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Abstract

A categorical perspective on symmetry, topological order, and quantum information

by

Colleen Delaney

We investigate the algebraic theory of symmetry-enriched topological (SET) order in

(2+1)D bosonic topological phases of matter and its applications to topological quantum

computing. Our goal is twofold: first, to demonstrate how an abstract categorical ap-

proach can be applied to understand phenomena in (2+1)D topological phases of matter,

and second, to show how ideas from physics can be useful for categorification.

After reviewing modular tensor categories (MTCs) and their role as algebraic theories

of anyons in topological phases of matter, we recall their associated quantum represen-

tations and their interpretation as quantum gates for a topological quantum computer.

Next we recall the characterization of SET order in terms of G-crossed braided extensions

of MTCs and the mathematical formalism of topological quantum computing (TQC) with

anyons and symmetry defects.

We then apply modular tensor category theory to construct algebraic models of sym-

metry defects in multi-layer (2+1)D topological order with layer-exchange permutation

symmetry. Our main result frames a correspondence between bilayer symmetry enriched

topological order and monolayer topological order on surfaces with genus, illuminating a

connection between quantum symmetry and topological order that first appeared in the

work of condensed matter theorists Barkeshi, Jian, and Qi.
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Introduction

The main result we wish to present uses modular tensor category theory to frame a

correspondence between quantum systems of certain defects in bilayer topological phases

of matter and monolayer topological phases on surfaces with genus which first appeared in

the work of Barkeshli, Jian, and Qi [4]. We also examine the implications for topological

quantum computation and applications.

While motivated by physics and owing a great debt to several papers in physics

literature, the methods we use to investigate the algebraic theory of SET phases are

primarily mathematical - tensor categories, linear algebra, and representation theory.

While we present our results as proofs whenever possible, our approach emphasizes first

principles and the reader will note that we do not use any heavy machinery to prove

results.

The following chapters are broken into three parts: Part I covers modular tensor cat-

egories, topological order of (2+1)D topological phases of matter, and the mathematical

theory of anyonic quantum computing.

Building on Part I, the characterization of symmetry-enriched topological order in

terms of G-crossed braided extensions of modular tensor categories and the theory of

quantum computing with their symmetry defects are examined in Part II.

In Part III, we describe aspects of the algebraic theory of multi-layer topological order

and permutation defects and apply it to derive an understanding of the mathematical

1
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relationship between symmetry, topological order, and quantum information.
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Part I

Modular tensor categories, (2+1)D

topological phases, and topological

quantum computing
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Chapter 1

MTCs and (2+1)D TPM

1.1 Overview of modular tensor category theory

Modular tensor categories have many facets, and it will be useful to appreciate them

from several perspectives: as a kind of “quantum” categorification of a finite abelian

group, as algebraic objects that encode the axioms of a topological quantum field theory,

and as models for anyons in topological phases of matter. Each of these settings have

their own language and tools that we will use interchangeably.

1.1.1 MTCs and tensor category theory

To specify a category C one must define its objects Obj(C) and maps between them,

or morphisms.

X Y

f ∈ Hom(X,Y )

4



MTCs and (2+1)D TPM Chapter 1

Preliminaries

Structure preserving morphisms, or isomorphisms, separate objects into isomorphism

classes. All categories considered here are small in the sense that their isomorphism

classes form a set, and the morphisms between any two objects X,Y ∈ Obj(C) also form

a set Hom(X,Y ).

They will also be locally finite, k-linear and abelian1, which means that the Hom

spaces are equipped with the structure of finite-dimensional k-vector spaces in such a

way that all of the usual tools of linear algebra are available to use. In particular, there

is a way to take the direct sum of objects X and Y produces another object X ⊕ Y .

Detailed definitions can be found in Chapter 1 of [38], which is our reference for tensor

category theory throughout. Basic definitions are stated as in [38] with a few exceptions.

An object is called simple if it cannot be written nontrivially as a direct sum, and the

rank of a category Rank(C) is the cardinality of a set of representatives of isomorphism

classes of simple objects, denoted Irr(C).

A functor F between categories C and D is an assignment of an object F (X) ∈

Obj(D) for each X ∈ Obj(C), and a morphism F (f) ∈ HomD(F (X), F (Y ) for every

f ∈ HomC(X,Y ) satisfying

• F (idX) = idF (X) for every X ∈ Obj(C)

• F (g ◦ f) = F (g) ◦ F (f) for all f ∈ HomC(X,Y ), g ∈ HomC(Y, Z).

It will also help to establish some basic examples that will reccur throughout the text.

Example 1.1 (Vec). Let k be a field. The category Vec has objects given by finite-

dimensional k-vector spaces, and morphisms between objects are given by k-linear trans-

formations.
1Not to be confused with the notion of an abelian MTC, see Section 1.3.

5
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We will see that when k = C, Vec can be thought of as a trivial MTC.

Example 1.2 (Rep(G)). Let G be a finite group. The objects of the category Rep(G)

are finite-dimensional representations of G, and morphisms are given by intertwiners.

Rep(G) is an example of a braided fusion category which is not modular.

Fundamentally a modular tensor category (MTC) (C,⊕) is an abelian category with

three structures. There is a monoidal structure (C, 1,⊗, α), a braiding (C, c), and a

pivotal structure (C, ϕ), and they must satisfy compatibility conditions in the form of

commutative diagrams of certain morphisms between objects in the category.

Definition 1.1. A modular tensor category (C,⊕, 1,⊗, α, c) is a nondegenerate ribbon

fusion category.

The next section is devoted to a physically motivated unpacking of each detail of this

definition. For now we take a holistic approach to understanding the structures through

pictures.

String Diagrams

Using string diagrams to represent morphisms in a monoidal category dates back

to at least the mid 1960s [55, 69] and became a standard tool for algebraists following

their popularization in the 1980s [58, 59]. In a string diagram, a morphism between two

objects f ∈ Hom(X,Y ) is drawn as a box, sometimes called a coupon, with an input

strand labeled by X and an output strand labeled by Y . We take the convention that

diagrams are read from the bottom up.

f

X

Y

6
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The composition of morphisms is given by vertical stacking and tensor product by

horizontal juxtaposition.

g ◦ f =

f

X

g

Z

f1 ⊗ f2 = f1 ⊗ f2

X1 X2

Y1 Y2

= f1 ⊗ f2

X1 X2

Y1 Y2

(1.1)

where f ∈ Hom(X,Y ), g ∈ Hom(Y, Z), fi ∈ Hom(Xi, Yi).

In braided monoidal categories, the braiding isomorphisms and their inverses are

represented by crossings.

Categorification and the idea of an MTC

An MTC can be thought of as a “quantum” analogue of a finite abelian group: while

group multiplication is associative and commutative, the tensor product of objects in an

MTC is only associative and commutative up to isomorphism.

This analogy is made precise by the idea of categorification.

To categorify a mathematical object is to find a category such that the its original

structure is recovered in the “classical”, de-categorified part of the category, the set of

objects. In the case of fusion categories this is the ring (Irr(C),⊕,⊗), see Definition 5.3

for a precise definition of fusion ring.

The program of categorification is an active area of modern mathematics and part of

the “quantum” frontier of abstract algebra. From this perspective, asking for a classifi-

cation and structure theory of MTCs is then as natural as asking for the classification of

finite simple groups.

7
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1.1.2 MTCs and topological quantum field theory

Modular tensor categories (MTCs) arise in physics as an equivalent notion of a (2+1)D

topological quantum field theory (TQFT). When unitary, both can be thought of as a

way to describe 2-dimensional quantum systems whose evolution depends only on the

topology, as opposed to the geometry, of its underlying space manifold.

· · ·
· · ·

· · ·

Figure 1.1: The classification of oriented surfaces, shown here without boundary, gives
the possible space manifolds where the 2-dimensional quantum systems are governed
by a TQFT. When there is boundary the physics is described by a (1+1)D CFT, see
Section 1.1.2.

Roughly then a (2+1)D TQFT is a way to consistently assign spaces of quantum states

to surfaces and evolution operators to cobordisms between such surfaces. Mathematically,

the right way to describe such a thing is a functor from a category of cobordisms to a

category of vector spaces.

In particular, the evolution of an isolated quantum system on a closed genus g surface

is given by a unitary representation of the mapping class group of the surface.

To be absolutely precise, there is additional structure required on the categories

to keep track of the boundary components of surfaces - their orientations and relative

positions. One considers a category of extended cobordisms and category of vector spaces

where maps are only linear up to powers of a root of unity called the framing anomaly

[81], which we denote by Θ ∈ C.

In particular, the quantum representations of mapping class groups coming from

8
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TQFTs are only projective, i.e. there are homomorphisms

ρ :MCG(Σg,n,a) −→ U(d)/U(1) (1.2)

and their failure to be linear is controlled by the framing anomaly. We explain projective

quantum representations in detail in Chapter 2, where they are interpreted as quantum

operations for a topological quantum computer.

These considerations make the axiomatic definition of a TQFT somewhat lengthy

and intricate, and hence we refer the reader to [81] for details.

However, the projectivity of representations is something fundamental: in quantum

mechanics states can only be measured up to an overall U(1) phase. While difficult to

appreciate from first principles in the TQFT setting, the framing anomaly Θ exhibits

a fascinating connection between quantum symmetry and topology, the description of

which is the culmination of this work in Theorem 6.1.

While the mathematical definition of a (2+1)D TQFT already uses the language of

categories and functors, the information contained in a (2+1)D TQFT is encoded in yet

a different category, one with the structure of a modular tensor category (MTC).

Theorem ([8]). A modular tensor category is equivalent to a 3-2-1 topological quantum

field theory.

We include some examples of the dictionary provided by the equivalence of (2+1)D

TQFTs and MTCs so that we can put our examples in context for mathematicians and

physicists alike.

It is through MTCs that we will explore the interplay between quantum symmetry

and topology. There the framing anomaly Θ is given by an invariant quantity of an MTC

and determines a related quantity called the chiral central charge, which in turn is related

to the (1+1)D physics on the boundary components of the space manifolds.
9
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(2+1)D TQFTs MTCs
Reshetikhin-Turaev/
Witten-Chern-Simons
TQFT at level k

Deformations of the universal en-
veloping algebra of the Lie alge-
bra su(2) at certain roots of unity

Jones-Kauffman
TQFTs

Temperley-Lieb-Jones categories
at certain roots of unity

Turaev-Viro TQFT Drinfeld centers Z(C) of spherical
fusion categories

Twisted Dijkgraaf-
Witten TQFT with
finite gauge group G

Twisted quantum doubles of fi-
nite groups Dω(G), (equivalent
to Drinfeld centers of the form
Z(VecωG))

Table 1.1: Names of some familiar TQFTs from physics and the description of their
corresponding MTC.

MTCs and rational conformal field theory

For the surfaces with boundary, the boundary physics is described by a different

quantum field theory, namely a conformal field theory one dimension down.

This relationship between (2+1)D TQFTs and (1+1)D conformal field theories (CFTs)

is referred to as a bulk-boundary or bulk-edge correspondence in physics.

Like (2+1)D TQFTs are equivalent to MTCs, (1+1)D CFTs have algebraic, now also

analytic, equivalents, for example vertex operator algebras (VOAs) and conformal nets

[20].

An algebraic formulation of one side of the bulk-boundary correspondence then says

that the representation theory of certain CFTs, i.e. the representation category of a

VOA/conformal net, is given by an MTC.

10
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(2+1)D TQFT

(1+1)D R. CFT

MTC

VOA/Conformal net

Figure 1.2: Schematic illustration of the “bulk-boundary correspondence” between
(2+1)D topological quantum field theories and (1+1)D rational conformal field the-
ories. More general formulations of the correspondence are studied, for example via
the representation theory of logarithmic CFTs [74].

That MTCs are related to TQFTs and CFTs in this manner exerts a great influence

on the efforts to classify MTCs as purely mathematical objects, see Section 1.4.

1.1.3 MTCs and condensed matter physics

In condensed matter physics, which is concerned with large numbers of strongly inter-

acting particles, the physics of certain effectively 2-dimensional materials are governed by

(2+1)D TQFTs. When physical bosons are confined to 2 spatial dimensions, the ideal,

zero-temperature physics is described by the low-energy effective theory of a (2+1)D

unitary TQFT and the collective quantum system is said to be in a bosonic (2+1)D

topological phase of matter (TPM).

For 2D systems whose constituent particles are fermions, there is an analogous story

but the TQFTs must be equipped with a spin structure [44]. Like with the algebraic

equivalence of (2+1)D TQFTs and MTCs, (2+1)D spin TQFTs are related to gener-

alizations of MTC called supermodular categories, although this correspondence is still

being developed on both sides of the aisle: for example via super-modular categories

[16, 13], under the name of super-pivotal categories in [1]. Hereafter when referring to

topological phases we assume bosonic. While aspects of fermionic topological phases

can be studied through “bosonization” [16], it would be interesting to generalize the
11
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considerations we make in the later chapters to super-modular tensor categories.

Often materials which are believed to exist in a topological phase are modeled by

a lattice of strongly interacting particles, so that the quantum system is comprised of

interactions between local degrees of freedom. As we will see in the next section, the

space of states of such a quantum system is then given by a Hilbert space, in this case

one of the form

H = ⊗iHi

where i sums over the sites on a lattice, for example. The interactions between the local

degrees of freedom is encoded in a Hamiltonian operator, which in turn dictates the time

evolution of the quantum system as a whole.

Prior to measurement the system exists in a quantum superposition of eigenstates

{|ψα⟩} of the Hamiltonian

H|ψα⟩ = λα|ψα⟩,

where λα is the energy of the state |ψα⟩. An eigenstate with smallest energy is called the

ground state, and all other states excited states.

While the Hamiltonian of a TPM is trivial in the sense that it is equivalent to H ≡ 0,

(2+1)D topological phases have a rich physical theory that can involve hosting quasi-

particle excitations called anyons. These point-like quasiparticles are called emergent to

distinguish from the physical or constituent particles underyling the system.

Topological phases of matter and their anyons exhibit many phenomena which are

interesting for physics and applications: namely nonabelian statistics, ground state de-

generacy, and energy gaps.
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Nonabelian anyon statistics

Physical bosons have trivial self-exchange statistics, meaning that for indistinguish-

able particles bi a wavefunction ψ depending on their position is unchanged by the ex-

change of any pair:

ψ(. . . , bi, . . . , bj, . . .) = ψ(. . . , bj, . . . , bi, . . .) bosonic statistics, (1.3)

while for fermions exchange results in a sign change

ψ(. . . , fi, . . . , fj, . . .) = ψ(. . . , fj, . . . , fi, . . .) fermionic statistics. (1.4)

All (3+1)D point-like particles are either bosons or fermions, but anyons are effectively

(2+1)D, and their exchange statistics are more interesting. For abelian anyons of a

fixed type, which we give a precise definition of in Section 1.3, exchange can change the

wavefunction by any phase eiθ, hence the name anyon.

ψ(. . . , ai, . . . , aj, . . .) = eiθψ(. . . , aj, . . . , ai, . . .) abelian anyonic statistics (1.5)

We will see in the next chapter that the mathematical notion of self-exchange statistics

is given by a unitary representation of braid groups. Then physical boson and fermion

statistics can be restated as saying that their quantum braid group representations factor

through the trivial and sign representation of the symmetric group, respectively. The

braid group representations of abelian anyons are one-dimensional, and for nonabelian

13
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anyons,

ψ(. . . , ai, . . . , aj, . . .) = U ψ(. . . , aj, . . . , ai, . . .)

for some unitary transformation U.
(1.6)

Nonabelian statistics enable quantum information to be stored the fusion space of

collections of anyons, one aspect of their application to quantum computing [64].

Ground state degeneracy and gapped Hamiltonians

Topological phases of matter can exhibit ground state degeneracy, where there are

multiple distinct ground states.

When the next excited states above the degenerate ground states are separated by

a finite amount of energy ∆E, the system is said to be gapped. Otherwise, there exist

states with arbitrarily small energy above the ground state, and it is gapless.

# of states

E

E0

Figure 1.3: Illustration of a gapped quantum system with ground state degeneracy.

Armed with these concepts, we can be a bit more precise about what we mean by

topological phases of matter. The following definition is due to [83].

14
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Definition 1.2. A (bosonic) topological phase of matter is an equivalence class of

local Hamiltonians whose low energy effective theory is given by a unitary TQFT where

the ground state space cannot be changed by local operators.

The physical theory of anyons in a gapped TPM at absolute zero is then described

by a unitary modular tensor category (UMTC) - objects are collections of anyons and

morphisms are anyon processes.

Definition 1.3. The topological order of a gapped (2+1)D bosonic topological phase

of matter is the UMTC realizing its effective unitary TQFT.

Definition 1.4. An anyon is a simple object in a UMTC.

Recalling that internal to any category is a notion of isomorphism that dictates when

two objects are equivalent, it is necessary to differentiate between an anyon and its type.

Definition 1.5. An anyon type or topological charge is an isomorphism class of

simple objects in a UMTC.

1.1.4 MTCs and anyon models

Thinking of an abstract UMTC as the algebraic theory of anyons, a skeletal UMTC

will be precisely what is required to do topological quantum mechanics on Hilbert spaces

with bases.

Every category is equivalent to a skeletal category, which has only one object per

isomorphism class [38]. Passing from a category to its equivalent skeleton, or working

with the skeletonization of the category, is morally like choosing a basis of a vector space.

In the case of vector spaces, choosing a basis is what allows one to write down abstract

linear transformations as matrices. For MTCs, it is what allows for a finite description
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of the category and its structures indexed by simple objects.

{Nab
c , [R

ab
c ], [F

abc
d ]ef} algebraic data of a UMTC C (1.7)

Thus we will make one further distinction - while every UMTC is a topological order,

we try to reserve the word anyon model for skeletal UMTCs, in keeping with [3].

Definition 1.6. An anyon model is a skeletal UMTC.

While one typically one needs to pass to a skeletonization of a UMTC to make concrete

numerical predictions about the physics of anyons in the corresponding topological phase,

the abstract theory of UMTCs is necessary for understanding the general mathematical

formalism of topological phases and their applications to quantum computing.

The graphical calculus for anyon models

When an MTC is identified with the algebraic theory of anyons, the diagram of a

morphism has the interpretation as a quasiparticle process, and can be thought of as a

kind of topological Feynman diagram.

Happily the intuitive pictures one can draw of the spacetime trajectories and inter-

actions of anyons then become rigorous mathematical equations that describe quantum

states of anyonic systems and their evolution, where the bottom-up orientation of string

diagrams corresponds to the time direction. When drawing ribbon fusion graphs we

assume they inherit this orientation unless otherwise indicated.
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a1 a2 a3 an

b1 b2 b3 bm

· · ·

Figure 1.4: The algebraic theory of anyons is given by a unitary modular tensor
category (UMTC), whose objects model collections of anyons and morphisms between
objects model anyon processes like fusion, exchange, and measurement.

This is the graphical calculus of an anyon model, in which braided trivalent graphs

depicting anyon processes correspond to morphisms in a skeletal UMTC.

1.1.5 MTCs and topological quantum computing

One thing that makes topological phases of matter topological is that they can support

gaps which are large, in the sense that the separation between ground states and excited

states decays exponentially slowly in the size of the system.

In this case it is said that the ground states are topologically protected from the

excited states. Kitaev was the first to observe that such systems would support a kind

of inherently error-resistant quantum memory, as the encoded quantum information is

protected from decoherence by the gap [64].

This led to the advent of topological quantum computing, the idea to use materials

in topological phases of matter as the hardware for quantum computers. The idea of a

quantum computer - precise control the evolution of a quantum system - dates back to

Feynman [41].

The seminal idea behind topological quantum computation is to store quantum in-
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formation in the degenerate ground state spaces of collections of anyons and then either

physically or effectively manipulate the motions of the quasiparticles to evolve the system

to perform a desired computation.

t

Figure 1.5: Schematic illustration of topological quantum computing with anyons.

In addition to anyons, the physics of defects and domain walls can also be used to store

and process quantum information, and there is a general program beyond the (2+1)D

realm to understand how quantum information can be stored using excitations in higher

dimensional phases and transformed under their motions [82].

We review the theory of general quantum computation later in Section 2.1 and the

mathematical formalism of topological quantum computing with anyons in Section 2.2,

which entails studying unitary representations of braid and mapping class groups. The

more general mathematical formalism of topological quantum computing that we will use

to analyze symmetry-enriched topological order is dicussed in Section 2.5 and Part II.

1.2 Topological order and the definition of an MTC

In this section we motivate the abstract definition of a MTC as a nondegenerate BFC

by describing how each structure and coherence in the category in the unitary case relates
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to the physics of anyons in gapped topological phases of matter.

We will see that the structure of a unitary modular tensor category (UMTC) is

precisely what is required to do topological quantum mechanics on the Hilbert spaces

of states of collections of anyons.

It is quite possible to study topological order without using category theory at all,

as working with skeletal MTCs can be done combinatorially and diagrammatically using

6j braided fusion systems (6j-BFS) and their graphical calculus. And in the physics

literature, this is typically what is meant by the algebraic theory of anyons [3]. But in no

sense is the abstract definition of a UMTC devoid of meaningful physical interpretation or

utility: in Part III where we develop the theory of symmetry-enriched bilayer topological

order, we see an instance where an understanding of the category theory and concrete

algebraic data/diagrams are more powerful for building both physical theory and concrete

examples than either on their own.

Therefore we choose to present the theory of topological order in a unified way using

modular tensor category theory, anyon models, and the graphical calculus simultane-

ously. The intended result is a dictionary between the math and physics treatments of

the subject that can serve as a guide for readers of different backgrounds, and overview

of which is contained in Table 1.2.

One would be remiss not to point out that there are already many excellent references

containing introductions to MTCs and TQC, see for example [12, 76, 81].

First we will understand the fusion algebra obeyed by the topological charges of the

anyons, which corresponds to the “de-categorified” part of a UMTC C, its fusion ring. 2

2A Z+-based ring [38], see Definition 5.3.
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(2+1)D
TO

UMTC 6j-BFS Diagrams

Algebraic
theory of
anyons in a
(2+1)D TPM

nondegenerate ribbon
fusion category

(C,⊕,⊗,1, α, c, ϕ)

Complex numbers

{Nab
c , R

ab
c , [F

abc
d ]nm}

satisfying equations

Admissibly
labeled
trivalent
graphs sat-
isfying local
relations

Anyon types Isomorphism classes
of simple objects Label set L

edge labels

Quasiparticle
processes

Morphisms Admissibly
labeled
trivalent
graphs

Fusion and
recoupling

Monoidal structure F -symbols vertex labels

Exchange Braiding R-symbols resolve
crossings

Measurement Pivotal structure t-symbols (determined
by R- and F - symbols)

rotation*

Table 1.2: Passing from column 1 to column 2 relates the physics terminology and
concepts with the language of a modular tensor category. Passing from a modular
tensor category in column 2 to column 3 is passing to a skeletal representative of
its braided tensor autoequivalence class, which can be independently defined in a
purely combinatorial way as a 6j-braided fusion system (6j-BFS). Column 4 gives the
diagrams and operations in the graphical calculus of the skeletonization in column 3.
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Then we will make quantum considerations and categorify.

1.2.1 Fusion rules for anyons and the fusion ring of a UMTC

Anyons are point-like quasiparticle excitations in a gapped (2+1)D topological phases

of matter. While their physical size can be changed by local operators [81], they still

behave in the same way as if they were localized at a single point in space.

For this reason, when we draw an anyon in space we draw a point 3. This point comes

with a label, the topological charge or anyon type. The set of topological charge labels is

called the label set and denoted by L.

a1 a2 a4

Topological charges can be fused together, which in general results in a superposition

of topological charges, written

a⊗ b =
⊕

Nab
c c (1.8)

The Nab
c are called fusion coefficients and are always nonnegative integers.

The vacuum charge label 1 is always an element of L, and satisfies 1⊗ a = a⊗ 1 = a

for all a ∈ L. For every a ∈ L, there exists a∗ ∈ L such that Naa∗
1 = 1. That is, every

topological charge has a unique dual charge with which it can fuse to the vacuum charge

label.
3To be completely precise, we want to specify an orientation of each anyon, and so they are really

modeled by framed points. However, we will suppress this in pictures and point out when the framing
needs to be taken into account.
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1.2.2 Quantum states of anyonic systems and the structure of

a UMTC

For the reader unfamiliar with either of tensor category theory or quantum mechanics,

we now recall the postulates of quantum mechanics following [68] and motivate each

detail of the abstract categorical definition of a UMTC in terms of the physics of anyons

in quantum phases of matter.

Postulates of quantum mechanics

1. A quantum state |ψ⟩ of an isolated quantum system is a unit vector in a complex

Hilbert space H.

2. The evolution of a closed quantum system is given by a unitary transformation

on Hilbert space U : H −→ H.

3. Measurement of a quantum system is described by the action of a set of pro-

jection operators {Pλ} on H whose projections form a basis of H.

4. The Hilbert space of states of a composite quantum system is given by the

tensor product of the Hilbert spaces of its components.

Fundamentally a UMTC is a category whose objects can be interpreted as collec-

tions of anyons and morphisms as anyon processes, together with three coherent struc-

tures with precisely the right properties to enforce the laws of quantum mechanics: the

monoidal structure to define quantum states with properties that allow these states to

be superposed and entangled (Postulate 1), the pivotal structure to define measurement

(Postulate 3), and the structure of a braiding to describe evolution of states. (Postulate

2).
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1. The monoidal structure is needed to consistently define vector spaces of states

associated to collections of anyons. As a monoidal category an MTC must also

• be rigid, which ensures that all objects have duals and thus formalizes the

notion of anti-quasiparticle.

• be C-linear, so that Hom spaces are equipped with the interpretation as com-

plex vector spaces of systems of anyons.

• be locally finite, so that these state spaces are finite dimensional

• have simple monoidal unit 1, so that the ground state of topological phase on

a sphere (or disk with vacuum total charge) is the vacuum in the absence of

excitations.

Definition 1.7. A tensor category is a locally finite C-linear monoidal category

(C,⊗, α, 1, ι) with simple unit 1.

• be finitely semisimple, to enforce that there are only finitely many anyon types

in a given model and that their fusion results in a finite quantum superposition

of anyon types.

• as a fusion category C must be unitary4, so that there is a notion of conju-

gation on Hom spaces which corresponds to consistency between reversal of

quasiparticle processes being and anti-quasiparticle processes.

Definition 1.8. A fusion category is a finitely semisimple tensor category.

See Definition 1.19 for the precise statement of the definition of a unitary fusion

category.
4We use the notion of unitary fusion category from [3]
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2. The pivotal structure of a unitary fusion category uses the conjugation on Hom

spaces to build positive-definite inner products, which are necessary ingredients for

our spaces of states to be Hilbert space and for measurement to make sense, per

the laws of quantum mechanics.

• The pivotal structure on an MTC is required to be spherical, which means

that there is a unique inner product on Hom spaces and hence a consistent

way to define probability amplitudes of quasiparticle processes that depend

only on topology.

Definition 1.9. A spherical fusion category is a fusion category with a pivotal

structure which is spherical.

3. Lastly, a UMTC needs the structure of a braiding to describe how anyonic systems

evolve under quasiparticle exchange.

Definition 1.10. A ribbon fusion category is a braided spherical fusion category.

• the braiding must be nondegenerate - roughly the braiding isomorphisms be-

tween any two objects is unique and nontrivial

Definition 1.11. A modular tensor category is a nondegenerate ribbon fusion

category.

In the absence of unitarity on the level of a fusion category, a braided fusion category

is said to be a modular tensor category, or modular category, if the braiding is

nondegenerate.

Requiring unitary as one would for most applications, we have that a UMTC is a

unitary ribbon fusion category, which extends the notion of unitarity given above
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so that anyonic systems evolve unitarily under exchange (in addition to fusion)

processes. nondegeneracy of the braiding is then a consequence of unitary.

Definition 1.12. A unitary modular tensor category is a unitary ribbon fusion

category.

Having motivated each component of the abstract definition of a UMTC we turn to

the details of its structures, their coherences, and properties. For each structure we start

with abstract definitions, record them in the skeletal case, and then illustrate the local

moves they define in the graphical calculus.

1.2.3 The monoidal structure, anyon fusion, and 6j symbols

The tensor product bifunctor categorifies the fusion product of topological charges

introduced in Section 1.2.1 and the monoidal structure categorifies the associativity of

multiplication of topological charge types.

Definition 1.13. A monoidal category is the data (C,⊗, α, 1, l, r): a category C with a

bifunctor ⊗ : C × C → C, a natural isomorphism

α : (−⊗−)⊗− −→ −⊗ (−⊗−) (1.9)

αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) (1.10)

for X,Y, Z ∈ Obj(C), an object 1 ∈ Obj(C), and natural isomorphisms lX : 1⊗X → X

and rX : X ⊗ 1 → X satisfying
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(i) the pentagon axiom

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z (W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

αW,X,Y ⊗idZ αW⊗X,Y,Z

αW,X⊗Y,Z αW,X,Y⊗Z

idW ⊗αX,Y,Z

and

(ii) the triangle axiom

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

αX,1,Y

rX⊗idY idX ⊗lY

.

The isomorphisms α are called associators or associativity constraints, and the iso-

morphisms l and r the left and right unitors or unit constraints, respectively.

When the unit constraints are trivial in the sense that they are given by the identity

isomorphisms, which will be the case we are interested in here, we can specify a monoidal

category by the data (C,⊗, 1, α). Hence in all definitions involving the monoidal structure

we will suppress the dependency on the unitors, as in [38]. In terms of string diagrams,

this means that we do not have to draw the identity morphism on the monoidal unit.

Definition 1.14. A monoidal category (C,⊗, 1, α) is strict if the unit constraints and

associators α are identity isomorphisms.
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Theorem 1.1 (MacLane’s strictness theorem). Every monoidal category is monoidally

equivalent to a strict monoidal category.

In a strict monoidal category, the string diagrams for an associator can be represented

as a regrouping of strands

X

X

Y

Y

Z

Z

. (1.11)

While it is possible to trivialize the monoidal structure, it is not possible in general

to simultaneously skeletalize. Working with strict categories can be a useful technique

but for our purposes skeletality cannot be compromised, and so the monoidal structure

must be carefully kept track of when using string diagrams.

Skeletal monoidal categories

With the additional stipulations that C is finite and semisimple, i.e. each X ∈ Obj(C)

can be written as a direct sum of simple objects, and that the monoidal unit 1 is simple, a

skeletonization of a monoidal category C admits a finite description by fusion coefficients

and F -symbols {Nab
c , [F

abc
d ](e,α,β);(f,µ,ν)}.

The skeletal data of the bifunctor ⊗ is encoded in the fusion coefficients Nab
c , which

in turn determine the admissibly labeled trivalent fusion trees underlying the graphical

calculus. For every fusion product of simple objects

a⊗ b =
⊕

cN
ab
c c (1.12)
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there are corresponding admissibly labeled fusion trees

a b

µ

c

1 ≤ µ ≤ Nab
c (1.13)

which are to be interpeted as basis vectors of Hom(c, a ⊗ b). We sometimes use the

notation |a, b; c, µ⟩ for basis vectors and denote the vector space formed by their span by

V ab
c = SpanC {|a, b; c, µ⟩}1≤µ≤Nab

c
. (1.14)

The monoidal structure skeletalizes to the F -symbols, i.e. the matrix entries of the

associator α with respect to some basis.

a b

µ

νm

d

c

=
∑

n[F
abc
d ](n,α,β);(m,µ,ν)

a b

β

α n

d

c

(1.15)

The unit isomorphism ι is a morphism in Hom(1, 1) ∼= C, and hence is given by a

scalar. The left and right unitor data are determined by the scalar ι and F -symbols of

the form [F 11a
a ]a1, [F

a11
a ]1a according to

la = ι[F 11a
a ]−1

1a (1.16)

rb = ι[F a11
a ]1a (1.17)
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Inspecting the triangle axiom, we get the equation

lb · [F a1b]c = ra · In (1.18)

where n = Nab
c .

One can verify that these equations are satisfied for all admissible a, b, c ∈ L by taking

lb = 1 , ra = 1 we pick bases for the fusion spaces and use gauge freedom to set [F abc
d ] = I

whenever at least one of a,b,c is the vacuum charge 1.

For this reason in the graphical calculus when drawing vacuum lines i.e. edges labeled

by 1 ∈ L we either draw it with dashed lines or omit it completely.

The pentagon axiom is encoded diagrammatically by the equivalence of sequences of

F -moves.

a b c

f g

e

d

a b c

g
h

e

d a b c

f l

e

d

a b c

k

h

d

e a b c

k
l

e

d

F F

F F

F
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This yields the pentagon equations

∑
δ

[F fcd
e ](g,β,γ)(l,δ,ν)[F

abl
e ](f,α,δ)(k,δ,µ)

=
∑
h,σ,ψ,ρ

[F abc
g ](f,α,β)(h,σ,ψ)[F

ahd
e ](g,σ,γ)(k,λ,ρ)[F

bcd
k ](h,ψ,ρ)(l,µ,ν)

(1.19)

where a, b, c, d, e, f, g, h, k, l ∈ L and the greek subscripts index the multiplicity of the

trivalent vertices.

By MacLane’s coherence theorem, any re-association of an n-fold tensor product can

be realized as a sequence of reparenthesizations of triples (a⊗ b)⊗ c→ a⊗ (b⊗ c), and

any two fusion trees with the same external edge labels can be related by a sequence of

F -moves.

1.2.4 Rigidity and quasiparticle generation/annihilation

With the monoidal structure in place there is the notion of left and right dual objects

in (C,⊗, 1, α), which for simple objects in the presence of unitarity gives the notion of

anti-quasiparticles for anyons.

Definition 1.15. An object X∗ in C is a left dual of X if there exist morphisms evX :

X∗ ⊗X → 1 and coevX : 1 → X ⊗X∗ such that

(idX ⊗ evX) ◦ αX,X∗,X ◦ (coevX ⊗ idX) = idX (1.20)

(evX ⊗ idX∗) ◦ α−1(X∗, X,X∗) ◦ (idX∗ ⊗ coevX) = idX∗ . (1.21)

Similarly, an object ∗X is said to be a right dual of X if there exists morphisms
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ev′X : X ⊗∗ X → 1 and coev′ : 1 →∗ X ⊗X such that

(ev′X ⊗ idX) ◦ α−1
X,∗X,X ◦ (idX ⊗ coev′X ⊗) = idX (1.22)

(id∗X ⊗ ev′X) ◦ α∗X,X,∗X ◦ (coev′X ⊗ id∗X) = id∗X (1.23)

and similarly for coev′ and ev′.

The morphisms evX , ev
′
X and coevX , coev

′ are called evaluation and coevaluation

morphisms respectively.

Definition 1.16. A monoidal category is rigid if every object has left and right duals.

For f ∈ Hom(X,Y ), left and right dual morphisms f ∗ and ∗f are defined by the

compositions

f ∗ = evY ⊗ idX∗ ◦ ((idY ∗ ⊗f)⊗ idX∗) ◦ α−1
Y ∗,X,X∗ ◦ idY ∗ ⊗ coevX (1.24)

∗f = id∗X ⊗ ev′Y ◦ id∗X ⊗(f ⊗ id∗Y ) ◦ α∗X,X,∗Y ◦ coev′X ⊗ id∗Y (1.25)

Remark 1.1.

When C is also unitary as a fusion category, the notion of left and right duals coincide

and definitions involving dual objects and morphisms are greatly simplified. Since our

interest here is the unitary case, from now on we will assume ∗X ∼= X∗ for allX ∈ Obj(C),

and when we wish to denote the dual of an object X we write X∗.5

5In particular we will state the definition of the pivotal structure and braiding for unitary fusion
categories and avoid a bit of bookkeeping.

31



MTCs and (2+1)D TPM Chapter 1

As with the unitors, they are taken to be trivial in the sense they carry 1 to the copy

of 1 in X⊗X∗ by the identity morphism. Then in terms of string diagrams, coevaluation

and evaluation morphisms are drawn as cups and caps, respectively.

Below we record some properties of duality that we will use implicitly throughout the

remaining chapters.

Proposition 1.1. 1. 1∗ ∼= 1

2. Dual objects are unique (up to isomorphism).

3. For all objects X and Y and morphisms f, g ∈ Hom(X,Y )

(X ⊗ Y )∗ ∼= Y ∗ ⊗X∗ (1.26)

(f ◦ g)∗ = g∗ ◦ f ∗. (1.27)

We are finally ready to state the definition of a fusion category.

Definition 1.17. A tensor category is a locally finite, C-linear, rigid monoidal category

with simple tensor unit.

Definition 1.18. A fusion category is a finite semisimple C-linear tensor category.

1.2.5 Rigidity in a skeletal UMTC

The diagrams for these coevaluation and evaluation morphisms on simple objects are

the worldlines of quasiparticle generation and annihiliation.

a a∗

a a∗ (1.28)
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which can then be identified with the trivalent vertices |a, a∗; 1⟩ and ⟨a, a∗; 1|.

a a∗

1 a a∗

1

(1.29)

The rigidity axiom concerns trivalent vertices of the form |a, a∗; 1⟩ and ⟨a, a∗, 1|.

For any a ∈ L, the F -symbols must satisfy

(
[F a∗aa∗

a∗ ]−1
)
11

= [F aa∗a
a ]11 (1.30)

Rigidity axiom (Take f = id)

(1.31)

where we have suppressed the a and a∗ labels. In words, rigidity says that cups and caps

in a charge line can be straightened. Thus rigidity is encoded in diagrams through a kind

of isotopy invariance.
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1.2.6 Unitarity

Definition 1.19. A fusion category is unitary if there exists a conjugation on Hom

spaces: for every f ∈ Hom(X,Y ), there exists f̄ ∈ Hom(Y,X) which is conjugate linear

with

¯̄f = f (1.32)

f ⊗ g = f̄ ⊗ ḡ (1.33)

f ◦ g = ḡ ◦ f̄ (1.34)

satisfying

coevX = ev′X evX = coev′X (1.35)

Up until now all of our string diagrams have been oriented from the bottom up. The

string diagram of a conjugate morphism f̄ is the reflection of the string diagram for f

across a horizontal axis.

f̄
=

f

Skeletal unitarity

The compatibility condition satisfied by unitary and the coevaluation/evaluation mor-

phisms ensures that the notions of time reversal symmetry and anti-quasiparticle coincide.

Now wordlines carrying topological charge a can be expressed in terms of orientation-

reversed wordlines carrying topological charge a∗.
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The F -symbols then satisfy

[(F abc
d )−1]fe = [(F abc

d )†] (1.36)

1.2.7 Pivotal fusion categories

The fusion structure of an MTC is sufficient to describe the state spaces of collections

of anyons as vector spaces, but in order to get a Hilbert space of states we need an

inner product ⟨·, ·⟩ for which the Hom spaces are complete with respect to the associated

norm |⟨·, ·⟩|. To this end, we need the notion of a quantum trace of morphisms. In the

presence of a pivotal structure, the quantum traces will lead to a pairing between states

that satisfies the definition of an inner product.

The pivotal structure ensures further compatibility between time reversal and duality:

it says that the dual of the dual of an anyon type a (or process f) is just a (f), a

straightforward categorification of something that is clear from physical considerations

at the level of the fusion ring.

Pivotality

In what follows we will assume that C is a fusion category, although more generally

one considers pivotal structures on more general rigid monoidal categories, see Section

4.7 of [38]. Our definition of pivotality is adapted from that in [81], which is slightly

different.

Definition. A pivotal structure on C is a collection of natural isomorphisms ϕX : X −→

X∗∗ satisfying ϕX⊗Y = ϕX ⊗ ϕY for all X,Y ∈ Obj(C).

Skeletally, a pivotal structure amounts to a choice of pivotal coefficient for each simple

object, {ta}a∈L. The {ta} are required to be roots of unity and must satisfy the pivotal
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axioms:

t1 = 1 (1.37)

ta∗ = t−1
a (1.38)

t−1
a t−1

b tc = [F abc∗

1 ]a∗c[F
bc∗a
1 ]a∗a[F

c∗ab
1 ]b∗b (1.39)

Quantum trace

Definition 1.20 (Adapted from [38]). Let C be a rigid monoidal category, X ∈ Obj(C),

and f ∈ Hom(X,X∗∗). Then the left and right quantum traces of the morphism f are

morphisms in Hom(1, 1) given by the following compositions.

TrL(f) = evX∗ ◦ (ϕX ⊗ idX∗) ◦ (f ⊗ idX∗) ◦ coevX (1.40)

TrR(f) = evX∗ ◦
(
id∗
X ⊗ϕ−1

X

)
◦ (idX∗ ⊗f) ◦ coev∗X (1.41)

In pictures,

TrL(f) = f TrR(f) = f (1.42)

Sphericality

With a spherical pivotal structure, closed loops labelled by topological charges are

now well-defined.
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1.2.8 Braided fusion categories

In order to describe the Hilbert state spaces of anyons it was enough to understand

MTCs at the level of pivotal fusion categories. But in order to understand the evolution

of anyonic systems we need the third and final fundamental structure possessed by an

MTC, its braiding.

Definition 1.21. A braiding on a monoidal category (C,⊗, 1, α) is a family of natural

isomorphisms cX,Y : X ⊗ Y −→ Y ⊗X so that the following commute:

(i) the hexagon diagram

(X ⊗ Y )⊗ Z

(Y ⊗X)⊗ Z X ⊗ (Y ⊗ Z)

Y ⊗ (X ⊗ Z) (Y ⊗ Z)⊗X

Y ⊗ (Z ⊗X)

cX,Y ⊗idZ αX,Y,Z

αY,X,Z cX,Y⊗Z

idY ⊗cX,Z αY,Z,X

and

(ii) the hexagon diagram

(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z) Z ⊗ (X ⊗ Y )

X ⊗ (Z ⊗ Y ) (Z ⊗X)⊗ Y

(X ⊗ Z)⊗ Y

cX⊗Y,ZαX,Y,Z

idX ⊗cY,Z α−1
Z,X,Y

α−1
X,Z,Y

cX,Z⊗idY

for all X,Y, Z ∈ Obj(C).
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A category with a braiding is called a braided category.

Definition 1.22. A ribbon fusion category is a spherical braided fusion category.

As with MacLane’s coherence theorem for monoidal categories, there is a braided

coherence theorem due to Joyal and Street [57].

Theorem 1.2 (Braided coherence). Whenever two morphisms between the same objects

in a braided category are given by a sequence of associators and braidings and their

inverses, they are equal.

Represented using string diagrams, the braiding isomorphisms are depicted by

cX,Y

X Y

Y X

=:

Y

Y

X

X

(1.43)

and similarly for c−1
X,Y but with the opposite crossing. Then the braided coherence theorem

interpreted topologically is a statement about two braids being related by Reidemeister

II and III moves.

Skeletal BFCs

Passing to a skeletonization, the matrix entries of the braiding isomorphisms are called

the R-symbols, and they dictate how exchange transforms a basis of states. Through-

out the chapters we try to be consistent about following the standard but sometimes

counterintuitive conventions for skeletalizing the braiding from [3, 81].
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a

a

b

b

=
∑

c

√
dc
dadb

Rab
c

b a

c

a b

(1.44)

So in the graphical calculus, crossings can be resolved in terms of R-symbols and

quantum dimensions. Another useful form of this local relation which can be derived

from the one above is

a b

µ

c

= [Rab
c ]µµ

c

a b

µ

(1.45)

Exchanging the crossing gives the analogous equation involving R−1.

The hexagons that need to commute are encoded by equivalent sequences of local

moves involving F -moves and R-moves. Suppressing vertex labels, these take the form
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ba c

f

d

a b c

f

d

a b

g

d

c

ba

e

d

cc
b cca

e

d

a b cc

g

d

F−1

R−1 F

R−1

R F−1

and

caa bb

f

d

a b c

f

d

a b

g

d

c

caa bb

e

d

a cbb

e

d

a cbb

g

d

F

R F

R

R−1 F−1

.

As matrix equations the hexagon axioms become

∑
λ,γ

[Rac
e ]α,λ[F

acb
d ](e,λ,β);(g,γ,ν)[R

bc
g ]γ,µ

=
∑
f,σ,δ,ψ

[F cab
d ](e,α,β);(f,δ,σ)[R

fc
d ]σψ[F

abc
d ](f,δ,ψ);(g,µ,ν)

(1.46)
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and

∑
λ, γ[(Rca

e )
−1]α,λ[F

acb
d ](e,λ,β);(g,γ,ν)[(R

cb
n )

−1]γ,µ

=
∑
f,σ,δ,ψ

[F cab
d ](e,α,β);(f,δ,σ)[(R

cl
d )

−1]σ,ψ[F
abc
d ](f,δ,ψ);(g,µ,ν).

(1.47)

Nondegenerate braided fusion categories

Let C be a spherical braided fusion category. The matrix

Sab =
1

D
Tr(cb,a∗ ◦ ca∗,b) =

1

D
a b

given by the quantum trace of the double braiding is called the S-matrix.

Definition 1.23. A braided monoidal category C called symmetric if

cY,X ◦ cX,Y = idX⊗Y

for all X,Y ∈ Obj(C).

For example, the fusion category Rep(G) is symmetric. On the other hand, abraiding

is nondegenerate if the only objects X such that cY,X ◦ cX,Y = idX⊗Y for all Y ∈ Obj(C)

are direct sums of 1.

This is equivalent to the following definition.

Definition 1.24. A ribbon fusion category (RFC) is nondegenerate if det(S) ≠ 0.

Unitary modular tensor categories

Definition 1.25. An RFC is unitary if it is unitary as a fusion category and cX,Y = cX,Y ,

θX = θ∗X . (See the next section 1.3 for the definition of θ.)
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We have arrived at the definition of a modular tensor category.

Definition 1.26. A modular tensor category C is a nondegenerate ribbon fusion category.

A unitary modular tensor category is a unitary nondegenerate RFC.

In fact unitarity implies nondegeneracy, and every braiding on a unitary fusion cat-

egory is automatically unitary [45].

Definition 1.27. A skeletal MTC is a collection of complex numbers

{Nab
c , [R

ab
c ]µ,ν , [F

abc
d ](n,α,β);(m,µ,ν)}

satisfying the pentagon and hexagon equations.

Skeletal unitary MTCs have unitary R- and F -matrices.

1.3 Invariants and classification of MTCs

Next we introduce several important invariants of a UMTC C which are preserved by

braided-tensor autoequivalence functors of C, which give the right notion of equivalence

of topological orders. See Definition 3.1 in Chapter 3.

In particular, given a skeletal UMTC, invariant quantities will be independent of the

specific set of solutions {Nab
c , R

ab
c , [F

abc
d ]nm} to the consistency equations.

We denote the rank of the UMTC by rank(C) = |L| = n. Orientations on diagrams

are mostly suppressed.
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1.3.1 Quantum dimensions, twists, and Frobenius-Schur indi-

cators

The traces of the identity morphisms on simple objects ida give invariants called

quantum dimensions da.

Tr(ida) = a = da.

The quantum dimensions satisfy d1 = 1 and da = da∗ for all a ∈ L.

A related invariant of UMTCs is the global quantum dimension D, which is the positive

square root

D =

√∑
a

d2a.

Twists

The trace of the braiding isomorphism of a simple object with itself is an invariant.

Tr(caa) = a =
∑
c

Raa
c

a a

c

a a

=
∑
c

√
dc
d2a
Raa
c

√
dadadc =

∑
c

dcR
aa
c

Dividing by the quantum dimension of the anyon a gives the invariant θa, called the

topological twist of a.

θa =
1

da a =
∑
c

dc
da
Raa
c

The twists can be organized into the diagonal T -matrix Tab = θaδab. It is known that

each θi is a root of unity, a result referred to as Vafa’s theorem [81]. Put θi = e2πi/ri .

Then it follows that |T | = lcm(r1, r2, . . . , rn).
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anyon type a quantum dimension da twist θa

abelian 1
boson 1 1
fermion 1 -1
semion 1 i or -i

nonabelian > 1
integral ∈ Z

weakly integral d2a ∈ Z

Table 1.3: Names for common anyon types based on their invariants. A blank entry
mean that the designation does not constrain the quantity of interest, although we
note that all twists are required to be roots of unity eiθ, θ = 2πi/n for some n ∈ Z≥0.
The bosons here are emergent quasiparticles, as opposed to the constitutent bosons
in the coresponding (2+1)D TPM.

The ribbon property

The R-symbols and twists satisfy the equation

∑
c

Rab
c R

ba
c =

θc
θaθb

.

The quantum dimension and twist of an anyon determine some of its important

physical properties, and in both math and physics there are special names for anyons

with specific values of these invariants.

The central charge

Define

Θ =
1

D
∑
a∈L

θad
2
a , Θ∗ =

1

D
∑
a∈L

θ−1
a d2a (1.48)
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When C is an MTC,

Θ = e2πic/8

for some c ∈ Q, known as the central charge of C. The topological central charge ctop of

C is

ctop = c mod 8.

1.3.2 The modular data and modular representation

S-matrix

Another important invariant is given by the trace of the double braiding:

Sab =
1

D
Tr(cb,a∗ ◦ ca∗,b) =

1

D
a b

Resolving the diagram in the graphical calculus and using the ribbon property one

can show that the S-matric satisfies

Sab =
1

D
∑
c

Na∗b
c

θc
θaθb

dc. (1.49)

Taken together, the set of matrices {S, T} is called the modular data of a modular tensor

category.

The origin of the word “modular” in modular tensor category is the projective repre-

sentation of the modular group SL(2,Z) that is provided by the category.

The modular representation

Let C be the charge conjugation matrix Cab =


1 b = a∗

0 b ̸= a∗
. Observe that C2 = I,

since the dual of an anyon a∗ is a.
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Theorem 1.3. [81] The matrices S and T satisfy the equations

(ST )3 = ΘC, S2 = C, C2 = In (1.50)

where

Θ =
1

D
∑
a∈C

d2aθa = e2πic/8.

Recall c is the central charge of C.

It follows that the map ρ : PSL(2,Z) → U(n) that sends

0 −1

1 0

 7→ S

1 1

1 0

 7→ T

is a linear representation of PSL(2,Z), and hence a projective representation of SL(2,Z).

Thus every UMTC gives a projective representation of the mapping class group of the

torus SL(2,Z). More generally, the nondegeneracy of the S-matrix means that we get

projective representations of all mapping class groups.

On the one hand, the modular data are a powerful invariant. For example, MTCs

which are equivalent to Drinfeld centers of finite groups are determined by their modular

data for groups G with |G| < 32 [51, 66].

However, they are not a complete invariant of MTCs. The first counterexamples are

due to Mignard and Schauenberg, and come in families of MTCs of the form Z(VecωZqoZp
),

where p and q are odd primes with q | 2p−1 [66]. The smallest of these counterexamples

is the family of five rank 49 categories Z(VecωZ11oZ5
), where [ω] ∈ H3(Z11 o Z5, U(1)).
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1.3.3 Knot and link invariants from MTCs

We have already seen that several link invariants that come from MTCs, the quantum

dimensions associated to the unknot, the twists of the twisted unknot, and the S-matrix

from the Hopf link. More generally, an MTC gives an invariant of any framed link.

In light of the modular data failing to be complete invariants of MTCs, it is an open

question whether there is some minimal data set extending {S, T} that is. Alternatively,

one can ask whether there are other sets of link invariants that distinguish equivalence

classes of MTCs.

The following result says that such links necessarily must come from closures of words

in Bn for n > 2 that involve more than one braid group generator.

Theorem 1.4 (Bonderson, D., Galindo, Rowell, Tran, Wang). Any framed knot or link

which can be represented by the closure of a braid word in B2 is determined by the modular

data {S, T}.

Beyond modular data

Along these lines in [14] and [34] we investigate small knot and link invariants as

invariants of MTCs, and in particular those coming from the 5 Mignard-Schauenberg

categories of rank 49.

We pay particular attention the invariants of the Whitehead link, and define the

W -matrix

.

Proposition 1.2 (Bonderson, D., Galindo, Rowell, Tran, Wang). The W -matrix is
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determined by the punctured S-matrices

according to

We find that theW -matrices taken with the twists are enough to distinguish the rank

49 Mignard-Schauenburg that failed to be distinguished by the S- and T -matrices as sets.

Theorem 1.5 (Bonderson, D. , Galindo, Rowell, Tran, Wang). The data {T,W} gives

a complete invariant of the categories Dω(G) for G = Z11 o Z5.

In [34] we tabulate the invariants for knots and links up to 9 crossings which come

from braid closures in B3. It is not uncommon for such knots and links to distinguish the

rank 49 Mignard-Schauenburg categories when taken with the T -matrix, and sometimese

even give a complete invariant. For example,

Theorem 1.6 (D., Tran (2018)). The 52 knot is a complete invariant of the Dω(G) for

G = Z11 o Z5.

The T -matrix together with the figure eight knot or the Borromean rings distinguish the

categories.

1.3.4 Classification and structure theory of MTCs

A classification of MTCs charts a “periodic table” of topological phases of matter.

We seek an understanding of what the “atoms” of MTCs are - analogous to finite simple
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groups - from which all MTCs can be generated. Examples of ways to generate or

combine MTCs include Galois conjugation, Deligne products (see Chapter 5) and G-

gauging/condensation (Chapter 4)

A classification of UMTCs begins with considerations about its objects - rank, quan-

tum dimension, and fusion rules.

Figure 1.6: Low rank classification of UMTCs, from [75].

An MTC whose objects all have quantum dimension 1 (every simple object is in-

vertible) is said to be pointed. Topological phases whose topological order is pointed

are known as abelian topological phases. This is because the quantum dimensions being

one is equivalent to the anyons having statistics which generate an abelian (and hence

projectively trivial) subgroup of the unitary group U(1) [77], see the next chapter for the

details.
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1.4 Examples

We will work with many examples in the later chapters, and it will be helpful to

record their algebraic data, common invariants, and other properties.

Any admissible UMTC data not explicitly listed is understood to be trivial. We give

the fusion rules either as a list of the nontrivial fusion products or in the form of a fusion

table depending on which is more suitable.

1.4.1 Semion UMTC

Low rank examples exhibit many of the features that characterize different UMTCs.

Example 1.3 (Semion topological order). [75]

Anyons L = {1, s}
Fusion s⊗ s = 1
R-symbols Rss

1 = i
F -symbols F sss

s = −1

Quantum dimensions ds = 1

D =
√
2

Twists θs = i

S-matrix S = 1√
2

(
1 1
1 −1

)
Frobenius-Schur indicators vs = −1
Anomaly and central charge Θ = 1√

2
(1 + i), c = 1

The semion MTC is the smallest MTC with nontrivial F -symbols.

1.4.2 Fibonacci UMTC

Example 1.4 (Fibonacci topological order). [81]
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Anyons L = {1, τ}
Fusion τ ⊗ τ = 1⊕ τ
R-symbols Rττ

1 = e−4πi/5

Rττ
τ = e3πi/5

F -symbols F τττ
τ =

(
ϕ−1 ϕ−1/2

ϕ−1/2 −ϕ−1

)
Quantum dimensions dτ = ϕ

D =
√
2 + ϕ

Twists θτ = e4πi/5

S-matrix S = 1√
2+ϕ

(
1 ϕ
ϕ −1

)
Frobenius-Schur indicator vτ = 1

1.4.3 Ising UMTCs

There are eight inequivalent MTCs of rank 3 with the same fusion rules which all go by

the name of Ising, distinguished by writing Ising(ν) where ν parametrizes the quantum

twist of the anyon σ [53]. Throughout these chapters by Ising we mean Ising(1), the

category with modular data given in [81].

Example 1.5 (Ising topological order ). [81]
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Anyons L = {1, σ, ψ}
Fusion σ ⊗ σ = 1⊕ ψ

ψ ⊗ ψ = 1
ψ ⊗ σ = σ

R-symbols Rσσ
1 = e−πi/8, Rψψ

1 = −1
Rψσ
σ = Rσψ

σ = −i, Rσσ
ψ = e3πi/8

F -symbols F σσσ
σ = 1√

2

(
1 1
1 −1

)
Fψσψ
σ = F σψσ

ψ = −1

Quantum dimensions dσ =
√
2, dψ = 1

D = 2
Twists θσ = 1, θσ = e2πi/16, θψ = −1

S-matrix S = 1
2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1


Frobenius-Schur indicators νψ = 1, νσ = 1
Anomaly and central charge Θ = 1+i√

2
, c = 1

1.4.4 Quantum doubles of finite groups and Dijkgraaff-Witten

TQFT

Example 1.6 (D(Z2) topological order ). [3]

Anyons L = {1, e,m, f}
Fusion ⟨e,m⟩ ∼= Z2 × Z2

R-symbols Rab
c = eπia2b1

where a = (ea1 ,ma2), a = (eb1 ,mb2)
F -symbols F abc

d = 1 for all a, b, c, d ∈ L
Quantum dimensions de = dm = df = 1

D = 2
For the next example we will only need the fusion table.

Example 1.7 (D(S3) topological order). [21]
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Anyons L = {A,B,C,D,E, F,G,H}
Fusion table

⊗ A B C D E F G H

A A B C D E F G H

B B A C E D F G H

C C C A⊕B ⊕ C D ⊕ E D ⊕ E G⊕H F ⊕H F ⊕G

D D E D ⊕ E A⊕ C ⊕ F ⊕G⊕H B ⊕ C ⊕ F ⊕G⊕H D ⊕ E D ⊕ E D ⊕ E

E E D D ⊕ E B ⊕ C ⊕ F ⊕G⊕H A⊕ C ⊕ F ⊕G⊕H D ⊕ E D ⊕ E D ⊕ E

F F F G⊕H D ⊕ E D ⊕ E A⊕B ⊕ F H ⊕ C G⊕ C

G G G F ⊕H D ⊕ E D ⊕ E H ⊕ C A⊕B ⊕G F ⊕ C

H H H F ⊕G D ⊕ E D ⊕ E G⊕ C F ⊕ C A⊕B ⊕H
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Quantum representations from

MTCs and topological quantum

computing

a a a a

In this chapter we review the mathematical foundations of quantum computation and

the algebraic theory of topological quantum computing (TQC). We discuss TQC with

anyons as well as the more general mathematical framework of TQC with excitations,

boundaries, and defects in topological phases of matter to be applied in Parts II & III.

The reader comfortable with quantum computation may wish to skip ahead to Section
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2.2, and if already familiar with the physics of TQC, Section 2.3. As with the material

in Chapter 1, we note that there are already many excellent references covering this

material, and recall it here only for the sake of self-containment. On the whole Section

2.1 follows Nielsen and Chuang [68].

2.1 Quantum computation

One of the beautiful things about the quantum world is that quantum mechanics and

quantum information are the same theory - the idea of a quantum computer is simply to

engineer a quantum system whose evolution can be precisely controlled. Like in Chapter

1 where we examined MTC theory from physical principles, here too we will use the

postulates of quantum mechanics as our guide.

There are three main pieces of any computation: input, process, and output. For a

quantum computation each of these stages is quantum mechanical: the input is a quantum

state, the process a unitary evolution, and the output a measurement. Thus the stages

of a quantum computation follow the postulates of quantum mechanics.

2.1.1 Encoding quantum information

The input to a quantum computation is a quantum state, which per the laws of

quantum mechanics, we know to be given by a unit vector in some Hilbert space.

Postulate 1. A quantum state |ψ⟩ of an isolated quantum system is a unit vector in

a complex Hilbert space H.

The smallest nontrivial Hilbert space over C comes at dimension 2, H ∼= C2. A phys-
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ical system whose space of quantum states is 2-dimensional is called a 2-level quantum

system.

# of states

E

E0

E1

Figure 2.1: Depiction of basis states of a 2-level quantum system. In general E0 ̸= E1,
and there is a ground state with energy E0 and an excited state with energy E1.
When E0 = E1 there are two ground states both with energy E0, an example of a
phenomenon called ground state degeneracy, see Figure 2.3.

Thus the smallest unit of quantum information, called a qubit for quantum bit, is just

a unit vector in a two-dimensional Hilbert space.

And thus whereas the classical bit is discrete, with bit states taking on a value of

either 0 or 1, a qubit has a continuum of states. When a qubit is identified with C2, the

standard basis {e1 = (1, 0)T , e2 = (0, 1)T} of C2 is referred to as the computational basis

and written using Dirac notation, {|0⟩, |1⟩}.

Qubits

Then in analogy with a classical bit, one says that a qubit state is a quantum super-

position of the states 0 and 1, meaning a normalized complex linear combination of basis

states

|ψ⟩ = α|0⟩+ β|1⟩ (2.1)

where |α|2 + |β|2 = 1.
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Examples of two-level systems include the polarization of a photon, the spin of an

electron, and any collection of anyons with a two-fold degeneracy. For instance, Fibonacci

anyons τ have the property that when they fuse with another τ , the result is a quantum

superposition of 1 and τ . This multiplicity in the fusion product, or multi-fusion channel,

is essentially a two-level system.1

Qubit states admit a powerful visualization as points on a two-dimensional sphere

called the Bloch sphere representation. Rewriting the qubit state |ψ⟩ = α|0⟩+β|1⟩ using

the normalization condition, the qubit state can be rewritten in terms of 3 real degrees

of freedom, θ, ϕ, and γ [68].

|ψ⟩ = eiγ
(
cos

θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩
)
.

Figure 2.2: Parametrization of pure qubit states and visualization in terms of the
Bloch sphere.

Since states are really only defined up an overall phase, the factor of eiγ out in front

can be ignored. Thus we are left with two real degrees of freedom, θ and ϕ, which

parametrize the polar and azimuthal angles of a point on a 2-sphere, respectively.

Interpreted with these conventions the sphere is called the Bloch sphere. The state

|0⟩ corresponds to θ = 0, ϕ = 0, or the north pole, and |1⟩ to θ = π, ϕ = 0.
1We will see in the next section that in order to encode a logical qubit one actually needs four

Fibonacci anyons, but this oversimplification is fine for now.
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Qudits

More generally, a quantum system with d energy levels, d-level quantum system is

modeled by a d-dimensional Hilbert space with orthonormal basis, which we will denote

by Hd. While the Bloch sphere provides a nice way to visualize qubit states, pure qudit

states for d > 2 lie on a convex polytope in higher dimensions, and not so easy to visualize

[65].

Encoding quantum information

We have discussed two different notions of a qubit, the mathematical definition and

the physical realization, namely a two-level system. Encoding a qubit is to identify these

two notions.

More precisely, a qubit encoding in a two-level system is an isomorphism of the vector

spaces

H2
logical

∼= H2
physical.

In general a qubit can be encoded in a d-level system where d > 2,

H2
logical → Hd

physical.

A qudit, or d-dimensional Hilbert space can be encoded in a d-level system

Hd
logical → Hd

physical

or of course in full generality in any n-level system for n > d. Some get special

names: three-dimensional qudits are called qutrits, and p-dimensional qudits for p prime

are called qupits.

When smaller Hilbert spaces are encoded into larger Hilbert space, there is the pos-
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sibility of leakage.

Taking the tensor product of Hilbert spaces, one combines qubits and qudits so that

they can be coupled together to perform specific operations.

Postulate 2. The Hilbert space of states of a composite quantum system is given by the

tensor product of the Hilbert spaces of its components.

Quantum algorithms are often illustrated using quantum circuits. Each strand cor-

responds to a qudit, whose initial state is labeled on one end, often some ground state

written |ψ⟩ = |0⟩.

|0⟩ . . .

|0⟩ . . .

|0⟩ . . .

2.1.2 Processing quantum information

Given a 2-level physical system identified as a qubit, the input to a qubit computation

is initialized by preparing the system in a certain state. By the second postulate of

quantum mechanics, a quantum computation will transform such an input state unitarily.

Postulate 3. The evolution of a closed quantum system is given by a unitary transfor-

mation on Hilbert space U ∈ B(H).

With respect to the computational qubit states, a quantum logical operation on a

qubit, or qubit gate is simply a 2 × 2 unitary matrix, depicted in quantum circuits as a
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rectangle on a strand.

|0⟩ . . .

|0⟩ . . .

|0⟩ . . .

U

U ′

These look a lot like our string diagrams from fusion categories in Chapter 1. Indeed

quantum circuits are just string diagrams in the category of finite dimensional vector

spaces with some extra decorations.

In terms of the Bloch sphere, where points in CP 1 are identified with points on the

Riemann sphere, unitary evolution corresponds to rotation of the sphere through some

angle.

Below we provide a list of the most common single qubit gates, which will come in

handy when analyzing gate sets arising from anyons later in the chapter, and gate sets

from defects in Parts II and III.

Pauli-X X

(
0 1
1 0

)
Hadamard Z

1√
2

(
1 1
1 −1

)

Pauli-Y Y

(
0 −i
i 0

)
Phase S

(
1 0
0 i

)

Pauli-Z Z

(
1 0
0 −1

)
π/8 T

(
1 0
0 eπi/4

)
Figure 2.3: Common single qubit gates and their quantum circuit notation. We
remark that the 2× 2 matrices here for the S-gate and T -gate have no relation to the
S- and T -matrices of Chapter 1.
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More generally, there are d× d single-qudit dates, depicted in quantum circuits as a

rectangle on a strand. Multi-qubit and multi-qudit gates are unitary matrices on tensor

product Hilbert spaces, and depicted as rectangles with the appropriate number of input

and output strands.

Given an array of n qudits ⊗iHi and a small set of qudit gates S, ideally one wants

to be able to efffectively perform any unitary operation U in an efficient way. Efficient

meaning that U should be a composition of gates in S, of polynomial length in n.

Typically one studies elements of a small gate set, say, S = {g1, . . . , gm}, where each

gi is a 2 × 2 or 4 × 4 unitary matrix, i.e. each acts on a one qubit (C2 ) or two-qubit

(C2 ⊗ C2) subspace of (C2)⊗n. These gate sets, while acting on a few qubits at a time,

are extended trivially on the remaining qubits by tensoring with the identity.

Definition 2.1 (Universal gate set [68]). A gate set is universal for quantum computation

if any unitary operation may be approximated to arbitrary accuracy by a quantum circuit

involving only those gates.

More precisely, if we consider the set of all quantum circuits on (C2)⊗n that can be

built from our gate set, then it is universal if it is dense in PU(2n). (Recall that we are

interested in things up to a phase.)

For the most part considerations about single qubits will suffice for our purposes in

the later chapters. The following theorem provides some justification.

Theorem 2.1. A universal gate set for SU(2) together with an entangling gate generates

universal quantum computation.

Theorem 2.2. The gate set {H, T, CNOT} is universal for quantum computation.

2.1.3 Measurement and readout

The final stage of a quantum computation is to measure the state of the system.
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Postulate 4. Measurement of a quantum system is described by the action of a set of

projection operators {Pλ} on H whose projections form a basis of H.

Given a computational basis for an array of qudits, measurement proceeds by measur-

ing the overlap of the state of the system with a computational basis state. The result is

a complex probability amplitude that relays some information about how the initial state

was transformed by the computation. In general such measurements must be repeated

to produce a probabilistic understanding of the final state.

2.1.4 Towards quantum computers

We have seen that the recipe for a qubit is a 2-level quantum system whose evolution

can be precisely controlled and shielded from decoherence. Several decades out from

Feynman’s articulation of the idea of a quantum computer [41] with noisy intermediate-

scale quantum devices on the horizon [71] there is a proliferation of approaches to

quantum computing architecture. They exhibit a wide variety of materials and control

schemes, but generally speaking each involves some tradeoff between feasibility, power,

efficiency, noisiness, and scalability.

2.2 Topological quantum computing with anyons

The topological approach to quantum computing is based on using materials in topo-

logical phases of matter as the hardware for a computer: a robust gap between degenerate

ground states and excited states is a good home for a qubit.
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# of states

E

E0

Figure 2.4: Illustration of a gapped quantum system with ground state degeneracy.

Generically the lowest two energies will have two different energy levels E0 and E1,

with E0 < E1. A qubit can be encoded in the superposition of states with those energies.

But if the energy levels E0 for n > 1 are close by, it will be hard to keep the system from

evolving, or leaking, into an excited state.

There is an energy gap∆ that separates the E0 states from the excited states En > E0.

The larger this gap, the safer the encoding. Topological phases of matter have the

property that the gap is exponentially small in the length scale of the system. Quantum

information encoded in the ground states of a gapped system is said to be topologically

protected.

While the technology to engineer materials in topological phases of matter is at its

early stages, topological error protection makes them a very appealing candidate for

large-scale quantum computers [61].

Even in the absence of applications to quantum devices, the theory of TQC is a

powerful tool for gaining physical insight. As we saw in the previous section, quantum

physics and information are really one and the same. This is the perspective we take in

the rest of the chapters, and the scope of our treatment of topological quantum computing

is mostly formal with the exception of a few comments about applications to devices and
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experiment when interesting.

2.2.1 Topological qubits

There are two ways that a bulk topological phase can give rise to topologically pro-

tected quantum information, either through the topology of its underlying space manifold

or through the multi-fusion channel of a collection of anyons.

Encoding quantum information in surface states

The unitary representations of mapping class groups of punctured surfaces afforded by

a TQFT are in general projective, so that they only satisfy the equation ρ(gh) = ρ(g)ρ(h)

up to a scalar. In other words one has a group homomorphism with target the group of

projective unitaries

ρ :MCG(Σg) −→ U(d)/U(1). (2.2)

Now the ρ(g) are only defined up to a U(1) phase and ρ(gh) and ρ(g)ρ(h) are pro-

jectively equal, so that for a fixed choice of ρ(g) for all g ∈ G, there exists some phase

ω(g, h) such that ρ(gh) = ω(g, h)ρ(g)ρ(h). In other words, the failure of ρ to be a linear

representation is measured by the phases ω(g, h). It can be shown that such ω(g, h)

satisfy the definiton of a 2-cocycle, hence the notation from cohomology.

2.2.2 Fault-tolerant gates from anyon exchange

In TQC, the gates that are topologically-protected are those arising from anyon ex-

change. These are precisely elements of the image of a braid group representation.
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2.3 Braid group representations from MTCs

The algebraic structure organizing the topology of the spacetime trajectories of point-

like particles is the fundamental group of their configuration space π1
(
Confn(Σb

g)
)
. For

n anyons of type a on a closed disk Σ1
0 = D2, this is isomorphic to the n-strand braid

group Bn.

Anyon exchange-generated gates are elements in the image of a unitary representation

of the braid group. In this section we cover how to compute matrix representations from

the data of an skeletal MTC {Nab
c , R

ab
c , [F

abc
d ]nm}, beginning with some braid group basics.

2.3.1 The n-strand braid group

The n-strand braid group Bn has presentation

.

It is easy to see that B1 is the trivial group and B2
∼= Z. More generally, the Bn are

infinite groups with center Z(Bn) ∼= Z. Taking the quotient of Bn by the normal subgroup

generated by the σ2
i results in a group isomorphic to Sn. Thus there is a surjection of

the braid group onto the symmetric group, and we have an exact sequence

1 −→ PBn −→ Bn −→ Sn −→ 1.

This implicitly defines PBn, the pure braid group on n-strands. In particular, we can

get a representation of the braid group by postcomposing with a representation of the

symmetric group. However, such a representation will not encode all of the informa-
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tion about the braid group that is needed for computation. Instead one must look for

representations which do not factor through Sn.

Diagrammatic presentation

The n braid group can be understood diagrammatically by identifying its elements

as elementary braid diagrams on n-strands. We use the following conventions.

id 7→ · · · · · ·

1 2 i i+ 1 n− 1 n

σi 7→ · · · · · ·

1 2 i i+ 1 n− 1 n

σ−1
i 7→ · · · · · ·

1 2 i i+ 1 n− 1 n

Multiplication is given by stacking of diagrams, and we take the convention that b1 ·b2

is b1 stacked on top of b2.

b1 · b2 = b1

· · ·

· · ·

· b2

· · ·

· · ·

=
b2

b1

· · ·

· · ·

· · ·

The far commutativity and braid relations then correspond to the freedom to braid-

isotope

b1

· · ·

· · · · · ·
b2

· · ·

· · ·

=
b1

· · ·

· · ·

· · ·
b2

· · ·

· · ·

and the Reidemeister III move
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· · · · · ·

1 2 i i+ 1 i+ 2 n− 1 n

= · · · · · ·

1 2 i i+ 1 i+ 2 n− 1 n

.

2.3.2 Action of Bn on Hom(i, a⊗n)

Consider the Hilbert space of states Hom(i, a⊗ a⊗ · · · ⊗ a) associated to a collection

of n anyons of type a with total charge i.

a a a a
· · ·

The n-strand braid group acts on Hom(i, a ⊗ a ⊗ · · · ⊗ a) as follows. Given a braid

generator σk ∈ Bn and a morphism f : i −→ a⊗n, the generator acts by postcomposi-

tion with the braiding isomorphism on the kth and k + 1st factors of a⊗n, with suitable

associators interspersed. Supressing the associators,

b · f =
(
id⊗k−1⊗ca,a ⊗ id⊗n−k−1

)
◦ f (2.3)

This gives a unitary representation

ρn,a,i : Bn −→ U(d) (2.4)

where d = dim(Hom(i, a⊗ a⊗ · · · ⊗ a)).

Explicit matrix representations with respect to a fixed fusion tree basis can be calcu-
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lated with the data of a skeletal UMTC according to the following procedure. Let V a⊗n
i

to indicate the vector space Hom(i, a⊗n) with basis.

1. Fixing a fusion tree with external edge labels a and total charge i, enumerate the

admissibly labeled trees vj of V a⊗n
i .

2. For each generator of the n-strand braid group σk and each basis vector v ∈ {vj},

stack the diagram for σk on the diagram for vj and resolve in the {vj} basis via the

graphical calculus using a sequence of R- and F -moves. These give the columns of

the matrices representing the generators.

3. To calculate the matrix representation of any braid b, write it as a word in braid

generators and multiply the generator images.

ρ(b) = ρ(σpmim · · ·σp1i1 ) = ρ(σim)
pm · · · ρ(σi1)p1 .

While computing elements in the image of a representation from the data of UMTC

is straightforward, in general analysis of the image is less so. For small n and low

dimensions there are some techniques for characterizing the images, but a general method

for determining density is lacking. That being said, there are many results about the

representations for specific UMTCs whose algebraic data is well understood, see the

examples in Section 2.4.

2.3.3 The action of B3 on state spaces of three anyons

When a pair of anyons a and a∗ is generated from the vacuum, their total charge

is fixed to the vacuum charge 1 and does not support a logical qubit, even if a is a

nonabelian anyon. Thus one needs a minimum of two pairs to be generated in order to
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support a logical qubit. In light of these physical considerations, for our purposes the most

elementary anyonic quantum systems are those where a = a∗ of the form Hom(1, a⊗4).

In this case, the four anyons of type a support a qudit of dimension d where d =∑
c∈L(N

aa
c )2, and their exchange generates a unitary representation of the four-strand

braid group into d× d unitary matrices: ρ : B4 −→ U(d).

However, by duality we have the isomorphism

Hom(1, a⊗ a⊗ a⊗ a) ∼= Hom(a, a⊗ a⊗ a)

where we have used that a = a∗.

Thus with some loss of generality we can study the representation of B3 associated

to three anyons of type a with total charge a. The B3 representations are simpler to

analyze, having only two generators and satisfying only one relation (the braid relation).

The examples we present here are all self-dual and so the representations are actually

equal.

Next we describe how to calculate explicit matrix representations of B3 given a topo-

logical order C.

In the later chapters we will primarily be interested in representations of the 3-strand

braid group B3 = ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩. Observe that the far commutativity relation

does not apply because none of the strands are ever more than one strand apart.

Hom(i, a⊗ a⊗ a) ∼= C





a a

µ

νc

i

a



where Naa

c ·N ca
i ≠ 0, 1 ≤ µ ≤ Naa

c , 1 ≤ ν ≤ N ca
i .

For multiplicity-free theories, this simplifies to
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Hom(i, a⊗ a⊗ a) ∼= C





a a

c

i

a

,Naa
c ·N ca

i ̸= 0




Below we use the notation |a, a, a; i; c⟩ to indicate the fusion tree basis vector of V a⊗3

i

with internal edge labeled by c ∈ L.

To understand the group action of B3 on V a⊗3

i , it suffices to understand how the

generators σ1 and σ2 act.

Image of σ1

With the left-associated basis, the braid that results from stacking σ1 can be resolved

with a single R-move.

σ1 · |a, a, a; i; c⟩ =
c

i

= Raa
c

c

i

= Rab
c |a, a, a; i; c⟩

It follows that the matrix representation of σ1 is diagonal in the left associated basis:

ρ(σ1) = diag(Raa
c1
, Raa

c2
, . . . Raa

cd
)

Image of σ2

As for the second generator, we have
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σ2 · |a, a, a; i; c⟩ =

a a a

c

i

=
∑

d[F
aaa
i ]d,c

a a a

d

i

=
∑

d[F
aaa
i ]d,cR

aa
d

a aa

d

i

=
∑

d,e[F
aaa
i ]d,cR

aa
d [F aaa

i ]−1
e,d

a aa

d

i

=
∑

d,e[F
aaa
i ]d,cR

aa
d [F aaa

i ]−1
e,d |a, a, a; i; e⟩

Equivalently one can show that

ρ(σ2) = [F aaa
i ]−1ρ(σ1)[F

aaa
i ].

The image of the 3-strand braid group associated to n anyons of type a with total

charge i in a UMTC C = {Nab
c , R

ab
c , [F

abc
d ]ef} is generated by the two matrices ρ(σ1) and

ρ(σ2).

Whether the subgroup of d× d unitary matrices realized by braiding anyons is finite,
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infinite, or dense depends on the UMTC at hand.

2.3.4 Measurement

While measurement is necessary for readout of a quantum computation, it is also a

viable tool for performing computation itself.

Generically most examples of topological order are not universal by braiding alone,

see Section 2.4. The smallest known topological order featuring universal braiding is

the Fibonacci UMTC [43]. Fibonacci topological order has several expected realizations:

for example in fractional quantum Hall (fqH) liquids with filling fraction ν = 12/5,

superconductor networks, and interacting Majorana fermions [28].

One alternative approach to realizing nonabelian anyons for topological quantum com-

puting involves engineering non-abelian objects like symmetry defects and more generally

domain walls, including gapped boundaries [21, 22, 23, 82]. The general mathematical

framework for topological quantum computing with domain walls is briefly described at

the end of this chapter, and the particular case of symmetry defects is covered in detail

in Part II.

But even when suitable objects be they anyons or something else can be realized in a

topological phase, adiabatically moving them in a way that maintains the system in its

ground state is also an experimental challenge.

And thus another approach, which can be combined with the previous one, is to

perform braiding operations effectively instead of physically. In a scheme known as

measurement-only topological quantum computation, the exchange-generated quantum

gates can be realized instead through a series of topological charge projections [15].

Incorporating such projective measurement into protocols for realizing quantum gates

can be rigorously translated into the mathematical framework of topological quantum
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computing. As projection operators on a Hilbert space, measurement operators are not

unitary, and hence not directly related to the associators or braiding of a UMTC.

Projective measurement

Given a skeletal UMTC interpreted as an anyon model, up to a normalization pro-

jective measurement of a (multiplicity-free) fusion channel is given by the diagram

P ab
c =

a b

c

a b

(2.5)

Applying the measurement to an anyon process involving the fusion of a and b corresponds

to stacking the diagram P ab
c , possibly extended by the identity, for example:

a b

c

a b

d

=
√

dadb
dc
δcd

a

c

b

(2.6)

Resolving using the graphical calculus shows that this has the effect of forcing the

fusion channel of a and b to produce c.

In executing a protocol with a projective measurement, projecting onto a specific

anyon in a fusion channel means measuring the channel until it gives the desired result:

the channel is measured and if the answer is not correct, the computation is scrapped

and the protocol is run from the beginning. In practice when incorporating measurement

one must make considerations about the overhead that this introduces, as the probability
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of producing a desired fusion outcome depends on the particulars of a topological order.

It is reasonable to ask why one should bother studying exhange-only gates if the

measurement-only approach seems destined to reign supreme. In fact, our main result

in Chapter 6 suggests that projective measurement is required for universal quantum

computation when the underlying phase is not universal by braiding itself.

However, knowing how to employ projective measurement to produce a desired oper-

ation still requires a detailed understanding of the braiding operations native to a given

topological order.

2.4 Examples

Next we present some known results about TQC with anyons and examples of single-

qubit logical gates that can be realized by anyon exchange. Later we will be interested

in comparing the gate sets from topological orders related by a kind of topological phase

transition called gauging, and it will be helpful to have such examples on hand.

2.4.1 TQC with metaplectic anyons

An N -metaplectic category is any UMTC with the same fusion rules as SO(N)2. The

specifics of the fusion rules depend on the residue of N modulo 4: they fall into one of

three types: the odd N -metaplectic, N ≡ 0 mod 4, and N ≡ 2 mod 4. When N is odd

it is known that the braid group representations have finite image [53]. In other words,

the N odd metaplectic anyons have Property F - hence any universal quantum computing

scheme based on these anyons require projective measurement. See for example [29] for

a universal gate set based on metaplectic anyons and measurement.

The Ising ν categories are the smallest examples of metaplectic categories.
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Example 2.1 (Ising anyon qubit).

A qubit can be encoded in the state space of four Ising anyons σ with trivial total

charge. The single qubit operations realizable from exchanging Ising anyons is then given

by a representation of the 4-strand braid group B4. This representation was discovered

in the context of type II1 factors prior to the advent of TQC, and its projective image

classified [56].

There is a qubit supported on Hom(σ, σ⊗3). With respect to the basis



σ σ

1

σ

σ

,

σ σ

ψ

σ

σ


.

one has

ρ(σ1) = e−πi/8

1 0

0 i

 and ρ(σ2) = e−πi/8

1 + i 1− i

1− i 1 + i

 . (2.7)

Theorem 2.3 (Jones [56]). The projective image of B3 on Hom(σ, σ⊗) is finite and

isomorphic to Z2
2 o S3.

Consequently Ising anyons cannot generate universal single qubit quantum computa-

tion. In particular, the image does not contain a T -gate. Chapter 4 contains an example

of a protocol to generate a T -gate that uses projective measurement and braiding with

symmetry defects.
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2.4.2 TQC with Fibonacci anyons

Example 2.2 (Fibonacci anyon qubit).

The fusion rule τ ⊗ τ = 1⊕ τ allows for two possibilities for the total charge of three

Fibonacci anyons, either 1 or τ . One can check that the vector space Hom(1, τ ⊗ τ ⊗ τ)

is 1-dimensional, and Hom(τ, τ ⊗ τ ⊗ τ) is 2-dimensional.

A left-associated fusion basis is given by



τ τ

1

τ

τ

,

τ τ

τ

τ

τ


.

With respect to this basis the matrix representation of B3 is determined by

ρ(σ1) =

e−4πi/5 0

0 e3πi/5

 and ρ(σ2) =

 ϕ−1e4πi/5 ϕ−1/2e−3πi/5

ϕ−1/2e−3πi/5 −ϕ−1

 . (2.8)

Theorem 2.4 (Freedman, Larsen, Wang). The Fibonacci representation on V τ⊗3

τ is dense

in U(2):

ρ(B3) ⊃ U(2).

2.4.3 TQC with twisted doubles of finite groups

As with the metaplectic anyons, it is known that the images of the braid group

representations arising from Dω(G) are finite [40]. Moreover, the mapping class group

representations for any oriented, compact surface with boundary are also finite [52].
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However, a universal gate set based on the D anyons in D(S3) that uses projective

measurement and ancillary states was found in [26]. It has also been suggested to use

gapped boundaries (see the next section 2.5) to enlarge the D(S3) gate set [23]. Their

gate set also relies on measurement.

2.5 Topological quantum computing beyond anyons

The original concept of topological quantum computing by Kitaev [64] and later

Preskill as well as Freedman, Larsen, and Wang [43] involved anyons in (2+1)D topo-

logical phases. However, the requirements for a topological quantum computer, namely

a quantum system with degenerate ground states protecting from excited states by a

topological gap, can in principle be met in other ways. The idea of TQC has grown

to encompass the idea of using excitations in higher-dimensional topological phases, i.e.

materials whose physics governed by higher-dimensional TQFTs, as well as with other

phenomena like domain walls or defects.

The algebraic setting for studying higher dimensional TPMs is higher category the-

ory, whereby the statistics of excitations would be given by unitary representations of

motion groups [49, 50], which generalize the idea of braid and mapping class groups to

higher dimensions [82]. Roughly speaking domain walls (codimension one defects) be-

tween phases and defects of all codimension can be understood through higher bimodule

categories, functors between them, and their equivalences, and so on [3, 6, 7].

TQC with excitations in (3+1)D

The generalization of anyon exchange-based quantum computing is to consider the

fusions and motions of excitations in higher-dimensional TPM.

For example, in (3+1)D topological phases excitations are no longer restricted to
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being point-like, and they can be loop-like and knotted.

However, the right generalizations of MTCs for (3+1)D TQFTs, are not quite yet well

established. While there is a body of work investigating the low-dimensional representa-

tion theory of simple motion groups of knots and links in three-manifolds, like the loop

braid group or necklace braid group [18, 19, 60], there is not yet a framework in place for

a systematic understanding of excitation statistics in higher dimensions. Nevertheless,

physicists have other methods to investigate topological order and related phenomena

in (3+1)D. One topic of great interest is the possibility of (3+1)D topological phases to

host a stable quantum memory using fractons [54].

2.5.1 TQC with domain walls and defects in (2+1)D

Domain walls between topological phases and their interaction with excitations gives

rise to interesting physics that can potentially be utilized for quantum information pro-

cessing.

In (2+1)D, where MTC theory for topological order is well established, domain walls

within or between topological order are described by module categories over MTCs.

Since every finite module category over a braided tensor category C is equivalent to a

category of modules over an algebra object (see Definition 3.4) A internal to C [38], the
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notion of a domain walls can be equivalently formulated using algebra objects, see for

example [62].

C D
M

M

Figure 2.5: Schematic illustration of a domain wall between two different topological
orders C and D, modeled by a (C,D)-bimodule category.

Domain walls are a sense in which topological orders can be fused together, and

domain walls too can be fused.

Special types of domain walls have algebraic theories with lots of structure.

Gapped boundaries/holes

One example that has received a lot of attention by condensed matter physicists as

well as a mathematical treatment is that of gapped boundaries or gapped holes, which are

domain walls between doubled topological orders C � C and the vacuum Vec. They are

classified by Lagrangian algebras in C� C [62], and viewed as nonabelian objects in their

own right have been used in schemes to generate universal quantum computation when

projective measurement is available.

Another type of nonabelian object that arises from domain walls are point-like sym-

metry defects, also called twist defects in the early physics literature on the subject. Here

we give a brief overview of symmetry defects, which are the subject of the remaining

chapters and are discussed in detail in Chapter 4 and Chapter 5.
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Symmetry defects

A trivial example of a domain wall is a line-like boundary between a topological phase

and itself which is “transparent” in the sense that it is invisible to anyons.

Mathematically, a UMTC C is an invertible (C, C)-bimodule over itself, see Chapter

4. When a topological order has a symmetry, meaning that C has a categorical action

by a group G, it can host transparent domain walls which terminate in point-like objects

that are said to carry g and g−1 flux.

C C

×

×

While anyons can pass through these defect lines, they no longer do so in a trivial way

- the exchange of an anyon with a symmetry defect can permute its topological charge

type by the action of G on C.

In the presence of quantum (categorical group) symmetry, these domain walls form a

family of invertible (C, C)-bimodule categories Cg extending C, which then characterizes

its symmetry-enriched topological (SET) order. For so-called anomaly-free symmetries,

these invertible bimodule categories form a fusion category, in which case the algebraic

theory of symmetry defects is given by a G-crossed braided fusion category extending C.

This extension theory of MTCs was developed by mathematicians [39] and later used to

characterize SET order in [3].

The anomaly vanishing means that these SET orders are purely (2+1)D - when the

anomaly does not vanish the Cg do not form a fusion category and instead they charac-

terize SET order which can only occur at the boundary of a (3+1)D TPM.
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In Part II we formulate the mathematical theory of quantum computing with sym-

metry defects in terms of unitary representations coming from G-crossed braided fusion

categories, giving examples and applications. We will see that symmetry defects and

their algebraic theory are at the heart of a connection between symmetry, topological

order, and quantum information.
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Part II

G-crossed braided fusion categories,

SET phases, and TQC
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Chapter 3

Symmetry, gauging, and

condensation in topological order

3.1 Symmetries of MTCs

There are many different notions of symmetry for MTCs, each of which plays an

important role in the theory of symmetry gauging, a procedure that takes an MTC C and

a categorical group G symmetry and produces a new MTC CG.

Understanding how these notions of symmetries are related and the role they play

in modeling symmetry defects and certain topological phase transitions in (2+1)D TPM

requires a solid understanding of autoequivalences of braided tensor categories, which is

our starting point.
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Symmetry in (2+1)D TPM Symmetry in MTC theory
Topological symmetry Braided tensor autoequivalence

T ∈ Autbr⊗ (C)
Gauge symmetry Braided tensor autoequivalence

which is trivial on L = Irr(C)
Global G symmetry Monoidal functor

ρ : G −→ Autbr⊗ (C)
Local G symmetry Rep(G) ⊂ C

as symmetric fusion subcategory
Generalized symmetry Hypergroup symmetry [9]

Hopf monad symmetry [27]
(?)

Table 3.1: Notions of symmetry in topological phases and their categorical mean-
ing. Here we assume G is a finite group. There are several notions of generalized
symmetries of topological order beyond groups but not yet a complete theory.

3.1.1 Braided tensor autoequivalences and topological symme-

try

A braided tensor autoequivalence gives the right notion of a structure preserving

map of an MTC: it is an equivalence of categories that respects the braiding and ten-

sor structure. When we discussed invariants of MTCs in Section 1.3 like the modular

data, we were studying quantities that are invariant under the action of braided tensor

autoequivalences.

Definition 3.1 (Braided tensor autoequivalence). Let C be a braided tensor category. A

functor F : C → C is a braided tensor autoequivalence if

• F is a monoidal functor

i.e. there exists a family of natural isomorphisms

UX,Y : F (X ⊗ Y ) → F (X)⊗ F (Y )
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such that F (1) ∼= 1 and the following diagram commutes for all X,Y, Z ∈ Obj(CC).

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z))

F (X ⊗ Y )⊗ F (Z) F (X)⊗ F (Y ⊗ Z)

(F (X)⊗ F (Y ))⊗ F (Z) F (Z)⊗ (F (Y )⊗ F (Z))

F (αX,Y,Z)

UX⊗Y,Z UX,Y⊗Z

UX,Y ⊗idF (Z) idF (X) ⊗UY,Z

αF (X),F (Y ),F (Z)

• F is braided

i.e.
F (X ⊗ Y ) F (Y ⊗X)

F (X)⊗ F (Y ) F (Y )⊗ F (X)

F (cX,Y )

UX,Y UY,X

cF (X),F (Y )

for all X,Y ∈ Obj(C).

• F is an equivalence of categories i.e. there exists a functor G : C → C such that

G ◦ F and F ◦G are naturally isomorphic to the identity functor idC by a natural

transformation η where η1 is an isomorphism and

(G ◦ F )(X)⊗ (G ◦ F )(Y ) (G ◦ F )(X ⊗ Y )

id(X ⊗ Y ) id(X)⊗ id(Y )

ηX⊗ηY

UG◦F
X,Y

ηX⊗Y

U id
X,Y

and similarly for F ◦G.

The isomorphism classes of braided tensor autoequivalences form a group under com-

position, denoted by Autbr⊗ (C). The braided tensor autoequivalences themselves can
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also be organized into a category Autbr⊗ (C), with objects now honest braided tensor au-

toequivalences and morphisms natural isomorphisms between tensor autoequivalences.

Composition of autoequivalences gives Autbr⊗ (C) the structure of a monoidal category,

which is sometimes called the category of topological symmetries of C.

For our purposes it will be helpful to think about braided tensor autoequivalences

in terms of how they transform the algebraic data of an MTC interpreted as an anyon

model.

Remark 3.1. Let F be a braided tensor autoequivalence of C.

• The vacuum is preserved: F (1) ∼= 1.

• Quantum dimensions of anyons are preserved: dF (a) = da.

• F restricts to a permutation on the set of anyon types Irr(C).

• F induces conjugates the modular data by a permutation matrix.

• R- and F -symbols are not necessarily preserved i.e. Rab
c ̸= R

F (a)F (b)
F (c) in general.

For a full understanding of symmetry in topological order, braided tensor autoequiva-

lence may be too strict a notion, and one wants to relax the requirement that a symmetry

be a monoidal functor [27]. We comment briefly about more general symmetries towards

the end of the chapter.

3.1.2 Skeletal autoequivalences and gauge symmetry

Skeletalizing the definition of a braided tensor autoequivalence of an UMTC results in

U -symbols and η-symbols, which are the matrix entries of the tensorators and compositors

of F . Essentially they are a collection of unitary matrices that keep track of how objects
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and morphisms are transformed by the action of F . We will encounter U -symbols and

η-symbols in the next chapter when we discuss the algebraic theory of SET order.

Gauge versus topological symmetry of anyon models

For those autoequivalences that act trivially on isomorphism classes of objects, their

skeletonization is given by a collection of unitary matrices that keep track of how the

trivalent fusion spaces Hom(c, a ⊗ b) transform. This kind of symmetry is called gauge

symmetry in the physics literature to distinguish from the weaker topological symmetry,

which also allows for label permutations. Two different anyon models are said to be gauge

equivalent if they can be related by a gauge symmetry, and any quantity which is left

invariant by gauge transformations is called gauge invariant.

Trivalent morphisms transform as

˜|a, b; c, µ⟩ =
∑
µ′

[Γabc ]µµ′ ]|a, b; c, µ′⟩ (3.1)

How trivalent vertices transform under gauge symmetry determines how any ribbon

fusion graph transforms.

In particular, the F - and R-symbols are transformed by

[F̃ abc
d ](e,α,β);(f,µ,ν) =

∑
α′,β′,µ′ν′

[Γabe ]αα′ [Γecd ]β,β′ [F abc
d ](e′,α′,β′);(f ′,µ′,ν′)[(Γ

bc
f )

−1]µ′µ[(Γ
af
d )−1]ν′ν

(3.2)

[R̃ab
c ]µν =

∑
µ′,ν′

[Γbac ]µµ′ [R
ab
c ]µ′ν′ [(Γ

ab
c )

−1]ν′ν (3.3)

In other words, with respect to a fixed basis of anyons, two sets of algebraic data
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{Nab
c , [R

ab
c ], [F

abc
d ]} {Nab

c , [R̃
ab
c ], [F̃

abc
d ]} describe the same anyon model if they are related

by a gauge equivalence.

This ambiguity in the algebraic data for a UMTC, or gauge freedom is one reason why

finding concrete solutions to the pentagons and hexagons is computationally challeng-

ing. In practice the notion of a gauge transformation allows one to determine when two

different numerical descriptions of UMTCs (and also more general fusion categories like

UGxBFCs) are the same, but applying it successfully can take some work, see our dis-

cussion about skeletonizations of bilayer Fibonacci UMTC and its unitary S2-extension

in Example 5.3 and Chapter 6.

Skeletonizations are an invaluable tool for working with topological order, and finding

solutions to the consistency equations that define UMTCs and UGxBFCs by computer

contribute much to our understanding.

However, solutions produced in this way will lack structure in the sense that they do

not readily provide a way to reconstruct the families of natural isomorphisms that they

encode. And while solutions do allow for concrete physical predictions and applications,

the full algebraic theory of the topological order/symmetry-enriched topological order

provides a deeper understanding of the physical theory. For this reason we take an

abstract but constructive approach to symmetry-enriched topological order, which we

discuss in Chapter 6.

3.1.3 Categorical group symmetry and global symmetry in TPM

Now let G be a finite group, and notice that a group homomorphism

ρ : G −→ Autbr⊗ (C)
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is not enough to provide an action of G on C by braided tensor autoequivalences, since

the elements of Autbr⊗ (C) are isomorphism classes of such autoequivalences.

In order to have a meaningful notion of group symmetry, we need to access the addi-

tional category level available with Autbr⊗ (C) and “categorify” the group homomorphism

to produce an action of G by braided tensor autoequivalences.

To do this, one has to promote G to a categorical group G in the trivial way, namely

objects of G are identified with elements of G, and morphisms are given by Hom(g, g) =

idG and Hom(g, h) = ∅ if g ̸= h. The group multiplication gives the category G a

monoidal structure.

With a categorical group in hand one looks to promote the homomorphism ρ to a

monoidal functor

ρ : G→ Autbr⊗ (C).

Given G and C the obstruction to lifting ρ to a monoidal functor ρ is given by a

cohomology class in H3
ρ(G,A). Provided this obstruction vanishes, the monoidal functor

ρ is called a categorical group symmetry. The data of a monoidal functor ρ is equivalent

to a G-action on C, see [38]. We say G acts on C by categorical symmetries and think of

ρ as a representation of the group G on the category C.

3.2 From global symmetries to defects

How does symmetry-enriched topological order emerge from symmetry? How do de-

fects manifest?

Mathematicans and physicists alike will be familiar with the fact that representations

of groups on a vector space V and G-modules are equivalent notions: unpacking the
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definition of a homomorphism G→ GL(V ) defines an action G×V → V , and vice versa.

Defectification [3] is simply a categorification of this equivalence.1

Promoting the groupG to the categorical groupG, and the vector space V to a UMTC

C, on the one hand we have that the group representation categorifies to a categorical

group representation. On the other hand, the notion of a G-module categorifies to a

group of module categories over C.

Mathematically, the categorification of the correspondence yields a monoidal functor

from G to Pic(C) that factors through the equivalence of the categories Autbr⊗ (C) and

Pic(C) [39]: the category of braided tensor autoequivalences of an MTC C is equivalent

to another category associated to C, called the Picard 1-category.

Autbr⊗ (C) ∼= Pic(C).

The category Pic(C) has objects given by invertible (C, C)-bimodule categories and

morphisms are isomorphism classes of (C, C)-bimodule category equivalences, with tensor

product given by the relative tensor product of bimodule categories.

Definition 3.2 ((C,D)-bimodule category). Let C and D be monoidal categories. A

ategory M is a (C,D) bimodule category if there are families of natural isomorphisms

lX,Y,M : (X ⊗ Y ) ◃M → X ◃ (Y ◃M)

rM,W,Z : (M ▹ W ) ▹ Z →M ▹ (W ⊗ Z)

mX,M,Z : (X ◃M) ▹ Z → X ◃ (M ▹ Z)

1In fact we have already seen a form of categorification of this correspondence in the analogy between
UMTCs and “quantum” finite groups. In analogy with Rep(G), the simple objects (c.f. irreducible
representations of G) of a UMTC are quasiparticles.
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such that the following diagrams commute for all X,Y ∈ Obj(C), W,Z ∈ Obj(D), and

M ∈ Obj(M).

(i) Left module pentagon

((X ⊗ Y )⊗ Z)) ◃M

(X ⊗ (Y ⊗ Z)) ◃M (X ⊗ Y ) ◃ (Z ◃M)

X ◃ ((Y ⊗ Z) ◃M) X ◃ (Y ◃ (Z ◃M))

αC
X,Y,Z◃idM lX⊗Y,Z,M

lX,Y⊗Z,M lX,Y,Z◃M

idX ⊗lY,Z,M

(ii) Right module pentagon

((M ▹ X) ▹ Y )) ▹ Z

(M ▹ (X ⊗ Y )) ▹ Z (M ▹ X) ▹ (Y ⊗ Z)

M ▹ ((X ⊗ Y )⊗ Z) M ▹ (X ⊗ (Y ⊗ Z))

rM,X,Y ⊗idZ rM⊗X,Y,Z

rM,X⊗Y,Z rM,X,Y⊗Z

idM▹αD
X,Y,Z

(iii) Middle module pentagons

((X ◃M) ▹ Y )) ▹ Z

(X ◃ (M ▹ Y )) ▹ Z (X ◃M) ▹ (Y ⊗ Z)

X ◃ ((M ▹ Y ) ▹ Z) X ◃ (M ▹ (Y ⊗ Z))

mX,M,Y ▹idZ rX◃M,Y,Z

mX,M▹Y,Z rX◃M,Y,Z

idX◃rM,Y,Z
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and

((X ⊗ Y ) ◃M)) ▹ Z

(X ◃ (Y ◃M)) ▹ Z (X ⊗ Y ) ◃ (M ▹ Z)

X ◃ ((Y ◃M) ▹ Z) X ◃ (Y ◃ (M ▹ Z))

.

lX,Y,M◃idZ mX⊗Y,M,Z

mX,Y◃M,Z lX,Y,M▹Z

idX◃mY,M,Z

.

In the remaining chapters we will only be interested in (C, C)-bimodule categories, and

hereafter abbreviate notation and refer them as C-bimodule categories unless indicated

otherwise.

Let C be a braided fusion category. Given two C-module categories M and N there is

the notion of the relative tensor product category M�C N , which is again a C-bimodule

category. A precise definition is given in terms of a universal property, for which we refer

the reader to [30].

When the H4(G,U(1)) obstruction vanishes, fusion between the g-sectors can be

consistently defined and the bimodule categories Cg together with the original MTC form

a new fusion category, called a G-crossed braided extension of C [39].

Definition 3.3 (Gaugable categorical symmetry). A categorical action by a group G is

called anomaly-free, or gaugable, if it has vanishing H4(G;U(1)) obstruction.

These extensions characterize so called anomaly-free symmetry-enriched topological

(SET) phases, anomaly-free meaning they can be realized in a purely (2+1)D system

[24]. In the special case that the underlying topological order that one starts out with

is trivial, i.e. C = Vec, extensions characterize symmetry-protected topological (SPT)
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phases. In reality, not every gaugable group symmetry of a topological order will be

physically realizable, but it is still interesting to study from the mathematical point of

view.

Gauging anomaly and (2+1)D SET phases at the boundary of higher phases

When G acts on C categorically but the H4(G,U(1)) obstruction does not vanish,

there is a physical bulk-boundary correspondence between (3+1)D SPT phases and

(2+1)D SET phases, which suggests that the “weak” fusion categories formed by the in-

vertible C-bimodule categories with nonvanishing H4 obstruction α characterizes (2+1)D

SET order which can be realized at the boundary of certain (3+1)D SPT phases [24].

(C, ρ, α)

This correspondence poses many interesting mathematical questions, but our focus here

is on non-anomalous (2+1)D SET phases.

3.2.1 Examples of categorical symmetries

We restrict our attention so on-site symmetries, see [3], which in terms of Hamil-

tonian models roughly means that locality of operators is preserved by the symmetry

transformation. Off-site symmetries like translational symmetries of topological phases

with lattice models [24] are also studied in physics.

Next we introduce some examples of gaugable symmetries of fusion rings whose
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symmetry-enriched topological order and applications to TQC are described later in

Chapter 4.

Charge-conjugation duality in D(Z3)

The UMTC D(Z3) has three anyon types, labeled by 1, ω, and ω∗, with fusion rules

given by the group multiplication in Z3. The category has a categorical Z2 symmetry

given by interchanging ω and ω∗, with vanishing H4 obstruction [3].

ω ω∗

Charge conjugation is not always a gaugable symmetry, however.

Electromagnetic duality in D(Z2)

e m f

There is a categorical Z2-symmetry exchanging e and m with vanishing H4 obstruc-

tion [3].

Layer exchange symmetry in C�n

A simple type of SET order that does not involve symmetries specific to an MTC is

the action of the symmetric group Sn on the factors in the Deligne product of UMTCs

C�n, see Chapter 5. When n = 2, this models the layer-exchange symmetry given by two

decoupled layers of topological order.

C

C

S2
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More generally, this permutation symmetry is a unitary, on-site symmetry modeling

layer-exchange symmetry of multi-layered topological order. This family of examples

and the n = 2 case is the subject of Part III.

3.3 Gauging topological order: local symmetry from

global symmetry

For each topological order C with an anomaly-free categorical group symmetry G,

there is a corresponding topological order D which contains Rep(G) as a symmetric fusion

subcategory. The topological order D is refered to as the gauging or the gauged theory.

The two-step procedure to produce the gauged category D from the category C models

a sort of topological phase transition whereby a global symmetry ρ : G → Autbr⊗ (C) gets

turned into a local symmetry Rep(G).
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Gy C

C×
G =

⊕
g∈G Cg

G- gauging

G-crossed extension

restriction to CidG

de-equivariantization

G-equivariantization

C×,G
G

Figure 3.1: Two-step gauging of UMTCs corresponds to G-gauging of a global sym-
metry a topological phases of matter. First the UMTC is extended by a family of
invertible bimodule categories Cg, which has the structure of a unitary G-crossed
braided fusion category (UxGBFC) C×

G , see Chapter 4 for a definition. In particular,
there is a G-action on C×

G that can be equivariantized, resulting in the gauged UMTC
C×, G
G .

The inverse procedure, or de-gauging, proceeds by G de-equivariantization followed

by restriction to the trivially graded component.

Theorem. [38, 63, 79] G equivariantization and G de-equivariantization are inverse

processes that establish a bijection between equivalence classes of G-crossed braided fusion

categories and equivalence classes of braided fusion categories containing Rep(G) as a

symmetric fusion subcategory.
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3.4 Anyon condensation and generalized symmetry

breaking

In the last section we saw that gauging and de-gauging of MTCs provides two different

ways of producing a GxBFC. Interpreted physically, SET order can be thought of as either

coming from gauge coupling a global symmetry of a topological order or as coming from

a broken local symmetry of a topological order.

Part III concerns the first case, namely using extension theory of UMTCs to construct

the algebraic theory of SET order, which we define shortly in Section 4.1.

To conclude our discussion of symmetry in this chapter, we consider the second case,

where the SET order can be realized without the definition of a UGxBFC as a category

of modules over certain algebra objects internal to a UMTC.

Definition 3.4 (Algebra objects). An algebra object A in a tensor category C consists of

the data (A,m, u), where A ∈ Obj(C), m : A⊗ A −→ A and u : 1 −→ A are morphisms

in C satisfying the following commutative diagrams.

(A⊗ A)⊗ A A⊗ (A⊗ A)

A⊗ A A⊗ A

A

αA,A,A

m⊗idA idA⊗m

m m

.
1⊗ A A

A⊗ A A

lA

u⊗idA idA

m
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A⊗ 1 A

A⊗ A A

rA

idA⊗u idA

m

Definition 3.5 (Modules over algebra objects). A left module over an algebra object

(A,m, u) in a tensor category C is a pair (M,λ) consisting of an object M ∈ Obj(C) and

a morphism λ : A⊗M →M such that the diagrams

(A⊗ A)⊗M A⊗ (A⊗M)

A⊗M A⊗M

M

αA,A,M

m⊗idM λ

λ λ

and

1⊗M M

A⊗M M

lM

u⊗idM idM

λ

.

A right module over an algebra object and bimodules are defined in the obvious way.

The algebras most interesting from the gauging perspective have some additional

properties.

Definition 3.6. An algebra object A in a (C-linear) tensor category C is connected if

Hom(1, A) ∼= C and separable if the multiplication morphism m : A⊗ A → A splits as a

A-bimodule morphism.

When C is braided there is a notion of commutativity of algebra objects.

Definition 3.7. An algebra object (A,m, u) in a braided tensor category C is commutative

if the diagram
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A⊗ A A⊗ A

A

cA,A

m m

commutes.

Left (or right) modules over an algebra object A form a category ModC(A) with

objects given by modules and morphisms by A-module homomorpisms between their

underlying objects. The category of modules over A is then a right (respectively left)

module category over C. The following theorem says that this correspondence also goes

in the other direction.

Theorem 3.1 ([38]). Every finite module category over a finite tensor category C is of

the form ModC(A) for some algebra object A.

Motivated by the fact that ModC(A) is indecomposable when A is connected, inher-

its the structure of a C-bimodule category when A is commutative, and is semisimple

whenever A is separable, whereupon ModC(A) has the proper structure to characterize

domain walls between C and itself, we have the following definition [27].

Definition 3.8. An algebra object in a braided tensor category C is called condensible if

it is connected as well as commutative and separable (aka étale).

Definition 3.9. The condensation of a UMTC with respect to a condensible algebra

object A is the category of modules over A, ModC(A).

Then Theorem 3.1 interpreted physically says that every domain wall can be under-

stood as coming from some broken generalized symmetry.

Some use the phrase condensation to refer to the category of local modules over A, i.e.

to describe the UMTC that results after the second deconfinement step of de-gauging.
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However, the meaning of condensation used here is that we do not throw out our confined

objects.

The G-symmetry breaking by de-equivariantization of Rep(G) is a special case.

3.4.1 D(S3) defect fusion rules from boson condensation

Example 3.1 ( D(S3) with C ↔ F symmetry ).

D(S3)︸ ︷︷ ︸
{A,B,C,D,E,F,G,H}

D(S3)
X
Z2

= D(S3)
⊕

{X1, X2, X3, X4, X5, X6}

Rep(Z2) ⊂ TL4 � TL4

• “condense” the boson (0� 0̄)⊕ (4� 4̄) ∈ TL4 � TL4.

D(S3)
X
Z2

fusion rules from de-equivariantization

Proposition 3.1. The fusion rules for the symmetry defects in D(S3) with C − F ex-

change symmetry are given by
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⊗ X1 X2 X3 X4 X5 X6

X1 A⊕G B ⊕G D D ⊕ E E C ⊕ F ⊕H

X2 A⊕G E D ⊕ E D C ⊕ F ⊕H

X3 A⊕H C ⊕ F ⊕G B ⊕H D ⊕ E

X4 A⊕B ⊕ C C ⊕ F ⊕G 2D ⊕ 2E

⊕F ⊕G⊕ 2H

X5 A⊕H D ⊕ E

X6 A⊕B ⊕ C

⊕F ⊕ 2G⊕H

.

3.4.2 Example: non-boson condensation in D(S3)

The object A ⊕ C in the UMTC D(S3), see Example 4 in Chapter 1, admits the

structure of a condensible algebra object but does not correspond to a local symmetry

Rep(Z2) ⊂ D(S3), in contrast with the algebra object A⊕B.

Nevertheless one can pass to the category of modules over the algebra object A⊕C,

which realize a non-group extension of the UMTC D(Z2).

The following result was first known to N. Seiberg, and likely others, who could

deduce it in a rigorous way using DW theory [78]. We simply translated the problem

into the language of UMTCs and module categories and confirmed his calculation by a

computer-assisted calculation, see [27].

Proposition 3.2. The fusion rules in ModC(A) are given by the following table.
⊗ 1 e m f X Y
1 1 e m f X Y
e e 1 f m Y X
m m f 1 e Y X
f f m e 1 X Y
X X Y Y X 1⊕ f ⊕X e⊕m⊕ Y
Y Y X X Y e⊕m⊕ Y 1⊕ f ⊕X

where we have identified the objects which are A⊕C modules in D(S3) with simple objects

in D(Z2) by
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A⊕ C 1
E e
D m
B ⊕ C f
F ⊕G⊕H X
D ⊕ E Y

.

In particular the quantum dimensions are given by d1 = de = dm = df = 1, dX =

dY = 2. It is perhaps worth noting that should this example fit into a coherent theory

of generalized symmetry extension and gauging, it says that a DW TQFT with abelian

gauge group is related by generalized gauging to one with a non-abelian gauge group.
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Chapter 4

(2+1)D Symmetry-enriched

topological order and TQC

In Chapter 3 we saw that G-crossed braided fusion categories arise from categorical

group actions on MTCs as well as from de-equivariantizations of MTCs with Rep(G)

as a symmetric fusion subcategory. Interpreted physically for UMTCs, this reflects that
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SET order can emerge from topological order either in the presence of global symmetry

or by anyon condensation.

In the former case where a global symmetry is modeled by a monoidal functor

ρ : G → Autbr⊗ (C), there is an associated family Cg of invertible C-bimodules extending

Cid = C whose simple objects are interpreted as symmetry defects. For anomaly-free sym-

metries with a vanishing H4(G;U(1)) obstruction, these bimodule categories admit the

structure of a fusion category, specifically a G-crossed braided fusion category (GxBFC),

see Chapter 3.

Section 4.1 covers the basics of GxBFCs, their skeletonizations, and associated graph-

ical calculus and their intepretation as the algebraic theory of symmetry defects. We use

elementary facts about GxBFCs to prove some statements about SET order, for ex-

ample that enriching abelian topological order by a symmetry which permutes anyons

nontrivially necessarily produces nonabelian defects. We introduce the terminology of

g-confinement and g-deconfinement of anyons and g-defects, respectively, which we apply

in Part III to construct concrete models for permutation SET order.

In Section 4.1.1 we discuss braid group quantum representations that are sometimes

afforded by GxBFCs and their application to symmetry-enriched topological quantum

computing along with examples of UGxBFCs and their single qubit gates, with several

examples to illustrate in Section 4.2. As further motivation for the final chapters in

Section 4.3 we give a categorical argument that supports the claim bilayer symmetry

defects and projective measurement give a universal gate set based on Ising anyons [4, 35].

4.1 Algebraic theory of symmetry defects

The following definition is taken directly from [38], adapted to our notation and

terminology.
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Definition 4.1 (GxBFC). A G-crossed braided fusion category C×
G is a fusion category

equipped with

(i) a grading C×
G =

⊕
g∈G Cg

(ii) an action g 7→ Tg of G on C×
G with Tg(Ch) ⊂ C−1

ghg

(iii) a natural collection of isomorphisms

cX,Y : X ⊗ Y −→ Tg(Y )⊗X (4.1)

for all X ∈ Obj(Cg), g ∈ G, and Y ∈ Obj(C×
G).

satisfying the following coherences.

(a)
Tg(X ⊗ Y ) Tg(X)⊗ Tg(Y )

Tg(Th(Y )⊗X) Tghg−1(Tg(Y ))⊗ Tg(X)

Tg(Th(Y ))⊗ Tg(X) Tgh(Y )⊗ Tg(X)

Tg(cX,Y )

(Ug)X,Y

cTg(X),Tg(Y )

(Ug)Th(Y ),X (γghg−1,g)Y ⊗idTg(X)

(γg,h)Y ⊗idTg(X)

and compatibility between the G-crossed braiding and the fusion:
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(b) G-crossed “hexagon” #1:

(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z) (Tg(Y )⊗X)⊗ Z

Tg(Y ⊗ Z)⊗X Tg(Y )⊗ (X ⊗ Z)

(Tg(Y )⊗ Tg(Z))⊗X Tg(Y )⊗ (Tg(Z)⊗X)

αX,Y,Z cX,Y ⊗idZ

cX,Y⊗Z αTg(Y ),X,Z

(Ug)Y,Z⊗idX idTg(Y ) ⊗cX,Z

αTg(Y ),Tg(Z),X

(c) G-crossed “hexagon” #2:

X ⊗ (Y ⊗ Z)

(X ⊗ Y )⊗ Z X ⊗ (Th(Z)⊗ Y )

Tgh(Z)⊗ (X ⊗ Y ) (X ⊗ Th(Z))⊗ Y

TgTh(Z)⊗ (X ⊗ Y ) (TgTh(Z)⊗X)⊗ Y

idX ⊗cY,ZαX,Y,Z

α−1
X,Th(Z),Yc−1

X⊗Y,Z

cX,Th(Z)⊗idY(γg,h)Z⊗idX⊗Y

α−1
TgTh(Z),X,Y

The definition of a GxBFC does not require the G-grading to be faithful, so that some

sectors Cg may be empty. As mentioned in [3], we remark that non-faithful G-graded

fusion categories are faithfully graded by some normal subgroup H ▹ G. In particular,

the restriction of a non-faithful GxBFC to such a subgroup H, i.e. ignoring all structure

and coherences coming from g /∈ H, will simply be a faithful HxBFC. However, the

action by elements g /∈ H introduces additional bimodule functors between the h-sectors.

On the other hand, given a faithful HxBFC with a G-action, there may be an

H4(G;U(1)) obstruction that precludes the existence of a faithful GxBFC, in which
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case the additional bimodule equivalences afforded by the G-action are not simply those

for some larger GxBFC.

However to this point both the math and physics literature have focused on faithful

extension theory, and in this work too we are interested only in the faithful case. Hereafter

we will assume that all GxBFCs are faithful. Briefly, a unitary GxBFC is unitary as a

fusion category, with inverses of G-crossed braiding isomorphisms given by conjugation

(of morphisms, skeletally matrix components of isomorphisms will be unitary matrices).

4.1.1 Symmetry defects in SET phases and TQC

The algebraic theory of symmetry defects and characterization of SET order in terms

of unitary GxBFCs was given in [3]. The mathematical definition of a symmetry defect

in a (anomaly-free) (2+1)D SET phase is the following.

Definition 4.2. A symmetry defect with flux g is a simple object in the g-graded com-

ponent of a unitary G-crossed braided extension of a UMTC.

Proposals for physical realizations of specific symmetry defects include lattice dislo-

cations and coupling fqH edge states [3].

Projective representations from GxBFCs and TQC

While symmetry defects are not intrinsic quasiparticle excitations of a topological

phase, they can nevertheless be used for quantum information processing. However,

their exchange does not in general give braid group representations due to the fact that

the G-crossed braiding permutes the defect charge labels, sending simple objects in Ch

to simple objects in the conjugate sector Cghg−1 .

If the G-action extends to the Cg in a way that is trivial on the level of isomorphism

classes, i.e. so that braiding defects within a sector Cg does not change their charge
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labels, then the g-defects give rise to braid group representations in the same manner as

anyons.

When the isomorphism class of a simple object X ∈ Cg is fixed by the autoequivalence

Tg, the G-crossed braiding gives an isomorphism cX,X : X ⊗X −→ X ⊗X.

Tg−1(X) ∼= X

X

X

X

In this case there is a well-defined action of the braid group Bn on Hom(X⊗n, X⊗n),

but it is only projective in general due to the fact that that the G-action can still be

nontrivial on the level of morphisms. For g-defects fixed by the action of g we can consider

the projective braid group representations afforded by the associators and braidings in a

GxBFC as “g-defect statistics”. Projective unitary representations can still be interpreted

as quantum gates applications to quantum computing since states and operators are really

projectively unitary in quantum mechanics.

In analogy with MTCs and due to the shared formalism one can interpret the quantum

representation theory ofGxBFCs as symmetry-enriched topological quantum computation.

With a fixed skeletal UGxBFC in hand, see Section 4.1.2, calculating the projective braid

group representations is done in the same way as with UMTCs, which we demonstrate

in Section 4.3.

Properties of GxBFCs and SET order

When a G-extension of C exists, its rank can be quickly deduced from the data of the

group action on C.
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Lemma 4.1 (Rank of g-sectors [10]). The rank of the g-graded component of a GxBFC

is the number of isomorphism classes of simple objects fixed by the action of g,

Rank(Cg) = |{a ∈ Irr(C) | Tg(a) ∼= a}| (4.2)

Lemma 4.2 (Rank of G-extensions). The rank of a G-extension satisfies the formula

Rank
(
C×
G

)
= |G|| Irr(C)/G|.

where | Irr(C)/G| is the number of orbits of the anyon types under the action of G.

This is an immediate consequence of Lemma 4.1 Burnside’s Lemma applied to Irr(C)

under the action of G.

Lemma 4.3 (Dimension of g-sectors [3]). Let C be a UMTC and C×
G =

⊕
g∈G Cg a unitary

faithful G-crossed braided extension of C. Then

D2
g = D2

id (4.3)

i.e. the global quantum dimension of a g-sector Cg is equal to that of the trivial sector.

The examples in Section 4.2 and the remaining chapters will exhibit several features

of SET order which can be established algebraically.

1. Abelian phases have non-abelian symmetry defects whenever a symmetry per-

mutes topological charge labels.

2. Quantum systems of defects evolving under exchange have the potential to

realize the same quantum operations as a quantum systems of anyons under

exchange.
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3. Symmetry defects can simulate topological order on high-genus surfaces.

Statement 1 for example is elementary from the GxBFC theory.

Proposition 4.1 (Criterion for nonabelian SET order from abelian order). Let C be a

pointed UMTC with a categorical global symmetry ρ : G −→ Autbr⊗ (C) and vanishing

H4(G,U(1)) obstruction.

If the action of G is nontrivial on isomorphisms classes of objects, then there exists

a simple object X with dX > 1 in any G-crossed braided extension of C.

Proof. Since the obstruction vanishes there exists a UGxBFC C×
G =

⊕
g∈G Cg, with Cid =

C [3, 39]. Since the action of G is nontrivial on Irr(C), there exists some g ∈ G and a

simple object a ∈ Obj(C) with Tg(a) � a.

By Lemma 4.1 this implies Rank(Cg) < Rank(C), but by Lemma 4.3 we also have

D2
Cg = D2

C. Put m = Rank(Cg) and n = Rank(C). Then

∑
1≤i≤m

d2Xi =
∑

a∈Irr(C)

d2a =
∑

1≤i≤n

12 (4.4)

where the last step used that C is pointed. Since m < n and dXi ≥ 1 for all Xi ∈ Cg by

unitarity, there must exist at least one i with dXi > 1.

While defects can generate nonabelian topological order from abelian topological

order, and the example in the Section 4.3 demonstrates that defects and measurement

can be used to generate universal gate sets from non-universal topological order, we

caution against thinking of them as inherently providing more computational power.
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However, the availability of defects may permit more efficient protocols for realizing

certain gates than braiding or measurement alone, and they can simulate other topological

orders (see Section 4.2.1) potentially on space manifolds with nontrivial topology (see

the introduction to Part 3).

We conjecture that accessing topology or symmetry defects without measurement or

ancillae will not be universal if braiding fails to be.

Conjecture 1. If the simple objects of an MTC C have finite braid group representations

then

• the representations of the mapping class groups afforded by C are also finite image,

and

• when they exist, the projective braid and mapping class group representations asso-

ciated to simple objects of any G-crossed braided extension C×
G are finite image.

Nevertheless they are very interesting to us and as with modular tensor categories,

we will want to be able to freely pass between the categorical definition of a G-crossed

braided fusion category, the algebraic data defining a skeletonization, and a graphical

calculus.

4.1.2 Skeletal G-crossed braided extensions of MTCs

Recall that the skeletonization of an MTC C is given by N -matrices, R-matrices, and

F -matrices with respect to an ordered basis of anyon types L.

{Nab
c , [R

ab
c ]µν , [F

abc
d ](n,α,β);(m,µ,ν)}

satisfying certain equations.
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A skeletal G-crossed braided extension C×
G of C can be represented by a set of complex

numbers

{NX,Y
Z , [RXY

Z ]µν , [F
XY Z
W ](I,α,β);(J,µ,ν), [Ug(X,Y ;Z)], [ηX(g, h)]}

satisfying the pentagon equations and the matrix equations that express the axioms of a

G-crossed braided fusion category.

Here we use capital Roman letters to emphasize that the simple objects now include

defects X,Y, Z,W ∈ Irr(C)
∪
g Irr(Cg), and continue to use Greek letters for indexing

fusion multiplicity, with the exception of η. The R-symbols are now matrix entries of

G-crossed braiding isomorphisms, which recall are not actual braiding isomorphisms even

though we use the same notation. The new U - and η-symbols are the matrix entries of

the tensorators and compositors of the action respectively, and give a skeletalization of

the G-action on C×
G .

In our examples we fix a skeletonization {N,R, F} of C and work with skeletal ex-

tensions {N,R, F, U, η} of C×
G whose restriction to the trivial sector Cid = C recovers is

equal to {N,R, F}, in which case it is safe to think of {N,R, F, U, η} as an enlargement

of the skeletal UMTC data. Of course in general given a skeletonization of C and a

skeletonization of C×
G - as can happen in practice when obtaining G-crossed data from

de-equivariantization and trying to identify the underlying anyon model - the restriction

of the G-crossed skeletal data to X,Y, Z,W ∈ Irr(C) gives a skeletonization of C that is

equivalent by a gauge transformation but not necessarily equal to the original data for

C.

Notation for symmetry defects

We will use the notation Xg ∈ Irr(Cg) for symmetry defect types, which regrettably

departs from the notation xg ∈ Irr(Cg) established in [3], and write h ·Xg instead of hxg
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to indicate the action on defects.

4.1.3 The graphical calculus for G-crossed braided fusion cate-

gories

Before we can apply UGxBFCs for TQC in Sections 4.2 and 4.3 we need to introduce

the graphical calculus associated to their skeletonizations. The graphical calculus extends

that of MTCs to include defect labels, with important differences at trivalent vertices

and crossings.

As with anyons, the consistency equations that ensure the various categorical struc-

tures are compatible with one another are encoded in the topological properties of the

diagrams. Here we point out only the parts of the G-crossed graphical calculus that differ

from the usual one for MTCs.

Diagrams are still read from bottom to top and when unitary can be interpreted as

quantum mechanical processes between anyons and symmetry defects. For simplicity, in

what follows we use multiplicity-free notation and suppress the vertex labels.

Trivalent vertices encode admissible splitting/fusion processes between anyons and

defects, implicitly encoding the N -matrix entries NXgY h

Zgh
.

Zgh

Y hXg

The F -symbols have the same diagrammatic definition as for anyons, except now the

topological charges carry group element labels.
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Xg Y h Zk

Jgh

W ghk

=
∑
Ihk

[
FXgY hZk

W ghk

]
Ihk,Jgh

Xg Y h Zk

Ihk

W ghk

As we saw above, the algebraic data of a GxBFC differs in three main ways: the

R-symbols are extended to become the matrix entries of a G-braiding, and new symbols

U and η arise.

The G-crossed R-symbols are written in the same way as in a UMTC, although they

are no longer the matrix entries of a braiding isomorphism cX,Y : X ⊗ Y → Y ⊗X but a

G-crossed braiding, cX,Y : X ⊗ Y → g · Y ⊗X. As in Chapter 1 we follow the standard

conventions for skeletalizing the braiding.

h−1 ·Xg

Xg

Y h

Y h

=
∑

Zgk

√
dZ

dXdY
RXgY h

Zgh

Y h Xg

Zgh

Xg Y h

(4.5)

Crossings of defect lines are resolved in the same manner as for anyons, except now

the R-symbols are G-crossed.

Zgh

Y hXg

= RXgY h

Zgh

Zgh

Y hXg

The picture is similar for a left-handed crossing, but with a factor of R−1. The G-crossed

R-symbols satisfy G-crossed hexagon equations, see [3].

While in the graphical calculus for anyons strands can be freely moved over and under

vertices, U - and η- symbols are picked up when a strand labeled by a symmetry defect
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passes over or under a trivalent vertex, respectively. Sliding a defect over a splitting

vertex results in a U -symbol as follows.

Wk k · Y h

k−1 · Zgh

Y hXg

= Uk
(
Xg, Y h;Zgh

)
Wk

k−1 · Zgh

Zgh

Y hXg

W k

k · Zgh

Zgh

Y hXg

= Uk
(
k ·Xg, k · Y h; k · Zgh

)
W k

k · Zgh

Y hXg

k ·Xg

The picture is similar for fusion vertices, see [3]. Defect lines can be slid under splitting

vertices at the cost of an η-symbol as follows.

W k

(gh)−1 ·W k

Zgh

Y hXg

= ηWk (g, h)
W k

(gh)−1 ·W k

Zgh

Y hXg

W k

(gh)−1 ·W k

Zgh

Y hXg

= ηW (g, h)

W k

(gh)−1 ·W k

Zgh

Y hXg

As with the U -symbols there is a similar picture for sliding defect lines under fusion

vertices. Notice that the orientation of the g-defect with respect to the the trivalent

vertex results in different arguments to the U - and η-symbols.
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The G-crossed consistency equations enforcing compatibility of all of these structures

are quite complicated, and the full set of such equations is listed in [3], although there is

some redundancy. In particular, many of the diagrams involving compatibility of the U -

and η- symbols can be derived from the G-crossed pentagons and hexagons, and hence

the consistency equations do not encode additional information [13].

Abstract and skeletal UGxBFC theory gives an algebraic framework for studying

certain defects in a materials in topological phases and their interactions with anyonic

excitations. Next we investigate some examples of symmetry defects and their applica-

tions to TQC using GxBFC theory.

4.2 Examples of defects in SET order and applica-

tions to TQC

4.2.1 Non-abelian defects from abelian topological order

By Proposition 4.1, whenever anyon types are nontrivially permuted by a G-action

there are non-abelian defects.

D(Z2) toric code defect qubit

Recall the algebraic data for D(Z2) from Example 1.6 and the anomaly-free Z2-action

exchanging e and m from 3.2.1.

e m f
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There are two symmetry defects, and can we write

D(Z2)
×
Z2

= {1, e,m, f} ⊕ {X1, Xf}.

The F -, G-crossed R-, U -, and η-symbols of a Z2-extension by the electromagnetic

duality symmetry were found in [3] by making a gauge choice and solving the G-crossed

consistency equations. It was also observed that the fusion subcategories {1, f,X1} and

{1, f,Xf} have Ising fusion rules. This relationship extends further: a toric code defect

qubit is identical to an Ising qubit [35].

We consider the projective representation of the four-strand braid group B4 afforded

by braiding four symmetry defectsX1 with trivial total charge. The fusion spaceHom(1, X⊗4
1 )

is two-dimensional. With respect to the fusion basis

|a⟩ =

X1 X1X1 X1

1

a a

the symmetry defects encode a qubit V 4,X1

1 with basis states |1⟩ and |f⟩.

We find

ρ(σ1) = ρ(σ3) = e−πi/8

1 0

0 i


and

ρ(σ2) =
e−πi/8

2

1 + i i− 1

1− i 1 + i

 .

We remark that this generates the same image as the Ising qubit [81]. With the gauge

choice made here the generating gates are actually equal on the nose to the Ising qubit
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gates. The Ising qubit is a Jones representation of B4, whose projective image is finite

and given by Z2
2 o S3 [56].

D(Z3) charge conjugation defect qubit

The UMTC Z3 has three anyon types, labeled by 1, ω, and ω∗, with fusion rules

given by the group multiplication in Z3. The category has a Z2 symmetry given by

interchanging ω and ω∗, which lifts to a categorical Z2-action and hence admits a Z2-

crossed extension which we write

(Z3)
×
Z2

= {1, ω, ω∗} ⊕ {X1}.

As a fusion category, (Z3)
×
Z2

is a Tambara-Yamagami (TY) category, whose algebraic

data is known and relatively easy to describe [80]. Briefly, given a finite group A a TY

category has simple objects A ⊔ {m} and fusion rules

a⊗ b = ab, a⊗m = m, and m⊗m =
⊕
a∈A

a.

A choice of F -symbols for TY categories with this fusion are determined by a choice of

nondegenerate symmetric bicharacter χ : A×A→ C× and a choice of square root of |A|.

One can check that in order to correspond to a unitary Z2-crossed BFC the F -symbols

are determined by a choice of a primitive cube root of unity. For calculations in the next

section we choose χ to take the value ξ = e2πi/3 on the non-identity diagonal elements of

Z3 × Z3 and ξ̄ on the off-diagonal elements.
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For A = Z3 the fusion is given by

⊗ 1 ω ω∗ X1

1 1 ω ω∗ X1

ω ω ω∗ 1 X1

ω∗ ω∗ 1 ω X1

X1 X1 X1 X1 1⊕ ω ⊕ ω∗

Formulas for Z2-crossed R-symbols were found for general Zn anyons in [3].

We consider the projective representation of the four-strand braid group B4 afforded

by braiding four symmetry defects Xω with trivial total charge. The fusion space

V 1
4,Xω

= Hom(1, X⊗4
ω ) is three-dimensional, corresponding to the admissible labelings

of the following fusion tree.

|ab⟩ =

Xω XωXω Xω

1

a b

We work in the ordered basis given by {|11⟩, |ωω∗⟩, |ω∗ω⟩}. We find

ρ(σ1) = ρ(σ3) ∼


RXωXω

1 0 0

0 RXωXω
ω 0

0 0 RXωXω
ω∗
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and

ρ(σ2) ∼
1

3
√
3


1 1

2
(−1 + i

√
3) 1

2
(−1 + i

√
3)

1
2
(−1 + i

√
3) 1 1

2
(−1 + i

√
3)

1
2
(−1 + i

√
3) 1

2
(−1 + i

√
3) 1

 .

We remark that these matrices form a subset of the matrices generating the Jones

representation of B4 coming from anyon 1 and total charge 2 in the Z2-gauged theory

ZZ2
3 = TL4, the Temperley-Lieb-Jones algebroid at A = ie−πi/12. In particular the image

of the projective representation is finite [56].

Bilayer defect qudits

The genons of [4] in bilayer TPM can be identified with identified as certain defects

in Sn-extensions of UMTCs C�n in [3]. The authors of [4] argued that bilayer genons and

projective measurement in bilayer Ising theories could be used to generate a universal

gate set

G1 =

1 0

0 eπi/4

 G2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


G3 =

1√
2



1 0 0 −i

0 1 −i 0

0 −i 1 0

−i 0 0 1


. (4.6)

The gate G1 is the T -gate, which we recall from Section 2.4 is not in the image of the

Ising qubit representation.

TheirG2 is the CNOT gate up to a change of basis, which they give a defect/measurement

protocol for but can in fact be realized in the 6 Ising anyon 2-qubit encoding [47], and

they claim the G3 gate can also be realized by monolayer Ising anyons.

Given that G2 and G3 can be realized by anyon exchange, the T -gate is really the

fundamental contribution of the defects and measurement protocol.
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In [35] we formulated their protocol for the T -gate in the language of UxGFCs and

quantum representations and were able to confirm their calculation modulo some as-

sumptions about the algebraic data for (Ising� Ising)×S2
, namely

Conjecture 2 ([35]). There exists a set of solutions to the Z2-crossed consistency equa-

tions associated to Ising� Ising such that

RXX
aa = θa for a ∈ Ising

and

[FXXX
X ] = SIsing =

1

2


1

√
2 1

√
2 0 −

√
2

1 −
√
2 1

 .

In Chapter 6 we give an explicit construction of these pieces of data from first prin-

ciples, and in [33] we prove the conjecture. Results of this nature demonstrate how to

leverage category theory for theoretical condensed matter physics and provide further

proof-of-concept for quantum experiments involving defects in (2+1)D TPM.

4.3 Example: T -gate from bilayer Ising defects and

measurement

The authors of [4] gave a protocol involving genons and projective measurement in

bilayer Ising theories to realize a T -gate.
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Figure 4.1: Figures from [4] illustrating the braiding and measurement protocol for
realization a T -gate using defects in bilayer Ising topological order.

4.3.1 Defect qudit and T -protocol encoding

The protocol to enact the logical T -gate is given by the following sequence of steps.

1. Create two pairs of monolayer Ising anyons σ1 and two pairs of symmetry defects

X1 from the vacuum, using projective measurement if necessary to fix the total

charge of each pair of defects to be trivial.

2. Select one of the monolayer Ising anyons from a pair and braid it around the middle

two genons in the counterclockwise direction.

3. Fix the pair of Ising anyons from (3) to have trivial total charge with a projective

measurement.
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4. Perform a full exchange of the middle two defects.

5. Braid the anyon from (3) with the middle two defects in the clockwise direction.

Readout of the computation then proceeds by pair annihilation and projective measure-

ment.

Steps (2-5) determine a morphism in Hom
(
σ⊗4 ⊗X⊗4

1 , σ⊗4 ⊗X⊗4
1

)
. In the graphical

calculus the diagram for this morphism takes the form depicted in Figure 4.3.1.

In terms of the graphical calculus, the qubit is given by the C-span of the (normalized)

fusion tree basis |x⟩, which has the dual basis ⟨x|.

|x⟩ =

σ1σ1σ1σ1X1X1X1X1

x
σ1

11
X1

1
X1

11

⟨x| =

σ1σ1σ1σ1X1X1X1X1

x σ1
11
X1

1
X1

11

.

In terms of diagrams the matrix entries ⟨y|T |x⟩ are given by stacking and taking a trace.

Below we show the general diagram for the matrix entries alongside the shorthand nota-

tion that we use in what follows. In particular, we suppress the index on the symmetry

defect, writing X := X1, and since all anyons live in a single layer, we write a := a1 for a

a simple object in Ising. Moreover, since the total charge of the fusion trees are trivial,

we suppress the labeling of the tracial strand.

As was mentioned in Section 4.3.2, the off diagonal matrix elements vanish by a

Schur’s Lemma argument, so it remains to calculate ⟨1|T |1⟩ and ⟨ψ|T |ψ⟩.
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y σ1
11
X1

1
X1

11

x
σ1

11
X1

1
X1

11

σ σ σ σ X X X X

=

σ σ σ σ X X X X

σ x σ 1 X y X

σ 1 σ 1 X 1 X

Figure 4.2: On the left is the diagram representing the matrix entries of the protocol.
On the right is the shorthand notation we use in the following section.

4.3.2 Calculation of ⟨1 | T | 1⟩

We break down the calculation of the first matrix entry (up to normalization) into

five steps. Below is a formula that shows the contributions from each step, before sim-

plification.

⟨1|T |1⟩ = 1

dX

∑
c

√
dc(R

XX
c )2︸ ︷︷ ︸

Step 1

(Sσ1,c
S11,c

)2
︸ ︷︷ ︸

Step 3

∣∣[FXXX
X ]c,11

∣∣2 d2X
dc︸ ︷︷ ︸

Step 4

dσ1dX
√
dc︸ ︷︷ ︸

Step 5

The dashed rectangles in each equation indicate the region of the diagram where the

graphical calculus is being applied.

Step 1: Unbraid the symmetry defects using equation (1) twice.
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σ σ σ σ X X X X

σ 1 σ 1 X 1 X

σ 1 σ 1 X 1 X

=
∑

c

√
dc

dXdX

(
RXX
c

)2

σ σ σ σ X X X X

σ 1 σ 1 X 1 X

σ 1 σ 1 X 1 X

c (4.7)

Note that in this case there is a loop labeled by σ that we can replace with dσ right

away. However, we have left it unsimplified so that the same picture applies for the

calculation of ⟨ψ|T |ψ⟩.

Step 2: Slide the σ loops under the first defect charge line so that they encircle pairs

of defect charge lines using equations (3)-(6). The U - and η- symbols this introduces all

cancel, so that the anyons and defects can be moved past each other at no cost.

σ σ σ σ X X X X

σ 1 σ 1 X 1 X

σ 1 σ 1 X 1 X

c =

σ σ X X X X

σ 1 X 1 X

σ 1 X 1 X

σ

σ

c (4.8)

Step 3: Slide the loops over the trivalent vertices so that they encircle the fusion
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channel labeled by c, flip the tilt of the bottom loop using (6), then use the loop removal

relation (7) twice.

In general with loops encircling charge lines in the G-crossed graphical calculus we need

to pay careful attention to the relative positions of charge lines, see equations (306) and

(307) in [3]. However, in this case the subdiagram involves only anyons, so we can use

the graphical calculus of a UMTC and ignore them. Nevertheless, a careful account of

the factors using the full G-extended calculus gives the same result: any factors of U -

and η- cancel.

σ σ X X X X

σ 1 X 1 X

σ 1 X 1 X

c

σ

σ

=

σ σ X X X X

σ 1 X 1 X

σ 1 X 1 X

cσ

σ

(4.9)

=
(
Sσ1,c
S11,c

)2

σ σ X X X X

σ 1 X 1 X

σ 1 X 1 X

c (4.10)

Step 4: Perform a sequence of F -moves to change the basis states, then use the

bubble-popping relation (9).
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σ σ X X X X
σ 1 X 1 X

σ 1 X 1 X

c =
∑
d,d′

[
FXXX
X

]
d,11

[
FXXX
X

]∗
d′,11

σ σ X X

c

d

d′

σ 1 X X

σ 1 X X

(4.11)

=
∑
d,d′

[
FXXX
X

]
d,11

[
FXXX
X

]∗
d′,11

(√
dXdX
dc

)2

δdcδd′c

σ σ X X

c

σ 1 X X

σ 1 X X

(4.12)

Step 5: The diagram that remains contributes a scalar factor that can be calculated

using equations (4) and (5) repeatedly until the empty diagram is obtained.

σ σ X X

c

σ 1 X X

σ 1 X X

= dσ1dX
√
dc (4.13)
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Putting these steps together, we arrive at the formula

1

dX

∑
c

√
dc(R

XX
c )2

(Sσ1,c
S11,c

)2 ∣∣[FXXX
X ]c,11

∣∣2 d2X
dc
dσ1dX

√
dc (4.14)

= dσ1d
2
X

∑
c

(RXX
c )2

∣∣[FXXX
X ]2c,11

∣∣2 (Sσ1,c
S11,c

)2
(4.15)

4.3.3 Calculation of ⟨ψ|T |ψ⟩

The first step of resolving the defect braiding is identical to that of the previous

subsection for ⟨1|T |1⟩. However, when the fusion channel of the four monolayer Ising

anyons σ1 is given by ψ1, the loops are not free to slide under the defect line as in Step

2. Instead, we perform an F -move in the middle of the diagram.

σ σ σ σ X X X X

c

σ ψ σ 1 X 1 X

σ ψ σ 1 X 1 X

=
∑
d

[F σ1σ1σ1
σ1 ]d,11

d

σ σ σ σ X X X X

c

σ ψ σ 1 X 1 X

σ ψ σ 1 X 1 X

(4.16)

When d is the vacuum channel, d = 11, we can perform a sequence of sliding moves

to resolve all crossings by the same arguments as in the previous subsection.
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σ σ σ σ X X X X

c

σ ψ σ 1 X 1 X

σ ψ σ 1 X 1 X

=

σ σ X X X X

c

σ ψ X 1 X

σ ψ X 1 X

(4.17)

Now the righthand side can be resolved according as with steps 4 and 5 for ⟨1|T |1⟩, with

the minor difference that the fusion channel of the monolayer Ising anyons is given by

ψ1.

However, when d = ψ1 we must use a more involved sequence of moves to resolve the

diagram.
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ψ

σ σ σ σ X X X X

c

σ ψ σ 1 X 1 X

σ ψ σ 1 X 1 X

=
ψ

σ σ σ σ X X X X

c

σ ψ σ 1 X 1 X

σ ψ σ 1 X 1 X

(4.18)

=
ψ

σ σ σ σ X X X X

c

σ ψ σ 1 X 1 X

σ ψ σ 1 X 1 X

=
ψ

ψ

σ σ σ σ X X X X

c

σ ψ σ 1 X 1 X

σ ψ σ 1 X 1 X

(4.19)

=
(
Sψ1,c

S11,c

)
ψ

σ σ σ σ X X X X

c

σ ψ σ 1 X 1 X

σ ψ σ 1 X 1 X

(4.20)

Although we have draw some horizontal lines here, the edges are understood to have the
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orientation they inherit from reading the diagram from the bottom up.

What remains can be resolved using a combination of F -moves and bubble-popping

relations in a similar manner to the final steps of the calculation for ⟨1|T |1⟩. The contri-

butions from each step in the calculation result in the formula

1

dX

∑
c

√
dc(R

XX
c )2

∣∣[FXXX
X ]c,11

∣∣2(√dXdX
dc

)2 (
[F σ1σ1σ1
σ1 ]11,11

(
d2σ1
√
dcdX

)
(4.21)

+
(Sψ1,c
S11,c

)
[F σ1σ1σ1
σ1 ]ψ1,11[F

σ1σ1σ1
σ1 ]ψ1,ψ1

(√
dσ1dσ1
dψ1

)2 (
dσ1
√
dcdX

)
(4.22)

= dσ1d
2
X1

∑
c

(
RX1X1
c

)2 ∣∣∣[FX1X1X1
X1

]
c,11

∣∣∣2(1− (Sψ1,c
S11,c

))
(4.23)

These formulas result in the ratio ⟨ψ|T |ψ⟩
⟨1|T |1⟩ = eπi/4.

The sequence of moves made here is one of many possible ways to calculate the same

quantity, although it has the feature that it does not depend on the U - and η- symbols.
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Part III

Permutation extensions of MTCs,

bilayer symmetry defects, and TQC
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The remainder of this dissertation is interested in applying modular tensor category

theory to understand multi-layer topological order with Sn layer permutation symmetry,

in particular the algebraic theory when n = 2. This family of SET phases are character-

ized by Sn-extensions of n-fold Deligne products of MTCs C�n.

This fits into a larger program that seeks to understand the interplay between symme-

try, topological order, and quantum information. For example, one approach to proving

the Property F conjecture (see Chapter 2), which says that braiding anyons with weakly

integral quantum dimensions can never give rise to universal quantum computation, in-

volves proving that Property F is preserved by gauging [67]. In other words, there is

no such thing as a free lunch: it is expected that if a topological phase doesn’t generate

universal TQC by braiding, then a topological phase transition (G-gauging) won’t change

that.

While the extension theory of Etingof, Nikshych, and Ostrik gives a group-cohomological

classification of G-crossed braided extensions of MTCs, explicitly constructing the alge-

braic data of an extension in the form of families of natural isomorphisms satisfying

coherences or skeletal solutions to the coherences is still an interesting problem. Fur-

thermore it is necessary to understand the relationship of quantum information with

topological phase transitions, by studying how braid and mapping class group represen-

tations transform under gauging.

Computing the obstructions to gauging can be a hard problem. For example, a rather

simple example of G-extension and G-gauging is the case where Sn acts as a categor-

ical group on the Deligne product of MTCs C�n by permuting indices of objects and

morphisms. And while permutation gauging corresponds to the well-etablished notion

of permutation orbifolding of VOAs or conformal nets under the bulk-boundary corre-

spondence between (2+1)D TQFT and (1+1)D CFT, the obstructions to permutation

extensions were only recently shown to vanish [46].
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Sn y C�n

G- gauging

extension by Sn

(
C�n)×

Sn
=
⊕

σ∈Sn Cσ

de-equivariantization

Sn-equivariantization

(
C�n)×,Sn

Sn

Figure 4.3: Illustration of two-step permutation gauging of modular tensor categories C�n.

While simple, the categorical Sn-action and its extension theory exhibits a rich in-

terplay between algebra, topology, and quantum information even in the n = 2 case, see

Chapter 6. Our goal is to demonstrate how ideas from physics can be helpful for cate-

gorification as well as to apply category theory to predict physics in topological phases

of matter.

We describe aspects of the algebraic theory of permutation defects and apply it to

frame a correspondence between systems of bilayer anyons and defects and monolayer

anyons on surfaces with genus first considered in [4].

In Chapter 5 we describe a fusion ring to model defect fusion in permutation enriched

topological order which we conjecture generates the H2(Sn,A)-torsor’s worth of possible

fusion rings for the Sn-crossed braided extensions of C�n. We show that our combinatorial

model of permutation defect fusion reproduces known fusion rules in the the n = 2 case

[3, 4, 37] and use it to derive the fusion rules of the unique rank 24 S3-crossed extension

of trilayer Fibonacci topological order in Example 5.4.

Borrowing ideas from condensed matter physics, we define g-confinement and g-

deconfinement of anyons and g-defects in the language of UMTCs and their G-extensions.
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These are the main conceptual and computational tools in Chapter 6 where we discuss

how to construct algebraic data for unitary S2-crossed braided fusion categories extend-

ing bilayer UMTCs C�C in terms of C and the S2-action. We show that in our algebraic

theory of bilayer defects, the quantum gates generated by exchanging certain defects is

equivalent to the modular representation coming from its monolayer anyon.

Theorem. The unitary representation of B4 afforded by 4 bare defects X1 ∈ Irr(C(12))

is projectively equivalent to the representation of the mapping class group of the torus

SL(2,Z) generated by the S and T matrices of C. In particular it has finite image.

The proof follows from the construction of the S2-crossed category, the full details of

which will appear in [33].

Remark. During the preparation of this manuscript there was a significant amount

of work done on the subject of permutation extensions [37, 46, 70] and we learned of the

work of [5] that describes algebraic data for S2-extensions and discusses Sn-extensions

in the language of modular functors and TQFTs. Our account of the overlap of our

approach based on [3, 4] with previous work is in progress and we especially welcome

help from readers to help attribute previous work.

135



Chapter 5

Fusion rules for permutation defects

5.1 Introduction

The purpose of this chapter is to describe a model for permutation-enriched topolog-

ical order from first principles. Per the characterization of SET order by UGxBFCs, the

algebraic theory of symmetry defects in multilayer topological order enriched with layer-

exchange symmetry - or permutation defects - is given by Sn-crossed extensions (C�n)×Sn

of Deligne product UMTCs.

We give a combinatorial description of permutation defects by defining based Z+-rings

that form Sn-crossed ring extensions of the fusion ring for C�n.

The main idea is the following.

Permutation defect fusion is determined by transposition defect fusion in a way

that categorifies how the symmetric group Sn is generated by transpositions.

The details of the categorification of our permutation defect fusion ring to Sn-crossed

braided extensions of Deligne product MTCs C�n is discussed in upcoming work [32, 33].

For now it will be enough to work in the de-categorified setting.
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5.1.1 Preliminaries

Throughout C will denote a modular tensor category and r = rank(C) the number

of isomorphism classes of simple objects in C. We make no further assumptions about C

beyond that it satisfies the axioms of an MTC. Strictly speaking the physical interpreta-

tion we give is for unitary MTCs, but the constructions in Part III do not require unitary

and so we state our results for MTCs C. In this chapter A denotes the group of abelian

anyon types in C under fusion, see [35], and A×n the group of abelian anyon types in C�n.

As in Chapter 4, underlines of groups or homomorphisms indicate a suitable categorical

group or monoidal functor.

We use standard cycle notation for permutation groups, σ ∈ Sn. When n = 2 we will

write G = S2 instead of G = Z2, so that when we write (C � C)×S2
the action of Z2 by

layer-exchange is more clear.

Overview

First we review the categorical Sn-action that permutes the factors in Deligne product

MTCs C�n and the multi-layer SET phases that they model, building the dictionary in

Table 5.1.1 between the math and physics terminology for reference.

We briefly survey what is known about permutation extensions of MTCs and then

apply GxBFC theory to give a model for multi-layer permutation defects.

We define a family of modules Cg over the fusion ring of a Deligne product MTC C�

which form an Sn-graded fusion ring C×
G and give an algorithm to compute the fusion

product of two simple objects Xσ ∈ Obj(Cσ) and Xπ ∈ Obj(Cπ).
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(2+1)D TPM UMTC
multi-layer phase Deligne product of UMTCs C�n

multi-layer SET phase
(
C�n)×

Sn
=
⊕

σ∈Sn Cσ
anyon a⃗ := �iai, where ai ∈ Irr(C)
vacuum tensor unit 1 := 1�n

monolayer anyon 1� · · ·� 1� a� 1� · · · 1
g-sector invertible C-bimodule category Cg

transposition defect simple object X(ij)
�ifi ∈ C(ij)

m-cycle defect simple object X(i1i2···im)
�ifi ∈ C(i1i2···im)

permutation defect simple object Xσ
�ifi ∈ Cσ

bare defect Xσ
1�n

Table 5.1: Mathematical definitions of the physics terminology we will use when
discussing permutation-enriched topological order.

5.1.2 Categorical Sn-symmetry of C�n and multilayer topological

order

Let ρ be the monoidal functor that acts strictly on C�n by permutations

ρ : Sn −→ Autbr⊗ (C�n)

id 7→ id : C�n → C�n

σ 7→

Tσ : C�n → C�n

�iXi 7→ �iXσ(i)

�ifi 7→ �ifσ(i)

so that the tensorators Uσ : Tσ(X ⊗ Y ) → Tσ(X) ⊗ Tσ(Y ) and compositors ηX : (Tρ ◦

Tσ)(X) → Tσρ(X) are the identity isomorphisms for all σ, ρ ∈ Sn.

Theorem ([46]). The H4(Sn,C
×) obstruction to Sn-extensions of C�n vanish for the

categorical permutation group action ρ : Sn → Autbr⊗ (C�n) and the equivalence classes of
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Sn-extensions form a torsor over H3(G,C×).

The permutation symmetry then models a global unitary on-site symmetry of multi-

layer topological order given by n layers of topological order C [3].

C
C...
C

Sn
(
C�n)×

Sn
=
⊕

σ∈Sn Cσ

While we been interpreting the factors in the Deligne product as spatially sepa-

rated layers, the permutation symmetry is technically on-site because C�n can also be

interpreted a monolayer topological order. This is what allows us to study the spatial

symmetry using the techniques developed for on-site symmetries.

Prior to the development of GxBFCs as the algebraic theory of symmetry defects

physicists studied defects in (2+1)D TPM called genons because of the way they ef-

fectively couple layers of topological phases to create nontrivial topology [4]. Our main

result uses GxBFC theory to frame this correspondence algebraically in terms of (C�C)×S2

and investigate the relationship between quantum symmetry, topology, and quantum in-

formation, see Chapter 6.

The ability of genons to entangle the layers comes from the Sn-crossed braiding,

whereby exchange with defects transports (monolayer) anyons between layers.

�iai

�iaσ(i)

Xσ

Xσ
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5.1.3 Bilayer SET order and S2-extensions of C � C

The authors of [3] gave fusion rules for bilayer defects and argued that theH4(S2, U(1))

obstruction vanished and that the symmetry fractionalization H2(S2,A×A) was trivial.

Formulas for the dimensions of fusion spaces and descriptions of the structure mor-

phisms of S2-extensions had already appeared several years prior in [5] using the language

of modular functors and TQFT, and the formulas for the fusion coefficients when A = 1

recently appeared in [37] in the language of MTCs. We reproduce their formula below.

Proposition 5.1 ([37]). Let C be an MTC with A = 1 and D = (C � C)×Z2
= C � C ⊕ Ĉ

a permutation extension. Then

dim
(
HomD(X̂ ⊗ Ŷ , Z �W )

)
= dim (HomC(X ⊗ Y, Z ⊗W )) . (5.1)

where X̂, Ŷ ∈ Obj(Ĉ), X, Y, Z,W ∈ Obj(C � C).

While the algebraic theory for (C�C)×S2
has been described in the language of modular

functors, our approach gives an explicit construction of the fusion rings (1) in terms of

an MTC C [33] (2) that generalizes to fusion rules for (C�n)×Sn and (3) suggests the form

of their categorification.

We begin with the observation that each transposition sector in the full Sn-extension

is related to the transposition sector in an S2-extension in a predictable way, so that

each bimodule category C(ij) can be identified as a Deligne product of copies of C and the

bimodule category C(12).

Observation 5.1. Let (ij) be a transposition in Sn and let C(ij) be the corresponding

transposition sector in
(
C�n)×

Sn
≃
⊕

σ∈Sn Cσ. Then

(C�n)×(ij) ≃ C�n−i � (C � C)×(12) � C�n−j+1.
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as C�n-bimodule categories.

5.2 Combinatorial model of multilayer anyon and per-

mutation defects

Since the rank of each σ-sector is given by the number of fixed anyons under the

action of σ by Lemma 4.1, one can index the simple objects in Cσ by

Irr(Cσ) = {X�iai | �ai ∈ Irr(C�n) with �i aσ(i) ∼= �iai}. (5.2)

We introduce some terminology for symmetry defects for convenience.

Definition 5.1 (Topological charge of defects). Let Xg
f be a symmetry defect. Then the

topological charge of Xg
f is the topological charge (isomorphism class) of f .

Since the vacuum 1⃗ is always fixed, each sector has a distinguished object X1⃗ with

vacuum charge. Following [3], we make the following definition.

Definition 5.2 (Bare defects). A simple object in Cσ isomorphic to Xσ
1⃗

is called a bare

σ-defect.

Occasionally we use a⃗ := �iai or supress the Deligne product and write ai to simplify

notation. When we want to indicate which sector a defect belongs to we will use a

superscript with the group label, e.g. Xσ
a⃗ ∈ Irr(Cσ).

On the level of objects we define a direct sum

⊕
: Cσ × Cσ → Cσ

X�ai ⊕X�bi 7→ X�(ai⊕bi).

(5.3)
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As C-linear abelian categories, our model for permutation sectors is given by (Cσ,⊕).

Decategorifying, this describes (C�n)×Sn as a free Z-module on the set Irr(C�n)∪g Irr(Cg),

which we denote by C×
Sn
, using capital instead of calligraphic letters to distinguish the

fusion ring from the fusion category. Our goal is to endow C×
Sn

with the structure of a

fusion ring, more precise a unital based Z+ ring.1.

Definition 5.3 (Unital based Z+-ring [38].). Let A be a ring which is free as a Z-module.

A Z+-basis of a A is a set of elements B = {bi}i∈I such that bibj =
∑

k∈I c
k
ijbk, where

ckij ∈ Z+.

A unital based Z+ ring is a ring with a fixed Z+-basis B such that

1. 1 ∈ B

2. there exists an involution i 7→ i∗ of I such that the induced map a 7→ a∗ is an

anti-involution of A and whenever bibj =
∑
ckijbk, c1ij =


1 i = j∗

0 i ̸= j∗
.

5.2.1 Confinement, deconfinement, and anyon-defect fusion

We define a left and right action of C�n on Cg as follows. In [32] we show that

these actions categorify to make Cσ a C�n-bimodule category - the idea of the proof is

essentially contained in Chapter 6 where we give the proof in the case n = 2. But for

now we will be content to prove statements at the level of the fusion ring.

Definition 5.4 (σ-confinement). The (left) confinement map

◃: C�n × Cσ −→ Cσ

is defined on basis elements by
1Here Z+ denotes Z≥0 thought of as a semi-ring.
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�iai ◃ Xσ
�ibi = Xσ

�ici , where ci =


ai ⊗ bi σ(i) = i

(⊗j ̸=σ(j)aj)⊗ bi σ(i) ̸= i

. (5.4)

and extended linearly to all elements. We define the right confinement map ▹ by

Xσ
�ibi ▹ �iai = �iai ◃ Xσ

�ibi

, and call the images of basis elements under these maps σ-confinements.

The object �ci is fixed by the action of σ, since if σ(i) ̸= i

σ ·
(
⊗j ̸=σ(j)aj ⊗ bi

)
= ⊗j ̸=σ(j)aσ(j) ⊗ bσ(i)

= (⊗j ̸=σ(j)aj)⊗ bi

(5.5)

where we have used that bσ(i) = bi for all i. Thus the confinement map is well-defined.

One can also check that the definition of an action is satisfied due to associativity in C�n.

Confinement map on monolayer anyons and bare defects

The fusion between monolayer anyons 1�i−1 � a� 1�n−i and bare defects Xσ
1⃗
is given

by

1�i−1 � a� 1�n−i ◃ X1⃗ = X�bj bj =


1 σ(j) = j

a σ(j) ̸= j

. (5.6)
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For example, when n = 2,

1� a ◃ X1 = a� 1 ◃ X1 = Xa (5.7)

for all a ∈ Irr(C).

In words, fusing an anyon in the ith layer with the bare defect results is the defect

with the topological charge label that has a in every layer which is in the σ-orbit of

i. Notice that fusion between anyons and defects is always commutative due to the G-

crossed braiding isomorphisms ca,Xg : a⊗Xg → Xg ⊗ a, but symmetry defect fusion will

be noncommutative when G is a nonabelian group.

In this model every σ-defect can be realized by confinement of an anyon with the bare

defect:

Lemma 5.1. Every basis element in Cσ is the image of a pair of basis elements in C�n

and Cσ under the confinement map.

Proof. Let Xb⃗ ∈ Irr(Cσ). Then �bσ(i) = �bi. Define a⃗ = �ai to be the anyon with ai = bi

if σ(i) = i. Then take any k with σ(k) ̸= k and put ak = bk, then aj = 1 for all other

j ̸= σ(j) with j ̸= k. Then one can check that �a⃗ ◃ X1⃗ = b⃗.

Thus defects can be realized as confinements in multiple ways, depending on the

permutation σ as well as the fusion in C:

Quantum dimensions and Sn action on permutation defects

Lemma 5.1 immediately determines the quantum dimensions of the defects. We give

a formula for the dimensions when n = 2 is in Chapter 6.
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Confinement and deconfinement of anyons and defects

Anyons, being intrinsic quasiparticle excitations corresponding to the ground state

of a Hamiltonian which can be moved by local operators without additional energy, are

said to be deconfined.

On the other hand, point-like symmetry defects are not finite-energy excitations.

They are extrinsic in the sense that a Hamiltonian realization of a topological phase

enriched with symmetry needs additional terms added in order for it to have excitations

which correspond to the symmetry defects [3]. Moreover, the energy needed to spatially

separate defects grows differently than it does for anyons [3], and they are said to be

confined as opposed to deconfined.

We make the following definitions of g-confinement and g-deconfinement, borrowing

the ideas from condensed matter theory.2

Definition 5.5 (σ-Deconfinement). Let Xb⃗ ∈ Irr(Cσ), a⃗ ∈ Irr(C�n), and suppose they

satisfy

a⃗ ◃ X1⃗ = Xb⃗. (5.8)

Then we say that a⃗ is a (left) deconfinement of Xb, and define right deconfinements

in the analogous way using the right action.

When we want to strip the topological charge from a defect by splitting off an anyon

but without making a specific choice of deconfinement, we write

Xa⃗ = d(⃗a) ◃ X1⃗. (5.9)
2Perhaps a better word than borrowed is misappropriated, as our definitions do not align with the

usual technical meaning in anyon condensation. We make an effort to consistently use the group element
labels to remedy any confusion this causes.

145



Fusion rules for permutation defects Chapter 5

We will see that the notion of deconfinement is central to our construction, as it

allows us to intuit the way that the defect theory is built from the anyon theory.

Since all defects are related to a bare defect by fusion with a deconfinement, it suffices

to determine the fusion between bare defects, as the following lemma shows.

Lemma 5.2. The fusion product of two arbitrary defects Xσ
a⃗ and Xπ

b⃗
is determined by

the fusion between the bare defects Xσ
1⃗

and Xπ
1⃗
.

Proof. We have the following equalities between isomorphism classes of objects

[Xσ
a⃗ ⊗Xσ

b⃗
] = [

(
d(⃗a) ◃ Xσ

1⃗

)
⊗
(
Xπ

1⃗
▹ d(⃗b)

)
] (5.10)

= [(d(⃗a) ◃ (Xσ
1⃗
⊗Xπ

1⃗
)) ▹ d(⃗b)] (5.11)

where we used that anyon-defect fusion commutes.

Corollary 1. The fusion rules are independent of choices of deconfinement.

Thus we have reduced the problem to determining the fusion between bare defects in

non-trivial σ-sectors.

5.2.2 Permutation defect fusion ring

The fusion rules between permutation defects are built from the fusion rules of trans-

position defects X ∈ C(ij) in the same way that the symmetric group Sn is generated by

its transpositions.

Fusion of transposition defects

Let (ij) ∈ Sn be a transposition and consider the bare defect X(ij)

1⃗
. Following Obser-

vation 5.1 we make the following definition.
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Definition 5.6 (Product of bare transposition defects). Without loss of generality let

(ij) and (kl) be transpositions with i < j ≤ k < l. Then we define the fusion product of

bare defects by

X
(ij)

1⃗
⊗X

(kl)

1⃗
=


X

(ijl)

1⃗
k = j

X
(ij)(kl)

1⃗
k ̸= j⊕

c∈Irr(C) 1
�i−1 � c� 1�j−(i+1) � c∗ � 1�n−j (ij) = (kl)

(5.12)

That is, when two transpositions multiply to a 3-cycle, the bare transposition defects

fuse to the bare 3-cycle defect. When the transpositions are disjoint they fuse to the bare

defect in the disjoint-transposition sector.

Now that fusion between any two transposition defects is determined we are ready to

describe the fusion product between a transposition defect X(ij) and a general σ-defect

Xσ, which will in turn determine more general fusion products. First we define the

product of bare defects in disjoint sectors to be the bare defect in the appropriate sector,

and thus without loss of generality it suffices to define products between defects X(ij)

and Xσ for σ an m-cycle.

Definition 5.7 (Product of disjoint bare defects). Let Xσ
1⃗

and Xρ

1⃗
be bare defects. Then

Xσ
1⃗
⊗Xρ

1⃗
= Xσρ

1⃗
= Xρσ

1⃗
. (5.13)

Like with fusion of bare transposition defects, there are three cases depending on

{i, j} ∩ {k1, k2, . . .}.
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Fusion of transposition defects and cycle defects

Definition 5.8 (Fusion between bare transposition and m-cycle defects). Let (ij) be a

transposition and (k1k2 · · · km) an m-cycle in Sn. Then the fusion product is given by

X
(ij)
1 ⊗X

(k1k2···km)
1 =


X

(ij)(k1k2···km)
1 |{i, j} ∩ {k1, . . . , km}| ≤ 1(
⊕a1

�i−1 � a� 1j−i � a∗ � 1�n−j
)
⊗Xσ

1 i, j ∈ {k1, . . . , km}
(5.14)

where σ is a permutation with X(k1k2···km)

1⃗
= X

(ij)

1⃗
⊗Xσ

1⃗
and |σ| < m.

The fusion product with the defect order reversed X(k1k2···km)

1⃗
⊗X

(ij)

1⃗
is defined anal-

ogously. One can check that this is a well-defined associative binary operation.

Proposition 5.2. The fusion product of bare defects together with the confinement map

define a based Z+ ring.

We give a sketch of the proof. Let A be the free Z-module generated by the set{
Irr
(
C�n)∪

σ Irr (Cσ)
}
. Combining the multiplication coming from the fusion ring of

C�n, the confinement map in Definition 5.2, and the definition of bare defect fusion

products in Definitions 5.4 and 5.5 defines an associative binary operation A×A −→ A

that gives A the structure of a ring.

As a consequence of our definitions the products are all given by non-negative integer

linear combinations of basis elements {Irr
(
C�n)∪

σ Irr (Cσ)}, and the unit 1 ∈ Irr(C�n)

is simple. Therefore we have a unital Z+ ring.

Now since a ∼= a∗∗ for all simple objects in a UMTC by pivotality, and (g−1)−1 = g

for all g ∈ G, the following map defines an involution on basis elements,

a⃗ 7→ a⃗∗ a⃗ ∈ Irr(C�n) (5.15)

Xσ
a⃗ 7→ Xσ−1

a⃗∗ Xσ
a⃗ ∈ Irr(Cσ) (5.16)
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which we expand linearly to an involution on all of A. Since that Nab
1 = 1 if and only if

a ∼= b∗, it remains only to check that this involution corresponds to duality of defects.

Fix σ ∈ Sn, a⃗ ∈ Irr(C�n) and let Xσ
a⃗ ∈ Cσ, Xτ

b⃗
∈ Cτ . Clearly N

Xσ
a⃗X

τ
b⃗

1 = 0 unless

τ = σ−1.

Given a transposition decomposition of σ, σ = τm · · · t1 with τj = (j1j2), j1 < j2, we

have

Xσ
a⃗ ⊗Xσ−1

b⃗
=
(
d(⃗a)⊗ d(⃗b)

)
⊗ (Xσ

1⃗
⊗Xσ−1

1⃗
)

=
(
d(⃗a)⊗ d(⃗b)

)
⊗

 ⊗
1≤j≤m

 ⊕
c∈Irr(C)

1�j1−1 � c� 1j2−j1 � c∗ � 1n−j2


(5.17)

In the fusion product over j there is one summand of 1⃗, hence N
Xσ
a⃗X

σ−1

b⃗
1 = 1 only if

N
d(a⃗),d(⃗b)
1 = 1. So we must have d(⃗b) ∼= d(⃗a)∗. In other words, the deconfinements must

be dual.

Now reconfinement with an arbitrary bare defect gives

Xρ

1⃗
= d(⃗a)⊗ d(⃗b)⊗Xρ

1⃗
= Xρ

a⃗⊗b⃗
(5.18)

and hence b⃗ ∼= a⃗∗.

5.2.3 Fusion rules for inequivalent permutation extensions

We have given one candidate fusion ring for permutation-extensions of C�n, but we

know from the general theory that there are in general many such extensions, which

form an H2(G,A) × H3(G,U(1)) torsor and should not be expected to have equiva-

lent fusion rules. We claim that these fusion rules can be interpreted as a basepoint
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for the H2(Sn,A×n) torsor’s worth of possible fusion rules corresponding to the trivial

cohomology class.

Conjecture 3. The fusion rules of any Sn-extension of C�n can be obtained from our

fusion rules by twisting with a representative ω of a cohomology class [ω] ∈ H2(Sn,A×n)

by

[Xσ,ω
a⃗ ⊗Xπ,ω

b⃗
] = [ω(σ, π)⊗Xσ

a⃗ ⊗Xπ
b⃗
]

where σ, ω ∈ Sn, σ · a⃗ = a⃗, and π · b⃗ = b⃗.

Recall that the isomorphism class of the object on the right-hand side of the equation

is independent of whether ω(σ, π) is fused on the left, right, or between the defect fusion

product.

Lemma 5.3. When A = 1, the permutation defect fusion rules agree with the known

A = 1 fusion rules for Z2-extensions of C � C [37].

Proof. It suffices to show that their fusion rule 1̂ ⊗ 1̂ corresponds to our fusion rule of

bare transposition defects X(12)

1⃗
⊗ X

(12)

1⃗
. By their Proposition 4.1 in [37], N 1̂1̂

a�b = Nab
1 .

Since Nab
1 ̸= 0 if and only if a ∼= b∗, by uniqueness of duals theirs is the fusion rule

1̂⊗ 1̂ =
⊕

c∈Irr(C) c� c∗, as is ours.

In the next chapter we will illustrate how our model for permutation defects provides

a natural way to construct Z2-crossed braided extensions of bilayer topological order,

the details of which will appear in [32]. The next examples give additional evidence and

serve to demonstrate the permutation defect fusion ring and the algorithm to compute

it.
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5.3 Example: bilayer Fibonacci defect fusion

Recall the Fibonacci UMTC from Section 1.4, which has rank 2 and nontrivial fusion

rule τ ⊗ τ = 1⊕ τ .

Algebraic data for
(
Fib�2

)×
Z/2Z

was first computed by computer assisted de-equivariant-

ization of the UMTC SU(2)8 in [25].

Fib

Fib
S2

(
Fib�2

)×
S2

= Fib�2⊕C(12)

Writing the bilayer anyons a� b =: ab and labeling defects by fixed points, we put

Irr
((

Fib�2
)×
S2

)
= Irr

(
Fib�2

)
∪ Irr

(
C(12)

)
= {11, 1τ, τ1, ττ,X11, Xττ}.

The fusion rules constructed in the previous section in the case C = Fib and n = 2

are listed in the table below.

⊗ 11 1τ τ1 ττ X11 Xττ

11 11 1τ τ1 ττ X11 Xττ

1τ 1τ 11⊕ 1τ ττ τ1⊕ ττ Xττ X11 ⊕Xττ

τ1 τ1 ττ 11⊕ τ1 1τ ⊕ ττ Xττ X11 ⊕Xττ

ττ ττ τ1⊕ ττ 1τ ⊕ ττ 11⊕ 1τ ⊕ τ1⊕ ττ X11 ⊕Xττ X11 ⊕ 2Xττ

X11 X11 Xττ Xττ X11 ⊕Xττ 11⊕ ττ 1τ ⊕ τ1⊕ ττ

Xττ Xττ X11 ⊕Xττ X11 ⊕Xττ X11 ⊕ 2Xττ 1τ ⊕ τ1⊕ ττ 11⊕ 1τ ⊕ τ1⊕ 2ττ

Figure 5.1: Fusion table for bilayer Fibonacci anyons and defects.
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5.4 Example: trilayer Fibonacci with S3 permutation

symmetry

Fib

Fib

Fib

S3

(
Fib�3

)×
S3

There are 3! = 6 graded components, written

(
Fib�3

)×
S3

= Fib�3 ⊕ C(12) ⊕ C(23) ⊕ C(13) ⊕ C(123) ⊕ C(132).

Suppressing the � in the label set {1, τ}3 we label the defects in each sector Cσ by the

anyons fixed under the permutation of σ, thinking of anyons as trivial defects. We count

a rank 24 fusion category with global quantum dimension

DFib�3 = D3
Fib = (2 + ϕ)3/2 =

√
15 + 20ϕ. (5.19)

σ-sector σ-defects quantum dim.
Cid {111, 11τ, 1τ1, 1ττ, τ11, τ1τ, ττ1, τττ} {1, ϕ, ϕ, ϕ2, ϕ, ϕ2, ϕ2, ϕ3}
C(12) {X111, X11τ , Xττ1, Xτττ} {

√
2 + ϕ,

√
3 + 4ϕ,

√
3 + 4ϕ,

√
7 + 11ϕ}

C(23) {Y111, Yτ11, Y1ττ , Yτττ} {
√
2 + ϕ,

√
3 + 4ϕ,

√
3 + 4ϕ,

√
7 + 11ϕ}

C(13) {Z111, Z1τ1, Zτ1τ , Zτττ} {
√
2 + ϕ,

√
3 + 4ϕ,

√
3 + 4ϕ,

√
7 + 11ϕ}

C(123) {U111, Uτττ} {
√
5 + 5ϕ,

√
10 + 15ϕ}

C(132) {V111, Vτττ} {
√
5 + 5ϕ,

√
10 + 15ϕ}

Table 5.2: Enumeration of simple objects in the invertible C�3-bimodule categories
Cσ, which form the simple objects of a fusion category by [46].

The Fibonacci UMTC has no nontrivial abelian anyons, so A = 1 and H3(S3,A)

is trivial. By the existence result of [46] and the classification of G-crossed braided
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extensions of BFCs [39], there is a unique fusion ring shared among unitary S3-crossed

extensions of Fib�3, which was computed by hand and found to agree with the fusion

rules defined in the previous section between anyons and bare defects.

We list the fusion between anyons and bare defects in the next table.

By Lemma 6, the full fusion table for the S3-extension is determined by rows 1-3 and

8-10.

⊗ X111 Y111 Z111 U111 V111

11τ X11τ Y1ττ Zτ1τ Uτττ Vτττ

1τ1 Xττ1 Y1ττ Z1τ1 Uτττ Vτττ

τ11 Xττ1 Yτ11 Zτ1τ Uτττ Vτττ

1ττ Xτττ Y111 ⊕ Y1ττ Zτττ U111 ⊕ Uτττ V111 ⊕ Vτττ

τ1τ Xτττ Yτττ Z111 ⊕ Zτ1τ U111 ⊕ Uτττ V111 ⊕ Vτττ

ττ1 X111 ⊕Xττ1 Yτττ Zτττ U111 ⊕ Uτττ V111 ⊕ Vτττ

τττ X11τ ⊕Xτττ Yτ11 ⊕ Yτττ Z1τ1 ⊕ Zτττ U111 ⊕ 2Uτττ V111 ⊕ 2Vτττ

X111 111⊕ ττ1 U111 V111 Y111 ⊕ Yτττ Z111 ⊕ Zτττ

Y111 V111 111⊕ 1ττ U111 Z111 ⊕ Zτττ X111 ⊕Xτττ

Z111 U111 V111 111⊕ τ1τ X111 ⊕Xτττ Y111 ⊕ Yτττ

U111 Z111 ⊕ Zτττ X111 ⊕Xτττ Y111 ⊕ Yτττ 2V111 ⊕ Vτττ 111⊕ ττ1⊕ τ1τ ⊕ 1ττ ⊕ τττ

V111 Y111 ⊕ Yτττ Z111 ⊕ Zτττ X111 ⊕Xτττ 111⊕ ττ1⊕ τ1τ ⊕ 1ττ ⊕ τττ 2U111 ⊕ Uτττ
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Chapter 6

On the algebraic theory of bilayer

symmetry defects

C

C

S2

6.1 Introduction

Next we apply the model of permutation defects outlined in the previous chapter to

construct data for the family of symmetry defect models that describe bilayer topological

order enriched with layer-exchange symmetry. These SET phases are modeled by Z2-

extensions of Deligne products of UMTCs C � C, where the categorical group action

exchanges the factors in Deligne products of objects and morphisms.

In [33] we provide formulas for the family of natural isomorphisms giving the asso-

ciators, G-crossed braiding, and G-action satisfying the coherence axioms of a GxBFC.

We apply this construction to derive formulas for the skeletal data
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{NXY
Z , [RXY

Z ]µν , [F
WXY
Z ]U,α,β;V,µ,ν , Ug(X,Y ;Z), ηX(g, h)}

in terms of the monolayer skeletal data {Nab
c , [R

ab
c ]µν , [F

abc
d ]n,α,β;m,µ,ν}.

6.2 Bilayer topological order C�C and layer-exchange

symmetry

As before C is a UMTC and we make no further assumptions about C beyond that it

satisfies the axioms of a UMTC. For simplicity we use the multiplicity-free notation for

the algebraic data of C, as it does not affect the scope of our discussion.1

Let {Nab
c , R

ab
c , [F

abc
d ]ef} be a skeletonization of a UMTC C. The Deligne product

category C � C with objects X � Y , X,Y ∈ Obj(C) and morphisms

HomC�C(X1 �X2, Y1 � Y2) ∼= HomC(X1, Y1)⊗ HomC(X2, Y2)

is again a UMTC, where the associators and braidings of the product category are given

by

αa1�a2,b1�b2,c1�c2 = αa1,b1,c1 ⊗ αa2,b2,c2 (6.1)

ca1�a1,b1�b2 = ca1,a2 ⊗ cb1,b2 . (6.2)

Given a skeletonization of C with respect to an ordering {a1, a2, . . . , ar} of Irr(C),

our convention for producing a skeletonization of C � C is with respect to the ordering

{a1 � a1, a1 � a2, . . . , a1 � ar, . . . , ar � ar−1, ar � ar} of Irr(C � C) is to take the tensor
1Note however that the fusion in C (and hence C � C) being multiplicity-free does not prohibit the

fusion in (C � C)×S2
from being multiplicity free. Take for example the Fibonacci defect fusion rule

τ ⊗ τ ◃ Xτ = X1 ⊕ 2Xτ and see the Fibonacci defect F -symbols at the end of the chapter.
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product of the N -matrices, R-matrices, and F -matrices.

Na1�a2,b1�b2
c1�c2 = Na1,b1

c1
⊗Na2,b2

c2
(6.3)

Ra1�a2,b1�b2
c1�c2 = Ra1,b1

c1
⊗Ra2,b2

c2
(6.4)

F a1�a2,b1�b2,c1�c2
d1�d2 = F a1b1c1

d1
⊗ F a2b2c2

d2
(6.5)

6.2.1 Categorical layer-exchange symmetry

Let ρ be the monoidal functor

ρ : S2 −→ Autbr⊗ (C � C)

id 7→ id : C � C → C � C

(12) 7→

T(12) : C � C → C � C

X � Y 7→ Y �X

f1 � f2 7→ f2 � f1

.

By the ENO G-crossed braided extension classification and Theorem 5.1.2, there are

two distinct extensions (C � C)×S2
in the H3(S2, U(1)) torsor.

6.3 Single defect associators

In [33] we define a category (C � C)×S2
and show that it satisfies the definition of an

S2-crossed braided fusion category.

In this chapter we will describe the idea of the construction and show that there is a

natural way to construct extensions of C � C by considering C(12) as a bimodule category
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over C�C and so that will be the starting point for our presentation. We will prove some

coherences when illuminating, but defer the full details to [33].

In terms of the basic algebraic data of SET order the structure of the invertible

bimodule categories will give the fusion between anyons and defects and those F -symbols

involving the two anyons and one defect.

The rank of C(12) is equal to the number of fixed points in C � C under the bilayer

exchange symmetry per Lemma 4.1, so there are r simple objects in C(12). Departing from

the notation of Chapter 5, instead of labeling these simple objects by the corresponding

fixed points we adopt a labeling by the deconfinements.

Irr(C(12)) = {Xa | a ∈ Irr(C)}

:= {Xa�a | a ∈ Irr(C)}
(6.6)

Anyon-defect fusion and the notion of deconfinement

Recall that the left action of C � C on C(12) on the level of objects is defined by the

confinement map, see Definition 5.4.

a1 � a2 ◃ Xb = X(a1⊗a2)⊗b

:=
⊕
c

Na1a2b
c Xc.

(6.7)

where we abuse notation for iterated fusion coefficients.

We recall the definition of deconfinement from the previous chapter in the n = 2 case.

Definition 6.1. Let Xb ∈ Irr(C(12)), and suppose a1 � a2 ∈ Irr(C � C) satisfies

a1 � a2 ◃ X1 = Xb. (6.8)
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Then we say that a1 � a2 is a (left) deconfinement of Xa.

In general a defect has many deconfinements. For example, whenever b ∈ Irr(C) has

a zero-mode a ∈ Irr(C), i.e. a ⊗ b = b ⊗ a = b, one has b � a ◃ X1 = Xb⊗a = Xb and

similarly for a� b.

Left module associators

The left-module associativity constraint

αa1�a2,b1�b2,Xc : ((a1 � a2)⊗ (b1 � b2)) ◃ Xc −→ (a1 � a2) ◃ ((b1 � b2) ◃ Xc) (6.9)

is defined by the following composition of associators and braidings in C.

αa1�a2,b1�b2,Xc = αa1,b1,a2⊗b2 ⊗ idc

◦ ida1 ⊗α−1
b1,a2,b2

⊗ idc

◦ ida1 ⊗cb1,a2 ⊗ idb2⊗c

◦ ida1 ⊗αa2,b1,b2 ⊗ idc

◦αa1,a2⊗(b1⊗b2),c

◦ ida1 ⊗αa2,b1⊗b2,c

◦α−1
a1,a2,(b1⊗b2)⊗c

(6.10)

We record a few observations about this composition of morphisms that help one

understand the structure of the single-defect associators qualitatively.

Remark 6.1.

When re-associating a defect and two monolayer anyons in the same layer, e.g. Xc

and either a � 1 and b � 1 or 1 � a and 1 � b, the associator is simply given by the
158



On the algebraic theory of bilayer symmetry defects Chapter 6

monolayer associator of the anyons

αa,b,c

where c is the topological charge of the defect.

Physically, one can imagine stripping the topological charge c � 1 or 1 � c from the

defect Xc and moving it into the layer with the anyons a and b, where they reassociate

before re-confinement.

Lemma 6.1. The action (◃, αa1�a2,b1�b2,Xc) makes C(12) into a left C�C module category.

Proof. The pentagon diagram
((a1 � a2 ⊗ b1 � b2)⊗ c1 � c2) ◃ Xd (a1 � a2 ⊗ b1 � b2)⊗ (c1 � c2 ◃ Xd)

(a1 � a2 ⊗ (b1 � b2 ⊗ c1 � c2)) ◃ Xd a1 � a2 ◃ (b1 � b2 ⊗ (c1 � c2 ◃ Xd))

a1 � a2 ⊗ ((b1 � b2 ⊗ c1 ⊗ c2) ◃ Xd)

αa1,b1,c1�αa2,b2,c2◃idXd

αa1⊗b1�a2⊗b2,c1�c2,Xd

αa1�a2,b1⊗c1�b2⊗c2,Xd

ida1�a2
◃αb1�b2,

c1�c2
,Xd

becomes a diagram in C:

X(((a1⊗b1)⊗c1)⊗((a2⊗b2)⊗c2))⊗d X((a1⊗b1)⊗(a2⊗b2))⊗((c1⊗c2)⊗d)

X((a1⊗(b1⊗c1))⊗(a2⊗(b2⊗c2)))⊗d X(a1⊗a2)⊗((b1⊗b2)⊗((c1⊗c2)⊗d))

X(a1⊗a2)⊗(((b1⊗c1)⊗(b2⊗c2))⊗d)

αa1,b1,c1⊗αa2,b2,c2⊗idd

αa1⊗b1�a2⊗b2,c1�c2,Xd

αa1�a2,b1⊗c1�b2⊗c2,Xd

ida1⊗
a2

⊗αb1�b2
,c1�c2

,Xd

159



On the algebraic theory of bilayer symmetry defects Chapter 6

which commutes because any two paths between objects in C composed of braidings and

associators commutes by the braided coherence theorem 1.2.

Right module associators

We use the braiding in C � C and the left module structure (◃, αa⃗,⃗b,Xc) to turn C(12)

into a bimodule category in the usual way, see for example [30]. The right action on

objects is given by

Xa ▹ b1 � b2 = b1 � b2 ◃ Xa = X(b1⊗b2)⊗a)

:=
⊕
c

N b1b2a
c Xc.

(6.11)

with right associativity structure

αXa,b1�b2,c1�c2 : (Xa ▹ b1 � b2) ▹ c1 � c2 −→ Xa ▹ (b1 � b2 ⊗ c1 � c2) (6.12)

given by postcomposing the left associator by the braiding of the two bilayer anyons

cc1�c2,b1�b2 in C � C.

Here it is important to note that as a morphism of defects, cc1�c2,b1�b2 ◃ idXa is

interpreted as a morphism in C via

cc1�c2,b1�b2 ◃ idXa := cc1,b1 ⊗ cc2,b2 ⊗ ida . (6.13)

Bimodule associators

Similarly, the middle module associativity structure is given by conjugating the braid-

ing of the two anyons by the left associator:

αa1�a2,Xb,c1�c2 : (a1 � a2 ◃ Xb) ▹ c1 � c2 −→ a1 � a2 ◃ (Xb ▹ c1 � c2) (6.14)
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Defining the right action to be equal to the left action and using the braiding of C�C

to construct the middle and right associators guarantees that the remaing three of the

four single-defect pentagons are satisfied. Alternatively, the explicit forms of the middle

and right associators in terms of compositions of braidings and associators of C satisfy

braided coherence, and hence the pentagons commute.

6.3.1 Single-defect F -symbols

Given the standard skeletonization of C � C, the formulas above for the single-defect

associators can be used to produce the single-defect F -symbols. These are the entries of

the F -matrices [F abc
d ] for which only one of the external labels a, b, c ∈ Irr(C(12)). Since

the fusion of anyons and defects must respect the S2 grading, the total charge label d is

some defect in Irr(C(12)) occuring in the fusion channel of a, b, and c. That is, F -symbols

of the form

[F a⃗⃗bXc
Xd

] [FXa ,⃗b,⃗c
Xd

] [F a⃗,Xb ,⃗c
Xd

] (6.15)

for all a⃗, b⃗, c⃗ ∈ Irr(C � C) and for all a, b, c, d ∈ Irr(C) can be directly computed from the

associators αa⃗,⃗b,Xc , αXa ,⃗b,⃗c, and αa⃗,Xb ,⃗c respectively.

Lemma 6.2. 1. Every defect is related to the bare defect by fusion with a monolayer

deconfinement.

2. The quantum dimensions of bilayer defects are given by

dX1 = DC (6.16)

dXa = daDC (6.17)
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Proof. Let Xa be the bilayer defect with charge label a. Then

Xa = a� 1 ◃ X1 (also Xa = 1� a ◃ X1).

This proves (1), and since quantum dimensions respect fusion rules, it follows that dXa =

dadX1 . To see the formula for quantum dimensions in (2), recall from Lemma 4.3 that

DC(12) = DC�C = D2
C. Then we have

D2
C = DC(12) =

√ ∑
a∈Irr(C)

d2Xa =

√ ∑
a∈Irr(C)

(dadX1)
2 = DCdX1 . (6.18)

Thus dX1 = DC and by (1) dXa = daDC.

The following is an immediate consequence of the formulas for the quantum dimen-

sions of bilayer defects.

Corollary 2. The category (C � C)×S2
is integral (weakly integral) if C is integral (weakly

integral). �

6.4 S2-crossed braiding of anyons and defects

Recall from Chapter 5 that a G-crossed braiding is a natural collection of isomor-

phisms

cX,Y : X ⊗ Y −→ Tg(Y )⊗X

for all X ∈ Obj(Cg), Y ∈ Obj(C×
G) satisfying various coherence axioms.

In this section we will define the isomorphisms cX,Y and their inverses when one of

X and Y is a defect and the other an anyon.

Like with the single-defect associators, we will use confinement to define the S2 crossed
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braiding between anyons and defects, which will again be given by compositions of braid-

ing and associators in C.

Then we will argue that the S2−crossed braiding morphisms satisfy the subset of the

G-crossed braided coherences that only involve the braiding between anyons and defects

(as opposed to involving braiding between defects, which we defer to a later section).

Note that our convention for the braiding is the reverse to the one in Chapter 4.

Anyons braiding around defects (the trivial S2−braiding)

For ca1�a2,Xb since the first factor in the tensor product is in the trivial sector there

is no action by T(12), while in the second case the braiding permutes the bilayer anyon

by layer-exchange.

Xb

Xb

a1 � a2

a1 � a2

=

=

a1 � a2 ◃ Xb = X(a1⊗a2)⊗b

a1 � a2 ◃ Xb = X(a1⊗a2)⊗b

id(a1⊗a2)⊗bca1�a2,Xb :=

Therefore we define

ca1�a2,Xb := id(a1⊗a2)⊗b (6.19)

c−1
Xa,b1�b2 := id(b1⊗b2)⊗a (6.20)
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Defects braiding around anyons (the nontrivial S2−braiding)

The S2-crossed braiding

cXa,b1�b2 : Xa ▹ b1 � b2 −→ b2 � b1 ◃ Xa

and its inverse

c−1
a1�a2,Xb : a1 � a2 ◃ Xb −→ Xb ▹ a2 � a1

can be understood using the definition of the left and right action through the following

picture, where we have chosen the convention that anyons get permuted by the symmetry

action when they get passed over by a defect.

b1 � b2

b2 � b1

Xa

Xa

=

=

b1 � b2 ◃ Xa = X(b1⊗b2)⊗a

b2 � b1 ◃ Xa = X(b2⊗b1)⊗a

cb1,b2 ⊗ idacXa,b1�b2 :=

We define

cXa,b1�b2 := cb1,b2 ⊗ ida (6.21)

c−1
a1�a2,Xb := c−1

a1,a2
⊗ idb (6.22)

Lemma 6.3. With the single defect associators and anyon-defect braiding defined above,

the first S2-crossed hexagon is satisfied for Xa ∈ Irr(C(12)), b1 � b2, c1 � c2 ∈ Irr(C � C).

Proof. In case 1, the S2-hexagons only involve the single-defect associators and the braid-
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ing between anyons and defects. Since in this case the tensorator U(12) of T(12) is trivial,

the S2-crossed hextagon collapses to a true hexagon. At each vertex is a defect in C(12)

and each arrow is a composition of associators and/or braidings in C. Thus the diagram

commutes by braided coherence in C.

In case 2, the S2-hexagons involve only the triple-defect associators and the braiding

between anyons and defects. By the same argument above for case 1, the diagram com-

mutes.

6.4.1 The S2-action on the defects

Lemma 6.4. The isomorphism class of the bare defect X1 ∈ Irr(C(12)) is fixed by the

S2-action.

Proof. Observe that a tensor autoequivalence T of (C � C)×S2
whose square is naturally

isomorphic to the identity functor must satisfy either T (Xa) ∼= Xa or T (Xa) ∼= Xa∗ .

Corollary 3. The isomorphism classes of all defects are fixed by the S2-action.

Proof. Let Xa ∈ Irr(C(12)). Then by Lemma 6.4

T(12)(Xa) ∼= T(12)(a� 1)⊗ T(12)(X1) ∼= 1� a⊗X1 = Xa.

So far all we have done is leverage the fact that the single-defect associators and

single-defect braiding can be deconfined into monolayer isomorphisms.

6.4.2 Braiding and associators for bare defects

In [33] we prove the following.
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Proposition 6.1 (Bilayer bare defect data [33]). Assuming the single-defect associators

and braiding as above, we construct braiding and associators with the following skeletal

data.

[RX1X1 ] = T (6.23)[
FX1X1X1
X1

]
= S (6.24)

U(id)(X1, X1; c� c∗) = Θ (6.25)

ηX1((12), (12)) = Θ∗ (6.26)

where Θ is the invariant defined from a single layer C.

As an example we give some partial algebraic data for bilayer defects in for the semion

UMTC from Example 1.4.1.

Example 6.1 (Bilayer semion with layer-exchange defects).

Anyons and defects L = {1� 1, 1� s, s� 1, s� s,X1, X2}
Fusion (s� 1)⊗X1 = (1� s)⊗X1 = Xs

(s� 1)⊗Xs = (1� s)⊗Xs = X1

(s� s)⊗X1 = X1, (s� s)⊗Xs = Xs

Bare defect F -matrix FX1X1X1
X1

= 1√
2

(
1 1
1 −1

)
Z2-crossed R-symbols

RX1,X1

1�1 = 1, RX1,X1

s�s = i

RX1,Xs
1�s = 1, RX1,Xs

s�1 = −i

RXs,X1

1�s = i, RXs,X1

s�1 = 1

RXs,Xs
1�1 = i, RXs,Xs

s�s = 1

Quantum dimensions dX1 = dXs =
√
2
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In the last part of this work we simply investigate some consequences of this result,

deferring the full details of the algebraic theory of bilayer defects to [32]. The consid-

erations we will make about bare defects are enough to appreciate the mathematical

relationship between quantum symmetry and topology, and provide compelling evidence

for this description without the categorification we give in [32].

There are several things worth pointing out. First of all, these pieces of data are

invariants of C, and hence independent of choice of skeletonization. Second, the fact that

the S-matrix arises as an associator expresses a deep connection between modularity and

extendability: here modularity is required for the extension-theory to be well-defined: if

S is a singular matrix then the associators we constructed will not be isomorphisms.

6.4.3 Coherences

Lemma 6.5. The S2-crossed hexagon equations are satisfied for three bare defects X1

with total charge X1.

Proof. We check the first, the other is similar.

(X1 ⊗X1)⊗X1

X1 ⊗ (X1 ⊗X1) (T(12)(X1)⊗X1)⊗X1

T(12)(X1 ⊗X1)⊗X1 T(12)(X1)⊗ (X1 ⊗X1)

(T(12)(X1)⊗ T(12)(X1))⊗X1 T(12)(X1)⊗ (T(12)(X1)⊗X1)

αX1,X1,X1
cX1,X1

⊗idX1

cX1,X1⊗X1
αT(12)(X1),X1,X1

(µ(12))
−1
X1,X1

⊗idX1
idT(12)(X1)

⊗cX1,X1

αT(12)(X1),T(12)(X1),X1

Fixing the total charge to be X1, the commutative diagram yields the matrix equation

[RX1X1 ]−1[FX1X1X1 ][RX1X1 ]−1 = [FX1X1X1 ][U(12)(X1, X1)][R
X1X1 ]−1[FX1X1X1 ]. (6.27)
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It then remains to show this equation holds for the skeletal data we have constructed.

Substituting in [FX1X1X1 ] = S, [RX1X1 ]−1 = T−1, and [U(12)(X1, X1)] = ΘIn, we have

S−1T−1ST−1S−1 = ΘT (6.28)

(6.29)

Now using the fact that T±1C = T±1 and S±1 = CS∓1 = S∓1C, we have

T−1S−1T−1S−1T−1S−1 = ΘC. (6.30)

or (ST )−3 = ΘC. Since C = C−1, this equation holds due to the relations satisified by

the generators of the modular representation, see Chapter 1.

6.5 Topological quantum computing with bare de-

fects and the modular representation

In the previous section we saw that every bilayer defect type Xa was fixed by the

Z2-action. Consequently there exist projective representations of Bn on Hom(1, X⊗n
a )

with the interpretation of quantum gates that can be generated by defect exchange.

Xa Xa Xa Xa

· · ·
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Hom(i,Xa ⊗Xa ⊗ · · · ⊗Xa) ∼= V X⊗n
a

i

We assume the result of Proposition 6.1, namely that the matrix entries of braiding

and associator isomorphisms coming from bare defects satisfied

[RX1X1 ] = T (6.31)[
FX1X1X1
X1

]
= S (6.32)

where T and S are the T -matrix and S-matrix of C, the monolayer theory. We showed

that these gave solutions to the relevant S2-crossed braided coherences: the two S2-

crossed hexagons for the triple of objects (X1, X1, X1).

6.5.1 Bare defect qudit gates

The following theorem shows that bare defect exchange in (C � C)×S2
effects the same

quantum logical operations as the modular transformations of the torus.

Theorem 6.1. The unitary representation of B4 afforded by 4 bare defects X1 ∈ Irr(C(12))

is projectively equivalent to the representation of the mapping class group of the torus

SL(2,Z) generated by the S and T matrices of C.

Proof. As in Chapter 2 we will work with the (now projective) representation of B3 on

Hom(X1, X
⊗3
1 ). Assuming the bare defects have the algebraic data as in the equations

above, the images of the B3 generators take the form

ρ(σ1) = T and ρ(σ2) = S−1TS. (6.33)

One can check that T and S−1TS indeed satisfy the braid relation using the modular
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relations.

(ST )3 = ΘC, S2 = C, C2 = In, where Θ =
1

D
∑
a∈C

d2aθa (6.34)

Then projectively the image of B3 is generated by the matrices T and S−1TS, ρ(B3) ≃

⟨T, S−1TS⟩.

Now recall that the modular representation is generated by S and T . We wish to

show ⟨S, T ⟩ ≃ ⟨T, S−1TS⟩.

Clearly ⟨T, S−1TS⟩ ⊂ ⟨T, S⟩, since S−1TS is a word in T and S. But we can also

write S as a word in T and S−1TS up to an overall phase, for example by

S = ΘT−1(S−1TS)−1T−1. (6.35)

Thus ⟨T, S⟩ ⊂ ⟨T, S−1TS⟩, and it follows that the projective images of the representation

in U(n) are equal.

6.6 Conclusions

Recall from Section 1.3 that the projective image of the modular representation com-

ing from an MTC is always finite. Thus we have the following as a physical corollary to

Theorem 6.1.

Corollary 4. The gates generated by bare defect exchange are never single-qudit univer-

sal.

Our calculation corroborates the idea that bare defects effectively create genus.
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In [32] we extend this result to prove a general relationship between the quantum

systems of 2g + 2 defects carrying charge label a and 2g + 2 anyons of type a on a genus

g surface.

Conjecture 4. Braiding bilayer defects is not universal for TQC if braiding of the

monolayer anyons in not universal for TQC.

While braiding bare defects is not universal based on the theory outlined here, the

sense in which they generate topology can be leveraged to realize universal gate sets

when projective measurement is allowed [4]. This capacity makes bilayer symmetry

defects worth consideration for experiments and devices despite their failure to generate

universal quantum computation as nonabelian objects.
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