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CANCER IMMUNOLOGY RESEARCH | RESEARCH ARTICLE 

Integrated Germline and Somatic Features Reveal Divergent 
Immune Pathways Driving Response to Immune Checkpoint 
Blockade 
Timothy J. Sears1, Meghana S. Pagadala2, Andrea Castro3, Ko-han Lee1, JungHo Kong4, Kairi Tanaka5, 
Scott M. Lippman6, Maurizio Zanetti6,7, and Hannah Carter1,6,7 

�
 ABSTRACT 

Immune checkpoint blockade (ICB) has revolutionized cancer 
treatment; however, the mechanisms determining patient re-
sponse remain poorly understood. Here, we used machine 
learning to predict ICB response from germline and somatic 
biomarkers and interpreted the learned model to uncover puta-
tive mechanisms driving superior outcomes. Patients with higher 
infiltration of T-follicular helper cells had responses even in the 
presence of defects in the MHC class-I (MHC-I). Further inves-
tigation uncovered different ICB responses in tumors when re-
sponses were reliant on MHC-I versus MHC-II neoantigens. 

Despite similar response rates, MHC II–reliant responses were 
associated with significantly longer durable clinical benefits 
(discovery: median overall survival of 63.6 vs. 34.5 months; P ¼
0.0074; validation: median overall survival of 37.5 vs. 33.1 
months; P ¼ 0.040). Characteristics of the tumor immune mi-
croenvironment reflected MHC neoantigen reliance, and analysis 
of immune checkpoints revealed LAG3 as a potential target in 
MHC II–reliant but not MHC I–reliant responses. This study 
highlights the value of interpretable machine learning models in 
elucidating the biological basis of therapy responses. 

Introduction 
The development of immune checkpoint blockade (ICB) thera-

peutics has shifted the cancer treatment paradigm, offering un-
precedented hope for patients who once faced limited therapeutic 
options (1, 2). The remarkable successes of ICB, leading to complete 
remissions in some patients with advanced cancers have propelled 
this approach to the forefront of modern oncology (3). ICB is now a 
standard treatment in some tumor types; however, a substantial 
proportion of patients still fail to benefit while experiencing the side 
effects and costs of the therapeutics (4–6). Despite several landmark 
studies on biomarkers for immunotherapy response (7–9), identi-
fying those patients who would effectively respond to immuno-
therapy remains a challenge (10). 

Thus far, biomarkers have focused on measured characteristics 
of the tumor or the tumor immune microenvironment (TIME). 

Current FDA-approved biomarkers include tumor mutation 
burden (TMB), microsatellite instability status, and IHC staining 
of the tumor microenvironment to quantify PDL1 positivity (11). 
However, these predictors of response are imperfect and their 
application in clinical settings is not straightforward (12). Many 
more sophisticated measures of ICB response have also been 
proposed, including the potential immunogenicity of somatic 
mutations in the tumor (13, 14), measures of immunoediting 
such as the ratio of nonsynonymous:synonymous mutations of 
the immunopeptidome (15), evidence of impaired antigen pre-
sentation quantified from somatic copy number loss and muta-
tion of MHC genes (16–18), and tumor clone phylogeny 
estimates as a proxy for intratumoral heterogeneity (19). Ana-
gnostou and colleagues (20) successfully integrated somatic 
features such as these to predict ICB response using machine 
learning models with superior accuracy, suggesting nonlinear 
predictive models may capture additional biological complexity. 
These approaches show promise to improve over current FDA- 
approved measures, although performance gains have generally 
been modest. 

More recent work has uncovered a role for germline genetic 
variation in influencing the characteristics of the TIME and ICB 
response. Although whole exome sequencing (WES) methods re-
quire a matched normal tissue as a background panel for somatic 
mutation detection (21), patient germline variation has largely been 
ignored in the development of predictive ICB modeling, even 
though germline variation has a considerable effect on adaptive 
immune traits (22–24). We reasoned that although individual 
common variants often have only a weak influence on traits, the 
sum of these variations could have a large impact on the TIME, as 
suggested by a study in which common germline variants were 
found to predict ICB responses independent of somatic biomarkers 
(25). With the exception of some rare germline variants, cancer 
often arises from mutagenic processes independent of host germline 
genetics (26). 
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In this study, we developed a machine learning framework that 
integrates both somatic and germline features into a unified model 
that aims to maximize the identification of patients who may benefit 
from ICB therapy. We used XGBoost for the model architecture as it 
has shown strong performance on limited training data, allows for 
nonlinear interactions among features, and is interpretable in that 
individual feature contributions to predictive performance can be 
quantified (27–29). A composite model using all features demon-
strated superior performance across multiple independent test sets 
relative to predictors trained on germline or somatic features alone. 
Analysis of the composite model revealed feature interactions that 
contributed to model performance, the strongest of which occurred 
between MHC class-I (MHC-I) damage and a germline variant 
associated with increased infiltration of T-follicular helper cells. 
Further investigation of this interaction suggested an MHC-I– 
independent mechanism of ICB response associated with the MHC 
class-II (MHC-II) CD4+ T-cell axis in some patients. Grouping ICB 
responders by response type showed more durable ICB responses in 
the MHC-II–driven response axis. For the 34% of patients with 
RNA expression data, we also investigated characteristics of the 
TIME such as checkpoint expression, T-cell infiltration, and tertiary 
lymphoid structure (TLS) signatures (30–32). Overall, our results 
support the notion that nonlinear models using somatic and 
germline features together to predict ICB outcomes allow for the 
formulation of new hypotheses about biological mechanisms un-
derlying the diversity of clinical responses to ICB. 

Materials and Methods 
ICB and TCGA data sets 

Raw FASTQ files were obtained using SRA toolkit v2.9.6-1- 
ubuntu64 for the following immune checkpoint trials: Hugo and 
colleagues [SRA accession: SRP090294, SRP067938; Cancer: mela-
noma; n ¼ 38; RNA sequencing (RNAseq) ¼ 27], Van Allen and 
colleagues (SRA accession: SRP011540, Cancer: melanoma; n ¼ 110; 
RNAseq ¼ 40), Miao and colleagues (SRA accession: SRP128156, 
Cancer: clear cell renal carcinoma; n ¼ 69; RNAseq ¼ 33), Riaz and 
colleagues (SRA accession: SRP095809, SRP094781; Cancer: mela-
noma; n ¼ 57; RNAseq ¼ 46), Rizvi and colleagues (SRA accession: 
SRP064805, Cancer: non–small cell lung cancer; n ¼ 35), Snyder 
and colleagues (SRA accession: SRP072934, Cancer: melanoma; n ¼
64), Liu and colleagues (SRA accession: PRJNA82747 Cancer: 
melanoma; n ¼ 122; RNAseq ¼ 122), and Cristescu and colleagues 
(SRA accession: PRJNA449580, Cancer: Melanoma, HSNCC, Uro-
thelial; n ¼ 213). Only pretreatment samples were utilized in this 
study. Across cohorts, a total of 708 ICB-treated patients were 
evaluated in this study. The Cancer Genome Atlas (TCGA; ref. 33) 
samples from similar tissues to the ICB cohorts were obtained from 
the TCGA data portal https://portal.gdc.cancer.gov/. Only patients 
with available genetic SNP, somatic, and RNAseq data were 
extracted (n ¼ 3,377) from the following TCGA cohorts (LUAD, 
n ¼ 522; KIRC, n ¼ 537; SKCM, n ¼ 470; HNSC, n ¼ 528; BLCA, 
n ¼ 412; KICH, n ¼ 113; KIRP, n ¼ 291; LUSC, n ¼ 504). 

Data processing 
FASTQ files were processed via an identical bioinformatics 

pipeline. DNA: Genomic reads were aligned to UCSC hg19 coor-
dinates using BWA v0.7.17-r1188. Reads were sorted by SAM-
TOOLS v0.1.19, marked for duplicates with Picard Tools v2.12.3 
and recalibrated with GATK v3.8-1-0. Germline variants were called 
from sorted BAM (Binary Alignment Map) files using DeepVariant 

v0.10.0-gpu. Somatic variants were obtained through the following 
additional steps. Aligned tumor/normal BAM files were submitted 
to standard Mutect2 somatic variant calling using GATK-4.1.3.0. 
First, BAM file formats were standardized using GATK-4.1.3.0 
AddorReplaceReadGroups, then GATK-4.1.3.0 Mutect2 was used to 
call somatic variants using default settings (including the presence 
of a matched normal), the gnomAD v3.1 raw sites background SNP 
panel, and the Twist Exome Target bed file to limit variant calling to 
exonic regions. Potential somatic variants were filtered using 
GATK-4.1.3.0 FilterMutectCalls and only mutations with a filter flag 
of “PASS” were kept for subsequent analysis. Somatic mutations 
were further filtered to retain only those with a DNA allelic frac-
tion >5%. The resulting variant call format (VCF) files were an-
notated by variant effect prediction using cache version 
102_GRCh37 and default settings. RNA: When available, RNA 
FASTQ/BAM files were downloaded for 33 RCC and 240 patients 
with melanoma. BAM files were converted to FASTQ using bam2fq. 
Unpaired reads were removed using fastq pair. Paired reads were 
aligned with STAR v2.4.1 d to GRCh37 reference alignment. RSEM 
v1.2.21 was used for transcript quantification. Raw transcript counts 
were corrected for cohort-specific batch effects using ComBat before 
being transformed into transcript per million (TPM) values. 

Feature construction 
Germline features 

A set of 1,084 TIME-associated SNPs was sourced from Pagadala 
and colleagues (25). These SNPs were demonstrated in the afore-
mentioned study to have significant associations with immune- 
related functions in TCGA and were successfully used to develop an 
earlier germline ICB response prediction model (25). Next, we fil-
tered for SNPs present with a mutant allele fraction >0.05 in all 
studies, leaving 598 SNPs to run METAL (34) analysis with ICB 
response in the three training cohorts. METAL analysis calculates a 
single P-value for each SNP across the three training cohorts (Hugo 
and colleagues, Riaz and colleagues, and Snyder and colleagues) and 
indicates the direction of effect for each cohort. SNPs with an FDR 
of <0.25 and showing full agreement with direction of impact were 
included, resulting in 229 SNPs with a nominal ICB association. 
TCGA and discovery genotype processing was performed by 
Pagadala and colleagues and is described in detail in their methods. 
For this study, we obtained preprocessed genotype matrices for each 
of the cohorts examined. 

Somatic features 
Tumor mutational burden: TMB was defined as the sum of all 

nonsynonymous somatic coding mutations in each patient’s VCF 
file, including “protein coding,” “frameshift variant,” and “stop lost” 
mutations. To adjust for cohort-specific effects, TMB was trans-
formed by the intra-cohort z-score before being included in the 
machine learning model. A similar convention is described in Vokes 
and colleagues (35). 

Immune escape: A comprehensive list of immune escape–related 
genes was obtained from Zapata and colleagues (15). Somatic mu-
tations with variant effect prediction impact annotations of 
“MODERATE” or “HIGH” were tallied from per patient VCF files. 
The final immune escape mutation counts were divided by each 
patient’s total TMB to generate a score reflecting disproportionate 
immune evasion—otherwise, the score is highly correlated 
with TMB. 
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Antigen presentation pathway: A list of key antigen presentation 
pathway–related genes was obtained from MSigDB M1062, Reac-
tome Antigen Presentation Folding Assembly, and Peptide Loading 
of Class-I MHC. All HLA genes were removed from this list as they 
are accounted for with better accuracy by HLA-specific tools and 
summarized in other features. Somatic mutations with an impact of 
“MODERATE” or “HIGH” were tallied from per patient VCF files. 
The resulting scores were divided by each patient’s total TMB to 
generate a score reflecting disproportionate damage to the antigen 
presentation pathway. 

Intratumoral heterogeneity and fraction of TMB subclonal: 
Intratumoral heterogeneity (ITH) and fraction of TMB subclonal 
both rely on accurate subclonal estimates, which are derived as 
follows. First, copy number calling was performed using CNVkit 
v0.9.10. A background panel of normals was constructed for each 
cohort separately using CNVkit reference to protect against batch 
effects. CNVkit batch was used to call copy number changes with 
each respective cohort’s matched background panel. We next used 
PureCN v2.6.4 (run via singularity image) with CNVkit-derived .cnr 
and .seg files, and Mutect2-derived filtered VCF files to generate 
purity and ploidy metrics to be used in subsequent subclone esti-
mation. PureCN was run with default settings, repeat regions cen-
sored, and a random seed set to 123. Next, PyClone-VI v0.13.1 was 
run on mutation-specific integer copy number estimates derived 
from the CNVkit call (https://cnvkit.readthedocs.io/en/stable/ 
heterogeneity.html) to estimate the clonal structure of the tumor. 
ITH was defined as the total number of subclones with at least five 
mutations (total range 0–11 subclones). Fraction of TMB subclonal 
was calculated by taking the total number of mutations belonging to 
small subclones (<5 mutations per subclone) and dividing it by the 
total number of mutations for each tumor. This generates an inverse 
estimate of clonal heterogeneity from ITH. 

Immunoediting: Immunoediting evaluates the ratio of non-
synonymous to synonymous mutations (dN/dS) in a tumor as a 
measure of selection (36). Immune dN/dS was adapted by Zapata 
and colleagues (15) in their toolkit SOPRANO (https://github.com/ 
luisgls/SOPRANO) to calculate the immunoediting score for each 
patient using an hg19 reference and default settings. Essentially, this 
score derives from calculating dN/dS across all regions of the pro-
teome predicted to bind the set of patient-specific MHC alleles 
(i.e., displayed for immune surveillance) and ranges from 0 to ∼5 
with a score above one indicating a higher amount of non-
synonymous mutations to synonymous ones. 

MHC-I damage: MHC-I damage was defined as the union of 
POLYSOLVER (16) and LOHHLA (17) results. First, class-I HLA 
alleles were genotyped via POLYSOLVER [see Patient Harmonic- 
mean Best Rank (PHBR) pipeline methods]. Next, LOHHLA 
(https://github.com/mskcc/lohhla), originally published in McGra-
nahan and colleagues (17), is used to identify copy number losses of 
HLA alleles. Copy number and purity data are provided to the 
program and summary statistics about HLA copy number losses are 
generated. A given HLA allele was marked as lost if the Pval_unique 
of its loss was ≤0.05. POLYSOLVER mutation calling [Shukla and 
colleagues (16)] was used to generate somatic mutation calls of each 
HLA allele. If an HLA allele was flagged by either of these tools, it 
was marked as damaged. Alleles were only counted as damaged 
once even if flagged by both tools. Both programs were provided 
identical HLA genotypes on a per-patient basis. 

Machine learning framework 
Overview 

We built XGBoost classifiers for three predictive tasks: ICB re-
sponse prediction from germline, somatic, and combined features, 
respectively. Models were fit in two stages: feature selection, fol-
lowed by model training and evaluation. First, we conducted re-
cursive feature elimination (RFE) on an initial array of features 
using the Cristescu and colleagues (37) cohort, then trained classi-
fiers to predict ICB response using Hugo and colleagues (38). (n ¼
34), Riaz and colleagues (n ¼ 61; ref. 39), and Snyder (n ¼ 64; ref. 
40) melanoma cohorts. The trained model was then evaluated on 
three test cohorts: Vanallen and colleagues (n ¼ 110; ref. 41), Miao 
and colleagues (n ¼ 70; ref. 42), and Rizvi and colleagues (n ¼ 34; 
ref. 43). Biological implication validation was conducted with the 
Liu and colleagues (n ¼ 122; ref. 44) cohort. 

RFE 
RFE was performed on three feature sets: 229 germline SNPs 

only, 16 somatic variables only, and both sets combined. The RFE 
model was trained on Cristescu melanoma (n ¼ 89) and tested on 
Cristescu HNSCC (n ¼ 107) and Cristescu urothelial (n ¼ 17) 
samples to ensure this step prioritized broadly useful biological 
features to use in the model training step. The model used for RFE 
was an XGBoost random forest classifier (python package version 
1.6.2) with 20 total estimators and a maximum depth of 8. We used 
a nonlinear model for feature selection to allow for feature inter-
actions even during the feature selection stage. All possible feature 
combinations and total model sizes were tested, and the mean 
squared error (MSE) of each was recorded. The model with the 
lowest MSE was selected, and the features included in that model 
were used for training in stage two. For the 229 germline SNPs, a 
model with a combination of 54 SNPs yielded the lowest MSE in the 
RFE cohorts. These 54 SNPs were collapsed into continuous gene- 
level expression quantitative trait loci (eQTL) scores by measuring 
the direction of their effect on gene expression in TCGA (see dataset 
methods for more details) and orienting alleles such that all SNPs 
affected gene expression in the same direction (Supplementary Fig. 
S1). This resulted in 23 simplified, gene-level continuous scores 
reflecting the total magnitude of the expected change in gene ex-
pression (Supplementary Fig. S1). For the composite model, RFE 
was performed on the set of features prioritized by the initial RFE 
performed for each data type separately. 

ICB response classifier training 
We trained three different classifiers to predict ICB response, one 

using only germline features, one using only somatic features, and 
one on the combined feature set (the composite model). Using 
features passing RFE analysis, XGBoost random forest classifiers 
were trained on Riaz and colleagues (39), Hugo and colleagues (38), 
and Snyder (40). data sets with 1,200 total estimators and a maxi-
mum depth of 8. The performance of these models was then eval-
uated separately on the Vanallen and colleagues (41), Rizvi and 
colleagues (43), and Miao and colleagues (42) datasets. Aside from 
feature curation, this process was identical for all models, and a 
standard random seed was set for all models to ensure reproduc-
ibility. For each patient, the XGBoost random forest classifier 
returns a class prediction probability ranging from 0 to 1, which we 
refer to as the immune checkpoint (IC) index. For visualization 
purposes, we used sklearn MinMaxScaler to scale these values from 
0 to 10. This process preserves the distribution of scores and 
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therefore does not affect statistical comparisons. For each model 
and cohort, IC index scores were compared between responders and 
nonresponders using Mann–Whitney U tests. Comparisons between 
the effect size of each IC index were made using the Cliff’s Delta 
value of each model’s effect size. Response to immunotherapy was 
defined using the RECIST criteria (45). ROC plots were constructed 
using the scaled continuous IC index results, in which the outcome 
label was the response phenotype, and the AUC was used to sum-
marize overall performance. Test datasets were then pooled for 
survival analysis via multivariable Cox proportional hazard analysis, 
in which the association of IC index with progression-free survival 
(PFS) was measured alongside covariates of age, sex, and tumor 
type, using the R packages “survival” and “survminer” (46, 47). 
Kaplan–Meier curves were constructed using tertile splits of IC 
index scores and P-values of pairwise comparisons between tertiles 
were computed with log-rank tests. Finally, positive and negative 
predictive values (PPV and NPV, respectively) were computed and 
compared between each model type using the “DTComPair” 
package (48). State-of-the-art ICB response prediction projects from 
Litchfield and colleagues, Chowell and colleagues, and Auslander 
and colleagues (49–51) have demonstrated remarkable accuracy in 
validation sets when RECIST stable disease (SD) category patients 
are included as nonresponders or excluded entirely. These SD pa-
tients are particularly difficult to classify because of their ambiguous 
TIME and somatic biomarker landscape, but still benefit from in-
creased overall survival (45) and were counted as responders in 
predictive modeling tasks in this study. 

Evaluation of the TIME with digital cytometry 
The composition of immune infiltrates in the TIME was evalu-

ated by digital cytometry via CIBERSORTx using the LM22 signa-
ture matrix with batch correction. The T-cell infiltration score was 
constructed from the CIBERSORTx CD8 T Cells score. The general 
TIME score used in Kaplan–Meier plotting was calculated as the 
linear combination of the therapeutic target, T-cell response, and 
TLS formation. CIBERSORTx T-follicular helper cell estimates were 
reused for MHC reliance analyses to corroborate the effect of SNPs 
associated with higher T-follicular helper cell infiltration. The TLS 
gene expression signature was generated from a set of TLS-related 
genes reported by Cabrita and colleagues (52) and Sautès–Fridman 
and colleagues (CCL19, CCL21, CXCL13, CCR7, CXCR5, SELL, 
LAMP3, CETP, RBP5, AICDA, BCL6, CCR6, and CD79B; 53) using 
the method put forth in Cabrita and colleagues (52), in which mean 
gene expression of key genes upregulated in TLS was calculated. 
CD4+ and CD8+ T-cell infiltration estimates were calculated using 
CIBERSORTx, in which the CD4/CD8 ratio was defined using 
“T-cell CD4 memory activated” + “T-cell follicular helper” infil-
tration divided by “T-cell CD8” infiltration categories. Only patients 
in the top two tertiles of CD8+ T-cell infiltration were included in 
direct CD4/CD8 ratio comparison analysis to remove patients with 
zero or very low levels of immune infiltrates. 

SHAP feature importance and feature interactions 
Feature importance and interaction within nonlinear models 

were calculated using the SHapley Additive exPlanations (SHAP) 
machine learning interpretability suite (https://shap.readthedocs.io/ 
en/latest/). SHAP is a unified approach to explain the output of any 
machine learning model. It is based on cooperative game theory and 
the concept of Shapley values. SHAP values assign each feature an 
importance value for a particular prediction in the context of a 
specific model. These values allow for nonlinear interactions 

between features to be accounted for on a per-patient basis, and they 
also allow us to rank pairwise feature interaction by magnitude. 
Each model was run through the standard SHAP python pipeline 
and the feature importances were recorded. For the composite 
model, feature interaction analysis was performed as well using the 
shap_interaction_values function. 

PHBR score pipeline 
Originally developed by Marty and colleagues (54, 55), the PHBR 

score is a measure of how well a given neoantigen is presented by 
the MHC based on computationally derived binding affinities be-
tween all possible peptides harboring the mutation and a patient’s 
set of HLA alleles. A detailed description can be found in the 
original publication (54). For each patient, all single nucleotide 
variant mutations were given an MHC-I PHBR score and an MHC- 
II PHBR score representing presentation by class-I and class-II, 
respectively. A neoantigen was considered to be well presented by 
MHC-I with a PHBR score ≤2 and well presented by MHC-II with a 
PHBR score ≤10 (56). Class-I HLA alleles were called using POL-
YSOLVER (v1.0.0; ref. 16) with default parameters, and Class-II 
HLA alleles were called using HLA-HD (v1.4.0; ref. 57) with default 
parameters. 

MHC reliance stratification 
Patients were stratified by the ratio of the total number of neo-

antigens well presented by MHC-II divided by the total number of 
neoantigens well presented by MHC-I. A patient was only consid-
ered for analysis if they had at least three mutations well presented 
by both MHC-I and MHC-II. Neoantigens that were both well 
presented by both MHC-I and MHC-II were not considered in this 
ratio. These ratios were divided into tertiles and defined as follows: 
the lowest tertile was MHC-I-reliant, the middle tertile was bal-
anced, and the highest tertile was MHC-II reliant. To select for 
patients with MHC II–based immune responses, MHC II–reliant 
patients with no evidence of MHC-I damage or loss of heterozy-
gosity were excluded. 

TCGA immune infiltration analysis 
Tissue types matching those from our analysis (melanoma, renal 

cell carcinoma, non–small cell lung carcinoma, head and neck 
squamous cell carcinoma, and urothelial/bladder cancer) were 
pulled from TCGA: LUAD, KIRC, SKCM, HNSC, BLCA, KICH, 
KIRP, and LUSC (see ICB and TCGA datasets). Stage II–IV cancers 
were analyzed to better match our ICB cohorts. Poorly infiltrated 
tumors were dropped from the analysis to ensure that cancers an-
alyzed from TCGA were at least somewhat infiltrated by lympho-
cytes. To achieve this, we calculated the ImmunoScore (58), for all 
patients, and the bottom tertile (most poorly infiltrated) patients 
were dropped from the analysis. CD4/CD8 T-cell ratios were cal-
culated in an identical manner as the ICB cohorts. Similarly, MHC 
reliance groupings were generated identically as in ICB discovery 
and reliance cohorts. 

TCGA tumor intrinsic MHC-II expression estimates 
We estimated tumor intrinsic MHC-II expression by adjusting 

HLA DRB1 expression in the same cancer types and stages as the 
above section (see “TCGA immune infiltration analysis”). HLA 
DRB1 expression levels were corrected for inter-patient variation in 
immune infiltrates by multiplying by tumor purity fraction and 
1 minus the sum of relative infiltration of professional antigen- 
presenting cells and CD4+ T cells, as measured by CIBERSORTx. 
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We adjusted for the following canonical MHC-II expressing cell 
types in the CIBERSORTx LM22 matrix: B cells, CD4+ T cells, 
macrophages, and dendritic cells. 

Multivariable checkpoint analysis 
Five FDA-unapproved IC genes with ongoing clinical trials were 

investigated for an association with a particular MHC reliance 
group: LAG3, TIM3, TIGIT, OX40, and IDO1. Univariable analysis 
revealed significant associations with LAG3 in both discovery and 
validation ICB cohorts, which were subjected to further multivari-
able analysis accounting for PDL1 and CTLA4 expression. A median 
expression cutoff was used to create binary high- and low- 
expressing groups for each of the checkpoint genes. Age, sex, and 
tumor type were accounted for during multivariable Cox propor-
tional hazard analysis, as well as prior CTLA4 treatment in the 
validation cohort, because of a large proportion of patients in Liu 
and colleagues (52) having received such treatment. Kaplan–Meier 
curves were generated using these same binary cutoffs and P-values 
were calculated using the log-rank test. 

Statistical analyses 
Statistical software used in this manuscript were R version 4.2.1 

and Python version 3.9.2. Unless otherwise indicated all P-value 
significance thresholds were set at <0.05. Where indicated, P-values 
were corrected using the Benjamini–Hochberg method. 

Data availability 
This study relied entirely on de-identified publicly available 

datasets and does not necessitate IRB review. The studies relied 
upon in this manuscript were all conducted in accordance with 
recognized ethical guidelines and approved by an institutional 
review board. Code Availability Code to reproduce models, ana-
lyses, and figures can be found at the following Github repository: 
https://github.com/cartercompbio/MHC_reliance. The relevant 
Code Ocean capsule can be found here: https://codeocean.com/ 
capsule/9714470/tree/v1. 

Results 
Design and evaluation of a machine learning framework to 
predict ICB response 

Paired tumor/normal WES data were obtained for eight inde-
pendent ICB studies encompassing a range of tissue types and 
treatments across a total of 708 patients (Supplementary Table S1; 
refs. 37–44). Seven of these were used for machine learning, in-
cluding feature selection, model training, and independent valida-
tion (Fig. 1), and the eighth (Liu and colleagues) was added later to 
validate the translational potential of biological findings. We first 
assembled a set of germline and somatic features that could be 
extracted from WES data and that have previously been reported to 
predict ICB response (Supplementary Table S2). Germline SNPs 
associated with the TIME and ICB response from Pagadala and 
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colleagues (Supplementary Table S3; ref. 25) were further harmo-
nized and aggregated at the gene level into numerical scores for 
their respective gene, here termed eQTL-scores (Supplementary Fig. 
S1A; Supplementary Table S4). SNPs associated with immune in-
filtration levels were encoded at the single SNP level instead. So-
matic features from several impactful ICB response prediction 
studies were generated for each cohort, including TMB (59), dN/dS 
of the immunopeptidome (immunoediting; ref. 15), damage of 
MHC-I alleles (16, 17), and somatic mutation of genes in the an-
tigen presentation pathway (Supplementary Table S5; ref. 60). 
Clinical features available for all data sets included patient age and 
sex (61). To train models to predict ICB response, we used a two- 
stage machine learning approach entailing feature selection followed 
by model training (Fig. 1). We first reduced the number of features 
via RFE using the Cristescu and colleagues (37) cohort before 
training an XGBoost (62) classifier to predict ICB response as class 
labels. XGBoost is a tree-based ensemble method that generates a 

continuous probability score, here scaled to range between 0 and 10. 
We combined three similar anti-PD1/anti-PDL1/anti-CTLA4 
treated melanoma cohorts [Hugo and colleagues (38), Riaz and 
colleagues (39), and Snyder and colleagues (40)] into a single 
training set, and evaluated the potential of the classifier to generalize 
by applying it separately to three heterogeneous independent test 
cohorts: Van Allen (anti-CTLA4 treated melanoma; ref. 41), Rizvi 
(anti-PD1 treated NSCLC; ref. 43), and Miao [anti-PD1 or anti- 
PDL1 (42) some also with anti-CTLA4 treated RCC]. We compared 
models that relied only on germline features, only on somatic fea-
tures, or on a combination of both (referred to as the composite 
model). We termed the scores produced by these models the 
IC index. 

After RFE, we retained 24 germline features to train the 
germline model (Supplementary Fig. S2A), including 23 germline 
eQTL-scores representing genes involved in antigen processing/ 
presentation [ERAP2 (63), ERAP1 (64), VAMP8 (65)], immune 
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signaling [FCGR2B (66), PDCD1 (67), CTSS, CTSW)], and DNA 
replication [DHFR (68), TREX1 (69)] and a SNP associated with 
infiltration of T-follicular helper cells (TFHQTL; ref. 70), which 
was strongly and consistently associated with response across all 
cohorts (Fig. 2A). RFE for the somatic-only model selected 13 
features derived from clinical and tumor genomic data (Supple-
mentary Fig. S2B), including TMB (12), clonality-aware deriva-
tives of TMB such as ITH, and fraction of TMB subclonal (71, 72), 
as well as DNA based T-cell infiltration estimates (73) and mea-
sures of immune evasion (immunoediting, immune escape, 
MHC-I damage, and antigen presentation pathway damage; refs. 
15–17, 74). RFE for the composite model selected 24 features, 18 
(75%) of which were germline eQTL-scores and six (25%) of 
which were somatic features (Supplementary Fig. S2). Considered 
independently, only a minority of these features showed a sig-
nificant association with ICB response, and although the direction 

of effects generally agreed, there was variability across datasets 
(Fig. 2A). Feature associations with ICB response were more 
similar across melanoma cohorts than other tumor types 
(Fig. 2B). Although TMB and clonal TMB features passed RFE in 
the somatic-only model they were eliminated in the composite 
model, which instead utilized fraction of TMB subclonal and 
ITH—features that are anticorrelated and correlated with TMB, 
respectively (Supplementary Fig. S3; fraction of TMB subclonal: 
R ¼ �0.22, P ¼ 5.9e�08; ITH: R ¼ 0.2, P ¼ 1.6e�06). The com-
posite IC (cIC) index produced by the trained model remained 
somewhat correlated with TMB (Supplementary Fig. S4A; R ¼
0.2; P ¼ 0.0035) even though TMB was not directly incorporated 
as a feature. The somatic IC index had a high correlation with 
TMB (Supplementary Fig. S4B; R ¼ 0.46; P ¼ 7.5e�13), whereas 
the germline IC index was completely uncorrelated with TMB 
(Supplementary Fig. S4C; R ¼ �0.059; P ¼ 0.39). Finally, purity 
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and ploidy were somewhat correlated in our model (Supple-
mentary Fig. S4D; R ¼ 0.18; P ¼ 4e�06). 

After training XGBoost models on the selected features using the 
combined training set, we compared the performance of each model 
on the three independent test sets. Although all three models could 
distinguish between responders and nonresponders, the cIC index 
showed the best performance, resulting in the largest mean shift in 
score distributions between responders and nonresponders 
(Fig. 3A), the highest Cliff’s Delta between responders and nonre-
sponders (Fig. 3B), and the highest area under the ROC AUC 
(Fig. 3C). Improvements in ROC AUC from approximately 0.7 to 
0.8 were observed in the Van Allen (41) and Rizvi (43) studies, but 
more modest improvements were observed in Miao (42), possibly 
due to the vastly different TIME landscape of renal cell carcinomas 
compared with melanomas (75). PFS of the highest tertile of cIC 
index scores was significantly higher than the lowest tertile in 
Kaplan–Meier analysis (Fig. 3D; P < 0.0001) and the cIC index was 
more predictive of PFS in a Cox proportional hazard analysis using 
age, sex, and tumor type as covariates (see “Materials and 
Methods”), with a more extreme HR and more significant P-value 
relative to germline and somatic-only models (Fig. 3E). Compared 
with germline and somatic-only models, the cIC index resulted in 
an increased PPV (Fig. 3F; P ¼ 0.0012; P ¼ 2e�04), whereas NPV 
was not significantly different (Fig. 3G). In addition, we found that 
the germline IC index and somatic IC index scores were completely 
uncorrelated with each other, suggesting that these sources of data 

capture orthogonal information (Fig. 3H; R ¼ 0.042; P ¼ 0.54), 
helping to explain the improved performance of the composite 
model. The cIC index also outperformed baseline ICB response 
predictors including TMB, age, gender, and checkpoint expression 
(Supplementary Fig. S4E–S4I). On a pan-cohort basis, the difference 
in the cIC index of all responders versus all nonresponders was very 
significant (Supplementary Fig. S4J; P ¼ 7e�09). 

Impact of TIME on ICB response prediction 
Next, we compared the cIC index to characteristics of the TIME 

that can be obtained from RNA sequencing data, which were 
available for (72/214) 34% of test set patients. Several such measures, 
including effector CD8+ T-cell infiltrates (73, 76), joint B and CD4+ 

T-cell levels potentially indicative of TLS formation (32, 52, 77), and 
target checkpoint expression (PDL1/CTLA4; refs. 78, 79), have been 
previously correlated with ICB response. We evaluated CD8+ T-cell 
infiltration levels with CIBERSORTx (80), a digital cytometry tool 
that estimates immune cell fractions. To model TLS, we used the 
gene signature developed by Cabrita and colleagues (52) as a proxy 
for TLS formation. We found that patients split by high versus low 
cIC index (≥5) generally had similar TIME infiltration levels in all 
three categories (Supplementary Fig. S5A–S5C). Conversely, the 
TIME was significantly different between true positives and false 
positives, in which patients who were predicted to respond (cIC 
index ≥5) failed to respond and often had an immune-cold TIME, 
characterized by lower overall levels of immune infiltrates (Fig. 4A; 

3

A B

C D E

0.0081 0.055 0.017
Predicted

responder
(n = 29)

Predicted
nonresponder

(n = 43)

0.0 0.5

Hazard ratio (OS) Hazard ratio (OS) Hazard ratio (OS)

P = 0.0035

Theraputic target expression

P = 0.5564 P = 0.9142

P = 0.0426

P = 0.9096

P = 0.019

1.0 1.5 0.4 0.8 1.2 1.6 0.0 0.5 1.0 1.5

Theraputic target CD8
+
 T cells TLS signature

CD8
+
 T-cell infiltrates TLS signature

2

Predicted responders (composite IC index ≥5)
False positive (n = 10)/True positive (n = 19)

Predicted nonresponders Predicted responders

Z
-s

c
o

re

1

0

–1

100%

75%
P = 0.852 P = 0.0097

50%

O
v
e
ra

ll 
s
u
rv

iv
a

l 
(%

)

25% Strata
Hot TIME
(n = 21)
Cold TIME
(n = 21)

Strata
Hot TIME
(n = 15)
Cold TIME
(n = 14)

0%

100%

75%
7/14 (50%)

6/21 (29%)

12/15 (80%)

5/21 (24%)

50%

25%

0%

0 200 400 600 800

Time in days
1,000 1,200 1,4001,600 1,800 0 200 400 600 800

Time in days

Immune infiltration

C
o
m

p
o
s
it
e
 I

C
 i
n
d

e
x

1,000 1,200 1,4001,600 1,800

False positive True positive

Figure 4. 
Immune-infiltrated TIME and high cIC index scores are synergistic. A, Boxplots of median expression-based immune measures from combined test samples with 
RNA sequencing. IC index score distributions are compared with Mann–Whitney U tests. Error bars represent standard deviation. B, Hazard plots of primary TIME 
biomarkers stratified by IC index score. Error bars represent 95% CI. C, Kaplan–Meier curves of predicted nonresponders (IC index <5) stratified by TIME 
biomarker score. D, Kaplan–Meier curves of predicted responders (IC index >5) stratified by TIME biomarker score. E, Confusion matrix of IC index (cutoff IC 
index >5) and TIME score (cutoff TIME score above median). OS, overall survival; 

AACRJournals.org Cancer Immunol Res; 12(12) December 2024 1787 

Germline and Somatic Features Reveal Divergent ICB Responses 

https://aacrjournals.org/


ref. 81). This relationship was strongest in the checkpoint therapy 
target (CTLA4 for Van Allen and colleagues, PDL1 for Miao and 
colleagues; P ¼ 0.0081) and TLS formation TIME categories (TLS 
gene signature P ¼ 0.017), with CD8+ T cells showing near signif-
icant association (P ¼ 0.055). These results imply that high cIC 
index patients with favorable germline and somatic biomarkers can 
nonetheless fail to respond to ICB due to a poorly infiltrated TIME. 

We also investigated whether an immune hot TIME could rescue 
patients with low somatic and germline potential for response. 
Using a Cox proportional hazard model adjusted for age, sex, and 
data set, we found that each of the TIME infiltration estimates 
(checkpoint target: P ¼ 0.0035, CD8+ T cells: P ¼ 0.019, TLS for-
mation: P ¼ 0.043) was significantly associated with improved 
overall survival in high cIC index patients only, whereas low IC 
index patients failed to significantly benefit from an immune hot 
TIME (Fig. 4B). These results were mirrored in Kaplan–Meier plots 
of high and low cIC index patients (Fig. 4C and D) stratified by level 
of TIME infiltration. High cIC index patients benefit from an above 
median TIME (P ¼ 0.0097), whereas low cIC index patients do not 
(P ¼ 0.852). Similarly, a high cIC index with an immune hot TIME 
had the highest rate of response to ICB (Fig. 4E). These findings are 

consistent with previous studies indicating that immunogenic tu-
mors respond at greater rates when there is high CD8+ T-cell in-
filtration but that high CD8+ T-cell infiltration alone is not sufficient 
for high rates of ICB response (37). Furthermore, although high cIC 
index scores yielded the strongest relationship with higher immune 
infiltration, we found this enhancement was primarily driven by 
germline factors rather than somatic ones (Supplementary Fig. S5D 
and S5E). Our analyses suggest that cIC index scores may be useful 
as general estimates of immunogenicity and could be used as ad-
ditional indicators of when a patient could benefit from ICB beyond 
TIME profiling. 

Nonlinear feature interactions reveal alternative mechanisms 
of ICB response 

In order to better understand how selected germline and somatic 
features contribute to model performance, we analyzed feature 
importance using SHAP values (82), a game theory approach to 
improve the interpretation of the machine learning model. We 
noted differences in feature rankings particularly for ERAP1, MHC- 
I damage, and immunoediting, between XGBoost and linear models 
suggesting the presence of interactivity effects (Supplementary Fig. 
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S6). Thus, we evaluated both individual feature contributions and 
pairwise interactions between features. SHAP analysis revealed 
several key feature interactions (Fig. 5A), the strongest of which was 
between somatic MHC-I damage, i.e., the cumulative MHC-I 
damage from somatic mutation and loss of heterozygosity (see 
“Materials and Methods”), and TFHQTL. We further examined this 
interaction in terms of ICB response rates between categories 
(Fig. 5B) and observed higher rates of response when the TFHQTL 
was present (P ¼ 1.7e�05 TFHQTL vs. class-I MHC damage; P ¼
0.0063 TFHQTL vs. neither), even when the potentially negative 
effect of MHC-I damage was present (P ¼ 1.0; TFHQTL vs. both). 
Because rates of ICB response were unaffected by MHC-I damage in 
patients carrying the TFHQTL (Fig. 5B), we hypothesized that this 
SNP may promote immune responses upon ICB treatment that do 
not rely on MHC-I-based antigen presentation. Instead, patients 
with the TFHQTL could be predisposed toward an MHC-II–driven 
mechanism of response. As TFH cells primarily assist B cells in 
producing antibodies through MHC-II interactions (83), this may 
suggest a role for humoral immunity that is independent of cellular 
immune responses mediated via MHC-I and cytotoxic T cells. NK 
cells are also known to modulate adaptive immune responses via 
CD27 in MHC-I–deficient tumors (84). Although the role of fol-
licular T helper cells (Tfh) in this context is not well understood, 
one study in mice with MHC-I–deficient tumors found that NK 
cell–CD4+ T-cell interplay led to tumor rejection without any CD8+ 

T-cell activity (85). 
To further investigate this idea, we grouped tumors in the dataset 

according to whether somatic mutations were more prevalently 
presented by MHC-I or MHC-II molecules, suggesting the potential 
for the reliance of immune responses on particular MHC pathways 
of neoantigen presentation. First, we calculated PHBR scores (54, 
55) for each nonsynonymous mutation in all patients. PHBR scores 
are mutation-centric scores that seek to summarize whether any 
peptides overlapping the mutated site will be presented by any of an 
individual’s HLA alleles. Patients with at least three mutations 
passing PHBR thresholds for both MHC-I and MHC-II were then 
split into groups termed MHC I reliant, MHC II reliant, or balanced 
based on the ratio of these class-specific neoantigens (Fig. 5C; 
Supplementary Fig. S7A; Supplementary Table S6), with reliant 
referring to an immune response potentially dependent on MHC-I 
versus MHC-II presented neoantigens. Among MHC I–reliant pa-
tients, we noted a significantly higher level of MHC-I damage in 
nonresponders versus responders (P ¼ 0.0092; Fig. 5D) reflecting 
the notion that an MHC I–reliant response depends on the integrity 
of the MHC-I and associated antigen presentation pathway. Al-
though balanced patients demonstrated an intermediate disparity in 
MHC-I damage between nonresponders versus responders (P ¼
0.02), this was not the case in MHC II–reliant patients (P ¼ 0.74). 
Overall ICB response rates between these two groups were not 
significantly different (Supplementary Fig. S7B). 

Next, we sought to understand how MHC reliance could modify 
the potential to benefit from the TFHQTL. We reasoned that the 
most extreme cases of MHC-II reliance would be those that also had 
defects in the MHC-I antigen presentation pathway. The distribu-
tion of defects to the MHC-I antigen presentation pathway was 
statistically similar between each of the MHC reliance groups 
(Supplementary Fig. S7C and S7D), although MHC II–reliant pa-
tients with defects to the MHC-I antigen presentation pathway 
showed significantly less immunoediting than those with defects 
(Supplementary Fig. S7E), suggesting that these defects may limit a 
patient’s ability to mount an MHC-I driven immune response. 

MHC II–reliant patients with defects to the MHC-I antigen pre-
sentation pathway comprised 83% of MHC II–reliant tumors 
(154/171), so we focused further analyses on this subpopulation. We 
found a significant difference in the frequency of the TFHQTL be-
tween responders versus nonresponders in the MHC I–reliant and 
balanced categories (P ¼ 0.0042; P ¼ 0.003; Fig. 5E) but not in the 
solely MHC II–reliant category (P ¼ 0.12). This is somewhat mir-
rored in the subset of patients with tumor immune infiltration es-
timates available, in which TFH cell estimates were higher in MHC 
I–reliant responders versus nonresponders (P ¼ 0.03; Supplemen-
tary Fig. S7F) but not in the balanced or MHC II–reliant responders 
versus nonresponders (P ¼ 0.48, P ¼ 0.5). It is possible that MHC I– 
reliant responders benefit from an increased infiltration by TFH cells, 
TLS formation, and associated helper effects that are important to 
maintain the function and precursor frequency of CD8+ T cells 
(86–91). Indeed, TLSs have been shown to enhance ICB response in 
melanoma (52, 77). Conversely, MHC II–reliant patients may re-
ceive less benefit from additional TFH-cell infiltration because their 
neoantigen landscape is already predisposed toward the formation 
of TLSs. Indeed, we found that MHC I–reliant responders had 
higher TLS gene signature expression than nonresponders (P ¼
0.036; Fig. 5F), yet this difference was not significant in MHC II– 
reliant patients (P ¼ 0.12; Fig. 5F). MHC II–reliant patients in 
general had a higher level of TLS gene signature expression than 
MHC I–reliant patients (P ¼ 0.0088; Fig. 5F), which is consistent 
with the fact that TLS formation is more closely associated with the 
MHC-II/CD4+ T-cell axis (53, 92, 93). These initial observations 
point to the possibility that mechanistically divergent immune re-
sponses yield ICB responses based on how effectively neoantigens 
engage each MHC pathway. 

MHC reliance groupings are related to survival and mechanism 
of immune evasion 

We next sought to understand the clinical implications of dif-
ferential MHC reliance. To validate our findings, we performed 
identical analyses on an additional independent ICB-treated cohort 
(n ¼ 77) with paired transcriptomic data [Liu and colleagues (44)] 
and compared the results with those from our original set of seven 
cohorts referred to as the discovery set. We first investigated the 
effects of MHC reliance grouping on the composition of the TIME. 
We observed that CD4+/CD8+ T-cell ratios mirrored MHC reliance 
in responders, with higher ratios being observed in MHC II–reliant 
tumors (Fig. 6A; P ¼ 0.0057 discovery; P ¼ 0.025 validation). 
However, no such difference was found in nonresponders. We ap-
plied an identical methodology to immune-infiltrated (58) ICB- 
naive, tissue-matched cancer samples from TCGA and found a 
protective effect of the CD4+/CD8+ T-cell ratio in TCGA MHC II– 
reliant patients (Supplementary Fig. S8A; HR ¼ �0.76; P ¼ 0.0069) 
but a significantly adverse effect of that same ratio in TCGA MHC I– 
reliant patients (Supplementary Fig. S8B; HR ¼ 0.59; P ¼ 0.0352). Ad-
ditionally, we found that an estimate of tumor intrinsic MHC-II ex-
pression was protective in MHC II–reliant patients only (Supplementary 
Fig. S8C; HR ¼ �0.64; P ¼ 0.0094; Supplementary Fig. S8D; HR ¼ 0.14; 
P ¼ 0.65). These data support the idea that there is a benefit to having 
some level of concordance between CD4+/CD8+ T-cell infiltration, 
MHC-II expression, and MHC-II/MHC-I neoantigen ratios. To investi-
gate differences in response dynamics between CD4+ and CD8+ T-cell 
mediated responses, we compared the survival of responders MHC II– 
versus MHC I–reliant groups. Despite nonsignificant differences in re-
sponse rates, MHC II–reliant responders had a significantly longer overall 
survival in both discovery and validation cohorts (Fig. 6B and C, 
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discovery P ¼ 0.0073; validation P ¼ 0.0398), consistent with reports 
that CD4+ T-cell–based immune responses are tumor autonomous 
and therefore more difficult to evade in the long term (55, 94, 95). 
This observation was not solely reliant on one cohort or cancer type, 
as MHC reliance groupings were found to be balanced across all 
cohorts except Van Allen (Supplementary Table S7), and our findings 
were unchanged upon removal of the Van Allen cohort from this 
analysis (Supplementary Fig. S9). 

Finally, we wanted to know if differences in MHC reliance 
could translate to differences in pathways of immune evasion. 

ICs are commonly overexpressed to suppress an active immune 
response. Currently, of the many checkpoints identified in the 
tumor microenvironment only PDL1 positivity in tumor sections 
is approved as a biomarker of ICB response, albeit its predictive value is 
modest (78). To investigate whether differences might exist about which 
checkpoints correlate with a beneficial antitumor immune response 
under different MHC reliance conditions, we evaluated the relationship 
between the expression of individual checkpoint genes and PFS post- 
ICB treatment by univariable Cox PH analysis. We focused on 
checkpoint genes with antibody inhibitors undergoing clinical trials 
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(PDL1, CTLA4, LAG3, TIGIT, TIM3, IDO1, and OX40; ref. 96). When 
split by MHC reliance grouping, higher LAG3 expression was associ-
ated with benefit from ICB in the MHC II–reliant group (Supple-
mentary Fig. S10; Supplementary Table S8). To adjust for potentially 
confounding effects of the correlated expression of canonical (97, 98) 
immune checkpoint genes, we performed a multivariable analysis 
centered on LAG3, PDL1, and CTLA4. We found that high PDL1 
expression was generally associated with longer survival post-ICB 
treatment in MHC I–reliant patients (Fig. 6D, discovery P ¼ 0.026; 
validation P ¼ 0.062), CTLA4 expression with longer survival in bal-
anced patients (Fig. 6D, discovery P ¼ 0.054; validation P ¼ 0.006), and 
LAG3 with longer survival in MHC II–reliant patients (Fig. 6D, dis-
covery P ¼ 0.014; validation P ¼ 0.002). There was no association of 
checkpoint gene expression with the MHC reliance category (Supple-
mentary Fig. S11A and S11B), and we observed some autocorrelation 
between LAG3, PDL1, and CTLA4 (Supplementary Fig. S11C and 
S11D). Among MHC II–reliant patients, higher expression of LAG3 
was associated with significantly longer overall survival in both dis-
covery and validation cohorts (Fig. 6E and F, discovery P ¼ 0.0018; 
validation P ¼ 0.0345). LAG3 is thought to play a prominent role in 
CD4+ T-cell regulation and may be a primary marker of activation (99, 
100). Our results may, therefore, reflect a key role for LAG3 as a me-
diator of CD4+ T-cell–based response to ICB therapy. 

Discussion 
ICB has emerged as a potent anticancer therapy; however, the 

fraction of patients who benefit from treatment remains disappoint-
ingly low. To improve the success of ICB, it is of the utmost im-
portance to understand which factors govern the potential to respond 
via the immune system. Here, we used a machine learning framework 
to study somatic and germline biomarkers of response to ICB in 
human cohorts. We were able to extract both feature types from 
paired tumor-normal WES data across eight ICB-treated human 
studies. Germline immune eQTL biomarkers, whereas relatively new, 
show promise to capture complementary information from somatic 
features, and XGBoost models trained to predict a cIC index using 
both feature types performed better at predicting ICB response across 
different tumor types. When we interrogated patients with additional 
available RNAseq data, we found that the survival benefit of an im-
mune hot microenvironment was contingent upon having a high cIC 
index score, that there was no response in patients with a low cIC 
index score, and that this was driven by germline features. This 
supports the notion that heritable differences in immune-cell function 
determine the effectiveness of an immune response once immune 
cells have reached the tumor. Furthermore, patients with a high cIC 
index score who failed to respond often had a “cold” TIME. This 
suggests that transcriptomic profiling might be useful as a supple-
mental prognostic tool of ICB response in high cIC index patients and 
that the cIC index score serves as a general proxy for clinical response 
to the immune invigorating effect of ICB. 

To gain further insight about how various biomarkers relate to ICB 
response potential, we used state-of-the-art techniques for interpreting 
machine learning models and studied important features and feature 
interactions that drove model predictions. The strongest interaction 
involved an interplay between an SNP associated with increased in-
filtration of T-follicular helper cells (TFHQTL) and MHC-I damage. 
Specifically, we observed a beneficial effect of the TFHQTL on rates of 
response, independent of the deleterious effect of MHC-I damage. TFH 
cells are the specialized subset of CD4+ T cells that help B cells produce 
antibodies in germinal centers (53). TFH cells are normally located in 

secondary lymphoid organs at a close distance from B cells (83). 
However, there is increasing evidence that TFH cells are part of TLS, 
intra-tumor organized clusters of immune cells including B and T cells 
and dendritic cells mimicking germinal centers in secondary lymphoid 
organs (53, 101). TLS are an increasingly common finding in cancer, 
and are linked with better prognosis (102, 103); increased infiltration 
by TFH cells and TLS formation are a source of helper factors beneficial 
to both CD8+ and CD4+ T cells. Indeed, the number of TLS distin-
guishes ICB responders from nonresponders (32, 77). 

MHC-I damage on cancer cells inherently hampers the cytotoxic 
function of CD8+ T cells, yielding low response rates. We found that 
response rates were rescued when patients had both the TFHQTL and 
MHC-I damage, suggesting that rescue mechanisms of ICB response 
may be shifted toward MHC-II mediated immunity (MHC-II reliance). 
Using individual-level information about the ratio of neoantigens with 
binding affinity for MHC-I and MHC-II, we were able to allocate 
patients to either an MHC I– or MHC II–reliant group. That these 
groupings may initiate and sustain differential immune mechanisms in 
response to ICB is strengthened by the observation that MHC-II reli-
ance promotes higher infiltration of CD4+ T cells and more durable 
clinical responses to ICB, potentially reflecting a direct effect on long- 
term memory CD4+ T-cell responses. In contrast, MHC I–reliant re-
sponses, which are centered on CD8+ T cells, are possibly more tran-
sient in the absence of CD4+ T-cell help (87). 

When we examined the association of pretreatment checkpoint 
gene expression levels with ICB response, which was predominantly 
anti-PD1/anti-PDL1 treatment in the cohorts studied, we found that 
PDL1 expression was associated with better ICB response in MHC I– 
reliant patients but not in MHC II–reliant patients, whereas the re-
verse was true for LAG3. In patients in whom immune evasion is 
mediated by overexpression of PD1/PDL1, anti-PD1/anti-PDL1 
therapies can be remarkably effective (104). In contrast, LAG3 has 
MHC-II as its major ligand (100), and it is widely regarded as a 
negative regulator of CD4+ T-cell activation (105). Higher expression 
of LAG3 could therefore indicate an effective ongoing MHC II–reliant 
antitumor response pre-ICB treatment. In our analysis, LAG3+ pa-
tients had better survival in the MHC II–reliant group, suggesting that 
MHC-II-driven immunity can support an effective response to anti- 
PD1/anti-PDL1 and that this could potentially be further amplified by 
an anti-LAG3 therapy. However, the lack of association of PDL1 
expression with response in the MHC II–reliant group seems to 
suggest a mechanism independent of alleviating PDL1-based repres-
sion of CD8+ T cells. A similar phenomenon has been observed in 
microsatellite instability colorectal cancers with B2M loss that para-
doxically remain among the best responders to anti-PD1/anti-PDL1 
therapy (106). It is intriguing to think that anti-PD1/anti-PDL1 can be 
beneficial even if PDL1 is not highly expressed or the MHC-I antigen 
presentation machinery is not functional. Recent data show that 
LAG3 also associates with the T-cell receptor (TCR)–CD3 complex in 
both CD4+ and CD8+ T cells in the absence of binding to MHC-II, 
causing the dissociation of the tyrosine kinase Lck from the CD4 or 
CD8 co-receptors and loss of co-receptor–TCR signaling during 
T-cell activation (107). Our finding that LAG3 facilitates the CD4+ 

T-cell responses during ICB treatment could be explained by the fact 
that both LAG3 and ICB target the proximal signaling of the TCR 
(108), even though the reasons this creates an advantage in MHC II– 
reliant patients remains unclear. Perhaps this reflects the fact that the 
adult peripheral repertoire is richer in CD4+ than in CD8+ T cells. 
This bias may also explain the observation that patients with cancer 
vaccinated with neoantigens have a propensity to generate CD4+ 

T-cell responses (109). 
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The other implication is that the utility of each of these check-
point genes as biomarkers of ICB response may be highly context- 
dependent. PDL1 expression was not associated with ICB response 
in MHC II–reliant patients responding via a CD4+ T-cell axis of 
adaptive immunity. This could explain in part why PDL1 positivity 
is a surprisingly poor general predictor of response rates (110). 
Future efforts to refine biomarkers of ICB response could attempt to 
leverage widely available germline information as well as understand 
the context of a patient’s MHC reliance status. 

Our study has some limitations. First, there are a limited number 
of publicly available ICB-treated cohorts with DNA sequencing 
data available and even fewer with RNA sequencing data available. 
Second, larger feature selection and training cohorts could further 
improve model performance. Future studies could incorporate 
additional biomarkers, for example, genotypes associated with 
adverse immune events, such as rs16906115 affecting IL7 (111), 
that could lead to early stopping of therapy, or copy number al-
terations affecting key immune loci (112, 113). Third, we limited 
our features to those extractable from paired tumor-normal WES as 
tumor DNA to mirror what is more commonly available in real- 
world settings. Additionally, although the germline-derived fea-
tures in the composite model are straightforward to compute once 
the bioinformatic infrastructure is in place, the variety and com-
plexity of the somatic features may be more challenging to im-
plement in the clinic. MHC reliance groupings were based solely on 
single nucleotide variants. Future versions of our PHBR pipeline 
will include support for frameshift and stop-loss variants, which 
may be more impactful in an immunogenicity context. Another 
limitation is that most ICB response classification approaches 
eliminate difficult-to-classify SD patients from their studies—de-
spite the fact that these patients benefit from increased survival 
from ICB treatment. We chose to include these patients as re-
sponders to maximize potential clinical benefit, at the cost of in-
creasing the complexity of our classification task. Finally, although 
our classifier—which was trained on patients with melanoma— 
showed some ability to generalize to other tumor types, especially 
non–small cell lung cancer, it may ultimately be essential to train 
and study tumor-type specific models. 

Investigation of the factors that determine ICB response in pa-
tients with cancer is providing key insights into mechanisms that 
drive superior response. This study provides further evidence that 
CD4+ T-cell responses engaged by MHC-II antigen presentation are 
a critical component of superior immune responses and points to an 
alignment of checkpoint-based evasion with the immune cell types 
dominating the response. This sets the stage for future strategies to 
optimize the selection of checkpoint therapies from characteristics 
of the patient’s tumor and immune system. 
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