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∣∣∣.
And for the H-chain, it is defined as the difference in the density between two
adjacent bonds connecting the N/2 and N/2 + 1 hydrogen atoms. . . . . . . 36

3.3 Natural orbital occupancy calculated by diagonalizing the single-body corre-
lation matrix for H10 at (a) R = 0.9aB and (b) R = 3.3aB. For small R,
the system is metallic and shows non-zero occupancy in the diffuse p orbitals.
On the opposite end, in the insulating phases, the occupancy is primarily
dominated by compact s-type character. . . . . . . . . . . . . . . . . . . . . 37

v



3.4 Ground state entanglement and density. (a) The von Neumann entanglement
measured along the 1D chain for H10 at different values of atomic spacing.
As R increases, the dimerization persists, but weakens. This is also seen by
comparing the density and even and odd bonds as shown in the left column
for (b) R = 1.4aB and (c) R = 3.6aB. In all plots, the dashed lines correspond
to the positions of the nuclei. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Gaussian basis that are used to make the sliced-basis functions. The s-type
function labeled by “Contracted” is a contraction of the ζ = 1.962 and ζ =
13.01 Gaussians with coefficients 0.1379770 and 0.0196850, respectively. For
the p-type functions, only the px are shown. The py functions are the same
except they extend the y-axis instead of the x-axis. . . . . . . . . . . . . . . 39

3.6 Natural Orbitals and their corresponding occupancies for the s- and p-blocks
of the one-body correlation matrix. (a) As R is increased, we can see the extra
electron moving from the 2p NO to the 2s NO. These orbitals are shown in
(b) and (c). Note that the x-y symmetry is broken here and the extra electron
arbitrarily chooses to occupy 2px. The symmetry is expected to be restored
when the number of states kept tends to infinity. . . . . . . . . . . . . . . . . 40

3.7 Energy differences in occupying 2s versus 2p. (a) The energies for the two
states given in (3.3) and (3.4) as a function of R. The pie charts above each
point indicate the 2s and 2p occupancy of the extra electron in the original
system. The density relative to half-filling of the doped system is shown in
(b) when the extra electron mostly occupies the 2p NO and in (c), when it
mostly occupies the 2s NO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Eigenvalues of the single-particle correlation matrix from the ground state
of H20 giving the natural orbital occupancy. The first 10 states are doubly
occupied and represent Hartree-Fock type states. The second 10 states have
small but non-negligible occupancy. States beyond the first 20 show occupancy
on the order of 10−3 and are truncated to give a downfolding approximation. 45

4.2 Translationally invariant Wannier function for (a) R = 2.0aB and (b) R =
3.2aB constructed from the single-particle density matrices of H100. The
top panels in each subplot show the full 3D Wannier functions in real-space
integrated over y and the lower panels, the 1D representation within the sliced
basis as a function of z for both sb-DMRG and Hartree-Fock derived functions. 48

4.3 Hamiltonian parameters from transforming the H-chain Hamiltonian into an
effective model using the Wannier functions for H100. All parameters are
scaled by the average value of the nearest neighbor hopping denoted by t̄.
The top panel shows the single-body terms and the lower panel, the two-body
interaction terms. The dashed lines in the lower panel are 1/r lines in units
of t̄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



4.4 Comparison of the variational algorithm and a brute force search. The solid
red and blue curves give the value of the ground state overlap between the
long-range model(with U = 2.0 in blue and U = 7.4 in red) and the Hubbard
model evaluated on a fine grid. The various vertical lines show the values of
Ueff that correspond to the naive effective model with Ueff = U/2, the model
found varationally and the best possible model. . . . . . . . . . . . . . . . . 55

4.5 Spin velocities for the H-chain and two effective models defined in (4.12) and
(4.15). The top row shows (a) 2-spinon and (b) 4-spinon excitation gaps
at R = 2.0aB for the H-chain, its corresponding directly transformed model
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ĤWF scaled by the average nearest-neighbor hopping. The other lines are
the two-body interactions for the corresponding effective model with only a
nearest-neighbor hopping term and a limited range two-body interaction. The
error as defined in (4.14) is also shown in the last column of the legend. . . . 63

4.9 Optimal Hubbard parameters for each H-chain as a function of the atomic
spacing, R for H100. The resulting Hubbard model becomes “strongly corre-
lated” near R = 3−4aB where the corresponding value of U/t becomes larger
than the bandwidth of about 4t. The dashed red line shows the optimization
error as defined in Eq. (4.14). . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



LIST OF TABLES

Page

4.1 CC-pVDZ Basis Set. The contracted basis function shows the coefficient with
the corresponding Gaussian width in parentheses. . . . . . . . . . . . . . . . 44

viii



ACKNOWLEDGMENTS

RCS was supported by the Simons Foundation through the Many Electron collaboration.

I would first and foremost like to thank my advisor Steve White for his years of guidance
and patience, not just for his physical insight but also for his well received advice in writing
and presenting information. I would also like to thank my group mates, Mingru Yang,
Shengtao Jiang, Yifan Tian and Yiheng Qiu for the all useful discussions, group lunches
and get-togethers. Our discussions always made me excited about relevant research and new
ideas.

For pushing me to go to graduate school in the first place, I would like to thank Ziad Haddad.
He was with me every step of the way and I learned a lot from him in regards to research
as well as how to go through graduate school and life in general. He opened many doors for
me and always gave me every opportunity to do my best work.

And finally, I wouldn’t be where I am today if it wasn’t for my parents, Ramzy and Nancy
Sawaya. I am very grateful for all the years of guidance and encouragement and look forward
to the many more years of learning from them; they were my first teachers. I would also like
to thank my sisters Melissa and Jessie Sawaya for always being there, and not just to play
Halo. And lastly, I would like to thank all my close friends who put up with my antics over
the years. To Jeremy Beckman, Howard Cheung, Cassidy Feltenberger, Lauren Fitzgerald,
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ABSTRACT OF THE DISSERTATION

Constructing Low-Energy Effective Models for Real Materials

By

Randy C. Sawaya

Doctor of Philosophy in Chemical and Material Physics

University of California, Irvine, 2021

Professor Steven R. White, Chair

Sliced-basis DMRG(sb-DMRG) is used to simulate a chain of hydrogen atoms and to con-

struct low-energy effective Hubbard-like models. The downfolding procedure first involves

a change of basis to a set of atom-centered Wannier functions constructed from the natural

orbitals of the exact DMRG one-particle density matrix. The Wannier function model is

then reduced to a fewer-parameter Hubbard-like model, whose parameters are determined

by minimizing the expectation value of the Wannier Hamiltonian in the ground state of the

Hubbard Hamiltonian. This indirect variational procedure not only yields compact and sim-

ple models for the hydrogen chain, but also allows us to explore the importance of constraints

in the effective Hamiltonian, such as the restricting the range of the single-particle hopping

and two-particle interactions, and to assess the reliability of more conventional downfolding.

The entanglement entropy for a model’s ground state, cut in the middle, is an important

property determining the ability of DMRG and tensor networks to simulate the model, and

we study its variation with the range of the interactions. Counterintuitively, we find that

shorter ranged interactions often have larger entanglement.

xiii



Chapter 1

Introduction

Understanding the electronic properties of complex systems such as transition metal oxides,

organic compounds and high-Tc superconductors has emerged as a central theme in con-

densed matter physics which has spurred a large effort to extend the applicability of existing

theoretical tool-kits to these exotic materials. One of the most well known and widely applied

techniques in tackling realistic materials has been Density Functional Theory(DFT).[24, 32]

In it’s early days, the Local Density Approximation(LDA)[32] led to many successful cal-

culations for row-one atoms and dimers as well as polymers and other extended systems

of alkali and alkaline metals.[29] However, it quickly became apparent that the approxima-

tions in LDA could not be successfully applied to more strongly correlated materials and in

some cases can predict metallic behavior for Mott insulating systems such as in the copper

oxide superconductor, La2CuO4[45, 25]. Since LDA, many more complicated functionals

have been proposed, including B3LYP[68, 35, 5, 62] and the well-known Perdew-Burke-

Ernzerhof(PBE) functional[54] which significantly improved on LDA, but still have trouble

with some strongly-correlated systems. This has led to a more restricted use of DFT, namely

as a first step in deriving an effective model which later will be solved by a method that

can more accurately treat strong correlations such as the Density Matrix Renormalization
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Group(DMRG), Quantum Monte Carlo(QMC) or Dynamical Mean-Field Theory(DMFT).

This approach has been dubbed “downfolding” and has become a mainstream technique

for calculating properties of realistic materials that are otherwise too difficult to simulate

directly.

In conventional downfolding applications, the accuracy of resulting effective models are veri-

fied by comparing to experimental results. However, one thing that has been notably missing

is the ability to use an accurate and reliable strongly correlated method directly on the full

system in order to check the many approximations that accompany the downfolding pro-

cess. For instance, a central approximation to these techniques in the constrained Random

Phase Approximation(cRPA) which has only recently been tested in the context of mapping

multiorbital Hubbard models to their low energy representations.[58] The main difficulty

in these direct validations lies in the lack of availability of sufficient algorithms that can

simulate realistic systems. Recently, however, there has been a large effort to push methods

which have been traditionally used for strongly correlated model Hamiltonians to the realm

of more realistic materials. Investigating the simplest systems of these complex materials,

the Hydrogen chain(H-chain) emerged as a natural starting point for improving current state

of the art many-body methods and has been the focus of several studies.[47, 48]

Focusing on the H-chain, in this work we develop a downfolding approach to derive effective

low-energy models each with a varying set of one- and two-body terms that have been deter-

mined variationally using a variant of DMRG known as sliced-basis DMRG. Very broadly,

“downfolding” may refer to any technique that is used to arrive at some effective low-energy

representation of a much more complicated many-body system.[26] For any successful down-

folding procedure, the resulting model should accurately describe the relevant physics of the

original system, while maintaining enough simplicity to efficiently simulate the model in a

regime that gradually approaches the thermodynamic limit. In this way, the finite size ef-

fects, long-range order, phases, etc. of the original system may be studied without the need
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for directly simulating it at larger and larger system sizes.

Early effective theories such as Band theory and Fermi liquid theory were successful at

describing a subset of these systems, but it wasn’t soon after that systems with much stronger

electron correlations such as high-Tc superconductors, transition-metal oxides and rare-earths

became the main focus. This led to development of many effective models such as the

Hubbard, t-J and Anderson Impurity model, each derived with the intention of accurately

describing some relevant aspect of strongly-correlated materials(e.g. the behavior of d and f

shell electrons for the Hubbard model). The key question then becomes, how does one arrive

at the correct model parameters to properly describe a specific material? One can take a

semi-empirical approach and use data from experiments to estimate the couplings for each

of the terms in the effective model.[7, 6, 8, 9] Or, on the other hand, one can attempt an

ab initio calculation that can not only determine the model parameters, but also the model

that best describes the system of interest.[21, 20, 2, 1, 61, 60] In either case, downfolding

aims to map the full Hilbert space of the original system into a much simpler subspace that

acts on a selected few degrees of freedom.

This chapter focuses on the ab initio downfolding techniques, which can lead to a more phys-

ical explanation for using a particular model and offer insight into how one can construct a

general procedure for deriving effective models. Here we explore several techniques that are

most frequently employed to describe systems ranging from single-atoms and small molecules

to bulk materials. First in section 1.1, we discuss the most commonly used technique em-

ployed in downfolding: a three-stage approach using DFT inspired by the same ideas used in

the Wilson Renormalization Group. Then in section 1.2, we investigate a different approach

based on similarity transformations of the original Hamiltonian. Finally in section 1.3, we

discuss a recent method based on matching one and two-body density matrices between the

original and effective systems.

Then in chapter 2, we give an introduction to the sliced-basis formalism and it’s application

3



to the H-chain. In chapter 3 we review some results on the ground state properties of the H-

chain as well as give new results on the nature of the metal-to-insulator transition. The main

procedure used to derive different effective models is then presented in chapter 4 followed by

the conclusion and summary of contributing results in chapter 5.

1.1 Three-Stage Downfolding using DFT

At the heart of any Downfolding method is the renormalization group notion of partitioning

the full Hilbert space into high and low-energy subspaces and integrating out the high energy

degrees of freedom. In general, the two spaces will be coupled and we can represent the total

action as the sum of these three pieces

S = SL + SH + SLH (1.1)

where the subscripts L and H denote the low and high-energy subspaces, respectively. The

coupling between these spaces is represented by SLH . The process of integrating out the

high energy subspace involves tracing out those degrees of freedom. The partition function

is then rewritten in terms of only the low energy variables:

Z = Tr[eS]

= TrL[TrH [eS]] (1.2)

= TrL[eS
′
]

where S ′ = log TrH [eS] defines the effective, low-energy action, giving us our downfolded

model. What remains is to specify how to trace over the high-energy degrees of freedom,

say by a perturbative treatment, which then introduces an approximation. More accurate

treatments are also possible, as Wilson showed with his numerical renormalization group. In

4
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Figure 1.1: The general recipe followed by the three-stage downfolding procedure. The
images used to create this figure are taken from [26].

this thesis, we discuss methods based on the density matrix renormalization group, a more

modern and improved version of Wilson’s method.

Before applying any such procedures, the L and H subspaces need to be properly defined.

A good choice is crucial for approximate methods, such as perturbation theory, and still

essential for nonperturbative approaches which still may fail. In many strongly correlated

materials, there exists a natural separation of low and high energy spaces based on their

proximity to the Fermi level.[28, 27, 50] In regions far away, states are either fully occupied

or empty, leading to weak correlations. But in a small energy window around the Fermi

level, strong correlations arise due to the poor mutual screening of the electrons caused by a

small number of isolated bands. As we will see in the next section, this hierarchy of energies

emerges naturally from the Local Density Approximation in Density Functional Theory,

which will ultimately provide us with a general method for identifying L and H.

Defining these spaces is the first step in the three-step downfolding approach summarized in

Fig. 1.1 and discussed in the next section. After separating the target space from the rest,

Wannier functions(see section 1.1.2) are typically used to parameterize an effective model

defined over the low-energy degrees of freedom. At this stage, the model needs to be dressed
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by the high-energy contributions to include correlation effects which is typically done via the

constrained Random Phase Approximation(cRPA) within GW(see section 1.1.3). The result

is an effective model representing the original system defined exclusively over the low-energy

space which now needs to be solved using a high-accuracy solver such as DMRG, QMC,

DMFT, etc.

1.1.1 Using Density Functional Theory to define L and H

One of the early successes in tackling the many-electron problem was the development of

Density Functional Theory(DFT)[24, 32, 29], which allows the many-body nature of the

original problem to be reformulated in terms of a functional on the electron density. It was

inspired by an observation of Hohenberg and Kohn which first noticed that any many-electron

system under the influence of an external potential can be uniquely described by the electron

density. This statement was formalized under the Hohenberg-Kohn (HK) theorems[24],

which was first derived in the case of non-degenerate ground states, but later extended by

Levy to the degenerate case[37].

The energy functional used in DFT gives the exact description of the many-body system,

but its true form is unknown. The challenge, therefore, lies in developing practical approx-

imations to the energy functional in order to accurately represent the system in a com-

putationally tractable manner. The most widely used of these approximations is the Local

Density Approximation(LDA) proposed by Kohn and Sham[32] which maps the energy func-

tional into a non-interacting, single-particle Hamiltonian described by a set of single-particle

states. This auxiliary system comes equipped with an effective single-particle potential

whose functional form is typically determined by perturbation theory, the Random Phase

Approximation(RPA) or Quantum Monte Carlo calculations of a uniform electron gas. As

such, LDA is expected to accurately represent systems in which the electrons are spatially
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homogeneous or weakly correlated, but breaks down for more strongly correlated systems.

When the size of the effective interaction approaches or exceeds that of the bandwidth, the

band structure may be completely reconstructed throughout the entire Brillioun Zone, which

correspond to local spatial reconstructions that invalidate the homogeneity of LDA. Therefore

in the presence of strong interactions, states within an energy window around the Fermi level

may not be captured well under LDA, while those far away can. The ability for LDA to

adapt to this non-locality may be significantly improved by incorporating local gradient

information as is done with the most well-known of these functionals, PBE[54]. Although

these newer functionals vastly improve upon LDA, some strongly-correlated systems remain

difficult to capture properly due to the fluctuations around an energy window near the Fermi

level. This provides a natural separation of “high” and “low” energy spaces which underlines

the main ideas behind downfolding.

In this context, the procedure then is to first run a DFT calculation on the original system

which yields the band structure and then identify a small set of isolated bands near the

Fermi level which will define the “target space” of the subsequent low energy model. Once

these regions are identified, the Hamiltonian can be projected into the target space and

renormalized to include the effects of higher energy states which will yield the final effective

model.

1.1.2 Wannier Functions

While there are many different ways of obtaining a model Hamiltonian defined over the target

space(see the remaining sections of this chapter), one common approach is to use Wannier

functions(WFs)[69, 31, 15] to project the original Hamiltonian into its corresponding model

space. In the independent-electron picture, WFs are defined as linear combinations of Bloch

orbitals, which are eigenstates of a one-body Hamiltonian. The one-body Hamiltonian is
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the result of a specific approximation, such as a tight-binding model or, in this case, a

density functional calculation. Even within these approximate theories, where the electronic

ground state is fully specified by the single-particle states, the inherent U(1) symmetry of

the Bloch orbitals grants the resulting WFs a type of “gauge freedom”, making them highly

non-unique.

In the context of constructing model Hamiltonians, the choice of gauge determines the com-

plexity of the interactions and, in principle, leads to an infinite family of models which are

meant to describe the original system. It is important to note that the final results are

independent of the chosen gauge, but, when building effective models, a judicious choice can

lead to a much simpler Hamiltonian. This can be achieved by choosing the “”Maximally

localized” gauge of Marzari and Vanderbilt[44] which leads to a set of highly localized WFs,

making the resulting model interactions short-ranged(see [43] for a nice review).

Let {ψnk} be the set of eigenfunctions from a DFT calculation where n denotes the band

index and k, the crystal momentum. We assume here that the set {ψnk} is chosen to

represent a group of “low-energy” bands near the Fermi level which are separated by a finite

gap from another set of “high-energy” bands(we briefly remark on the case in which there

is no clear group of isolated bands at the end of the section). The Wannier function for the

nth band centered on the atom at position R is defined as

wnR(r) =
V

(2π)3

∫
d3k e−ik·Rψnk(r) (1.3)

When considering only a single band, the eigenfunctions are defined up to a phase ψ̃k(r) =

eiφ(k)ψk(r) which grants the WF its non-uniqueness. In the multi-band case, this U(1)

symmetry generalizes to a U(N) symmetry, allowing each of the eigenfunctions to be defined

up to a unitary transformation ψ̃nk(r) =
∑

m Unm(k)ψmk(r). The maximally localized
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prescription then writes the WFs according to

w̃nR(r) =
V

(2π)3

∫
d3k e−ik·Rψ̃nk(r) (1.4)

and fixes the gauge by optimizing the elements of U such that

Ω =
∑

n

[
〈w̃n0|r2|w̃n0〉 − (〈w̃n0|r|w̃n0〉)2

]
(1.5)

is minimized. In general, the projected position operators shown in the expression for Ω

will not be simultaneously diagonalizable for x, y and z meaning that the most optimal

localization will only be approximately achieved. But for 1D systems, the 1D position

operator(say x, for instance) can easily be projected into the WF basis and subsequently

diagonalized to retrieve the coefficients which optimally localized the WFs according to (1.5).

Once this is achieved, the Hamiltonian can be expressed as

Hnm(R) = 〈w̃n0|H|w̃mR〉 (1.6)

So far, we have only discussed the case in which there is a finite gap that clearly defines

a low and high-energy subspace. But for many applications, the energy window that is

being targeted may have bands that continue beyond the window and hybridize with other,

higher-energy bands, leaving some ambiguity in defining the target space. For example, when

constructing effective Hamiltonians for complex systems, the bands that are to make up the

model may be partially occupied in the energy window of interest. In these cases, we would

like to have a set of N WFs which describe Nk ≥ N states at each point k in the Brillouin

zone of the original system. This is done by first selecting a set of trial localized orbitals(e.g.

spherical harmonics multiplied by Gaussians) and projecting these functions into the space

spanned by the Nk states.[16] The projected functions can then be orthonormalized using

Löwdin orthogonalization[40], defining the functions {ψ̃nk} used in (1.4). In this case, the
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gauge is specified by the choice of trial orbitals rather than the minimization criteria (1.5).

However, given that the new set {ψ̃nk} forms an orthonormal basis, one may further localize

them by taking linear combinations of the functions with coefficients found by minimizing

(1.5), just as in the original formulation of maximally localized WFs.

1.1.3 Self-Energy and Screened Interaction

The results of the previous section give us a Hamiltonian defined over the low-energy space

we are targeting, up to errors associated with the accuracy of the method used to derive

the low-energy bands and subsequent WFs. For some semiconductors and insulators, the

approximations employed by DFT tend to severely underestimate the band gap and in some

cases can predict metallic behavior.[72, 63, 36] Given that the methods typically employed

come with significant errors when applied to strongly correlated materials, we expect that

the resulting Hamiltonian must be corrected in order to give a reliable description of the

original system. These corrections can be calculated from many-body perturbation theory

by expanding in the Coulomb interaction. As such, they are only approximate and depend

on the type of system and the order out to which the corrections are calculated. The first-

order correction gives Hartree-Fock which widens the gap, but over corrects and leads to

a wider theoretical gap relative to experiments. The solution instead is to expand in the

screened Coulomb interaction which forms the basis of the GW approximation.[23, 3]

The GW approximation gives self-energy and screened Coulomb interaction corrections to

the one-body and two-body terms in the original Hamiltonian, respectively. In typical ap-

plications, the bare Green’s function is corrected by higher-order terms that neglect vertex

corrections leading to the Random Phase Approximation(RPA).[3]. But in the context of

Downfolding where the original space has been separated a priori into high- and low-energy

subspaces, only the low-energy degrees of freedom need to be renormalized by the effects
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of the high-energy ones. Therefore, when computing corrections, only terms over this high-

energy space are summed over leading to a version of RPA known as constrained RPA(cRPA).

New one- and two-body terms are then defined within this approximation, giving a new ef-

fective Hamiltonian.

It is important to note that the accuracy of cRPA is most often not known or tested in many

applications(this has been noticed by Shinaoka et al. which prompted a study concerning the

accuracy of cRPA[58]) and is used as part of a larger recipe. Generally speaking, when the

magnitude of the screened interaction is far smaller than the average energy scale determined

by the bandwidth, cRPA can be a good approximation. But without carefully checking this

condition, it is possible to erroneously apply the approximation.

1.1.4 Applications to Bulk Materials

The techniques described in the previous sections outline a three-step Downfolding procedure

that can be used in general to derive effective lattice models for real materials:

1. Use DFT to identify low- and high-energy states from the band structure. Then using

this separation states, create a set of localized WFs for each band in the low-energy

sector and project the original Hamiltonian into this space

2. Use GW to derive the self-energy and screened interaction corrections to the projected

low-energy Hamiltonian in order to get a more accurate effective model

3. Use a low-energy solver such as QMC, DMFT, DMRG, etc. to calculate properties of

the new model

This technique has been applied whenever there exists experimental data to compare against.

For sp semiconductors and insulators, this has led to errors in the band gap of around

11



10-15% for moderately correlated materials, much lower than the traditional estimates by

LDA alone.[67] For more strongly correlated materials, improvements on the original GW

method led to a variant known as quasiparticle self-consistent GW which carries the success

of the original method over to the strongly correlated regime.[67, 17, 33] In addition to

semiconductors and insulators, transition-metal oxides such as SrVO3, VO2, Sr2VO4 and

YVO3 have also been described by single-band and multi-band effective models.[38, 53, 10,

28, 27, 51, 14] Work has also focused on describing iron-based superconductors with modified

Hubbard models.[46, 49, 4]

Historically, this has been the most prevalent method for deriving theoretical models from

ab initio calculations. Additionally, there have been other techniques that focus on unitary

transformations of the Hamiltonian itself which can be used to derive effective models. As

we will see in the following section, these come with their own set of solutions and problems.

1.2 Downfolding with Similarity Transformations

In the previous section, we saw that the low-energy Hamiltonian must be corrected by

expanding in a screened Coulomb interaction within the cRPA approximation in order to

dress the low energy degrees of freedom with effects from the complimentary space. In

addition to the methods already discussed, there exists another class of ab initio downfolding

methods that provides an alternative approach to deriving effective models. These methods

work directly with the Hamiltonian and attempt to find a similarity transformation that

casts the original problem into its low-energy counterpart.
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1.2.1 Löwdin Downfolding

The first of these methods is due to Per-Olov Löwdin and is often referred to as Löwdin

partitioning or Löwdin Downfolding.[41, 42] This technique has been successfully applied to

single atoms and small moelecules[19, 65], but has yet to be implemented for bulk materials.

In more recent work, Löwdin Downfolding has been combined with Quantum Monte Carlo

to help significantly reduce the sign problem in quantum chemistry calculations.[65] It has

also played a role in deriving tight-binding models for superconducting systems[13] and

monolayers of transition-metal dichalcogenides[57].

The basis of Löwdin Downfolding is the partitioning of the Hamiltonian into two blocks:

the “target” block which defines the space of the effective model and its complementary

block containing all the remaining degrees of freedom. The goal is then to transform the

complementary block to the target space and absorb it into the target block. Given a

Hamiltonian H with eigenstate Ψ and a complete orthonormal basis {Φn}, we can partition

the basis into a target space denoted by P and its complimentary space, Q. Then expanding

H and Ψ =
∑

nCnΦn in these two spaces, we can express the full Hamiltonian and eigenstate

as

H =



HPP HPQ

HQP HQQ


 , C =



CP

CQ


 (1.7)

For an eigenstate of energy E, the Schrödinger equation reads



HPP HPQ

HQP HQQ






CP

CQ


 = E



CP

CQ


 ⇒

HPPCP +HPQCQ = ECP

HQPCP +HQQCQ = ECQ

(1.8)
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Then solving for CQ in the second equation and substituting it into the first, we arrive at

(HPP +HPQ(E1Q −HQQ)−1HQP )CP = ECP

⇒ Heff = HPP +HPQ(E1Q −HQQ)−1HQP (1.9)

where 1Q is the identity matrix spanning the complimentary space, Q.

Looking at the form of (1.9), we can see the first term is just the projection of the original

Hamiltonian into the target space followed by a correction in the second term coming from the

complementary space. This is equivalent to how the low-energy Hamiltonian in section 1.1

is dressed with the effects coming from expanding in the screened interaction. Similarly, just

as the dressing promotes the one and two-body interactions to being frequency dependant in

the three-stage approach, so too does the effective Hamiltonian in the Löwdin scheme come

with an energy dependence.

It should be noted that the contributions from the complimentary space involve a seemingly

complicated calculation involving the inversion of a potentially large matrix. The complexity

is controlled by the choice of basis {Φn} and depending on the approach used, can vary in

size. When directly applied to molecular systems, a large but limited basis set can be used

to parameterize the Hamiltonian. Then applying perturbation theory up to some order, the

second term in (1.9) can be approximately calculated.[19] Other applications are concerned

with deriving tight-binding models within the space of a reduced set of orbitals in order to

get an effective model. In these cases, the Hamiltonian is parameterized by a set of orbitals

resulting from a DFT calculation. Within this single-particle framework, the Hamiltonians

can be small enough to be handled directly, making the effective model in (1.9) easy to

calculate.[13, 57]

In principle, this approach should yield useful effective models when defined over the many-

particle Hilbert space as no approximations are needed before applying the Löwdin scheme.
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This of course comes with the obvious difficulty of working directly in this exponentially large

space and calculating inverses are large(and possibly infinite) matrices. On the other end of

the spectrum, using this technique in a single-particle framework as discussed above makes

it more malleable, but now we are at the mercy of the approximations that are inherent to

DFT methods and other single-particle approaches.

1.2.2 Canonical Transformations

Another approach used to arrive at an effective Hamiltonian is based on Jacobi Canonical

Transformations(CT), which are traditionally used in computer diagonalization routines for

Hermitian matrices. Given a Hermitian matrix H with a non-zero off-diagonal element Hij,

the Jacobi CT constitutes a unitary transformation

U = e−A, A = −A† (1.10)

such that U †HU yields a new matrix H̃ with the ijth element removed and rotated into

the remaining matrix elements. Repeated applications of U targeting the other off-diagonal

pieces will then result in a fully diagonal matrix.

This procedure can be generalized to act directly on the second-quantized Hamiltonian to

derive simpler effective models with diagonal interactions[70] or more, specifically, on Hamil-

tonians derived for quantum chemistry to include renormalization effects coming from higher-

order bands[71]. Focusing on the latter case, we follow the familiar first step of partitioning

the original Hamiltonian into low and high energy spaces

Ĥ = ĤL + ĤLH + ĤH (1.11)

These are also sometimes referred to as the “active” and “external” spaces, respectively.
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The goal of CT is to then rotate the dynamical correlations with the external space into the

Hamiltonian defined over only the active space

ˆ̃H = eÂĤe−Â, ˆ̃H = Ĥ +
[
Ĥ, Â

]
+

1

2

[[
Ĥ, Â

]
, Â
]

+ ... (1.12)

where the transformation is calculated term by term using the Baker-Campbell-Hausdorff(BHC)

expansion. Individual off-diagonal elements in H can be targeted by choosing particular ex-

citation operators, γ̂α, to construct the anti-Hermitian operator Â. For example, we can

choose γ̂1 = ĉ†a1 ĉ
†
a2
ĉe1 ĉe2 where the indices a1, a2 denote two arbitrary states in the active

space and e1, e2, two arbitrary states in the external space. Multiple excitations can be

targeted which is equivalent to writing Â as a linear combination over the corresponding

excitation operators

Â =
∑

α

Aαγ̂α . (1.13)

Note that γ̂α are in general many-body excitations(one-, two-, three-body, etc. operators).

We can then find the coefficients {Aα} such that

〈ΨL| ˆ̃Hγ̂α|ΨL〉 = 0 (1.14)

for each off-diagonal term, α. Using the Hermiticity of
ˆ̃H, we can rewrite these equations as

〈ΨL|
[

ˆ̃H, γ̂α − γ̂†α
]
|ΨL〉 = 0 (1.15)

which have been studied and are known as the generalized Brillouin conditions.[34] After

using (1.15) to find the transformation eÂ, we can then use the BHC expansion to calculate

the new effective Hamiltonian up to the desired order.
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One limitation of CTs that is relevant to this work is it’s inability to further reduce the

range of the diagonal two-body terms. In a best-case scenario, the two-body interactions

of a Hamiltonian may be reduced to pure density-density interactions corresponding to the

diagonal elements in the many-body matrix. If one seeks to derive an effective model with

an on-site interaction instead, this technique cannot be applied since it only works to remove

off-diagonal elements.

1.3 Fitting Reduced Hamiltonians to Accurate Simu-

lations

The ab initio methods discussed so far have departed from the simplicity involved in fitting

model Hamiltonians to experimental data in empirical and semi-empirical downfolding tech-

niques. Of course in these cases, the main disadvantage is the lack of experimental data for

the particular system in question, including relevant observables needed in order to derive

specific model parameters. If one instead uses the results of an approximate, but sufficiently

accurate many-body calculation to find the relevant observables, then one can leverage the

simplicity of fitting model Hamiltonians to real systems without the need for experimental

data.

In general, the effective model may be written as a sum over n-body operators with corre-

sponding rank-2n tensors representing the couplings. The values of the coefficients are then

optimized by matching various quantities between the real system and model Hamiltonian.

For any typical system, the higher-order n-body terms are too expensive to calculate to

arbitrary order, so in practice, the effective model is made up of one and two-body terms.

Truncating the higher-order contributions to the Hamiltonian is an approximation, but when

applied to bulk systems, the one and two-body operators can be sufficient enough to capture
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the low-energy physics to some satisfactory degree of accuracy. This is the main approach

taken by [12] and later formalized in [73] which is dubbed “Density Matrix Downfolding”.

Although this is by no means the only fitting technique, it provides an improved framework

based on density matrices that is relevant to the work in this thesis.

1.3.1 Density Matrix Downfolding

Just as in the previous sections, the goal here is to first identify a target space and downfold

the Hamiltonian H defined in the original space to Heff defined in the target space. The

mapping between these two spaces is defined by a set of Wannier functions {wi}, which

may be constructed from a reduced set of DFT orbitals as in the three-stage downfolding

approach discussed in section 1.1. Keeping all terms up to two-body operators, the effective

model takes the form

Heff = C +
∑

ij

tij c
†
icj +

∑

ijkl

Vijkl c
†
ic
†
jckcl (1.16)

where C is some constant energy shift. In any general fitting technique, the parameters

{tij} and {Vijkl} are found by variationally minimizing a cost function which attempts to

match expectation values of certain quantities between H and Heff with respect to a set of

N states defined in a low-energy space. Density Matrix Downfolding(DMD) identifies these

important quantities as the energy spectra and reduced density matrices(RDMs).

In order to define the cost function, the results of an ab initio many-body calculation are used

to obtain the energy and RDM for a set of the N lowest eigenstates of H. An analogous

set of quantities for Heff is obtained by a similar calculation with initial guesses for the

Hamiltonian parameters {tij} and {Vijkl}. We then define the cost function by summing the
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mean-square error between the quantities in H and Heff state by state

E =
∑

s

(Ea
s − Em

s )2 + λ
∑

s

∑

ijkl

(
〈c†ic†jckcl〉

a

s
− 〈c†ic†jckcl〉

m

s

)2

(1.17)

where the value λ controls the degree to which the two-particle RDMs are matched. The

subscript s indicates expectation values measured with respect to state s ∈ N and the

superscripts a and m denote quantities from H and Heff , respectively. Note that in the

second term, the summation over ijkl enumerates the sites of Heff defined in the target

space meaning that the two-particle RDM of H must first be transformed into this basis

using the Wannier functions {wi} in order to properly compare the values. Once the cost

function is defined, any gradient-free numerical optimization algorithm may be used to find

the set of {tij} and {Vijkl} that minimizes E . Since the eigenstates need to be determined

for the model before the expectation values are calculated, Heff needs to be re-diagonalized

every time any of the model parameters change, that is, for each function call during the

optimization.

There are several drawbacks inherent to this approach that can hinder its application to

arbitrary systems. First, the choice of the ab initio many-body method can affect the

accuracy of the eigenstates used to calculated the target energies and RDMs. If we use a

highly accurate technique, we may be limited to calculations on small system sizes whose

downfolded parameters may not correspond to those at larger system sizes. And if instead a

low accuracy technique is used to simulate the full system at larger system sizes, the resulting

energies and RDMs to which the effective model is fitted may not be representative of the

true low-lying energy space. Second, if the ab initio method limits the number of eigenstates

that can be accurately recovered from the low-energy space, we may not have enough states

to fully describe the space.

Suppose instead that rather than restricting ourselves to using eigenstates, we used any
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state so long as it’s within the low-energy space we are targeting. The idea is that if the two

Hamiltonians H and Heff behave in the same way for any set of arbitrary states, then they

should also do so for eigenstates. By removing the restriction of targeting a particular set

of states, we alleviate the need for accurately producing the target energies and RDMs and

just take whatever states we get so long as they are within the energy window of interest.

This shifts the focus from using highly accurate methods to using methods which can easily

sample low-energy states. In practice, this turns out to work very well and forms the basis

of modern DMD.

In addition to using an arbitrary set of low-lying states, we can eliminate the need to re-

diagonalize Heff for each function call by imposing that the one and two-particle RDMs for

the effective model correspond exactly to those from the ab initio calculation, but trans-

formed into the target space using the Wannier functions. Applying this assumption to the

energies Em
s

Em
s = 〈Heff〉s = C +

∑

ij

tij 〈c†icj〉
m

s +
∑

ijkl

Vijkl 〈c†ic†jckcl〉
m

s

≈ C +
∑

ij

tij 〈c†icj〉
a

s +
∑

ijkl

Vijkl 〈c†ic†jckcl〉
a

s
(1.18)

and substituting into (1.17), the second term vanishes and we can rewrite the mean-squared
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error of the energies as a system of linear equations




Ea
1

Ea
2

Ea
3

...

Ea
N




=




1 . . . 〈c†icj〉
a

1 . . . 〈c†ic†jckcl〉
a

1
. . .

1 . . . 〈c†icj〉
a

2 . . . 〈c†ic†jckcl〉
a

2
. . .

1 . . . 〈c†icj〉
a

3 . . . 〈c†ic†jckcl〉
a

3
. . .

...
...

...
...

...
...

1 . . . 〈c†icj〉
a

N . . . 〈c†ic†jckcl〉
a

N
. . .







C

...

tij
...

Vijkl
...




⇒ E = Ax (1.19)

By using the singular value decomposition of the matrix A, we can invert it and solve for

the Hamiltonian parameters defined in x in a single step.

The procedure described above has been applied to complex systems such as the Hydrogen

chain, Graphene and Hydrogen honeycomb lattice as well as molecular systems such as

diatomic FeSe. In all of these cases, the resulting effective models are compared to many-body

calculations from Variatioinal Monte Carlo(VMC) and Diffusion Monte Carlo(DMC).[73]
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Chapter 2

DMRG Methods for Electronic

Structure

Historically, the main approach to many quantum chemistry problems has been DFT or

combinations of other many-body methods with DFT such as Dynamical Mean-Field Theory

and GW. These approaches perform very well for small systems with weak to moderate

electron correlations, but begin to break down in the presence of strong correlations. In

this regime, Quantum Monte Carlo methods such as Variational Monte Carlo and Diffusion

Monte Carlo can be implemented for very large system sizes at high accuracy, but are

limited in their applicability due to the infamous sign problem. Algorithms such as the

Density Matrix Renormalization Group(DMRG) can operate in this regime without the sign

problem, allowing accurate calculations of strongly-correlated systems at large system sizes,

but quickly becomes intractable for systems with much higher entanglement. Surveying the

available quantum many-body methods, we find a gap in the applicability of these techniques

to large systems with high entanglement. Reaching this regime is a matter of improving any

of the previously mentioned approaches and in what follows, we discuss the work that has

already been done in taking the first steps at bringing DMRG into this realm of applicability.
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Figure 2.1: A schematic represenation of the sliced-basis functions for systems arranged in a
1D chain geometry. The atoms are represented by the small blue circles with atomic spacing
R. On the left, the grid points along the chain are shown which when zoomed in shows a
cartoon of the slices seperated by a distance a. On the right, the usual spherically-symmetric
Gaussian basis functions are generalized to cylindrical symmetry which the sliced-basis is
desgined to capture.

2.1 Sliced-Basis DMRG

Adapting DMRG to real systems requires parameterizng the continuous degrees of freedom

into localized “sites” with a locally defined Hilbert space. In the conventional approach the

sites are formed by transforming the original Hamiltonian into a particular basis, typically a

linear combinations of Gaussian basis functions. A severe drawback of this approach is the

large number of two-electron terms in the resulting Hamiltonian, scaling as N4
b , where Nb

is the number of basis functions. This stems from the large overlap of the basis functions,

which are, in most cases, required to extend over the entirety of the system in order to

correctly capture all the correlations. If one instead used a real-space grid representation,

with Ng being the number of grid points, one gets N2
g interaction terms but at the cost of

having Ng � Nb. Sliced bases are a compromise, with favorable scaling for the interactions

and an intermediate number of sites[64].

In sb-DMRG we use a real-space grid along one direction and a localized set of 2D Gaussian

basis functions spanning the other two transverse directions, defining a “slice” at each grid
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point(see Fig. 2.1 for a schematic representation). This is particularly advantageous when

dealing with systems extending much more in one direction than in the transverse direction,

such as chains of atoms. The entanglement of the system in the sliced basis is favorable,

not much above that of the corresponding effective Hubbard model. In contrast, sets of

conventional basis functions must be localized before being used in DMRG, since extended

molecular orbitals can give rise to volume-law entanglement scaling, which becomes dominant

on long chains.

In addition to maintaining an area-law entanglement scaling, restricting these functions to

slices makes each function orthogonal to all other functions not on the same slice, reducing

the number of interaction terms from quartic to quadratic in the number of grid points.

The resulting long-range Coulomb interactions may then by compressed via an SVD scheme

to produce an matrix product operator with a modest bond dimension which is nearly

independent of system size[11, 52]. This technique allows the method to scale essentially

linearly with the number of atoms, making large chains of atoms accessible to DMRG-level

accuracy.

2.1.1 Constructing the Sliced-Basis Functions

Fig. 2.1 gives a schematic overview of how the sliced-basis functions are constructed. The

2D transverse functions defining the slices are taken from standard 3D Gaussian basis set

functions defined by four numbers, (ζ, n,m, k) with each function taking the form

g(x, y, z) = xnymzke−ζ(x
2+y2+z2) (2.1)

The values of n, m and k determine the character of the function(i.e. s-type, p-type etc.)

and ζ controls the width. Some of these primitive Gaussians (especially the s functions) are

contracted with others of the same type to form new contracted basis functions. Therefore
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in the most general case, the 3D parent basis set is defined by

Φi(x, y, z) =
∑

j

cijgj(x− xA, y − yA, z − zA) (2.2)

where {cij} are the contraction coefficients and rA = (xA, yA, zA) denotes the position of

atom A. For a system whose atoms are arranged along a 1D chain, the spherical symmetry

of the original Gaussians translates to a cylindrical one, taking s orbitals to σ orbitals and

p orbitals to π orbitals, etc. Therefore we would like to define our basis as one that best

captures functions of the form

Φi(x, y, z) =
∑

jA

cijgj(x, y, z − zA) (2.3)

which is now restricted to a chain along the z-axis with an extra summation over the atoms.

Choosing the grid to go along the z-axis, we then define the sliced basis as a set of orthonormal

functions

Ξin(x, y, z) ≡ ξin(x, y)δ1/2(z − zn) (2.4)

such that on each slice at zn, the transverse functions {ξin} form an orthonormal set. For

now, we do not worry about the particular form of {ξin}. Later we will see that there is a

natural choice for these transverse functions that accurately captures orbitals of the form

(2.3). Without loss of generality, we may choose n = m = k = 0(s-type) for the Gaussians

in (2.3) to keep the notation simple. Expanding these functions in terms of the basis (2.4),
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the ith parent functions for slice n at position zn can be written as

φni (x, y) =
∑

jkA

cije
−ζj(zn−zA)2djkξk(x, y), djk =

∫
dxdy gj(x, y)ξk(x, y)

=
∑

k

ηnikξk(x, y), ηnik ≡
∑

jA

cije
−ζj(zn−zA)2djk (2.5)

We then use Löwdin orthogonalization to derive an orthonormal basis set from {φi}. Since

{ξk} already form an orthonormal set, the overlap matrix is given by the outer product of

the coefficient matrix ηn

ρnii′ =
∑

k

ηnikη
n
i′k (2.6)

which upon diagonalization yields

ρnii′ =
∑

k

Un
ikD

n
kkU

†
ki′
n

(2.7)

⇒ ρ−1/2
n = UnD

−1/2
n U †n (2.8)

Using ρ
−1/2
n to transform {φni } and noting that we can write η = UnD

1/2
n , the sliced-basis

functions can be expressed as

φni (x, y) =
∑

k

Un
ikξk(x, y) (2.9)

Due to the unitarity of U and orthonormality of ξ, the above set of functions are orthonormal

on each slice as desired. What’s more is that the elements of D in (2.7) can be used as a

criteria for truncated the basis in a controlled way.

Thus far, we have kept the definition of {ξi} arbitrary and have only used the fact that they

form an orthonormal set. But as previously mentioned, there is a particular choice which

is natural for the type of problems sb-DMRG is targeting. More specifically, this basis is
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ideally suited for system with a chain-like geometry. And so the spherical symmetry of the

original 3D Gaussians should be transformed to a cylindrical one, taking s-type functions

to σ-type, p-type functions to π-type, etc. This can be done by defining {ξi} to be a set

of orthogonalized 2D Gaussians—the same ones used in the original definition of Φ, but

projected to the x-y plane of the local slice.

Again, following the prescription of Löwdin orthogonalization, we calculate the overlap ma-

trix between the 2D Gaussians on a slice

Gij =

∫
dxdy gi(x, y)gj(x, y) (2.10)

and define the functions {ξi} as

ξi(x, y) =
∑

j

G
−1/2
ij gj(x, y) (2.11)

Substituting these into (2.9), we arrive at an orthonormal sliced-basis defined in terms of 2D

Gaussian basis functions

φni (x, y) =
∑

kl

(
Un
ikG

−1/2
kl

)
gl(x, y)

=
∑

l

fnilgl(x, y), fnil =
∑

k

Un
ikG

−1/2
kl (2.12)

To see the how one can recover the σ functions from this formulation, let us consider the

case of using uncontracted, s-type Gaussians as our original 3D parent basis. Leaving the

functions uncontracted is equivalent to setting cij = δij in (2.5) and with the definition of ξi

in (2.11), the coefficients {ηnik} in (2.5) are reduced to

ηnik =
∑

A

e−ζi(zn−zA)2G
1/2
ik (2.13)

27



and we can express the basis functions as

φni (x, y) =
∑

kA

(
e−ζi(zn−zA)2G

1/2
ik

)
ξk(x, y) (2.14)

This can easily be made into an orthonormal set by transforming {φni } withG
−1/2
i′i

(∑
A e

ζi(za−zA)2
)−1

and summing over k which is no more than using the orthogonalized 2D Gaussians to form

the sliced-basis functions. The widths of these functions are independent of their proximity

to the atoms, giving σ-function character to the functions representing the chain. This also

generalizes to p-type Gaussians which give π-functions, etc.

In the most general sliced-basis, the Hamiltonian takes the form

H =
1

2

∑

nn′

∑

ij

tnn
′

ij c
†
niσcn′jσ′ +

1

2

∑

nn′

∑

ijkl

V nn′

ijkl c
†
niσc

†
n′jσ′cn′kσ′cnlσ (2.15)

where n, n′ enumerate the slices, i, j, k, l, the local orbitals and σ, σ′ the spins(spin summation

implied in the above notation). Here, the total number of interaction terms is N2
zN

4
g where

Nz is the number of slices(i.e. grid points in the z-direction) and Ng, the number of local

basis functions on each slice. Note that Ng � Nz which means the scaling is dominated by

the system length. In the limit that Ng = 1, the resulting Hamiltonian takes a very simple

form with only N2
z density-density interactions.

2.1.2 Compressing the Long-Range Interactions

The interaction terms in (2.15) come from the 1/r Coulomb interaction and therefore stretch

over the entire system. When representing these terms with a Matrix Product Opera-

tor(MPO), the bond dimension begins to scale with the system size, becoming very costly

for large systems. To improve the efficiency of sb-DMRG, the interactions are compressed

through a Singular Value Decomposition(SVD) scheme which greatly reduces the bond di-
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mension of the resulting MPO. Here we sketch an intuitive example that demonstrates

the compression, but refer the reader to the supplementary material of Stoudenmire and

White[64] for the details.

Although the compression algorithm can be applied directly to the interaction terms in

(2.15), let’s consider the simplest case in which we only have one basis function per slice for

clarity. The interaction terms can then be simplified to

∑

n≤n′

Vnn′n̂nn̂n′ (2.16)

These interaction will decay as 1/|n−n′|, but in practice it is best to represent the power-law

decay as a sum of Gaussians by a fitting procedure. This not only simplifies the interaction

integrals by making them integrals of products of Gaussians(for a Gaussian sliced-basis set),

but also allows the interactions to factorize, taking full advantage of the SVD compression.

Take, for example, the case in which the interactions decay exponentially and are given by

Vnn′ = λ|n−n
′| . (2.17)

Restricting ourselves to the kth upper-right block of V—that is the matrix formed by taking

the elements from some diagonal Vkk to the upper-right corner at V1N—constrains n′ ≥ n,

allowing us to factorize the interaction as

Vnn′ = λ|n−n
′| = λn

′−n = λn
′
λ−n (n′ ≥ n) . (2.18)

The last term in the above expression represents an outer product between two vectors which

forms a rank-1 matrix when multiplied. This is the most optimal compression that can be

achieved through an SVD. If we then continue in this fashion and represent each of the

upper-right blocks of V by a set of truncated matrices, we can write the MPO in terms of
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this compressed representation yielding a bond dimension that’s independent of the system

size.

2.2 sb-DMRG on Hydrogen Chains

Once the system is expressed in the form (2.15), standard DMRG can be used to obtain

the wavefunction. Given the size and complexity of this Hamiltonian relative to traditional

lattice models, a few key features may be added in order to improve the efficiency of the

calculation. Here we discuss the main ingredients that are implemented in order to achieve

this boost in performance.

2.2.1 Initializing sb-DMRG with Hartree-Fock

A typical DMRG calculation begins by initializing the wavefunction into a Néel state contain-

ing the desired number of spin-up and spin-down particles. Each iteration of DMRG(called

a sweep) then grows the entanglement in a controlled way until the wavefunction approxi-

mates the exact ground state to the desired accuracy. For lattice models such as the Hubbard

or Heisenberg models at half-filling, the ground state can quickly be recovered with only a

few sweeps(5-15, depending on system size). But when computing the ground state of the

hydrogen chain(H-chain), more sweeps are usually required, with each sweep taking more

compute time.

A simple solution is to replace the Néel state ansatz with one from a Hartree-Fock(HF)

calculation, leaving DMRG to build up only the pieces of the wavefunction that contribute

to the correlation energy rather than constructing the entire many-body structure from

scratch. Since HF calculations are much faster than DMRG, using a low-accuracy initial

guess can significantly speed-up the overall performance without sacrificing accuracy.
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After casting the original H-chain Hamiltonian into the sliced basis, we first run HF to

recover the single-particle states, {θα}, that make up the HF wavefunction. For a chain with

Na atoms at half-filling, the ground state can be expressed in Fock space as

|Ψ0〉 = d†Na,↓d
†
Na−1,↓...d

†
1,↓d

†
Na,↑d

†
Na−1,↑...d

†
1,↑ |0〉 (2.19)

where the Fock operators {d†α,σ} are defined variationally from HF in terms of the sliced-basis

operators {c†ni,σ} as

d†α,σ =
∑

ni

θniα c
†
ni,σ . (2.20)

Here α enumerates the Fock state, n the slice, i the local orbital on slice n and σ, the

spin(note here that since the system is at half-filling, the HF coefficients, {θα}, are the

same for spin-up and spin-down). Each of these Fock operators may be written as a matrix

product operator(MPO), a tensor network representation of a quantum many-body operator

which can then act successively on the vacuum state. The end result is a many-body HF

wavefunction written as a matrix product state(the tensor network representation of a many-

body wavefunction) which can be directly used as a starting state in DMRG.

2.2.2 Reducing to Slice Natural Orbitals

As we saw in the previous section, the number of interaction terms for the sliced-basis

Hamiltonian scales as N2
zN

4
g where Nz is thee number of slices and Ng, the number of

local basis functions per slice. Although Ng � Nz, the number of interaction terms may

be drastically reduced by decreasing Ng. For example, the standard CC-pVDZ basis set

containing six Gaussians contracted down to four can have 44 = 256 times less interactions

terms if reduced to a single effective basis function per slice. Therefore it is highly desirable

to make Ng as small as possible while still maintaining an acceptable degree of accuracy.
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Lets consider the case of using the CC-pVDZ basis set to describe the H-chain. The basis set

has two s-type and two p-type functions for a total of four functions per slice. Now, suppose

we are in an insulating phase of the H-chain where we expect the electronic structure to be

mainly of s character. In this regime, the p functions in the basis set should play a minor

role and we expect that they may be removed. To check, we can run sb-DMRG in the full

basis set and form a single-body reduced density matrix on a slice defined as

Cij = 〈c†icj〉 , for {i, j} ∈ [1, Ng] (2.21)

where i, j are restricted to live on the same slice. The matrix C will be block diagonal

with a total of three blocks, one for s, one for px and one for py. After diagonalizing C,

we can inspect the eigenvalues to determine which of the four single-particle states, also

referred to as “slice natural orbitals”(SNOs), are the most active and truncate those that

have small eigenvalues. If the truncated states have occupancies which are sufficiently small,

the resulting slice density matrix will be approximately preserved. We can then define a basis

transformation from the full Ng CC-pVDZ basis functions to the No < Ng SNOs, giving a

Hamiltonian with No functions per slice. The resulting Hamiltonian is then be fed back into

another sb-DMRG routine to obtain the final ground state.

Note that in reducing the number of basis functions, we required the slice density matrix

from an sb-DMRG calculation in the full basis. This may seem counter-productive, but in

fact the original calculation need not be fully converged and can instead be used well before

the wavefunction closely approximates the true ground state. In addition, the basis may

be expanded during any point in the calculation through a simple basis transformation so

that more information can be incorporated into the resulting SNOs. As we will see in the

next few chapters, the H-chain Hamiltonians are frequently reduced to one and two basis

functions per slice with little loss of accuracy.
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Figure 2.2: Ground state electron density for H10 at R = 1.0aB. The regions filled in with
red represent the end spill-off of the electron density due to the large empty regions on either
side of the chain.

2.2.3 Boundary Conditions

As a final added feature, we consider the boundary conditions to be used in an H-chain

calculation. In a real hydrogen chain, the tail of the electronic wavefunction extends a

moderate distance beyond the nuclei that make up the chain. However when treating the

finite chain as a segment of an infinite chain, the electrons should no longer be allowed to

spread beyond the finite segment, since the other atoms that make up the larger, infinite

chain obstruct them from doing so. Without taking this effect into account, the end spill-off

of the electrons shown in Fig. 2.2 will result in a reduction of the bulk electron density,

slowing the convergence to the thermodynamic limit. Although this effect is very minor

at large atomic spacing, R, it becomes important for sufficiently small R, and results in

a reduction in Rc for shorter chains[48]. If periodic boundary conditions are used, this

boundary effect does not occur, but periodic boundaries slow the convergence of DMRG.

Instead, we can use hard walls placed at a distance R/2 beyond the first and last atoms

in order to mimic the presence of other atoms that would otherwise be there in the infinite

chain. While there are still some edge effects, we will find that they are much smaller than

with open ends.
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Chapter 3

The Hydrogen Chain

As used in this work, the hydrogen chain (H-chain) consists of N protons and electrons. The

protons are held fixed and are equally spaced by a distance R, defining a static, periodic

potential for the system. Chemically, H-chains would be unstable, but for electronic structure

calculations they are realistic in the sense of having three dimensional electron wavefunctions

with long range Coulomb interactions. Most importantly, it can be regarded as a realistic

model of a 1D solid, with an interesting phase diagram as one varies R as shown in Fig.

3.1(b). Despite its apparent complexity, the H-chain remains accessible to a whole host

of modern many-body methods[47, 48, 22, 66, 39, 59], including DMRG methods. Along

with its rich physics, the H-chain can be tuned to resemble simple lattice models, such as

the Hubbard and Heisenberg model, providing a smooth connection between a realistic 1D

solid and fundamental theoretical models. These features, together with it’s computational

tractability, make the H-chain an excellent candidate to study the progression from a real

system to an effective model.
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Figure 3.1: Ground state electron structure and magnetic phases of the H-chain. (a) sb-
DMRG calculation with 11 basis functions for H12 at R = 1.8aB. There is a very apparent
dimerization of the electrons. (b). Magnetic phases from DFT-PBE taken from [48]. Here
Mtot =

∫
d3r m(r)/N and Mabs =

∫
d3r |m(r)|/N where m(r) is the magnetization of the

simulation cell.

3.1 Ground State Properties

The correlations within the H-chain are controlled by a single parameter, R, the atomic

spacing. In a localized atomic orbital picture, R controls the degree of overlap between

neighboring orbitals which in turn determines the hopping strength. At small R, the orbitals

heavily overlap leading to more hopping which, in the extreme limit, begins to resemble a 1D

electron gas. As R is increased, the lack of overlap between neighboring atoms suppresses the

hopping, leading to a more insulating state. This is the standard scenario for a Mott metal-

insulator transition, although the 1D nature of the chain can alter the expected physics.

For R > 1.8aB, the physics is mainly dominated by a single band composed primarily of

the atomic 1s orbitals, with higher orbitals playing an increasingly more minor role as the

atomic spacing is increased. In this regime, the electrons exhibit quasi-long range anti-

ferromagnetic(AFM) correlations with a power-law decaying envelope as illustrated in Fig.

3.2(a). The correlations decay with an exponent of η ≈ 1 which puts the H-chain in the same

universality class as the 1D Heisenberg model for large R. In addition to the AFM order,
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Figure 3.2: Ground state properties of the H-chain. (a) The anti-ferromagnetic cor-
relations in H60 for R = 2.0aB and R = 3.2aB. The inset shows a power low de-
caying envelope for the correlations. (b) The dimerization in various lattice models as
compared with the H-chain. For the Hubbard model, the dimerization is defined as

∆dim =
∣∣∣
(
ĉ†N/2ĉN/2+1 + h.c.

)
−
(
ĉ†N/2+1ĉN/2+2 + h.c.

)∣∣∣. For the Heisenberg model, it is de-

fined as ∆dim =
∣∣∣ŜN/2ŜN/2+1 − ŜN/2+1ŜN/2+2

∣∣∣. And for the H-chain, it is defined as the

difference in the density between two adjacent bonds connecting the N/2 and N/2 + 1 hy-
drogen atoms.

the electron density shows signs of increasing dimerization as R is reduced. This is most

apparent by comparing the electron density between even and odd bonds separating the

nuclei. It can also be seen in the entanglement with an alternating pattern of low and high

entropy along the chain as shown in Fig. 3.4. As the system size increases, this dimerization

decreases as a power law, falling with an exponent d ≈ 0.5. This behavior is reminiscent of

the nearest neighbor spin correlations, 〈SiSi+1〉 in the Heisenberg model and similarly the

kinetic energy, hi = 〈c†ici+1 + h.c.〉 in the Hubbard model as shown in Fig. 3.2(b).

In the opposite limit, there exists some critical atomic spacing Rc < 1.8aB for which the pre-

viously dormant bands beyond the 1s become more occupied, transitioning the system from

an insulating phase to a more metallic one. These additional bands are diffuse, emerging

from the 2s, 2px, and 2py atomic orbitals and become occupied through a self-doping mech-

anism that drives the 1s band occupancy below half-filling. We can see this by inspecting
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Figure 3.3: Natural orbital occupancy calculated by diagonalizing the single-body correlation
matrix for H10 at (a) R = 0.9aB and (b) R = 3.3aB. For small R, the system is metallic and
shows non-zero occupancy in the diffuse p orbitals. On the opposite end, in the insulating
phases, the occupancy is primarily dominated by compact s-type character.

the natural orbital occupancy shown in Fig. 3.3 for R = 0.9aB and R = 3.3aB, two points

that are deep in the metallic and insulating phases, respectively. As a simple picture, we

can imagine a set of isolated bands that exists at large R, where the bandwidths are small,

gradually transitioning to larger bandwidths as R is decreased and the orbitals begin to

overlap. With much larger bandwidths, part of the 1s band rises above the Fermi level while

the 2s/2p bands begin to cross below the Fermi level, leaving partially occupied bands that

show metallic behavior. However, this simple picture does not explain which of the diffuse

orbitals plays a more significant role in facilitating the transition.

3.1.1 Nature of Metal-Insulator Transition

As previously mentioned, there are several key bands that govern the physics of the H-chain

over a range of atomic spacings: the 1s, 2s, 2px, and 2py orbitals. Using sb-DMRG, we can

investigate the properties of the many-body ground state by diagonalizing the single-particle
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Figure 3.4: Ground state entanglement and density. (a) The von Neumann entanglement
measured along the 1D chain for H10 at different values of atomic spacing. As R increases,
the dimerization persists, but weakens. This is also seen by comparing the density and even
and odd bonds as shown in the left column for (b) R = 1.4aB and (c) R = 3.6aB. In all
plots, the dashed lines correspond to the positions of the nuclei.

density matrix for the full system or for a single slice and study the resulting natural orbitals

and their corresponding occupancies. In order to avoid biases in the orbitals that become

occupied, we choose to parameterize the H-chain with a diverse set of basis functions shown

in Fig. 3.5.

Within the sliced-basis, the single-particle density matrix is expressed as

Cnn′

ij = 〈c†ni,↑cn′j,↑〉+ 〈c†ni,↓cn′j,↓〉 (3.1)

where n, n′ enumerate the slices and i, j, the local orbitals. Due to the orthogonality of the

s, px and py functions, C will be block diagonal, with three blocks representing the three

types of functions. Furthermore, since the H-chain is symmetric under a rotation that takes

x → y, the px and py block will be identical. Therefore, we only consider the s block and

the px block for the following analysis.
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To obtain a description of the many-body state at small and large R, we can diagonalize

the s and p blocks of C separately and inspect the natural orbitals(NOs) with the highest

occupancy. At half-filling, the diffuse 2s and 2p bands show only minor discrepancies, making

it difficult to conclude which, if either, are favored. To make this difference more pronounced,

we can study the occupancies of the equivalent electron-doped systems and track which band

the extra electron occupies. These are shown in Fig. 3.6 for a metallic state at R = 1.3aB

and an insulating state at R = 1.8aB. Comparing the occupancy of the diffuse orbitals

between the two states, we see the extra electron goes into the 2s band in the insulating

state, but then transitions to the 2p band as the system becomes metallic. This suggests that

the two bands are competing, with one band being much more energetically favorable than

the other depending on which side of the metal-to-insulator transition the system lies in. To

resolve the energy differences we can employ a technique similar to what was done in section
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2.2.1 and construct Fock operates for each of the NOs. These can then act on the vacuum

to artificially create states in which the 2s or 2p band are occupied by the extra electron.

By measuring the expectation value of the original Hamiltonian with respect to these states,

we can probe the energy differences to see which band, if either, is most favorable.

Let’s consider a 12 atom H-chain in the sliced basis defined by the functions in Fig. 3.5. To

form the 1s and 2s Fock operators, we first diagonalize the s block of C from an electron-

doped system and inspect the NO occupancy. The 1s NOs are those that are close to doubly

occupied while the 2s NO is the one following immediately after the last 1s NO(see Fig. 3.6).

The same is done for the 2p orbital, except in this case, we take the most highly occupied

NO of the px block to represent the 2p NO. Let φni1s,j represent the jth 1s NO and φni2s and

φni2p represent the 2s and 2p NOs in the sliced basis where n enumerates the slice and i, the
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Figure 3.7: Energy differences in occupying 2s versus 2p. (a) The energies for the two states
given in (3.3) and (3.4) as a function of R. The pie charts above each point indicate the
2s and 2p occupancy of the extra electron in the original system. The density relative to
half-filling of the doped system is shown in (b) when the extra electron mostly occupies the
2p NO and in (c), when it mostly occupies the 2s NO.

local slice function. The corresponding Fock operators are given by

d†α =
∑

ni

φniα c
†
ni, α ∈ {(1s, 1), (1s, 2), ..., (1s, 6), 2s, 2p} (3.2)

The 2s and 2p-occupied states can then be written as

|Ψ〉2s = d†2sd
†
1s,1d

†
1s,2...d

†
1s,6 |0〉 (3.3)

|Ψ〉2p = d†2pd
†
1s,1d

†
1s,2...d

†
1s,6 |0〉 (3.4)
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We can then take the expectation value of the original H-chain Hamiltonian with respect to

these two states and compare the energies. c shows the energy difference between these two

states as a function of R for H12. At large R, we can see that the 2s band is much more

energetically favorable, but becomes less favorable as R is decreased below the transition

point. In addition, there is a striking asymmetry in the energy differences between 2s and

2p on either side of the transition, with the metallic side showing a much smaller energy

difference than the insulating side. Around the transition point, the two bands seem to be

degenerate over a small range of R, suggesting a tendency for the two bands to mix.

In addition to the energy and occupancy, we can visually inspect the electron density of

the doped system relative to the half-filled system in order to determine where the extra

electron has gone. From Fig. 3.7(b), we can see that the electron density has decreased in

the bulk of the chain in favor for the more diffuse regions on the periphery. These regions

are mainly of 2p character as the previously shown. After the metal-to-insulator transition,

the extra electron continues to occupy the more diffuse orbitals, but is more tightly bound to

the chain. Looking in the bulk of the chain, we can also see a much more striking difference

in the occupancy relative to the metallic H-chain.
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Chapter 4

Deriving Effective Models for the

Hydrogen Chain

Despite the prevalence of the downfolding techniques presented in chapter 1, it remains diffi-

cult to systematically verify the validity of these approaches. In the absence of experimental

data, the systems which are being downfolded must be accurately simulated in order to com-

pare quantities between the effective model and the original system. This was recognized

by Shinaoka et al., who tested the accuracy of the widely employed cRPA technique when

downfolding a three-band Hubbard model into a single-band effective model.[58] However,

doing these checks for many real systems is impractical since modern many-body methods

can not yet accurately simulate realistic materials. Instead, we can compare systems which

exhibit relevant aspects of real materials, but are simple enough to remain accessible to mod-

ern many-body techniques. As we saw in the previous chapter, the hydrogen chain(H-chain)

exhibits both of these aspects and is a promising candidate for studying the transition from

a realistic material to an effective model.

Here we use results from sb-DMRG to construct effective models for the H-chain. The main
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Function Type Width
s, contracted 0.478(ζ = 0.4446) + 0.138(ζ = 1.962) + 0.020(ζ = 13.01)

s ζ = 0.122
px ζ = 0.727
py ζ = 0.727

Table 4.1: CC-pVDZ Basis Set. The contracted basis function shows the coefficient with the
corresponding Gaussian width in parentheses.

approach will be to derive WFs for a set of relevant bands within the H-chain and transform

to this new basis which defines our lattice model. From there, we can make various controlled

approximations to truncate the downfolded model parameters to get even simpler models.

At each step of the process, we can check the accuracy of the truncations. With access to

the ground state and excited state wavefunctions to both the lattice model and the original

system, we compare quantities such as the entanglement, correlations and spin velocities

in order to probe the accuracy of different approximations used to construct the effective

models. The comparisons will focus on the necessity of the long-range Coulomb interaction

and beyond nearest-neighbor hopping in capturing the relevant physics of the H-chain.

4.1 Simulating the Hydrogen Chain

Within the sliced-basis, the full, 3D, H-chain Hamiltonian takes the form of a 1D multi-band

model with long-range Coulomb interactions. We consider a system of Na atoms separated

at a distance R and placed on the z-axis, with the slices lying along the x-y plane. In what

follows, we choose the CC-pVDZ Gaussian basis set shown in Table 4.1 to span the slices

and implement “hard wall” boundary condition as described in section 2.2.3. In this basis,

the H-chain has two s-type functions and two p-type functions for a total of four functions

per slice.

As noted in chapter 3, the H-chain begins to resemble the Hubbard model at large R and one
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Figure 4.1: Eigenvalues of the single-particle correlation matrix from the ground state of H20
giving the natural orbital occupancy. The first 10 states are doubly occupied and represent
Hartree-Fock type states. The second 10 states have small but non-negligible occupancy.
States beyond the first 20 show occupancy on the order of 10−3 and are truncated to give a
downfolding approximation.

may imagine deriving a Hubbard-like effective model in this regime. Deep in the insulating

phase, the more diffuse bands are significantly less occupied than the 1s band which makes

reducing to a single-band a good approximation. In addition to increasing the efficiency

of the calculation, this will also facilitate the construction of a single-band effective model.

Therefore we reduce the original four functions per slice down to a single slice natural orbital

as described in section 2.2.2 resulting in a single-band description of the H-chain.

4.2 Wannier Functions for Interacting Systems

As described in section 1.1.2, Wannier functions(WF) are formed from single-particle states

which result from tight-binding models, DFT calculations or other similar approximations.

They are well defined in an independent-electron picture and are frequently used to construct
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effective model Hamiltonians, which are then refined by other techniques(see chapter 1) to

create an accurate representation of the original system. In addition to these traditional

WFs, one can construct similar functions for fully interacting systems where the single-

particle Bloch orbitals are no longer well defined.

As pointed out in [30], one can use the single-particle density matrix, which is well-defined

even in an exact theory, as a surrogate for the Hamiltonian. One then takes its eigenstates(the

natural orbitals), sorts them into bands according to their eigenvalues(the natural orbital

occupancies) and constructs WFs. Of course, the full interactions fractionally populate the

omitted bands and reducing to the WFs is an approximation. A good measure of the size

of the error in going to the WF basis is in the total occupancy of all the omitted natural

orbitals which we find to vary between 10−3 to 10−4 depending on R(see Fig. 4.1), making

this a good approximation for the systems studied here.

This is the basic approach used here with sb-DMRG, but we can go even further and use

eigenvectors of not just the ground state single-particle density matrix, but rather a sum

of density matrices from a set of low-lying many-particle excited states in addition to the

ground state, in order to capture information that describes the physics beyond the ground

state. Generally, adding density matrices results in new eigenstates which attempt to cover

the space of all the important states of the individual density matrices. We find that using

this sum with a well-chosen set of excited states leads to a better representation of the low-

energy physics in the downfolded model, such as the gaps between low-lying states. Choosing

which low-lying states to incorporate into the sum of density matrices is key since too many

incorporated states will lead to more truncation unless one uses a less simplified model. Too

few may contribute to errors in reproducing the low-energy physics.

From (2.15), we can see that expressing the original 3D H-chain Hamiltonian in the sliced-

basis has resulted in a 1D single-band lattice Hamiltonian. Reduced to 1D, we can now

regard this system from a Luttinger Liquid perspective, for which all low-lying excitations
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are bosonic spin and charge excitations. However, extra electrons added to the H-chain

generally occupy additional bands which tend to be diffuse, as was shown in the previous

chapter. A single-band effective model cannot properly capture such excitations, so we

explicitly omit charge excitations from consideration in building our effective models—the

charge excitations in the resulting models are expected to be qualitatively different from

charge excitations of the H-chain. In contrast, the spin excitations do primarily live in the

original single band. Therefore, in addition to the ground state density matrix, density

matrices from states with one- and two-spinon pair excitations are added, i.e. total spin

Sztotal ≤ 2. Since the excitations only affect the spin-independent Wannier functions, we only

create spin excitations in the spin-z direction, speeding the calculations.

Specifically, the single-particle density matrix is calculated using the ground state |Ψ0〉,

1-spinon pair excited state |Ψ1〉 and 2-spinon pair excited state |Ψ2〉 of the H-chain as

C
(0)
ij = 〈Ψ0| ĉ†i↑ĉj↑ + ĉ†i↓ĉj↓ |Ψ0〉

C
(1)
ij = 〈Ψ1| ĉ†i↑ĉj↑ + ĉ†i↓ĉj↓ |Ψ1〉 (4.1)

C
(2)
ij = 〈Ψ2| ĉ†i↑ĉj↑ + ĉ†i↓ĉj↓ |Ψ2〉

The mixed density matrix is then given by Cij = C
(0)
ij +C

(1)
ij +C

(2)
ij and the natural orbitals,

{ξk}, are readily obtained by diagonalization.

For an Na-atom hydrogen chain, the Na most occupied natural orbitals are retained whereas

the rest are projected out. In the weakly correlated regime, the spectrum of the ground state

density matrix exhibits a sharp cutoff between occupied and unoccupied states whereas in

the strongly correlated regime, the spectrum is more flat, reflecting the tendency for these

states to mix. However in both of these regimes, there exists a sharp cutoff between the

first Na states and the rest, as shown in Fig. 4.1. Spectra from density matrices of low-

lying states(e.g. those generated by spinon excitations) also demonstrate the same feature,
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(a) R = 2.0aB (b) R = 3.2aB

Figure 4.2: Translationally invariant Wannier function for (a) R = 2.0aB and (b) R = 3.2aB
constructed from the single-particle density matrices of H100. The top panels in each subplot
show the full 3D Wannier functions in real-space integrated over y and the lower panels, the
1D representation within the sliced basis as a function of z for both sb-DMRG and Hartree-
Fock derived functions.

indicating that the ground state and a group of low-lying excited states are confined to the

states below this cutoff. Therefore by diagonalizing a mixture of density matrices, informa-

tion regarding excited states can be captured explicitly and used to construct the effective

model. The Na remaining natural orbitals are then localized around each atom by project-

ing the 1D position operator into this basis and re-diagonalizing. This is exactly analogous

to the spread minimization procedure used in the construction of maximally localized WFs

discussed in section 1.1.2.

The procedure described thus far yields slightly different WFs describing each atom. This is a

consequence of using open boundary conditions and as such, only the WFs near the edge differ

much from those in the bulk. In order to better reproduce the model in the thermodynamic

limit, we restore translational invariance among the WFs by first aligning them so that all

the maxima coincide at one point, then average point-wise across all functions, weighing

each function by their proximity to the center of the chain. The translationally invariant

WF shown in Fig. 4.2 is then redistributed to each atom.
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Figure 4.3: Hamiltonian parameters from transforming the H-chain Hamiltonian into an
effective model using the Wannier functions for H100. All parameters are scaled by the
average value of the nearest neighbor hopping denoted by t̄. The top panel shows the single-
body terms and the lower panel, the two-body interaction terms. The dashed lines in the
lower panel are 1/r lines in units of t̄.

The WFs are defined by the coefficients wni, where n = 1, 2, ..., Nz enumerates the grid and

i = 1, 2, ..., Na, the functions. The Hamiltonian then takes the form

ĤWF =
∑

σ,ij

tWF
ij ĉ†σiĉσj +

1

2

∑

σ,ijkl

V WF
ijkl ĉ

†
σiĉ
†
σ′j ĉσ′kĉσl

tWF
ij =

∑

nn′

w∗int
sb
nn′wn′j (4.2)

V WF
ijkl =

∑

nn′

w∗inw
∗
jn′V sb

nn′wkn′wln.

The resulting Hamiltonian parameters are shown in Fig. 4.3.

As previously mentioned, in typical applications, Wannier functions are constructed from

single-particle orbitals of mean-field calculations, so it is natural to compare the performance
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of such functions to those obtained from sb-DMRG. Although density functional approaches

may be better, for simplicity we compare unrestricted Hartree-Fock in place of sb-DMRG to

construct these functions and as Fig. 4.2 indicates, we find very similar Wannier functions.

In this case, we see that a conventional Wannier construction would likely be satisfactory,

although we expect higher accuracy from our sb-DMRG approach.

4.3 Variational Optimization of Effective Models

The Hamiltonian in (4.2) is the most general lattice model containing up to two-body terms.

It is therefore desirable to truncate the tensors {tWF
ij } and {V WF

ijkl } in order to recover a

Hubbard-like model or models with density-density interactions. For systems at finite tem-

peratures, one can search for an effective model such that the canonical density operator for

the model closely approximates that of the original system. This leads to a minimization

procedure involving the Peierls-Feynman-Bogoliubov variational principle, resulting in an

effective model.[56]

At zero temperature, this procedure translates into minimizing the expectation value of the

original Hamiltonian with respect to the ground state of a trial effective model. As deviations

from the true ground state occur, one can vary the parameters in the effective model until

the expectation value closely approximates the ground state energy of the original system.

In the best case scenario, the effective model will yield a wavefunction that is nearly identical

to that of the original system. Furthermore, if a small manifold of low energy states near the

ground state also match between the two systems, then the resulting effective model would

be an excellent representation of the original system.

Let’s take (4.2) to be our starting Hamiltonian. We would like to find a simpler effective
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model of the form

Ĥeff =
∑

ij

tij ĉ
†
σiĉσj +

1

2

∑

ij

Vijn̂in̂j (4.3)

where {tij} and {Vij} are band-diagonal such that all elements with indices |i− j| > lt and

|i− j| > lV are zero, respectively. Note here that the original four-index interaction has been

replaced by a much simpler two-index, density-density interaction. Working at zero tem-

perature, the Peierls-Feynman-Bogoliubov variational principle reduces to a minimization of

Φ[tij, Vij] = 〈Ψeff|ĤWF|Ψeff〉 (4.4)

with respect to the model parameters {tij} and {Vijkl}. Here, |Ψeff〉 = |Ψeff[tij, Vij]〉 is the

ground state of Ĥeff and is a complicated function of {tij} and {Vijkl}. This procedure is used

in [56] for the case of reducing long range two-particle interactions to an on-site interaction.

For this case, the form of the optimal on-site interaction can be explicitly found and solved

self-consistently. Here the method has been generalized to adjust all of the one-particle terms

and all of the two-particle terms which yields a system of equations that need to be solved

self-consistently. As the number of equations increase, solving them to find the optimal

parameters quickly becomes unstable. Instead, we directly vary the parameters of Ĥeff and

use iterative algorithms to find the minimum.

At each step of the optimization, the function evaluation is carried out by first defining a

Hamiltonian according to the variational parameters tij and Vij and then solving for the

ground state using DMRG, yielding |Ψeff〉. Then (4.4) can be used to evaluate Φ[tij, Vij] by

taking the energy overlap with respect to this wavefunction. The number of sweeps for each

DMRG run is very small—usually no more than one or two—since the wavefunction from

the previous step can be used as a starting point for the DMRG at the current step. This
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is sufficient for optimization algorithms such as Nelder-Mead which use a simplex defined

in parameter space to gradually reach a minimum since function evaluations are all that is

required.

For the family of optimization algorithms that take advantage of the local gradients(e.g.

Gradient/Conjugate Gradient Descent and the Broyden–Fletcher–Goldfarb–Shanno(BFGS)

algorithm), the ability to differentiate (4.4) is an additional, but worthwhile requirement.

Exactly computing the gradients is impractical since the wavefunction used to calculate the

expectation value is some complicated function of the model parameters. So in order to use

any gradient dependent algorithm, the derivatives must be approximated.

For simplicity, let’s consider the case in which our effective Hamiltonian takes the form

Ĥeff =
∑

〈ij〉

(ĉ†σiĉσj h.c.) + U
∑

i

n̂i↑n̂i↓ + V1

∑

i

n̂in̂i+1 + V2

∑

i

n̂in̂i+2 (4.5)

where the summation over spins is implied and we have re-scaled the energy such that t = 1.

As an approximation, we can use finite differences to calculate the gradients. We pick some

small parameter ε and compute the gradients as

∂UΦ ≈ Φ[U + ε]− Φ[U ]

ε

∂V1Φ ≈
Φ[V1 + ε]− Φ[V1]

ε
(4.6)

∂V2Φ ≈
Φ[V2 + ε]− Φ[V2]

ε

In each of the function evaluations involving a shift by ε of the model parameter, a new

wavefunction needs to be computed. However, just as in the case of the gradient-free algo-

rithms, the previous wavefunction may be recycled, meaning that only a few DMRG sweeps

are needed in order to get the new state. For the example shown above, the number of

sweeps needed for all the function evaluations and gradients used in a single iteration is
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(2 ∗ 3) + 2 = 8, two sweeps for each of the three variables to get the gradients plus an

additional two sweeps for the function evaluation at the new set of parameters.

Note that the cost of calculating the gradients scales linearly with the number of model pa-

rameters. For effective models with long-range two-body interactions, this could potentially

cause the number of sweeps per iteration to scale quadratically in the system size. But a

more realistic two-body interaction, such as the Coulomb interaction, only requires a fraction

of the variables since the interaction will be translationally invariant. With open boundary

conditions, this is slightly relaxed to include variations in the parameters near the edge, but

can still yield a number of parameters that is independent of the system size. The question

then is how to define the “bulk” versus the “edge” region for these systems.

Suppose that a system for which we seek an effective model has interaction terms {Vij}. For

example, this may be a result of taking Vij ≡ V WF
ijji for the transformed H-chain interactions

in (4.2). Let’s consider the diagonal elements of {Vij} and denote them as {Ui ≡ Vii} for

i ∈ [1, N ]. The “bulk” and “edge” parameters are chosen by separating a select number

of sites near the edge from the remaining sites near the center. For an edge length of n,

the “edge” parameters are defined as the first n and the last n elements in {Ui} which we

write as {Ui}1:n,(N−n):N . Similarly, the “bulk” parameters are defined as the middle N − 2n

elements written as {Ui}n:(N−n). Then, we can compute the variance of the “bulk” elements

and choose n such that this variance is below a particular threshold. Formally, we choose n

when

var
(
{Ui}n:(N−n)

)
≤ λ (4.7)

is satisfied for a given value of λ. This procedure is then repeated for each diagonal band

of {Vij} to define separate bulk and edge regions. The parameters in the bulk region can

be represented by a single variable while those in the edges are allowed to differ amongst
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themselves. As an example, if we choose lV = 2 for the interactions in (4.3), the matrix will

have the form

V =




v1 v4 v6 0 · · · 0 0 0 0

v4 v2 v5 v6 · · · 0 0 0 0

v6 v5 v3 v5 · · · 0 0 0 0

0 v6 v5 v3 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · v3 v5 v6 0

0 0 0 0 · · · v5 v3 v5 v6

0 0 0 0 · · · v6 v5 v2 v4

0 0 0 0 · · · 0 v6 v4 v1




(4.8)

which has six variational model parameters, v1...v6. This can also be done for the one-body

terms, but with careful consideration of the diagonal elements(see appendix A.1).

Once the model parameters have been defined, we may implement the minimization of (4.4)

using any gradient-required or gradient-free optimization algorithm as described above. In

some cases, we found that this optimization could get stuck. As a simple fix, instead of

optimizing all the parameters at once, we first optimize over the elements of V , keeping t

fixed, then over the elements of t, keeping V fixed, then over V again, etc.

4.3.1 From Long-Range Interactions to On-site U

A simple test of the outlined optimization procedure is to reduce a Hubbard model with

long-range Coulomb interactions into an effective model with only an on-site two-body term.

Because the effective model has only one parameter, we can find the most optimal solution

by searching the DMRG ground states of effective models with different on-site interactions
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Figure 4.4: Comparison of the variational algorithm and a brute force search. The solid red
and blue curves give the value of the ground state overlap between the long-range model(with
U = 2.0 in blue and U = 7.4 in red) and the Hubbard model evaluated on a fine grid. The
various vertical lines show the values of Ueff that correspond to the naive effective model
with Ueff = U/2, the model found varationally and the best possible model.

defined on a 1D grid(as opposed to m variables which would require a search over an m-

dimensional grid, an exponentially larger set of models than in the 1D case). Given the

simplicity of simulating 1D Hubbard models in DMRG, we can quickly generate ground

states for up to one hundred different models. Then for each ground state, we can compute

the wavefunction overlap with the ground state from the original long-range model and

choose an effective model by finding the one that maximizes this overlap. To compare how

well the effective model from the optimization procedure fairs against the one chosen by a

brute force search, we simply compare the values of the on-site interaction. If the values

closely match, the optimization procedure has successfully found a good effective model. If

not, the optimization became stuck in a local minimum and could not reach an optimal

solution.

Let’s take the starting Hamiltonian to be

ĤLR = −
∑

〈ij〉

(
ĉ†i ĉj + h.c.

)
+ U

∑

i

n̂i,↑n̂i,↓ +
∑

i>j

Vijn̂in̂j, Vij =
U/2

|i− j| (4.9)
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where the summation over spin is implied and the overall energy scale has been chosen such

that t = 1. We would like to find an effective model that eliminates the last term in (4.9)

and renormalizes the on-site U to a new value Ueff such that the new model reads

Ĥeff = −
∑

〈ij〉

(
ĉ†i ĉj + h.c.

)
+ Ueff

∑

i

n̂i,↑n̂i,↓. (4.10)

A brute force search over the model space is conducted by varying Ueff on a fine grid with

spacing ∆U = 0.1 and using DMRG to find the corresponding ground states. Then for each

state α, we can compute 〈Ψeff |ΨLR〉α to find the model that maximizes the overlap. At the

same time, we use the optimization procedure of the previous section to find a value of Ueff

that minimizes (4.4) so that we may compare the two values. Here, the optimization is run

with the BFGS algorithm which requires the gradient.

The results of these comparisons are shown in Fig. 4.4 for two different values of U used

in the original model. For reference, we also plot the value of U/2 = U − V12, a good first

guess for the effective on-site interaction(choosing this value will lead to the same energy

difference in both the original and effective models when a particle hops from one site to

an adjacent site).[56] Given large values of U , the optimization procedure yields roughly the

same effective model as the most optimal one recovered from a brute force search. We can

also see that the value of Ueff is slightly larger than that given by U/2, meaning that higher

order corrections involving particle fluctuations beyond nearest-neighbor contribute to the

renormalization of U . For smaller values of U , we see that the optimization improves upon

the initial guess of U/2, but struggles to find the optimal solution.

With smaller values of U , the corresponding states begin to show a high amount of entan-

glement and therefore makes it harder for a low-entanglement method such as DMRG to

efficiently represent the state. In this regime, a small truncation error requires large bond

dimensions, but is necessary in order to calculate the gradients(which are done using finite
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differences) to a sufficient degree of accuracy. When the error in the energy becomes com-

parable to the size of the shift used to approximate the gradient, the efficiency of algorithms

such as BFGS begin to break down and it becomes more difficult to approach the true min-

imum. One may theen try a gradient-free algorithm, such as Nelder-Mead, but this requires

many more function calls. Together with the need for a larger bond dimension, each iteration

of the optimization procedure can become very slow.

Although this seems like a major drawback, it must be noted that these problems occur

in a regime where the systems exhibit weaker correlations. For most applications of this

optimization procedure, we are interested in downfolding a strongly correlated system into

another strongly correlated effective model for which DMRG can be efficiently used. If an

effective model is needed for a weakly correlated system, then one can apply the methods

outlined in chapter 1. Therefore the overall downfolding strategy would be to employ a

DFT-based method for weakly correlated systems, but transition into using this DMRG-

based approach for more strongly correlated systems.

4.4 H-Chain Effective Models

One fundamental question regarding effective models is the necessity of the various terms

that make up the Hamiltonian such as the next-nearest neighbor hopping, third-nearest

neighbor hopping and the range of the Coulomb interaction. Given the method outlined in

the previous section, we can apply it to a host of effective models, each with a different set

of single-particle and two-particle terms. Then by comparing each of the resulting models

to the original, we can gauge the importance of the hopping and the two-body interactions,

specifically their relative magnitudes and range.

In what follows, we first establish a baseline effective model using (4.2), which includes the
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full-range hopping and two-particle interactions. We can then restrict the range of each of

these terms, and optimize over the remaining terms. Finally, we can reduce the effective

model to a pure Hubbard model defined by an optimal hopping, t and optimal on-site

interaction U .

4.4.1 Truncating the Four-Index Interactions

The presence of four-index terms, V WF
ijkl , greatly increases the MPO bond dimension, strongly

restricting the length of the chains we could study. Inspecting the four-index terms, we find

that the majority of elements with i 6= l and j 6= k are small, on the order of 10−6 –

10−5, indicating a truncation of these terms may have negligible effects on the final model.

Therefore in order to treat much larger system sizes, we first reduce to an intermediate

model, keeping the hopping fixed, but reducing V WF
ijkl to the diagonal Vij form shown in Eq.

(4.3), without restricting the range of the interactions. The diagonal form is approximated

from the four-index terms as Vij ≈ V WF
ijji . To establish that this is a good approximation, we

first assume

Vij = V WF
ijji + δijεi (4.11)

and perform the optimization described in the previous chapter over the set {εi} on medium

length chains, up to Na = 20 atoms. On such systems, the corrections turn out to be quite

small, {εi} ∼ 10−2. When comparing the ground states energies and wavefunctions between

the original system and it’s diagonal approximation, we find errors on the order of 10−3 for

both the energy difference and wavefunction overlap, indicating that the truncation of these

terms is justifiable. Under this approximation, the Hamiltonian becomes,

ĤWF =
∑

σ,ij

tWF
ij ĉ†σiĉσj +

1

2

∑

σ,ij

V WF
ijji n̂σin̂σ′j (4.12)
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We will use this approximation for ĤWF for the remaining sections of this chapter.

4.4.2 Long-Range Effective Models

A natural baseline can be established by taking the effective model to be ĤWF . This is

the Hamiltonian that resulted from directly transforming the H-chain Hamiltonian with the

WFs and subsequently replacing V WF
ijkl → Vij as was done in Eq. (4.12). The accuracy

of this and other effective models can be tested by comparing several quantities such as

the spin velocity, single-particle Green’s function and spin-spin correlation to those of the

original H-chain. These are meant to quantify both the ground state properties as well as

properties of the low-lying excited states. Since at this stage, no Hamiltonian parameters

have been optimized, any errors in ĤWF can only result from either the truncation of the

natural orbitals or the truncation of V WF
ijkl .

The spin velocity is derived by measuring how the energy gap between the ground state and

a spin-excited state scales with system size. This can be done for 1 and 2 pairs of spinons

to get information on how well the effective model reproduces the low-energy physics of the

original system. This is shown in Fig. 4.5 for several effective models as well as the original

H-chain. For smaller systems of 20 and 40 atoms, the finite size effects can cause large errors

in the gaps, both at R = 2.0aB and R = 3.2aB. At larger system sizes, these effects become

much more negligible and it can clearly be seen that the gaps of the effective models begin to

closely approximate the gaps in the original H-chain. Comparing the actual spin velocities,

we find differences less than 10% between the H-chain and ĤWF.

In addition to the spin velocity, the single-particle correlations can be computed and com-

pared across models. These are defined here as

gi = 〈ĉ†N/2↑ĉi↑ + ĉ†N/2↓ĉi↓〉 (4.13)
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Figure 4.5: Spin velocities for the H-chain and two effective models defined in (4.12) and
(4.15). The top row shows (a) 2-spinon and (b) 4-spinon excitation gaps at R = 2.0aB
for the H-chain, its corresponding directly transformed model denoted as ĤWF and optimal
Hubbard model, ĤHub. The same is done at R = 3.2aB in the lower row for the (c) 2-spinon
and (d) 4-spinon excitations. The numbers in the legend correspond to the slope of the fitted
lines which give the spin velocities.

and are expected to decay as a power law(up to log corrections) for gapless systems, but

exponentially in the presence of a gap. In the family of effective models tested here, the

correlations are expected to decay exponentially since the charge sector is gapped. The

single-particle correlations are shown in Fig. 4.6. In order to compare the correlations

defined in the sliced-basis for the H-chain with those for the effective model (expressed in

the space of atomic sites), we transform the single-particle Green’s function of the original

system using the WFs of the corresponding effective model. Measuring the correlation length

in this space gives lH-chain = 12.8 and lWF = 13.8 for R = 2.0aB, decreasing to lH-chain = 3.4
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Figure 4.6: Single-particle correlations for the H-chain, its corresponding directly trans-
formed model defined in (4.12) and optimal Hubbard model defined in (4.15) for H100 at
(a) R = 2.0aB and (b) R = 3.2aB. The correlators are calculated from the middle of the
chain to the right edge as defined in (4.13). Note here that, the WFs are used to transform
the H-chain correlation functions into the same space as the effective models.

and lWF = 3.7 for R = 3.2aB, corresponding to differences of about 8% between the H-chain

and ĤWF for both atomic spacings. The spin-spin correlations can also be computed and

are shown in Fig. 4.7.

The excellent agreement of both the correlations and spin velocities between ĤWF and the H-

chain demonstrates the accuracy of the procedure used in deriving the WFs and the following

truncation of the 4-index interaction terms. At this stage, ĤWF constitutes the initial set

of interactions needed in order to accurately represent the H-chain. However, one can go

further and deduce the minimum set of interactions needed to describe the original system

with a certain accuracy.

4.4.3 Reducing the Range of the Interactions

Despite the existence of the full, long-range Coulomb interaction in the original system, can

we reconstruct the ground state and spin excitations with shorter-range one-body and two-
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Figure 4.7: Spin-spin correlations at (a) R = 2.0aB and (b) R = 3.2aB for the original H-
chain and its corresponding effective models defined in (4.12) and (4.15). The correlators are
calculated from the left-most edge of the chain to the midpoint for a system of 100 atoms.
The H-chain correlations have been scaled such that the point at site 50 match that of ĤWF.
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Figure 4.8: (a) Error for effective models with varying-range one-body and two-body in-
teractions for H20 at R = 2.0aB. The dashed black lines correspond to the error made by
using only Hubbard interactions in the effective model as in (4.15). Increasing the range
of the two-body interactions is seen to be more effective than increasing the range of the
one-body hopping. (b) Decay of two-body interactions with varying maximum range for
H40. The variable lV is defined as the maximum range of the two-body interactions. For
example, lV = 1 implies a range up to nearest-neighbor, lV = 2, next nearest-neighbor,
etc. The dashed black line shows the decay of the two-body interactions for ĤWF scaled
by the average nearest-neighbor hopping. The other lines are the two-body interactions for
the corresponding effective model with only a nearest-neighbor hopping term and a limited
range two-body interaction. The error as defined in (4.14) is also shown in the last column
of the legend.
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body interaction? Given the previously outlined optimization procedure, the importance of

these terms can be tested by fitting to Hamiltonians with increasingly longer-range single-

body and two-body terms. The performance of each of these models can then be assessed

relative to ĤWF by calculating,

δe =
Emin − EWF

0

Na

(4.14)

where Emin is the minimum value resulting from the minimization of (4.4) and EWF
0 , the

ground state energy of ĤWF with Na atoms. Small values of δe are indicative of effective

models which are more closely related to ĤWF.

In Fig. 4.8 we show the accuracy of different effective models when the range of the hopping

and two-body interactions are constrained, but with the detailed shape of the interactions

optimized subject to the constraint. For a pure Hubbard model, δe = 3 × 10−3, in atomic

units. If we increase only the hopping, the energy improves to 1.7 × 10−3 at a range of 3

lattice spacings. We get a much better improvement if we keep the hopping nearest-neighbor

but increase the Coulomb repulsion out to a range of 3, with the energy error reducing by

over an order to magnitude down to 1.9×10−4. The best improvement comes from increasing

both ranges, where we find an energy error well under 10−4. The optimal two-body terms

smoothly decay to zero with distance as opposed to being sharply cut off. This decay is

shown in Fig. 4.8(b) for several effective models with varying maximum interaction range.

As the maximum range is increased, the two-body interactions smoothly approach those of

the original model.

4.4.4 Hubbard Model for the H-chain

The range of the one- and two-body interactions can be decreased even further so that the

remaining terms in the effective model represent those of a pure Hubbard model, with only a
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Figure 4.9: Optimal Hubbard parameters for each H-chain as a function of the atomic
spacing, R for H100. The resulting Hubbard model becomes “strongly correlated” near
R = 3 − 4aB where the corresponding value of U/t becomes larger than the bandwidth of
about 4t. The dashed red line shows the optimization error as defined in Eq. (4.14).

nearest-neighbor hopping, t, an on-site interaction, U and a chemical potential µ. We allow

for slight variations of the model parameters near the edges so that the full Hamiltonian

reads

ĤHub =
∑

σ,〈ij〉

tHij ĉ
†
σiĉσj +

∑

i

UH
i n̂↑in̂↓i +

∑

i

µH
i n̂tot,i (4.15)

For small R, the effective Hubbard model is expected to be in the weakly correlated regime,

gradually becoming more and more correlated as R is increased. This behavior is shown in

Fig. 4.9 for the optimal Hubbard models. We can see that beyond R = 3.2aB, the effective

model transitions into the strongly-correlated Hubbard regime where it is expected to be

a better representation for the original H-chain. This can be seen in figures 4.5-4.7 which

compare the spin velocities and correlations of the H-chains and their corresponding effective

Hubbard models at R = 2.0aB and R = 3.2aB.

At R = 2.0aB, the spin velocities for the 1- and 2-spinon pairs in the effective Hubbard

65



model show an error of ∼ 6% and ∼ 8% relative to the original H-chain, respectively. At

larger R, these errors decrease to ∼ 1% for both exicitations. Similarly, the decay of the

single-particle Green’s function can be measured as the slope of the lines shown in Fig. 4.6.

For R = 2.0aB, the decay rates between the effective Hubbard model and the H-chain differ

by ∼ 29% whereas at larger R, the error decreases to ∼ 16%. This main difference lies within

the decay of the tails as an on-site interaction alone can have difficulty in replicating the

long-range correlations built up from having a similarly long-range interaction. Note that

for ĤWF, the decay follows those of the original H-chain much closer in comparison. This is

in contrast to the spin-spin correlations which show ĤHub and ĤWF agreeing almost exactly

as R increases from 2.0aB to 3.2aB.

The general good agreement between HHub and the original H-chain shows that in this case

the long-range Coulomb interaction is not important in determining the ground state and

spin excitations. However, it is important to remember that this system is at half-filling, and

it is insulating. Doping the hydrogen chain is less natural than in a solid: one would need to

add in an artificial neutralizing charge background. The long range Coulomb interaction is

likely more important in the doped case. In addition, we have considered only large enough

R so that diffuse bands are not occupied. The occupation of these outer bands self-dopes the

1S band and induces a metal-insulator transition[48]. In this case the long range Coulomb

interaction may play an important role in both the interactions of the holes in the 1S band

and in the physics of the diffuse electrons in the outer bands.
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Chapter 5

Conclusion

The techniques presented in the previous chapters constitute an alternative downfolding

scheme that includes reliable tests at each step of the process as well as useful comparisons to

the traditional, DFT-based downfolding procedure. Focusing on the H-chain, we are able to

determine the accuracy of various approximations by directly comparing them to simulations

of the full system. Using sb-DMRG to construct “interacting Wannier functions” from a sum

of single-particle density matrices, we found that the H-chain can be accurately represented

by a simple effective model. Comparing the WFs formed by this approach to those obtained

by Hartree-Fock, we see only slight differences, indicating that conventional DFT-based

approaches are likely reliable in this regime. Despite their simplicity, these models are also

able to capture the low-energy spin properties of the original system, such as spin velocities,

single-particle correlations and spin-spin correlations. For more complicated materials, such

comparisons may not be possible, but the approach described in section 4.3 remains valid,

assuming the expectation value can be efficiently computed.

Using the variational optimization in section 4.3, the complicated two-particle interactions

present in the WF transformed model can be renormalized to just a few terms, with the
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range of the interactions controlling the resulting accuracy. The range can also be reduced

to include only on-site interactions, allowing the H-chain to be represented by a pure Hub-

bard model without incurring too large an error. For a finite range, we find the optimized

parameters smoothly decay to zero and tend not to contribute to an increasing entanglement

in the insulating phase. The relationship between the range of the two body interaction and

entanglement seems to be subtle and further investigation is required.
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Appendix A

Appendix

A.1 Code Usage

The routines presented in the github repo are used to determine a set of effective Hamiltonian

model parameters from another set of parameters representing the full system. The code is

written as a mixture of Julia and C++ programs where a short Julia script is used to setup

the main calculation which is later done in the C++ ITensor library[18]. Note that there

is now a Julia version of the ITensor library(https://github.com/ITensor/ITensors.jl),

which can be used to streamline the overall process.

A.1.1 Setting up a Calculation

The first step is to define the structure of the new Hamiltonian and initialize it with val-

ues from the original system. This will decide things such as the extent of the hopping

terms(nearest-neighbor, next nearest-neighbor, etc.) and the range of the two-body interac-

tions. We begin with PrepEffH.jl which produces a set of output files that can then be fed
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into EffHubbardBFGS.

PrepEffH.jl

A list of all the inputs and descriptions can be seen by calling julia PrepEffH.jl --help.

For convenience we list these here

usage: PrepEffH.jl [-o O] [--sym] [--cap_edge CAP_EDGE] [-h] N fn_tij

fn_Vij N_terms_tij N_terms_Vij

positional arguments:

N System size(number of atoms)

fn_tij File containing the single-particle terms for

the full Hamiltonian in the form [...; i j tij;

i (j+1) ti(j+1); ...]

fn_Vij File containing the two-particle terms for the

full Hamiltonian in the form [...; i j Vij; i

(j+1) Vi(j+1); ...]

N_terms_tij Number of variational terms in tij(including

onsite term) (type: Int64)

N_terms_Vij Number of variational terms in Vij(including

onsite term) (type: Int64)

optional arguments:

-o O Directory into which to output results

(default: ".")

--sym Flag, when called, symmetrized tij and Vij
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about the center of the 1D chain

--cap_edge CAP_EDGE Bounds the maximum edge region to cap_edge

(type: Int64, default: 10000)

-h, --help show this help message and exit

The N_terms_tij and N_terms_Vij require some more clarification. These are essentially

the range of the one- and two-particle interactions, respectively. For example, setting

N_terms_tij to 2 will generate two variational parameters for the single-particle terms,

one that acts as a chemical potential the other acting as a nearest-neighbor hopping

tij =





µ i = j

t |i− j| = 1

0 otherwise

(A.1)

The same is done for the two-particle terms defined by N_terms_Vij. This is a consequence

of the translational invariance of the 1D system.

The code then creates a directory named EffH*(name varies depending on the input values)

which is saved to the path specified by the -o flag and outputs several files listed below

tij_eff.txt

The initialized one-particle terms of the new model in a three-column format

[i j tij]

Vij_eff.txt

The initialized two-particle terms of the new model in a three-column format

[i j Vij]
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tij_full.txt

The original one-particle terms in a three-column format [i j tij]

Vij_full.txt

The original two-particle terms in a three-column format [i j Vij]

tijvar.txt

The variable IDs(1 for the first variational parameter, 2 for the second vari-

ational parameter, etc.) for the one-particle terms in a three-column format

[i j <variable ID>]

Vijvar.txt

The variable IDs(1 for the first variational parameter, 2 for the second vari-

ational parameter, etc.) for the two-particle terms in a three-column format

[i j <variable ID>]

Walking through the Code The main function is called main and begins with importing

the one- and two-particle terms from the provided file names, calling a helper function to_mat

which converts these into N × N matrices, tij and Vij in the code. Next, the variable

matrices, tij_var_mat and Vij_var_mat, are created using the function get_var_mats

which define the structure of the model Hamiltonian. The routine takes into account any

differences the user wants to include near the edges(specified by --cap_edge) and produces
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matrices which take the form

V =




v1 v4 v6 0 · · · 0 0 0 0

v4 v2 v5 v6 · · · 0 0 0 0

v6 v5 v3 v5 · · · 0 0 0 0

0 v6 v5 v3 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · v3 v5 v6 0

0 0 0 0 · · · v5 v3 v5 v6

0 0 0 0 · · · v6 v5 v2 v4

0 0 0 0 · · · 0 v6 v4 v1




(A.2)

for N_terms_Vij = 3. In the example above, the main diagonal contains two sites near the

edge which are allowed to break translational invariance as well as one site for the |i− j| = 1

terms. In this case, the edge regions are defined by the procedure outlined in section 4.3 for

a large system size of 100 atoms. The classification of “edge” versus “bulk” for this system

is shown in Fig. A.1. However, if the same is done for the one-particle terms, the procedure

fails.

As shown in the blue curve in Fig. A.1(b), the “edge” region determined by using the

previous method for the 0th diagonal of tij is quite large and therefore ill-defined. This can

be traced back to the incorporation of the electron-lattice interaction terms from the original

hydrogen chain into the lattice model.

The original hydrogen chain accounts for the electron-lattice interaction by adding an on-site

potential of the form

Un =
∑

n′

Vnn′ (A.3)
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Figure A.1: (a) The edge regions for the two-particle interactions defined by the procedure
in section 4.3. The colored circles denote “edges” and the black crosses, the “bulk”. (b) The
edge regions for the one-particle terms defined in the same scheme for the original values of
the on-site terms in blue and the new terms calculated as a chemical potential by measuring
the density-density interactions with respect to half-filling in red. Note that in the latter,
the edge regions are much more well defined.

where n and n′ enumerate the slices. After transforming to the lattice representation using

the Wannier functions, this term gets integrated into the diagonal of tij(among other terms,

but less so due to the highly localized nature of the Wannier functions), which couples the

values of the interactions with those of the single-particle terms. The Wannier functions mix

the two in a complicated way, but we can guess that the electron-lattice interaction of the

lattice model takes on a similar form to that of the hydrogen chain. From this perspective,

we can express Ĥfull as,

ĤWF =
∑

i 6=j

tij ĉ
†
σiĉσj +

1

2

∑

ij

Vijn̂in̂j +
∑

i

(
µi −

∑

j

Vij

)
n̂i (A.4)

where µi ≡ tii +
∑

j Vij. This is nothing more than writing a Hamiltonian with the density-

density interactions measured with respect to half-filling.

At first, this seems like a trivial modification, but after calculating µi at different system

sizes, we can see that it behaves as a positive chemical potential with a clearly defined “bulk”
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and “edge” region(see Fig. A.1(b)). Together with the “bulk” and “edge” regions defined

for t̃ij and Ṽij, Ĥeff can now be expressed in terms of a small number of well regularized

variational parameters as,

Ĥeff =
∑

i 6=j

t̃ij ĉ
†
σiĉσj +

1

2

∑

ij

Ṽijn̂in̂j +
∑

i

(
µ̃i −

∑

j

Ṽij

)
n̂i (A.5)

In the code, this is taken into account by adjusting the diagonal elements of the effective

one-particle terms. Once the variables are defined, all the output files are written to disc.

The next step is to call EffHubbardBFGS within the newly created directory to run the

optimization.

EffHubbardBFGS

After using PrepEffH.jl to create the directory EffH*, we can call EffHubbardBFGS in that

same directory to begin running the optimization. The optimization is carried out with

the help of the ITensor library and a minimization routine taken from [55]. In the current

framework, we choose the Broyden-Fletcher-Goldfarb-Shanno(BFGS) algorithm to minimize

4.4 and find the effective model parameters. The BFGS routine is written in BFGS.h. The

main inputs are pointers to functions which can evaluate 4.4 and it’s derivatives called

*func and *dfunc in the code. The functions themselves are written as sub-routines in

EffHubbardBFGS called dmrg_func and ddmrg_func.

Walking through the Code The program begins by first reading in the files generated by

PrepEffH.jl. It then constructs and stores the full Hamiltonian as an MPO which will later

be used by dmrg_func and ddmrg_func to evaluate the optimization function. An initial

Neél state wavefunction is then used as a starting point for the first DMRG calculation on

the effective model giving |Ψeff〉0. At this stage, we have all the ingredients to begin the
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optimization and call the BFGS routine.

Each step of BFGS will call dmrg_func and ddmrg_func a certain number of times de-

pending on the results of the line search algorithm. Each call requires a specific number of

DMRG sweeps which can be controlled by modifying these functions. Currently, the code

is configured to run one sweep for each call to dmrg_func and 2Nvar sweeps for each call to

ddmrg_func, where Nvar is the number of variables.

After the optimization has converged, the number of iterations and function calls are printed

to the screen as well as saved to disc. The newly found model parameters are stored in the files

BFGS_newtij_eff.txt and BFGS_newVij_eff.txt in the three-column format described in

the previous section.

AltOptimize.jl

Optimizing both the one- and two-particle terms at the same time can cause the procedure

to become stuck in local minima. We can mitigate this effect by minimizing the terms

seperately, first minimizing with respect to the one-particle terms, then fix these for an

optimization of the two-particle terms, and repeating in this fashion until the minimization

converges. This is the purpose of AltOptimize.jl. It is a short Julia script that calls

EffHubbardBFGS in the sequential manner just described and keeps track of the terms at

each step, saving the output of EffHubbardBFGS after each call. After running PrepEffH.jl,

we can run AltOptimize.jl in the EffH* directory to begin this alternating optimization.
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