
UC San Diego
UC San Diego Previously Published Works

Title
Multi-view kernel construction

Permalink
https://escholarship.org/uc/item/5z4541h5

Journal
Machine Learning, 79(1)

ISSN
1573-0565

Authors
Sa, Virginia R.
Gallagher, Patrick W.
Lewis, Joshua M.
et al.

Publication Date
2010-05-01

DOI
10.1007/s10994-009-5157-z

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5z4541h5
https://escholarship.org/uc/item/5z4541h5#author
https://escholarship.org
http://www.cdlib.org/

Mach Learn (2010) 79: 47–71
DOI 10.1007/s10994-009-5157-z

Multi-view kernel construction

Virginia R. de Sa · Patrick W. Gallagher ·
Joshua M. Lewis · Vicente L. Malave

Received: 28 February 2009 / Revised: 25 September 2009 / Accepted: 8 October 2009 /
Published online: 13 November 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract In many problem domains data may come from multiple sources (or views), such
as video and audio from a camera or text on and links to a web page. These multiple views
of the data are often not directly comparable to one another, and thus a principled method
for their integration is warranted. In this paper we develop a new algorithm to leverage in-
formation from multiple views for unsupervised clustering by constructing a custom kernel.
We generate a multipartite graph (with the number of parts given by the number of views)
that induces a kernel we then use for spectral clustering. Our algorithm can be seen as a
generalization of co-clustering and spectral clustering and a relative of Kernel Canonical
Correlation Analysis. We demonstrate the algorithm on four data sets: an illustrative artifi-
cial data set, synthetic fMRI data, voxels from an fMRI study, and a collection of web pages.
Finally, we compare its performance to common alternatives.

Keywords Spectral clustering · Minimizing-disagreement · Multi-view · fMRI analysis ·
Kernel · Canonical correlation analysis · CCA · Co-clustering

1 Introduction

How should different sources of information be combined for unsupervised learning? Con-
sider the case of experimental data from an fMRI experiment. The data include a blood-
oxygen-level dependent (BOLD) response time course for each voxel and each pattern pre-
sentation as well as the spatial position of each voxel. What is the best way to combine these
two sources of data to cluster voxels that are functionally related?

One common method for dealing with multiple sources of data is to ignore the distinc-
tions and concatenate all the sources into one vector (e.g. Loeff et al. 2006; Cai et al. 2004).

Editors: Nicolo Cesa-Bianchi, David R. Hardoon, and Gayle Leen.

This work is supported by NSF CAREER grant IIS-0133996 and NSF IGERT grant DGE-0333451 and
NSF CBET-0756828.

V.R. de Sa (�)
Department of Cognitive Science, University of California, San Diego, CA 92093-0515, USA
e-mail: desa@ucsd.edu

mailto:desa@ucsd.edu

48 Mach Learn (2010) 79: 47–71

Yet concatenating the sources represents an implicit assumption that all dimensions from all
sources are directly comparable. This is certainly not the case in our example—the BOLD
signal time course is clearly noncomparable to the spatial position of the voxels. Normaliz-
ing each dimension, e.g. by z-scoring, is also not appropriate in this case. After normaliza-
tion previously comparable dimensions such as the x, y, and z spatial dimensions are now
no longer so. Although one would not want to change the scaling on x versus y dependent
on how big a spread in x data one has, this is precisely what normalization would do.

An alternate method is to deal with the different sources separately and then combine the
results. One way to do this is to use each source to compute a measure of similarity, called a
kernel, and then combine these. A potential combination approach is to simply add the kernel
matrices with some weighting. This has been done for the unsupervised case (Zhou and
Burges 2007), for the semi-supervised case (Joachims 2003), and for the supervised case,
where the algorithm learns a convex combination of kernel matrices to satisfy an objective
function (Lanckriet et al. 2004; Rakotomamonjy et al. 2008). For these approaches, the
problem thus shifts to how one should weight the matrices from the different sources. Other
methods of view combination are possible (Long et al. 2006, 2008).

We suggest an alternate approach based on motivation from the multi-view field
(de Sa 1994; de Sa and Ballard 1998; Blum and Mitchell 1998) partially developed in a
workshop paper (de Sa 2005).1 The general idea is to construct a graph where each node
represents one view of each data pattern (e.g. one frame of visual input from the camera) and
we connect nodes of co-occuring patterns (e.g. video frame with temporally coincident audi-
tory input). Given the incompatibility between views discussed above we should not create
edges between two nodes within the same view, since the relative weighting of those within-
view edges versus between-view edges would implicitly introduce unmotivated assumptions
about the relationship between the two views. Instead we leverage within-view neighbor-
hood information by smoothly reweighting between-view edges to reflect within-view simi-
larity. In this way we are able to build a graph where all edges connect nodes from different
views (maintaining their conceptual distinction) but those edges are weighted by within-
view neighborhood relationships (maintaining each view’s information). Our algorithm
can be seen as a generalization of co-clustering (Dhillon 2001), a generalization of spec-
tral clustering, and related to Kernel Canonical Correlation Analysis (Lai and Fyfe 2000;
Hardoon et al. 2003, 2004; Blaschko and Lampert 2008).

2 Algorithm development

Our kernel combination algorithm has its origins in the field of graph cuts. It is based on
ideas originally developed for the Minimizing-Disagreement (M–D) algorithm (de Sa 1994;
de Sa and Ballard 1998). The idea behind the M–D algorithm is that when two (or more)
networks receive data from different views with no explicit supervisory labels, a graph con-
structed from the data should be cut such that co-occurring patterns are placed in the same
partition. Consider a data set with two classes of objects each with two one-dimensional
views. Figure 1 shows a graph of this data set with edges between co-occuring samples. The
points are ordered within each view by their value and colored according to class.

The M–D algorithm seeks a cut from top to bottom that crosses the fewest lines within
the pattern space (subject to a balance constraint to prevent trivial solutions with empty or

1Sections 2, 3 and 4 have been reformulated and generalized. Section 7 appears mostly as it did before.
Sections 1, 5, 6 and 8 are brand new as well as two of the Appendices.

Mach Learn (2010) 79: 47–71 49

Fig. 1 A graph of co-occuring datapoints in two one-dimensional views. We draw edges between
co-occuring points and points are organized based on within-view proximity. The M–D algorithm attempts to
find a non-trivial cut for the graph that minimizes the number of edges cut

near empty clusters). In the present case, disagreement is minimized for the dashed line
shown. In this paper we transform this intuitive idea for one-dimensional views to a general
algorithm on a weighted multipartite graph.

The difficulty in transforming this intuitive idea into a general M–D graph cut algorithm
is that in describing it as making a cut from top to bottom, we implicitly use a neighborhood
relationship within each top set and bottom set, though this relationship is not explicitly
represented. That is, we assume that points drawn in a line next to each other are similar
points in the same view. Constructing a bipartite graph with the points as nodes and then
applying a graph cut algorithm neglects these same-view neighborhood relationships.

One solution would be to simply connect co-occurring values and also join nearest neigh-
bors (or join neighbors according to a similarity measure) in each view. However, this raises
the issue we considered above: how to encode the relative strengths of the between-view
pairing weights as compared to the within-view affinity weights since these quantities are in
general non-comparable.

We approach this issue of comparison as follows: use the within-view neighborhood
relationships to reweight the between-view edges. This implicitly encodes the neighborhood
relationships in each view in the connections between nodes in different views. In particular,
we begin by drawing reduced weight co-occurrence relationships between neighbors of an
observed pair of patterns (weighted by a radial basis function such as a Gaussian kernel).
Each input in each view is represented by a node in the graph. The strength of the weight
between two nodes in different views depends on the number of multi-view patterns (which
we can think of as co-occuring pairs of patterns) that are sufficiently close to both nodes (in
both views). This representation has the semantics that we would like to smooth the noise in
the actual patterns. This spectral Minimizing-Disagreement algorithm we refer to as sMD.

More specifically, let us define x(v)
i as view v of the ith pattern. For each view of each

pattern we will first construct a graph node and then define n
(v)
i to represent the node for

view v of the ith pattern.
Now consider two patterns from the same view, x(1)

1 = [1 2 1]T and x(1)

2 = [1 2 1]T +ε.
For small ε it is sensible to consider these two patterns identical. This observation implies
that x(2)

1 , the co-occurring pattern for x(1)

1 from view 2 may reasonably be considered paired
with x(1)

2 . As we consider larger values of ε, the assumption of equivalence becomes less
reasonable, and a Gaussian kernel weighting allows us to smoothly decrease the inferred
edge weight of the pairing in question. With this initial principle of similarity in place, we
see that to compute the total weight between nodes n

(1)
i and n

(2)
j , we sum over all observed

pattern co-occurrences the product of the Gaussian kernel weighted distance between x(1)
i

(the pattern represented by n
(1)
i) and x(1)

k (with k ranging over all observed patterns) and the

50 Mach Learn (2010) 79: 47–71

same term for the relationship between the x(2)
j and x(2)

k . That is

W(1 2)(i, j) =
p∑

k=1

exp

(
− ‖x(1)

i − x(1)
k ‖2

2σ 2
1

)
exp

(
− ‖x(2)

j − x(2)
k ‖2

2σ 2
2

)
(1)

Intuitively, the term within the sum will be closer to one when pattern i is close to pattern
k in view one and pattern j is close to the same pattern k in view two. Thus, if x(1)

i and x(2)
j

share many co-occurring neighbors W(i, j)(1 2) will be large. Given within-view affinity

matrices defined as W(v)(i, j) = exp
(−‖x(v)

i
−x(v)

j
‖2

2σ 2
v

)
this sum can be more compactly written

as

W(1 2) = W(1) × W(2) (2)

To generate our full affinity matrix between all 2p nodes we take the p ×p matrix W(1 2)

and put it in a large 2p × 2p matrix of the form

WsMD =
[

0 W(1 2)

(W(1 2))T 0

]
(3)

where 0 represents a p × p matrix of zeros. Appendix A gives the objective derivation of
WsMD.

For comparison, we consider two alternative algorithms for generating affinity matrices
from multiple sources. The first alternative is to construct multi-view patterns via a simple
concatenation of features (the default approach mentioned in the introduction). We call this
algorithm JOINT, and define its affinity matrix element-wise as

WJOINT(i, j) = exp

(
− ‖xi − xj‖2

2σ 2

)

= exp

(
− ‖x(1)

i − x(1)
j ‖2 + ‖x(2)

i − x(2)
j ‖2

2σ 2

)

= W(1)(i, j)
σ2

1
σ2 · W(2)(i, j)

σ2
2

σ2

Thus the affinity matrix for clustering in the joint space can be obtained by a per-entry
(Hadamard) product of the affinity matrices for the individual modalities, where each affinity
matrix might use a distinct σ 2.

WJOINT = W(1) ◦ W(2) (4)

We also compare our algorithm to one where the affinity matrices of the two individual
modalities are added. This corresponds to computing similarities separately for different
views and then averaging the results. This idea is mentioned in Joachims (2003) for the
semi-supervised case. We call this algorithm SUM, and define its affinity matrix as

WSUM = W(1) + αW(2) (5)

Mach Learn (2010) 79: 47–71 51

Fig. 2 A graphical view of the
matrix multiplication required to
compute W(1 2) when there are p

patterns with both views,
m patterns with only view 1 and
n patterns with only view 2

2.1 Missing views

A significant benefit of our algorithm is that it can calculate affinities for samples with
missing views. Consider a pattern, x(1)

i , that is missing a corresponding x(2)
i . This pattern can

still be related to pattern x(2)
j according to how similar x(1)

i is to x(1)
j and its neighbors. Thus

we can construct a full bipartite affinity matrix between views using (1) where k sums over
only the p paired patterns. This results in a matrix multiplication of the form W(1) × W(2)

where this time W(1) is (p + m) × p dimensional and W(2) is p × (p + n) dimensional,
given p co-occurring patterns, m patterns with only view 1 and n patterns with only view 2
(see Fig. 2). Note that the bottom right quadrant of the resulting W(1 2) matrix computes the
affinity between an unpaired view one pattern and an unpaired view two pattern according
to the sum of the affinities between this pair (x(1)

p+i ,x(2)
p+j) and each of the set of observed

pairs {(x(1)

1 ,x(2)

1), . . . , (x(1)
p ,x(2)

p)}.
2.2 Extension to several views

Extension to more than two views is straightforward and results in the consideration of a
multi-partite graph with each part corresponding to data from one view. Again connections
between nodes in a view are not joined directly but only indirectly through nodes in other
views. All connections between nodes in view i and nodes in view j are only based on
connections derived from similarities to view i and view j patterns in the set of paired
patterns. That is the connections between nodes in view i and view j are derived simply
from the product of the affinity matrices for view i and view j .

The resulting affinity matrix has a multi-block structure as shown below (for an example
with four views).

WsMD =

⎡

⎢⎢⎢⎣

0 W(1 2) W (1 3) W (1 4)

(W(1 2))T 0 W(2 3) W (2 4)

(W(1 3))T (W(2 3))T 0 W(3 4)

(W(1 4))T (W(2 4))T (W(3 4))T 0

⎤

⎥⎥⎥⎦

W(i j) represents the product of the affinity matrix of view i with that of view j . Again
different patterns may be missing various views with no trouble. Note in the multiple (more
than 2) view case, the patterns must be lined up consistently across the different blocks so
it will not necessarily be the case that all the paired patterns (for one block) will be the first
rows (in the first matrix) and the first columns (in the second matrix) in the matrix products
(as shown in Fig. 2). The example below shows explicitly how missing views are handled in
the multiple view setting. Our algorithm greatly increases the number of views that may be
used as it is not necessary to have all views present for all data vectors.

52 Mach Learn (2010) 79: 47–71

Views can be missing from one or more of the patterns. Consider for example the example
below consisting of

pattern a with view 1 view 3 view 4
pattern b with view 1 view 4
pattern c with view 2 view 3
pattern d with view 2 view 3 view 4
pattern e with view 4

The constructed block affinity matrix would be of the form shown above.
Note that as there are no patterns with both a view 1 and view 2 input, there would be no

direct connections between the nodes representing the view 1 patterns and those representing
the view 2 patterns (they will however be connected through view 3 and view 4 patterns)
and the entries (w(a(1), c(2)), w(a(1),d(2)), w(b(1), c(2)), w(b(1),d(2))) would all be 0 (the
2nd and 5th submatrices above numbered from the top using row major order). In the above,
we use w as a shorthand notation indicating access into the appropriate entry of WsMD (plain
face ‘w’s below are values from the within-view affinity matrices). Thus, the above statement
can be re-expressed as

W(1 2) =
[

0 0
0 0

]

The W(1 3) submatrix is computed as follows

W(1 3) =
[

w(a(1),a(3)) w(a(1), c(3)) w(a(1),d(3))

w(b(1),a(3)) w(b(1), c(3)) w(b(1),d(3))

]

=
[

w(a(1),a(1))

w(a(1),b(1))

]
× [

w(a(3),a(3)) w(a(3), c(3)) w(a(3),d(3))
]

The computation of the other submatrices is given in Appendix B.

3 Application to spectral clustering

Spectral clustering is a successful method for clustering patterns that operates on the pair-
wise affinity matrix W between all pairs of patterns. In this paper, we consider spectral
clustering (specifically the version given in Ng et al. 2001) as a way of evaluating the graphs
that we construct. The algorithm takes the affinity matrix, normalizes it to get the normal-
ized graph Laplacian L, and computes the eigenvectors of L. It can be shown that the second
eigenvector of the normalized graph Laplacian is a relaxation of a binary vector solution that
minimizes the normalized cut on a graph (Shi and Malik 1997). Spectral clustering performs
well with non-Gaussian clusters and is easily implementable. It is also non-iterative with no
local minima which makes it well suited for evaluating multiple different graph construction
algorithms. The Ng et al. (2001) generalization to multiclass clustering (which we will build
on) is summarized below for data patterns xi to be clustered in to k clusters.

– Form the affinity matrix W(i, j) = exp(−‖xi − xj‖2/2σ 2)

– Set the diagonal entries W(i, i) = 0
– Compute the normalized graph Laplacian as L = D−0.5WD−0.5 where D is a diagonal

matrix with D(i, i) = ∑
j W(i, j)

Mach Learn (2010) 79: 47–71 53

– Compute top k eigenvectors of L and place as columns in a matrix X
– Form Y from X by normalizing the rows of X
– Run k-means to cluster the row vectors of Y
– Pattern xi is assigned to cluster c iff row i of Y is assigned to cluster c

It is straightforward to use our multi-view derived affinity matrix as the affinity matrix
for spectral clustering. See Appendix C for a particularly efficient way to compute the nor-
malized affinity matrix in the two-view case. The final clustering/segmentation is obtained
from the top eigenvectors. There are several slightly different ways to cluster the values of
this eigenvector. We use the prescription of Ng, Jordan and Weiss where Y is obtained as
follows (in MATLAB code)

Wv1 =exp(-distmatview1/(2*sigsq1));
Wv2 =exp(-distmatview2/(2*sigsq2));
Wv12=Wv1*Wv2;
Drow=(sum(Wv12’));
Dcol=(sum(Wv12));
Lw=diag(Drow.^(-.5))*Wv12*diag(Dcol.^(-.5));
[U,S,V]=svds(Lw)
X=[U(:,1:numclusts);V(:,1:numclusts)];
Xsq=X.*X;
divmat=repmat(sqrt(sum(Xsq’)’),1,numclusts);
Y=X./divmat;

Note that computing the SVD of the matrix LW = D−0.5
row WD−0.5

col , gives two sets of eigen-
vectors, those of LWLT

W in the matrix U and those of LT
WLW in the matrix V, above. The

algorithm above concatenates these to form the matrix Y (as one would get if performing
spectral clustering on the large matrix WsMD). This thus provides clusters for each view of
each pattern. To get a cluster for the multi-view pattern, when both views are approximately
equally reliable, the top p rows of the Y matrix can be averaged with the bottom p rows
before the k-means step. If one view is significantly more reliable than the other (e.g. audi-
tory speech versus visual speech), one can just use the Y entries corresponding to the more
reliable view (the eigenvectors of LWLT

W reveal the clustering for the view 1 segments and
the eigenvectors of LT

WLW for the view 2 segments).

3.1 Relationship to co-clustering

It should be noted that our spectral clustering application solves the same (modulo some
slight differences between spectral clustering implementations) generalized eigenproblem
as the co-clustering algorithm of Dhillon (2001). There is however one key difference: in co-
clustering the affinity matrix is simply given as a co-occurence matrix (between words and
documents in their case) as opposed to being constructed as a product of affinity matrices on
two different views. Dhillon shows how spectral clustering can simultaneously cluster words
and documents. Our algorithm would reduce to co-clustering if the affinity matrices/kernels
in the individual spaces were the identity matrix (for example no similarity information is
given to indicate that cat and feline are similar words). Note this does not result in a trivial
problem in the case of many to many mappings (as observed for words and documents
(many documents contain the same word and many words appear in the same document)).
Thus another way to view our algorithm is as a way of introducing within-view similarities
to co-clustering.

54 Mach Learn (2010) 79: 47–71

3.2 Relationship to kernel CCA with Gaussian kernels

Canonical Correlation Analysis (Hotelling 1936) is perhaps the most classical unsupervised
multi-view algorithm, and it has recently been used for multi-view clustering (Chaudhuri et
al. 2009). Our algorithm is quite similar in form but different in details to Kernel Canonical
Correlation Analysis (KCCA) (Hardoon et al. 2003, 2004) with Gaussian kernels followed
by k-means segmentation (Blaschko and Lampert 2008).

The KCCA algorithm solves the generalized eigenproblem
[

0 W(1)W(2)

W(2)W(1) 0

]
y = λ

[
W(1)W(1) 0

0 W(2)W(2)

]
y

and our algorithm solves the generalized eigenproblem
[

0 W(1)W(2)

W(2)W(1) 0

]
y = λ

[
Drow 0

0 Dcol

]
y

where Drow is the diagonal matrix of row sums of W(1)W(2) and Dcol is the diagonal matrix
of column sums of the same matrix. We hypothesize that the differences in normalization
given by the matrix on the right hand side reflect a pressure for the KCCA algorithm to
remove within-view affinity information (and rely strictly on co-occurences) similar to the
co-clustering algorithm mentioned in the subsection above. The normalization represented
by the matrix on the right hand side of our eigenproblem aims to normalize for unequal
vertex connectivity.

In addition, KCCA assumes centered kernels and our algorithm actually returns D0.5 ∗ y
(following the algorithm of (Ng et al. 2001)). The specific algorithm of Blaschko and Lam-
pert (2008) is also regularized and automatically searches for good regularization parame-
ters. KCCA without regularization leads to degenerate solutions in the case of full rank
kernel matrices (as with Gaussian kernels).

We believe a contribution of our work is to motivate the use of the Gaussian kernel in
Kernel CCA and to give a formulation where missing views can be easily incorporated (see
Sects. 2.1 and 2.2). This is not easily done for KCCA (see for example Kleine et al. 2008),
but at least one attempt has been made (Blaschko et al. 2008).

We compare our algorithm to the Kernel CCA algorithm (using code from (Blaschko and
Lampert 2008), specifically denoted as KCCA) when it is feasible. We found it too slow to
run on the text/webpage dataset.

4 Comparison of algorithms on an illustrative artificial dataset

How do the JOINT, SUM and sMD algorithms differ? Figure 3 contains a simple example
showing where clustering WJOINT and WsMD will lead to different results. The datapoints
are numbered for the purposes of discussion. Consider in particular the membership of the
circled datapoint (4). The sMD algorithm would cluster it with datapoints 1, 2 and 3. The
JOINT algorithm is much more likely (over a wider range of parameters and noise levels)
to cluster datapoint 4 with datapoints 5, 6, 7 and 8. In this purely artificial problem, there
is no clear best answer. However in the next sections we will show a real-world motivated
example and then a real-world example where the situation is a noisy version of what is
shown here and the desired outcome is to group datapoint 4 with 1, 2, and 3.

Mach Learn (2010) 79: 47–71 55

Fig. 3 A simple example that
would give different solutions
clustered in the joint space
JOINT, than if the sMD
algorithm was used

To quantify this effect, we construct an affinity matrix for each view (W(1) and W(2))
from the example in Fig. 3 and run spectral clustering algorithms on noisy versions of
these affinity matrices for varying levels of noise and varying cross-cluster strength. Us-
ing a scale parameter σ 2 = 0.1, we obtain the following affinity matrices (rounded to one
decimal place). m is given by the relative spacing between the two clusters with respect to
the σ 2 parameter in the spectral clustering algorithm m = exp−�2/(2σ 2).

W(1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0
0 1 0 1 m 0 m 0
1 0 1 0 0 0 0 0
0 1 0 1 m 0 m 0
0 m 0 m 1 0 1 0
0 0 0 0 0 1 0 1
0 m 0 m 1 0 1 0
0 0 0 0 0 1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W(2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 m m 0 0
0 0 1 1 m m 0 0
0 0 m m 1 1 0 0
0 0 m m 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We performed simulations with placement noise for each simulation (Gaussian noise
with mean 0 and standard deviation = 0.001), For � = 1, all three algorithms correctly
cluster nodes 1–4 and 5–8. However for � ≤ 0.5 the JOINT method breaks down and
groups one of nodes 4 or 5 with the wrong cluster. The SUM algorithm breaks down for
� ≤ 0.2 and the sMD algorithm continues to group appropriately until � ≤ 0.13. Figure 4
explains these results graphically as well as showing the actual (zero noise) matrices com-
puted WJOINT, WSUM, and WsMD (rounded to one decimal place except for WJOINT which
has been rounded to two decimal places due to the dearth of large entries (e = 0.01).

We also ran KCCA on this problem. With the scale parameter fixed at σ 2 = 0.1 and
the default code from Blaschko and Lampert (2008) the algorithm didn’t consistently group
nodes 1–4 and 5–8 even for � larger than 2. By symmetricizing the output (similar to sMD),
we got an algorithm that was very sensitive to the amount of noise added. With low place-
ment noise (standard deviation = 0.001), it performed as desired for � as low as 0.08. how-
ever if the noise is increased to have standard deviation 0.03, it doesn’t perform consistently
correctly even for � as big as 2 (in this case it does not group 4 and 5 together but performs
seemingly random segmentations). SUM and sMD perform well at this noise level for �

larger than 0.4 and JOINT performs well for � larger than 0.7. Our hypothesis is that the

56 Mach Learn (2010) 79: 47–71

Fig. 4 The resulting graphs (and matrices) resulting from the three algorithms (a) sMD, (b) SUM,
(c) JOINT applied to the matrices W(1) and W(2) above. The light lines correspond to weights of m and 2m

and the dark lines correspond to weights of 1 and 1 + m2. In (a) the solid lines correspond to co-occurrence
lines and the dashed lines, inferred relationships. In (c) the faint dotted lines are very low weight connections
(0.01). Each algorithm tries to find the smallest normalized cut in its graph

normalization that KCCA does removes information about spatial similarity in each of the
individual views and leaves the algorithm more sensitive to noise. (On the other hand in the
no-noise case the simple example here would be perfectly separated for even the smallest
separations if only co-occurence information is used.)

5 An artificial fMRI example

In Sect. 6, we apply our algorithm to real fMRI data in order to cluster voxels into “func-
tionally similar” volumes. As it is real experimental data, we lack a “ground truth” answer
for the locations of the functional areas. To address this lack, we supplement the applica-
tion to real data with an application to simulated data designed to mimic the real data. In the
simulated data we specifically create two different groups of voxels with different functional
responses.

Our example consists of a 4 by 4 patch of voxels. Each voxel is assigned to one of two
“functional classes”. Under the assumption that neighboring voxels are more likely to be
performing similar computation, we make each functional class spatially contiguous. The
particular example we used is shown in Fig. 5.

In our artificial example, we simulate an experiment recording the response from our 16
voxel patch to presentation of two types of stimuli as two Gaussian distributions, summa-
rized in Table 1.

Mach Learn (2010) 79: 47–71 57

Fig. 5 The layout of our
artificial fMRI example. Black
squares represent voxels from
functional class 1 and white
squares represent voxels from
functional class 2. All voxel
figures for this section have the
voxels represented in this
consistent spatial configuration

Table 1 The Gaussian pdf
parameters of voxel response to
the different stimulus types

Stimulus type 1 Stimulus type 2

Mean std. dev. Mean std. dev.

Voxel class 1 0.25 1.0 −0.25 1.0

Voxel class 2 −0.25 1.0 0.25 1.0

Any drawn values that were greater than 2 or less than −2 were replaced by 2 and −2
respectively. The truncation range and parameter values were chosen to approximate the
statistics seen in the real fMRI data that we use in Sect. 6. The responses to each stimulus
and for each voxel are drawn independently. We simulate an experiment where 20 stimuli
from each of the 2 stimulus types are presented. Thus the overall functional response for
each voxel is a 40-Dimensional vector. These vectors were then normalized as is common
in dealing with fMRI data.

In addition to the functional response view (which is 40-Dimensional) we have a
2-Dimensional (x, y) spatial view (which simply gives the spatial location of each voxel).
For simplicity, each voxel is defined to be 1 unit long in the x and y values. The hope is
that the spatial information will help to smooth out noisy responses (e.g. an “unsure” voxel
surrounded by voxels from one cluster may be pulled to join that cluster).

Kernel matrices for each view are constructed using the Gaussian kernel. Spectral cluster-
ing results depend heavily on the spread or σ 2 parameter that reflects how close vectors need
to be to be considered similar in each of the views. We performed a 2-Dimensional search
for optimal values over the range 0.05,0.1,0.5,1,5,10,100,1000 (extended to 10000 for
KCCA). We ran a suite of one hundred experiment simulations (each with 40 stimuli) at
each pair of parameters to observe the performance of each method. This suite was repeated
five times to establish an estimate of variability. (For KCCA less repetitions were done due
to the long training time for this algorithm.) The resulting performance graphs are shown in
Fig. 6. Each curve shows the performance as one parameter is varied for the optimal value
of the other parameter (These optimal parameters were different for each algorithm.).

The sMD algorithm is striking in its excellent performance over a large range of para-
meters. Note that due to the ambiguity inherent in unsupervised cluster labeling the baseline

58 Mach Learn (2010) 79: 47–71

Fig. 6 Comparisons of
performance and robustness.
FUNC refers to the algorithm
that uses only the functional
responses and ignores spatial
proximity information. sMD
clustered points in the functional
view (the eigenvectors of
LT

WLW). KCCA used the
functional view embedding and
searched over the default 10
regularization values. The figures
show the fraction of correct
clusterings per voxel as a
function of the spread parameter
in the Gaussian kernel used for
computing functional similarity
(top) and spatial similarity
(bottom). For each graph the
non-varying parameter was set
optimally. Each datapoint is
shown as the mean of five runs of
100 simulations each (KCCA
has a few less runs due to the
long simulation times). The error
bars show standard deviations
across the five runs

performance is higher than 50% (since we choose the more charitable reading of assignment
labels from two alternatives where performance at chance would be 50%). More insight can
be gained by looking at examples of error fractions for each voxel across different algorithms
and across different parameter values. In Fig. 7 we show the results of each algorithm at their
optimal parameter settings.

In Fig. 8 we show how the combined kernel’s dependence on the spatial information is
lessened by increasing the spread parameter (σ 2) for the spatial kernel. For large values of
the spread parameter in the Gaussian spatial kernel, all points are considered highly similar
and every entry of the spatial kernel matrix approaches 1. As the JOINT algorithm uses the
Hadamard (element-wise) product to combine the spatial kernel with the functional kernel,
large values of the spatial spread parameter effectively downgrade the importance of the spa-
tial information. The opposite is true for small values of the spread spatial spread parameter;
in this case, the spatial information increases in importance. To see this, notice in Fig. 8 how
small values of σ 2 in the spatial view lead to large errors on the voxels that differ in class
from the majority of its neighbors.

Mach Learn (2010) 79: 47–71 59

Fig. 7 Spatial layout of the performance each algorithm at its optimal parameter settings (within the values
tried). FUNC refers to the algorithm that uses only the functional responses and ignores the spatial proximity
information. The shade of gray for each voxel gives the fraction of trials when it was correctly grouped (scale
given at right of each image)

The JOINT and SUM algorithms appear to be overly influenced by the spatial input
even at their optimal parameter settings. In the SUM algorithm we can also easily adjust the
weighting of the two views by adding another parameter, α, that weights the terms in the
addition of the affinity matrices.

WSUM = Wfunctional + αWspatial (6)

60 Mach Learn (2010) 79: 47–71

Fig. 8 The effect of varying the spread in the Gaussian spatial kernel for the JOINT algorithm. The shade
of gray for each voxel gives the fraction of trials when it was correctly grouped (scale given at right of each
image)

In fact, as preliminary experiments demonstrated that α < 1 was preferable, all the ex-
periments above were done with α = 0.5. We show the dependence of the results on α in
Fig. 9 and some examples in Fig. 10. Notice how varying α for the SUM algorithm has
a similar effect to varying the spread parameter in the spatial kernel. In particular, both α

and the spatial spread parameter can be changed to vary the amount of smoothing as de-
sired. When parameter values are set to encourage smoothing, solutions where voxels have
the same class as their neighbors will be favored. Similarly, parameter values that deprecate
smoothing will tend to lead to solutions where voxels need not have the same class as their
neighbors.

Overall, it is notable that the sMD algorithm maintains the best performance over a large
range of parameters. This robustness is important in real applications where the correct
answers are not known or where detailed parameter searches are infeasible.

We can provide insight to the sMD algorithm’s robust performance on this application by
referring back to the previous section. In this problem we have two views, a spatial one and
a functional one. The spatial view is 2-dimensional (representing x position and y position)
and the functional view is 40-Dimensional (representing the response to 20 stimuli of each
of the 2 types). Consider, however, a reduction of this dataset to 1 dimension for each view.
Each data point in this simplified situation thus consists of a single scalar spatial location
value and a single scalar functional response to visual stimulus value). In order to make the
graph a little clearer, assume that the 1-Dimensional spatial axis extends from 1 to 8 with
a boundary between voxels 4 and 8. (We have also greatly reduced the amount of noise

Mach Learn (2010) 79: 47–71 61

Fig. 9 Graph of performance of
the SUM algorithm for optimal
spread parameters as α

(reflecting the relative weighting
of the spatial and functional
kernels) is varied. Each datapoint
is shown as the mean of four runs
of 100 simulations with error
bars showing the standard
deviation between the runs

Fig. 10 Examples of multiple runs of the SUM algorithm for different values of α and the corresponding
optimal spread parameters in each kernel. The shade of gray for each voxel gives the fraction of trials when
it was correctly grouped (scale given at right of each image)

but remember in the actual simulation, there are 40 functional dimensions instead of 1.)
Now, under the assumptions behind our data generation (based on what is known/assumed
about real fMRI data), voxels 1–4 are generated from a truncated Gaussian with one mean

62 Mach Learn (2010) 79: 47–71

Fig. 11 An example with two 1-dimensional views similar to the simple example from the last section. The
dashed lines represent the two means for the different voxel classes. Note that the correct answer is to cluster
points 1–4 together. This is just a skewed and noisy version of the simple example in Fig. 3. Based on the
arguments and analysis in that section, one can see that JOINT would be less likely than sMD to group 4
with 1, 2, and 3 in agreement with the empirical results for the higher dimensional problems shown above

and voxels 5–8 are generated from a truncated Gaussian with a different mean. A possible
outcome is shown in Fig. 11 which is just a noisy version of Fig. 3. Note that as the data are
stochastic, some possible data would allow JOINT to correctly separate the two voxel types
but those will also be easy cases for sMD. In the next section, we show that with real fMRI
data, the sMD algorithm gives a nice voxel partition that seems to reflect a similar process.

6 Application to fMRI data

Our goal in clustering fMRI data is functional segmentation: we wish to discover regions
of voxels which have similar activity patterns across the stimuli (Golland et al. 2007;
Golland et al. 2008). Such analysis can reveal intrinsic systems of voxels which behave
similarly, which would not be noticed by a conventional linear regression/hypothesis test-
ing approach. In contrast to other methods of grouping voxels such as principal compo-
nent analysis or independent component analysis, clustering produces a decomposition
of the data which is more easily interpretable. We would also prefer that our clusters
be spatially smooth, reflecting prior beliefs about the spatial nature of brain organiza-
tion. Smoothing the data is one way to introduce smoothness, but it would destroy fine-
grained spatial data. Our algorithm allows us to weight to prefer spatial proximity, but
doesn’t force spatial proximity, unlike earlier work on constrained clustering approaches.
Some of these algorithms (Wagstaff et al. 2001) introduce a version of k-means with a
set of hard constraints, must link and cannot link, for samples which should or should
not be clustered together. More recent approaches combine Gaussian mixture models with
soft or probabilistic constraints (Law et al. 2004; Law et al. 2005; Lu and Leen 2005;
Lu and Leen 2007). The conditional random fields (CRF) approach has also been used
to spatially smooth fMRI responses in a data-dependent way (Woolrich et al. 2005;
Wang and Rajapakse 2006). These approaches often involve a lot of human effort to craft
the energy function and a lot of computer effort to estimate probability distributions. In
this case, we use our general purpose algorithm for combining different sources to combine
spatial and functional signals.

Mach Learn (2010) 79: 47–71 63

We tested our algorithm by clustering data from a single subject (Haxby et al. 2001).2

Our analysis was restricted to a subset of 577 object-selective voxels, mostly located in the
inferior temporal lobe. This dataset presented participants with a set of images from eight
categories, with the result that each voxel responds to several categories, and from the dis-
tributed pattern of activity, object category can be decoded. Each voxel was z-scored, and
then averaged within each block (mean of 20 seconds/10 images of activity). We clustered
on either the functional activation (vector of mean activations), spatial proximity, or combi-
nations computed using JOINT, SUM, KCCA or sMD, in order to find functionally similar
groups of voxels.

Algorithm σ 2 Spatial σ 2 fMRI Coherence Symmetry

SPACE 0.1 N/A 1.000 0.0616

FUNC N/A 0.10 0.6300 0.4658

JOINT 0.05 0.10 0.9968 0.8973

SUM 0.5 0.1 0.9344 0.9384

KCCA 100 10 0.9637 0.9452

sMD 5 0.50 0.9653 0.9589

To quantitatively examine the clustering results, we compared clusterings (see Fig. 12)
for spatial coherence and symmetry, which one might expect given the known topography
and gross structural symmetry between hemispheres. Coherence is given by a normalized
sum over all points of how many of a voxel’s nearest neighbors are in the same class. Sym-
metry gives a normalized count of the number of voxels that match their reflected voxel
around the Y (mid-line) axis. Note that our goal is to find functionally similar groups of
voxels. Without the “ground truth”, there is no way to evaluate which method is performing
the best. The symmetry and coherence measures are heuristic measures that one might hope
a good solution would rate highly on. One should not expect them to be maximized by the
“correct” clustering though.

The proximity(spatial) information does not encourage a symmetric partition. Clustering
on the spatial information alone divides the brain into left and right hemispheres. Spectral
clustering on functional data alone shows a “speckled” spatial pattern (results of clustering
with straight k-means produced a very similar plot). The SUM, sMD and KCCA results are
nicely smooth and symmetric.

7 Clustering results with the course web page dataset

We also applied our algorithm to a commonly used multi-view dataset of course web pages.
This dataset consists of two views: the first view consists of text on the web page and the
second view consists of text on the links to the web page (Blum and Mitchell 1998). We
use the six class (course, department, faculty, project, staff, student) version in Bickel and
Scheffer (2004) consisting of tfidf3 vectors without stemming. Patterns were normalized

2This subject’s data was made available as part of the MVPA toolbox, which we also used for data import
and visualization functions. http://www.csbmb.princeton.edu/mvpa/.
3Term frequency inverse document frequency—where a document is stored as a vector of weighted words.
tfidf weights words more if they occur more in a document and downweights words that occur often in the
full dataset.

http://www.csbmb.princeton.edu/mvpa/

64 Mach Learn (2010) 79: 47–71

Fig. 12 Results of clustering fMRI data, for spatial location only, for functional data only, JOINT, SUM,
KCCA, and sMD. sMD clustered points in the spatial view. KCCA used the functional view embedding and
searched over 4 regularization values. These partitions were chosen because they score well on coherence
and symmetry and had relatively balanced clusters. Coherence is based on how many neighbors are the same
class, and symmetry looks for the same class patterns on each side of the center

within each view so that squared distances reflected the commonly used cosine similarity
measure.

We use the average entropy error metric of Bickel and Scheffer (2004)

E =
k∑

i=1

mi(−∑
j pij log2(pij))

m
(7)

where pij is the proportion of cluster i that is from class j , mi is the number of patterns in
cluster i and m is the total number of patterns. On this dataset, with this error measure, per-
fect agreement would result in E = 0, everybody in the same cluster would give E = 2.219

Mach Learn (2010) 79: 47–71 65

Table 2 Average entropy where
2084 (90%, top pane) or 1158
(50%, bottom pane) of the
patterns have both views.
Alternatives A and B described in
the text, plus sMD are
considered. All values are given
± 1 standard error of the mean
over 10 runs. All errors are using
the average entropy error
measure

A B sMD

90% Paired

Views 1 & 2 1.66 ± 0.003 1.68 ± 0.002 1.68 ± 0.003

View 1 only 1.83 ± 0.02 1.64 ± 0.02 1.63 ± 0.02

View 2 only 1.95 ± 0.02 2.04 ± 0.003 1.83 ± 0.02

50% Paired

Views 1 & 2 1.67 ± 0.01 1.69 ± 0.002 1.64 ± 0.01

View 1 only 1.90 ± 0.02 1.68 ± 0.006 1.66 ± 0.006

View 2 only 2.04 ± 0.006 2.04 ± 0.003 1.95 ± 0.006

(and equal size clusters with probability measurement equal to the base class probabilities
also gives E = 2.2).

We first compared the algorithms on the full dataset by searching for a good σ1 and σ2

from clustering in the individual views.
We found that (with the proper normalization), the JOINT method worked slightly better

(E = 1.64) than the SUM (E = 1.70) and sMD version (E = 1.66) (standard error estimates
are provided later when 90% of the data is used). These methods all performed better than
Bickel and Scheffer’s reported results using the same error measures (with 6 clusters) of
approximately4 1.73 (multi-view) and 2.03 (single view) for their mixture-of-multinomials
EM algorithm and approximately 1.97 (multi-view) and 2.07 (single view) for their spherical
k-means algorithm (Bickel and Scheffer 2004).

As mentioned, when computing the SVD of the matrix LW = D−0.5
row WD−0.5

col , one gets
two sets of eigenvectors, those of LWLT

W and those of LT
WLW and for equally reliable views,

the Y matrices can be averaged before the k-means step. For this dataset however, as in
the fMRI dataset, view 1 is significantly more reliable than view 2 and we obtain improved
performance by simply using the eigenvectors from view 1.

As also previously mentioned, sMD easily handles cases where patterns are missing co-
occurence data. In this case we use the eigenvectors of LWLT

W to find the clusters for both
the paired and view 1 data and must use the eigenvectors of LT

WLW to find the clusters for
the data that only has view 2.

For comparison, we consider two other alternatives for clustering data that consists of
some multi-view patterns and some single view patterns.

Alternative A (Using JOINT) cluster only the p patterns consisting of x(1)
i and x(2)

j con-
catenated in the joint space. Spectral clustering will give clusters for these patterns. To report
clusters for the m + n unpaired patterns, report the cluster of the nearest same view paired
pattern of the pattern.

Alternative B cluster the patterns from each view separately. In this case the pairing infor-
mation is lost.

Results for different values of p are reported in Tables 2 and 3. Table 2 shows that there
is a very slight but significant performance advantage for the multi-view patterns using Al-
ternative A when 2084 (90%) of the patterns have both views, but that Alternatives B and

4Estimated from their graph.

66 Mach Learn (2010) 79: 47–71

Table 3 Average Entropy for sMD for varying amount of two-view data. (See Table 1 for an explanation of
terms)

2084 (90%) 1621 (70%) 1158 (50%) 694 (30%) 231 (10%)

Views 1 & 2 1.68 ± 0.003 1.66 ± 0.006 1.64 ± 0.01 1.68 ± 0.01 1.76 ± 0.03

View 1 Only 1.63 ± 0.02 1.66 ± 0.01 1.66 ± 0.006 1.67 ± 0.01 1.73 ± 0.02

View 2 Only 1.83 ± 0.02 1.91 ± 0.01 1.95 ± 0.006 1.97 ± 0.01 2.00 ± 0.01

our sMD method perform significantly better on the patterns that only have values for view
1 and our sMD method performs significantly better than both alternatives for patterns that
only have values for view 2. When only 1158 (50%) of the patterns are provided with two
views, the sMD algorithm performs significantly better in all categories. Table 3 shows how
the sMD algorithm varies for different numbers of paired patterns.5 Performance for the
single view data is seen to decrease gradually with less paired training data. One value of an
algorithm that can train with multi-view data and report data for single-view data would be
when the single-view data arrive at a later time.

8 Conclusion

In this paper we developed a principled method for constructing a kernel over data contain-
ing multiple conceptually distinct views. As opposed to alternatives, our method naturally
incorporates within-view similarity information and between-view co-occurences without
artificially equating or relating them. We accomplish this by constructing a multipartite
graph where edges are always between nodes from different views but are weighted by
within-view similarities. The eigenvectors of the resulting affinity matrix can be efficiently
computed and used to perform spectral clustering simultaneously across all views of the
data. We also showed how this can be seen as a generalization of co-clustering and related
to Kernel Canonical Correlation Analysis.

In order to evaluate our method we compared it across four datasets against two common
alternative algorithms (and where feasible against a third). The two synthetic datasets act
as intuition drivers and serve as a proof of concept that our algorithm can be expected to
outperform competitors across a wide range of parameters and with noisy data. The results
on real data, in both the fMRI and webpage domains, show that our algorithm performs well
and is robust to large parameter changes and missing views.

As an extension to this work, our lab is currently working on using WsMD as a starting
point for a manifold learning algorithm in the style of Laplacian eigenmaps. One could also
consider using the Nystrom approximation (Charless Fowlkes Serge Belongie and Malik
2004) for out of sample estimates. This would allow one to train with paired data and provide
cluster labels for later unpaired data.

Future work will also involve comparing our method on datasets used in other recent
multi-view papers and further exploring the differences between our algorithm and Kernel
CCA.

5The slight improvement in clustering performance (with increased variance) for the paired view data in
the 50% paired case is likely due to an increased chance of not including inappropriate pairs in the paired
dataset. Performance decreases with non independent sources of information have been observed with the
non-spectral M–D algorithm. If leaving out some data vectors increases the independence between views, we
would expect improved performance.

Mach Learn (2010) 79: 47–71 67

Acknowledgements Many thanks to Ulf Brefeld, Tobias Scheffer, Steffen Bickel, and Anjum Gupta for
kindly sending their processed course web page datasets and to Marina Meila and Deepak Verma for pro-
viding a great library of spectral clustering code at http://www.cs.washington.edu/homes/deepak/spectral/
library.tgz. Warm thanks to Jochen Triesch and Serge Belongie for helpful comments on a very early draft
and many thanks to the anonymous reviewers for greatly improving the final version. This material is based
upon work supported by the National Science Foundation under Grants CAREER IIS-0133996 and CBET-
0756828 to V.R. de Sa and DGE-0333451 to V.R. de Sa and G.W. Cottrell.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix A: Multi-view spectral clustering objective function and eigenproblem

Here we present the initial objective function and the eigenproblem that results. To give
context to our derivation, we note that the standard single-view spectral clustering objective
function is expressed:

J (y) =
N∑

i,j=1

(
yi − yj

)2
Wij (8)

where y is the vector of {+1,−1} class labels for the N data points and Wij indicates the
“similarity” of points i and j .

The sMD objective function is expressed as follows:

JsMD

(
y(1),y(2)

) =
N∑

i,j=1

(
y

(1)
i − y

(2)
j

)2
W(1 2)

ij (9)

where y(v) is the “view v” vector of class labels the N data points and W(1 2)
ij indicates the

“similarity” of point i from view (1) and point j from view (2), calculated from the product
of the within-view similarity matrices as described in the main body of the paper.

This objective is then used in the following optimization problem:

minJ
(
y(1),y(2)

)
(10)

s.t.
(
y

(1)
i

)2 = 1,
(
y

(2)
j

)2 = 1 for all i, j (11)

The integer {+1,−1} class label constraints are then relaxed so that the y(1) and y(2)

vectors of labels can be real-valued, and the objective function is reformulated in matrix
notation:

JsMD
(
y(1),y(2)

) =
N∑

i,j=1

(
y

(1)
i − y

(2)
j

)2
W(1 2)

ij (12)

=
N∑

i,j=1

(
y

(1)
i

)2
W(1 2)

ij + (
y

(2)
j

)2
W(1 2)

ij − 2y
(1)
i W(1 2)

ij y
(2)
j (13)

= (
y(1)

)T
Drow y(1) + (

y(2)
)T

Dcol y(2) − 2
(
y(1)

)T
W(1 2)y(2) (14)

http://www.cs.washington.edu/homes/deepak/spectral/library.tgz
http://www.cs.washington.edu/homes/deepak/spectral/library.tgz

68 Mach Learn (2010) 79: 47–71

where Drow is a diagonal matrix with its (i, i) entry equal to the ith row sum of W(1 2) and
Dcol is a diagonal matrix with its (i, i) entry equal to the ith column sum of W(1 2).

In order to prevent the trivial solution of setting all the relaxed labels to 0, and in order to
control for the scale of the entries in the W(1 2) matrix, we introduce new constraints, giving
us the final constrained optimization problem:

min
y(1),y(2)

(
y(1)

)T
Drow y(1) + (

y(2)
)T

Dcol y(2) − 2
(
y(1)

)T
W(1 2)y(2) (15)

s.t.
(
y(1)

)T
Drow y(1) = 1 (16)

(
y(2)

)T
Dcol y(2) = 1 (17)

The above constrained optimization problem gives rise to the following Lagrangian:

L
(
y(1),y(2), λ1, λ2

)

= (
y(1)

)T
Drow y(1) + (

y(2)
)T

Dcol y(2) − 2
(
y(1)

)T
W(1 2)y(2)

+ λ1(1 − (
y(1)

)T
Drow y(1)) + λ2

(
1 − (

y(2)
)T

Dcol y(2)
)

(18)

Differentiating with respect to y(1) and y(2) and setting equal to 0, we find

W(1 2)y(2) = (1 − λ1)Drow y(1) (19)
(
W(1 2)

)T
y(1) = (1 − λ2)Dcol y(2) (20)

Which we reexpress as the following generalized eigenproblem:6

(
0 W(1 2)

(
W(1 2)

)T
0

)(
y(1)

y(2)

)
= (1 − λ)

(
Drow 0

0 Dcol

)(
y(1)

y(2)

)
(21)

The above eigenproblem relates via a simple matrix operation to the eigenproblem we
solve, as indicated in the main body of the paper.

By way of comparison, we further note that SUM can be seen as using the following
objective function in the framework of spectral clustering:

JSUM(y) =
N∑

i,j=1

(yi − yj)
2 W(1)

ij + α

N∑

i,j=1

(yi − yj)
2 W(2)

ij (22)

Appendix B: Computing submatrices for the missing view example

W(1 4) =
[

w(a(1),a(4)) w(a(1),b(4)) w(a(1),d(4)) w(a(1), e(4))

w(b(1),a(4)) w(b(1),b(4)) w(b(1),d(4)) w(b(1), e(4))

]

=
[

w(a(1),a(1)) w(a(1),b(1))

w(a(1),b(1)) w(b(1),b(1))

]

×
[

w(a(4),a(4)) w(a(4),b(4)) w(a(4),d(4)) w(a(4), e(4))

w(b(4),a(4)) w(b(4),b(4)) w(b(4),d(4)) w(b(4), e(4))

]

6Equality of the Lagrange multipliers follows because (y(1))T W(1 2)y(2) = 1 − λ1 = 1 − λ2.

Mach Learn (2010) 79: 47–71 69

W(2 3) =
[

w(c(2),a(3)) w(c(2), c(3)) w(c(2),d(3))

w(d(2),a(3)) w(d(2), c(3)) w(d(2),d(3))

]

=
[

w(c(2), c(2)) w(c(2),d(2))

w(d(2), c(2)) w(d(2),d(2))

]
×

[
w(c(3),a(3)) w(c(3), c(3)) w(c(3),d(3))

w(d(3),a(3)) w(d(3), c(3)) w(d(3),d(3))

]

W(2 4) =
[

w(c(2),a(4)) w(c(2),b(4)) w(c(2),d(4)) w(c(2), e(4))

w(d(2),a(4)) w(d(2),b(4)) w(d(2),d(4)) w(d(2), e(4))

]

=
[

w(c(2),d(2))

w(d(2),d(2))

]
× [

w(a(4),d(4)) w(b(4),d(4)) w(d(4),d(4)) w(e(4),d(4))
]

and

W(3 4) =
⎡

⎢⎣
w(a(3),a(4)) w(a(3),b(4)) w(a(3),d(4)) w(a(3), e(4))

w(c(3),a(4)) w(c(3),b(4)) w(c(3),d(4)) w(c(3), e(4))

w(d(3),a(4)) w(d(3),b(4)) w(d(3),d(4)) w(d(3), e(4))

⎤

⎥⎦

=
⎡

⎢⎣
w(a(3),a(3)) w(a(3),d(3))

w(c(3),a(3)) w(c(3),d(3))

w(d(3),a(3)) w(d(3),d(3))

⎤

⎥⎦

×
[

w(a(4),a(4)) w(a(4),b(4)) w(a(4),d(4)) w(a(4), e(4))

w(d(4),a(4)) w(d(4),b(4)) w(d(4),d(4)) w(d(4), e(4))

]

Appendix C: An efficient eigendecomposition of WsMD with two views

Here we discuss how to compute eigenvectors of the normalized WsMD matrix,
D−0.5WsMDD−0.5, where D is a diagonal matrix with D(i, i) = ∑

j WsMD(i, j) (row sums
of WsMD) which is equal to

[
D−0.5

row 0

0 D−0.5
col

][
0 W(1 2)

(W(1 2))T 0

][
D−0.5

row 0

0 D−0.5
col

]

(where Drow (Dcol) is the diagonal matrix with diagonal entries equal to the row (column)
sums of W(1 2)) but that matrix has the same eigenvectors as the matrix

[
D−0.5

row W(1 2)D−1
col(W

(1 2))TD−0.5
row 0

0 D−0.5
col (W(1 2))TD−1

rowW(1 2)D−0.5
col

]

which has conjoined eigenvectors of each of the blocks D−0.5
row W(1 2)D−1

col(W
(1 2))TD−0.5

row and
D−0.5

col (W(1 2))TD−1
rowW(1 2)D−0.5

col and these parts can be found efficiently together by comput-
ing the SVD of the matrix LW = D−0.5

row W(1 2)D−0.5
col .7

7This trick is used in the co-clustering literature (Dhillon 2001; Zha et al. 2001), but there the affinity subma-
trix W is derived simply from the term document matrix (or equivalent) not derived as a product of affinity
matrices from different views. It is possible to combine these ideas and use multiple views, each (or one) of
which is a co-clustering.

70 Mach Learn (2010) 79: 47–71

References

Bickel, S., & Scheffer, T. (2004). Multi-view clustering. In Proceedings of the IEEE international conference
on data mining (pp. 19–26).

Blaschko, M., & Lampert, C. (2008). Correlational spectral clustering. Computer Vision and Pattern Recog-
nition. DOI:10.1109/CVPR.2008.4587353. CVPR 2008. IEEE Conference on pp. 1–8 (2008).

Blaschko, M. B., Lampert, C. H., & Gretton, A. (2008). Semi-supervised Laplacian regularization of kernel
canonical correlation analysis. In ECML PKDD ’08: Proceedings of the 2008 European conference
on machine learning and knowledge discovery in databases—Part I (pp. 133–145). Berlin/Heidelberg:
Springer.

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of
the eleventh annual conference on computational learning theory (COLT-98) (pp. 92–100).

Cai, D., He, X., Li, Z., Ma, W., & Wen, J. (2004). Hierarchical clustering of WWW image search results using
visual, textual and link information. In Proceedings of the 12th annual ACM international conference
on Multimedia (pp. 952–959).

Charless Fowlkes Serge Belongie, F. C., & Malik, J. (2004). Spectral grouping using the Nystrom method.
IEEE Transactions Pattern Analysis and Machine Intelligence, 26(2), 214–225.

Chaudhuri, K., Kakade, S., Livescu, K., & Sridharan, K. (2009). Multi-view clustering via canonical corre-
lation analysis. In Proceedings of the 26th annual international conference on machine learning. New
York: ACM.

de Sa, V. R. (1994). Learning classification with unlabeled data. In J. Cowan, G. Tesauro, & J. Alspector
(Eds.), Advances in neural information processing systems (Vol. 6, pp. 112–119). San Mateo: Morgan
Kaufmann.

de Sa, V. R. (2005). Spectral clustering with two views. In ICML workshop on learning with multiple views
(20–27).

de Sa, V. R., & Ballard, D. H. (1998). Category learning through multimodality sensing. Neural Computation,
10(5), 1097–1117.

Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph partitioning. In KDD
2001 (pp. 269–274).

Golland, Y., Golland, P., Bentin, S., & Malach, R. (2008). Data-driven clustering reveals a fundamental sub-
division of the human cortex into two global systems. Neuropsychologia, 46(2), 540–553.

Golland, P., Golland, Y., & Malach, R. (2007). Detection of spatial activation patterns as unsupervised seg-
mentation of fMRI Data. In LNCS: Vol. 4791. Proceedings of MICCAI: International Conference on
Medical Image Computing and Computer Assisted Intervention (pp. 110–118). Berlin: Springer.

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2003). Canonical correlation analysis; an overview with
application to learning methods (Technical Report CSD-TR-03-02). Department of Computer Science,
Royal Holloway, University of London.

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: an overview with
application to learning methods. Neural Computation, 16, 2639–2664.

Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., & Pietrini, P. (2001). Distributed and overlapping
representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425–2430.

Hotelling, H. (1936). Relations between two sets of variables. Biometrika, 28, 321–377.
Joachims, T. (2003). Transductive learning via spectral graph partitioning. In Proceedings of the 20th inter-

national conference on machine learning (ICML 2003) (pp. 290–297).
Kleine, L. L., Monnet, V., Pechoux, C., & Trubuil, A. (2008). Role of bacterial peptidase f inferred by statis-

tical analysis and further experimental validation. HFSP Journal, 2(1), 29–41.
Lai, P., & Fyfe, C. (2000). Kernel and nonlinear canonical correlation analysis. In IJCNN ’00: Proceedings of

the IEEE-INNS-ENNS international joint conference on neural networks (IJCNN’00) (Vol. 4, p. 4614).
Washington: IEEE Computer Society.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Jordan, M. I. (2004). Learning the kernel
matrix with semidefinite programming. Journal of Machine Learning Research, 5, 27–72.

Law, M., Topchy, A., & Jain, A. (2004). Clustering with soft and groupconstraints. In Joint IAPR interna-
tional workshop on syntactical and structural pattern recognition and statistical pattern recognition
(pp. 662–670).

Law, M., Topchy, A., & Jain, A. (2005). Model-based clustering with probabilistic constraints. In Proceedings
of SIAM data mining (pp. 641–645).

Loeff, N., Alm, C., & Forsyth, D. (2006). Discriminating image senses by clustering with multimodal fea-
tures. In Proceedings of the COLING/ACL 2006 main conference poster sessions (pp. 547–554).

Long, B., Wu, X., Zhang, Z. M., & Yu, P. S. (2006). Unsupervised learning on k-partite graphs. In KDD
’06: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 317–326). New York: ACM.

http://dx.doi.org/10.1109/CVPR.2008.4587353

Mach Learn (2010) 79: 47–71 71

Long, B., Yu, P. S., & Zhang, Z. M. (2008). A general model for multiple view unsupervised learning. In
SDM (pp. 822–833). Philadelphia: SIAM.

Lu, Z., & Leen, T. (2005). Semi-supervised learning with penalized probabilistic clustering. Advances in
Neural Information Processing Systems, 17, 849–856.

Lu, Z., & Leen, T. (2007). Penalized Probabilistic Clustering. Neural Computation, 19(6), 1528–1567.
Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In Advances

in neural information processing systems (Vol. 14).
Rakotomamonjy, A., Bach, F., Grandvalet, Y., & Canu, S. (2008). SimpleMKL. Journal of Machine Learning

Research, 9, 2491–2521.
Shi, J., & Malik, J. (1997). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 888–905.
Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001). Constrained k-means clustering with background

knowledge. In Proceedings of the eighteenth international conference on machine learning (pp. 577–
584).

Wang, Y., & Rajapakse, J. C. (2006). Contextual modeling of functional mr images with conditional random
fields. IEEE Transactions on Medical Imaging, 25(6), 804–812.

Woolrich, M. W., Behrens, T. E., Beckmann, C. F., & Smith, S. M. (2005). Mixture models with adaptive
spatial regularization for segmentation with an application to fmri data. IEEE Transactions on Medical
Imaging, 24(1), 1–11.

Zha, H., Ding, C., & Gu, M. (2001). Bipartite graph partitioning and data clustering. In CIKM ’01 (pp. 25–
32).

Zhou, D., & Burges, C. J. C. (2007). Spectral clustering and transductive learning with multiple views. In
ICML ’07: Proceedings of the 24th international conference on machine learning (pp. 1159–1166).
New York: ACM. DOI:http://doi.acm.org/10.1145/1273496.1273642.

http://doi.acm.org/10.1145/1273496.1273642

	Multi-view kernel construction
	Abstract
	Introduction
	Algorithm development
	Missing views
	Extension to several views

	Application to spectral clustering
	Relationship to co-clustering
	Relationship to kernel CCA with Gaussian kernels

	Comparison of algorithms on an illustrative artificial dataset
	An artificial fMRI example
	Application to fMRI data
	Clustering results with the course web page dataset
	Conclusion
	Acknowledgements
	Open Access
	Appendix A: Multi-view spectral clustering objective function and eigenproblem
	Appendix B: Computing submatrices for the missing view example
	Appendix C: An efficient eigendecomposition of WsMD with two views
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

