time-slice, then we say that X
survives until time t′ if this is true for every x ∈ X and we set X(t′) :=
{x(t′) : x ∈ X}.
Definition 3.23 (Product domain). We call a subset X ⊂ M a product domain
if there is an interval I ⊂ [0,∞) such that for any t ∈ I any point x ∈ X survives
until time t and x(t) ∈ X .
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Note that a product domain X can be identified with the product (X∩Mt0)×I
for an arbitrary t0 ∈ I. If X ∩Mt0 is sufficiently regular (e.g. open or a domain
with smooth boundary in Mt0), then the metric g induces a classical Ricci flow
(gt)t∈I on X ∩ Mt0 . We will often use the metric g and the Ricci flow (gt)t∈I
synonymously when our analysis is restricted to a product domain.

Definition 3.24 (Parabolic neighborhood). For any y ∈ M let Iy ⊂ [0,∞) be
the set of all times until which y survives. Now consider a point x ∈ M and
two numbers a ≥ 0, b ∈ R. Set t := t(x). Then we define the parabolic
neighborhood P (x, a, b) ⊂ M as follows:

P (x, a, b) :=
⋃

y∈B(x,a)

⋃

t′∈[t,t+b]∩Iy

y(t′).

If b < 0, then we replace [t, t + b] by [t + b, t]. We call P (x, a, b) unscathed if
B(x, a) is relatively compact in Mt and if Iy ⊃ [t, t+ b] or Iy ⊃ [t+ b, t] ∩ [0,∞)
for all y ∈ B(x, a). Lastly, for any r > 0 we introduce the simplified notation

P (x, r) := P (x, r,−r2)
for the (backward) parabolic ball with center x and radius r.

Note that if P (x, a, b) is unscathed, then it is a product domain of the form
B(x, a)× Iy for any y ∈ B(x, a).

Borrowing from Definition 3.13, we will introduce the notion of a δ-neck.

Definition 3.25 (δ-neck). Let (M, g) be a Riemannian manifold and U ⊂M an
open subset. We say that U is a δ-neck at scale λ > 0 if there is a diffeomorphism

ψ : S2 ×
(
−δ−1, δ−1

)
−→ U

such that ∥∥λ−2ψ∗g −
(
2gS2 + gR

)∥∥
C[δ−1](S2×(−δ−1,δ−1))

< δ.

We call the image ψ(S2 × {0}) a central 2-sphere of U and every point on a
central 2-sphere a center of U .

Note that by our convention (see Definition 3.18) we have ρ ≡ 1 on (S2 ×
R, 2gS2 + gR). So on a δ-neck at scale λ we have ρ ≈ λ, where the accuracy
depends on the smallness of δ. We also remark that a δ-neck U has infinitely
many central 2-spheres, as we may perturb ψ slightly. This is why we speak of
a central 2-sphere of U , as opposed to the central 2-sphere of U . Similarly, the
centers of U are not unique, but form an open subset of U .

Lastly, we define the initial condition scale.

Definition 3.26 (Initial condition scale). For any closed 3-manifold (M, g) define
the initial condition scale rinitial(M, g) as follows:

rinitial(M, g) := min
{
inf
M

|Rmg|−1/2, inf
M

|∇Rmg|−1/3, injrad(M, g)
}
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So |Rm| ≤ r−2
initial(M, g), |∇Rm| ≤ r−3

initial(M, g) and injrad(M, g) ≥ rinitial(M, g).
Moreover, the map g 7→ rinjrad(M, g) is continuous on Met(M).

Let us now state further results. The first result offers more quantitative geo-
metric control on any singular Ricci flow M, depending only on the initial con-
dition scale rinitial(M0, g0) of the initial time-slice.

Lemma 3.27. For any ε > 0 there is a smooth function rcan,ε : R+×[0,∞) → R+

such that the following holds for any T ≥ 0 and any singular Ricci flow M:

(a) M satisfies the ε-canonical neighborhood assumption below scale rcan,ε
(rinitial(M0, g0), T ) on [0, T ].

(b) If x ∈ M, t(x) ≤ T and ρ(x) ≤ rcan,ε(rinitial(M0, g0), T ), then the parabolic
neighborhood P := P (x, ε−1ρ(x)) is unscathed and after parabolic rescaling
by ρ−2(x) the flow on P is ε-close to the flow on a κ-solution.

(c) ρ ≥ ε−1rcan,ε(rinitial(M0, g0), T ) on M0.
(d) For any a, r0 > 0 we have rcan,ε(ar0, a

2T ) = a · rcan,ε(r0, T ).
(e) |∂mT rcan,ε| ≤ εr1−2m

can,ε for m = 0, . . . , [ε−1].
(f) rcan,ε(r0, T ) is decreasing in T for any r0 > 0.

Proof. We will set

rcan,ε(r0, T ) := r0 · r′can,ε(Tr−2
0 )

for some smooth decreasing function r′can,ε : [0,∞) → R+, which we will determine
in the following. Then Assertion (d) holds and due to invariance of all other
assertions under parabolic rescaling, it suffices to assume in the following that
rinitial(M0, g0) = 1.

By [KL17, Thm. 1.3], [BK17b, Thm. 1.3], it follows that M is a limit of
Ricci flows with surgery M(δi) with the same initial condition and performed at
surgery scales δi → 0, . By Perelman’s construction [Per03] of the flows M(δi),
we know that there is a continuous, decreasing function r′can,ε : [0,∞) → R+

that is independent of (M0, g0) and i such that for any T > 0 and r < r′can,ε(T )

and i ≥ i(r, T ) the flows M(δi) satisfy the hypothesis of Assertion (b) with ε
replaced by ε/2 if ρ(x) ∈ (r, 2r′can,ε(T )). So Assertion (b) also holds for M if
ρ(x) ≤ r′can,ε(T ). Assertion (a) is a direct consequence of Assertion (b).

In order to prove the remaining assertions, we claim that there is a smooth
decreasing function r′′can,ε : [0,∞) → R+ such that r′′can,ε(t) < r′can,ε(t), r

′′
can,ε(0) <

10−3 and |∂mt r′′can,ε| ≤ ε(r′′can,ε)
1−2m for m = 0, . . . , [ε−1]. By convolution with a

smooth kernel, we can find a smooth, decreasing function r′′′can,ε : [1,∞) → R+

such that

|∂mt r′′′can,ε(t)| ≤ Cm sup
[t−1,t+1]

r′can,ε ≤ Cmr
′
can,ε(t− 1).

for some universal constants Cm <∞. So r′′can,ε(t) := aεr
′′′
can,ε(t+1), for sufficiently

small aε > 0, has the desired properties. �

The next result concerns the preservation of the positive scalar curvature con-
dition.
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Theorem 3.28. If M is a singular Ricci flow such that R > 0 (resp. R ≥ 0) on
M0, then the same is true on all of M.

Proof. This follows from the corresponding fact for Ricci flows with surgery since
M is a limit of Ricci flows with surgery, as discussed in the proof of Lemma 3.27.

�

The next result concerns the extinction of singular Ricci flows.

Theorem 3.29. If a singular Ricci flow M is extinct at time t (i.e. Mt = ∅),
then it is also extinct at all later times t′ ≥ t.

Proof. This is a direct consequence of [KL17, Theorem 1.11]. It also follows using
Lemma 3.32 below. �

The next result gives a uniform bound on the extinction time of a singular
Ricci flow starting from a connected sum of spherical space forms and copies of
S2 × S1.

Theorem 3.30. Let M be a connected sum of spherical space forms and copies
of S2 × S1. Consider a compact subset K ⊂ Met(M) of Riemannian metrics on
M . Then there is a time Text <∞ such that any singular Ricci flow (M, t, ∂t, g)
with the property that (M0, g0) is isometric to (M,h) for some h ∈ K is extinct
at time Text.

Proof. See [BK17a, Thm. 2.16(b)]. �

The next result implies that the function t + ρ−2 on any singular Ricci flow is
proper.

Theorem 3.31. For any singular Ricci flow M and any r, T > 0 the subset
{ρ ≥ r, t ≤ T} ⊂ M is compact.

Proof. This is one of the properties of a singular Ricci flow according to the defi-
nition in [KL17]. By Theorem 3.17 this definition is equivalent to Definition 3.15.
Alternatively, the theorem can be shown directly using Lemma 3.27(b). �

The last result essentially states that at points that satisfy the canonical neigh-
borhood assumption we have ∂tρ < 0, unless the geometry is sufficiently closely
modeled on the tip of a Bryant soliton. See also [BK17b, Lemma 8.40], which is
more general.

Lemma 3.32 (Non-decreasing scale implies Bryant-like geometry). For any δ > 0
the following holds if ε ≤ ε(δ).

Let M be a singular Ricci flow, x ∈ Mt a point and assume that r := ρ(x) <
rcan,ε(rinitial(M0, g0), t). Then x survives until time max{t− r2, 0}. Assume that
ρ(x(t′)) ≤ ρ(x) for some t′ ∈ [max{t − r2, 0}, t). Then the pointed Riemannian
manifold (Mt, gt, x) is δ-close to the pointed Bryant soliton (MBry, gBry, xBry) at
scale ρ(x).
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Note that here our choice of ρ, such that ρ−2 = R at points that satisfy a
precise enough canonical neighborhood assumption, is important. Had we chosen
ρ differently, then we would have had to use a more complicated wording of
Lemma 3.32.

Proof. Assume that the lemma was false for some fixed δ > 0 and choose a
sequence of counterexamples Mi, xi, ti, t′,i for εi → 0. By parabolic rescaling we
may assume that ρ(xi) = 1. By Lemma 3.27(b), (c) we may pass to a subsequence
and assume that the flows restricted to the universal covers of the parabolic
neighborhoods P (xi, (εi)−1) and pointed at lifts of xi converge to a pointed κ-
solution (M∞, (g∞t )t≤0, x

∞) with R(x∞, 0) = ρ−2(x∞, 0) = 1. By assumption
(M∞, g∞0 , x

∞) cannot be isometric to (MBry, gBry, xBry). Therefore, by [BK17b,
Proposition C.3] and Definition 3.1 we have ∂tR(x

∞, 0) > 0 and ∂tR(x
∞, t) ≥ 0

for all t ≤ 0. Since the functions t′′ 7→ R(xi(t + t′′)) smoothly converge to
t′′ 7→ R(x∞, t′′) on [−1, 0], we obtain a contradiction to the fact that R(xi(t′,i)) =
ρ−2(xi(t′,i)) ≥ 1 and t′,i < ti. �

3.6. Singular Ricci flows — Stability. Next we formalize the Stability The-
orem [BK17b, Theorem 1.5] in a way that will fit our needs. In short, this
theorem states that two singular Ricci flows are geometrically close on the set
{ρ ≥ ε} ∩ {t ≤ ε−1} if their initial time-slices are close enough. This fact will
be key to our understanding of continuous dependence of singular Ricci flows on
their initial data and the construction of continuous families of singular Ricci
flows in Section 4.

Let first (M, g), (M ′, g′) be two Riemannian manifolds.

Definition 3.33 (ε-isometry between Riemannian manifolds). An ε-isometry
from M to M ′ is a diffeomorphism φ :M →M ′ such that∥∥φ∗g′ − g‖C[ε−1](M) < ε.

Next, let M,M′ be two Ricci flow spacetimes. For our purposes, we may take
M,M′ to be singular Ricci flows.

Definition 3.34 (ε-isometry between Ricci flow spacetimes). An ε-isometry
from M to M′ is a diffeomorphism φ : M ⊃ U → U ′ ⊂ M′ where:

(1) U , U ′ are open subsets such that ρ ≤ ε on the subsets

(M\ U) ∩ {t ≤ ε−1} , (M′ \ U ′) ∩ {t′ ≤ ε−1} .
(2) t

′ ◦ φ = t.
(3) For every m1, m2 = 0, . . . , [ε−1] we have

|∇m1∂m2
t

(φ∗g′ − g)| ≤ ε, |∇m1∂m2
t

(φ∗∂′
t
− ∂t)| ≤ ε.

on U . Here ∇m1 denotes the m1-fold covariant derivative with respect to
the Riemannian metrics gt on each time-slice Mt∩U and ∂m2 denotes the
m2-fold Lie derivative Lm2

∂t
.

We can now state our main stability result. For a more general result, which
also holds for more general Ricci flow spacetimes, see [BK17b, Theorem 1.7].
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Lemma 3.35 (Stability of singular Ricci flows). Let M be a singular Ricci flow.
Then for every ε > 0 there is a δ = δ(M, ε) > 0 such that if M′ is a singular Ricci

flow and φ : M0 → M′
0 is a δ-isometry, then there is an ε-isometry φ̂ : M ⊃

U → U ′ ⊂ M′ extending φ, meaning that M0 ⊂ U , M′
0 ⊂ U ′ and φ̂|M0 = φ.

Proof. FixM and ε > 0, set T := ε−1 and let εcan, δ > 0 be some constants, which
we will determine in the course of the proof. By Lemma 3.27, and assuming that
δ is sufficiently small, M and M′ both satisfy the εcan-canonical neighborhood
assumption below scales r0 on [0, T ] for some scale r0(M, T, εcan) > 0. By [BK17b,
Theorem 1.5], and assuming εcan and δ to be sufficiently small depending on ε,

T , r0 and M, we can extend φ to a map φ̂ : M ⊃ U → U ′ ⊂ M′ such that
Properties 1, 2 of Definition 3.34 hold. The bounds from Property 1 follow

from the Addendum to [BK17b, Theorem 1.5] and the fact that φ̂∗∂t′ − ∂t =∑3
i=1∇g

ei
ei − ∇φ̂∗g′

ei
ei for any local orthonormal frame {ei}3i=1, after adjusting

δ. �

The following corollary illustrates the statement of Theorem 3.35.

Corollary 3.36. Let {Mi}, M∞ be singular Ricci flows and suppose that we
have convergence (Mi

0, g
i
0) → (M∞, g∞0 ) in the sense that there is a sequence of

δi-isometries φi : M∞ → Mi with δi → 0. Then we have convergence Mi → M∞

in the sense that there is a sequence of εi-isometries φ̂i between M∞,Mi with
εi → 0, which extend φi.

4. Families of singular Ricci flows

The purpose of this section is to distill the results about existence, uniqueness,
and continuous dependence of singular Ricci flows into an object that efficiently
encodes the properties needed in the remainder of the proof. To motivate this,
we recall that by [KL17, BK17b] (see also Subsection 3.3), for every Riemannian
manifold (M, g) there exists a singular Ricci flow M(M,g) with initial condition
isometric to (M, g), which is unique up to isometry. Our main result will be
to formalize the stability property from [BK17b] (see also Subsection 3.6) as a
continuous dependence of M(M,g) on (M, g). More specifically, we will state that
any “continuous family” of Riemannian manifolds yields a “continuous family of
singular Ricci flows”.

Our starting point is a family of Riemannian manifolds (Ms, gs)s∈X , which
depends continuously on a parameter s in a certain sense. One special case
is the case in which Ms is constant and gs depends continuously on s in the
smooth topology. More generally, we may also consider a fiber bundle over X
whose fibers are smooth 3-dimensional manifolds Ms equipped with a continuous
family of Riemannian metrics gs. For each s ∈ X we consider the singular Ricci
flow Ms := M(Ms,gs). Our first step will be to define a topology on the disjoint
union ⊔s∈XMs such that the natural projection π : ⊔s∈XMs → X given by
π(Ms) = s is a topological submersion. Secondly, we will endow this space
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with a lamination structure1 whose leaves are the singular Ricci flows Ms and
that satisfies certain compatibility conditions with the submersion structure. The
lamination structure will determine whether a family of maps from or to ⊔s∈XMs

is “transversely continuous” in the smooth topology. In fact, the objects ts, ∂s
t
, gs

associated to each singular Ricci flow Ms will be transversely continuous in the
smooth topology. A collection of singular Ricci flows {Ms}x∈X together with the
topology on the disjoint union and the lamination structure, as described above,
will be called a “continuous family of singular Ricci flows” (see Definition 4.19
for further details). This notion is an instance of a general notion of a continuous
family of differential geometric structures, which may be useful in other contexts,
and appears to be new.

Let us now state our main results. We refer to Subsection 4.1 for the precise
definitions of the terminology used. For now, we mention that a continuous family
of Riemannian manifolds (Ms, gs)s∈X is essentially given by a fiber bundle over X
with smooth fibers and equipped with a continuous family of Riemannian metrics
gs (see Corollary 4.24 below). An important special case is given by a family of
Riemannian metrics gs on a fixed manifold M , which depend continuously in s
in the smooth topology.

For the remainder of this section, X will denote an arbitrary topological space.
We first address the existence of a “continuous family of singular Ricci flows”.

Theorem 4.1 (Existence). For any continuous family of closed Riemannian 3-
manifolds (Ms, gs)s∈X there is a continuous family of singular Ricci flows (Ms)s∈X
whose continuous family of time-0-slices (Ms

0, g
s
0)s∈X is isometric to (Ms, gs)s∈X .

Although not needed in the remainder of this paper, we will also show that
this family is unique.

Theorem 4.2 (Uniqueness). The continuous family of singular Ricci flows from
Theorem 4.1 is unique in the following sense. Consider two such families of sin-
gular Ricci flows (Mi,s)s∈X , i = 1, 2, and isometries φi : ∪s∈XMi,s

0 → ∪s∈XMs.
Then there is an isometry Ψ : ∪s∈XM1,s → ∪s∈XM2,s of continuous families of
singular Ricci flows with the property that φ1 = φ2 ◦Ψ on ∪s∈XM1,s

0

We will also show the following properness property:

Theorem 4.3. Let (Ms)s∈X be a continuous family of singular Ricci flows and
consider the projection π : ∪s∈XMs → X. For any s0 ∈ X, r > 0 and t ≥ 0 there
is a family chart (U, φ, V ) with s0 ∈ π(U) and a compact subset K ⊂ V such that

φ
(
∪s∈π(U) {ρgs ≥ r, ts ≤ t}

)
⊂ K × π(U).

In particular, the following projection is proper:

π : ∪s∈XMs ∩ {ρgs ≥ r, ts ≤ t} −→ X

1Laminations have arisen in various contexts, including foliation theory, dynamical systems,
complex geometry, 3-manifolds, geometric group theory, and minimal surfaces; see for instance
[Sul76, Can93, MO98, Gab01a, CM04]. The laminations appearing in this paper are particularly
tame due to the existence of the compatible topological submersion structure, which prohibits
nontrivial leaf dynamics – a central phenomenon in other contexts.
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We remark that Theorems 4.1 and 4.3 imply Theorem 3.35.

4.1. Continuous families of smooth objects. In this subsection we formal-
ize concepts relating to the terminologies of “continuous family of Riemannian
manifolds” and “continuous family of singular Ricci flows”.

Definition 4.4 (Continuous family of n-manifolds). A continuous family of
(smooth) n-manifolds (with boundary, over X) is given by a topological
space Y , a continuous map π : Y → X and a maximal collection of tuples
{(Ui, φi, Vi)}i∈I (called family charts) such that:

(1) For all i ∈ I, Ui is an open subset of Y , Vi is a smooth n-manifold (with
boundary), and φi : Ui → Vi × π(Ui) is a homeomorphism.

(2) ∪i∈IUi = Y .
(3) (Local trivialization) For every i ∈ I the map φi induces an equivalence

of the restriction π|Ui
: Ui → π(Ui) to the projection Vi × π(Ui) → π(Ui),

i.e. the following diagram commutes:

Ui
φi
> Vi × π(Ui)

π(Ui)

π
∨ projπ(Ui)<

(4) (Compatibility) For any i, j ∈ I the transition homeomorphism

φij := φj ◦ φ−1
i : Vi × π(Ui) ⊃ φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj) ⊂ Vj × π(Uj)

has the form φij(v, s) = (β(v, s), s) where β : φi(Ui ∩ Uj) → Vj locally
defines a family of smooth maps s 7→ β(·, s) that depend continuously on
s in the C∞

loc-topology.

Note that Properties (3) and (4) imply that the family charts induce the structure
of a smooth n-manifold with boundary on each fiber Y s := π−1(s) ⊂ Y , for every
s ∈ X . In order to use a more suggestive notation, we will sometimes denote a
continuous family of smooth manifolds by (Y s)s∈X , or by the map π : Y → X ,
suppressing the collection of family charts.

Remark 4.5. For convenience we have suppressed a set theoretic issue relating to
the maximality property in Definition 4.4. This issue can be remedied easily by
requiring the following weaker version of maximality: If {(Ui, φi, Vi)}i∈I can be
enlarged by a tuple (U, φ, V ), while maintaining the validity of Properties (1)–(4),
then (U, φ, V ) is conjugate to some (Ui, φi, Vi), i ∈ I, in the sense that U = Ui
and φi = (ψ, idπ(U)) ◦φ for some diffeomorphism ψ : V → Vi. In this case, we say
that (U, φ, V ) is a “family chart” if it is conjugate to some (Ui, φi, Vi).

Relating to this we have the following:

Lemma 4.6. If the maximality property in Definition 4.4 is dropped, then there
is a unique maximal extension of {(Ui, φi, Vi)}i∈I in the sense of Remark 4.5,
whose elements are unique up to conjugation.
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Proof. It can be checked easily that if (U, φ, V ) and (U ′, φ′, V ′) can each be added
to {(Ui, φi, Vi)}i∈I while maintaining the validity of Properties (1)–(4) of Defini-
tion 4.4, then both triples can be added at the same time. We can therefore add
all such triples (U, φ, V ), with the extra assumption that V is a smooth manifold
structure defined on a fixed set of cardinality ℵ1. �

Remark 4.7. Definition 4.4 combines two standard notions — smooth lamina-
tions, and topological submersions: Property (3) asserts that π is a topological
submersion, while Property (4) implies that the collection of family charts defines
the structure of a lamination of smooth n-manifolds.

Remark 4.8. If M is a smooth manifold with boundary and π : Y → X is a
fiber bundle with fiber M and structure group Diff(M), then π : Y → X can
also be viewed as continuous family of smooth manifolds with boundary. To see
this, consider all local trivializations φi : π

−1
i (Wi) →M ×Wi, where Wi ⊂ X are

open, and form the triples (Ui := π−1(Wi), φi, Vi := M). The set of these triples
satisfy all properties of Definition 4.4 except for the maximality property. Due
to Lemma 4.6 these triples define a unique structure of a continuous family of
manifolds.

A special case of this construction is the case in which π : Y → X is a trivial
fiber bundle Y = M × X . In this case the associated continuous family of
manifolds can be denoted by (Y s =M × {s})s∈X .

Conversely, every continuous family (Y s)s∈X of compact manifolds over a con-
nected spaceX is given by a fiber bundle. This fact will follow from Corollary 4.24
below.

Remark 4.9. If (Y s)s∈X is a continuous family of n-manifolds (with boundary)
and W ⊂ ∪s∈XY s is open, then (Y s ∩ W )s∈X carries a natural structure of a
continuous family of n-manifolds (with boundary). The family charts of this
family is the subset of all family charts (Ui, φi, Vi) of (Y

s)s∈X with the property
that Ui ⊂W .

So for example, if W ⊂ R2 is open, then the projection onto the second factor
restricted to W , π : W → R, defines a continuous family of 1-manifolds (Y s :=
W ∩R×{s})s∈R. This is example shows that the topology of the fibers Y s is not
necessarily constant.

Next, we characterize maps between continuous families of manifolds.

Definition 4.10 (Continuity of maps between continuous families). If πi : Yi →
Xi, i = 1, 2, are continuous families of n-manifolds with boundary, then a
(continuous) family of smooth maps is a pair (F, f) where F : Y1 → Y2,
f : X1 → X2 are continuous maps such that π2 ◦F = f ◦π1, and for every y ∈ Y1
there are family charts (Ui, φi, Vi) of πi : Yi → Xi such that y ∈ U1, F (U1) ⊂ U2

and such that

V1 × π1(U1)
φ−1
1−−→ U1

F−−→ U2
φ2−−→ V2 × π2(U2) −→ V2

describes a family (βs : V1 → V2)s∈π1(U1) of smooth maps that is continuous in
the C∞

loc-topology.
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If we express the two continuous families πi : Yi → Xi as (Y s
i )s∈Xi

, then we

will sometimes also express (F, f) as (Fs : Y s
1 → Y

f(s)
2 )s∈X1 and we will say

that this family of smooth maps is transversely continuous (in the smooth
topology).

Two special cases of this terminology will be particularly important for us.
First, consider the case in which X2 consists of a single point and (Y s

2 =M)s∈X2

consists of a single smooth manifold with boundary M . Then Definition 4.10
expresses transverse continuity of a family of maps (F s : Y s

1 → M)s∈X1 , or
equivalently, of a map F : ∪s∈X1Y

s
1 →M ; in the case in which M = R this yields

a definition of transverse continuity for scalar maps F : ∪s∈X1Y
s
1 → R. Second,

consider the case in which X1 = X2, f = idX1 and (Y s
1 := M × {s})s∈X1 is the

trivial family. In this case Definition 4.10 introduces the notion of transverse
continuity for families of smooth maps (F s :M → Y s

2 ).

Definition 4.11 (Isomorphism of continuous families). A continuous family
of smooth maps (F, f) is called an isomorphism if F, f are invertible and if
(F−1, f−1) constitutes a continuous family of smooth maps as well. If X1 = X2,
then we also call map F : Y1 → Y2 an isomorphism if (F, idX1) is an isomorphism.

Due to the implicit function theorem we have:

Lemma 4.12. A continuous family (F, f) is an isomorphism if and only if f is

a homeomorphism and all maps F s : Y s
1 → Y

f(s)
2 , s ∈ X1, are diffeomorphisms.

In particular, if (Y s
i )s∈X , i = 1, 2, are continuous families of smooth manifolds

over the same space X, then a continuous family of maps (F s : Y s
1 → Y s

2 )s∈X
constitutes an isomorphism if and only if all maps are diffeomorphisms.

Next, we define the notion of transverse continuity for tensor fields on a con-
tinuous family of smooth manifolds.

Definition 4.13 (Transverse continuity of tensor fields). Let (Y s)s∈X be a con-
tinuous family of smooth n-manifolds with boundary and for every s ∈ X , let ξs

be a tensor field on Y s. We say that the family (ξs)s∈X is transversely contin-
uous (in the smooth topology) if for every family chart φ : U → V × π(U) of
(Y s)s∈X and all s ∈ π(U) the push forwards of ξs under

U ∩ Y s φ−−−−→ V × {s} −→ V

are smooth tensor fields on V that depend continuously on s ∈ π(U) in the
C∞

loc-topology.

Remark 4.14. In the case of (0, 0)-tensor fields, this notion offers another defini-
tion of transverse continuity of scalar functions, which is equivalent with the one
derived from Definition 4.10.

Adapting elementary results to families we have:

Lemma 4.15. (a) Let (Fs : Y s
1 → Y

f(s)
2 )s∈X1 be a continuous family of dif-

feomorphisms between two continuous families of smooth manifolds with
boundary (Y s

i )s∈Xi
, i = 1, 2 and let (ξs)s∈X2 be a transversely continuous
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family of tensor fields on (Y s
2 )s∈X2. Then the pullbacks ((F s)∗ξf(s))s∈X1

are also transversely continuous.
(b) Consider is a continuous family (Y s)s∈X of smooth n-manifolds with bound-

ary and a transversely continuous family of smooth maps (F s : Y s → Z)
into a k-dimensional manifold with boundary. Assume that F s(∂Y s) ⊂ ∂Z
for all s ∈ X. Let z ∈ Z be a regular value of Fs for all s ∈ X. Then the

collection (Ỹ s := (F s)−1(z) ⊂ Y s)s∈X of submanifolds inherits the struc-
ture of a continuous family of smooth (n− k)-manifolds with boundary.

Using Definition 4.13, we can make the following definition:

Definition 4.16 (Continuous family of Riemannian manifolds). A (continuous)
family of Riemannian manifolds (Ms, gs)s∈X consists of a continuous family
(Ms)s∈X of smooth manifolds with boundary and a transversely continuous family
of Riemannian metrics (gs)s∈X .

An isometry between two continuous families of Riemannian manifolds (Ms
i ,

gsi )s∈X1, i = 1, 2, is an isomorphism (F, f) between the associated continuous

families of manifolds with boundary (Ms
i )s∈X1 with the property that (F s)∗g

f(s)
2 =

gs1 for all s ∈ X1.

Remark 4.17. If (Ms)s∈X is given by a fiber bundle π : Y → X with fiber M ≈
Ms and structure group Diff(M) (see Remark 4.8), then any continuous family
of Riemannian metrics (gs)s∈X , turning (Ms, gs)s∈X into a continuous family of
Riemannian manifolds in the sense of Definition 4.16, is given by a fiberwise
family of Riemannian metrics (gs)s∈X .

Remark 4.18. For any smooth manifold M with boundary consider the space
Met(M) of Riemannian metrics equipped with the C∞

loc-topology. Then (M ×
{g}, g)g∈Met(M) is a continuous family of Riemannian manifolds. If M is closed
and 3-dimensional, then Theorem 4.1 applied to this family asserts the existence
of a family of singular Ricci flows (Mg)g∈Met(M) such that Mg

0 = (M, g) for all
g ∈ Met(M).

Lastly, we define continuous families of Ricci flow spacetimes and continuous
families of singular Ricci flows.

Definition 4.19. A continuous family of Ricci flow spacetimes

(Ms, ts, ∂s
t
, gs)s∈X ,

or in short (Ms)s∈X , consists of:

• a continuous family (Ms)s∈X of smooth 4-manifolds with boundary,
• a transversely continuous family of smooth scalar functions ts on Ms; we
will often write t : ∪s∈XMs → [0,∞),

• a transversely continuous family of smooth vector fields ∂s
t
on Ms such

that ∂s
t
t
s ≡ 1,

• a transversely continuous family of smooth inner products gs on the sub-
bundle ker dts ⊂ TMs; here we use the splitting TMs = ker dts⊕span{∂s

t
}
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to view gs as a (0, 2)-tensor field on Ms and define transverse continuity
as in Definition 4.13.

We assume that for all s ∈ X the tuple (Ms, ts, ∂s
t
, gs) is a Ricci flow spacetime

in the sense of Definition 3.9. If Ms is even a singular Ricci flow, in the sense
of Definition 3.15, for all s ∈ X , then we call (Ms)s∈X a continuous family of
singular Ricci flows.

By Lemma 4.15 we have:

Lemma 4.20. If (Ms)s∈X is a continuous family of Ricci flow spacetimes, then
for any t ≥ 0, the set of time-t-slices (Ms

T = (ts)−1(t), gst )s∈X inherits a structure
of a continuous family of Riemannian manifolds.

Remark 4.21. In Definition 4.19 we don’t require that (Ms)s∈X comes from a
fiber bundle, as explained in Remark 4.8. In fact, even if X is connected — such
as in the case X = Met(M) of Remark 4.18 — the topology of the spacetimes
Ms may depend on s. Similarly, in the context of Lemma 4.20, the time t may be
a singular time for some but not all parameters s ∈ X . In this case, the topology
of the time-t-slices may depend on s, even if the topology of Ms doesn’t.

4.2. Existence of family charts. The following result will be used frequently
throughout this paper.

Lemma 4.22. If (Ms)s∈X is a continuous family of smooth manifolds with bound-
ary, s0 ∈ X and K ⊂ Ms0 is a compact subset, then there is a family chart
(U, φ, V ) such that K ⊂ U .

Remark 4.23. We note that Lemma 4.22 holds more generally for laminations,
when one has a compact subset K of a leaf with trivial holonomy.

A consequence of Lemma 4.22 is:

Corollary 4.24. If (Ms)s∈X is a continuous family of smooth and compact mani-
folds with boundary and if X is connected, then (Ms)s∈X comes from a fiber bundle
with fiber M ≈Ms and structure group Diff(M), in the sense of Remark 4.8.

Proof of Lemma 4.22. Recall the standard projection π : ∪s∈XMs → X .

Claim 4.25. There is an open subset K ⊂ U ⊂ ∪s∈XMs and a retraction πV :
U → U ∩Ms0 =: V that is transversely continuous in the smooth topology.

Proof. Let {(Ui, φi, Vi)}i∈I′⊂I be a finite collection of family charts such that K ⊂
∪i∈I′Ui. For each i ∈ I ′ define πi : Ui → Ui ∩Ms0 to be the composition

Ui
φi−−→ Vi × π(Ui) −→ Vi −→ Vi × {s0}

φ−1
i−−→ Ms0 ∩ Ui.

We will obtain the desired map πV by gluing the retractions πi, i ∈ I ′, with a
partition of unity.

Let Z := ∪i∈I′Ms0 ∩ Ui and fix a partition of unity {αi : Z → [0, 1]}i∈I′
subordinate to the cover {Ms0 ∩ Ui}i∈I of Z. We may assume without loss of
generality that Z is an embedded submanifold of RN

≥0 = RN−1 × [0,∞), for some
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large N , such that Z∩∂RN
≥0 = ∂Z and Z meets the boundary of RN

≥0 orthogonally.
Let Z ′ ⋐ Z be a relatively compact neighborhood of K. Choose δ > 0 such that
the nearest point retraction rZ : Nδ(Z

′) → Z ′ is well-defined and smooth, where
Nδ(Z

′) is the exponential image of the vectors of length < δ in the normal bundle
νZ ′ of Z ′ in RN

≥0. Consider the convex combination sZ′ :=
∑

i∈I′(αi ◦ πi)πi :

∪i∈I′Ui → RN
≥0. Note that sZ′|Z′ = idZ′. Then U := s−1

Z′ (Nδ(Z
′)) ⊂ ∪i∈I′Ui and

πV := rZ′ ◦ sZ′ have the desired properties. �

Let πV : U → V be as in the claim. After shrinking U and V we may assume
without loss of generality that πV |U∩Ms : Ms ∩ U → V is a local diffeomorphism
for every s ∈ X . Consider the map φ := (πV , π) : U → V × X . Since πV is a
fiberwise local diffeomorphism, it follows from the inverse function theorem (for
families of maps) that φ is a local homeomorphism. Therefore, by compactness
of K and the fact that πV |V = idV , we find an open neighborhood U ′ ⊂ U of
K such that π|U ′ is injective. Hence, after shrinking U and V we may assume
that φ is a homeomorphism onto its image φ(V ) ⊂ V ×X . Shrinking U and V
further we can arrange for this image to be a product region in V ×X . Finally,
we replace the target with φ(U), so that φ is a homeomorphism. �

4.3. Proof of Theorem 4.1. By Theorem 3.3, for every s ∈ X we may fix a
singular Ricci flow (Ms, ts, ∂s

t
, gs) such that Ms

0 is isometric to (Ms, gs). In the
following, we will identify (Ms

0, g
s
0) with (Ms, gs). Let Y := ⊔s∈XMs be the

disjoint union and π : Y → X the natural projection.
Before proceeding further, we first indicate the idea of the proof. Our goal will

be to construct a suitable topology, as well as family charts on Y . In order to
achieve this, we will first introduce the notion of “families of almost-isometries”
(see Definition 4.26 below), which will serve as a guide to decide whether a subset
of Y is open or a map defined on a subset of Y is a family chart. Roughly speaking,
a family of almost-isometries near some parameter s ∈ X consists of maps ψs′
between a large subset of Ms and a large subset Ms′, for s′ close to s, which arise
from the stability theory of singular Ricci flows in Lemma 3.35. These maps are
almost isometric up to arbitrarily high precision as s′ → s. In our construction,
the topology and the family charts on Y will be chosen in such a way that a
posteriori we have ψs′ → idMs in the smooth topology as s′ → s.

After defining the topology and family charts on Y , we need to verify all re-
quired properties, such as the property that the domains of all family charts cover
Y . We will do this by propagating family charts from the family of time-0 slices
to all of Y using the flow of the time vector fields ∂s

t
and the exponential map

with respect to the metrics gst .
Let us now continue with the proof.

Definition 4.26 (Families of almost-isometries). Consider a neighborhood S ⊂
X of some s ∈ X . A family of diffeomorphisms

{ψs′ : Ms ⊃ Zs′ −→ Z ′
s′ ⊂ Ms′}s′∈S,
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where Zs′, Z
′
s′ are open, is called family of almost-isometries near s if the

following is true:

(1) For every ε > 0 there is a neighborhood Sε ⊂ S of s such that ψs′ is an
ε-isometry for all s′ ∈ Sε, in the sense of Definition 3.34.

(2) ψs′ |Ms
0
→ idMs

0
in C∞

loc as s
′ → s, where we use the identification Ms

0 =Ms

and interpret C∞
loc-convergence within the family of 3-manifolds (Ms)s∈X .

Due to Lemmas 3.35 and 4.22 we have:

Lemma 4.27. For every s ∈ X there is a family of almost-isometries near s.

Next we use families of almost-isometries to define a topology on the total
space Y .

Definition 4.28 (Topology on Y ). We define a subset U ⊂ Y to be open if for
every p ∈ U , s := π(p) ∈ X and every family of almost-isometries

{ψs′ : Ms ⊃ Zs′ −→ Z ′
s′ ⊂ Ms′}s′∈S

near s there are neighborhoods W ∗ ⊂ S of s and U∗ ⊂ Ms of p such that
U∗ ⊂ ψ−1

s′ (U) for all s
′ ∈ W ∗.

Lemma 4.29. Definition 4.28 defines a topology on Y and the projection π :
Y → X is continuous and open.

Proof. For the first statement the only non-trivial part is showing that the in-
tersection of two open subsets U1, U2 ⊂ Y is open. Assume that p ∈ U1 ∩ U2,
s := π(p) and consider a family of almost-isometries {ψs′}s′∈S near s. There are
neighborhoodsW ∗

i ⊂W of s and U∗
i ⊂ Ms, of p, i = 1, 2, such that U∗

i ⊂ ψ−1
s′ (Ui)

for all s′ ∈ W ∗
i . It follows that U∗

1 ∩ U∗
2 ⊂ ψ−1

s′ (U1 ∩ U2) for all s′ ∈ W ∗
1 ∩W ∗

2 .
This shows that U1 ∩ U2 is open.

The continuity of π is a direct consequence of Definition 4.28 and the openness
of π follows using Lemma 4.27. �

Our next goal will be to find family charts on Y , which turn {Ms}s∈X into a
continuous family in the sense of Definition 4.4. Due to technical reasons, which
will become apparent later, we will only construct a certain subclass of such
family charts. We will also define a variant of a family chart whose domain is
contained in the union of all time-t-slices Ms

t for a fixed t. This notion will be
helpful in the statement and proof of Lemma 4.35.

Definition 4.30. A triple (U, φ, V, tV ) is called a time-preserving family chart
if

(1) V is a smooth 4-manifold with boundary equipped with a smooth map
tV : V → [0,∞) such that ∂V = t

−1(0).
(2) φ : U → V × π(U) is a map.
(3) tV ◦ projV ◦φ = t

s for all s ∈ π(U).
(4) projπ(U) ◦φ = π|U , as in Property (3) of Definition 4.4.
(5) projV ◦φ|U∩Ms : U ∩Ms → V is a diffeomorphism for all s ∈ π(U).
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(6) For every (v, s) ∈ V ×π(U) and every family of almost-isometries {ψs′}s′∈S
near s there is a neighborhood V ′×W ′ ⊂ V×π(U) such that for all s′ ∈ W ′

the maps (ψ−1
s′ ◦φ−1)(·, s′) : V ′ → Ms are well defined on V ′ and converge

to φ−1(·, s) in C∞
loc as s

′ → s.

We say that (U, φ, V ) is a family chart at time t if U ⊂ ∪s∈XMs
t , V is a smooth

3-manifold and Properties (2), (4)–(6) hold with Ms replaced by Ms
t .

Lemma 4.31. Assume that (U, φ, V, tV ) is a time-preserving family chart. Then:

(a) U ⊂ Y is open and φ is a homeomorphism.
(b) The push forwards of the objects ∂s

t
, gs onto V via (projV ◦φ)(·, s) vary

continuously in s in the C∞
loc-sense.

(c) For any t ≥ 0 the restriction φ|U∩∪s∈XMs
t
: U ∩ ∪s∈XMs

t → t
−1
V (t)× π(U)

is a family chart at time t.

Proof. (a) Let W := π(U) and consider a non-empty subset U0 ⊂ U . We
will show that U0 is open in the sense of Definition 4.28 if and only if φ(U0) ⊂
V × π(U) is open in the product topology. For this purpose let p ∈ U0 and set
(v, s) := φ(p) ∈ V ×W . Choose a family of almost-isometries {ψs′}s′∈S near s
according to Lemma 4.27 and choose V ′ ⊂ V and W ′ ⊂W as in Property (6) of
Definition 4.30. Set U ′ := φ−1(V ′ ×W ′).

Recall that

(ψ−1
s′ ◦ φ−1)(·, s′) C∞

loc−−−−−−→ φ−1(·, s) as s′ → s. (4.32)

If U0 is open in the sense of Definition 4.28, then there are neighborhoods
W ∗ ⊂ S of s and U∗ ⊂ U ∩Ms of p such that U∗ ⊂ ψ−1

s′ (U0) for all s
′ ∈ W ∗. Let

V ∗ × {s} := φ(U∗). By (4.32) there are open neighborhoods V ′′ ⊂ V ′ of v and
W ′′ ⊂W ′ of s such that for all s′ ∈ W ′′

(ψ−1
s′ ◦ φ−1)(V ′′ × {s′}) ⊂ φ−1(V ∗ × {s}) = U∗.

It follows that φ−1(V ′′×{s′}) ⊂ ψs′(U
∗) ⊂ U0 and therefore φ−1(V ′′×W ′′) ⊂ U0.

This proves that φ(U0) is open.
Conversely assume that φ(U0) is open. Without loss of generality, we may

assume that φ(U0) = V0 × W0 for some open subsets V0 ⊂ V , W0 ⊂ W , so
(v, s) ∈ V0 × W0. By (4.32) and the implicit function theorem we can find
neighborhoods V ′′ ⊂ V0 ∩ V ′ of v and W ′′ ⊂ W0 ∩ W ′ of s such that for all
s′ ∈ W ′′ we have

U∗ := φ−1(V ′′ × {s}) ⊂ (ψ−1
s′ ◦ φ−1)(V0 × {s′}) ⊂ ψ−1

s′ (φ
−1(V0 ×W0)) = ψ−1

s′ (U0).

This proves that U0 is open.
(b) Fix s ∈ π(U) and choose a family of almost-isometries {ψs′}s′∈S near s.

For any s′ ∈ π(U) we have
(
(ψ−1

s′ ◦ φ−1)(·, s′)
)
∗
(projV ◦φ)∗∂s

′

t
= (ψ−1

s′ )∗∂
s′

t

C∞
loc−−−−−−→ ∂s

t

as s′ → s. Since (ψ−1
s′ ◦ φ−1)(·, s′) → φ−1(·, s) in C∞

loc, we obtain that

(projV ◦φ)∗∂s
′

t

C∞
loc−−−−−−→ (projV ◦φ)∗∂st ,
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as desired. The continuity of the push forwards of gs follows analoguously.
Assertion (c) is a direct consequence of Definition 4.30. �

Lemma 4.33. The family charts at time 0 and subspace topology induced from
Definition 4.28 define a structure of a continuous family of manifolds on {Ms

0}s∈X
that agrees with the given structure on (Ms)s∈X if we use the identification Ms =
Ms

0.

Proof. This is a direct consequence of Definitions 4.4, 4.28 and 4.30 and Prop-
erty (2) of 4.26. �

Lemma 4.34. If (Ui, φi, Vi, tVi), i = 1, 2, are two time-preserving family charts
according to Definition 4.30, then both charts are compatible in the sense of Prop-
erty (4) of Definition 4.4. In other words, the transition map

φ12 := φ2 ◦ φ−1
1 : V1 × π(U1) ⊃ φ1(U1 ∩ U2) → φ2(U1 ∩ U2) ⊂ V2 × π(U2)

has the form φ12(v, s) = (β(v, s), s), where β : φ1(U1 ∩ U2) → V2 locally defines
a family of smooth maps s 7→ β(·, s) that depend continuously on s in the C∞

loc-
topology.

Proof. Let p ∈ U1 ∩ U2 and set (vi, s) := φi(p). Fix a family of almost-isometries
{ψs′}s′∈S near s. Choose neighborhoods V ′

i ×W ′
i ⊂ Vi×π(Ui) of (vi, s) according

to Property (6) of Definition 4.30. After shrinking V ′
1 ,W

′
1, we may assume without

loss of generality that φ−1
1 (V ′

1 ×W ′
1) ⊂ φ−1

2 (V ′
2 ×W ′

2). So for all s′ ∈ W ′
1 ∩W ′

2

(ψ−1
s′ ◦ φ−1

1 )(V ′
1 × {s′}) ⊂ (ψ−1

s′ ◦ φ−1
2 )(V ′

2 × {s′})
and therefore for all v′ ∈ V ′

1

(β(v′, s′), s′) =
(
(ψ−1

s′ ◦ φ−1
2 )−1 ◦ (ψ−1

s′ ◦ φ−1
1 )

)
(v′, s′)

Since (ψ−1
s′ ◦ φ−1

i )(·, s′) → φ−1
i (·, s) in C∞

loc as s
′ → s, this implies that β(·, s′) →

β(·, s) in C∞
loc on V1 as s′ → s. �

Next we show that the domains of all time-preserving family charts cover Y .
For this purpose, we first prove:

Lemma 4.35. Suppose that for some s ∈ X, t ≥ 0 the point p ∈ Ms
t lies in the

domain U of a family chart (U, φ, V ) at time t, in the sense of Definition 4.30.
Consider another point p′ ∈ Ms.

(a) If p′ = p(t′) for some t′ ≥ 0, then p′ lies in the domain U ′ of a time-
preserving family chart (U ′, φ′, V ′, tV ′). See Definition 3.22 for the nota-
tion p(t′).

(b) If p′ ∈ B(p, r) for r < injrad(Ms
t , p), then p′ lies in the domain U ′ of a

family chart (U ′, φ′, V ′) at time t.

Proof. (a) Our strategy will be to extend φ via the flow of ∂s
t
. Choose a

bounded interval I ⊂ [0,∞) that is open in [0,∞), contains t, t′ and for which
p(I) is well-defined, where I denotes the closure of I. Let V ′′ ⊂ V be a subset
such that:

(1) V ′′ is open and has compact closure V
′′
in V .
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(2) φ(p) ∈ V ′′ × {s}.
(3) (φ−1(V

′′
, s))(t′′) is well-defined for all t′′ ∈ I.

Let W ′ ⊂ π(U) be the set of parameters s′ ∈ π(U) for which (φ−1(V
′′
, s′))(t′′) is

well-defined for all t′′ ∈ I. Consider the map

α : (V ′′ × I)×W ′ −→ Y, (v′, t′′, s′) 7−→ (φ−1(v′, s′))(t′′).

Note that α is injective. Let V ′ := V ′′ × I, U ′ := α(V ′ ×W ′) and φ′ := α−1 :
U ′ → V ′ ×W ′. We claim that (U ′, φ′, V ′, projI) is a time-preserving family chart
in the sense of Definition 4.30.

We need to verify Property (6) of Definition 4.30 and that W ′ is open; the
remaining properties of Definition 4.30 follow directly by construction. For this
purpose consider some s0 ∈ W ′, and let {ψs′}s′∈S be a family of almost-isometries

near s0. Since V
′′
is compact, we can find neighborhoods W0 ⊂W ∩ S of s0 and

V0 ⊂ V of V
′′
such that for all s′ ∈ W0 the maps (ψ−1

s′ ◦φ−1)(·, s′) are well defined
on V0 and converge to φ−1(·, s0) in C∞

loc as s
′ → s0.

For any s′ ∈ W0 and v′ ∈ V0 consider the trajectory of ∂s
′

t
through φ−1(v′, s′).

The image of this trajectory under the map ψ−1
s′ is a trajectory of ψ∗

s′∂
s′

t
through

(ψ−1
s′ ◦ φ−1)(v′, s′), wherever defined. Since (ψ−1

s′ ◦ φ−1)(·, s′) → φ−1(·, s0) and
ψ∗
s′∂

s′

t
→ ∂s0

t
in C∞

loc as s
′ → s0, we can find a neighborhood W1 ⊂ W0 of s0 with

the property that for any s′ ∈ W1 and v′ ∈ V
′′
the trajectory of ψ∗

s′∂
s′

t
through

(ψ−1
s′ ◦ φ−1)(v′, s′) exists for all times of the interval I. It follows that W1 ⊂ W ′

and for any s′ ∈ W1 the map (ψ−1
s′ ◦α)(·, s′) restricted to V ′′ is given by the flow of

ψ∗
s′∂

s′

t
starting from (ψ−1

s′ ◦ φ−1)(·, s′). Due to the smooth convergence discussed
before we have

(ψ−1
s′ ◦ α)(·, s′) C∞

loc−−−−−−→ α(·, s0) as s′ → s0.

This verifies Property (6) of Definition 4.30 and shows that W ′ is open.

(b) After shrinking V and W := π(U) if necessary, we may assume that for
some r′ > r and every s′ ∈ W and v′ ∈ V , we have

r < r′ < injrad(Ms′

t , φ
−1(v′, s′)) ; (4.36)

this follows from a straightforward convergence argument. Let (v, s) := φ(p).
Using Gram-Schmidt orthogonalization we can find a continuous family of linear
maps (ϕs′ : R

3 → TvV )s′∈W that are isometries with respect to the push forward
of gs

′

t via projV ◦φ. Denote by B(0, r) ⊂ R3 the r-distance ball and define

α : B(0, r)×W −→ ∪s′∈XMs′

t , α(·, s′) := exp
gs

′

t

φ−1(v,s′) ◦d
(
φ−1(·, s′)

)
v
◦ ϕs′.

Due to (4.36) this map is injective. Let V ′ := B(0, r), U ′ := α(V ′ ×W ), and
φ := α−1 : U ′ → V ′ ×W .

As in the previous case it remains to show that Property (6) of Definition 4.30
holds. Let s0 ∈ W and let {ψs′}s′∈S be a family of almost-isometries near s0. For
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s′ sufficiently close to s0 we have

(ψ−1
s′ ◦ α)(·, s′) = exp

ψ∗

s′
gs

′

t

(ψ−1
s′

◦φ−1)(v,s′)
◦d

(
(ψ−1

s′ ◦ φ−1)(·, s′)
)
v
◦ ϕs′.

Since

ψ∗
s′g

s′

t

C∞
loc−−−−−−→ gs0t , (ψ−1

s′ ◦ φ−1)(·, s′) C∞
loc−−−−−−→ φ−1(·, s0)

as s′ → s0, we therefore obtain that

(ψ−1
s′ ◦ α)(·, s′) C∞

loc−−−−−−→ α(·, s0)
as s′ → s0. This establishes Property (6) of Definition 4.30. �

Corollary 4.37. Every point p ∈ Y lies in the domain of a time-preserving
family chart.

Proof. Let C ⊂ Y be the set of points lying in the domain of a time-preserving
family chart. By Lemma 4.33 and Lemma 4.35(a) we have Ms

0 ⊂ C for all
s ∈ X . By Lemma 4.35, for every s ∈ X , the intersection C ∩ Ms is an open
and closed subset of Ms; since it is nonempty, it follows from [KL17, Prop. 5.38]
that C ∩Ms = Ms. Hence C = Y . �

Corollary 4.37 verifies that the collection of all the set of time-preserving family
charts satisfy Property (2) of Definition 4.4 if we drop the fourth entry “tV ”. By
Lemma 4.6 this set can be extended to a maximal collection of family charts. All
other properties of Definition 4.4 and the fact that induced continuous structure
on the set of time-0-slices (Ms

0)s∈X coincides with that on (Ms)s∈X follow directly
from our construction and from Lemmas 4.33 and 4.34.

4.4. Proof of Theorem 4.2. Consider a continuous family of singular Ricci
flows (Ms)s∈X and the associated continuous family of time-0-slices (Ms, gs)s∈X :=
(Ms

0, g
s
0)s∈X . It suffices to show that in the proof of Theorem 4.1 the topology

and the family charts on Y = ⊔s∈XMs are uniquely determined by (Ms, gs)s∈X .
For this purpose we first show:

Lemma 4.38. Let {ψs′}s′∈S be a family of almost-isometries near some s ∈ X.
Then ψs′ → idMs in C∞

loc as s
′ → s, in the sense that for any family chart (U, φ, V )

we have

projV ◦φ ◦ ψs′
C∞

loc−−−−−−→ projV ◦φ as s′ → s. (4.39)

Proof. We say that ψs′ → idMs near some point p ∈ Ms if (4.39) holds near p
for some (and therefore every) family chart (U, φ, V ) with p ∈ U . Furthermore,
we say that ψs′ → idMs near some point p ∈ Ms

t at time t if (4.39) holds near
p in Ms

t for any family chart (U, φ, V ), with p ∈ U , of the continuous family of
time-t-slices (Ms

t)s∈X ; compare with Lemma 4.20.

Claim 4.40. Assume that p ∈ Ms
t has the property that ψs′ → idMs near p at

time t and let p′ ∈ Ms be another point.

(a) If p′ = p(t′) for some t′ ≥ 0, then ψs′ → idMs near p′.
(b) If p′ ∈ B(p, r) for r < injrad(Ms

t , p), then ψs′ → idMs near p′ at time t.
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Proof. This is a direct consequence of the fact that ψ∗
s′∂

s′

t
→ ∂s

t
and ψ∗

s′g
s′ → gs

in C∞
loc as s

′ → s. Compare also with the proof of Lemma 4.35. �

By combining the claim with the proof of Corollary 4.37, we obtain that ψs′ →
idMs everywhere. �

By Lemma 4.38 Definition 4.28 offers the correct description for the topology
on ∪s∈XMs. Next, if (U, φ, V, tV ) is a time-preserving family chart, in the sense
of Definition 4.30, then (U, φ, V ) satisfies Properties (1) and (3) of Definition 4.4.
By Lemma 4.38 and the proof of Lemma 4.34, (U, φ, V ) is moreover compatible
with all family charts of (Ms)s∈X in the sense of Property (4) of Definition 4.4.
Therefore, by maximality (U, φ, V ) is a family chart of (Ms)s∈X . This shows that
the the topology and the family charts on (Ms)s∈X are uniquely determined by
(Ms, gs)s∈X , concluding the proof.

4.5. Proof of Theorem 4.3. We first show:

Lemma 4.41. If (U, φ, V ) is a family chart of (Ms)s∈X , then for every s ∈ π(U),
every compact subset K ⊂ V and every family of almost-isometries {ψs′}s′∈S near
s there is a neighborhood V ′×W ′ ⊂ V ×π(U) of K×{s} such that for all s′ ∈ W ′

the maps (ψ−1
s′ ◦φ−1)(·, s′) are well defined on V ′ and converge to φ−1(·, s) in C∞

loc

as s′ → s.

Proof. Via a covering argument, we can reduce the lemma to the case in which
K = {v} consists of a single point. Choose a time-preserving family chart
(U ′′, φ′′, V ′′, tV ′′) with (φ′′)−1(v′′, s) := φ−1(v, s) ∈ U ′′. Then by Property (6)
of Definition 4.30 the assertion of the lemma holds if (U, φ, V ) and v are replaced
by (U ′′, φ′′, V ′′) and v′′. The lemma now follows due to the compatibility of the
family charts (U, φ, V ) and (U ′′, φ′′, V ′′). �

By Theorem 3.31 the subset K0 := {ρgs0 ≥ r/10, ts0 ≤ t+1} ⊂ Ms0 is compact.
Therefore, by Lemma 4.22 there is a family chart (U0, φ0, V0) of (Ms)s∈X with
K0 ⊂ U0. Set K×{s0} := φ0(K0). By Lemma 4.27 there is a family {ψs : Ms0 ⊃
Zs → Z ′

s ⊂ Ms}s∈S of almost isometries near s0. Let ε > 0 be a constant whose
value we will determine later. By shrinking U0, we may assume without loss of
generality that π(U0) ⊂ S and that all maps ψs, s ∈ π(U0), are ε-isometries.
If ε is chosen small enough, then ρgs < r on ({ts ≤ t + 1} ∩ Ms) \ Z ′

s and
ρgs(ψs(x)) ≤ 2ρgs0 (x) for all s ∈ S and x ∈ Zs with t(x) ≤ t. We will now show
that there is a neighborhood W ⊂ π(U) of s0 such that for all s ∈ W we have

{ρgs0 ≥ r/2, ts0 ≤ t} ⊂ ψ−1
s (φ−1

0 (K × {s})). (4.42)

Then U := π−1(W ) ∩ U0, φ := φ0|U and V have the desired properties, since
(4.42) implies that for all s ∈ W we have

φ0({ρgs ≥ r, ts ≤ t}) ⊂ φ0

(
ψs({ρgs0 ≥ r/2, ts0 ≤ t})

)
⊂ K × {s}.

To see that (4.42) is true let K1 × {s0} := φ({ρgs0 ≥ r/2, ts0 ≤ t}) and apply
Lemma 4.41 for (U0, φ0, V0). We obtain a neighborhood V ′ ×W ′ ⊂ V0 × π(U0)
of K × {s0} such that for all s ∈ W ′ the maps (ψ−1

s ◦ φ−1
0 )(·, s) are well defined
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on V and converge to φ−1
0 (·, s0) in C∞

loc as s → s0. So φ
−1
0 (K × {s}) ⊂ Z ′

s for all
s ∈ W ′ and for s near s0 the set φ−1

0 (K1 × {s0}) lies in the image of the map
(ψ−1

s ◦ φ−1
0 )(·, s). This implies (4.42) for s near s0.

5. Rounding process

5.1. Introduction. Consider a continuous family (Ms)s∈X of singular Ricci flows
over some topological space X . By the canonical neighborhood assumption (see
Definition 3.14) we know that regions of every Ms where the curvature scale ρ
is small are modeled on a κ-solutions, which are rotationally symmetric or have
constant curvature. The goal of this section is to perturb the metric gs on each
Ms to a rounded metric g′,s, which is locally rotationally symmetric or has con-
stant curvature wherever ρ is small. Our process will be carried out in such a
way that the rounded metrics still depend continuously on s.

In addition to the rounded metrics g′,s, we will also record the spherical fibra-
tions consisting of the orbits of local isometric O(3)-actions wherever the metric
is rotationally symmetric. The precise structure that we will attach to each flow
Ms will be called an R-structure and will be defined in Subsections 5.2 and 5.3.
In Subsection 5.4 we will then state the main result of this section, followed by a
proof in the remaining subsections.

5.2. Spherical structures. We first formalize a structure that is induced by a
locally rotationally symmetric metric. Let M be a smooth manifold of dimension
n ≥ 3; in the sequel we will have n ∈ {3, 4}.

Definition 5.1 (Spherical structure). A spherical structure S on a subset U ⊂
M of a smooth manifold with boundary M is a smooth fiber bundle structure on
an open dense subset U ′ ⊂ U whose fibers are diffeomorphic to S2 and equipped
with a smooth fiberwise metric of constant curvature 1 such that the following
holds. For every point x ∈ U there is a neighborhood V ⊂ U of x and an
O(3)-action ζ : O(3)× V → V such that ζ |V ∩U ′ preserves all S2-fibers and acts
effectively and isometrically on them. Moreover, all orbits on V \ U ′ are not
diffeomorphic to spheres. Any such local action ζ is called a local O(3)-action
compatible with S. We call U = domain(S) the domain of S.

Consider an action ζ as in Definition 5.1. For any sequence xi → x∞ ∈ O the
corresponding sequence of orbits Oi converges to O in the Hausdorff sense. As
U ′ is dense in U , this implies that O is independent of the choice of ζ . So O is
determined uniquely by a point x ∈ O and the spherical structure S. We call
any such orbit O ⊂ U \ U ′ a singular (spherical) fiber and any fiber in U ′ a
regular (spherical) fiber of S.

By analyzing the quotients of O(3) we get:

Lemma 5.2. Any singular spherical fiber is either a point or is diffeomorphic to
RP 2.
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Lemma 5.3. If n = 3, then ζ from Definition 5.1 is locally conjugate to one of
the following models equipped with the standard O(3)-action:

S2 × (−1, 1),
(
S2 × (−1, 1)

)
/Z2, B3, S2 × [0, 1).

In the last case S2×{0} corresponds to a boundary component ofM . In the second
case there is a unique spherical structure on the local two-fold cover consisting only
of regular fibers that extends the pullback via the covering map of the original
spherical structure restricted to the union of the regular fibers.

Next we formalize the notion of a rotationally symmetric metric compatible
with a given spherical structure.

Definition 5.4 (Compatible metric). Let U ⊂ M be an open subset. A smooth
metric g on a subbundle of TU or TM is said to be compatible with a spher-
ical structure S if near every point x ∈ U there is a local O(3)-action that is
compatible with S and isometric with respect to g.

IfM = M is a Ricci flow spacetime and g is a smooth metric on the subbundle
ker dt, then Definition 5.4 still makes sense.

In dimension 3 a metric g compatible with a spherical structure S can locally be
written as a warped product of the form g = a2(r)gS2 + b2(r)dr2 near the regular
fibers. However, note that a spherical structure does not record the splitting
of the tangent space into directions that are tangential and orthogonal to the
spherical fibers. So the metrics g compatible with S depend on more data than
the warping functions a(r), b(r). Consider for example the quotient of the round
cylinder S2×R by an isometry of the form (x, r) 7→ (Ax, r+a), where A ∈ O(3),
a > 0. The induced spherical structures are equivalent for all choices of A, a.

The following lemma classifies the geometry of metrics that are compatible
with a spherical structure near regular fibers.

Lemma 5.5. Let u < v and consider the standard spherical structure S on
M = S2× (u, v), i.e. the structure whose fibers are of the form S2×{r}, endowed
with the standard round metric gS2. A Riemannian metric g on M is compatible
with S if and only if it is of the form

g = a2(r)gS2 + b2(r)dr2 +

3∑

i=1

ci(r)(dr ξi + ξi dr), (5.6)

for some functions a, b, c1, c2, c3 ∈ C∞((u, v)) with a, b > 0. Here ξi := ∗dxi
denote the 1-forms that are dual to the standard Killing fields on S2 ⊂ R3.

Proof. Consider diffeomorphisms φ : M → M of the form φ(v, r) = (A(r)v, r),
where A : (u, v) → O(3) is smooth. These diffeomorphisms leave S invariant and
if g is of the form (5.6), then so is φ∗g. It follows that every metric g of the form
(5.6) is compatible with S. On the other hand, assume that g is compatible with
S. Fix some r0 ∈ (u, v) and consider the normal exponential map to S2 × {r0}.
Using this map we can construct a diffeomorphism of the form φ(v, r) = (A(r)v, r)
such that φ∗g = a2(r)gS2 + b2(r)dr2. Thus g is of the form (5.6). �
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Next we define what we mean by the preservation of a spherical structure by
a vector field.

Definition 5.7 (Preservation by vector field). Let U1 ⊂ U2 ⊂M be open subsets
and consider a vector field X on U2. A spherical structure S on U1 is said to be
preserved by X if the flow of X preserves the regular and singular fibers as well
as the fiberwise metric on the regular fibers.

Lastly, we consider a continuous family of manifolds (Ms)s∈X of arbitrary di-
mension, which may for example be taken to be a continuous family of Ricci
flow space times (Ms)s∈X . We will define the notion of transverse continuity for
spherical structures. For this purpose, we need:

Definition 5.8 (Transversely continuity for families of local O(3)-actions). Let
(V s ⊂ Ms)s∈X be a family of open subsets such that V := ∪s∈XV s ⊂ ∪s∈XMs

is open and consider a family of O(3)-actions (ζs : O(3)× V s → V s)s∈X , which
we may also express as ζ : O(3) × V → V . We say that ζs is transversely
continuous in the smooth topology if for any A0 ∈ O(3), s0 ∈ X , x0 ∈ V s0

there are family charts (U0, φ0, V0), (U
′
0, φ

′
0, V

′
0) (in the sense of Definition 4.4)

with x0 ∈ U0 and ζ(A0, x0) ∈ U ′
0 such that the map (A, v, s) 7→ (projV ′

0
◦φ′

0 ◦
ζ)(A, φ−1

0 (v, s))) can be viewed as a family of maps in the first two arguments
that depend continuously on s in C∞

loc near (A0, φ(x0)).

Let now (Ss)s∈X be a family of spherical structures defined on a family of open
subsets (Us := domain(Ss) ⊂Ms)s∈X .

Definition 5.9 (Transverse continuity for spherical structures). We say that
(Ss)s∈X is transversely continuous if:

(1) U := ∪s∈XUs is an open subset in the total space ∪s∈XMs.
(2) For every point x ∈ U there is an open neighborhood V = ∪s∈XV s ⊂ U

and a transversely continuous family of local O(3)-actions (ζs : O(3) ×
V s → V s)s∈X that are each compatible with Ss.

A family of spherical structures (Ss)s∈X on a fixed manifold M is called trans-
versely continuous, if it is transversely continuous on the associated continuous
family of manifolds (M × {s})s∈X .
5.3. R-structures. Consider a singular Ricci flow M. We now define the struc-
ture that we will construct in this section.

Definition 5.10 (R-structure). An R-structure on a singular Ricci flow M
is a tuple R = (g′, ∂′

t
, US2, US3,S) consisting of a smooth metric g′ on ker dt, a

vector field ∂′
t
on M with ∂′

t
t = 1, open subsets US2, US3 ⊂ M and a spherical

structure S on US2 such that for all t ≥ 0:

(1) US3 \ US2 is open.
(2) US2 ∩Mt is a union of regular and singular fibers of S.
(3) ∂′

t
preserves S.

(4) g′t is compatible with S.
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(5) US3∩Mt is a union of compact components ofMt on which g′t has constant
curvature.

(6) US3 is invariant under the forward flow of the vector field ∂′
t
, i.e. any

trajectory of ∂′
t
whose initial condition is located in US3 remains in US3

for all future times.
(7) The flow of ∂′

t
restricted to every component of US3 ∩Mt is a homothety

with respect to g′, whenever defined.

We say that the R-structure is supported on US2 ∪ US3.
Note that Property (1) is equivalent to the statement that any component of

US3 is either contained in US2 or disjoint from it.
At this point we reiterate the importance of the fact that the spherical structure

S does not record the splitting of the tangent space into directions that are
tangential and orthogonal to the spherical fibers. Therefore the preservation of
S by ∂′

t
does not guarantee a preservation of this splitting under the flow of ∂′

t
.

So the metrics g′t could be isometric to quotients of the round cylinder S2×R by
isometries of the form (x, r) 7→ (Atx, r + at), where At ∈ O(3), at > 0 may vary
smoothly in t, and S could consist of all cross-sectional 2-spheres. In this case
the flow of ∂′

t
may leave the metric tangential to the fibers of S invariant while

distorting the metric in the orthogonal and mixed directions.
Consider now a continuous family (Ms)s∈X of singular Ricci flows. For every

s ∈ X choose an R-structure

Rs = (g′,s, ∂′,s
t
, Us

S2, U
s
S3,Ss)

on Ms. We define the following notion of transverse continuity:

Definition 5.11 (Transverse continuity for R-structures). The family of R-
structures (Rs)s∈X is called transversely continuous if:

(1) (g′,s)s∈X , (∂
′,s
t
)s∈X are transversely continuous in the smooth topology.

(2) US2 := ∪s∈XUs
S2 and US3 := ∪s∈XUs

S3 are open subsets of the total space
∪s∈XMs.

(3) (Ss)s∈X is transversely continuous in the sense of Definition 5.9.

5.4. Statement of the main result. The main result of this section, Theo-
rem 5.12, states that for every continuous family of singular Ricci flows there is
a transversely continuous family of R-structures supported in regions where ρ is
small. Moreover the metrics g′,s and gs will be close in some scaling invariant
C [δ]-sense and equal where ρ is bounded from below. The same applies to the
vector fields ∂′,s

t
and ∂s

t
.

Recall the scale rinitial from Definition 3.26.

Theorem 5.12 (Existence of family of R-structures). For any δ > 0 there is
a constant C = C(δ) < ∞ and a continuous, decreasing function rrot,δ : R+ ×
[0,∞) → R+ such that the following holds.

Consider a continuous family (Ms)s∈X of singular Ricci flows. Then there is a
transversely continuous family of R-structures (Rs = (g′,s, ∂′,s

t
, Us

S2, U
s
S3,Ss))s∈X

such that for any s ∈ X:
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(a) Rs is supported on
{
x ∈ Ms : ρg′,s(x) < rrot,δ(rinitial(Ms

0, g
s
0), t(x))

}
.

(b) g′,s = gs and ∂′,s
t

= ∂s
t
on

{
x ∈ Ms : ρg′,s(x) > Crrot,δ(rinitial(Ms

0, g
s
0), t(x))

}
⊃ Ms

0.

(c) For m1, m2 = 0, . . . , [δ−1] we have

|∇m1∂m2
t

(g′,s − gs)| ≤ δρ−m1−2m2 , |∇m1∂m2
t

(∂′,s
t

− ∂s
t
)| ≤ δρ1−m1−2m2 .

(d) If (Ms
0, g

s
0) is homothetic to a quotient of the round sphere or the round

cylinder, then g′,s = gs and ∂′,s
t

= ∂s
t
on all of Ms.

(e) rrot,δ(a · r0, a2 · t) = a · rrot,δ(r0, t) for all a, r0 > 0 and t ≥ 0.

The proof of this theorem, which will occupy the remainder of this section, is
carried out in several steps:

1. In Subsection 5.7, we first define a cutoff function η : ∪s∈XMs → [0, 1]
whose support is contained in the union of components of time-slices with
positive sectional curvature and bounded normalized diameter. By Hamil-
ton’s result [Ham82], these components become extinct in finite time and
the metric becomes asymptotically round modulo rescaling as we approach
the extinction time. On the other hand, time-slices on which η < 1 have
sufficiently large normalized diameter such that any point that satisfies
the canonical neighborhood assumption is either contained in an ε-neck
or has a neighborhood that is sufficiently close to a Bryant soliton.

2. In Subsection 5.8, we modify the metrics (gs)s∈X at bounded distance to
points where the geometry is close to the tip of a Bryant soliton. The
resulting metric will be compatible with a spherical structure S2 near
these points. So any point x ∈ {η < 1} \ domain(S2) of small curvature
scale must be a center of an ε-neck. Our rounding procedure will employ
the exponential map based at critical points of the scalar curvature R.

3. In Subsection 5.9, we modify the metrics from the previous step near
centers of ε-necks, using the (canonical) constant mean curvature (CMC)
foliation by 2-spheres. The resulting metrics will be compatible with a
spherical structure S3 extending S2, whose domain contains all points
x ∈ {η < 1} of small curvature scale.

4. In Subsection 5.10, we use an averaging procedure to modify the time
vector fields ∂s

t
so that they preserve the spherical structure S3.

5. In Subsection 5.11, we modify the metric on the support of η such that it is
compatible with an extension of S3. We obtain this new metric by evolving
the metric from Step 3 forward in time by the Ricci flow. Therefore the
new metric will remain compatible with a spherical structure up to some
time that is close to the extinction time. After this time the metric is
δ-close to a round spherical space form modulo rescaling, for some small
δ > 0.

6. In Subsection 5.12, we replace the almost round metrics near the extinc-
tion time by canonical metrics of constant curvature. We also modify the
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time-vector fields to respect these new metrics. This concludes the proof
of Theorem 5.12.

Throughout this section we will attach indices 1–6 to the objects that are con-
structed in each step. For example, the cutoff function from Step 1 will be called
η1. The main result in Step 2 will repeat the claim on the existence of this cutoff
function, which is then called η2, and so on. In order to avoid confusion we will
increase the index of each object in each step, even if it remained unchanged
during the construction.

5.5. The rounding operators. We will define operators RDn that assign a con-
stant curvature metric to every metric of almost constant curvature in a canonical
way.

Consider first an n-dimensional Riemannian manifold (M, g) that is δ-close
to the standard n-dimensional round sphere (Sn, gSn) in the smooth Cheeger-
Gromov topology for some small δ > 0, which we will determine later. Consider
the eigenvalues 0 = λ0 ≤ λ1 ≤ . . . of the Laplacian on (M, g), counted with
multiplicity. Recall that on the standard round n-sphere Sn we have λ0 = 0 and
λ1 = . . . = λn+1 = n < λn+2, where the coordinate functions of the standard
embedding Sn ⊂ Rn+1 form an orthogonal basis of the eigenspace corresponding
to the eigenvalue n. So if δ is chosen sufficiently small, then λn+1 < λn+2 and
there is an L2-orthonormal system x0g, x

1
g, . . . , x

n+1
g of eigenfunctions such that

x0 ≡ const, βg : (x
1
g, . . . , x

n+1
g ) : M → Rn+1 \ {0} and αg := βg/|βg| : M → Sn is

a diffeomorphism. Define

R̃D
n
(g) := α∗

ggSn.

Note that (M, R̃D
n
(g)) is isometric to (Sn, gSn), in particular V (M, R̃D

n
(g)) =

V (Sn, gSn).
Next, assume that (M, g) is δ-close to (Sn, gSn) modulo rescaling, in the sense

that (M, a2 · g) is δ-close to (Sn, gSn) for some a > 0. If δ is sufficiently small,
then (M, (V (M, g)/V (Sn, gSn))−2/ng) is sufficiently close to (Sn, gSn), such that
we can define

RDn(g) :=

(
V (M, g)

V (Sn, g)

)2/n

R̃D
n
((

V (M, g)

V (Sn, g)

)−2/n

g

)
.

Then

V (M,RDn(g)) = V (M, g)

and for any diffeomorphism φ :M →M we have

RDn(φ∗g) = φ∗RDn(g).

So if φ is an isometry with respect to g, then it is also an isometry with respect
to RDn(g). Hence if (M, g) is a Riemannian manifold whose universal cover

π : (M̃, g̃) → (M, g) is δ-close to (Sn, gSn) modulo rescaling, then we can define
RDn(g) as the unique metric with the property that π∗RDn(g) = RDn(g̃).

We record:
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Lemma 5.13. If δ ≤ δ and if the universal cover of (M, g) is δ-close to (Sn, gSn)
modulo rescaling, then:

(a) RDn(g) has constant curvature.
(b) V (M,RDn(g)) = V (M, g).
(c) If g has constant curvature, then RDn(g) = g.
(d) RDn(φ∗g) = φ∗RDn(g) for any diffeomorphism φ :M →M .
(e) If gi → g in the smooth topology, then RDn(gi) → RDn(g) in the smooth

topology.
(f) If Z is a smooth manifold and (gz)z∈Z is a smooth family of metrics on M

such that (M, gz) is δ-close to (Sn, gSn) modulo rescaling for each z, then
(RDn(gz))z∈Z is smooth. Moreover, if (giz)z∈Z → (gz)z∈Z locally smoothly,
then also ((RDn(giz))z∈Z → ((RDn(gz))z∈Z .

5.6. Conventions and terminology. For the remainder of this section let us
fix a continuous family (Ms)s∈X or singular Ricci flows. It will be clear from our
construction that all constants will only depend on the data indicated in each
lemma and not on the specific choice of the family (Ms)s∈X .

Consider the initial condition scale rinitial from Definition 3.26 and the canonical
neighborhood scale rcan,ε : R+ × [0,∞) → R+ from Lemma 3.27. Then for any
x ∈ Ms

t ⊂ ∪s′∈XMs′ the assertions of Lemma 3.27 hold below scale r̃can,ε(x) :=
rcan,ε(rinitial(Ms

0, g
s
0), t). For ease of notation, we will drop the tilde from r̃can,ε

and view rcan,ε as a function of the form

rcan,ε : ∪s∈XMs −→ R+.

Note that rcan,ε is smooth on each fiber Ms and transversely continuous in the
smooth topology.

Next, we define a scale function ρ̂ on each Ms, which is comparable to ρ and
constant on time-slices. For this purpose, let x ∈ Ms

t and consider the component

C ⊂ Ms
t containing x. Let (C̃, g̃st ) be the universal cover of (C, gst |C) and set

ρ̂(x) := V 1/n(C̃, g̃st ) ∈ (0,∞].

We will frequently use the following fact, which is a direct consequence of the
compactness of κ-solutions (see Theorem 3.3):

Lemma 5.14. Assume that ε ≤ ε(D). If ρ(x) < rcan,ε(x) and if the component
C ⊂ Ms

t containing x has diam C ≤ Dρ(x), then

C−1(D)ρ(x) ≤ ρ̂(x) ≤ C(D)ρ(x).

In the following we will successively construct metrics gs1, . . . , g
s
5 on Ms. Unless

otherwise noted, we will compute the quantities ρ and ρ̂ using the original metric
gs. Otherwise, we indicated the use of another metric by a subscript, such as
“ρg′i” or “ρ̂g′i”.

Lastly, let us fix a smooth, non-decreasing cutoff function ν : R → [0, 1] such
that

ν ≡ 0 on (−∞, .1], ν ≡ 1 on [.9,∞).
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5.7. Construction of a cutoff function near almost extinct components.
Our first goal will be to introduce a cutoff function η1 that is supported on
components on which the curvature scale is small and the renormalized diameter is
bounded. On these components we have sec > 0 and therefore these components
become extinct in finite time. On the other hand, regions where the curvature
scale is small and where η1 < 1 are modeled on a Bryant soliton or a cylinder.

Lemma 5.15. For every δ∗ > 0, N ∈ N, and assuming α ≤ α(δ∗), D ≥
D(δ∗), D0 ≥ D0(δ

∗), Cm ≥ Cm(δ
∗) and ε ≤ ε(δ∗, N), there is:

• a continuous function η1 : ∪s∈XMs → [0, 1] that is smooth on each fiber
Ms and transversely continuous in the smooth topology,

such that for any s ∈ X and t ≥ 0:

(a) ∂s
t
η1 ≥ 0.

(b) η1 is constant on every connected component of Ms
t .

(c) Any connected component C ∈ Ms
t on which η1 > 0 is compact there is a

time tC > t such that:
(c1) sec > 0 on C(t′) for all t′ ∈ [t, tC).
(c2) C survives until time t′ for all t′ ∈ [t, tC) and no point in C survives

until or past time tC.
(c3) diam C(t′) < Dρ(x) for all x ∈ C(t′) and t′ ∈ [t, tC).
(c4) ρ < 10−1rcan,ε on C(t′) for all t′ ∈ [t, tC).
(c5) The time-slices (C(t′), gst ) converge, modulo rescaling, to an isometric

quotient of the round sphere as t′ ր tC.
(d) For every point x ∈ Ms

t with η1(x) < 1 (at least) one of the following is
true:
(d1) ρ(x) > αrcan,ε(x).
(d2) x is a center of a δ∗-neck.
(d3) There is an open neighborhood of x in Ms

t that admits a two-fold
cover in which a lift of x is a center of a δ∗-neck.

(d4) There is a point x′ ∈ Ms
t with d(x, x′) < D0ρ(x

′) such that ρ(x′) <
10−1rcan,ε(x

′), ∇R(x′) = 0 and (Ms
t , g

s
t , x

′) is δ∗-close to (MBry, gBry,
xBry) at some scale. Moreover, the component C ⊂ Ms

t containing x
has diameter > 100D0ρ(x

′).
(e) |∂m

t
η1| ≤ Cmρ

−2m for m = 0, . . . , N .

Note that only ε depends on N .
The strategy in the following proof is to define η1 using two auxiliary functions

η∗1 , η
∗∗
1 , which are essentially supported in regions where ρ is small and where the

normalized diameter is bounded, respectively. In order to achieve the monotonic-
ity property (a), we define η1 by integrating the product η∗1η

∗∗
1 in time against a

weight.

Proof. Let a, α′, A,D,D′ be constants, which will be chosen depending on δ∗ in
the course of the proof.

We say that a component C ⊂ Ms
t is D

′-small if

diam C < D′ρ and ρ < 10−1rcan,ε on C.
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Let UD′ ⊂ ∪s∈XMs be the union of all D′-small components.

Claim 5.16. (a) UD′ is open in ∪s∈XMs.
(b) Assuming α′ ≤ α′(D′), D ≥ D(D′) and ε ≤ ε(D′), the following is true. If

C ⊂ Ms
t is a D′-small component and ρ(x) ≤ α′rcan,ε(x) for some x ∈ C,

then there is a time tC > t such that Assertions (c1)–(c5) of this lemma
hold.

Proof. Assertion (a) is clear by definition. If Assertion (b) was false for some fixed
D′, then we can find singular Ricci flows Mi, D′-small components Ci ⊂ Mi

ti and
points xi ∈ Ci contradicting the assertion for sequences α′,i, εi → 0, Di → ∞.
Since the εi-canonical neighborhood assumption holds at xi and εi → 0, we may
assume, after passing to a subsequence, that the universal covers of (Ci, ρ−2(xi)giti)

converge to a compact smooth limit (M, g), which is the final time-slice of a κ-
solution. Therefore, there is a c > 0 such that sec > cR and R > cρ−2(xi)
on Ci for large i. By Hamilton’s result [Ham82], for large i the flow past Ci
becomes asymptotically round and goes extinct at a finite time tCi ∈ (ti, ti +
Cρ2(xi)) for some universal constant C = C(c) < ∞. Since |∂trcan,εi| ≤ εir−1

can,εi

by Lemma 3.27 we obtain that rcan,εi(x
i(t′)) ≤ 2rcan,εi(x

i) for all t′ ∈ [ti, tCi) and
large i. So Assertions (c1), (c2), (c4), (c5) hold for large i. In particular, for large
i the εi-canonical neighborhood assumption holds on Ci(t′) for all t′ ∈ [ti, tCi).
Since the pinching sec > cR is preserved by the flow, another limit argument
implies Assertion (c3). �

Define functions η∗1, η
∗
2 : ∪s∈XMs → [0, 1] as follows. For any x ∈ Ms

t let
C ⊂ Ms

t be the component containing x and set

η∗1(x) = ν

(
a · rcan,ε(x)

ρ̂(x)

)
, η∗∗1 (x) = ν

(
A · ρ̂(x)

R(C̃)

)
,

where R(C̃) :=
∫
C̃
Rgtdµgt and ν is the cutoff function from Subsection 5.6. Near

any component C ⊂ Ms
t with compact universal cover C̃ the functions η∗1, η

∗
2 are

smooth on Ms
t and transversely continuous in the smooth topology.

We now define functions η′1 : ∪s∈XMs → [0,∞) and η1 : ∪s∈XMs → [0, 1]
as follows. Set η′1 :≡ 0 on ∪s∈XMs \ UD′ . For every component C ⊂ Ms

t with
C ⊂ UD′ and for every x ∈ C ⊂ Ms

t choose t
∗
C < t minimal such that C survives

until all times t′ ∈ (t∗C, t] and let

η′1(x) :=

∫ t

t∗
C

η∗1(x(t
′))η∗∗1 (x(t′))

ρ̂2(x(t′))
dt′.

Lastly, set
η1(x) := ν

(
A · η′1(x)

)
.

Note that the definitions of η′1, η1 are invariant under parabolic rescaling, but
the definition of η∗1 is not invariant under time shifts. Assertions (a) and (b) of
this lemma hold wherever η1 is differentiable. Moreover, ∂tη

′
1 restricted to UD′

is smooth on each fiber Ms and transversely continuous in the smooth topology,
because the same is true for η∗1, η

∗∗
1 , ρ̂.
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Claim 5.17. If D′ ≥ D′(A), a ≤ a(α′, A,D′), ε ≤ ε(α′, A, a,D′, N), then

(a) The closure of the support of η∗1η
∗∗
2 |UD′

in ∪s∈XMs is contained in UD′ ∩
{ρ ≤ α′rcan,ε}.

(b) η1, η
′
1 are smooth on every fiber Ms and transversely continuous in the

smooth topology.
(c) Assertion (c) of this lemma holds.
(d) Assertion (e) of this lemma holds for some constants Cm = Cm(α

′, A, a,
D′) <∞.

Proof. Let us first show that Assertions (b) and (c) of this claim follow from
Assertion (a). For Assertions (b) observe that Assertion (a) implies smoothness
and transverse continuity of ∂tη

′
1. For any D

′-small component C we have C(t′) 6⊂
UD′ for t′ ∈ (t∗C, t) close enough to t∗C, because otherwise C would survive until
time t∗C. So every neighborhood of a point in UD′ can be evolved backwards by
the flow of ∂t into {η′1 = 0}. Assertion (b) now follows by integrating ∂tη

′
1 in

time. For Assertion (c) observe that whenever η1(x) > 0, then there is a t′ ≤ t
such that x(t′) ∈ UD′ and η∗1(x(t

′))η∗∗1 (x(t′)) > 0. By Assertion (a) we have
ρ(x(t′)) ≤ α′rcan,ε(x(t

′)), which implies Assertion (c) via Claim 5.16(b).
It remains to prove Assertions (a) and (d) of this claim. For this purpose fix

A > 0 and assume that D′ ≥ D′(A), such that if (M, g) is the final time-slice of
a compact, simply-connected κ-solution and for some x ∈ M

A · ρ̂(x, 0)

R(M, g0)
≥ 1

10
,

then diam(M, g0) < D′ρ(x). This is possible due to Lemma 3.4.
Assume now that Assertion (a) was false for fixed α′, A,D′ . Choose sequences

ai, εi → 0. Then we can find singular Ricci flows Mi and points xi ∈ Mi
ti that

are contained in the closure of UD′ and the support of η∗1η
∗∗
1 , but xi 6∈ UD′ or

ρ(xi) > α′rcan,εi(x
i). Let Ci ⊂ Mi

ti be the component containing xi. Since xi is
contained in the closure of UD′ we have

diam Ci ≤ Dρ(xi), ρ(xi) ≤ 10−1rcan,εi(x
i).

This implies that xi satisfies the εi-canonical neighborhood assumption and there-

fore, after passing to a subsequence, the universal covers (C̃i, ρ−2(xi)giti , x
i) con-

verge to a compact smooth pointed limit (M, g, x), which is the final time-slice
of a κ-solution.

Next, since xi is contained in the support of η∗1η
∗∗
1 we have

lim inf
i→∞

ai · rcan,εi(x
i)

ρ̂(xi)
≥ 1

10
, lim inf

i→∞
A · ρ̂(x

i)

R(C̃i)
≥ 1

10
. (5.18)

By our choice of D′, the second bound implies diam(M, g0) < D′ρ(x). So for
large i we have diam Ci < D′ρ(xi). Since limi→∞ ρ̂(xi)/ρ(xi) = V 1/3(M, g0) >
0, the first bound of (5.18) implies that lim inf i→∞ rcan,εi(x

i)/ρ(xi) = ∞. This
implies that Ci ⊂ U i

D′ and ρ(xi) ≤ α′rcan,εi(x
i) for large i, which contradicts our

assumptions.



RICCI FLOW AND CONTRACTIBILITY OF SPACES OF METRICS 43

Lastly assume that Assertion (d) of this claim was false. Then we can find
a sequence of counterexamples as before, but this time for fixed α′, A, a,D′ and
εi → 0 such that ∂m0

t
η′1(x

i)ρ2m0(xi) → ∞ for some fixed m0 ≥ 1. So for large i
the point xi must lie in the support of η∗1η

∗∗
2 |UD′

, because otherwise η′1 would be
constant near xi. As before, we can pass to a pointed, compact, simply-connected
κ-solution (M, g, x) such that for any m ≥ 0 we have

∂m
t
η∗∗1 (xi) · ρ2m(xi) −→ ∂mt η

∗∗
1 (x), ∂m

t
ρ̂(xi) · ρ−1+2m(xi) −→ ∂mt ρ̂(x).

Moreover, by Lemma 3.27 we have for m ≥ 1

lim sup
i→∞

∣∣∂m
t
rcan,εi(x

i)
∣∣ · ρ−1+2m(xi) ≤ lim sup

i→∞
εir1−2m

can,εi (x
i) · ρ−1+2m(xi) = 0,

which implies that for m ≥ 1

∂m
t
η∗1(x

i) · ρ2m(xi) −→ 0.

By combining these estimates, we obtain a contradiction to our assumption that
∂m0
t
η′1(x

i)ρ2m0(xi) → ∞. �

Claim 5.19. If α ≤ c(δ∗)a, A ≥ A(δ∗), D′ ≥ D′(δ∗), D0 ≥ D0(δ
∗), ε ≤ ε(δ∗),

then Assertion (d) of this lemma holds.

Proof. Assume that the claim was false for some fixed δ∗. Then we can find
singular Ricci flows Mi and points xi ∈ Mi

ti such that η1(x
i) < 1 and all As-

sertions (d1)–(d4) are false, for parameters ai, Ai, αi ≤ ciai, Di, D′,i, Di
0, ε

i that
satisfy the bounds of Claims 5.16 and 5.17 and αi, ci, εi → 0 and Ai, D′,i, Di

0 → ∞.
Let Ci ⊂ Mi

ti be the component containing xi and observe that η1(x
i) < 1 implies

η′1(x
i) < (Ai)−1.

Since Assertion (d1) is violated we have

ρ(xi) ≤ αi · rcan,εi(xi) ≤ ciai · rcan,εi(xi) < rcan,εi(x
i)

for large i, which implies that the points xi satisfy the εi-canonical neighborhood
assumption. So after passing to a subsequence, we may assume that after para-
bolic rescaling by ρ−2(xi) the universal covers of the flows restricted to larger and
larger backwards parabolic neighborhoods of xi converge to a smooth, pointed
κ-solution (M, (g)t≤0, x).

We claim that M must be compact. Assume not. Then by Theorem 3.2, after
passing to another subsequence, (Ci, ρ−2(xi)giti , x

i) would converge to a pointed
round cylinder, its Z2-quotient or a pointed Bryant soliton, in contradiction to
our assumption that Assertions (d3) and (d4) are violated. Note here that the
Hessian of R on (MBry, gBry) at xBry is non-degenerate (see Lemma 3.8), so if
(Ci, x′′) is sufficiently close to (MBry, gBry, xBry), then we can find an x′ ∈ Ci near
x′′ with ∇R(x′) = 0.

So M must be compact. Since Assertion (d1) is violated by assumption, we
have for all t′ ∈ [ti − ρ2(xi), ti]

ai · rcan,εi(x
i(t′))

ρ̂(xi(t′))
≥ ai · rcan,εi(x

i)

ρ̂(xi(t′))
≥ ai

αi
· ρ(xi)

ρ̂(xi(t′))
≥ 1

ci
· ρ(xi)

ρ̂(xi(t′))
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Due to smooth convergence to a compact κ-solution, which also holds on larger
and larger parabolic neighborhoods, the right-hand side must go to infinity.
Therefore, for large i we have η∗1(x

i(t′)) = 1 for all t′ ∈ [ti − ρ2(xi), ti]. Simi-
larly, by smooth convergence to a compact κ-solution, Ai → ∞ and the fact that
ρ̂/R is scaling invariant, we obtain that for large i we have η∗∗1 (xi(t′)) = 1 for all
t′ ∈ [ti − ρ2(xi), ti]. So since D′,i → ∞ we obtain that for large i

(Ai)−1 > η′1(x
i) ≥

∫ ti

ti−ρ2(xi)

1

ρ̂2(xi(t′))
dt′.

This, again, contradicts smooth convergence to a compact κ-solution. �

Lastly, let us summarize the choice of constants. Given δ∗, we can determine
A and D0 using Claim 5.19. Next, we can choose D′ using Claims 5.17, 5.19 and
then α′, a using Claim 5.16. Once a is fixed, we can choose α using Claim 5.19.
These constants can be used to determine D,D0, Cm. Lastly, we can choose ε
depending on all previous constants and N . �

5.8. Modification in regions that are geometrically close to Bryant soli-
tons. Our next goal will be to round the metrics gs in regions that are close to
the tip of a Bryant soliton at an appropriately small scale. The resulting metrics
will be called g′,s2 .

Lemma 5.20. For every δ, δ∗ > 0, and assuming α ≤ α(δ∗), D ≥ D(δ∗), Cm ≥
Cm and ε ≤ ε(δ∗, δ), there are:

• a transversely continuous family of smooth metrics (g′,s2 )s∈X on ker dt,
• a continuous function η2 : ∪s∈XMs → [0, 1] that is smooth on each fiber
Ms and transversely continuous in the smooth topology,

• a transversely continuous family of spherical structures (Ss2)s∈X on open
subsets of Ms,

such that for any s ∈ X and t ≥ 0:

(a) The fibers of Ss2 are contained in time-slices of Ms.
(b) g′,s2 is compatible with Ss2.
(c) η2 satisfies all assertions of Lemma 5.15 for the new constants α, D, Cm,

ε and N := [δ−1] and with Assertion (d) replaced by: For every point
x ∈ Ms

t with η2(x) < 1 (at least) one of the following is true:
(c1) ρ(x) > αrcan,ε(x).
(c2) x is a center of a δ∗-neck with respect to g′,s2 ,
(c3) There is an open neighborhood of x that admits a two-fold cover in

which a lift of x is a center of a δ∗-neck with respect to g′,s2 .
(c4) x ∈ domain(Ss2).

(d) g′,s2 = gs on {ρ > 10−1rcan,ε}.
(e) |∇m1∂m2

t
(g′,s2 − gs)| < δρ−m1−2m2 for m1, m2 = 0, . . . , [δ−1].

(f) If (Ms
t , g

s
t ) is homothetic to the round sphere or a quotient of the round

cylinder, then g′,s2,t = gst .
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(g) For every spherical fiber O of Ss2 there is a family of local spatial vector
fields (Y s′

O )s′∈X defined in a neighborhood of O in ∪s∈XMs such that for
all s′ ∈ X the vector field ∂s

′

t
+ Y s′

O preserves Ss′2 and |∇m1∂m2
t
Y s′

O | <
δρ1−m1−2m2 for m1, m2 = 0, . . . , [δ−1].

Note that we may choose δ ≪ δ∗. This will be important for us later when
we analyze components where η2 ∈ (0, 1) in the proof of Lemma 5.29. More
specifically, the diameter of these components is bounded by a constant of the
form D(δ∗)ρ(x), while g′2 is δ-close to g. So by choosing δ ≪ δ∗, we can guarantee
that the Ricci flows starting from both metrics on these components remain
arbitrarily close on an arbitrarily large time-interval.

Proof. In the following we will assume that δ∗ is smaller than some universal
constant, which we will determine in the course of the proof. Apply Lemma 5.15
with δ∗ replaced by δ∗/2 and N = [δ−1], set

η2(x) := ν(2η1(x))

and consider the constants α ≤ α(δ∗), D ≥ D(δ∗), D0 ≥ D0(δ
∗) and Cm ≥

Cm(δ
∗). Note that {η2 > 0} ⊂ {η1 > 0} and {η2 < 1} ⊂ {η1 < 1

2
} ⊂ {η1 < 1}.

So all assertions of Lemma 5.15 remain true for η2 after modifying the constants
Cm ≥ Cm(δ

∗).
In the following we will construct g′,s2 and Ss2 for all s ∈ X . The fact that these

objects are transversely continuous, as well as Assertion (g), will mostly be clear
due to our construction.

Let Es ⊂ Ms be the set of points x′ ∈ Ms
t such that:

(1) η1(x
′) < 1.

(2) ρ(x′) < 10−1rcan,ε(x
′).

(3) ∇R(x′) = 0.
(4) (Ms

t , g
s
t , x

′) is δ∗-close to (MBry, gBry, xBry) at some scale.
(5) The diameter of the component of Ms

t containing x
′ is > 100D0ρ(x

′).

Claim 5.21. Assuming δ∗ ≤ δ
∗
, ε ≤ ε(D0) the following is true for any x′ ∈

Es ∩Ms
t :

(a) The Hessian of R at x′ is strictly negative.
(b) Es ⊂ Ms is an 1-dimensional submanifold.
(c) (Es)s∈X is transversely continuous in the following sense: There are neigh-

borhoods U ⊂ X, I ⊂ [0,∞) of x′ and t and a transversely continuous
family of smooth maps (x̂′s′ : I → Ms′)s′∈U with x̂′s′(t

′) ∈ Es′ ∩ Ms′

t′ ,
x̂′s(t) = x′ and ∪s′∈X x̂′s′(I) ∩ V = ∪s′∈XEs′ ∩ V for some neighborhood
V ⊂ ∪s∈XMs of x′. Moreover, (x̂′s′)s′∈U is locally uniquely determined by
x′.

(d) The balls B(x′, 10D0ρ(x
′)), x′ ∈ Es ∩Ms

t are pairwise disjoint.
(e) If x ∈ Ms

t with η1(x) < 1, then

x ∈ ∪x′∈Es∩Ms
t
B(x′, D0ρ(x

′))
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or one of the Assertions (c1)–(c3) of this lemma hold with δ∗ replaced by
δ∗/2 and g′,s2 replaced by gs.

(f) The injectivity radius at x′ is > 10D0ρ(x
′).

Proof. Assertion (a) is a consequence of Lemma 3.8 and Property (4) for δ∗ ≤ δ
∗

and Assertions (b) and (c) are an immediate consequence of Assertion (a) due to
the implicit function theorem applied to∇R. Assertion (e) is a direct consequence
of Assertion (d) from Lemma 5.15.

For Assertion (d) it suffices to show that

Es ∩B(x′, 20D0ρ(x
′)) = {x′}. (5.22)

If Assertions (d) or (f) were false, then we could find a sequence of singular Ricci
flows Mi and points x′,i ∈ Mi

ti that satisfy Properties (1)–(5) for εi → 0, but
violate (5.22) or Assertion (f). After passing to a subsequence, we may assume
that (Mi

ti, ρ
−2(x′,i)giti , x

′,i) either converge to a pointed final time-slice (M, g, x′)
of a κ-solution, or their universal covers converge to a round sphere. The second
case can be excluded by Property (4), assuming δ∗ ≤ δ

∗
, which also implies that

(M, g) is not a quotient of the round sphere or the round cylinder. It follows that
(M, g) is rotationally symmetric due to Theorem 3.2 and by Property (3) the point
x′ is a center of rotation. By Property (5) we obtain that diam(M, g) ≥ 100D0.
This implies (5.22) for large i. Assertion (f) follows for large i since the injectivity
radius at x′ is ≥ 100D0. �

Fix some x′ ∈ Es ∩Ms
t for the moment and choose a continuous family (x̂′s′)

near x′ as in Assertion (c) of Claim 5.21. Choose a family of linear isometries
ϕs′,t′ : R

3 → Tx̂′
s′
(t′)Ms′

t′ such that for every s′ the family t′ 7→ ϕs′,t′ is parallel

along t′ 7→ x′s′,t′. Then

χ : (s′, t′, v) 7−→ expgs′
t′
,x̂′

s′
(t′)(ϕs′,t′(v))

defines a family of exponential coordinates near x′, which induce a family of
O(3)-actions on B(x̂′s′(t

′), 10D0ρ(x̂
′
s′(t

′))) that are transversely continuous in the
smooth topology. Let g′′ be average of g under these local actions. Note that g′′

does not depend on the choice of the family (ϕs′,t′), so it extends to a smooth
and transversely continuous family of metrics on ∪x′∈EsB(x′, 10D0ρ(x

′)), which
is compatible with a unique transversely continuous family of spherical structure
(S ′,s)s∈X . Next, define ∂s

′

t
+ Y s′

χ to be the average of ∂s
′

t
under the same action

on the image of χ. Then ∂s
′

t
+ Y s′

χ preserves S ′,s′ for s′ near s. A standard
limit argument as in the proof of Claim 5.21 (the limit again being a rotationally
symmetric κ-solution) shows that if ε ≤ ε(δ′, D0(δ

∗)), then

|∇m1∂m2
t

(g′′,s − gs)| < δ′ρ−m1−2m2 , |∇m1∂m2
t
Y s′

χ | < δ′ρ1−m1−2m2 (5.23)

for m1, m2 = 0, . . . , [(δ′)−1].
For x ∈ B(x′, 10D0ρ(x

′)) set

(g′′′,st )x := (g′′,st )x + ν

(
d(x, x′)

D0ρ(x′)
− 2

)
·
(
(gst )x − (g′′,st )x

)
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and (g′′′,st )x := (gst )x otherwise. Then g′′′,st is smooth on Ms
t and transversely

continuous and g′′′,st = g′′,st on B(x′, 2D0ρ(x
′)). We can now define g′,s2 as follows:

(g′,s2 )x := (gs)x + ν

(
rcan,ε(x)

102ρ(x)

)
· ν

(
2− 2η1(x)

)
·
(
(g′′′,s)x − (gs)x

)
.

Then (g′,s2 )x = (g′′′,s)x whenever ρ(x) < 10−2rcan,ε(x) and η1(x) <
1
2
. On the other

hand, (g′,s2 )x = (gs)x whenever ρ(x) > 10−1rcan,ε(x) or η1(x) = 1. This implies

Assertion (d). If δ′ ≤ δ
′
(δ,D0(δ

∗), (Cm(δ
∗))) and ε ≤ ε(δ), then Assertion (e)

holds due to (5.23) and Lemma 3.27; moreover we can assume that 1
2
ρg < ρg′2 <

2ρg.
Next let S2 be the restriction of S ′ to {ρg′2 <

1
2
10−2rcan,ε} ∩ {η1 < 1

2
}. Then

Assertion (c) holds due to Claim 5.21(e), assuming that we have chosen δ′ ≤
δ
′
(δ∗, D0) and α ≤ 10−3; note we need to ensure that a center of a δ∗/2-neck

with respect to gs is automatically a center of a δ∗-neck with respect to g′,s2 .
Assertions (a), (b),(f) hold by construction. Assertion (g) holds due to (5.23),
assuming that δ′ ≤ δ. �

5.9. Modification in cylindrical regions. In the next lemma we construct
metrics g′,s3 by rounding the metrics g′,s2 in the neck-like regions. This new metric
will be rotationally symmetric everywhere, except at points of large scale or on
components of bounded normalized diameter.

Lemma 5.24. For every δ > 0, and assuming that α ≤ α,D ≥ D, Cm ≥ Cm

and ε ≤ ε(δ), there are:

• a transversely continuous family of smooth metrics (g′,s3 )s∈X on ker dt,
• a continuous function η3 : ∪s∈XMs → [0, 1] that is smooth on each fiber
Ms and transversely continuous in the smooth topology,

• a transversely continuous family of spherical structures (Ss3)s∈X on open
subsets of Ms,

such that for all s ∈ X:

(a) The fibers of Ss3 are contained in time-slices of Ms.
(b) g′,s3 is compatible with Ss3.
(c) domain(Ss3) ⊃ {ρ < αrcan,ε} ∩ {η3 < 1} ∩Ms.
(d) η3 satisfies Assertions (a)–(c), (e) of Lemma 5.15 with respect to the new

constants D,Cm and for N = [δ−1].
(e) g′3 = g on {ρ > 10−1rcan,ε}.
(f) |∇m1∂m2

t
(g′,s3 − gs)| ≤ δρ−m1−2m2 for m1, m2 = 0, . . . , [δ−1].

(g) If (Ms
t , g

s
t ) is homothetic to the round sphere or a quotient of the round

cylinder for some t ≥ 0, then g′,s3,t = gst .
(h) For every spherical fiber O of Ss3 there is a family of local spatial vector

fields (Y s′

O )s′∈X defined in a neighborhood of O in ∪s∈XMs such that for
all s′ ∈ X the vector field ∂s

′

t
+ Y s′

O preserves Ss′3 and |∇m1∂m2
t
Y s′

O | <
δρ1−m1−2m2 for m1, m2 = 0, . . . , [δ−1].

Note that α, D and Cm are independent of δ.
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Proof. Let δ∗, δ#, δ′ > 0 be constants that we will determine in the course of
the proof. Apply Lemma 5.20 for δ∗, δ = δ# and consider the family of met-
rics (g′,s2 )s∈X , the continuous function η2 and the family of spherical structures
(Ss2)s∈X .

If δ∗ ≤ δ
∗
, then for every x ∈ Ms

t that satisfies Assertion (c2) or (c3) of
Lemma 5.20 we can find a unique constant mean curvature (CMC) sphere or
CMC-projective space x ∈ Σx ⊂ Ms

t with respect to g′,s2,t whose diameter is

< 100ρ(x). Moreover, the induced metric g′,s2,t|Σx can, after rescaling, be assumed
to be arbitrarily close to the round sphere or projective space if δ∗ is chosen
appropriately small. So if δ∗ ≤ δ

∗
, then g′x := RD2(g′,s2,t|Σx) defines a round

metric on Σx; here RD2 denotes the rounding operator from Subsection 5.5. If
x ∈ domain(Ss2), then Σx is a regular fiber of Ss2 and the induced metric is round,
so g′x = g′,s2,t|Σx . It follows that for sufficiently small δ∗ the spheres Σx ⊂ Ms

t

and volume-normalizations of the metrics g′x, for all x satisfying Assertion (c2)
or (c3) of Lemma 5.20, can be used to define a spherical structure S ′,s on an
open subset of Ms that extends the spherical structure Ss2 . By construction, the
family (S ′,s)s∈X is transversely continuous and

{ρg < αrcan,ε} ∩ {η2 < 1} ∩Ms ⊂ domain(S ′,s). (5.25)

The family (Ss2)s∈X will arise by restricting (S ′,s)s∈X to a smaller domain.
From now on we fix δ∗ > 0 such that the construction in the previous paragraph

can be carried out. We can then also fix D ≥ D(δ∗), α ≤ α(δ∗) and Cm ≥ Cm(δ
∗)

according to Lemma 5.20.
We will now construct a family of metrics on domain(S ′,s) that are compatible

with S ′,s. For this purpose fix s ∈ X and consider a regular spherical fiber
Σ ⊂ Ms

t of S ′,s. Let gΣ be a multiple of the standard round metric induced by
S ′,s with the property that:

(1) The areas of Σ with respect to gΣ and the induced metric g′,s2,t|Σ agree.

Note that gΣ = g′x from before if Σ = Σx. If Σ is a fiber of Ss2 , then we have
gΣ = g′,s2,t|Σ. By passing to a local two-fold cover (see Lemma 5.3), we can also
define gΣ for any singular fibers Σ ≈ RP 2.

Next, fix a unit normal vector field N along Σ (with respect to g′,s2 ) and consider
all spatial vector fields Z defined in a neighborhood of Σ such that:

(2) Z preserves S ′,s

(3)
∫
Σ
〈Z,N〉g′,s2

dµgΣ =
∫
Σ
dµgΣ

Any two such vector fields Z1, Z2 differ along Σ by a Killing field on (Σ, gΣ). So
there is a unique vector field ZΣ,N along Σ with minimal L2-norm (with respect
to g′,s2 ) that arises as a restriction of a vector field Z satisfying Properties 2 and
3 to Σ. Note that ZΣ,−N = −ZΣ,N . If Σ is a fiber of Ss2 , then ZΣ,N = N .

We can now define a metric g′′,s for ker dt on domain(S ′,s) such that for every
regular fiber Σ of S ′,s:

(4) g′′,s|Σ = gΣ
(5) ZΣ,N are unit normal vector fields with respect to g′′,s.
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Then g′′,s is smooth and transversely continuous near regular fibers. The reg-
ularity near singular fibers ≈ RP 2 can be seen by passing to a local two-fold
cover. On domain(Ss2) we have g′′,s = g′,s2 , so g′′,s is also regular near singular
fibers that are points. This shows that g′′,s is smooth and transversely continuous
everywhere.

Let us now discuss the closeness of g′′,s to g′,s2 and the existence of a local vector
field as in Assertion (h). Fix a fiber Σ ⊂ Ms

t of S ′,s that is not a fiber of Ss2 and
pick a point x ∈ Σ and two orthonormal vectors v1, v2 ∈ TxMs

t (with respect to
g′′,st ) that are tangent to Σ. We can uniquely extend vi to a family of vectors
vi,t′ along the curve t′ 7→ x(t′) ∈ Ms

t′ , for t
′ close to t, such that v1,t′ , v2,t′ remain

orthonormal and tangent to the spherical fiber Σx(t′) through x(t
′) and such that

d
dt′
v1,t′ is normal to v2,t′ . Using the exponential map, we can find a unique family

of homothetic embeddings βt′ : S
2 → Ms

t′ such that βt′(S
2) = Σx(t′) and such

that for some fixed orthonormal tangent vectors u1, u2 of S2 the images dβt′(ui)
are positive multiples of vi,t′ . Using the normal exponential map to Σx(t′), we can
extend these maps to charts of the form

χst′ : S
2 × (−as, as) −→ Ms

t′

By repeating the same procedure for s′ near s, starting with points xs
′

and vec-
tors vs

′

i that depend continuously on s′, we can extend (χst′) to a transversely
continuous family of charts χ = (χs

′

t′ ). These charts induce a transversely con-
tinuous family of local O(3)-actions that are isometric with respect to g′′,s and
compatible with S ′,s. As in the proof of Lemma 5.20 we can define ∂s

′

t
+ Y s′

χ to

be the average of ∂s
′

t
under this action near Σ. Then ∂s

′

t
+ Y s′

χ preserves S ′,s′ for

s′ near s. A limit argument yields that if ε ≤ ε(δ′), δ# ≤ δ
#
(δ′), then near Σ

|∇m1∂m2
t

(g′′,s − g′,s2 )| ≤ δ′ρ−m1−2m2 , |∇m1∂m2
t
Y s′

χ | ≤ δ′ρ1−m1−2m2 (5.26)

for m1, m2 = 0, . . . , [(δ′)−1].
Lastly, we construct the metrics g′,s3 by interpolating between g′,s2 and g′′,s using

the cutoff function ν from Subsection 5.6. If x ∈ domain(S ′,s), then set

(g′,s3 )x := (g′,s2 )x + ν

(
α · rcan,ε(x)
102ρg(x)

)
· ν

(
2− 2η2(x)

)
·
(
(g′′,s)x − (g′,s2 )x

)
,

otherwise let (g′,s2 )x := (g′,s1 )x. This defines a smooth and transversely continuous
family of metrics due to (5.25). On {ρ > 10−1rcan,ε} we have g′3 = g′2 = g,
assuming α ≤ 1, which implies Assertion (e). As in the proof of Lemma 5.20 the

bound (5.26) implies Assertion (f) if δ′ ≤ δ
′
(δ, (Cm(δ

∗))) and δ# ≤ δ
#
(δ) and we

can again assume that 1
2
ρg′2 < ρg′3 < 2ρg′2 and 1

2
ρg < ρg′2 < 2ρg.

Next note that g′3 = g′′ on

{ρg < 10−2αrcan,ε} ∩ {η2 < 1
2
} ⊃ {ρg′3 < 1

4
10−2αrcan,ε} ∩ {η2 < 1

2
}.

So if Ss3 denotes the restriction of S ′,s to the subset {ρg′3 < 1
4
10−2αrcan,ε} ∩ {η2 >

1
2
}, then Assertions (a), (b) hold by construction and Assertion (c) holds if we

replace α by 1
16
10−2α and set η3(x) := ν(2η2(x)).
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Finally, Assertion (h) of this lemma holds due to (5.26) and Lemma 5.20(g),
assuming δ′ ≤ δ, and Assertions (d) and (g) hold after adjusting the constants
Cm appropriately. �

5.10. Modification of the time vector field. Next, we will modify the time-
vector fields ∂s

t
on {η3 > 0} ∩ {ρ < αrcan,ε} so that they preserve the spherical

structures Ss3 .
Lemma 5.27. For every δ > 0 and assuming that α ≤ α, D ≥ D, Cm ≥ Cm

and ε ≤ ε(δ) there are:

• a transversely continuous family of smooth metrics (g′,s4 )s∈X on ker dt,
• a continuous function η4 : ∪s∈XMs → [0, 1] that is smooth on each fiber
Ms and transversely continuous in the smooth topology,

• a transversely continuous family of spherical structures (Ss4)s∈X on open
subsets of Ms,

• a transversely continuous family of smooth vector fields (∂′,s
t,4)s∈X on Ms

that satisfy ∂′,s
t,4t = 1,

such that the assertions of Lemma 5.24 still hold for (g′,s4 )s∈X , η4 and (Ss4)s∈X
and such that in addition for all s ∈ X:

(i) ∂′,s
t,4 preserves Ss4 .

(j) ∂′,s
t,4 = ∂s

t
on {ρ > 10−1rcan,ε}.

(k) |∇m1∂m2
t

(∂′,s
t,4 − ∂s

t
)| ≤ δρ1−m1−2m2 for m1, m2 = 0, . . . , [δ−1].

(l) If (Ms
0, g

s
0) is homothetic to the round sphere or a quotient of the round

cylinder, then ∂′,s
t,4 = ∂s

t
.

Proof. Apply Lemma 5.24 for δ replaced by some δ# > 0, which we will determine
in the course of the proof depending on δ, and fix the constants α, D, Cm. Assume
in the following that 1

2
g < g′3 < 2g. Set (g′,4s )s∈X := (g′,3s )s∈X . Fix some s ∈ X

for now and set Us := {η3 < 1} ∩ {ρg′3 < 1
2
αrcan,ε} ∩Ms ⊂ domain(Ss3). We will

define
∂′,s
t,4 := ∂s

t
+ η∗Zs, (5.28)

where Zs is a spatial vector field on Us and η∗ : ∪s∈XMs → [0, 1] is a smooth
and transversely continuous cutoff function with support on ∪s∈XUs.

Let us describe the construction of Zs. Consider a spherical fiber O ⊂ Us∩Ms
t .

Call a vector field Z ′ in Ms
t along O admissible if ∂s

t
+ Z ′ can be extended to a

vector field on neighborhood of O in Ms that preserves Ss3 . Using a local chart
near O in Ms, one can see that the space of admissible vector fields along O
is affine and finite dimensional. More specifically, if O is a point, then there is
only one admissible vector field along O and otherwise the difference of any two
admissible vector fields is equal to the sum of a Killing field on O and a parallel
normal vector field to O. Let now Z ′

O be the admissible vector field along O
whose L2-norm is minimal and define Zs on Us such that Zs|O := Z ′

O for every
spherical fiber O ⊂ Us. Then Zs is well defined.

We will now show that Zs is smooth, transversely continuous in the smooth
topology and small in the sense of Assertion (k). For this purpose, consider a
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family of defined vector field (Y s′

O )s′∈X from Lemma 5.24(h) near a spherical fiber
O. As in the proofs of Lemmas 5.20 and 5.24, we can construct a transversely
continuous family of local O(3)-actions (ζs

′

) that are compatible with Ss′3 and

isometric with respect to g′,s
′

3 . By definition Y s′

O −Zs′ restricted to every spherical
fiber O′ ⊂ Ms′ near O that is not a point equals the L2-projection of YO|O′ onto
the subspace spanned by Killing fields and parallel normal vector fields along O′.
If O′ is a point, then Y s′

O −Zs′ restricted to every spherical fiber O′ vanishes. So
a representation theory argument implies that

Y s′

O − Zs′|U =
1

|O(3)|

∫

O(3)

(1 + 3 trA)(ζs
′

A )∗Y
s′

O dA,

where ζs
′

A := ζs
′

(A, ·). This implies the desired regularity properties of Zs and

the bound from Assertion (k) for δ# ≤ δ
#
(δ) if we had ∂′,s

t,4 = ∂s
t
+ Zs.

It remains to construct the cutoff function η∗. Let ν be the cutoff function
from Subsection 5.6 and set

η∗(x) := ν

(
α · rcan,ε(x)
102ρg′3(x)

)
· ν

(
2η2(x)

)
.

Then supp η∗ ⊂ ∪s∈XUs, so if we define ∂′,s
t,4 as in (5.28), then Assertion (k)

holds for δ# ≤ δ
#
(δ, (Cm)) and ε ≤ ε(δ, (Cm)). Next, note that η∗ ≡ 1 on

U ′ := {ρg′3 < 10−2αrcan,ε} ∩ {η3 > 1
2
}. So if we define Ss4 to be the restriction

of Ss3 to U ′ ∩ Ms, then Assertion (i) holds. Assertions (a)–(h) of Lemma 5.24
continue to hold if we replace α by 1

2
10−2α, set η4(x) := ν(2η3(x)) and adjust Cm

appropriately. Assertion (j) of this lemma holds assuming α ≤ 1
2
and Assertion (l)

is true due to construction. �

5.11. Extension of the structure until the metric is almost round. Next
we modify each metric g′,s4 on the support of η4 such that it remains compatible
with a spherical structure Ss5 until it has almost constant curvature. We will also
choose a new cutoff function η5 whose support is contained in the support of η4
and which measures the closeness of g′,s4 to a constant curvature metric.

Recall in the following that η4 is only non-zero in components that have positive
sectional curvature, bounded normalized diameter and will become extinct in
finite time. Therefore our construction will only take place in product domains
of Ms, which can be described by conventional Ricci flows. Our strategy will
be to construct new metrics g′,s5 by evolving the metrics g′,s4 on the support of
η4 forward by a certain amount of time under the Ricci flow. By the continuous
dependence of the Ricci flow on its the initial data, this flow remains close to
gs for some time. Moreover, any symmetry of g′,s4 will be preserved by the flow
and therefore the new metrics g′,s5 will be compatible with a spherical structure
for a longer time. By choosing our constants appropriately, we can ensure that
g′,s5 is compatible with a spherical structure until a time close enough to the
corresponding extinction time. After this time the remaining flow is sufficiently
close to a quotient of the round sphere.
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Lemma 5.29. For every δ > 0 and assuming that α ≤ α(δ), C∗
m ≥ C∗

m and
ε ≤ ε(δ) there are:

• a transversely continuous family of smooth metrics (g′,s5 )s∈X on ker dt,
• a continuous function η5 : ∪s∈XMs → [0, 1] that is smooth on each fiber
Ms and transversely continuous in the smooth topology,

• a transversely continuous family of spherical structures (Ss5)s∈X on open
subsets of Ms,

• a transversely continuous family of smooth vector fields (∂′,s
t,5)s∈X on Ms

that satisfy ∂′,s
t,5t = 1,

such that for any s ∈ X and t ≥ 0:

(a) ∂s
t
η5 ≥ 0.

(b) η5 is constant on every connected component of Ms
t .

(c) Any connected component C ∈ Ms
t on which η5 > 0 is compact and there

is a time tC > t such that:
(c1) C survives until time t′ for all t′ ∈ [t, tC) and no point in C survives

until or past time tC.

(c2) The universal cover (C̃(t′), g′,s5,t′) is δ-close to the round sphere modulo
rescaling for all t′ ∈ [t, tC).

(c3) ρ < 10−1rcan,ε on C(t′) for all t′ ≥ [t, tC).
(d) |∂m

t
η5| ≤ C∗

mρ
−2m for m = 0, . . . , [δ−1].

(e) η5, g
′
5, S5, ∂

′
t,5 satisfy Assertions (a)–(c), (e)–(g) of Lemma 5.24 and all

assertions of Lemma 5.27.

It will be important later that the constants C∗
m are independent of δ.

Proof. Let δ#, δ′, δ′′ > 0, A < ∞ be constants whose values will be determined
depending on δ in the course of the proof. Apply Lemma 5.27 with δ replaced
by δ# and consider the families (g′,s4 )s∈X , (∂

′,s
t,4)s∈X , (Ss4)s∈X , the cutoff function

η4 and the constants α,D,Cm. Assume that δ# is chosen small enough such that
1
2
ρg < ρg′4 < 2ρg.
Set ∂′

t,5 := ∂′
t,4 everywhere and g′5 := g′4, S5 := S4 and η5 := η4 = 0 on

{η4 = 0}. Therefore, it suffices to consider only components C ⊂ Ms
t where

η4 > 0. Recall that by Lemma 5.15(c), the union of these components consists
of pairwise disjoint product domains. For any such component C ⊂ Ms

t choose
tmin
C < t < tmax

C minimal/maximal such that C survives until all t′ ∈ (tmin
C , tmax

C )
and set

UC := ∪t′∈(tmin
C

,tmax
C

)C(t′).

Then UC is a product domain (with respect to ∂s
t
and ∂′,s

t,5) and for any two
components C, C′ ⊂ Ms

t on which η4 > 0 the product domains UC , UC′ are either
equal or disjoint. For the remainder of the proof let us fix some s ∈ X and a
product domain of the form UC. Recall that η4 = 0 on C(t′) ⊂ UC for t′ close to
tmin
C . We will describe how to define g′,s5 , η5 and Ss5 on UC such that all assertions
of this lemma hold and g′,s5 = g′,s4 , η5 = η4 = 0 and Ss5 = Ss4 on {η4 = 0} ∩ UC. It
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will be clear that the same construction can be performed for every UC and that
the resulting objects have the desired regularity properties.

We first represent the flows gs and g′,s4 restricted to UC by a smooth family of
metrics on C, which satisfy an equation that is similar to the volume normalized
Ricci flow equation. For this purpose consider the flow Φ : C × (T1, T2) → UC of

the vector field ∂̃s
t
:= ρ̂2g ·∂′,st,4. By Lemma 5.15(c5) we have |∂̃s

t
t| = ρ̂2g ≤ C(tmax

C −t).

So T2 = ∞. Express gs and g′,s4 as families of metrics (g̃t)t∈(T1,∞), (g̃4,t)t∈(T1,∞)

and define η̃4 : (T1,∞) → [0, 1] as follows:

g̃t := Φ∗
t

(
ρ̂−2
g gs

)
, g̃4,t := Φ∗

t

(
ρ̂−2
g g′,s4

)
, η̃4(t) := η4(Φt(C)).

Note that if ∂′,t
t,4 = ∂s

t
, then (g̃t) is the volume normalization of the flow gs re-

stricted to UC. In the general case, consider the family of vector fields (Zt)t∈(T1,∞)

Zt := Φ∗
t

(
ρ̂2g(∂

s
t
− ∂′,s

t,4)
)
.

Then (g̃t) satisfies the following normalized flow equation with a correctional Lie
derivative:

∂tg̃t + LZt g̃t = −2Ricg̃t +
2

3V (C, g̃t)

∫

C

Rg̃tdµg̃t · g̃t.

We have ∂tη̃4 ≥ 0 by Lemma 5.15(a). By our previous discussion we have η̃4(t) ≡
0 for t near T1 and η̃4(t) > 0 for large t. Let T0 ∈ (T1,∞) be maximal such that
η̃4|(T1,T0] ≡ 0.

Claim 5.30. There are constants C ′
m < ∞ such that if δ# ≤ δ

#
(δ′), ε ≤ ε(δ′),

then T0− (δ′)−2 > T1 and for all t ∈ (T0− (δ′)−2,∞) and m1, m2 = 0, . . . , [(δ′)−1]
we have

|∂m2
t η̃4| ≤ C ′

m2
ρ−2m2

g̃ , |∇m1∂m2
t (g̃4 − g̃)| ≤ δ′ρ−m1−2m2

g̃ ,

|∇m1∂m2
t Z| ≤ δ′ρ1−m1−2m2

g̃ .

Proof. The first statement is a consequence of Lemma 3.27, assuming that ε ≤
ε(δ′). The other bounds follow via a standard limit argument using Lemma 5.15(e),
Lemma 5.24(f) and Lemma 5.27(k) �

For any metric g′ on C and any ∆T ≥ 0 denote by RF∆T (g
′) the result of

evolving g′ by the volume normalized Ricci flow equation

∂tg
′
t = −2Ricg′t +

2

3V (C, g′t)

∫

C

Rg′t
dµg′t · g

′
t, g′0 = g′ (5.31)

for time ∆T , if possible. Note that if g′ is compatible with some spherical struc-
ture S ′, then so is RF∆T (g

′). We now define (g̃5,t)t∈(T1,∞) and η̃5 : (T1,∞) → [0, 1]
as follows:

g̃5,t := RFη̃4(t)A g̃4,t−η̃4(t)A, η̃5(t) :=

{
0 if t ≤ T0

η̃4(t−A) if t > T0
.
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Claim 5.32. If δ′ ≤ δ
′
(A, δ′′) and ε ≤ ε(A, δ′′), then (g̃5,t)t∈(T1,∞) and η̃5 :

(T1,∞) → [0, 1] are well defined and smooth and for all m1, m2 = 0, . . . , [(δ′′)−1]
we have

|∂m2
t η̃5| ≤ C ′

m2
ρ−2m2

g̃ , |∇m1∂m2
t (g̃5 − g̃)| ≤ δ′′ρ−m1−2m2

g̃ .

Moreover, η̃5 = η̃4 and g̃5 = g̃4 on (T1, T0) and if Φt−η̃4(t)A(C) ⊂ domain(Ss4), then
g̃5,t is compatible with the pullback of S4 via Φt−η̃4(t)A.

Proof. The first bound is a direct consequence of Claim 5.30. The second bound
follows via a standard limit argument (the limit being a volume normalized Ricci
flow). The last two statements follow by construction. �

We can now choose g′,s5 and η5 on UC such that for all t ∈ (T1,∞)

g̃5,t := Φ∗
t

(
ρ̂−2
g g′,s5

)
, η̃5(t) := η5(Φt(C)).

Note that g′,s5 = g′,s4 and η5 = η4 on {η4 = 0} ∩UC . For any t ∈ (T1,∞) for which
Φt−η̃4(t)A(C) ⊂ domain(Ss4) consider the push-forward of Ss4 |Φt−η̃4(t)A

(C) onto Φt(C)
via the diffeomorphism Φt ◦Φ−1

t−η̃4(t)A
. The union of these spherical structures, for

all t ∈ (T1,∞) defines a new spherical structure Ss5 on UC, which is compatible
with g′,s5 on UC and equal to Ss4 on UC ∩ {η4 = 0}.

By Lemma 5.15(c) we have {ρ > 10−1rcan,ε} ∩ UC ⊂ {η4 = 0} ∩ UC. It follows
that Assertions (a), (b), (e), (g) of Lemma 5.24 and all Assertions of Lemma 5.27
hold on UC for g′,s5 , η5 and Ss5 . Assertions (a) and (b) of this lemma hold by
construction. By Claim 5.32 and another limit argument we can choose constants
C∗
m = C∗

m((C
′
m)) <∞ such that Assertion (d) of this lemma and Assertion (f) of

Lemma 5.24 hold on UC if δ′′ ≤ δ
′′
(δ), ε ≤ ε(δ). Note here that the constants C∗

m

can be chosen independently of A. The following claim implies that the remaining
assertions of this lemma hold on UC .

Claim 5.33. If A ≥ A(D, δ), c ≤ c(A) and ε ≤ ε(D, δ), then Assertion (c) of
this lemma holds on UC and Assertion (c) of Lemma 5.24 holds on UC for g′,s5 , η5
and Ss5 if we replace α by cα.

Proof. Consider first Assertion (c) of this lemma. Due to the fact that {η5 >
0} ∩ UC ⊂ {η4 > 0} ∩ UC and Assertion (c) of Lemma 5.15, it suffices to show
that if η̃5(t) > 0, then the universal cover of (C, g̃t) is δ-close to the round sphere
modulo rescaling if A ≥ A(D, δ) and ε ≤ ε(D, δ). Fix such a t ∈ (T1,∞)
with η̃5(t) > 0 and assume that the universal cover of (C, g̃t) was not δ-close
to the round sphere modulo rescaling. Then t − A > T0 and η̃4(t

′) > 0 for all
t′ ∈ [t − A, t]. So Assertions (c1), (c3), (c4) of Lemma 5.15 hold on Φt′(C) for
all t′ ∈ [t− A, t]. We obtain that secg̃t′ > 0 on C × [t− A, t] and diamg̃t′

C < Dρ
on C for all t′ ∈ [t− A, t]. In addition, the ε-canonical neighborhood assumption
holds on C × [t−A, t]. So if for no choice of A and ε the universal cover of (C, g̃t)
was δ-close to the round sphere modulo rescaling, then we could apply a limit
argument using Theorem 3.3 and obtain an ancient solution (M∞, (g̃∞t′ )t′≤0) to
the volume normalized Ricci flow equation (5.31) that satisfies

secg̃∞ ≥ 0, diamg̃∞ C ≤ Dρ (5.34)
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everywhere. Moreover every time-slice of (g̃∞t′ )t′≤0 is isometric to a time-slice of
a κ-solution and (g̃∞t′ )t′≤0 cannot homothetic to a shrinking round sphere. Due
to the positivity of the scalar curvature, it follows that reparameterizing (g̃∞t′ )t′≤0

yields an ancient Ricci flow, and therefore a κ-solution. The second bound in
(5.34) implies via Theorem 3.2(d) that this κ-solution is homothetic to the round
sphere, in contradiction to our assumptions.

For Assertion (c) of Lemma 5.24 note that by the canonical neighborhood
assumption we have

|∂̃s
t
ρg| = ρ̂2g · |∂′,st,4ρg| ≤ C(D)ρg.

It follows that for any (x, t) ∈ C × (T1,∞)

ρ(Φt−η̃4(t)A(x))) ≤ eC(D)Aρ(Φt(x)).

Set c := e−C(D)A and assume that ρgs(Φt(x)) < cαrcan,ε(Φt(x)) and η̃5(t) =
η5(Φt(x)) < 1. Then

ρ(Φt−η̃4(t)A(x))) < αrcan,ε(Φt(x)) ≤ αrcan,ε(Φt−η̃4(t)A(x)).

If η̃4(t) < 1, then η̃4(t− η̃4(t)A) ≤ η̃4(t) < 1 and if η̃4(t) = 1, then η̃4(t− η̃4(t)A) =
η̃4(t− A) = η̃5(t) < 1. Therefore

η4(Φt−η̃4(t)A(x)) < 1.

By Lemma 5.24(c) it follows that Φt−η̃4(t)A(x) ∈ domain(Ss4) and therefore by
construction Φt(x) ∈ domain(Ss5). �

By repeating the construction above for all product domains UC, we obtain
that all assertions of this lemma hold on the union of all UC. On the complement
of these product domain we have g′5 = g′4, S5 := S4 and η5 = η4 = 0. So
Assertions (a)–(d) hold trivially on this complement and Assertion (e) holds due
to Lemmas 5.24 and 5.27 assuming δ# ≤ δ. �

5.12. Modification in almost round components and proof of the main
theorem. Lastly, we will construct (g′,s)s∈X and (∂′,s

t
)s∈X by modifying (g′,s5 )s∈X

and (∂′,s
t,5)s∈X on {η5 > 0}. We will also construct a family of spherical structures

(Ss)s∈X by restricting and extending the family (Ss5)s∈X . These objects will form
the family of R-structures whose existence is asserted in Theorem 5.12.

Proof of Theorem 5.12. Let δ#, δ′ > 0, A <∞ be constants, whose values will be
determined depending on δ in the course of the proof. Apply Lemma 5.29 with
δ replaced by δ# and consider the families (g′,s5 )s∈X , (∂

′,s
t,4)s∈X , (Ss5)s∈X , the cutoff

function η5 and constants α(δ#) and C∗
m. Assume that δ# is chosen small enough

such that 1
2
ρg < ρg′5 < 2ρg.

Let us first define the family of metrics g′,s and vector fields ∂′,s
t
. Fix s ∈ X

and consider a component C ⊂ Ms
t on which η5 > 0. By Lemma 5.29(c) the

universal cover of (C, g′,s5,t) is δ#-close to the round sphere modulo rescaling. So if

δ# ≤ δ
#
, then we can define a smooth family of metrics g′′,s on {η5 > 0} ∩Ms

such that
g′′,st |C = RD3(g′,s5,t|C)
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for any such component C; here RD3 is the rounding operator from Subsection 5.5.
Similarly as in the proof of Lemma 5.27, we can consider the space of vector fields
Z ′ on C that can be extended to spatial vector fields Z ′′ near C in Ms such that
the flow of ∂′,s

t,5 + Z ′′ consists of homotheties with respect to g′′,s. The difference

of any two such vector fields is a Killing field on (C, g′′,st |C), therefore this space is
affine linear and finite dimensional. Let ZC be the vector field of this space whose
L2-norm with respect to g′′,st is minimal. Define the spatial vector field Zs on
{η5 > 0}∩Ms such that Zs|C = ZC for any component C ⊂ Ms

t ∩{η5 > 0}. Note
that since our construction is invariant under isometries, g′′,s is still compatible
with Ss5 and ∂′′,st

still preserves Ss5 . Lemma 5.24(f), Lemma 5.27(k) and a standard

limit argument imply that if δ# ≤ δ
#
(δ′), ε ≤ ε(δ′), then

|∇m1∂m2
t

(g′′,s − g′,s5 )| ≤ δ′ρ−m1−2m2 , |∇m1∂m2
t
Zs| ≤ δ′ρ1−m1−2m2 (5.35)

for m1, m2 = 0, . . . , [(δ′)−1].
Define g′,s := g′,s5 and ∂′,s

t
:= ∂′,s

t,5 on {η5 = 0} and for all x ∈ {η5 > 0}∩Ms
t set

(
g′,st

)
x
:=

(
g′,s5,t

)
x
+ ν(2η5(x)) ·

((
g′′,st

)
x
−

(
g′,s5,t

)
x

)
,

(
∂′,s
t

)
x
:=

(
∂′,s
t,5

)
x
+ ν(2η5(x)) ·

((
∂′′,s
t

)
x
−

(
∂′,s
t,5

)
x

)
.

Then g′,s = g′′,s and ∂′,s
t

= ∂′′,st on {η5 > 1
2
} ∩Ms. Assertion (c) of this theorem

follows using (5.35), Lemma 5.29(d), Lemma 5.24(f), Lemma 5.27(k), assuming

δ′ ≤ δ
′
(δ, (C∗

m)), δ
# ≤ δ and ε ≤ ε(δ, (C∗

m)). By our discussion of the previous
paragraph, g′,s is still compatible with Ss5 and ∂′,s

t
still preserves Ss5 .

Next let us construct Ss, Us
S2 and U

s
S3. By Lemma 5.24(c) and Lemma 5.29(c),

we can find a universal constant c > 0 such that if δ# ≤ δ
#
, then

domain(Ss5) ⊃ {ρ̂g < cαrcan,ε} ∩ {0 < η5 < 1} ∩Ms.

Set

Us
S3 := {ρ̂g < cαrcan,ε} ∩ {1

2
< η5} ∩Ms.

Then g′,s restricted to every time-slice of Us
S3 has constant curvature and the flow

of ∂′,s
t

restricted to Us
S3 consists of homotheties with respect to g′,s.

Before constructing Ss and Us
S2, we need to improve the family of spherical

structures Ss5 . By restricting Ss5 , we obtain a transversely continuous family of
spherical structures (Ss6)s∈X such that

domain(Ss5) ⊃ domain(Ss6)
=

(
domain(Ss5) ∩ {η5 < 1

4
}
)
∪
(
{ρ̂g < cαrcan,ε} ∩ {0 < η5 < 1} ∩Ms

)
.

So there is a universal constant c′ > 0 such that if δ# ≤ δ
#
, then

domain(Ss6) ⊃ {ρg < c′αrcan,ε} ∩ {η5 < 1} ∩Ms,

domain(Ss6) ∩ {1
2
< η5} = Us

S3 ∩ {η5 < 1}.
Next we construct a family of spherical structures Ss by extending the domains

of the spherical structures Ss6 . Fix s ∈ X . Assume that δ# ≤ δ
#
, ε ≤ ε such that
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by Lemma 5.29(c)

∂′
t

(
ρ̂g
rcan,ε

)
< 0 on {η5 > 0}.

Therefore, for any component C ⊂ Ms
t∩Us

S3 we have C(t′) ⊂ Us
S3 for all t

′ ∈ [t, tC).
So every component W ⊂ Us

S3 is either contained in {η5 = 1}, and therefore
disjoint from domain(Ss6), or it intersects domain(Ss6) in a connected product
domain. Let Us

S2 be the union of domain(Ss6) with all components of the second
type. Then Us

S3 \ Us
S2 is open. Using the flow of ∂′,s

t
we can extend Ss5 to a

spherical structure Ss on Us
S2 that is compatible with g′,s and preserved by ∂′,s

t
.

Recall here that the flow of ∂′,s
t

restricted to every component W ⊂ Us
S3 consists

of homotheties with respect to g′,s. By construction, ∪s∈XUs
S2 is open and the

family of spherical structures (Ss)s∈X is transversely continuous.
We have shown so far that (Rs := (g′,s, ∂′,s

t
, Us

S2, U
s
S3,Ss))s∈X is a transversely

continuous family of R-structures. Assertions (a), (b) and (e) of this theorem
hold by setting

rrot,δ(r, t) :=
1
2
c′αrcan,ε(δ)(r, t), C := 4(c′α)−1.

Assertion (d) is a consequence of Lemma 5.24(g) and Lemma 5.27(l). �

6. Preparatory results

In this section we collect several results that will be useful in Sections 7 and 8.

6.1. Spherical structures. We will need the following two lemmas on spherical
structures.

Lemma 6.1. Consider a spherical structure S on a connected 3-manifold with
boundary M such that domain(S) =M . Then one of the following cases holds:

(a) S only consists of regular fibers and M is diffeomorphic to one of the
following models:

S2 × (0, 1), S2 × [0, 1), S2 × [0, 1], S2 × S1

(b) S has exactly one singular fiber and this fiber is a point and M is diffeo-
morphic to one of the following models:

B3, D3

(c) S has exactly one singular fiber and this fiber is ≈ RP 3 and M is diffeo-
morphic to one of the following models:

(
S2 × (−1, 1)

)
/Z2,

(
S2 × [−1, 1]

)
/Z2

(d) S has exactly two singular fibers, both of which are points and M ≈ S3.
(e) S has exactly two singular fibers, both of which are ≈ RP 3 and M ≈

(S2×S1)/Z2. Here Z2 acts as the antipodal map on S2 and as a reflection
with two fixed points on S1.

(f) S has exactly two singular fibers, one of which is a point and the other
which is ≈ RP 3 and M ≈ RP 3.
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Proof. Let X be the quotient of M by the spherical fibers. By Lemma 5.3,
X is homeomorphic to a 1-manifold with boundary and every boundary point
corresponds to a model of the form S2 × [0, 1), D3 or (S2 × [−1, 1])/Z2. �

Lemma 6.2. Consider a 3-manifold with boundary M and a compact, connected,
3-dimensional submanifold with boundary Y ⊂ M . Let (Ss)s∈Dn, n ≥ 0, be
a transversely continuous family of spherical structures defined on open subsets
Y ⊂ Us ⊂ M such that ∂Y is a union of regular fibers of Ss for all s ∈ Dn.
Assume that there is a transversely continuous family of Riemannian metrics
(gs)s∈Dn on M that is compatible with (Ss)s∈X .

Then there is an open subset Y ⊂ V ⊂M and a transversely continuous family
of embeddings (ωs : V → M)s∈Dn such that ωs(Y ) = Y for all s ∈ Dn and such
that the pullbacks of Ss via ωs are constant in s.

We remark that the existence of the family of metrics (gs)s∈Dn could be dropped
from the assumptions of the lemma, as it follows easily from the other assump-
tions.

Proof. By Lemma 6.1 the number and types of singular fibers of Ss restricted to
Y is constant in s.

Case 1: ∂Y 6= ∅. Pick a component Σ ⊂ ∂Y . Using the exponential map
on (Σ, gs|Σ) we can find a continuous family of diffeomorphisms (ϕs : S2 → Σ)s∈X
that are homotheties as maps from (S2, gS2) to (Σ, gs|Σ). For every s ∈ Dn let
νs be the unit normal vector field to Σ pointing towards the interior of Y and
consider the normal exponential map:

ψs : (z, r) 7−→ expg
s

ϕs(z)(r ν
s(ϕs(z))).

Choose rsmax > 0 maximal such that ψs is injective on S2× [0, rsmax) and such that
ψs(S2 × [0, rsmax)) ⊂ Y . After replacing (gs)s∈X with ((rsmax)

−2gs)s∈X , we may
assume that rsmax ≡ 1.

If Σ 6⊂ ∂M , then we can find a uniform ε1 > 0 such that ψs is defined and
injective on S2 × [−ε1, 1). If Σ ⊂ ∂M , then set ε1 := 0. If Y has another
boundary component Σ2, then we can similarly find a constant ε2 ≥ 0 such that
ψs is defined and injective on S2 × [−ε1, 1 + ε2] and ε2 > 0 if Σ2 6⊂ ∂M .

Let Y s
0 ⊂ Y be the union of regular spherical fibers of Ss and let s0 ∈ Dn be

an arbitrary point. Using the maps (ψs)s∈Dn we can construct an open subset

Y s0
0 ⊂ Ṽ ⊂ M and a continuous family of embeddings (ω̃s : Ṽ → M)s∈Dn such

that ω̃s(Y
s
0 ) = Y s0

0 and such that the pullbacks of Ss restricted to Y s
0 are constant

in s. Due to the construction of the maps (ω̃s)s∈Dn via the exponential map and
since Y s

0 ⊂ Y is dense, we can extend these maps to maps (ωs)s∈Dn with the
desired properties.

Case 2: ∂Y = ∅.
Case 2a: Ss contains a singular fiber ≈ RP 2. Similarly as in Case 1,

we can use the exponential map to construct a continuous family of homothetic
embeddings (ϕs : RP 2 → Y )s∈Dn such that for every s ∈ Dn the image ϕs(RP 2)
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is a singular fiber of Ss. We can now construct (ωs) similarly as in Case 1 using
the normal exponential map.

Case 2b: Ss contains a singular fiber that is a point. We can find a con-
tinuous family of points (ps)s∈Dn such that {ps} is a singular fiber for Ss for all
s ∈ Dn. Choose a continuous family of isometric maps (ϕs : R3 → TpsY )s∈X .
After rescaling the metric gs, we may assume that injrad(M, gs, ps) = 1 for all
s ∈ Dn. The remainder of the proof is similar as in Case 1.

Case 2c: Ss only consists of regular fibers. By Lemma 6.1 Y ≈ S2 × S1.
Pick a point p ∈ Y . As in the proof of Case 1 we can find a continuous family
of diffeomorphisms (ϕs : S2 → Σ)s∈X that are homotheties between (S2, gS2) and
fibers p ∈ Σs ⊂ Y of Ss. Using the normal exponential map and after rescaling
the metric gs, as in Case 1, we may further construct a continuous family of

covering maps (ψ̃s : S2 × R → Y )s∈Dn such that the pullback of Ss via each ψ̃s

agrees with the standard spherical structure on S2 × R and such that S2 × [0, 1)

is a fundamental domain. Then ψ̃s(z, r + 1) = ψ̃s(As(r)z, r) for some continuous
family of smooth maps (As : R → O(3))s∈Dn. Since Dn is contractible, we can

find a continuous family of smooth maps (B̃s : [0, 1] → O(3))s∈Dn such that

As(0)B̃s(1) = Bs(0) for all s ∈ Dn. These maps can be extended to a continuous

family of smooth maps (B̃s : [0, 1] → O(3))s∈Dn such that

As(r)Bs(r + 1) = Bs(r)

for all s ∈ Dn and r ∈ R. Set ψ
s
(z, r) := ψ̃s(Bs(r)z, r). Since

ψ
s
(z, r + 1) = ψ̃s(Bs(r + 1)z, r + 1) = ψ̃s(As(r)Bs(r + 1)z, r)

= ψ̃s(Bs(r)z, r) = ψ
s
(z, r),

the family (ψ
s
)s∈Dn descends to a continuous family of diffeomorphisms (ψs :

S2 × S1 → Y )s∈Dn such that (ωs := ψs ◦ (ψs0)−1)s∈Dn has the desired properties
for any fixed s0 ∈ Dn. �

6.2. PSC-conformal metrics. In this subsection we introduce a conformally
invariant condition on the class of compact Riemannian 3-manifolds with round
boundary components. This property behaves well with respect to the geometric
operations that arise in our main construction; it may be a viewed as a relative
version of the property of being conformally equivalent to a PSC metric.

Definition 6.3 (PSC-conformality). A compact Riemannian 3-manifold with
boundary (M, g) is called PSC-conformal if there is a smooth positive function
w ∈ C∞(M) such that:

(1) w4g has positive scalar curvature.
(2) w restricted to each boundary component of M is constant.
(3) Every boundary component of (M,w4g) is totally geodesic and isometric

to the standard round 2-sphere.
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Note that in the case ∂M = ∅, the manifold (M, g) is PSC-conformal if and
only if its Yamabe constant is positive.

By expressing the conditions above in terms of w, we obtain:

Lemma 6.4. A compact Riemannian 3-manifold with boundary (M, g) is PSC-
conformal if and only if all its boundary components are homothetic to the round
sphere and there is a function w ∈ C∞(M) such that:

(1) w4g has positive scalar curvature, or equivalently, 8△w −Rw < 0 on M .
(2) w4|∂M is equal to the sectional curvature of the induced metric on ∂M .
(3) A∂M = (ν∂Mw

4)g, where A∂M denotes the second fundamental form and
ν∂M the inward pointing unit vector field to ∂M (note that this implies
that ∂M is umbilic).

The next lemma shows that the PSC-conformal property is open — as is the
standard PSC-condition — if we restrict to variations with a specific behavior on
the boundary.

Lemma 6.5. Let M be a compact 3-manifold with boundary and (gs)s∈X a con-
tinuous family of Riemannian metrics. Assume that for all s ∈ X all boundary
components of (M, gs) are umbilic and homothetic to the round sphere. If (M, gs0)
is PSC-conformal for some s0 ∈ X, then so is (M, gs) for s near s0. Moreover
we may choose conformal factors ws satisfying Lemma 6.4 which varying contin-
uously with s.

Proof. This is a consequence of Lemma 6.4. Choose ws0 such that Properties (1)–
(3) of Lemma 6.4 hold for (M, gs0). We can extend ws0 to a continuous family of
functions ws ∈ C∞(M) such that Properties (1) and (3) of Lemma 6.4 hold for
all s ∈ X . Then Property (2) holds for s near s0. �

Next we show that the PSC-conformal property remains preserved if we enlarge
a given Riemannian manifold by domains that allow a spherical structure. This
fact will be important in the proof of Proposition 7.9.

Lemma 6.6. Consider a compact Riemannian 3-manifold with boundary (M, g),
let Z ⊂ M be a compact 3-dimensional submanifold with boundary and let S be
a spherical structure on M . Suppose that:

(i) g is compatible with S.
(ii) (Z, g) is PSC-conformal.

(iii) M \ Z is a union of spherical fibers of S.
Then (M, g) is also PSC-conformal.

Note that in the case Z = ∅ Lemma 6.6 implies that (M, g) is PSC-conformal
if M admits a spherical structure that is compatible with g.

Proof. We first argue that we may assume without loss of generality that M \ Z
is connected, is a union of regular fibers and is disjoint from ∂M . To see this
let {Σ1, . . . ,Σm} be the set of all singular fibers in M \Z, boundary components
of ∂M that are contained in M \ Z and at least one regular fiber in M \ Z.
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Choose pairwise disjoint closed neighborhoods Vj ⊂ M \ Z of each Σj that are
each unions of spherical fibers and diffeomorphic to D3 or (S2 × [−1, 1])/Z2 or
S2× [0, 1]. Note that (Vj , g) is PSC-conformal for all j = 1, . . . , m, because in the
first case g|Vj is conformally equivalent to a metric with positive scalar curvature
that is cylindrical near the boundary and in the second and third case g|Vj is
conformally equivalent to (a quotient) of the round cylinder. So all assumptions
of the lemma are still satisfied if we replace Z by Z ′ := Z ∪mj=1 Vj. Therefore,

we may assume that M \ Z is disjoint from all singular fibers and ∂M and that
Z 6= ∅. Furthermore, by induction it suffices to consider the case in which M \Z
is connected. So by Lemma 6.1 we have M \ Z ≈ S2 × [0, 1].

Choose an embedding φ : S2 × (−L − ε, L + ε) → M , L, ε > 0 such that

M \ Z = φ(S2 × [0, L]) and such that φ∗g = f 4(gS2 + dr2) for some smooth
function f : (−L − ε, L + ε) → R+. Let w ∈ C∞(Z) such that all properties of
Lemma 6.4 hold. Then φ∗(w4g) = (w̃f)4(gS2 + dr2) for some smooth function
w̃ : (−L− ε,−L] ∪ [L, L+ ε) → R+ and we have

(w̃f)(±L) = 1, (w̃f)′(±L) = 0.

By smoothing the function

r 7→ 1

f(r)

{
(w̃f)(r) if r ∈ (−L− ε,−L] ∪ [L, L+ ε)

1 if r ∈ (−L, L) ,

we can find a smooth function w̃∗ : (−L − ε, L + ε) → R+ such that w̃∗ = w̃
near the ends of the domain and such that (wf)4(gS2 + dr2) has positive scalar
curvature. We can then choose w∗ ∈ C∞(M) such that w∗ = w outside the image
of φ and w∗◦φ = w̃∗. This function satisfies all properties of Lemma 6.4, showing
that (M, g) is PSC-conformal. �

Next, we discuss a criterion that will help us identify PSC-conformal manifolds
in Section 8.

Lemma 6.7. There are constants ε, c > 0 such that the following holds. Sup-
pose that (M, g) is a (not necessarily) complete Riemannian 3-manifold, S is a
spherical structure on M that is compatible with g and Z ⊂ M is a compact
3-dimensional submanifold with the property that for some r > 0:

(i) ∂Z is a union of regular spherical fibers of S.
(ii) (Z, g) has positive scalar curvature.
(iii) Every point of Z ∩{ρ < r} satisfies the ε-canonical neighborhood assump-

tion.
(iv) ρ ≤ cr on ∂Z.
(v) {ρ < r} ⊂ domainS.

Then (Z, g) is PSC-conformal.

Proof. The constants ε and c will be determined in the course of the proof. We
may assume without loss of generality that Z is connected and ∂Z 6= ∅. Moreover,
we may assume that Z is not a union of spherical fibers, in which case the PSC-
conformality is trivial due to Lemma 6.6. Therefore Z must contain a point with
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ρ ≥ r. Choose λ ∈ (
√
c/2,

√
c) such that ρ 6= λr on any singular spherical fiber

in Z and consider the subset Z0 := {ρ ≤ λ} ∩ Z ⊂ Z. Then Z \ Z0 is a union of
spherical fibers. Let Z1 ⊂ Z be the union of Z0 with all components of Z \ Z0

that are disjoint from ∂Z. Then Z \ Z1 is a union of spherical fibers and ρ ≡ λr
on ∂Z1. Due to Lemma 6.6 it suffices to to show that (Z1, g) is PSC-conformal.

To see this it suffices to show the following claim.

Claim 6.8. If ε ≤ ε, c ≤ c, then for every component Σ ⊂ ∂Z1 there is a
collar neighborhood UΣ ⊂ Z1 consisting of regular spherical fibers and a function
uΣ ⊂ C∞(UΣ) such that:

(a) uΣ > 0.
(b) uΣ ≡ 1 outside of a compact subset of UΣ.
(c) 8△uΣ − RuΣ < 0; therefore u4Σg has positive scalar curvature.
(d) Σ is totally geodesic in (Z1, u

4
Σg|Σ) and is isometric to the round 2-sphere

of scale λr.

Note that by our assumption Z1 6⊂ domain(S), which implies that the neigh-
borhoods UΣ are pairwise disjoint.

Proof. By rescaling we may assume without loss of generality that λr = 1. Fix
sequences εi, ci → 0 and consider a sequence of counterexamplesM i, Z i, Z i

1,Σ
i, gi,

ri to the claim. Choose points xi ∈ Σi. After passing to a subsequence, we may
assume that (M i, gi, xi) converge to the final time-slice of a pointed κ-solution
(M, g, x) with ρ(x) = 1; note that (M i, gi) cannot be isometric to the round
sphere for large i by our assumption that M i contains a point with ρ ≥ ri.

We claim that (M, g) is homothetic to the round cylinder. Otherwise M would
be either compact or one-ended (see Theorem 3.2). So Σi bounds a compact
domain Di ⊂ M i for large i on which C−1

∗ < ρ < C∗ for some constant C∗ < ∞
that is independent of i. Since Z i

1 contains a point of scale ρ ≥ ri ≥ λ−1
i → ∞ this

implies that the interiors of Di and Z i
1 are disjoint. Since ρ ≤ ciri = ci/λi → 0

on ∂Z i we have Di ⊂ Z i
1, which contradicts our construction of Z i

1 for large i.
Since (M, g) is homothetic to the round cylinder, we can choose UΣi ⊂ Z i

1 to be
larger and larger tubular neighborhoods of Σi. Assertions (a)–(d) can therefore
be achieved easily for large i. �

This finishes the proof of the lemma. �

Lastly, we discuss further properties of the PSC-conformal condition, which
will be central to the proof of Proposition 7.21. We begin by showing that the
conformal factor w from Definition 6.3 or Lemma 6.4 can be chosen to be of a
standard form near a given point.

Lemma 6.9. Let (M, g) be PSC-conformal and p ∈ IntM . Then there is a
constant a ∈ R such and a smooth function w ∈ C∞(M) satisfying Properties (1)–
(3) of Lemma 6.4 and such that near p we have

w = w(p)− a · d2(p, ·). (6.10)
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Proof. We first show that we can arrange w such that ∇w(p) = 0. For this
purpose, fix some w ∈ C∞(M) satisfying Properties (1)–(3) of Lemma 6.4 and
assume that ∇w(p) 6= 0. Choose a small geodesic γ : (−ε, ε) →M with γ(0) = p
and γ′(p) = ∇w(p)/|∇w(p)|. Choose a sequence αi → 0 with αi > 0.

Claim 6.11. There exists a sequence of even functions ϕi ∈ C∞(R) and numbers
ti > 0 such that for large i:

(1) 0 ≤ ϕi ≤ 1.
(2) ϕi ≡ 0 on [1,∞).
(3) ϕ′

i ≤ 0 on [0,∞).
(4) α2

iϕ
′
i(ti) = −|∇w(p)|.

(5) ϕ′′
i (r) + 1.5r−1ϕ′

i(r) ≤ 1 on [0,∞).

Proof. Let ν : R → [0, 1] be an even cutoff function with ν ≡ 1 on [−1
2
, 1
2
] and

ν ≡ 0 on (−∞,−1] ∪ [1,∞) and ν ′ ≤ 0 on [0,∞). Let δ > 0 and consider the
function

ψδ(r) := δ · ν(r) · |r|−1/2.

For small δ, this function satisfies Properties (2), (3) and (5) wherever defined.
Our goal will be to choose positive constants δi, ti → 0 and let ϕi be a smoothing
of max{ψδi , .9}. In order to ensure that Properties (1)–(5) hold, we require that
0 ≤ ψδi ≤ 1

2
on [ti/2,∞) and ψ′

δi
(ti) = −α−2

i |∇w(p)|. These conditions are
equivalent to

0 < ti <
1
2
, δi(ti/2)

−1/2 ≤ 1
2
, δit

−1.5
i = 2α−2

i |∇w(p)|,
which can be met for large i such that δi, ti → 0. �

Set now qi := γ(−ti) and

w̃i := w + α3
iϕi

(
d(qi, ·)
αi

)
.

Then w̃i → w in C0 and for large i

△w̃i −△w ≤ αi

(
ϕ′′ +△d(qi, ·) · ϕ′

)
≤ αi

(
ϕ′′ +

1.5

d(qi, ·)
ϕ′

)
≤ αi → 0.

Therefore, for large i the function w̃i satisfies Properties (1)–(3) of Lemma 6.4.
Moreover ∇w̃i = (|∇w(p)|+ α2

iϕ
′
i(ti))γ

′(p) = 0 for large i.
This shows that we can find a function w ∈ C∞(M) satisfying Properties (1)–

(3) of Lemma 6.4 and ∇w(p) = 0. Fix w for the remainder of the proof. Choose
some a ∈ R such that for i := w(p) − a · d2(p, ·) we have 8△u − Ru < 0 near
p. Our goal will be to interpolate between w and u. Let f : R → [0, 1] be a
smooth cutoff function with f ≡ 1 on (−∞,−2] and f ≡ 0 on [−1,∞). Choose
a sequence of positive numbers εi → 0 and set

νi(r) := f(εi log r), w̃i := w + νi(d(p, ·))(u− w).

Then for large i the function w̃i satisfies (6.10) and we have w̃i = w near ∂M .
It remains to show that for we have 8△w̃i − Rw̃i < 0 for large i. To see this,
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observe first that w̃i → w in C0. Next we compute with r := d(p, ·)

△w̃i −△w = △νi(r)(u− w) + 2∇νi∇(u− w) + νi△(u− w)

≤ ν ′′i (u− w) + ν ′i · △r · (u− w) + 2|ν ′i| · |∇(u− w)|+ νi△(u− w)

≤ Cεir
−2 · Cr2 + Cεir

−1 · Cr−1 · Cr2 + Cεir
−1 · Cr + νi△(u− w).

It follows that

△w̃i ≤ Cεi + νi△u+ (1− νi)△w.
This implies that

8△w̃i − Rw̃i ≤ Cεi + νi(8△u− Ru) + (1− νi)(8△w − Rw).

The sum of the second and third term is strictly negative and independent of i;
so since Cεi → 0, the right-hand side is strictly negative for large i. �

Lemma 6.12. Let M be a compact 3-manifold with boundary and consider a
continuous family of Riemannian metrics (gs)s∈X on M , where X is a compact
topological space. Suppose that (M, gs) is PSC-conformal for all s ∈ X.

Consider a continuous family of embeddings (µs : B
3(1) → M)s∈X and suppose

that for every s ∈ X the pullback metric µ∗
sgs is compatible with the standard

spherical structure on B3(1). Then there is a constant 0 < r0 < 1 such that
for all 0 < r ≤ r0 and s ∈ X the Riemannian manifold (M \ µs(B3(r)), gs) is
PSC-conformal.

Proof. Due to the openness of the PSC-conformal condition from Lemma 6.5 and
the fact that X is compact, it suffices to prove the lemma for a single s ∈ X . So
let us write in the following g = gs and µ = µs. In addition, by Lemma 6.6, it
suffices to show that there is an r0 > 0 such that (M \ µ(B3(0, r0)), g) is PSC-
conformal. Using the exponential map, we may moreover assume that µ∗g is even
invariant under the standard O(3)-action.

By Lemma 6.9 we may choose w ∈ C∞(M) satisfying Properties (1)–(3) of
Lemma 6.4 and (6.10) for p = µ(0). Then (B3(1) \ {0}, µ∗

1(w
4g)) is isometric to

(
S2 × (0,∞), f 4(gS2 + dt2)

)
, (6.13)

where f : (0,∞) → R+ is smooth with

lim
t→∞

f(t) = lim
t→∞

f ′(t) = 0, 8f ′′ − 2f < 0. (6.14)

The last condition is equivalent to the statement that the metric (6.13) has pos-
itive scalar curvature.

It remains to show that there is a number t0 > 0 and a smooth function
f̃ : (0, t0] → R+ such that

(1) f̃ = f near 0,

(2) 8f̃ ′′ − 2f̃ < 0,

(3) f̃(t0) = 1 and

(4) f̃ ′(t0) = 0.
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Due to a standard smoothing argument it suffices to construct f̃ to be piecewise
smooth and with the property that d

dt−
f ≥ d

dt+
f at every non-smooth point.

Moreover, since every function with f̃ ′(t′0) ≥ 0 can be continued by a constant

function for t ≥ t′0, we may replace Property (4) by f̃ ′(t0) ≥ 0.

Let us now construct f̃ . The conditions (6.14) imply that 2f ′(t1) > −f(t1) and
f(t1) < 1 for some t1 > 0, because otherwise we have for large t

4(f ′)2 − f 2 > 0, (4(f ′)2 − f 2)′ = (8f ′′ − 2f)f ′ > 0,

which contradicts the first two limits of (6.14). Fix t1 and δ > 0 and set

f̃(t) :=

{
f(t) if t ≤ t1
f(t1) ch(

t−t1
2+δ

) + (2 + δ)f ′(t1) sh(
t−t1
2+δ

) if t > t1
.

For sufficiently small δ we have (2+δ)f ′(t1)+f(t1) > 0 and therefore limt→∞ f̃(t) =

∞ and f̃(t) > 0 for all t ≥ t1. Thus we can choose t0 > t1 such that f̃(t0) = 1

and f̃ ′(t0) ≥ 0. �

6.3. Extending symmetric metrics. The following proposition will be used in
the proof of Proposition 7.9. Its purpose will be to extend the domain of a family
of metrics by a subset that is equipped with a family of spherical structures, while
preserving the PSC-conformal condition.

Proposition 6.15. Consider a 3-manifold with boundary M and a compact con-
nected 3-dimensional submanifold with boundary Y ⊂M . Let (Ss)s∈Dn, n ≥ 0, be
a transversely continuous family of spherical structures defined on open subsets
Y ⊂ Us ⊂ M such that ∂Y is a union of regular fibers of Ss for all s ∈ Dn.
Consider the following continuous families of metrics:

• (g1s)s∈Dn on M

• (g2s,t)s∈Dn,t∈[0,1] on M \ Y
• (g3s,t)s∈∂Dn,t∈[0,1] on M

Assume that g1s , g
2
s,t and g

3
s,t are compatible with Ss for all s ∈ Dn or ∂Dn and

t ∈ [0, 1] and assume that the following compatiblity conditions hold:

(i) g1s = g2s,0 on M \ Y for all s ∈ Dn.
(ii) g1s = g3s,0 on M for all s ∈ ∂Dn.

(iii) g2s,t = g3s,t on M \ Y for all s ∈ ∂Dn, t ∈ [0, 1].

Then there is a continuous family of metrics (hs,t)s∈Dn,t∈[0,1] on M such that hs,t
is compatible with Ss for all s ∈ Dn, t ∈ [0, 1] and such that:

(a) hs,0 = g1s on M for all s ∈ Dn.

(b) hs,t = g2s,t on M \ Y for all s ∈ Dn, t ∈ [0, 1].
(c) hs,t = g3s,t on M for all s ∈ ∂Dn, t ∈ [0, 1].

The proof of this proposition will occupy the remainder of this subsection. Our
strategy will be to successively simplify the statement in a sequence of lemmas.
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Proof. By Lemma 6.2 there is a connected open neighborhood Y ⊂ V ⊂ M and
a continuous family of embeddings (ωs : V → M)s∈Dn such that ωs(Y ) = Y and
such that the following holds: if S ′,s denotes the pullback of Ss via ωs, then V is
a union of fibers of S ′,s and S ′,s restricted to V is constant in s. After replacing
M by V , (Ss)s∈Dn by (S ′,s)s∈Dn, (g1s)s∈Dn by (ω∗

sg
1
s)s∈Dn etc., we may assume

without loss of generality that domain(Ss) =M and that Ss =: S is constant in
s.

Since (Dn×[0, 1], ∂Dn×[0, 1]∪Dn×{0}) is homeomorphic (Dn×[0, 1], Dn×{0}),
we can simplify the proposition further by removing the family (g3s,t)s∈∂Dn,t∈[0,1]

as well as Assumptions (ii), (iii) and Assertion (c).
If ∂Y = ∅, then M \ Y = ∅, so Assumption (i) and Assertion (b) are vacuous

and we can simply set hs,t := g1s . If ∂Y 6= ∅, then Y is diffeomorphic to one of
the following manifolds (see Lemma 6.1):

S2 × [0, 1], (S2 × [−1, 1])/Z2, D
3.

By removing collar neighborhoods of ∂Y from Y , we can construct a compact
3-manifold with boundary Z ⊂ Int Y that is a union of fibers of S such that
Y ′ := Y \ Z is diffeomorphic to a disjoint union of copies of S2 × I. Define

g′,2s,t := g2s,t on M \ Y and g′,2s,t := g1s,0 on Z. Then (g′,2s,t)s∈Dn,t∈[0,1] is defined

on M \ Y ′. By replacing Y by Y ′ and (g2s,t)s∈Dn,t∈[0,1] by (g′,2s,t)s∈Dn,t∈[0,1], we
can reduce the proposition to the case in which Y is diffeomorphic to a disjoint
union of copies of S2 × [0, 1]. Moreover, due to Assertion (b), we can handle
each component of Y separately. Therefore the proposition can be reduced to
Lemma 6.16 below. �

Lemma 6.16. Let n ≥ 0 and let (M,Y ) := (S2 × (−2, 2), S2 × [−1, 1]). Let
S be the standard spherical structure on M and consider continuous families of
metrics:

• (g1s)s∈Dn on M ,

• (g2s,t)s∈Dn,t∈[0,1] on M \ Y
that are all compatible with S and that satisfy the compatibility condition g1s =

g2s,0 on M \ Y for all s ∈ Dn. Then there is a continuous family of metrics
(hs,t)s∈Dn,t∈[0,1] on M such that:

(a) hs,t is compatible with S for all s ∈ Dn and t ∈ [0, 1].
(b) hs,0 = g1s on M for all s ∈ Dn,

(c) hs,t = g2s,t on M \ Y for all s ∈ Dn and t ∈ [0, 1].

Proof. By Lemma 5.5 the metrics g1s and g2s,t are of the form

a2(r)gS2 + b2(r)dr2 +

3∑

i=1

ci(r)(dr ξi + ξi dr),

where a, b, ci are smooth functions and a, b > 0. So by considering the functions
log a, log b, ci, the lemma can be reduced to Lemma 6.17 below. �

Lemma 6.17. Let n ≥ 0 and consider continuous families of functions:
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• (f 1
s ∈ C∞((−2, 2)))s∈Dn,

• (f 2
s,t ∈ C∞((−2,−1] ∪ [1, 2))s∈Dn,t∈[0,1]

that satisfy the compatibility condition f 1
s = f 2

s,0 on (−2,−1]∪[1, 2) for all s ∈ Dn.

Then there is a continuous family of functions (f 3
s,t ∈ C∞((−2, 2)))s∈Dn,t∈[0,1] such

that:

(a) f 3
s,0 = f 1

s on (−2, 2) for all s ∈ Dn,

(b) f 3
s,t = f 2

s,t on (−2,−1] ∪ [1, 2) for all s ∈ Dn and t ∈ [0, 1].

Proof. It suffices to prove the lemma in the case in which f 1
s,t ≡ 0, because after

applying the lemma to the functions f̃ 1
s :≡ 0 and f̃ 2

s,t := f 2
s,t − f 1

s , resulting in a

family of functions f̃ 3
s,t, we may set f 3

s,t := f̃ 3
s,t + f 1

s . So assume in the following
that f 1

s,t ≡ 0 and note that this implies f 2
s,0 ≡ 0. By Seeley’s Theorem [See64],

we may extend the family (f 2
s,t) to a continuous family (f

2

s,t ∈ C∞((−2,−.8) ∪
(.8, 2))s∈Dn,t∈[0,1] such that f

2

s,0 ≡ 0 for all s ∈ Dn. Let η ∈ C∞((−2, 2)) be a
cutoff function such that η ≡ 1 on (−2,−1] ∪ [1, 2) and η ≡ 0 on [−.9, .9]. Then
f 3
s,t := ηf

2

s,t has the desired properties. �

6.4. Extending symmetric metrics on the round sphere. The following
proposition is similar in spirit to Proposition 6.15 and will also be used in the
proof of Proposition 7.9. It concerns deformations of metrics compatible with a
family of spherical structures (Ss) if the starting metric is the round sphere or an
isometric quotient of it. In this case the spherical structures Ss are not uniquely
determined by the metric. Due to this ambiguity, the spherical structure Ss may
not be defined for certain parameters s; in this case we will require the associated
metrics to be multiples of a fixed round metric.

Proposition 6.18. Let (M, g∗) be a compact 3-manifold of constant sectional
curvature 1 and let ∆n be the standard n-simplex for n ≥ 0. Consider the follow-
ing data:

• a continuous function λ : ∆n → R+,
• a continuous family of metrics (ks,t)s∈∂∆n,t∈[0,1] on M
• an open subset A ⊂ ∆n,
• a closed subset E ⊂ ∂∆n such that E ⊂ A
• a transversely continuous family of spherical structures (Ss)s∈A on M .

Assume that

(i) ks,0 = λ2(s)g∗ for all s ∈ ∂∆n

(ii) For all s ∈ A the metric g∗ is compatible with Ss.
(iii) For all s ∈ E and t ∈ [0, 1] the metric ks,t is compatible with Ss.
(iv) For all s ∈ ∂∆n \ E and t ∈ [0, 1] the metric ks,t is a multiple of g∗.

Then there is a continuous family of metrics (hs,t)s∈∆n,t∈[0,1] on M and a closed
subset E ′ ⊂ ∆n such that:

(a) hs,0 = λ2(s)g∗ for all s ∈ ∆n.
(b) hs,t = ks,t for all s ∈ ∂∆n, t ∈ [0, 1].
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(c) E ′ ⊂ A.
(d) For any s ∈ A and t ∈ [0, 1] the metric hs,t is compatible with Ss.
(e) For all s ∈ ∆n \ E ′ and t ∈ [0, 1] the metric hs,t is a multiple of g∗.

Note that if M 6≈ S3,RP 3, then E = A = ∅, in which case the proposition is
trivial.

Proof. Let us first reduce the proposition to the case in which either E = ∅ or
A = ∆n. To see this, assume that the proposition is true in these two cases, in
any dimension. Choose a simplicial refinement of ∆n that is fine enough such that
every subsimplex σ ⊂ ∆n is either fully contained in A or disjoint from E. Then
we may successively construct (hs,t) over the skeleta of this decomposition. More
specifically, let 0 ≤ k ≤ n and assume by induction that either k = 0 or that some
family of metrics (hk−1

s,t ) has been constructed over the (k−1)-dimensional skeleton

Xk−1 of ∆n such that Assertions (a)–(e) hold for some closed subset E ′
k−1 ⊂ Xk−1,

where in Assertion (e) we have to replace the difference ∆n \E ′ by Xk−1 \E ′
k−1.

For every k-simplex σ ⊂ ∆n consider the closed subset Eσ := E ′
k−1 ∩ ∂σ and

apply the proposition to find an extension (hσs,t)s∈σ,t∈[0,1] of (h
k−1
s,t ) to σ and a

closed subset E ′
σ ⊂ σ such that Assertions (a), (c)–(e) of the proposition hold.

Set E ′
k := ∪σ⊂∆n,dimσ=kE

′
σ and combine all families (hσs,t) to a family (hks,t) over

Xk. This finishes the induction. Then (hs,t) := (hns,t) and E ′ := E ′
n are the

desired data for this proposition.
So it remains to prove the proposition in the two cases E = ∅ and A = ∆n.
Consider first the case in which E = ∅. Then ks,t = µ2(s, t)g∗ for some contin-

uous function µ : ∂∆n × [0, 1] → R+ that satisfies µ(s, 0) = λ(s) for all s ∈ ∂∆n.
Let λ0 : ∆

n×[0, 1] → R+ be a continuous function such that λ0(s, 0) = λ(s) for all
s ∈ ∆n and λ0(s, t) = µ(s, t) for all s ∈ ∂∆n, t ∈ [0, 1]. Then (hs,t := λ20(s, t)g

∗)
and E ′ := ∅ are the desired data for this proposition.

Lastly, consider the case in which A = ∆n. So Ss is defined for all s ∈ ∆n.
For all s ∈ ∂∆n−E and t ∈ [0, 1] the metric ks,t is a multiple of g∗ and therefore
compatible with Ss. For all s ∈ E and t ∈ [0, 1] the metric ks,t is compatible with
Ss by Assumption (iii). Therefore ks,t is compatible with Ss for all s ∈ ∂∆n and
t ∈ [0, 1]. Set E ′ := ∆n. Then Assertion (e) becomes vacuous and the existence
of (hs,t) is a direct consequence of Proposition 6.15. �

6.5. The conformal exponential map. In this subsection, we will introduce
the conformal exponential map, which will be used in the rounding construction
of Subsection 6.6. The conformal exponential map will produce a set of canonical
local coordinates near a point p ∈ M in a Riemannian manifold (M, g) with the
following properties:

• If g is locally rotationally symmetric about p, then so is the metric in
these local coordinates.

• If the metric is conformally flat near p, then the metric expressed in these
local coordinates is conformally equivalent to the standard Euclidean met-
ric.
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• The metric expressed in these local coordinates agrees with the Euclidean
metric up to first order at the origin.

In the following let (M, g) be a 3-dimensional Riemannian manifold. Recall
that the Schouten tensor is defined as follows:

S = Ric−1

4
Rg

If g̃ = e2φg, then the Schouten tensor S̃ of g̃ can be expressed as

S̃ij = Sij − (∇2
ijφ−∇iφ∇jφ)−

1

2
|∇φ|2gij. (6.19)

If S̃ ≡ 0, which implies that g is conformally flat, then we can recover the function
φ by integrating an expression involving S twice along curves. We will now carry
out this integration even in the case in which g is not conformally flat. In doing
so, we will construct a locally defined function φ, with the property that if g is
conformally flat, then e2φg is flat.

Let p ∈ M be a point with injectivity radius injrad(p). By standard ODE-
theory there is a maximal radius r = rg,p ∈ (0, injrad(p)], depending continuously
on the metric g and the point p, such that we can solve the following ODE for
1-forms radially along arclength geodesics γ : [0, r) →M emanating at γ(0) = p:

α(p) = 0, ∇γ′α = S(γ′, ·) + α(γ′)α− 1

2
|α|2g(γ′, ·).

We claim that this defines a unique smooth 1-form α on B(p, r). To see that α
is smooth consider the exponential map v 7→ γv(1) = expp(v) and notice that the
parallel transports αv(s) := P γv

0,sα of α(γv(s)) to p satisfies the ODE

αv(0) = 0, α′
v(s) = (P γv

0,sS)(v, ·) + αv(s)(v)αv(s)−
1

2
|α2
v(s)|gp(v, ·).

The value αv(1) = P γv
0,1α depends smoothly on the vector v ∈ TpM . Next, we

construct the following function φ ∈ C∞(B(p, r)) by radial integration along
geodesics γ emanating from p:

φ(p) = 0, ∇γ′φ = α(γ′).

The smoothness of φ follows similarly as before.
Note that by uniqueness of solutions to ODEs we have:

Lemma 6.20. Let γ : [0, r) → M be a geodesic emanating at γ(0) = p and let
t ∈ [0, r). Suppose that there is a neighborhood γ(t) ∈ U ′ ⊂ B(p, r) and a function
φ′ ∈ C∞(U ′) such that e2φ

′

g is flat. If φ′ = φ, dφ′ = dφ at γ(t), then the same is
true along the component of γ([0, r)) ∩ U ′ containing γ(t).

We can now define the conformal exponential map.

Definition 6.21 (Conformal exponential map). After constructing φ ∈ C∞(B(p, r))
as above, set

confexpp := expe2φg,p : U
conf
p −→ B(p, r),

where U conf
p := exp−1

e2φg,p
(B(p, r)) ⊂ TpM .
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The following proposition summarizes the properties of the conformal expo-
nential map:

Proposition 6.22. Let B(p, r′) ⊂ B(p, r) be a possibly smaller ball and consider
the pullback g′ := confexp∗

p g onto confexp−1
p (B(p, r′)) ⊂ TpM . Denote by geucl,p

the standard Euclidean metric on TpM . Then:

(a) If (gs)s∈X is a continuous family of Riemannian metrics on M (in the
smooth topology), then the corresponding family of conformal exponen-
tial maps (confexpgs,p)s∈X also depends continuously on s (in the smooth
topology).

(b) If g restricted to B(p, r′) is rotationally symmetric about p, i.e. if g is
compatible with a spherical structure on B(p, r′) with singular fiber {p},
then confexp−1

p (B(p, r′)) and g′ invariant under the standard O(3)-action.

(c) If g restricted to B(p, r′) is conformally flat, then g′ = e2φ
′

geucl,p for some
φ′ ∈ C∞(confexp−1

p (B(p, r′))).
(d) At p we have g′ − geucl,p = ∂(g′ − geucl,p) = 0.

Proof. Assertion (a) follows by construction. For Assertion (b) observe that if g
is rotationally symmetric on B(p, r′), then so is φ.

For Assertion (c) it suffices to show that e2φg restricted to B(p, r′) is flat. For
this purpose choose an arclength geodesic γ : [0, r′) →M emanating at γ(0) = p.
Let t0 ∈ [0, r′) be maximal with the property that e2φg is flat in a neighborhood
U ⊂ B(p, r′) of γ([0, t0)). By Lemma 6.20 above and Lemma 6.23 below we have
t0 > 0. Assume now that t0 < r′ and set q := γ(t0). By Lemma 6.23 we can find
a function φ′ ∈ C∞(V ) defined in a neighborhood q ∈ V ⊂ B(p, r′) such that
e2φ

′

g is flat and φ′(q) = φ(q), dφ′
q = dφq. By Lemma 6.20, we obtain that φ = φ′,

dφ = dφ′ along γ|(t1,t0] for some t1 ∈ [0, t0). So by the uniqueness statement in
Lemma 6.23 we have φ′ = φ on the connected component of U ∩ V containing
γ([t1, t0)). So e2φg is flat in a neighborhood of γ([0, t0]), in contradiction to the
maximal choice of t0.

For Assertion (d) observe that φ(p) = dφp = 0 and e2φ◦confexppg′ − geucl,p =
exp∗

e2φg,p
(e2φg)− geucl,p = O(r2). �

Lemma 6.23. If (M, g) is conformally flat near some point q ∈M , then for any
a ∈ R, α ∈ T ∗

qM there is a neighborhood q ∈ V ⊂M and a φ ∈ C∞(V ) such that

e2φg is flat and φ(q) = a, dφq = α. Moreover φ is unique modulo restriction to a
smaller neighborhood of q.

Proof. By the local conformal flatness, we can find an open neighborhood q ∈
V ′ ⊂ M and a φ′ ∈ C∞(V ′) such that g′ = e2φ

′

g is flat on V ′. Since e2φg =
e2(φ−φ

′)g′ for any smooth function φ that is defined near p, we may replace M by
V ′ and g by e2φg. So by isometrically identifying (M, g) with a subset of Rn we
may assume without loss of generality that M ⊂ R3 and g = geucl.

Recall that by (6.19) local conformal flatness is equivalent to the PDE

−∇2
ijφ+∇iφ∇jφ− 1

2
|∇φ|2δij = 0 (6.24)
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If α = 0, then we can set φ ≡ a, otherwise we can set φ(x) := −2 log |x −
y| + 2 log |y| + a for y ∈ R3 with 2 y

|y|2
= α. This proves existence. Uniqueness

follows by viewing (6.24) restricted to lines as an ODE in ∇φ, as was done in the
beginning of this subsection. �

Remark 6.25. We recall that a metric is conformally flat if and only the Schouten
tensor satisfies the Cotton-York condition (see [Cot99]):

∇iSjk −∇jSik = 0

With some more effort Assertion (c) of Proposition 6.22 can be deduced directly
from the Cotton-York condition. In the context of this paper the Cotton-York
condition is, however, not essential, which is why details have been omitted.

6.6. Rounding metrics. The goal of this subsection is to prove the following
result, which states that a metric on the standard 3-ball can be deformed to make
it compatible with the standard spherical structure on a smaller ball, while pre-
serving the properties of conformal flatness and compatibility with the spherical
structure on (most) disks D(r) for r ∈ (0, 1] and PSC-conformality.

The following is the main result of this subsection.

Proposition 6.26. Let X be a compact topological space, XPSC ⊂ X a closed
subset and 0 < r1 < 1. Consider a continuous family of Riemannian metrics
(hs)s∈X on the unit ball B3 ⊂ R3 such there is a continuous family of positive
functions (ws ∈ C∞(B3))s∈XPSC

with the property that w4
shs has positive scalar

curvature.
Then there is a continuous family of Riemannian metrics (h′s,u)s∈X,u∈[0,1] and

a constant 0 < r1 < r1 such that for all s ∈ X and u ∈ [0, 1]:

(a) h′s,u = hs on B
3 \B3(r1).

(b) h′s,0 = hs.

(c) h′s,1 = hs is compatible with the standard spherical structure on D3(r1).
(d) If hs is compatible with the standard spherical structure on D3(r) for some

r ∈ [r1, 1], then so is h′s,u.
(e) If hs is conformally flat, then so is h′s,u.

(f) If s ∈ XPSC, then w′,4
s,uh

′
s,u has positive scalar curvature, for some w′

s,u ∈
C∞(B3) that agrees with ws on B

3 \B3(r1).

We will reduce Proposition 6.26 to Lemma 6.27 below.

Lemma 6.27. Assume that we are in the same situation as Proposition 6.26 and
assume additionally that for all s ∈ X

(i) (hs)0 = (∂hs)0 = 0.
(ii) If hs is conformally flat, then on B3(r1) it is even conformally equivalent

to the standard Euclidean metric geucl.

Then there is a continuous family of Riemannian metrics (h′s,u)s∈X,u∈[0,1] and a
constant 0 < r1 < r1 such that Assertions (a)–(f) of Proposition 6.26 hold for all
s ∈ X and u ∈ [0, 1].
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In order to show that Lemma 6.27 implies Proposition 6.26 we need the fol-
lowing lemma:

Lemma 6.28. Let (hs)s∈X be a continuous family of Riemannian metrics on B3

and let 0 < r1 < 1. Then there is a constant 0 < r′1 < r1 and a continuous
family of diffeomorphisms (φs,u : B

3 → B3)s∈X,u∈[0,1] such that for all s ∈ X and
u ∈ [0, 1]:

(a) φs,u = id on B3 \B3(r1).
(b) φs,0 = id
(c) The pullback φ∗

s,1hs agrees with the Euclidean metric geucl at the origin up
to first order.

(d) If hs is conformally flat, then φ∗
s,1hs restricted to B3(r′1) is conformally

equivalent to geucl.
(e) If hs is compatible with the standard spherical structure on D3(r) for some

r ∈ [r1, 1], then so is φ∗
s,uhs.

Proof. Choose r2 > 0 small enough such that confexp0,hs |B3(r2) : B
3(r2) → B3 is

defined for all s ∈ X . Let S+
3 the set of symmetric positive definite 3×3 matrices

and denote by I ∈ S+
3 the identity matrix. For any s ∈ X choose the matrix

Ls ∈ S+
3 with the property (hs)0(Lsv, Lsw) = v · w for any v, w ∈ R3, where the

latter denotes the standard Euclidean inner product. Then Ls is continuous in s
and we can find an r3 > 0 such that the maps

ψs,u := u confexp0,hs ◦Ls|B3(r3) + (1− u) idB3(r3) : B
3(r3) → B3

are defined and continuous for all s ∈ X , u ∈ [0, 1]. Note that for all s ∈ X ,
u ∈ [0, 1] we have

ψs,u(0) = 0, (dψs,u)0 = uLs + (1− u)I

and ψ∗
s,1hs agrees with geucl at the origin up to first order.

Claim 6.29. There is a continuous family of diffeomorphisms (ζA : B3 →
B3)A∈S+

3
, parameterized by the set of symmetric positive definite 3 × 3 matrices,

such that for all A ∈ S+
3 :

(a) ζA = id on B3 \B3(r1)
(b) ζA(0) = 0.
(c) (dζA)0 = A.
(d) ζI = idB3.

Proof. Let S3 be the set of symmetric 3×3 matrices and recall that exp : S3 → S+
3

is a diffeomorphism. For any compactly supported vector field V on B3 let
ζ ′V : B3 → B3 be the flow of V at time 1. If V0 = 0, then (dζV )0 = exp(dV0). By
taking linear combinations, we can find a continuous (or linear) family of vector
fields (VA)A∈S3 on B3 whose support lies inside B3(r1) such that (VA)0 = 0 and
(dVA)0 = A. We can then set ζexp(A) := ζ ′VA. �



RICCI FLOW AND CONTRACTIBILITY OF SPACES OF METRICS 73

Let η : R3 → [0, 1] be a smooth, rotationally symmetric cutoff function with
η ≡ 1 on B3(1) and η ≡ 0 on R3 \B3(2). Let r4 > 0 and set ηr4 := η(v/r4) and

φs,u := ηr4ψs,u + (1− ηr4)ζuLs+(1−u)I .

A standard limit argument shows that the family (φs)s∈X consists of diffeomor-
phisms for sufficiently small r4.

Assertion (a) holds due to Assertion (a) of the Claim if r4 is chosen sufficiently
small. Assertion (b) holds since ψs,0 = ηr4 id+(1−ηr4)ζI = id. Assertions (c) and
(d) hold for small r′1 since φs,1 = ψs,1 near the origin and due to the discussion
preceding the Claim. For Assertion (e) assume that hs is compatible with the
standard spherical structure on D3(r) for some r ∈ [r1, 1]. Then hs agrees with
geucl at the origin up to first order, so Ls = I. Moreover confexp0,hs preserves the

standard spherical structure on confexp−1
0,hs

(D3(r)). Therefore φs,u preserves the

standard spherical structure on φ−1
s,u(D

3(r)) = D3(r), since r ≥ r1. This implies
Assertion (e). �

Proof that Lemma 6.27 implies Proposition 6.26. Consider the constant 0 < r′1 <
r1 and the family of diffeomorphisms (φs,u : B

3 → B3)s∈X,u∈[0,1] from Lemma 6.28.
Apply Lemma 6.27 with r1 replaced by r′1 to (φ∗

s,1hs)s∈X , consider the constant

0 < r1 < r1 and call the resulting family of metrics (h̃′s,u)s∈X,u∈[0,1]. Set

h′s,u :=

{
φ∗
s,2uhs if u ∈ [0, 1

2
]

h̃′s,2u−1 if u ∈ (1
2
, 1]

Note that this family is continuous due to Lemma 6.27(b).
We claim that (h′s,u)s∈X,u∈[0,1] satisfies Assertions (a)–(f) of this proposition.

For Assertion (a) observe that on B3 \ B3(r1) we have h′s,u = φ∗
s,2uhs = hs if

u ∈ [0, 1
2
], due to Lemma 6.28(a) and h′s,u = hs on B

3 \ B3(r1) ⊂ B3 \ B3(r′1) if

u ∈ [1
2
, 1], due to Lemma 6.27(a). Assertion (b) holds since φs,0 = id; compare

with Lemma 6.28(b). Assertions (c), (e) and (f) hold due to the same assertions

of Lemma 6.27, because h′s,1 = h̃′s,1 and due to Lemma 6.28(a). Consider now
Assertion (d) and assume that hs is compatible with the standard spherical struc-
ture on D3(r) for some r ∈ [r1, 1]. By Lemma 6.28(e) the same is true for the

pullbacks φ∗
s,uhs and therefore by Lemma 6.27(d), the same is true for h̃′s,u. �

Proof of Lemma 6.27. Let f : R → [0, 1] be a cutoff function with f ≡ 1 on
(−∞,−2] and f ≡ 0 on [−1,∞). Let ε > 0 be a constant that we will determine
later and set

ν(s) := f(ε log s).

Fix a metric g on B3 with the following properties:

(1) g is O(3)-invariant.
(2) (gij)0 = (∂gij)0 = 0.
(3) g is conformally equivalent to the Euclidean metric geucl.
(4) w4

sg has positive scalar curvature at the origin for all s ∈ XPSC.
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Set
h′s,u :=

(
1− u · ν(dhs(0, ·))

)
hs + u · ν(dhs(0, ·))g,

where dhs(0, ·) denotes the radial distance function with respect to the metric hs.
It remains to check that Assertions (a)–(f) of Proposition 6.26 hold for suffi-

ciently small ε and r1. Assertions (a)–(c) trivially hold for sufficiently small ε
and r1.

For Assertion (d) observe that if hs is compatible with the standard spherical
structure on D3(r), then dhs(0, ·) restricted to D3(r) is O(3)-invariant. Moreover,
g is compatible with the standard spherical structure on D3(r) as well. It follows
that h′s,u is compatible with the standard spherical structure on D3(r).

For Assertion (e) assume that hs is conformally flat. Then by Assumption (ii)
hs is conformally equivalent to geucl on B

3(r1). Since g is conformally equivalent
to geucl as well, this implies that h′s,u is conformally equivalent to geucl on B

3(r1).

The conformal flatness on B3 \B3(r1) follows from Assertion (a)
Lastly, we claim that Assertion (f) holds for w′

s,u = ws if ε is chosen small
enough. To see this note first that there is a constant C <∞ that is independent
of ε, s, u such that ∣∣(h′s,u)ij − gij

∣∣ ≤ Cr2,
∣∣∂i(h′s,u)jk

∣∣ ≤ C|ν ′(r)| · |hs − g|+ Cr ≤ Cεr + Cr,

∣∣∂2(h′s,u)ij − (1− uν) · ∂2(hs)ij − uν · ∂2gij
∣∣

≤ C(|ν ′′|+ r−1|ν ′|)|hs − g|+ C|ν ′| · |∂(h′s,u − g)| ≤ Cε2 + Cε.

Since h′s,u = hs if dhs(0, ·) > e−1/ε and since the ws is uniformly bounded in the

C2-norm for all s ∈ XPSC , we obtain that

|Rw4
sh

′
s,u

− (1− uν)Rw4
sh

′
s,u

− uνRw4
sg| ≤ c

if ε ≤ ε(c). By compactness of XPSC we obtain that Rw4
sh

′
s,u
> 0 for sufficiently

small ε. �

7. Partial homotopies

In this section we introduce partial homotopies and certain modification moves,
which will be used in Section 8.

7.1. General setup. For the following discussion we fix a pair of finite simplicial
complexes (K,L), where L ⊂ K is a subcomplex. We will denote by L ⊂ K the
geometric realizations of L ⊂ K. When there is no chance of confusion, we will
refer to the pair (K,L) instead of (K,L).

Consider a fiber bundle E → K over K whose fibers are smooth compact
Riemannian 3-manifolds. We will view this bundle as a continuous family of
Riemannian manifolds (Ms, gs)s∈K (see Remark 4.8). Note that a particularly
interesting case is the case in which (Ms)s∈K is given by a trivial family of the
form (M, gs)s∈K , where (gs)s∈K is a continuous family of Riemannian metrics on
a fixed compact 3-manifold M .
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Definition 7.1. A metric g on a compact 3-manifold M is called a CC-metric
if (M, g) is homothetic to a quotient of the round sphere or round cylinder.

If L 6= ∅, then we assume that the metrics gs, s ∈ L, are CC-metrics. If none
of the Ms are diffeomorphic to a spherical space form or a quotient of a cylinder,
then no such metrics exist on any Ms and therefore we must have L = ∅.

We will also fix a closed subset KPSC ⊂ K with the property that (Ms, gs) has
positive scalar curvature for all s ∈ KPSC.

Our ultimate goal in this and the following section (see Theorem 8.1) will be
to construct a transversely continuous family of metrics (hst )s∈K,t∈[0,1] on (Ms)s∈K
with the property that:

(1) hs0 = gs for all s ∈ K,
(2) hs1 is conformally flat and PSC-conformal for all s ∈ K,
(3) hst are CC-metrics for all s ∈ L, t ∈ [0, 1],
(4) (Ms, hst) is PSC-conformal for any s ∈ KPSC , t ∈ [0, 1]; see Definition 6.3.

Here (hst )s∈K,t∈[0,1] is said to be transversely continuous if it is transversely con-
tinuous in every family chart of (Ms)s∈K , or equivalently, if (hst )(s,t)∈K×[0,1] is
transversely continuous in the sense of Definition 4.13 on the continuous family
(Ms × {t})(s,t)∈K×[0,1].

In order to achieve this, we will apply Theorem 4.1 to find a continuous fam-
ily of singular Ricci flows (Ms)s∈K whose family of time-0-slices (Ms

0, g
s
0)s∈K is

isomorphic to (Ms, gs)s∈K ; in the following we will identify both objects. By The-
orem 3.17 for all s ∈ L all time-slices of Ms are CC-metrics. By Theorem 3.28
the flow Ms has positive scalar curvature for all s ∈ KPSC.

In the following we will write Ms = (Ms, ts, gs, ∂s
t
) and we fix a transversely

continuous family of R-structures

Rs = (g′,s, ∂′,s
t
, Us

S2, U
s
S3,Ss)

for each Ms. Such a family exists due to Theorem 5.12 and we can ensure that

g′,s = gs, ∂′,s
t

= ∂s
t

for all s ∈ L. (7.2)

We will discuss further geometric and analytic properties of this structure in
Section 8; for the purpose of this section it suffices to assume that (Rs)s∈K satisfies
the properties of Definitions 5.10 and 5.11.

Let T ≥ 0. The goal of this section will be to introduce a new type of partially
defined homotopy starting from the the family of metrics (g′,sT )s∈K on the family of
time-T -slices (Ms

T )s∈K . We will see that if T = 0, then under a certain conditions
this partial homotopy implies the existence of the desired family (hst )s∈K,t∈[0,1]
satisfying Properties (1)–(4). We will moreover discuss “moves” that will allow
us to “improve” a given partial homotopy and enable us to flow it backwards in
time, i.e. decrease the time parameter T .

7.2. Definition of a partial homotopy. Let X be a topological space.

Definition 7.3 (Metric deformation). A metric deformation over X is a pair
(Z, (gs,t)s∈X,t∈[0,1]) with the following properties:
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(1) Z is a compact 3-manifold with boundary whose boundary components
are spheres.

(2) (gs,t)s∈X,t∈[0,1] is a continuous family of Riemannian metrics.
(3) For all s ∈ X , the Riemannian manifold (Z, gs,1) is conformally flat and

PSC-conformal.

We can now define a partial homotopy. For this purpose, fix some T ≥ 0 and
consider the simplicial pair (K,L), the continuous family of singular Ricci flows
(Ms)s∈K over K, as well as the family of R-structures (Rs)s∈K from Subsec-
tion 7.1.

Definition 7.4 (Partial homotopy). For every simplex σ ⊂ K consider a metric
deformation (Zσ, (gσs,t)s∈σ,t∈[0,1]) and a transversely continuous family of embed-
dings (ψσs : Zσ → Ms

T )s∈σ. We call {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ
s )s∈σ)}σ⊂K a partial

homotopy (at time T relative to L for the the family of R-structures
(Rs)s∈K) if the following holds:

(1) For all s ∈ σ ⊂ K we have (ψσs )
∗g′,sT = gσs,0.

(2) For all s ∈ τ ( σ ⊂ K we have ψσs (Z
σ) ⊂ ψτs (Z

τ ).
(3) For all s ∈ τ ( σ ⊂ K and t ∈ [0, 1] we have ((ψτs )

−1 ◦ ψσs )∗gτs,t = gσs,t.
(4) For each s ∈ τ ( σ ⊂ K and for the closure C of each component of

Zτ \ ((ψτs )−1 ◦ ψσs )(Zσ) one (or both) of the following is true:
(i) ψτs (C) ⊂ Us

S2 and ψτs (C) is a union of spherical fibers. Moreover, for
every t ∈ [0, 1] the metric (ψτs )∗g

τ
s,t restricted to ψτs (C) is compatible

with the restricted spherical structure.
(ii) ∂C = ∅, ψτs (C) ⊂ Us

S3 and for every s′ ∈ τ near s the metric gτs′,t
restricted to C is a multiple of gτs′,0 for all t ∈ [0, 1].

(5) For every σ ⊂ K and every component Σ ⊂ ∂Zσ the image ψσs (Σ) is
a regular fiber of Ss for all s ∈ σ. Moreover, there is an ε > 0 that
is independent of s such that for all t ∈ [0, 1] the metric (ψσs )∗g

σ
s,t is

compatible with Ss on an ε-collar neighborhood of ψσs (Σ) inside ψ
σ
s (Z

σ).
(6) For every s ∈ σ ⊂ L we have ψσs (Z

σ) = ∅ or Ms
T and the metrics gσs,t,

t ∈ [0, 1] are either multiples of the same constant curvature metric or
they are isometric to quotients of the round cylinder and admit the same
local isometric O(3)-actions.

We say that the partial homotopy is PSC-conformal over s ∈ K if for any
simplex σ ⊂ K with s ∈ σ and any t ∈ [0, 1] the Riemannian manifold (Zσ, gσs,t)
is PSC-conformal.

If Zσ = ∅ for all σ ⊂ K, then the partial homotopy is called trivial.

In other words, a partial homotopy is given by metric deformations (ψσs )∗g
σ
s,t

on the s-dependent domains ψσs (Z
σ) ⊂ Ms

T starting from (ψσs )∗g
σ
s,0 = g′,sT (see

Property (1)). For a fixed s ∈ K there may be several such domains and de-
formations, for different simplices σ ⊂ K containing s. Property (2) states that
these domains are nested and decrease in size as the dimension of σ increases.
Property (3) states that any two deformations (ψσs )∗g

σ
s,t, (ψ

τ
s )∗g

τ
s,t (τ ⊂ σ) for
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the same parameter s agree on the smaller domain ψσs (Z
σ) and Property (4) im-

poses a symmetry condition of the larger deformation (ψτs )∗g
τ
s,t on the difference

ψτs (Z
τ ) \ ψτs (Zσ). The use of the parameter s′ in Property (4)(ii) ensures that σ

admits an open over σ = Uσ
(i)∪Uσ

(ii) such that Property (4)(i) holds for all s ∈ Uσ
(i)

and Property (4)(ii) holds for all s ∈ Uσ
(ii); this fact will be important in the proof

of Proposition 7.9 (see also Proposition 6.18). Property (5) is a technical property,
which will allow us to extend a deformation (ψσs )∗g

σ
s,t to a larger domain using

metrics that are Ss compatible. It could potentially be replaced by a condition
requiring the boundary components of ψσs (Z

σ) to be umbilic round spheres with
respect to all metrics (ψσs )∗g

σ
s,t, plus some conditions on the higher derivatives.

In the cylindrical case Property (6) implies that for fixed s ∈ σ the metrics gσs,t,
t ∈ [0, 1] can locally be expressed as a2t gS2 + b2tdr

2 for some continuously varying
at, bt > 0.

On a more philosophical level, Definition 7.4 formalizes the idea of a continuous
family of metric deformations on subsets of Ms

T , which are defined up to some
ambiguity. This ambiguity is “supported” on the differences ψτs (Z

τ ) \ ψτs (Zσ),
which we will later choose to be subsets of small scale ρ. The deformations
(ψσs )∗g

σ
s,t restricted to these differences are required to be of a very controlled

symmetric form. This will allow us to argue that the ambiguity expressed in
Definition 7.4 is “contractible” in a certain sense.

Lastly, let us comment on the use of the PSC-conformal condition in Defini-
tion 7.4. The reason that we are using this condition instead of the standard
positive scalar curvature condition is rather subtle, but it will be central in the
proof of Proposition 7.9 below. In short, it has to do with poor contractibility
properties of certain spaces of warped product metrics with positive scalar curva-
ture. The PSC-conformal condition, on the other hand, is much more forgiving;
for instance, a metric is automatically PSC conformal if it is compatible with a
spherical structure whose domain is the entire manifold.

7.3. Constructing the desired family of metrics from a partial homo-
topy. Our strategy in Section 8 will be to inductively construct partial homo-
topies at a sequence of decreasing times Ti with Ti = 0 for some large i. The
following proposition will allow us to convert a partial homotopy at time 0 to
a conventional homotopy. It essentially states that we can construct a family
(hst )t∈[0,1],s∈K satisfying Properties (1)–(4) from Subsection 7.1 from a partial ho-
motopy at time 0 if the maps ψσs are all surjective.

Proposition 7.5. Suppose there is a partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ
s )s∈σ)}σ⊂K

at time 0 relative to L with the property that ψσs (Z
σ) = Ms

0 for all s ∈ σ ⊂ K.
Then there is a family of family of metrics (hst )t∈[0,1],s∈K satisfying Properties (1)–
(3) from Subsection 7.1.

Moreover for any s ∈ K, t ∈ [0, 1] the following holds. If the partial homotopy is
PSC-conformal at s, then (Ms, gst ) is PSC-conformal (compare with Property (4)
above).
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Proof. By Definition 7.4(3) we have (ψτs )∗g
τ
s,t = (ψσs )∗g

σ
s,t for all s ∈ τ ( σ ⊂ K,

t ∈ [0, 1]. So we can define hst := (ψσs )∗g
σ
s,t for any s ∈ σ ⊂ K. The asserted

properties of the family (Ms = Ms
0, (h

s
t )t∈[0,1])s∈K are direct consequences of

Definition 7.4. �

7.4. Moving a partial homotopy backwards in time. The following propo-
sition allows us to construct a partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ

s )s∈σ)}σ⊂K
at an earlier time T ′ ≤ T from a partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K

at time t such that the domains ψ
σ

s (Z
σ) arise by flowing ψσs (Z

σ) backwards by
the flow of ∂′,s by T − T ′. In order to achieve this we require that the differences
ψτs (Z

τ ) \ ψτs (Zσ) remain in the support of Rs.

In the following we denote by x∂
′,s
t (t′) and X∂′,s

t (t′) the image of x ∈ Ms
t and

X ⊂ Ms
t ) under the time (t′ − t)-flow of the vector field ∂′,s

t
; this is the same

notion as in Definition 3.22 with ∂t replaced by ∂′,s
t
.

Proposition 7.6. Consider a partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ
s )s∈σ)}σ⊂K

at time T relative to L and let T ′ ∈ [0, T ]. Assume that:

(i) For all s ∈ σ ⊂ K all points of ψσs (Z
σ) survive until time T ′ with respect

to the flow of ∂′,s
t
.

(ii) For all s ∈ τ ( σ ⊂ K and t′ ∈ [T ′, T ] we have
(
ψτ (Zτ ) \ ψσs (Zσ)

)∂′,s
t (t′) ⊂ Us

S2 ∪ Us
S3.

Then there is a partial homotopy of the form {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ

s )s∈σ)}σ⊂K
at time T ′ relative to L such that for all s ∈ σ ⊂ K:

(a) ψ
σ

s (Z
σ) = (ψσs (Z

σ))∂
′,s
t (T ′).

(b) If {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ

s )s∈σ)}σ⊂K is PSC-conformal over s and if g′,st′

restricted to (ψσs (Z
σ))∂

′,s
t (t′) is PSC-conformal for all t′ ∈ [T ′, T ], then

{(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ
s )s∈σ)}σ⊂K is also PSC-conformal over s.

Proof. We can define maps (ψσs )t′ : Z
σ → Ms

t′ , t
′ ∈ [T ′, T ], as follows:

(
ψσs

)
t′
(z) :=

(
ψσs (z)

)∂′,s
t (t′).

Set
ψ
σ

s :=
(
ψσs

)
T ′

and

gσs,t :=

{
(ψσs )

∗
T ′+2t(T−T ′)gT ′+2t(T−T ′) if t ∈ [0, 1

2
]

gσs,2t−1 if t ∈ [1
2
, 1]

Then Assertions (a) and (b) hold automatically. Let us now verify all properties

of Definition 7.4 for {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ

s )s∈σ)}σ⊂K .
By construction (Zσ, (gσs,t)s∈σ,t∈[0,1]) is a metric deformation for all σ ⊂ K.

Properties (1)–(3) of Definition 7.4 hold by construction as well.
For Property (4) consider the closure C of a component of

Zτ \ ((ψτs)−1 ◦ ψσs )(Zσ) = Zτ \ ((ψτs )−1 ◦ ψσs )(Zσ).
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By Assumption (ii) we have

C∂′,st (t′) ⊂ Us
S2 ∪ Us

S3 for all t′ ∈ [T ′, T ]. (7.7)

We can apply Definition (4) to C and the original partial homotopy, which implies
that there are two cases.

Case 1: Property (4)(i) holds for the original partial homotopy. So ψτs (C) ⊂
Us
S2, ψ

τ
s (C) is a union of fibers of Ss and (ψτs )∗g

τ
s,t restricted to ψτs (C) is compatible

with Ss. By (7.7) and Definition 5.10(1) we know that C(t′) ⊂ Us
S2 for all t′ ∈

[T ′, T ] and thus by Definition 5.10(2)–(4) the set ψ
τ

s(C) = C∂′,st (T ′) is a union of

fibers of Ss and (ψ
τ

s)∗g
τ
s,t restricted to ψ

τ

s(C) is compatible with Ss.
Case 2: Property (4)(ii) holds for the original partial homotopy. So ∂C = ∅,

ψτs (C) ⊂ Us
S3 and for every s′ ∈ τ near s the metric gτs′,t, t ∈ [0, 1], is a multiple of

gτs′,0. By (7.7) and Definition 5.10(5) we have C∂′,st (T ′) ⊂ Us
S2 or C∂′,st (T ′) ⊂ Us

S3.

Case 2a: C(T ′) ⊂ Us
S2. By Definition 5.10(6) there is a T ∗ ∈ [T ′, T ) such

that C∂′,st (t′) ⊂ Us
S3 for all t

′ ∈ (T ∗, T ] and C∂′,st (t′) ⊂ Us
S2 \Us

S3 for all t
′ ∈ [T ′, T ∗].

Using Definition 5.10(2)–(4), (7) we can argue as in Case 1 that (ψ
τ

s)∗g
τ
s,t restricted

to ψ
τ

s(C) is compatible with Ss.
Case 2b: C(T ′) ⊂ Us

S3. By Definition 5.10(6) we have C∂′,st (t′) ⊂ Us
S3 for

all t′ ∈ [T ′, T ]. By openness of ∪s′∈KUs′

S3 ⊂ ∪s′∈KMs′ the same is true for s′ ∈ τ
near s. So by Definition 5.10(7) for s′ ∈ τ near s we obtain that gτs,t is a multiple
of gτs,0.

Next, consider Property (5) of Definition 7.4. Fix some Σ ⊂ ∂Zσ. Then

ψσs (Σ) ⊂ Us
S2. We can again argue as before that (ψσs (Σ))

∂′,s
t (t′) ⊂ Us

S2 for all

t′ ∈ [T ′, T ]. Therefore, in a neighborhood of (ψσs (Σ))
∂′,s
t (t′) ⊂ Us

S2 the metric g′,st′
is compatible with Ss. Property (5) now follows from Definition 5.10(2)–(4).

Property (6) is a consequence of (7.2). �

7.5. Passing to a simplicial refinement. Consider the simplicial pair (K,L)
with geometric realization (K,L), as discussed in Subsection 7.1. Let K′ be a sim-
plicial refinement of K, let L′ be the corresponding simplicial refinement of L, and
identify the geometric realizations of (K′,L′) with (K,L). The next proposition
states that given a partial homotopy respecting the simplicial structure K, we
may construct a canonical partial homotopy respecting the simplicial structure
K′.

Proposition 7.8. Let K′ be a simplicial refinement of K. If {(Zσ, (gσs,t)s∈σ,t∈[0,1],
(ψσs )s∈σ)}σ⊂K is a partial homotopy at time T relative to L that respects the simpli-
cial structure K, then there is a partial homotopy {(Zσ

, (gσs,t)s∈σ,t∈[0,1], (ψ
σ

s )s∈σ)}σ⊂K
at time T relative to L that respects the simplicial structure K′ such that:

(a) For any σ′ ∈ K′ the following holds: If σ ∈ K is the simplex with

the smallest dimension such that σ ⊃ σ′, then ψ
σ′

s (Z
σ′

) = ψσs (Z
σ) and

(ψ
σ′

s )∗g
σ′

s,t = (ψσs )∗g
σ
s,t for all s ∈ σ′, t ∈ [0, 1].
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(b) If {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ
s )s∈σ)}σ⊂K is PSC-conformal over some s ∈ K,

then so is {(Zσ
, (gσs,t)s∈σ,t∈[0,1], (ψ

σ

s )s∈σ)}σ⊂K .
Proof. For any σ′ ∈ K′, then there is a unique simplex σσ′ ∈ K that has minimal
dimension and satisfies σσ′ ⊃ σ′. Set

(Z
σ′

, (gσ
′

s,t)s∈σ′,t∈[0,1], (ψ
σ′

s )s∈σ′) := (Zσσ′ , (g
σσ′

s,t )s∈σσ′ ,t∈[0,1], (ψ
σσ′

s )s∈σσ′
).

It is easy to see that this new data still defines a partial homotopy that satisfies
the assertions of this proposition. �

7.6. Enlarging a partial homotopy. In the following we prove that we can
enlarge the images ψσs (Z

σ) by certain subsets contained in Us
S2 ∪ Us

S3 that are
either unions of spherical fibers or round components.

Proposition 7.9. Consider a partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ
s )s∈σ)}σ⊂K

at time T relative to L. Fix some simplex σ ⊂ K. Let Ẑσ be a compact 3-manifold

with boundary, ισ : Zσ → Ẑσ an embedding and (ψ̂σs : Ẑσ → Ms
T )s∈σ a continuous

family of embeddings. Assume that for all s ∈ σ:

(i) ψσs = ψ̂σs ◦ ισ.
(ii) If s ∈ τ ⊂ ∂σ, then ψ̂σs (Ẑ

σ) ⊂ ψτs (Z
τ ).

(iii) For the closure Y of every component of Ẑσ \ ισ(Zσ) one of the following
is true uniformly for all s ∈ σ:

(iii-1) ψ̂σs (Y ) is a union of fibers of Ss.
(iii-2) ∂Y = ∅, ψ̂σs (Y ) ⊂ Us

S3 and (ψ̂σs )
∗g′,sT a multiple of the same constant

curvature metric for all s ∈ σ.

(iv) If σ ⊂ L, then ψ̂σs (Ẑ
σ) \ ψσs (Zσ) = ∅ or Ms

T and g′,sT is a CC-metric.

Then there is a family of metrics (ĝσs∈σ,t∈[0,1]) on Ẑ
σ such that

{(Zσ′ , (gσ
′

s,t)s∈σ′,t∈[0,1], (ψ
σ′

s )s∈σ′)}σ′⊂K,σ′ 6=σ∪{(Ẑσ, (ĝσs,t)s∈σ,t∈[0,1], (ψ̂
σ
s )s∈σ))} (7.10)

is a partial homotopy at time T relative to L. Moreover, if the original partial
homotopy was PSC-conformal over some s ∈ K, then the new partial homotopy
is PSC-conformal over s as well.

Proof. After replacing Zσ with ισ(Zσ), ψσs with ψ̂σs |ισ(Zσ) and g
σ
s,t with ι

σ
∗g

σ
s,t, we

may assume without loss of generality that Zσ ⊂ Ẑσ is an embedded submanifold,

ισ = idZσ and ψσs = ψ̂σs |Zσ . Next, note that Ẑσ \ Zσ consists of finitely many
connected components. In the following we will assume without loss of generality
that this difference only contains one connected component. The proposition in
its full generality will then follow by successively adding connected components

to Zσ. Let Y be the closure of Ẑσ \ Zσ.
By Definition 7.4(3), for every two simplicies τ1 ⊂ τ2 ⊂ ∂σ and s ∈ τ1, t ∈ [0, 1]

we have on Ẑσ:
(
(ψτ2s )−1 ◦ ψ̂σs

)∗
gτ2s,t =

(
(ψτ2s )−1 ◦ ψ̂σs

)∗(
(ψτ1s )−1 ◦ ψτ2s

)∗
gτ1s,t =

(
(ψτ1s )−1 ◦ ψ̂σs

)∗
gτ1s,t.
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Therefore, there is a continuous family of metrics (ks,t)s∈∂σ,t∈[0,1] on Ẑ
σ that sat-

isfies

ks,t =
(
(ψτs )

−1 ◦ ψ̂σs
)∗
gτs,t for all s ∈ τ ⊂ ∂σ. (7.11)

Claim 7.12. We have

ks,0 =
(
ψ̂σs

)∗
g′,sT on Ẑσ for s ∈ ∂σ, (7.13)

ks,t = gσs,t on Zσ for s ∈ ∂σ, t ∈ [0, 1] (7.14)

gσs,0 =
(
ψ̂σs

)∗
g′,sT on Zσ for s ∈ σ, (7.15)

Proof. For (7.13), observe that for all s ∈ τ ⊂ ∂σ

ks,0 =
(
(ψτs )

−1 ◦ ψ̂σs
)∗
(ψτs )

∗g′,sT =
(
ψ̂σs

)∗
g′,sT .

(7.14) and (7.15) follow from ψσs = ψ̂σs |Zσ and

ks,t
∣∣
Zσ =

(
(ψτs )

−1 ◦ ψσs
)∗
gτs,t = gσs,t. �

Our goal will be to construct a metric deformation (Ẑσ, (ĝσs,t)s∈σ,t∈[0,1]) such
that, among other things,

ĝσs,t = ks,t on Ẑσ for s ∈ ∂σ, t ∈ [0, 1] (7.16)

ĝσs,0 =
(
ψ̂σs

)∗
g′,sT on Ẑσ for s ∈ σ (7.17)

ĝσs,t = gσs,t on Zσ for s ∈ σ, t ∈ [0, 1] (7.18)

Claim 7.19. If (7.16)–(7.18) hold, then (7.10) satisfies Properties (1)–(3) of
Definition 7.4.

Proof. Property (1) of Definition 7.4 holds due to (7.17). Property (2) holds by
Assumptions (i) and (ii). For Property (3) observe that by (7.11) and (7.16) for
any s ∈ τ ⊂ ∂σ we have

(
(ψτs )

−1 ◦ ψ̂σs
)∗
gτs,t = ks,t = ĝσs,t on Ẑσ.

On the other hand, for any s ∈ σ ⊂ ∂τ we have by Assumption (i)

ψτs (Z
τ ) ⊂ ψσs (Z

σ) = ψ̂σs (Z
σ).

Thus (ψ̂σs )
−1 ◦ ψτs = (ψσs )

−1 ◦ ψτs : Zτ → Zσ and by (7.18) we have on Zτ

(
(ψ̂σs )

−1 ◦ ψτs
)∗
ĝσs,t =

(
(ψσs )

−1 ◦ ψτs
)∗
gσs,t = gτs,t. �

We will now construct (ĝσs,t)s∈σ,t∈[0,1] such that (7.16)–(7.18) hold.

Case 1: σ 6⊂ L. We distinguish the two cases from Assumption (iii).

Case 1a: Assumption (iii-1) holds for all s ∈ σ. For every s ∈ σ let S ′,s be

the pull back of Ss along ψ̂σs . Then (S ′,s)s∈σ is a transversely continuous family of

spherical structures defined on neighborhoods of Y in Ẑσ, Y is a union of fibers

of S ′,s and (ψ̂σs )
∗g′,sT is compatible with S ′,s for all s ∈ σ. Definition 7.4(5) implies
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that there is an ε > 0 such that for every t ∈ [0, 1] the metric gσs,t restricted to an ε-
collar neighborhood of ∂Zσ inside Zσ is compatible with S ′,s. So after restricting
S ′,s to a smaller domain, we may assume in the following that for all s ∈ σ we
have Y ⊂ domainS ′,s and that gσs,t is compatible with S ′,s on Zσ ∩ domain(S ′,s)
for all t ∈ [0, 1].

Claim 7.20. ks,t is compatible with S ′,s for all s ∈ ∂σ and t ∈ [0, 1]

Proof. Note first that due to (7.14) the metric ks,t restricted to Zσ is compatible
with S ′,s. So it remains to check the compatibility only on Y .

Choose τ ⊂ ∂σ such that s ∈ τ . The set ((ψτs )
−1 ◦ ψ̂σs )(Y ) is contained in

the closure C of a component of Zτ \ ((ψτs )
−1 ◦ ψσs )(Zσ). By Property (4) of

Definition 7.4 there are two cases.
In the first case (Case (4)(i)) the image ψτs (C) is a union of fibers of Ss and

((ψ̂σs )∗ks,t)|ψ̂σ
s (Y ) = ((ψτs )∗g

τ
s,t)|ψ̂σ

s (Y ) is compatible with Ss for all t ∈ [0, 1]. It

follows that ks,t|Y is compatible with S ′,s for all t ∈ [0, 1].
In the second case (Case (4)(i)) ∂C = ∅, ψτs (C) ⊂ Us

S3 and g
τ
s,t restricted to C is a

multiple of gτs,0 for all t ∈ [0, 1]. It follows that ((ψ̂σs )∗ks,t)|ψ̂σ
s (Y ) = ((ψτs )∗g

τ
s,t)|ψ̂σ

s (Y )

is a multiple of ((ψ̂σs )∗ks,0)|ψ̂σ
s (Y ) = ((ψτs )∗g

τ
s,0)|ψ̂σ

s (Y ) for all t ∈ [0, 1]. So ks,t|Y is

a multiple of ks,0|Y = ((ψ̂σs )
∗g′,sT )|Y for all t ∈ [0, 1], which is compatible with

S ′,s. �

We can now construct (ĝσs,t)s∈σ,t∈[0,1] using Proposition 6.15.

Case 1b: Assumption (iii-2) holds for all s ∈ σ. Recall that in this case Ẑσ

is a disjoint union of Zσ and Y , ψ̂σs (Y ) ⊂ Us
S3 and there is a constant curvature

metric g∗ on Y and a continuous function λ : σ → R+ that ((ψ̂σs )
∗g′,sT )|Y = λ2(s)g∗

for all s ∈ σ. Set (ĝσs,t) := (gσs,t) on Z
σ. Then (7.18) is satisfied and it remains to

specify (ĝσs,t) on Y .
Let

A := {s ∈ σ : ψ̂σ(Y ) ⊂ Us
S2}

and for every s ∈ A let S ′,s be the pull back of Ss to Y along ψ̂σ|Y . Note that A

is open in σ, (S ′,s)s∈A is transversely continuous and (ψ̂σs )
∗g′,sT is compatible with

S ′,s for all s ∈ A. Moreover, if A 6= ∅, then (Y, g∗) is isometric to the standard
S3 or RP 3.

Next let us analyze the family (ks,t)s∈∂σ,t∈[0,1]. For any s ∈ τ ⊂ ∂σ the set

Cτ,s := ((ψτs )
−1 ◦ ψ̂σs )(Y ) is a component of Zτ . Since τ is connected we have

Cτ,s = Cτ for all s ∈ τ . By Definition 7.4(4), (7.11) and (7.13) there is a closed
subset Eτ ⊂ A ∩ τ such that:

(1) For all s ∈ Eτ and t ∈ [0, 1] the metric ks,t|Y is compatible with S ′,s.
(2) For all s ∈ τ \ Eτ and t ∈ [0, 1] the metric ks,t|Y is a multiple of ks,0|Y =

(ψ̂σs g
′,s
T )|Y = λ2(s)g∗.

Set E := ∪τ⊂∂σEτ ⊂ A and notice that E is closed. By Proposition 6.18 we can
construct (ĝσs,t|Y )s∈σ,t∈[0,1] such that (7.16) and (7.17) hold and such that ĝσs,t|Y is
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compatible with S ′,s for all s ∈ A and t ∈ [0, 1]. Moreover, ĝσs,t|Y is a multiple of
g∗ for all s ∈ A \ E ′ for some closed subset E ′ ⊂ A ⊂ σ.

Case 2: σ ⊂ L We may assume that Y 6= ∅. By Assumption (iv) we have

∂Y = ∅, Ẑσ = Y and Zσ = ∅.
Case 2a: Y is a spherical space form. Due to Definition 7.4(6) and (7.13)

we have ks,t = λ2s,t(ψ̂
σ
s )

∗g′,sT for all s ∈ ∂σ, t ∈ [0, 1], where (s, t) 7→ λs,t > 0 is
continuous and λs,0 = 1. Extend this function to a continuous function (s, t) 7→
λ̃s,t > 0 on σ × [0, 1] and set hs,t := λ̃2s,t(ψ̂

σ
s )

∗g′,sT .

Case 2b: Y is a quotient of a cylinder. As in Case 1a let S ′,s be the pull

back of Ss along ψ̂σs . For any s ∈ σ we can split (ψ̂σs )
∗g′,sT = us + vs into its

components tangential and orthogonal to the fibers of S ′,s. For the same reasons
as in Case 2a we have ks,t = λ2s,tus+µ

2
s,tvs, where (s, t) 7→ λs,t > 0, (s, t) 7→ µs,t > 0

are continuous functions with λs,0 = µs,0 = 1. Let λ̃s,t, µ̃s,t : σ × [0, 1] → R+ be

continuous extensions of these functions and set hs,t := λ̃2s,tus + µ̃2
s,tvs.

We now verify that (ĝσs,t)s∈σ,t∈[0,1] satisfies the required properties in all cases.
For this purpose, recall that by (7.17) for all s ∈ σ the metric ĝσs,1 restricted to
Zσ is conformally flat and PSC-conformal and ĝσs,1 restricted to a neighborhood

of Ẑσ \ IntZσ is compatible with a spherical structure and therefore also con-

formally flat. So by Lemma 6.6 we obtain that (Ẑ, ĝσs,1) is conformally flat and

PSC-conformal for all s ∈ σ, which implies that (Ẑσ, (ĝσs,t)s∈σ,t∈[0,1]) is a metric
deformation.

Next, consider Definition 7.4. Properties (5), (6) of Definition 7.4 hold by
construction.

Let us now verify Property (4) of Definition 7.4. First assume that s ∈ τ ⊂ ∂σ
and consider the embedding

F := (ψτs )
−1 ◦ ψ̂σs : Ẑσ −→ Zτ .

Consider the closure C of a component of Zτ \ F (Ẑσ) = Zτ \ (F (Zσ) ∪ F (Y )).
Let C′ be the closure of a component of Zτ \ F (Zσ) such that C′ ⊃ C. If C′ = C,
then there is nothing to show. So assume that C′ ) C. Then C′ ⊃ F (Y ) and C is
the closure of a component of C′ \ F (Y ). This implies that ∂Y 6= ∅ and therefore
the construction of (ĝσs,t)s∈σ,t∈[0,1] was covered in Case 1a. Let us now consider
the two possibilities of Property (4) of Definition 7.4 for C′:

(i) ψτs (C′) is a union of spherical fibers and (ψτs )∗g
τ
s,t restricted to ψτs (C′) is

compatible with the restricted spherical structure for all t ∈ [0, 1]. Since

ψτs (F (Y )) = ψ̂σs (Y ) is a union of spherical fibers, the same is true if we
replace C′ by C.

(ii) C′ is closed, ψτs (C′) ⊂ Us
S3 and for every s′ ∈ τ near s the metric gτs′,t re-

stricted to C is a multiple of gτs′,0 for all t ∈ [0, 1]. Again, since ψτs (F (Y )) =

ψ̂σs (Y ) is a union of spherical fibers, we obtain using Definition 5.10(1)
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that ψτs (C′) ⊂ Us
S2. This implies that (ψτs )∗g

τ
s,t restricted to ψτs (C), being

a multiple of (ψτs )∗g
τ
s,0 = g′,sT restricted to ψτs (C), is compatible with the

restricted spherical structure. Hence this case implies Case (i).

Next assume that s ∈ σ ⊂ ∂τ and consider the embedding

F :=
(
ψ̂σs

)−1 ◦ ψτs : Zτ −→ Ẑσ.

Consider the closure C of a component of Ẑσ \F (Zτ ). If C is also the closure of a
component of Zσ\F (Zτ ), then we are done, so assume that this is not the case. It
follows that C ⊃ Y . Moreover, if C′

1, . . . , C′
m denote the closures of all components

of Zσ \ F (Zτ ) and I ⊂ {1, . . . , m} denotes the set of indices with the property
that C′

i ∩ Y 6= ∅, then C = Y ∪i∈I C′
i. If (ĝσs,t)s∈σ,t∈[0,1] was constructed according

to Cases 1b or Case 2, then I = ∅, C = Y and the conditions in Property (4) of
Definition 7.4 hold by the discussions in these cases. So assume that (ĝσs,t)s∈σ,t∈[0,1]
was constructed according to Case 1a. Since ∂C′

i 6= ∅ for all i ∈ I, Property (4) of

Definition 7.4 implies that for all i ∈ I the set ψ̂σs (C′
i) is a union of spherical fibers

and for every t ∈ [0, 1] the metric (ψ̂σs )∗ĝ
σ
s,t restricted to ψ̂σs (C′

i) is compatible with
the restricted spherical structure. By construction, the same is true if we replace

C′
i by Y . Therefore ψ̂σs (C) is a union of spherical fibers and (ψ̂σs )∗ĝ

σ
s,t restricted

to ψ̂σs (C) is compatible with the restricted spherical structure It follows that C
satisfies Property (4)(i) of Definition 7.4 (with σ and τ switched).

Lastly, assume that the original partial homotopy was PSC-conformal over
some s ∈ K. We will argue that (7.10) is PSC-conformal over s as well. For
this purpose it remains to consider the case s ∈ σ, and we only need to show

that (Ẑσ, ĝσs,t) is PSC-conformal for all t ∈ [0, 1]. Recall that (Zσ, gσs,t) is PSC-

conformal. In Cases 1b, 2a, 2b, Y is a component of Ẑσ and we can use Lemma 6.6
to show that (Y, ĝσs,t) is PSC-conformal. In Case 1a the metric ĝσs,t is compati-

ble with a spherical structure on Ẑσ with the property that Y is a union of

spherical fibers. Therefore, we obtain again using Lemma 6.6 that (Ẑσ, ĝσs,t) is
PSC-conformal. �

7.7. Removing a disk from a partial homotopy. In this subsection we will
show that one can modify a partial homotopy by the removal of a disk of controlled
size from some Zσ, without disturbing the partial homotopy property. To get an
idea of (one of the situations in which) this operation will eventually be applied,
consider a single singular Ricci flow M that undergoes a degenerate neck pinch
at some time T0 > 0. Right after the singular time, one observes a cap region
modelled on Bryant soliton, whose scale decreases to zero as tց T0. For certain
times T > T0 close to T0, we will find that there are two equally admissible
truncations of MT , which agree with one another modulo the removal of an
approximate Bryant 3-disk region. The following proposition will enable one to
adjust a partial homotopy to accommodate the removal of such a disk region.

Proposition 7.21 (Disk removal). Consider a partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1],
(ψσs )s∈σ)}σ⊂K at time T relative to L and a closed subset KPSC ⊂ K. Fix some
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simplex σ0 ⊂ K with σ0 ∩ L = ∅, and assume that there is a collection of con-
tinuous families of embeddings {(νs,j : D3(1) =: D3 → Ms

T )s∈σ0}1≤j≤m such that
the following holds:

(i) For all s ∈ σ0 the embeddings {νs,j}1≤j≤m have pairwise disjoint images
and for every j ∈ {1, . . . , m} we have νs,j(D

3) ⊂ ψσ0s (IntZσ0) ∩ Us
S2.

(ii) For every s ∈ σ0, j ∈ {1, . . . , m}, the embedding νs,j carries the standard
spherical structure on D3 to Ss restricted to νs,j(D

3).
(iii) νs,j(D

3) ∩ ψτs (Zτ ) = ∅ whenever s ∈ σ0 ( τ ⊂ K, j ∈ {1, . . . , m}.
(iv) If σ0 is a maximal simplex, i.e. σ0 is not properly contained in any other

simplex σ1 ⊂ K, then we assume additionally that for any τ ⊂ K with
the property that τ ∩ σ0 6= ∅ the following holds for all s ∈ σ0 ∩ τ , j ∈
{1, . . . , m}: The image νs,j(D

3) does not contain an entire component of
ψτs (Z

τ ).
(v) {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K is PSC-conformal over every s ∈ KPSC.

(vi) For all s ∈ σ0 ∩KPSC the Riemannian manifold
(
ψσ0s (Zσ0) \ ∪mj=1νs,j(IntD

3), g′,sT
)

is PSC-conformal.

Then we can find a partial homotopy {(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1], (ψ̃
σ
s )s∈σ)}σ⊂K at time

T relative to L such that the following holds:

(a) ψ̃τs (Z̃
τ ) = ψτs (Z

τ ) for all s ∈ τ , if τ 6= σ0.

(b) ψ̃σ0s (Z̃σ0) = ψσ0s (Zσ0) \ ∪mj=1νs,j(IntD
3) for all s ∈ σ0.

(c) {(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1], (ψ̃
σ
s )s∈σ)}σ⊂K is PSC-conformal over every s ∈ KPSC.

Before proceeding with the proof, we give an indication of some of the main
points. For simplicity we will restrict to the case when only one disk is removed,
and drop the index j. The main objective in the removal procedure is to ensure
that the removed disk satisfies Definition 7.4(4) — the S-compatibility of the
metric deformation (gσ0s,t) — on the disk.

If σ0 is not maximal, we choose some simplex τ ) σ0. By applying Assump-
tion (iii) and Definition 7.4(4) to the pair σ0 ( τ , we find that (ψσ0s )∗g

σ0
s,t is already

Ss-compatible on the entire disk νs(D
3). Hence we may simply remove νs(D

3)
from ψσ0s (Zσ0) and the verification of Definition 7.4 amounts to unwinding of
definitions.

When σ0 is maximal, the metric deformation (ψσ0s )∗g
σ0
s,t is typically not Ss-

compatible on the 3-disk νs(D
3), so we must modify it to respect the compatibil-

ity conditions on the system of metric deformations in a partial homotopy. This
necessitates adjustments to metric deformations (gτs,t) for τ near σ0 as well. To
first approximation, the modification process involves two steps: we first apply a
rounding procedure to (ψσ0s )∗g

σ0
s,t on a small ball centered at the singular fiber νs(0)

of Ss to produce a metric deformation that is Ss-compatible near νs(0); then we
push forward the resulting metric deformation by an Ss-compatible diffeomor-
phism to inflate the region of Ss-compatibility so that it covers νs(D

3). The
actual process is more involved than this for several reasons: One issue is that we
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need to cut off the modification procedure in a neighborhood of σ0. To address
this, we upgrade the two steps mentioned above — the rounding procedure and
the push forward by an inflationary diffeomorphism — into continuous families
depending on a parameter lying in the interval [0, 1], and implement the cutoff by
arranging for this control parameter to be supported close to σ0 ⊂ K. Another
major constraint on the modification process is the S-compatibility required by
Definition 7.4(4) for various pairs τ ( σ. The assumptions of Proposition 7.21
imply that for pairs τ ( σ and s ∈ τ near σ0, the portion of the 3-disk νs(D

3)
where Definition 7.4(4) imposes S-compatibility is either a disk νs(D

3(r)) or an
annulus νs(A

3(r, r′)), where r is bounded away from 0. This enables us to guar-
antee that the two step modification process — rounding and inflation — leaves
the S-compatibility undisturbed.

Proof. By induction we may reduce the proposition to the case m = 1 (Alterna-
tively, the construction given below may be localized near each disk, so that the
case when m > 1 follows by applying the same argument simultaneously). Note
here that due to Lemma 6.6 Assumptions (ii) and (vi) imply that for any subset
I ⊂ {1, . . . , m} the Riemannian manifold

(
ψσ0s (Zσ0) \ ∪j∈Iνs,j(IntD3), g′,sT

)

is PSC-conformal. So we may assume in the following that m = 1 and drop the
index j from now on.

Using the exponential map based at νs(0) and the fact that ∪s∈KUs
S2 is open, we

can construct a neighborhood σ0 ⊂ U ⊂ K and a continuous family of embeddings
(νs : D

3(2) → Ms)s∈U such that νs = νs|D3(1) if s ∈ σ0 and such that:

(1) For all s ∈ σ0 we have νs(D
3(2)) ⊂ ψσ0s (IntZσ0).

(2) For all s ∈ U we have νs(D
3(2)) ⊂ Us

S2 and νs carries the standard
spherical structure on D3(2) to the restriction of Ss to νs(D3(2)).

(3) νs(D
3(2)) ∩ ψτs (Zτ ) = ∅ whenever σ0 ( τ ⊂ K.

(4) If σ0 is maximal, then for any τ ⊂ K and s ∈ τ ∩ U the image νs(D
3(2))

does not contain an entire component of ψτs (Z
τ ).

In the following we will write νs instead of νs for simplicity.
Next, we exploit the invariance of Definition 7.4 under precomposition by dif-

feomorphisms to argue that we may assume in addition, without loss of generality:

(5) There is an embedding µ : D3(2) → Zσ0 with the property that νs =
ψσ0s ◦ µ for all s ∈ σ0.

More specifically, let (χs : Z
σ0 → Zσ0)s∈σ0 be a continuous family of diffeomor-

phisms that are equal to the identity near ∂Zσ0 and such that χ−1
s ◦ (ψσ0s )−1 ◦ νs

is constant in s. Set
(
ψ
σ0
s := ψσ0s ◦ χs : Zσ0 → Zσ0

)
s∈σ0

, gσ0s,t := χ∗
sg
σ0
s,t.

If we replace (gσ0s,t)s∈σ0,t∈[0,1], (ψ
σ0
s )s∈σ0 by (gσ0s,t)s∈σ0,t∈[0,1], (ψ

σ0
s )s∈σ0 , then the con-

ditions for a partial homotopy are preserved, and µ := (ψσ0s )−1 ◦ νs is constant in
s.

Next, we claim that the following is true:
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(6) If τ ( σ ⊂ K, s ∈ τ∩U and C is the closure of a component of Zτ\((ψτs )−1◦
ψσs )(Z

σ) with ψτs (C)∩ νs(D3(2)) 6= ∅, then Case (4)(i) of Definition 7.4(4)
holds for C.

In fact, if C satisfies Definition 7.4(4)(i), then we are done; so assume that it
satisfies Definition 7.4(4)(ii). Then ∂C = ∅, ψτs (C) ⊂ Us

S3 and gτs,t restricted

to C is a multiple of gτs,0. Since νs(D
3(2)) ⊂ ψτs (C) ⊂ US2, we conclude using

Definition 5.10(1) that ψτs (C) ⊂ Us
S2. So since ∂C = ∅, we obtain that ψτs (C) is

a union of spherical fibers. By Definition 5.10(4) we obtain that (ψτs )∗g
τ
s,0 = g′,sT ,

and thus also (ψτs )∗g
τ
s,t, restricted to ψτs (C) is compatible with Ss.

Case 1: σ0 ( σ1 for some simplex σ1 ⊂ K. Let us first apply Property (6)
above for τ = σ0 and σ = σ1. By Property (3) above, for any s ∈ σ0, there is
a component C ⊂ Zσ0 \ ((ψσ0s )−1 ◦ ψσ1s )(Zσ1) with ψσ0s (C) ⊃ νs(D

3(2)). So by
Properties (2), (5), (6) above we obtain:

(7) For all s ∈ σ0, t ∈ [0, 1] the pullback µ∗gσ0s,t is compatible with the standard
spherical structure on D2(2).

Now set

Z̃σ0 := Zσ0 \ µ−1(IntD3(1)), ψ̃σ0s := ψσ0s
∣∣
Z̃σ0

, g̃σ0s,t := gσ0s,t
∣∣
Z̃σ0

and

(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1], (ψ̃
σ
s )s∈σ) := (Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)

for all σ 6= σ0. Then Assertions (a), (b) of this proposition hold automatically.

Let us now verify that {(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1], (ψ̃
σ
s )s∈σ)}σ⊂K is a partial homotopy.

First, we argue that (Z̃σ0 , (g̃σ0s,t)s∈σ0,t∈[0,1]) is a metric deformation (see Defini-
tion 7.3). Since (Zσ0 , (gσ0s,t)s∈σ0,t∈[0,1]) is a metric deformation, the only non-trivial

property is the PSC-conformality of (Z̃σ0 , g̃σ0s,1), which follows from Lemma 6.6

with M = Z̃σ0 , Z = (ψσ0s )−1(ψσ1s (Zσ1)) ⊂ Z̃σ0 and g = g̃σ0s,1.

Properties (1)–(3), (6) of Definition 7.4 clearly hold for {(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1],

(ψ̃σs )s∈σ)}σ⊂K . Property (5) is unaffected by the modification, except for the

boundary component µ(∂D3(1)) ⊂ Z̃σ0 , for which Property (5) follows from
Property (7) above.

We now verify Property (4). Note that it holds for pairs of simplices τ ( σ when
σ0 6∈ {τ, σ}, because {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K is a partial homotopy.

Suppose that s ∈ σ0 ( σ for some simplex σ ⊂ K. Then the collection of

components of Z̃σ0\((ψ̃σ0s )−1◦ψ̃σs )(Z̃σ) is the same as the collection of components

of Zσ0 \ ((ψσ0s )−1 ◦ ψσs )(Zσ), except for the one containing µ(D3(1)); let C̃ denote
its closure and C denote the closure of the corresponding component of Zσ0 \
((ψσ0s )−1 ◦ ψσs )(Zσ). So C̃ = C \ µ(IntD3(1)). By Properties (2), (6) above, we

obtain that C̃ satisfies Property (4)(i) of Definition 7.4.

Next suppose that s ∈ τ ( σ0. Then the closures of the component Z̃τ \
((ψ̃τs )

−1 ◦ ψ̃σ0s )(Z̃σ0) are the same as those of Zτ \ ((ψτs )
−1 ◦ ψσ0s )(Zσ0) plus the
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component C := (ψτs )
−1(νs(D

3(1))). It follows from Property (7) that C satisfies
Definition 7.4(4)(i).

We now verify Assertion (c) of this proposition. Suppose that σ ⊂ K is a

simplex and s ∈ KPSC ∩ σ. If σ 6= σ0, then Z̃σ = Zσ and g̃σs,t = gσs,t for all

t ∈ [0, 1], so (Z̃σ, g̃σs,t) is PSC-conformal by assumption. If σ = σ0, then for every

t ∈ [0, 1] we may apply Lemma 6.6 with M = Z̃σ0 , Z = (ψσ0s )−1(ψσ1s (Zσ1)) ⊂ Z̃σ0

and g = g̃σ0s,t to conclude that g̃σ0s,t is PSC-conformal.

Case 2: σ0 is a maximal simplex of K. In this case, by Properties (1)–(6)
above imply that the assumptions of Lemma 7.22 below hold. So the proposition
follows from Lemma 7.22 below. �

Lemma 7.22. Consider a partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ
s )s∈σ)}σ⊂K at

time T relative to L and a closed subset KPSC ⊂ K. Fix some simplex σ0 ⊂ K,
σ0∩L = ∅ and a neighborhood σ0 ⊂ U ⊂ K and assume that there is a continuous
family of embeddings (νs : D

3(2) → Ms)s∈U such that the following holds:

(i) σ0 is a maximal simplex.
(ii) There is an embedding µ : D3(2) → IntZσ0 such that νs = ψσ0s ◦ µ for all

s ∈ σ0.
(iii) For all s ∈ U we have νs(D

3(2)) ⊂ Us
S2 and the embedding νs carries the

standard spherical structure on D3 to Ss restricted to νs(D
3(2)).

(iv) For any τ ⊂ K and s ∈ τ ∩ U the image νs(D
3(2)) does not contain an

entire component of ψτs (Z
τ ).

(v) If τ ( σ ⊂ K, s ∈ τ ∩ U and C is the closure of a component of
Zτ \ ((ψτs )

−1 ◦ ψσs )(Zσ) with ψτs (C) ∩ νs(D
3(2)) 6= ∅, then Case (4)(i)

of Definition 7.4(4) holds for C.
(vi) {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K is PSC-conformal over every s ∈ KPSC.

(vii) For all s ∈ σ0∩KPSC the Riemannian manifold (ψσ0s (Zσ0)\νs(IntD3(1)),
g′,sT ) is PSC-conformal.

Then letting

Z̃σ :=

{
Zσ if σ 6= σ0,

Zσ0 \ µ(IntD3(1)) if σ = σ0
, ψ̃σs := ψσs

∣∣
Z̃σ , (7.23)

we can find continuous families (g̃σs,t)s∈σ,t∈[0,1] of metrics on Z̃σ such that:

(a) {(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1], (ψ̃
σ
s )s∈σ)}σ⊂K is a partial homotopy at time T relative

to L.
(b) {(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1], (ψ̃

σ
s )s∈σ)}σ⊂K is PSC-conformal over every s ∈ KPSC.

Proof. In the following, we will construct the families of metrics (g̃σs,t). The con-
struction will be performed locally on νs(D

3(2)) and on U , meaning that the

metrics (ψ̃σs )∗g̃
σ
s,t and (ψσs )∗g

σ
s,t will (if at all) only differ on νs(D

3(2)) if s ∈ U and
we will choose g̃σs,t = gσs,t if s 6∈ U .

Before proceeding, we observe that without loss of generality we may assume
that each gσs,t is constant in t for all t ∈ [0, 1

2
]. In fact, in our partial homotopy
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we may replace each gσs,t by

g̃σs,t :=

{
gσs,0 if t ∈ [0, 1

2
]

gσs,2t−1 if t ∈ [1
2
, 1]

and Definition 7.4 will still be satisfied. So assume that this is the case from now
on.

In the first claim we will analyze the intersections of νs(D
3(2)) with the images

ψσs (Z
σ). We will find that νs(D

3(2)) is either fully contained in this image or the
intersection equals an annulus whose inner circle has radius bounded away from
0.

Claim 7.24. After possibly shrinking the neighborhood U of σ0 we can find a
small r0 ∈ (0, 1) such that:

(a) U is contained in the union of all simplices τ ⊂ K that intersect σ0.
(b) For any τ ⊂ K there are two cases:

(b1) νs(D
3(2)) ⊂ ψτs (Z

τ ) for all s ∈ τ ∩ U or
(b2) νs(D

3(r0))∩ψτs (Zτ ) = ∅ for all s ∈ τ ∩U . In view of Assumption (iv)
this implies that the complement D3(2) \ ν−1

s (ψτs (Int(Z
τ ))) is either

empty or of the form D3(r) for some r ∈ (r0, 2].

Proof. This follows by an openness argument and Assumption (iv) of the lemma.
Let U = U1 ⊃ U2 ⊃ . . . ⊃ σ0 a sequence of open subsets with ∩∞

i=1Ui = σ0. Then
Assertion (a) holds if we replace U by Ui for large i. We will now argue that
Assertion (b) holds as well for large i.

Consider some simplex τ ⊂ K. If τ = σ0, then Property (b1) holds by Assump-
tion (ii) of the lemma. If τ ( σ0, then ψ

σ0
s (Zσ0) ⊂ ψτs (Z

τ ) and thus Property (b1)
holds as well. Assume now that τ 6⊂ σ0, but τ∩σ0 6= ∅. By Assumption (iv) of the
lemma, for any s ∈ τ ∩ U we have either νs(0) 6∈ ψτs (Z

τ ) or νs(D
3(2)) ⊂ ψτs (Z

τ ).
Consider the set S ⊂ τ ∩ U of parameters for which νs(D

3(2)) ⊂ ψτs (Z
τ ). Then

S is closed in τ ∩U by definition, but by Assumption (iv) of the lemma it is also
open in τ ∩ U . So there is a subset τ ∩ σ0 ⊂ Uτ ⊂ τ ∩ U that is open in τ such
that either νs(0) 6∈ ψτs (Z

τ ) or νs(D
3(2)) ⊂ ψτs (Z

τ ) uniformly for all s ∈ Uτ . Thus
Assertion (b) holds for τ if i is large enough such that Ui ∩ τ ⊂ Uτ ∩ τ and r0 is
chosen small enough. Since K is finite, this implies Assertion (b) for large i. �

As mentioned before, our goal will be to modify the metrics (ψσs )∗g
σ
s,t only on

νs(D
3(2)). It will therefore be useful to consider the pullbacks ν∗s (ψ

σ
s )∗g

σ
s,t. Since

these pullbacks may only be defined on annular regions, it will be suitable later
to construct a family of extensions to an entire disk D3(1.99) ⊂ D3(2), which for
technical reasons will have to be slightly smaller than D3(2).

Claim 7.25. After possibly shrinking the neighborhood U of σ0, we can find a
continuous family of metrics (hs,t)s∈U,t∈[0,1] on D3(1.99) such that the following
holds for any τ ⊂ K, s ∈ τ ∩ U , t ∈ [0, 1]:

(a) hs,t = ν∗s (ψ
τ
s )∗g

τ
s,t on D

3(1.99) ∩ ν−1
s (ψτs (Z

τ )).
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(b) The metric hs,t restricted to

D3(1.99) \ ν−1
s

(
ψτs (IntZ

τ )
)

is compatible with the standard spherical structure on D3(1.99).

Proof. Let τ1, . . . , τm ⊂ K be a list of all simplices of K, indexed in such a way
that dim τj is non-decreasing in j. We will proceed by induction and construct a
sequence U = U0 ⊃ U1 ⊃ . . . of open neighborhoods of σ0 and a sequence of fam-
ilies (hjs,t)s∈Uj∩∪

j
i=1τi,t∈[0,1]

such that Assertions (a) and (b) hold if s ∈ Uj ∩∪ji=1τi.

Let j ∈ {1, . . . , m} and assume by induction that we have already constructed
Uj−1 and (hj−1

s,t ). Note that (hj−1
s,t ) is defined on ∂τj ∩ Uj−1.

Our goal will now be to possibly shrink Uj−1 and extend (hj−1
s,t ) over the interior

of τj ∩ Uj such that Assertions (a) and (b) continue to hold. We first claim that
this is the case if for all s ∈ τj ∩ Uj and t ∈ [0, 1] we have:

(1) hjs,t = ν∗s (ψ
τj
s )∗g

τj
s,t on D

3(1.99) ∩ ν−1
s (ψ

τj
s (Zτj )).

(2) hjs,t restricted to D3(1.99) \ ν−1
s (ψ

τj
s (IntZτj )) is compatible with the stan-

dard spherical structure on D3(1.99).
(3) hjs,t = hj−1

s,t if s ∈ ∂τj ∩ Uj .
In fact, if τ ⊂ K with τj 6⊂ τ , then τ is disjoint from the interior of τj and
Assertions (a) and (b) hold by induction. If τ = τj , then Assertions (a) and (b)
trivially follow from Properties (1) and (2) above. If τj ( τ , then by the definition
of a partial homotopy we have ψτs (Z

τ ) ⊂ ψ
τj
s (Zτj ) and (ψτs )∗g

τ
s,t = (ψ

τj
s )∗g

τj
s,t on

ψτs (Z
τ ). So Property (1) implies Assertion (a). Consider now Assertion (b). Due

to Assumption (iii) of the lemma and Property (2) above it suffices to show that
on νs(D

3(1.99)) ∩ (ψ
τj
s (Zτj ) \ ψτs (Zτ )) the metrics (νs)∗h

j
s,t = (ψ

τj
s )∗g

τj
s,t, t ∈ [0, 1],

are compatible with Ss. For this purpose let C be the closure of a component of
Zτj \ ((ψτjs )−1 ◦ψτs )(Zτ ) such that νs(D

3(1.99))∩ψτjs (C) 6= ∅. By Assumption (v)
the image ψ

τj
s (C) is a union of spherical fibers and (ψ

τj
s )∗g

τj
s,t restricted to ψ

τj
s (C) is

compatible with the spherical structure. This finishes the proof of Assertion (b).
It remains to choose Uj and (hjs,t) satisfying Properties (1)–(3) above. If τj

satisfies Case (b1) of Claim 7.24, then we can simply set

hjs,t := ν∗s (ψ
τj
s )∗g

τj
s,t.

So assume that τj satisfies Case (b2). By the remark in Claim 7.24(b2), there is
a continuous function rj : Uj−1 ∩ τj → (r0, 2] such that for all s ∈ Uj−1 ∩ τj

B3(2) ∩ ν−1
s (ψτjs (Z

τj )) = B3(2) ∩A3(rj(s), 2).

Note that in the case rj(s) = 2 this set is empty. Next observe that it suffices to

construct hjs,t for s in a neighborhood Vs0 ⊂ τj of any parameter s0 ∈ τj ∩σ0. The
desired family can then be constructed using a partition of unity. So fix some
s0 ∈ τj∩σ0. If rj(s0) > 1.99, then Property (1) is vacuous in a neighborhood of s0
and Properties (2), (3) can be satisfied by extending (hj−1

s,t ) by an arbitrary family
of metrics on D3(1.99) that are compatible with the standard spherical structure.
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If rj(s0) ≤ 1.99, then rj < 2 in a neighborhood of s0 in τj and Properties (1)–
(3) can be satisfied by extending ν∗s (ψ

τj
s )∗g

τj
s,t onto D3(1.99) as in the proof of

Proposition 6.15. This finishes the proof of the claim. �

We will now mainly work with the family (hs,t). In the next step we apply a
rounding procedure at the origin. The resulting family (h′s,t) will be compatible

with the standard spherical structure on a small disk D3(r1) ⊂ D3(1.99).

Claim 7.26. Let r0 be the constant from Claim 7.24. We can find a smaller open
neighborhood U ′

⋐ U of σ0 and a continuous family of metrics (h′s,t)s∈U,t∈[0,1] on
D3(1.99), such that the following holds for some r1 ∈ (0, r0/2):

(a) For all s ∈ U ′ and t ∈ [1
2
, 1] the metric h′s,t is compatible with the standard

spherical structure on D3(r1).
(b) h′s,0 = hs,0 for all s ∈ U .
(c) h′s,t = hs,t for all s ∈ U \ U ′ and t ∈ [0, 1].

(d) h′s,t = hs,t on A
3(r0, 1.99) for all s ∈ U and t ∈ [0, 1].

(e) h′s,1 is conformally flat for all s ∈ U .
(f) If for some s ∈ U , t ∈ [0, 1] and r ∈ [r0, 1.99] the metric hs,t is compatible

with the standard spherical structure on D3(r), then so is h′s,t.
(g) For any s ∈ U , s ∈ σ ⊂ K and t ∈ [0, 1] the following holds: Consider

the metric

kσs,t :=

{
(νs)∗h

′
s,t on νs(D

3(1.99))

(ψσs )∗g
σ
s,t on ψσs (Z

σ) \ νs(D3(1.99))
(7.27)

If s ∈ KPSC or t = 1, then (ψσs (Z
σ), kσs,t) is PSC-conformal.

Proof. Choose δ1 ∈ C0
c (U), 0 ≤ δ1 ≤ 1 such that δ1 ≡ 1 on a neighborhood

U ′ of σ0 and choose δ2 ∈ C0([0, 1]) such that δ2(0) = 0 and δ2 ≡ 1 on [1
2
, 1].

Let (h′s,t)(s,t)∈supp(δ1)×[0,1] be the result of applying Proposition 6.26 with u =
δ1(s)δ2(t), r1 = r0 (from Claim 7.24), X = supp(δ1)× [0, 1] and

XPSC =
(
(supp(δ1) ∩KPSC)× [0, 1]

)
∪
(
supp(δ1)× {1}

)
(7.28)

on D3(1.99). Let r1 ∈ (0, r0) be the constant produced by Proposition 6.26. By
Proposition 6.26(b), we can extend (h′s,t)(s,t)∈supp(δ1)×[0,1] to a continuous family
over U × [0, 1] by setting h′s,t := hs,t whenever s 6∈ supp(δ1).

Proposition 6.26(c) implies Assertion (a), because δ1(s)δ2(t) = 1 for s ∈ U ′

and t ∈ [1
2
, 1]. Assertions (b)–(d) follow immediately from Proposition 6.26(a),

(c). For Assertion (e) notice that by Claim 7.25, the metric hs,1 is locally either
conformally flat or compatible with the standard spherical structure, and there-
fore conformally flat. By Proposition 6.26(e) the rounding procedure retains this
property. Assertion (f) is a restatement of Proposition 6.26(d).

Assertion (g) holds by assumption if ψσs (Z
σ) ∩ νs(D

3(r0)) = ∅ since in this
case kσs,t = (ψσs )∗g

σ
s,t (see Assertion (d)). Hence by Claim 7.24 we may assume

ψσs (Z
σ) ⊃ νs(D

3(2)) for all s ∈ σ, and in this case PSC-conformality follows
from Proposition 6.26(f). To see this, note that by Assumption (vi), for every
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(s, t) ∈ XPSC from (7.28) we know that (Zσ, gσs,t) is PSC-conformal, so there
exists a function ŵs ∈ C∞(Zσ) satisfying the conditions in Lemma 6.4. Hence by
Lemma 6.5 and a partition of unity argument we may assume that {ŵs}s∈XPSC

is a continuous family of smooth functions. Setting ws := ŵs ◦ µ, we apply
Proposition 6.26(f), and let w′

s,t be the resulting functions. Now letting

ŵ′
s,t :=

{
w′
s,t ◦ ν−1

s on νs(B
3(1.99))

ŵs,t ◦ (ψσs )−1 on ψσs (Z
σ) \ νs(B3(1.99))

we see that ŵ′
s,t satisfies the conditions in Lemma 6.4 for (ψσs (Z

σ), kσs,t). �

Next, we stretch the metrics h′s,t radially.

Claim 7.29. We can find a continuous family of metrics (h′′s,t)s∈U,t∈[0,1] onD
3(1.99),

such that the following holds:

(a) For all s ∈ σ0 the metric h′′s,t is compatible with the standard spherical

structure on D3(1.1).
(b) h′′s,0 = hs,0 for all s ∈ U .
(c) h′′s,t = hs,t for all s ∈ U \ U ′ and t ∈ [0, 1].
(d) h′′s,t = hs,t on A

3(1.98, 1.99) for all s ∈ U and t ∈ [0, 1].
(e) h′′s,1 is conformally flat for all s ∈ U .
(f) If some s ∈ U , t ∈ [0, 1] and r ∈ [r0, 1.99] the metric hs,t is compatible

with the standard spherical structure on D3(r), then so is h′′s,t.
(g) For any s ∈ U , s ∈ σ ⊂ K and t ∈ [0, 1] the following holds: Consider

the metric

k̃σs,t :=

{
(νs)∗h

′′
s,t on νs(D

3(1.99))

(ψσs,t)∗g
σ
s,t on ψσs (Z

σ) \ νs(D3(1.99))

restricted to ψσs (Z̃
σ), where Z̃σ is as in (7.23). If s ∈ KPSC or t = 1, then

(ψ̃σs (Z̃
σ), k̃σs,t) is PSC-conformal.

Proof. Fix a continuous family of diffeomorphisms

(Φu : D
3(1.99) → D3(1.99))u∈(0,1]

with the following properties:

(A) Φu(x) = f(x, u)x for some scalar function f : D3(1.99)× (0, 1] → (0, 1].
(B) Φu = id on A3(1.98, 1.99).
(C) Φ1 = id.
(D) For any x ∈ D3(1.97) we have |Φu(x)| < u.

Fix a continuous function δ1 ∈ C0
c (U

′) with 0 ≤ δ1 ≤ 1 and support in U ′ such
that δ1 ≡ 1 on σ0 and a continuous function δ2 ∈ C0([0, 1]) with 0 ≤ δ2 ≤ 1 such
that δ2(0) = 0 and δ2 ≡ 1 on [1

2
, 1]. Let r2 ∈ (0, r1/2] be a constant whose value

we will determine later and set

h′′s,t := Φ∗
1−(1−r2)δ1(s)δ2(t)

h′s,t.
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Let us first prove Assertion (a). Let s ∈ σ0 and t ∈ [0, 1]. If t ∈ [1
2
, 1], then we

have h′′s,t = Φ∗
r2
h′s,t and Φr2(D

3(1.1)) ⊂ D3(r1). So by Claim 7.26(a), the metric

h′′s,t is compatible with the standard spherical structure on D3(1.1). On the other

hand, if t ∈ [0, 1
2
], then by Claim 7.25(a) and the fact that gσ0s,t = gσ0s,0 for all

t ∈ [0, 1
2
] we have

hs,t = ν∗s (ψ
σ0
s )∗g

σ0
s,t = ν∗s (ψ

σ0
s )∗g

σ0
s,0 = ν∗sg

′,s
T .

So by Assumption (iii) the metric hs,t is compatible with the standard spherical
structure on D3(1.99). By Claim 7.26(f) the same is true for h′s,t.

For Assertion (b), observe that by Claim 7.26(b) for all s ∈ U

h′′s,0 = Φ∗
1h

′
s,0 = h′s,0 = hs,0.

Similarly, for Assertion (c), we have by Claim 7.26(c) for all s ∈ U \ U ′, t ∈ [0, 1]

h′′s,t = Φ∗
1h

′
s,t = h′s,t = hs,t.

Assertion (d) follows from Property (B) along with Claim 7.26(d). Assertion (e)
follows from Claim 7.26(e).

Assertion (f) follows from Claim 7.26(f) and Property (A) above. More specifi-
cally, if hs,t is compatible with the standard spherical structure onD3(r), then h′s,t
restricted to D3(r) is as well and therefore, h′′s,t is compatible with the standard

spherical structure on Φ−1
1−(1−r2)δ1(s)δ2(t)

(D3(r)) ⊃ D3(r).

Lastly, consider Assertion (g).
First suppose that σ 6= σ0 or t ∈ [0, 1

2
]. We claim that in this case

(Z̃σ, gσs,t|Z̃σ) is PSC-conformal if s ∈ σ ∩KPSC or t = 1. (7.30)

In fact, if σ 6= σ0, then (7.30) follows from Assumption (vi), Definition 7.3 and

the fact that Z̃σ = Zσ. On the other hand, if σ = σ0, s ∈ σ0∩KPSC and t ∈ [0, 1
2
],

then gσ0s,t = gσ0s,0 = (ψσ0s )∗g′,sT . So (Z̃σ0 , gσ0s,t|Z̃σ) is isometric to (ψ̃σ0(Z̃σ0), g′,sT ), which
is PSC-conformal by Assumption (vii).

Let us now continue with the proof of Assertion (g) if σ 6= σ0 or t ∈ [0, 1
2
].

If νs(D
3(1.99)) ⊂ ψσs (Z̃

σ) (which precludes σ = σ0), then we are done by
Claim 7.26(g), because the metrics h′s,t and h′′s,t are isometric to one another,
which implies that the extensions of (νs)∗h

′
s,t and (νs)∗h

′′
s,t by (ψσs )∗g

σ
s,t onto

ψσs (Z̃
σ) are isometric. The same is true if νs(D

3(1.99)), ψσs (Z̃
σ) are disjoint. If

νs(D
3(1.99)) 6⊂ ψσs (Z̃

σ) and both subsets are not disjoint, then by Claim 7.24(b2)

or the definition of Z̃σ0

D3(1.99) ∩ ν−1
s (ψσs (Z̃

σ)) = A3(r, 1.99)

for some r ∈ (r0, 1.99]. In this case, the metric h′′s,t restricted to

Φ−1
1−(1−r2)δ1(s)δ2(t)

(A3(r, 1.99)) ⊂ A3(r, 1.99)
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is isometric to h′s,t restricted to A3(r, 1.99). By Claim 7.26(d) and Claim 7.25(a)

we have h′s,t = hs,t = ν∗s (ψ
σ
s )∗g

σ
s,t on A

3(r, 1.99). It follows that k̃σs,t restricted to

(
ψσs (Z̃

σ) \ νs(D3(1.99))
)
∪ νs

(
Φ−1

1−(1−r2)δ1(s)δ2(t)
(A3(r, 1.99))

)

is isometric to (Z̃σ, gσs,t), which is PSC-conformal if s ∈ σ ∩KPSC or t = 1, due

to (7.30). On the other hand, k̃σs,t restricted to the closure of

νs
(
A3(r, 1.99) \ Φ−1

1−(1−r2)δ1(s)δ2(t)
(A3(r, 1.99))

)
(7.31)

is isometric to h′s,t restricted to

Φ1−(1−r2)δ1(s)δ2(t)(A
3(r, 1.99)) \ A3(r, 1.99) ⊂ D3(r).

By Claim 7.25(b), we know that hs,t is compatible with the standard spherical
structure on D3(r) and thus by Claim 7.26(f) the same is true for h′s,t (recall

that r ≥ r0). It follows that k̃σs,t restricted to the closure of (7.31) is compatible

with Ss. Thus by Lemma 6.6 we conclude that (ψσs (Z̃
σ), k̃σs,t) is PSC-conformal

if s ∈ σ ∩KPSC or t = 1.
Now suppose σ = σ0 and t ∈ [1

2
, 1]. Consider the family of metrics (kσ0s,t)

on ψσ0s (Zσ0) from (7.27). By Claim 7.26(g) we know that (Zσ0 , (ψσ0s )∗kσ0s,t) is

PSC-conformal for all (s, t) ∈ (σ0 ∩KPSC) × [1
2
, 1] ∪ σ0 × {1}. By Lemma 6.12,

we may choose r2 ∈ (0, r1) such that (ψσ0s )∗kσ0s,t is also PSC-conformal on Zσ0 \
µ(IntD3(r2)) for the same (s, t). Assertion (g) now follows from the fact that

(ψσ0s (Z̃σ0) = ψσ0s (Zσ0)\νs(IntD3(1)), k̃σ0s,t) is isometric to kσ0s,t restricted to ψσ0s (Zσ0\
µ(IntD3(r2))). �

For every s ∈ σ ⊂ K and t ∈ [0, 1], we can now define

g̃σs,t :=

{
gσs,t on Zσ \ (ψσs )−1(νs(D

3(1.99))) if s ∈ U or on Zσ if s 6∈ U

(ψσs )
∗(νs)∗h

′′
s,t on (ψσs )

−1(νs(D
3(1.99))) if s ∈ U

To complete the proof of Lemma 7.22, we now verify that {(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1],

(ψ̃σs )s∈σ)}σ⊂K is a partial homotopy at time T relative to L that is PSC-conformal
over all s ∈ KPSC .

By Claim 7.25(a) and Claim 7.29(c), (d), the metrics g̃σs,t are smooth and

depend continuously on s, t. By Claim 7.29(e), (g), (Z̃σ, g̃σs,1) is conformally flat

and PSC-conformal. So (Z̃σ, (g̃σs,t)) are metric deformations.

By Claim 7.29(g) the Riemannian manifold (Z̃σ, g̃σs,t) is PSC-conformal for all

t ∈ [0, 1] and s ∈ σ ⊂ K if s ∈ KPSC ∩ U . If s ∈ KPSC \ U , then (Z̃σ, g̃σs,t) =
(Zσ, gσs,t) is PSC-conformal by Assumption (vi).

Let us now verify the properties of Definition 7.4.
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By Claim 7.29(b) and Claim 7.25(a) we have (ψσs )
∗g′,sT = gσs,0 = g̃σs,0. This ver-

ifies Property (1). Property (2) does not concern g̃σs,t, so it remains true. Prop-
erty (3) is immediate from the definition of g̃σs,t. Property (6) remains unchanged.
It remains to verify Properties (4), (5) in Definition 7.4.

For Property (4) consider the closure C of a component of Zτ\((ψτs )−1◦ψσs )(Zσ),
for some τ ( σ, s ∈ τ ∩ U . We may assume that ψτs (C) ∩ νs(D

3(1.99)) 6=
∅, because otherwise the property holds trivially. By Claim 7.24(b) we have

ψτs (C) ∩ νs(D
3(1.99)) = νs(A3(rτ , rσ)) for some rσ ∈ (r0, 2], rτ ∈ {0} ∪ (r0, rσ).

Thus by Assumption (v), Claim 7.25 and Claim 7.29(f) we have that (ψτs )∗g̃
τ
s,t is

compatible with Ss on ψτs (C).
Lastly, consider Property (5). Let σ ⊂ K, s ∈ σ ∩ U and consider a boundary

component Σ ⊂ ∂Zσ with ψσs (Σ) ⊂ νs(D
3(1.99)). By Claim 7.25 we have that

hs,t restricted to a neighborhood of the disk bounded by ν−1
s (Σ) is compatible

with the standard spherical structure. Thus by Claim 7.29(f), so is h′′s,t, which
proves Property (5). �

8. Deforming families of metrics towards families of conformally

flat metrics

8.1. Statement of the main result and setup. Similarly as in Subsection 7.1
we fix a pair (K,L) of topological spaces that is homeomorphic to the the geo-
metric realization of a pair of finite simplicial complexes (K,L) where L ⊂ K is
a subcomplex. We will mostly refer to the pair (K,L) instead of (K,L) if there
is no chance of confusion.

In this section we will show the following theorem.

Theorem 8.1. Consider a continuous family (Ms, gs)s∈K of Riemannian man-
ifolds. Suppose that Ms is diffeomorphic to a connected sum of spherical space
forms and copies of S2 × S1 for all s ∈ K and that (Ms, gs) is a CC-metric for
all s ∈ L. Let KPSC ⊂ K be a closed subset with the property that (Ms, gs) has
positive scalar curvature for all s ∈ KPSC. Then there is a continuous family of
Riemannian metrics (hst )s∈K,t∈[0,1] on (Ms)s∈K such that for all s ∈ K:

(a) hs0 = gs.
(b) hs1 is conformally flat and PSC-conformal.
(c) If s ∈ L, then hst is a CC-metric for all t ∈ [0, 1].
(d) If s ∈ KPSC, then (Ms, hst ) is PSC-conformal for all t ∈ [0, 1].

We will now reduce Theorem 8.1 to Lemma 8.5 below, which concerns the
existence of certain partial homotopies. By Theorem 4.1 there is a continuous
family of singular Ricci flows (Ms)s∈K with initial condition (Ms, gs)s∈K . We
may identify (Ms

0, g
s
0) = (Ms, gs) for all s ∈ K. By uniqueness, for all s ∈ L all

time-slices of Ms are CC-metrics. Moreover, by Theorem 3.28 the flow Ms has
positive scalar curvature for all s ∈ KPSC. By Theorem 3.30 there is a uniform
time T0 <∞ at which these flows become extinct, i.e. Ms

t = ∅ for all t ≥ T0 and
s ∈ K.
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Next, we invoke Theorem 5.12 for some δ > 0, which we will choose later. We
obtain a transversely continuous family of R-structures

Rs = (g′,s, ∂′,s
t
, Us

S2, U
s
S3,Ss)

on (Ms)s∈K . Recall from Theorem 5.12 that

Us
S2 ∪ Us

S3 =
{
x ∈ Ms : ρg′,s(x) < rrot,δ(rinitial(M

s, gs), t(x))
}
.

Due to the uniform extinction time T0 and Assertion (e) of Theorem 5.12, we
can multiply the metrics gs with a large constant and assume without loss of
generality that

rinitial(M
s, gs), rcan,δ(rinitial(M

s, gs), t), rrot,δ(rinitial(M
s, gs), t) > C0 (8.2)

for all s ∈ K and t ≥ 0 for which Ms
t 6= ∅, where 10 < C0 <∞ is a constant that

we will choose later. Therefore, we have

{ρg′,s < C0} ⊂ Us
S2 ∪ Us

S3 for all s ∈ K. (8.3)

In this section we will exclusively work with the objects g′,s, ∂′,s
t

instead of gs, ∂s
t

and we will often omit the index in expressions of the form “ρg′,s”. The following
lemma summarizes all further properties of g′,s and ∂′,st that we will use in this
section.

Fix an arbitrary constant Λ > 100 for the remainder of this section.

Lemma 8.4. If C0 ≥ C0(Λ) and δ ≤ δ(Λ), then:

(a) g′,s0 = gs for all s ∈ K.
(b) ρ > 1 on Ms

0 for all s ∈ K.
(c) There is some Text <∞ such that Ms

t = ∅ for all t ≥ Text and s ∈ K.
(d) For any r > 0 the restriction of π : ∪s∈KMs → K to {ρ ≥ r} is proper.
(e) There is a constant θ = θ(r) ∈ (0, r2] such that for any s ∈ K, t1, t2 ≥ 0

with |t1 − t2| ≤ θ the following is true. If x ∈ Ms
t2
with ρ(x) > r/10, then

the point x(t1) is defined and we have:

|ρ(x)− ρ(x(t1))| < 10−3ρ(x)

(f) If in Assertion (d) we have t1 ≤ t2 and ρ(x(t1)) ≤ ρ(x) ≤ 10, then there
are embedded disks D′ ⊂ D ⊂ Us

S2 ∩Ms
t2

with x ∈ D′ that are the union
of spherical fibers of Ss and such that ρ > .9ρ(x) on D, ρ > 2Λ3ρ(x) on
∂D, ρ < 2ρ(x) on D′ and such that D′ contains a singular spherical fiber
of the form {x′} ⊂ D′.

(g) For any s ∈ L the following is true:
(g1) If (M, gs) is homothetic to a quotient of the round sphere, then the

flow of ∂′
t
induces a homothety between (Ms

0, g
′,s
0 ) and (Ms

t , g
′,s
t ) for

all t for which it is defined.
(g2) If (M, gs) is homothetic to a quotient of the round cylinder, then for

all t ≥ 0 for which Ms
t 6= ∅ the Riemannian manifold (Ms

t , g
′,s
t )

is homothetic to a (possibly different) quotient of the round cylinder
and the flow of ∂′

t
preserves the local isometric O(3)-actions on each

time-slice Ms
t .
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(h) If (Ms, gs) has positive scalar curvature, then g′s has positive scalar cur-
vature on every time-slice. Moreover if t ≥ 0 and if Y ⊂ Ms

t is a compact
3-dimensional submanifold whose boundary components are regular spher-
ical fibers of Ss and ρ ≤ 1 on ∂Y , then (Y, g′,st ) is PSC-conformal.

Proof. Assertion (a) is a consequence of Theorem 5.12(b). Assertion (b) holds for
C0 ≥ C0. Assertion (c) follows from Theorem 3.30. Assertion (d) follows from
Assertion (c) and Theorem 4.3. Assertion (e) is a consequence of Assertion (d).

For Assertion (f) let δ′ > 0 be a constant whose value we will determine later.
By Lemma 3.32, assuming C0 ≥ C0(δ

′), δ ≤ δ(δ′) (see (8.2)), the pointed Rie-
mannian manifold (Ms

t2 , g
s
t2 , x) is δ′-close to the pointed Bryant soliton (MBry,

gBry, xBry) at scale ρ(x). If δ′ ≤ δ
′
, then .99ρgs ≤ ρg′,s ≤ 1.01ρgs on {ρ < C0}.

Moreover if δ′ ≤ δ
′
, then the scalar curvature of g′,s attains a unique maximum at

some x′ ∈ B(x, .01ρ(x)). Therefore x, x′ ∈ Us
S2 and {x′} is a singular fiber. Let

D′ be the union of spherical fibers intersecting the minimizing geodesic between

x, x′. Then the asserted properties of D′ hold for δ′ ≤ δ
′
and the existence of D

holds if C0 ≥ C0(Λ) and δ
′ ≤ δ

′
(Λ).

Assertion (g) follows by uniqueness of singular Ricci flows, Theorem 3.17, and
Theorem 5.12(d).

The first part of Assertion (h) holds if δ ≤ δ. The second part follows using
Lemma 6.7 if C0 ≥ C0 and δ ≤ δ. Observe that we may assume without loss of
generality that Y is disjoint from Us

S3, because all components of Us
S3 ∩Ms

t are
PSC-conformal. �

From now on let us fix the constants C0, δ from Lemma 8.4, as well as the
family of R-structures (Rs)s∈K .

Let n := dimK and set rk := Λ−4n+4k−4. So

0 < r0 < . . . < rn−1 < rn = Λ−4, Λ4rk = rk+1.

By Proposition 7.5 and Lemma 8.4(b), Theorem 8.1 can be reduced to the
following lemma.

Lemma 8.5. For any T ≥ 0 there is a simplicial refinement of K and a partial
homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K at time T relative to L for (Rs)s∈K

that satisfies the following a priori assumptions for every k-simplex σ ⊂ K and
all s ∈ σ:

(APA 1) {ρ > 1} ∩Ms
T ⊂ ψσs (Z

σ) ⊂ {ρ > rk}
(APA 2) Every component of ψσs (Z

σ) contains a point with ρ > Λ2rk.
(APA 3) ρ > Λrk on ψσs (∂Z

σ).
(APA 4) {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K is PSC-conformal over every s ∈ KPSC.

The remainder of this section is devoted to the proof of Lemma 8.5, which
proceeds by induction. If T ≥ Text, then the assertion of the lemma is true,
as we can choose the trivial partial homotopy. So it remains to show that if
the lemma is true for some time T , then it also holds at time T − ∆T , where
0 < ∆T ≤ min{T, θ(r0)}, where θ is the constant from Lemma 8.4(e). For this
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purpose, fix T , ∆T for the remainder of the section and consider some simplicial
refinement K′ of K and a partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K at

time T satisfying the a priori assumptions (APA 1)–(APA 4). Our goal in the next
subsections will be to construct a partial homotopy at time T −∆T that satisfies
a priori assumptions (APA 1)–(APA 4), after passing to a simplicial refinement
of K′.

8.2. Passing to a simplicial refinement. Our strategy will be to modify (or
improve) the partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K at time T so

that by evolving it backwards in time by ∆T (using Proposition 7.6) we obtain
another partial homotopy that satisfies a priori assumptions (APA 1)–(APA 4).
The modification will be carried out by successive application of the modification
moves described in Proposition 7.9 (Enlarging a partial homotopy) and 7.21 (Re-
moving a disk from a partial homotopy). As a preparation, we will first find a
simplicial refinement of K (using Proposition 7.8) such that over each simplex we
can choose certain continuous data, which will later serve as a blueprint for these
modification moves. The main result of this subsection is the following lemma:

Lemma 8.6 (Passing to a simplicial refinement). After passing to a simpli-
cial refinement of K′ and modifying the partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1],
(ψσs )s∈σ)}σ⊂K to respect this refined structure, we may assume in addition to a
priori assumptions (APA 1)–(APA 4) that for any simplex σ ⊂ K there are the
following data:

• a compact manifold with boundary Ẑσ,

• an embedding ισ : Zσ → Ẑσ,

• a continuous family of embeddings (ψ̂σs : Ẑσ → Ms
T )s∈σ and

• continuous families of embeddings (νσs,j : D
3 → Ms)s∈σ,j=1,...,mσ ,

such that for all s ∈ σ, j = 1, . . . , mσ and k = dim σ:

(a) ψσs = ψ̂σs ◦ ισ.
(b) For the closure C of every component of Ẑσ \ ισ(Zσ) one (or both) of the

following is true uniformly for all s ∈ σ: ψ̂σs (C) is a union of fibers of Ss
or ∂C = ∅ and ψ̂σs (C) ⊂ Us

S3. In the second case the metrics (ψ̂σs )
∗g′s,T ,

s ∈ σ, are multiples of each another.

(c) If σ ⊂ L, then ψ̂σs (Ẑ
σ) is empty or equal to Ms

T .

(d) ψ̂σs (Ẑ
σ) \ ψσs (Zσ) ⊂ {ρ > 2rk}.

(e) {ρ > 1
2
Λ3rk} ∩Ms

T ⊂ ψ̂σs (Ẑ
σ).

(f) Every component of ψ̂σs (Ẑ
σ) that does not contain a component of ψσs (Z

σ)
contains a point of scale ρ > 2Λ2rk.

(g) In every component of Ms
T \ ψ̂σs (Int Ẑσ) that intersects ψ̂σs (Ẑ

σ) there is a
point with ρ < 4rk.

(h) ρ > 2Λrk on ψ̂σs (∂Ẑ
σ) \ ψσs (∂Zσ).

(i) If σ ∩ L 6= ∅, then mσ = 0.
(j) The images νσs,1(D

3), . . . , νσs,mσ
(D3) are pairwise disjoint.
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(k) νσs,j(D
3) ⊂ ψσs (IntZ

σ).
(l) νσs,j(D

3) ⊂ Us
S2 and the embedding νσs,j carries the standard spherical struc-

ture on D3 to Ss restricted to νσs,j(D
3).

(m) νσs,1(D
3)∪ . . .∪νσs,mσ

(D3) contains all singular spherical fibers of ψσs (Z
σ)∩

Us
S2 that are points and on which ρ < 4rk.

(n) ρ < 4Λrk on νσs,j(D
3).

(o) ρ > 2Λrk on νσs,j(∂D
3)

The idea of the proof is the following. For every s0 ∈ σ ⊂ K we first construct

continuous data Zs0,σ, ιs0,σ, ψ̂s0,σs , νs0,σs,j that satisfy the assertions of Lemma 8.6 for
parameters s that are close enough to s0. We therefore obtain an open covering of
K consisting of subsets over which this data is defined. Our simplicial refinement
of K′ will later be taken to be subordinate to this open cover.

Let us first construct Zs0,σ, ιs0,σ, ψ̂s0,σs for s near some s0 ∈ σ ⊂ K.

Lemma 8.7. For every s0 ∈ σ ⊂ K there is a neighborhood Us0,σ ⊂ K of

s0, a compact manifold with boundary Ẑs0,σ, an embedding ιs0,σ : Zσ → Ẑs0,σ

and a continuous family of embeddings (ψ̂s0,σs : Ẑs0,σ → Ms
T )s∈Us0,σ∩σ

such that
Assertions (a)–(h) of Lemma 8.6 hold for all s ∈ Us0,σ ∩ σ and k = dim σ if we

replace (Zσ, ισ, ψ̂σs ) with (Zs0,σ, ιs0,σ, ψ̂s0,σs ).

Proof. By a priori assumption (APA 1) and (8.3) we have

Ms0
T \ ψσs0(IntZσ) ⊂ Us0

S2 ∪ Us0
S3.

It follows from Definition 5.10(1) and 7.4 that each component of this difference
is contained in Us0

S2 and is a union of fibers of Ss0 or in Us0
S3 and is homothetic to

a quotient of a standard sphere. Let Y ⊂ Ms0
T \ ψσs0(IntZσ) be the set of points

on which ρ > 2rk. Define Y ′ ⊂ Y to be the union of all connected components
of Y that contain a point of scale ρ > 2Λ2rk or that intersect ψσs0(∂Z

σ). Note
that any boundary component of Y ′ that is contained in Y ′ is also contained in
ψσs0(∂Z

σ). Furthermore, any connected component of Y ′ is contained in Us0
S3 and

is compact or in Us0
S2 and is a union of fibers of Ss0 . Therefore, every non-compact

component of Y ′ is a union of spherical fibers and must be diffeomorphic to one
of the following manifolds (see Lemma 6.1):

S2 × [0, 1), S2 × (0, 1), (S2 × (−1, 1))/Z2, B3

Consider such a component C ⊂ Y ′. Call C good if it contains a point with
ρ > 2Λ2rk. By construction, bad components must intersect ψσs0(∂Z

σ) and must
therefore be either compact or diffeomorphic to S2× [0, 1). Suppose for a moment
that C is good. Since ρ→ 2rk near the ends of C, we can find a minimal compact
domain C′ ⊂ C such that

(1) C′ is a union of spherical fibers.
(2) C \ C′ is a union of neighborhoods of the ends of C; so each component is

diffeomorphic to S2 × (0, 1).
(3) ρ < 4Λrk on C \ C′.



100 RICHARD H. BAMLER AND BRUCE KLEINER

Call C′ the core of C. We now define Y ′′ to be the union of compact components of
Y ′ and the cores of non-compact good components of Y ′. Set Ẑσ := ψσs0(Z

σ)∪Y ′′.

By Lemma 4.22 and isotopy extension, we can define ψ̂s0,σs : Ẑσ → Ms
T for

s ∈ σ close to s0 such that ψ̂s0,σs (∂Ẑσ) consists of spherical fibers and such that

Assertion (a) of Lemma 8.6 holds. We can moreover construct ψ̂s0,σs in such
a way that for every component C ⊂ Y with the property that ∂C = ∅ and

Y ⊂ Us0
S3 the metric (ψ̂s0,σs )∗gs,T restricted to C is a multiple of the same constant

curvature metric for all s close to s0. Then Assertion (b) of Lemma 8.6 holds
for all s close to s0. By construction, Assertions (c)–(f), (h) of Lemma 8.6 hold
for s = s0. Next, we argue that the same is true for Assertion (g). Assume

by contradiction that ρ ≥ 4rk on some component C∗ ⊂ Ms
T \ ψ̂σs (Int Ẑσ) that

intersects ψ̂σs (Ẑ
σ). Then the component C∗∗ ⊂ Ms

T \ ψσs (IntZσ) containing C∗ is
a union of C∗ with components of Y . Since ρ→ 2rk near the open ends of Y , we
find that C∗∗ ⊂ Y . However this implies that C∗∗ is a compact component of Y
and therefore C∗∗ ⊂ Y ′′. Since Assertions (c)–(h) are open, they also hold for s
sufficiently close to s0. �

Lemma 8.8. For every s0 ∈ σ ⊂ K there is a neighborhood Vs0,σ ⊂ K of s0
and continuous families of embeddings (νs0,σs,j : D3 → Ms)s∈Vs0,σ∩σ,j=1,...,ms0,σ

such
that Assertions (j)–(o) of Lemma 8.6 hold for all s ∈ Vs0,σ ∩ σ, j = 1, . . . , ms0,σ

and k = dim σ if we replace (νσs,j : D3 → Ms)s∈σ,j=1,...,mσ with (νs0,σs,j : D3 →
Ms)s∈Vs0,σ∩σ,j=1,...,ms0,σ

. Moreover, instead of Assertion (i) we have:

(i ′) If Vs0,σ ∩ L 6= ∅, then ms0,σ = 0.

Proof. Let E ⊂ ∪s∈KUs
S2 be the union of all spherical fibers that are points and on

which ρ ≤ 4rk. Then E is closed in ∪s∈KUs
S2 and E ∩ψσs0(Zσ) =: {x1, . . . , xms0,σ

}
consists of finitely many points.

For every j = 1, . . . , ms0,σ let Yj ⊂ Ms0
T be the union of all open disks X ⊂ Ms0

T

with the property that xj ∈ X , X \ {xj} consists of regular spherical fibers and
ρ ≤ 3Λrk onX . Then Yj is also an open disk. By a priori assumption (APA 2), no
component of ψσs0(Z

σ) is fully contained in the closure Y j of Yj. So, in particular,

∂Y j 6= ∅, which implies that ∂Y j is a regular fiber and therefore Y j is a closed
disk. As the boundaries of both subsets Yj and ψ

σ
s0
(Zσ) consist of spherical fibers

and x ∈ Yj ∩ ψσs0(Zσ) 6= ∅, we also obtain that Y j ⊂ ψσs0(IntZ
σ).

For any two j, j′ = 1, . . . , ms0,σ, j 6= j′ the disks Y j, Y j′ are pairwise disjoint,
because otherwise their union would be a connected component of Ms0

T , which
would again contradict a priori assumption (APA 2).

For every j = 1, . . . , ms0,σ choose a continuous family of points (x′s,j ∈ Ms
T )

for s close to s0 such that x′s0,j = xj . Using the exponential map based at x′s,j ,

we can construct continuous families of embeddings (νs0,σs,j : D3 → Ms) for s

close to s0 such that x′s,j ∈ νs0,σs,j (0) and νs0,σs0,j
(D3) = Y j. For s close to s0, these

disks are pairwise disjoint and satisfy Assertion (l) of Lemma 8.6. Assertions (k),
(m)–(o) of Lemma 8.6 hold for s = s0 by construction and therefore by openness,
they also hold for s ∈ Vs0,σ, where Vs0,σ is a small enough neighborhood of s0.
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For Assertion (i ′) we can distinguish two cases: If s0 6∈ L, then we can choose
Vs0,σ ∩L 6= ∅. If s0 ∈ L, then ρ is constant on Ms0

T and therefore by construction
ms0,σ = 0. �

Proof of Lemma 8.6. For every s0 ∈ K let

Ws0 :=
⋂

s0∈σ⊂K

(Us0,σ ∩ Vs0,σ).

Then Ws0 is still an open neighborhood of s0 and K = ∪s0∈KWs0. Let now K′′ be
a refinement of K′ that is subordinate to this cover and for every simplex σ ∈ K′′

of this refinement let
(
Ẑσ, ισ, (ψ̂σs )s∈σ, (ν

σ
s,j)s∈σ,j=1,...,mσ

)

:=
(
Ẑsσ,σ, ιsσ,σ, (ψ̂sσ,σs )s∈σ, (ν

sσ,σ
s,j )s∈σ,j=1,...,msσ,σ

)
,

where sσ ∈ σ is chosen such that σ ⊂Wsσ .
We can now modify the partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K

according to Proposition 7.8 to respect the refinement K′′. To see that a priori
assumptions (APA 1)–(APA 4) continue to hold, let s ∈ σ′′ where σ′′ ∈ K′′,
k′′ = dim σ′′, and choose σ′ ∈ K′, k′ = dim σ′ of minimal dimension such that
σ′ ⊃ σ′′. Then k′ ≥ k′′ and ψσ

′′

s (Zσ′′) = ψσ
′

s (Z
σ′). Therefore we have

{ρ > 1} ∩Ms
T ⊂ ψσ

′′

s (Zσ′′) ⊂ {ρ > rk′} ⊂ {ρ > rk′′},
every component of ψσ

′′

s (Zσ′′) contains a point with ρ > Λ2rk′ ≥ Λ2rk′′ and
ρ > Λrk′ ≥ Λrk′′ on ψ

σ′′

s (∂Zσ′′). �

8.3. Improving the partial homotopy. Our next goal will be to construct a
new partial homotopy by extending the domain of the partial homotopy {(Zσ,

(gσs,t)s∈σ,t∈[0,1], (ψ
σ
s )s∈σ)}σ⊂K according to the maps (ψ̂σs )s∈σ (using Proposition 7.9)

and by removing the disks (νσs,j(D
3))s∈σ,j=1,...,mσ (using Proposition 7.21). In the

next subsection we will move the new partial homotopy backwards in time by
the time step ∆T . The following lemma will be used to verify that the resulting
partial homotopy satisfies a priori assumptions (APA 1)–(APA 4).

Lemma 8.9. With the choices of (ψ̂σs )s∈σ and (νσs,j)s∈σ,j=1,...,mσ from Lemma 8.6
the following holds for all s ∈ σ ⊂ K. All points of

Xσ
s := ψ̂σs (Ẑ

σ) \ (νσs,1(B3) ∪ . . . ∪ νσs,mσ
(B3)) (8.10)

survive until time T −∆T and we have:

(a) {ρ > Λ3rk} ∩Ms
T ⊂ Xσ

s (T −∆T ) ⊂ {ρ > rk}
(b) Every component of of Xσ

s contains a point x with ρ(x(T −∆T )) > Λ2rk.
(c) ρ > Λrk on ∂Xσ

s (T −∆T ).

Proof. Fix s ∈ σ ⊂ K. By a priori assumption (APA 1) and Lemma 8.6(d) we
have ρ > rk on Xσ

s . So by our choice of ∆T all points of Xσ
s survive until time

T −∆T . We first show:
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Claim 8.11. If there is some x ∈ ψ̂σs (Ẑ
σ) with ρ(x(T −∆T )) ≤ ρ(x) ≤ 10, then

there is an embedded disk D ⊂ Ms
T such that:

(a) x ∈ IntD.
(b) ρ > 2Λ3rk on ∂D.

(c) If ρ(x) > 5rk, then D ⊂ ψ̂σs (Int Ẑ
σ).

(d) If ρ(x(T −∆T )) < rk, then x ∈ νσs,1(B
3) ∪ . . . ∪ νσs,mσ

(B3).

Proof. Let x, x′ ∈ D′ ⊂ D be the data from Lemma 8.4(f). Assertions (a) and
(b) follow immediately using a priori assumption (APA 1).

By a priori assumption (APA 2) and Lemma 8.6(e) we have ∂D ⊂ ψ̂σs (Ẑ
σ). So

if Assertion (c) was false, then D must contain a component of Ms
T \ ψ̂σs (Int Ẑσ)

that intersects ψ̂σs (Ẑ
σ) and on which ρ > .9ρ(x) > 4rk, in contradiction to

Lemma 8.6(g).
Lastly, we verify Assertion (d). Assume that ρ(x(T −∆T )) < rk. Then by our

choice of ∆T we have ρ(x) < 2rk, see Lemma 8.4(d). So by Lemma 8.6(d) we have
x ∈ ψσs (Z

σ). By a priori assumption (APA 3) and the fact that ρ < 2ρ(x) < 4rk
on D′, we obtain that x′ ∈ D′ ⊂ ψσs (Z

σ). So by Lemma 8.6(m) we have x′ ∈
νσs,j(D

3) for some j ∈ {1, . . . , mσ}. By Lemma 8.6(o) we have x ∈ D′ ⊂ νσs,j(B
3).

This finishes the proof of Assertion (d). �

We can now verify the assertions of this lemma. The first inclusion of Asser-
tion (a) follows from Lemma 8.6(e), (n) and our choice of ∆T , see Lemma 8.4(d).
The second inclusion is a consequence of a priori assumption (APA 1), Lemma
8.6(d), Assertion (d) of the Claim and our choice of ∆T .

For Assertion (b) consider a component C of Xσ
s and let C′ ⊂ Ẑσ be the

component with C ⊂ ψ̂σs (C′). Assume by contradiction that ρ ≤ Λ2rk on C(T −
∆T ). So by our choice of ∆T and Lemma 8.6(n) we have

ρ ≤ Λ2rk on
(
ψ̂σs (C′)

)
(T −∆T ) =⇒ ρ < 2Λ2rk on ψ̂σs (C′). (8.12)

By Lemma 8.6(f) there is a component C′′ ⊂ Zσ such that ψσs (C′′) ⊂ ψ̂σs (C′).
Due to a priori assumption (APA 2) we can find a point x ∈ ψσs (C′′) such that
ρ(x) > Λ2rk. Since ρ(x(T −∆T ) ≤ Λ2rk, Assertion (c) of the Claim implies that

there is an embedded disk D ⊂ ψ̂σs (C′) with ρ > 2Λ3rk on ∂D, in contradiction
to (8.12).

Lastly, we verify Assertion (c). Consider a component Σ ⊂ ∂Xσ
s . If Σ =

νσs,j(∂D
3) for some j = 1, . . . , mσ, then we are done by Lemma 8.6(o) and our

choice of ∆T . Assume now that Σ ⊂ ψ̂σs (∂Ẑ
σ). If Σ 6⊂ ψσs (∂Z

σ), then we are done
by Lemma 8.6(h) and our choice of ∆T . Assume now that Σ ⊂ ψσs (∂Z

σ). By a
priori assumption (APA 3) we have ρ > Λrk on Σ. If ρ(Σ(T −∆T )) ≤ Λrk, then

we can apply Assertion (c) of the Claim to find an embedded disk D ⊂ ψ̂σs (Int Ẑ
σ)

whose interior intersects Σ, contradicting the fact that Σ ⊂ ψ̂σs (∂Ẑ
σ). �
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The next lemma ensures that all necessary containment relationships hold if
we successively modify the partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K

according to the data (ψ̂σs )s∈σ and (νσs,j(D
3))s∈σ,j=1,...,mσ over all simplices of K.

Lemma 8.13. For any two simplices σ, τ ⊂ K and s ∈ τ ∩ σ we have for all
j = 1, . . . , mσ:

(a) If dim τ < dim σ, then ψ̂σs (Ẑ
σ) ⊂ ψ̂τs (Ẑ

τ ) \ (ντs,1(B3) ∪ . . . ∪ ντs,mτ
(B3)).

(b) If dim τ < dim σ, then ντs,j(D
3) ∩ ψσs (Zσ) = ντs,j(D

3) ∩ ψ̂σs (Ẑσ) = ∅.
(c) If dim τ ≤ dim σ, then the image ντs,j(D

3) does not contain an entire
component of ψσs (Z

σ).
(d) If dim τ ≥ dim σ, then the image ντs,j(D

3) does not contain an entire

component of ψ̂σs (Ẑ
σ) \ (νσs,1(B3) ∪ . . . ∪ νσs,mσ

(B3)).

Proof. By a priori assumption (APA 1) and Lemma 8.6(d) we have ρ > rdim σ on

ψ̂σs (Ẑ
σ). On the other hand, by Lemma 8.6(e), (n) the set ψ̂τs (Ẑ

τ )\(ντs,1(B3)∪. . .∪
ντs,mτ

(B3)) contains all points in Ms
T of scale ρ > 1

2
Λ3rdim τ and rdim σ >

1
2
Λ3rdim τ .

This implies Assertion (a). Assertion (b) is a direct consequence of Assertion (a).
If dim τ 6= dim σ, then Assertion (c) follows from Assertion (b) and Assertion (d)

follows from Assertion (a), because ντs,j(D
3) ⊂ ψτs (Z

τ ) ⊂ ψ̂τs (Ẑ
τ ). So assume that

dim τ = dim σ =: k. By a priori assumption (APA 2) and Lemma 8.6(f) every

component of ψσs (Z
σ) or ψ̂σs (Ẑ

σ) \ (νσs,1(B
3) ∪ . . . ∪ νσs,mσ

(B3)) contains a point

with ρ > Λ2rk. On the other hand, by Lemma 8.6(n), we have ρ < 4Λrk < Λ2rk
on ντs,j(D

3). So ντs,j(D
3) cannot fully contain any such component. �

We now modify the partial homotopy {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ
s )s∈σ)}σ⊂K using

Proposition 7.9 and 7.21. We proceed inductively over the dimension of the
skeleton. More specifically, we claim that for every k ≥ 0 we can construct a
partial homotopy at time T relative to L that has the form

{
(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1], (ψ̃

σ
s )s∈σ)

}
σ⊂K,

dim σ<k
∪ {(Zσ, (gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)} σ⊂K,

dimσ≥k

(8.14)
and for which

ψ̃σs (Z̃
σ) = Xσ

s

for all s ∈ σ ⊂ K with dim σ < k, where Xσ
s is defined in (8.10). Note that

if k = 0, then (8.14) can be taken to be the original partial homotopy {(Zσ,
(gσs,t)s∈σ,t∈[0,1], (ψ

σ
s )s∈σ)}σ⊂K . If (8.14) has been constructed for some k, then we

can construct another partial homotopy of form (8.14) for k + 1 by first apply-

ing Proposition 7.9, using the data Ẑσ, ισ, (ψ̂σs )s∈σ, and then Proposition 7.21,
using the data (νσs,j)s∈σ,j=1,...,mσ over all simplices σ ⊂ K of dimension k + 1.
Lemma 8.4(h), Lemma 8.6(a)–(c), (j)–(l) and Lemma 8.13 ensure that the as-
sumptions of Proposition 7.9 and 7.21 hold. So by induction we obtain:

Lemma 8.15. There is a simplicial refinement of K and a partial homotopy {(Z̃σ,

(g̃σs,t)s∈σ,t∈[0,1], (ψ̃
σ
s )s∈σ)}σ⊂K at time T relative to L for (Rs)s∈K such that for all
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s ∈ σ ⊂ K the set Xσ
s := ψ̃σs (Z̃

σ) satisfies Assertions (a)–(c) of Lemma 8.9.

Moreover, {(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1], (ψ̃
σ
s )s∈σ)}σ⊂K is still PSC-conformal over every

s ∈ KPSC.

8.4. Construction of a partial homotopy at time T −∆T . Apply Proposi-

tion 7.6 with T ′ = T−∆T to the partial homotopy {(Z̃σ, (g̃σs,t)s∈σ,t∈[0,1], (ψ̃
σ
s )s∈σ)}σ⊂K .

The assumptions of this lemma are met due to Lemma 8.9 and (8.3). We ob-

tain a partial homotopy {(Z̃σ, (gσs,t)s∈σ,t∈[0,1], (ψ
σ

s )s∈σ)}σ⊂K at time T −∆T with

ψ
σ

s (Z̃
σ) = Xσ

s (T−∆T ). So by Lemma 8.9, a priori assumptions (APA 1)–(APA 3)
hold for this new partial homotopy. A priori assumption (APA 4) holds due to
Proposition 7.6(b) and Lemmas 8.4(h), 8.15.

This concludes our induction argument and proves Lemma 8.9, which, as dis-
cussed in Subsection 8.1 implies Theorem 8.1.

9. Proofs of the main theorems

Theorem 1.6 from Section 1 is a direct consequence of the following theorem.

Theorem 9.1. Let (K,L), L ⊂ K, be a pair of topological spaces that is homeo-
morphic to the geometric realization of a pair of finite simplicial complexes. Let
M be a connected sum of spherical space forms and copies of S2 × S1. Con-
sider a fiber bundle π : E → K whose fibers are homeomorphic to M and whose
structure group is Diff(M). Let (gs)s∈K be a continuous family of fiberwise Rie-
mannian metrics such that (π−1(s), gs) is isometric to a compact quotient of the
standard round sphere or standard round cylinder for all s ∈ L.

Then there is a continuous family of Riemannian metrics (hst )s∈K,t∈[0,1] such
that for all s ∈ K and t ∈ [0, 1]

(a) hs0 = gs.
(b) hs1 is conformally flat and has positive scalar curvature.
(c) If s ∈ L, then hst = gs.
(d) If (Ms, gs) has positive scalar curvature, then so does (Ms, hst ).

Proof. Due to Remark 4.8 we can view the fiber bundle π : E → K as a continuous
family of Riemannian manifolds (Ms := π−1(s), gs)s∈K with Ms ≈ M . Let
KPSC ⊂ K be a closed subset with the property that (Ms, gs) has positive scalar
curvature for all s ∈ KPSC. We first show the theorem with the following weaker
assertions; we will later explain how to strengthen these assertions:

(c′) If s ∈ L, then one of the following is true for all t ∈ [0, 1]:
(c′1) M ≈ S3/Γ and hst is a constant multiple of gs.
(c′2) M ≈ (S2 × R)/Γ and (Ms, hst ) is a quotient of the round cylinder

and the local isometric O(3)-actions of (Ms, gs) and (Ms, hst) are the
same.

(d′) (Ms, hst) has positive scalar curvature for all s ∈ KPSC and t ∈ [0, 1].

Consider the family of metrics (hst )s∈K,t∈[0,1] produced by Theorem 8.1, based on
the family (Ms, gs)s∈K . We claim that there is a continuous family of positive
functions (wst ∈ C∞(Ms))s∈K,t∈[0,1] such that for all s ∈ K and t ∈ [0, 1]:
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(1) ws0 = 1.
(2) wst = 1 if s ∈ L.
(3) (wst )

4hst has positive scalar curvature, or equivalently 8△wst −Rhst
wst < 0,

if (s, t) ∈ K × {1} ∪ L× [0, 1].

In fact, for any (s0, t0) ∈ K × [0, 1] there is a neighborhood Us0,t0 ⊂ K × [0, 1]
and a continuous family of positive functions (ws0,st0,t )(s,t)∈Us0,t0

satisfying Proper-
ties (1)–(3). Moreover, Properties (1)–(3) remain valid under convex combination.
Therefore (wst ) can be constructed from the families (ws0,st0,t ) using a partition of

unity. The family (h̃st := (wst )
4hst )s∈K,t∈[0,1] satisfies Assertions (a), (b), (c

′), (d′).
We will now argue that the theorem also holds with Assertion (c) replaced by

(c′) only. For this purpose, let KPSC ⊂ K be the set of parameters s ∈ K for
which (Ms, gs) has non-negative scalar curvature. Then KPSC is closed. After
evolving the metrics gs by the Ricci flow for some small uniform time τ > 0, we
can produce families of metrics (gst )s∈X,t∈[0,τ ] such that gs0 = gs for all s ∈ K and
such that gst even has positive scalar curvature for all s ∈ KPSC and t ∈ (0, τ ].
Apply our previous discussion to the family to the family (Ms, gsτ)s∈K , resulting
in a family (h′,st ) satisfying Assertions (a), (b), (c′), (d′). Then we can obtain the
desired family (hst ) by concatenating the resulting family (h′,st ) with (gst ).

So assume in the following that (hst )s∈K,t∈[0,1] satisfies Assertions (a), (b), (c),
(d′). It remains to construct a family (h′′,st )s∈K,t∈[0,1], that in addition satisfies
Assertion (c). By gluing together local trivializations of the vector bundle π :
E → K, we can find neighborhoods L ⊂ U ⋐ V ⊂ K and a transversely
continuous bundle map (F, f) : (E,K) → (E,K); meaning that π ◦ F = f ◦ π
and F |π−1(s) : π−1(s) → π−1(f(s)) are a smooth diffeomorphisms that depend
continuously on s in the smooth topology such that:

(4) (Ms, gs) has positive scalar curvature for all s ∈ V .
(5) f = id and F = id over (K \ V ) ∪ L and π−1((K \ V ) ∪ L).
(6) f(U) ⊂ L.

Let η : K → [0, 1] be a continuous map such that 1 − η is supported in U and
η ≡ 0 on L. Then

h′′,st := F
∗
h
f(s)
η(s)t

satisfies Assertions (a)–(d), which finishes the proof. �

We can now prove Theorem 1.1 from Section 1.

Proof of Theorem 1.1. Suppose MetPSC(M) is nonempty. So M is a connected
sum of spherical space forms and copies of S2 × S1 by Perelman [Per03].

Now consider a continuous map α : Sk → MetPSC(M) for some k ≥ 0. Since
Met(M) is contractible, we may extend α to a continuous map α̂ : Dk+1 →
Met(M). Letting K := Dk+1 and π : E := K ×M → K be the trivial bundle,
the map α̂ defines a family of fiberwise Riemannian metrics as in Theorem 1.6.
Applying the theorem, we may reinterpret the resulting family (hst )s∈K,t∈[0,1] as
defining a homotopy of pairs (α̂t : (Dk+1, Sk) → (Met(M),MetPSC(M)))t∈[0,1]
where α̂0 = α̂ and α̂1 takes values in MetPSC(M). Restricting this homotopy



106 RICHARD H. BAMLER AND BRUCE KLEINER

to Sn, we obtain a homotopy (αt : Sn → MetPSC(M))t∈[0,1] where α1 is null-
homotopic via α̂1 : D

k+1 → MetPSC(M). Thus α is null-homotopic. Since α was
arbitrary and MetPSC(M) has the homotopy type of a CW-complex [HKMR12,
Sec. 2.1], it follows that MetPSC(M) is contractible. �

The remaining theorems from Section 1 will follow from Theorem 9.1 using the
following lemma.

Lemma 9.2. Let (M, g) be a Riemannian 3-manifold.

(a) If M ≈ S3/Γ and g is a conformally flat metric, then there is a unique
φ ∈ C∞(M) such that (M, e2φg) is isometric to the standard round sphere
and such that

∫
e−φdµg is minimal. Moreover φ depends continuously on

g (in the smooth topology).
(b) IfM is diffeomorphic to a quotient of the round cylinder and g is a confor-

mally flat Riemannian metric on M , then there is a unique φ ∈ C∞(M)
such that e2φg is isometric to a quotient of the standard round cylinder.
Moreover, φ depends continuously on g (in the smooth topology).

Proof. Assertion (a). It suffices to consider the case M ≈ S3, since we may pass
to the universal cover, and the uniqueness of the minimizer guarantees that it will
descend to a minimizer on M . Let Vg ⊂ C∞(M) be the space of functions φ with
the property that (M, e2φg) is isometric to the standard round sphere. By [Kui49]
this space is non-empty. Pick some arbitrary φ′ ∈ Vg and identify (M, e2φ

′

g) with
(S3, gS3). Then g = e−2φ′gS3. So we need to show that the functional

Fφ′(φ) :=

∫

S3

e−φe−3φ′dµS3

restricted to Vφ has a unique minimum. To see this note that φ ∈ Vg if and only
if (S3, e2(φ−φ

′)gS3) is isometric to the standard round sphere, which holds if and
only if for some ~c ∈ R4

φ− φ′ = − log
(√

1 + |~c|2 − ~c · ~x
)
.

In this case we obtain that

Fφ′(φ) =

∫

S3

(√
1 + |~c|2 − ~c · ~x

)
e−4φ′dµS3 =: F̃φ′(~c).

It can be verified easily that F̃φ′ : R
4 → R is strictly convex. Moreover along

every ray t 7→ t~c we have

lim
t→∞

F̃φ′(t~c) = lim
t→∞

∫

S3

(√
1 + t2|~c|2 − t~c · ~x

)
e−4φ′dµS3 = ∞.

So F̃φ′ and therefore Fφ′ |Vg attains a unique minimum.
For the continuous dependence claim, note that for any continuous family

(gs)s∈X of conformally flat metrics on M we can find a continuous family of
smooth maps (ψs : M → S3)s∈X such that ψ∗

sgS3 = e2φ
′
sgs for some continuous
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family (φs)s∈X of smooth functions; such a family can be constructed via the de-
veloping map for example, compare with the methods of [Kui49]. So it suffices to
show that the minimizer of the functional Fφ′s depends continuously on s, which

is clear since the Hessians of F̃φ′s are positive definite.
Assertion (b). We first observe that M is diffeomorphic to either S2 × S1 or

to RP 3#RP 3. Let dev : M̃ → S3 be a developing map of the conformally flat

structure and π1(M)
ρ
y S3 be the holonomy action, so that dev is ρ-equivariant

for the deck group action π1(M) y M̃ .
We identify the conformal group Conf(S3) with Isom(H4). Since π1(M) has a

cyclic subgroup of index at most 2, we have the following three cases.

Case 1: The action π1(M)
ρ
y H4 is elliptic, i.e. fixes a point in H4. Then

there exists a ρ-invariant metric g0 with sectional curvature ≡ 1 in the conformal
class of S3. The pullback dev∗g0 is π1(M)-invariant and complete, and hence

must be isometric to S3, contradicting the fact that M̃ is noncompact.

Case 2: The action π1(M)
ρ
y H4 is parabolic, i.e. it fixes precisely one point p

in the ideal boundary ∂H4 = S3, and has no fixed points in H4. Letting S =

dev−1(p), then S is a closed, discrete subset of M̃ because dev is an immersion.

There is a ρ-invariant complete flat metric ĝ on S3 \ {p}. Letting M̃ ′ := M̃ \ S,
the pullback dev

∣∣∗
M̃ ′
ĝ is a complete flat metric on the simply connected manifold

M̃ ′, and must therefore be isometric to R3; this contradicts the fact that M̃ is
diffeomorphic to (S2 × R) \ S.

Case 3: The action π1(M)
ρ
y H4 is hyperbolic, i.e. it preserves an axial

geodesic γ ⊂ H4, and fixes precisely two points p1, p2 ∈ S3 = ∂H4. Letting S =

dev−1(p), then S is a closed, discrete subset of M̃ . There is a ρ-invariant complete

cylindrical metric ĝ on S3\{p1, p2}. Letting M̃ ′ := M̃\S, the pullback dev
∣∣∗
M̃ ′
ĝ is a

complete metric on the simply connected manifold M̃ ′ which is locally isometric to

S2×R. By the splitting theorem, M̃ ′ can have at most two ends, and hence S = ∅,
and dev

∣∣
M̃

: M̃ → S3 \ {p1, p2}, being a local isometry between simply connected
complete manifolds, must be an isometry. (Alternatively, use the developing map
for the cylindrical structure.) Now suppose ĝ′ is another cylindrical metric on

S3 \ {p1, p2} that is invariant under the action of π1(M)
ρ
y S3 and conformal

to ĝ. Then there is an isometry φ : (S3 \ {p1, p2}, ĝ) → (S3 \ {p1, p2}, λĝ′) for
some λ > 0; but then φ is a conformal diffeomorphism of S3 \ {p1, p2}. Hence

φ ∈ Isom(M̃, ĝ), and so ĝ = λĝ′. �

Proof of Theorem 1.2. We can argue similarly as in the proof of Theorem 1.1.
Suppose that MetCC(M) is non-empty and thus M is diffeomorphic to an iso-
metric quotient of the round sphere or round cylinder.

Consider a continuous map α : Sk → MetCC(M) for some k ≥ 0 and let
α̂ : Dk+1 → Met(M) be an extension of α. As in the proof of Theorem 1.1 we
can apply Theorem 1.6 to the associated family of metrics on the trivial vector
bundle over K = Dk+1, this time with L = Sk = ∂Dk+1, and obtain a homotopy
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of pairs (α̂t : (D
k+1, Sk) → (Met(M),MetCC(M)))t∈[0,1], where α̂0 = α̂ and α̂1

takes values in the space MetCF (M) of conformally flat metrics on M .
Let (gs)s∈Dk+1 be the family of conformally flat metrics on M correspond-

ing to the map α̂1. By Lemma 9.2 there is a certain continuous family (φs ∈
C∞(M))s∈Dk+1 such that g′s := e2φsgs ∈ MetCC(M). By the uniqueness state-
ments in Lemma 9.2 we have φs ≡ 0 for all s ∈ ∂Dk+1. So the family of metrics
(g′s)s∈Dk+1 defines a null-homotopy of α̂1 in MetCC(M). So α, which is freely
homotopic to α̂1, is null-homotopic.

Since α was arbitrary and MetCC(M) has the homotopy type of a CW-complex
[HKMR12, Sec. 2.1], it follows that MetCC(M) is contractible. �

Proof of Theorem 1.3. Theorem 1.3 follows from Theorem 1.2 via a standard
topological argument, see for example [BK17a, Lemma 2.2]. �

Proof of Theorem 1.5. LetM = RP 3#RP 3 and consider a metric g ∈ MetCC(M).
It can be seen easily that (M, g) is isometric to (S2×S1(lg))/Z2, for some lg > 0,
where S2 is equipped with the standard round metric, S1(lg) has total length lg
and Z2 acts by the antipodal map on S2 and by a reflection with two fixed points
on S1(lg). There are unique numbers ag, bg ∈ R, depending continuously on g,
such that agg+bg Ricg is isometric to (S2×S1(2π))/Z2. Denote by MetCC1(M) ⊂
MetCC(M) the space of metrics that are isometric to (S2×S1(2π))/Z2. It follows
that MetCC(M) deformation retracts onto MetCC1(M) and thus, by Theorem 1.2,
the space MetCC1(M) is contractible as well.

We can now argue as in the proof of Theorem 1.3 that

O(1)× O(3) ∼= Isom((S2 × S1(2π))/Z2) −→ Diff(M)

is a homotopy equivalence. �

Proof of Theorem 1.4. Let M = S2 × S1 and denote by S(M) the space of
spherical structures on M . We can view S(M) as a subspace of the space of
2-dimensional distributions equipped with Riemannian metrics, which carries a
natural smooth topology; equip S(M) with the subspace topology. Note that
continuity with respect to this topology is equivalent to transverse continuity of
spherical structures in the sense of Definition 5.9. The space S(M) has the ho-
motopy type of a CW-complex, since it is a Fréchet manifold (see [HKMR12, Sec.
2.1]). Let SS2×S1 ∈ S(M) be the standard spherical structure on S2 × S1. It can
be seen as in the proof of [BK17a, Lemma 2.2] that the map

Diff(M) −→ S(M), φ 7−→ φ∗SS2×S1

is a fibration and that the inclusion Diff(M,SS2×S1) → Diff(M) is a homotopy
equivalence if and only if S(M) is contractible, where

Diff(M,SS2×S1) ∼= Diff(S1)×O(3)× ΩO(3) ∼= O(2)× O(3)× ΩO(3)

denotes the space of diffeomorphisms fixing SS2×S1 .
So it remains to show that S(M) is contractible. To see this, consider a contin-

uous family of spherical structures (Ss)s∈Sk , k ≥ 0, on M . For every s ∈ Sk the



RICCI FLOW AND CONTRACTIBILITY OF SPACES OF METRICS 109

space of metrics in MetCC(M) that are compatible with Ss is convex and non-
empty (see Lemma 6.1). Therefore, we can find a continuous family of Riemann-
ian metrics (gs ∈ MetCC(M))s∈Sk compatible with (Ss)s∈Sk . By Theorem 1.2 we
can extend this family to a continuous family (ĝs ∈ MetCC(M))s∈Dk+1. The cor-

responding family of spherical structures (Ŝs)s∈Dk+1 constitute a null-homotopy
of (Ss)s∈Sk . �

References

[Asa78] K. Asano, Homeomorphisms of prism manifolds, Yokohama Math. J. 26 (1978),
no. 1, 19–25.

[Bam18] R. H. Bamler, Long-time behavior of 3-dimensional Ricci flow: Introduction, Geom.
Topol. 22 (2018), no. 2, 757–774. MR 3748679

[BHH16] R. Buzano, R. Haslhofer, and O. Hershkovits, The moduli space of 2-convex embed-
ded spheres, 2016.

[BK] R. Bamler and B. Kleiner, Diffeomorphism groups of prime 3-manifolds, In prepa-
ration.

[BK17a] , Ricci flow and diffeomorphism groups of 3-manifolds,
http://arxiv.org/abs/1712.06197 (2017).

[BK17b] , Uniqueness and stability of Ricci flow through singularities,
http://arxiv.org/abs/1709.04122, 2017.

[BK19] , On the rotational symmetry of 3-dimensional κ-solutions,
https://arxiv.org/abs/1904.05388 (2019).

[BO91] M. Boileau and J-P. Otal, Scindements de Heegaard et groupe des homéotopies des
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[Cer64d] , La nullité de π0(DiffS3. Théorèmes de fibration des espaces de plonge-
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