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Throughput in Multiple Service, Multiple
Resource Communication Networks

Scott Jordan and Pravin P. Varaiya, Fellow, IEEE

Abstract— The merging of telephone and computer networks
is introducing multiple resources into networks, and information
is becoming increasingly distributed across the network. Related
services are being integrated onto a single network rather than
being offered on separate uncoordinated networks. In this paper,
we focus upon communication networks that integrate multiple
services using multiple resources. In particular, we pose resource
allocation problems, present a sensitivity analysis, and provide a
glimpse of the possible behavior of such networks.

The simplest discipline is assumed: a service request is accepted
if the necessary resources are available; otherwise it is rejected.
Two results are obtained. The first gives the sensitivity of through-
put of service requests of type i with respect to offered traffic and
service rates of type j. The second result is that the set of vectors
of achievable throughput rates is a convex polyhedron given by
an explicit set of linear inequalities.

I. INTRODUCTION

N THIS paper, we focus upon communication networks

that integrate multiple services using multiple resources.
In particular, we pose resource allocation problems, present
a sensitivity analysis, and provide a glimpse of the possible
behavior of such networks.

This work is motivated by several trends in networks. The
merging of telephone and computer networks is introducing
multiple resources into networks, and information is becoming
increasingly distributed across the network. Related services
are being integrated onto a single network rather than being
offered on separate uncoordinated networks.

These trends are made possible by the availability of fiber
and of inexpensive electronic storage, and by the introduction
of greater intelligence into the signaling system. Furthermore,
these trends are made profitable by the proliferation of desktop
computers and the increased demand for better information
transfer.

Proposals for implementing services in these multiple ser-
vice, multiple resource (MSMR) networks abound. A few
examples of these services might be electronic/voice mail,
mixed media telephone calls, video conferencing, distributed
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databases, hypertext systems, electronic catalogues, electronic
yellow pages, and collaborative editors.

Our premise is that each service relies upon a number
of underlying resources in the network. Examples of these
resources might be communication links, databases, switches,
storage devices, special purpose hardware, and software. Al-
though the precise meaning of “service” and “resource” and
the relationship between them is a topic for future research,
we assume in this paper that we have identified each service
and the set of resources on which it depends.

Integrated services will share resources both for function-
ality and to decrease cost. Since these resources are limited,
there will be interaction among the services. What types of
interaction might we see? If you are the manager of a multiple
service, multiple resource system, what requests for service do
you accept? Based on what? If you base these decisions on
maximizing revenue, what prices do you charge? And what
resources should you acquire? The purpose of this research
effort is to address such resource allocation problems.

In this paper, we investigate the nature of this interaction.
In future papers, we will address issues of control and pricing
of such a system.

Considerable effort has been put into understanding related
but simpler multiple service, single resource (MSSR) systems.
In [1], Aein constructed a Markov chain model and stated
the resulting product form stationary distribution. Kaufman
[2] showed that this product form holds under more general
assumptions, including general service distributions. More
recent papers exhibit the relationship between traffic intensity
and throughput: Virtamo [4] displays a reciprocity relation
in the sensitivity of blocking probabilities to traffic intensity
and Ross and Yao [9] and Nain [10] investigate the effect of
increasing traffic intensity upon throughput.

Some effort has also been applied to MSMR systems.
In [12], [13], Kelly uses a MSMR framework to describe
a circuit-switched network. He introduces the framework,
states the stationary distribution, and obtains results relating
to blocking probabilities, optimization and shadow prices by
approximating the system as a collection of MSSR systems.
In [14], Burman et al obtain an insensitivity result for the
stationary distribution of a MSMR system. Numerical aspects
have been investigated in [15]-[18].

In addition, the MSMR system considered here is similar
to some queueing systems. Foschini and Gopinath [3] inves-
tigated control policies to maximize throughput or minimize
blocking probabilities in a MSSR queueing system. E. Souza,
E. Silva, and Muntz [23] have recently displayed sensitivity
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results for product form queueing systems.

The MSMR model is investigated here for the simplest
discipline: a request is granted if the necessary servers are
available; otherwise it is rejected. Section II displays the
model. In Section III, we present sensitivity results and discuss
the implications of these upon the nature of multiple service
communication networks. In Section IV, we study the range of
achievable throughput rates. In Section V, we consider relax-
ations of the statistical assumptions. Some closing comments
are in Section VI, and some proofs are in the appendix.

II. MODEL

Consider a system that offers n types of services. Each
service requires a set of resources (dependent upon the service
type) to process. If these resources are available then the
system manager accepts a service request, and processing starts
immediately; if the necessary resources are unavailable then
the request is lost to the system.

Service requests arrive as independent Poisson processes.
Each request occupies each resource that it needs for the same
amount of time, and releases these resources simultaneously
upon service completion. This amount of time is exponentially
distributed, and independent of other service times.

We model this system as a Markov chain and adopt the
following notation.

A= (A1, -+, An), the rates of incoming service requests.

= (1, -, n), the rates of service.

p = (p1, -, pn), the loads, given by p; = A;/p:.

L = (L1, -+, Ly), the rates of accepted service requests
(throughput).

z = (z1, ++,&n), the state of the system where z; =

number of type i requests being processed.

Z = {z|z is feasible, i.e., z can be simultaneously pro-
cessed with the available resources}.

F={z|lz € Zbut (z1, -~ 2 +1,---,2,) € Z}.

Ei={z|lzeZbut (z1, - ,z;—1,--,zn) € Z}.

n(z), the steady-state probabilities.

Tzy = rate of transitions to state y, given we are currently
in state z.

P() = Probability of .

Our assumptions regarding the arrival and departure pro-
cesses gives us a Markov chain on state space Z with transition
rates

Toy =
Ai, ifz@F;, and y=(z1,---,z;+1,---,2,)
zipi, f ¢ By and y=(z1,---,2i = 1,++,2Tn).
0, else

Assume that service completion is never blocked. This
implies that the state space Z is coordinate convex, i.e., if
z € Zand z; > 1, then (21, ,2; — 1,--+,2,) € Z.

As an example, consider a system that accepts only two
types of requests: type 1 requires one of resource A and one
of resource B, and request type 2 requires one of resource B
and one of resource C. If there are 5 A’s in the system, 6 B’s,

and 4 C’s, the state space Z would be as pictured in Fig. 1.
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Fig. 1. The state space Z for a two service type, three resource type system.

The key is to model the services directly, rather than to
model the resource space. Resource constraints thus appear
indirectly, in the shape of the state space Z, as constraints
upon the number of each type of service that can be provided
simultaneously.

The Markov chain is time reversible. The local balance
equations are

ﬂ(mly"',ziy"'yzn)xiﬂi:W($ly"'7xi_17"'7zn)Ai

VzeZ >5z;>1.

Conservation of Probability implies 3 ., m(z) = 1.
Iterating the balance equations yields the well known prod-
uct form stationary distribution

m(z) = 7(0) ﬁ :%Z% where 7(0) = n(0,--+,0). (1)
i=1 Y

Conservation of Probability gives us the normalization
constant

7(0) = —— @)
IEZ = !

s -

IT1I. SENSITIVITY RESULTS

In this section, we investigate the sensitivities of the through-
put rates L; and the blocking probabilities P(F;) to the request
rates )\; the service rates u; and the loads, p;.

Theorem 1:

oL; /;Tj—cov(z,—,a:j), ifi#j 3
o, | A var(a), fi=j ®

The proof in the appendix relies on Little’s result which,
applied to this system, gives
E(number of type i in the system)
= (Average arrival rate into the system)
- (Average length of time in the system)
ie. E(CL‘.L) = L,’(l/ui). (4)

Using the stationary distribution (1) and (2) above, dif-
ferentiating (4) with respect to );, and transforming the
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differentiation operation into an expectation operation pro-
duces (3).
Similarly, we can find the following sensitivities:

8_L£ _ [ 5 cov(zi,zy), ifi#y
B xi) — var(z;), ifi=jy
ap F) 3 cov(:l:,,a:]) ifi#j
% [E (z:) — var(a;)], ifi=jy
8P F) B cov(x“z]) ifi#j
T l-x [E(xz) - Var(.’l‘,)] ifi=j
3p F) B ““J cov(xl,x]) ifi#j
- E(ac - var(z;)], ifi=3j
BE(zI 1
= — var(z;
ap Pi (=)
0 var(z;) 1 3
—— = — E(z; — E(z;))".
B o (zi — E(:))

In particular, Virtamo’s [4] reciprocity relation dP(F;)/

; = OP(F})/dp; follows from the equation for dP(F;)/
8,0] above.

We study these sensitivity results for the case  # j in
Section III-A, and for the case i = j in Section III-B.

A. Cross Sensitivities

The signs of cross sensitivities all depend on the sign of the
associated cov(z;,x;), which in turn depends on the variation
of E(z; | ;) with respect to z;. If E(z; | ;) increases with
x;, the covariance is positive. By (3), this implies 8L; i/ OA; >
0, indicating any increase in the rate of type j service requests
actually increases the throughput of type 4 (and vice versa). If
this is true, we say that these two services are complements.
Similarly, if E(z; | z;) decreases with z;, the covariance is
negative and these two services are substitutes. If the variation
of E(x; | #;) is not monotonic, then the sign of the covariance
is not so easily determined.

A few examples help to illustrate this. First consider a sys-
tem with three service types 1, 2, and 3. Suppose that service
type 1 requires one of resource A, service type 2 requires one
C, and service type 3 requires one A and one C. The state
space is pictured in Fig. 2(a); it is drawn as a continuous
region for easier conceptualization. Simple analysis shows that
E(z; | 1) increases with z1, and that E(z3 | z1) decreases
with z1; hence, services 1 and 2 are complements while
services 1 and 3 are substitutes. This should be no surprise.
Services 1 and 3 compete for resource A, so increasing the rate
of type 1 service requests decreases the throughput of type 3;
this blocking of type 3 also increases the throughput of type 2.

As a second example, consider the same system but now
suppose service types 1 and 2 also use one of resource B each,
as pictured in Fig. 2(b). All services are now substitutes.

As a final example, consider the same system as in the
second example but now suppose that the number of available
B’s is higher. The new state space is pictured in Fig. 2(c). We
find that E(z3 | z1) decreases with 21, but E(zy | z) first
increases and later decreases as 1 increases. Thus, service
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x3(AC)

xa(AC)
x4 (A) \ x4(AB)
xz(C) x2(BC) [
(@ (b)
XS(AC)
\ x4(AB)
xo(BC) L L

©

Fig. 2. Examples of substitutes and complements.

Independent Service
with Unlimited Resources

\

| |
| l

1] 1

—— Competition between X and xl.
Limitation on
Number of X

-—

Fig. 3. Factors affecting the ratio of variance to mean of ;.

types 1 and 3 are still substitutes, but we cannot conclude
anything about the relationship between service types 1 and 2.

B. Self-Sensitivities

From Theorem 1, we know that increasing the arrival rate of
one type of service request always increases the rate at which
that service type is accepted into the system, i.e., dL; /d; > 0.
However, the sign of all the other self-sensitivities depend on
the ratio of the variance to the mean of the x; distribution.
Thus, for instance, increasing the service rate for one type
does not always increase the rate at which that service type is
accepted into the system.

If Ex; > var(x;), then OL;/dyu; > 0; we say that service
type 1 is self-advantageous. Similarly, if Ez; < var(z;), then
OLi/Ou; < 0; we say that service type i is self-disadvan-
tageous. We investigate the sign of Ez; — var(z;) by looking
at the ratio var(z;)/Ex;, and we note that it varies with y;.
Some factors affecting this ratio are shown in Fig. 3.

Some examples help illustrate these factors. First, consider
a system with just one service type. Assume that up to N
of this service can be provided simultaneously. The resulting
Markov chain is pictured in Fig. 4(a); we have not labeled the
transitions to increase clarity. If 44y = 0, then £; = N almost
surely, and accordingly the ratio of the variance to the mean is
0. As y; increases, the effect of the barrier at z; = N lessens,
and the ratio increases. As u approaches infinity, E(z,) drops
toward 0, but the distribution of z; tends toward a Poisson
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M= 0 ny=co
= OE=E=2=0 + ++ O | seft-advantageous | Ratio of variance
—t———t x I T to mean of x
o 1 2 3 a4 Nt 0 1 !
Limitation on
Number of x,
(a) ()

Fig. 4. An example of a self-advantageous service.

W=
X2 =0 :
! N
OI Lbl='o!ﬂ)=o s O i } Ratio of variance
—t—t + >y 0

1 1o mean of X,
—_—
Limitation on .
Number of Xy

Gompetition betwean x, and x,,

(@) ®)
Ly M/\E'x‘) o Lzl/{
;I; l i By r L My
©) (d)

Fig. 5. An example of a self-disadvantageous service.

distribution, and the ratio of the variance to mean approaches
1 accordingly. This tendency is shown in Fig. 4(b). Note that
for any value of y;, service type 1 is self-advantageous.

Now consider the same system, but with a second service
type. Assume that only one of type 2 can be provided at a time,
and only if none of type 1 are in the system. The resulting
Markov chain is pictured in Fig. 5(a). As in the first example,
if ;g = 0, then £, = N almost surely, and the ratio of the
variance of z; to its mean is 0. As u; increases, the effect
of the barrier at £; = N lessens, and competition between
z;, and z, increases, and thus the ratio increases, eventually
pushing past 1. As u; approaches infinity, F(x;) drops toward
0, and competition between z, and x, decreases as the system
becomes mostly idle; the ratio of the variance to mean again
approaches 1. This tendency is shown in Fig. 5(b).

So increasing the type 1 service rate increases the rate
of acceptance for type 1 only until E(z,) = var(z;); after
that point L; decreases with increasing p1. As pictured in
Fig. 5(c)—(d), service types 1 and 2 are always substitutes,
but service type 1 changes from self-advantageous to self-
disadvantageous.

C. Discussion

In summary, Theorem 1 provides three results. First, it
lends a characterization of pairs of services as complements,
substitutes, or both, depending upon the sign of the associated
covariance of the number of each in the system. Second, it
states that increasing the arrival rate of one request type always
increases the rate at which that type is accepted into the system.
Third, it lends a characterization of each single service, given
a specified set of arrival and service rates, as advantageous or
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Boundary B

Fig. 6. Mapping the A space into the L space.

disadvantageous, depending upon the ratio of the variance to
expectation of the number in the system.

These results can be specialized to a single resource (MSSR)
model n = 1 to obtain some of the conclusions reached in
[9], [10]. Consider links between two nodes as the single
resource, and requests for bandwidth as multiple services (with
the service type given by the number of links required). Using
the first result, conclusions such as “requests for the largest
bandwidth permissible compete with all other requests” can be
made, permitting that the discrete state space satisfies certain
regularity conditions (see [9]). The second result, applied
to this system states “the throughput of requests for any
particular bandwidth is an increasing function of the rate of
such requests.” The third result states that throughput is not
necessarily monotonically increasing in the service rate (see
[10D).

These results have particular relevance to the design of
communication systems. Theorem 1 provides help when sizing
a communication system, or when estimating the impact
of a new service offering on existing services. Applied to
simulations, sensitivities may be calculated from covariances
obtained without having to perturb parameters.

IV. ACHIEVABLE THROUGHPUT

In this section, we look at the region of achievable through-
put. The set of all possible arrival rates A € R} maps via (1),
(2), and (4) into some region Y in the L space. We investigate
the shape of Y. A two-dimensional slice of this is shown in
Fig. 6.

Theorem 2: 'Y is a convex polyhedron. Moreover, if {z*}
are the extreme points' of the state space Z, then {uz*} are
the vertices of Y.

The proof in the Appendix proceeds by showing that the
infinite boundary in the X space maps into the boundary B
of Y; that if A = oo, then all states with nonzero probability
lie on a hyperplane tangent to the state space Z from above;
that this implies that L must lic on an equivalent hyperplane
in its space; and that therefore the region Y is the convex hull
formed by these hyperplanes. It relies in part on Theorem 1,
and especially on the linear relationship between z; and L;
expressed in (4).

Theorem 2 suggests a revenue optimization problem. Sup-
pose that each service performed generates a revenue of $7;.

1z* € Z is an extreme point of Z if z* cannot be expressed as a convex
combination of other states in Z.

2The multiplication pz* is taken componentwise, ie., pr* = (p177,
S EnTh)
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Then maximization of the total revenue

Z Z Tz)\ l(ng) = Z T‘1

r€Z 1=1

corresponds to maximizing this linear function over Y. This
is a linear programming problem.

V. EXTENSIONS

In this section, we consider the effects of relaxations of the
statistical assumptions of the model posed in Section II upon
Theorems 1 and 2.

First, consider arbitrary service distributions, with rational
Laplace transforms, with means 1/y;. In [14], Burman et al
show that the distribution (1-2) is insensitive to the service
distribution. Little’s result, E(z;) = L;(1 /1), also still holds,
with 1/p; now interpreted as the mean service time for service
type i. The proofs of Theorems 1 and 2 thus follow as before.

Second, consider noncoordinate convex sample spaces. This
might occur if service completion requires some other event
to occur first, or if service completion requires another service
to start, and this new service is blocked. Theorem 2 will hold
provided that departures are never blocked while the system is
in any of the states on the upper boundary (UF}) of the state
space Z, but Theorem 1 would require consideration of state
dependent service rates, since the average length of time in
the system for a service of type i is no longer 1/;.

Third, consider state dependent arrival rates. This may occur
if the queucing system is closed (e.g., see [9]). Theorems 1
and 2 hold if A\;(x) = f(z;)A; where ); is a constant. (See
[11] and [24] for background on truncated multidimensional
birth—death processes.)

Finally, consider state dependent departure rates. This al-
lows some alternative service disciplines, e.g., processor shar-
ing; see [5]-[7] for more detail on alternatives. It does
not, however, allow for general queueing schemes; general
queueing would produce departure rates that depend not only
upon state but also upon the path to that state ie. upon
which how many of each service type were queued and
how many were in service. Little’s formula now becomes
E(z;) = L;E(1/p;), and we lose the linear relationship
between z; and L;. Theorems 1 and 2 no longer hold. (See
[11] and [24].)

VI. CONCLUSION

We have analyzed the simplest MSMR model of a commu-
nications system which can process general types of requests,
each of which requires several types of resources. More
realistic models will have to abandon two assumptions.

First, we assumed that the resources needed to process
a service request are acquired and released simultaneously.
In practice the situation is more complex. For instance, in
processing a credit card call, a database query is first made to
verify the status of the caller; after it is approved the call is
processed. Thus the two resources—database transaction and
call handling—are occupied sequentially. On the other hand,
in a conference call several links are occupied concurrently.
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In general, then, processing a service request can require a
combination of sequential and concurrent access to resources.
We need new approaches to specify such service requests and
to model the scheduling of resources [21].

Second, we assumed the simplest discipline. Two extensions
are worth considering: requests can be queued, and resources
can be reserved to ensure fairness and in anticipation of future
revenue generating requests [22].

APPENDIX

A. Proof of Theorem 1
Proof of Theorem 1: Since service requests are accepted
whenever feasible, L; can be related to A, by

L; = A1 - P(F)). )

A better relation to start with, however, comes from viewing
this as a queueing system for service type 4 and using Little’s
result:

E(number of type i in the system)
= (Average arrival rate in the system)
- (Average length of time in the system)

Differentiating this expression yields
8Li BE(JL‘I)

= U; . 7

ax; Moy ™

Using (1) and the formula for expectation yields

OE(z;)
2V g; I:I
_ ] 7(z) 9m(0)
-2 [(” e *> o+ R0 5
- AijE<ziwj>+ 757 Ee) . ®)
Using (2)
on(0) 9 oo
2V 0 2y Lez kl;[l xi’“'
— g2 1 py (@)
=m0 IEZZ Y A w(0)
= _%)) E(z;). ©)
Substituting (9) into (8)
PPz _ 1 B@)E(z;).  (10)

, E(E(Ziai'fj)—
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Finally, substituting (10) into (7) yields

oL; M

T (E(ziz;) — E(z:)E(z;)).
Or

oL, (& cov(wnny), i

ax; | & var(a), ifi=j

B. Proof of Theorem 2

To help prove Theorem 2, we first prove three lemmas.
Lemma 2.1: The positive quadrant of the A space, R7}, maps
into a region in the L space such that the outer boundary B
of Y represents the infinite curve A = co.?
Proof: Choose any A. Consider an infinitesimal change
d) from \. From (3), this produces a change in L of:

dLy & var(z) £ cov(zy,Tn)
dL, & cov(zi,ma) - K var(zn)
d\
dn,

The determinant of the matrix above # 0 unless:
1) the z; are linearly dependent, namely 3(az, -, an) #
(0,---,0)>a-z=0wp. 1, or

2) p; = oo for some ¢, in which case the ith row contains

all zeros, or

3) \; = oo for some ¢, in which case the ith column

contains all zeros.

Coordinate convexity of Z implies that Z must be a n-
dimensional space (excepting the degenerate case z; = 0
for some ¢). Thus 1) can only be true if the state remains
in some lower dimensional subset of the state space w.p. 1.
This can only happen if the state remains in some portion
of the boundary of Z, namely, if 2) or 3) holds. We ignore
the degenerate case 2). Therefore, A # oo implies that the
determinant of the matrix above # 0. Thus, for any A # oo,
we can choose a desired dL, and solve for the corresponding
d) that produces it. Therefore, A # oo corresponds to an L
that must be in the interior of Y. Therefore, the boundary B
of Y corresponds to A = oo.

Lemma 2.2: If A = oo, all states with nonzero probability
lie on a hyperplane tangent to the state space Z (from above).

Proof: Any )\ = oo can be written in the form

A= lim at”
t—oo

for some v = (71, -+,¥n) Wwherey; >0V
,0n) Wwhere a; > 0V g

(where the multiplication is componentwise).

and some a = (aq, -

3By A = o0, we mean that \; = oo for some i.
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For any two states z’ and z”/, we have, from (1)*
m(@)  ON el
m(z") H)\“F;/ ¢
Using the limit form for A = oo above,
/
7((1',) x lim Ht%(l‘i-x’)
w(z") t—o0
= lim =7 ==)
t—o0
= lim 7%~
t—oc
So if A = oo and #w(z’) # 0, then
1) ;i(-::—% >0Vz'eZandthusy- -2’ >y -2"Va"€Z
and )
2) if n(z”) # 0, then :—((:,—,)) < oo and thus v -z’ = v-z".

Therefore, any state with nonzero probability lies on the
hyperplane v - ¢ = «y - ', which is tangent to the state space
Z, from above, at x’.

Lemma 2.3: If all states with nonzero probability lie on a
hyperplane, tangent to the state space Z at state x, and with
normal vector v, then L must lie on the hyperplane in the L
space that passes through point (f121, - - - , ftnZr) With normal

vector (/'1’1711 T ,}Ln"}’").
Proof: Equation (4) states that

L; = wE(z;) = Z i (z).
T€Z

The result follows from linearity.

Theorem 2: The feasibility region of L, Y, is a convex
polyhedron.

Proof: By Lemma 2.1, the boundary B of Y corresponds
to A = co. By Lemma 2.2, this implies that all states with
nonzero probability lie on a single hyperplane tangent to the
state space Z. By Lemma 2.3, this corresponds to a point L
on a corresponding hyperplane in the L space.

Therefore, the locus of points on the boundary B of ¥
is the union of hyperplanes corresponding to the hyperplanes
tangent to the state space Z.

Now the hyperplanes tangent to the state space Z form the
boundary of a convex polyhedron. Thus, B forms the boundary
of a convex polyhedron. Thus, Y is a convex polyhedron.
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