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Abstract

The goal of the SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) 

challenge is to improve the accuracy of current computational models to estimate free energy of 

binding, deprotonation, distribution and other associated physical properties that are useful for the 

design of new pharmaceutical products. New experimental datasets of physicochemical properties 

provide opportunities for prospective evaluation of computational prediction methods. Here, 

aqueous pKa and a range of bi-phasic logD values for a variety of pharmaceutical compounds 

were determined through a streamlined automated process to be utilized in the SAMPL8 physical 

property challenge. The goal of this paper is to provide an in-depth review of the experimental 

methods utilized to create a comprehensive data set for the blind prediction challenge. The 

significance of this work involves the use of high throughput experimentation equipment and 

instrumentation to produce acid dissociation constants for twenty-three drug molecules, as well as 

distribution coefficients for eleven of those molecules.
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INTRODUCTION

Drug discovery and development processes are under increased pressure to deliver 

medicines and vaccines to patients faster than ever. The demand to have robust and 

efficient clinical chemistry, manufacturing, and control (CMC) strategies is the main driving 

factor in the implementation of new approaches which allow for faster experimentation 

without sacrificing the quality of the results. Inspired by biological screening, chemical 

development of new active pharmaceutical ingredients (APIs) has been leveraging parallel 

experimentation over the past few decades to disrupt the approach that scientists adopt 

to investigate the chemical and formulation space. Design of Experiments and advanced 

statistical tools are essential to design and evaluate results in an efficient manner (1). In 

fact, the results of these studies generate comprehensive datasets across multiple continuous 

variables and factors which can be fed to modeling algorithms (2–5). This provides further 

insight and knowledge on the effect of multiple variables on the target process and can 

help identify critical operating parameters. Combining High Throughput Experimentation 

(HTE) with computational modeling may prove to be an effective tool for visualizing and 

reporting results with a fully traceable and consistent methodology (6–8). As these benefits 

are realized, the reach of HTE has extended into other areas of research such as chemical 

synthesis optimization (4, 9) and conducting drug solubility assessments in various media (8, 

10–14).

The determination of API partitioning in aqueous and organic media is one of the key steps 

in developing new synthetic routes and to determine the bioavailability of the drug substance 

upon administration to the patient (15). When investigating new chemical processes, the 

partitioning of impurities and active ingredients is sometimes the costliest unit operation 

in chemical development (16). For this reason, the determination and modeling of this 

parameter during the early phase of drug development can accelerate and simplify the 

control strategy for process quality and robustness.

Within this context, Statistical Assessment of the Modeling of Proteins and Ligands 

(SAMPL) is a series of blind challenges that bring together scientists on a global 

scale to improve the capability of current computational methods in drug discovery. 

This collaborative approach aims to better facilitate development of the next-generation 

computational models than can be used as predictive tools in drug discovery. Various 

iterations of SAMPL over the last decade have focused on evaluating how well physical and 

empirical modeling methodologies can predict several physicochemical properties of drugs 

that can be used to aid in drug discovery, such as hydration free energies, acid dissociation, 

and partition and distribution coefficients (17–27). The aim of the SAMPL8 challenge is to 

assess quantitative accuracies of current methods and isolate deficiencies with the advantage 

of access to a larger database of pharmaceutical compounds provided by GlaxoSmithKline, 

which created a comprehensive data set to be used for evaluating new prediction methods. 

In this study, research was focused on creating a standard data set of solubility-based pKa 

and pH-dependent distribution coefficients for various immiscible solvent combinations by 

exploiting laboratory automation and HTE.
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Distribution coefficients are values which describe the behavior of solutes in two immiscible 

liquids, and account for the total concentration of ionized and unionized drug in both the 

aqueous and organic phases (28). The distribution coefficient is often used to understand 

whether a drug is more hydrophilic (drawn to aqueous systems) or hydrophobic (drawn to 

organic or lipophilic systems). This in turn, helps predict the movement of the drug through 

the lipid bi-layer for absorption into the bloodstream. The distribution coefficient (logD) is 

defined as the ratio of the sum of concentrations of both charged and neutral species in the 

organic and aqueous phases. This differs from the partition coefficient (logP) since the latter 

only accounts for the ratio of neutral species in organic and aqueous phases. The differences 

can be seen below in Equation 1 and Equation 2, describing the two quantities.

logP = log [neutral solute]org
[neutral solute]aq

Equation 1. Partition Coefficient

logD = log [ionic + neutral solute]org
[ionic + neutral solute]aq

Equation 2. Distribution Coefficient

Prior to beginning the process of estimating distribution coefficients, the pKa of each 

compound was first determined using an optimized HTE workflow. pKa is the acid 

dissociation constant which is used to estimate the pH at which a compound will be 

optimally dissolved (29). The pKa of a compound affects the fraction of molecules being 

ionized, which in turn affects the solubility of the compound in aqueous media since ionized 

molecules are more soluble in aqueous media than neutral molecules. Using the Henderson-

Hasselbalch equation, a relationship between the solubility and the pKa can be established:

S = S0 1 + 10 pH − pKa − − − − − (monoprotic acid)

S = S0 1 + 10 pKa − pH − − − − − (monoprotic base)

Where S0 is the solubility of the neutral compound. Using the above equations, the 

macroscopic pKa can be derived for any compound as a function of the solubility. It also 

demonstrates that solubility is highly dependent on the pH of the solvent. The pKa can 

hence be used to determine the pH of aqueous phase during the computation of distribution 

coefficients, since it ensures solubility of the compound in aqueous phase.

MATERIALS AND METHODS

Compound Nomenclature:

For simplicity, each compound that is referred to in this manuscript is identified by the 

following nomenclature: “SAMPL8-X”. SAMPL refers to the entirety of the Statistical 

Assessment of the Modeling of Proteins and Ligands challenges. The number “8” denotes 

that this is the eighth SAMPL challenge iteration. A number follows, in place of the “X”, 
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to identify the unique compound, or drug molecule. As will be described below, there are 

a total of twenty-three compounds analyzed in this investigation. They are listed in no 

particular order, and are numbered sequentially from 1 through 23, as “SAMPL8–1” through 

“SAMPL8–23”.

Compound selection:

To assemble the set of compounds for this study, drug molecules registered by 

GlaxoSmithKline were identified as those associated with a compound collection 

enhancement project code (i.e., purchasable compounds) but not with an active program 

code. An additional requirement was that a minimum of 100 milligrams of solid was 

available in the compound stores. From this set of ~77,000 compounds, 88 were selected 

which contained two widely separated polar groups (separated by greater than three bonds), 

scaffolds often found in screening hits, and/or the presence of sulfonamide or sulfone 

(due to a lack of public ΔGtransfer data for such compounds (30)). Three of the selected 

compounds were matched molecular sets (SAMPL8–7, 8–9, and 8–17), with the intention 

of determining if there is a measurable role that small changes on a given scaffold would 

have on the experimental data. The entire list of compounds selected had a molecular weight 

ranging from 165 to 403 Dalton (Table 4) and zero to six rotatable bonds. Of these 88 

compounds, some failed with visually observable degradation, while many others, which 

did progress to HTE testing, failed to exhibit a measurable pKa. Further to that, additional 

molecules were not progressed because they would not dissolve in any of the solvents 

selected for this study. The final list of 23 compounds is shown below (Figure 1).

Buffer systems:

For the pH-solubility studies, Britton-Robinson buffers were used (Ricca Chemical 

Company, Arlington, TX, USA). The buffers, listed below in Table 1, have an ionic strength 

of 0.1 M.

Solvent combination selection:

By collecting logD measurements of small molecules in bi-phasic systems with a variety 

of organic solvents, the aim was to develop an opportunity to evaluate the performance of 

computational techniques for modeling solvation effects in different solvent environments. 

We reasoned that a common solute set measured in different solvent pairs will be helpful 

to understand which solvent systems can be modeled accurately by current computational 

methods, and which solvents may need more thorough selection to improve the experimental 

design approach.

Octanol-water is the most common bi-phasic system for logD measurements, and it has 

been used as a lipophilicity metric that predicts membrane partitioning of pharmaceutical 

compounds (31). The octanol phase is known to be challenging for physical modeling 

techniques due to its conformational flexibility and tendency to form a heterogenous solvent 

phase with hydrophobic pockets (composed of lipophilic octyl tails) and hydrophilic pockets 

(composed of polar head groups and water molecules) (32, 33). In the past, simpler solvents 

with more restricted conformational ensembles such as cyclohexane were preferred as a 

modeling test system with intermediate complexity to see the underlying capability of 
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computational techniques when conformational sampling problem of the solvent is largely 

mitigated. The SAMPL5 cyclohexane-water logD prediction challenge, and the SAMPL6 

octanol-water logP prediction challenge for physical modeling techniques, resulted in 

very different prediction accuracies. One examined that the SAMPL6 octanol-water logP 

predictions were more accurate in general (27, 34). However, due to differences in predicted 

values (logP versus pH-dependent logD that depends on pKa predictions) and the number 

and identity of compounds in datasets, it was not possible to investigate where these 

performance differences stem from. This motivated the desire to collect a logD dataset 

of a common set of solutes with a variety of organic solvents-water pairs which will enable 

investigation of how well models can capture solvation in different organic solvents and how 

the chemical properties of organic solvents can impact the accuracy of logD predictions.

In the partitioning studies, seven organic solvents were selected. These solvents are 

immiscible with water to ensure that bi-phasic partitioning conditions could be met: octanol 

(OCTL), cyclohexane (CYHL), ethyl acetate (ETAC), heptane (HP), methyl ethyl ketone 

(MEK), tert butyl methyl ether (TBME) and dimethylformamide (DMF). Comparison 

of cyclohexane-water vs. heptane-water logD can show the effect of conformational 

flexibility (28). We can learn about how modeling accuracy is affected by homogeneous 

and heterogeneous organic solvent phase by comparing the prediction performance 

for cyclohexane –water and heptane-water logD values to octanol-water logD values. 

Comparative evaluation of ethyl acetate, MEK, and TBME-water logD predictions can lead 

to conclusions about how models handle solvents with different polarity and hydrogen bond 

acceptor groups.

The goal was to employ an automated approach to measure the pKa as well as 

the distribution coefficient as visualized by the flowchart in Figure 2. Customized 

experimentation was avoided in favor of developing standardized workflows due to the 

large number of compounds and solvent combinations that were selected for testing. As 

will be described in the section below, there were a substantial amount of experimental data 

generated in support of this investigation. For context, this publication provides details on 

the methods and analysis of more than 250 data points for the pH-solubility (pKa) portion, 

and slightly less than 1,000 data points for the logD portion.

Analytical Method Development:

Solubility data used to obtain the acid dissociation and distribution coefficient data for 

the compounds was acquired using High Performance Liquid Chromatography (HPLC) 

analytical instrument. Hence the first phase involved development of analytical methods 

for HPLC. An Agilent 1290 HPLC instrument (Agilent Technologies, Santa Clara, CA, 

USA) was used to quantify the amount of solute present in different solutions. This was 

used in the measurement of the analyte in the different phases for distribution coefficient 

computation and for calculating the experimental pKa as well. A Waters X-Select Charge 

Surface Hybrid (CSH) C18, 2.1 mm × 30 mm, 5μm column was used in the HPLC in a 

gradient elution mode. Standard solutions were prepared for each compound using a backing 

solvent consisting of 62.5% acetonitrile, 25% tetrahydrofuran, and 12.5% HPLC-grade 

water v/v to a target of 1 mg/mL concentration. Serial dilution was performed for the 
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following calibration standards with the goal of having a total of five standards per curve at 

1.0 mg/mL, 0.5 mg/mL or 0.3 mg/mL, 0.1 mg/mL, 0.01 mg/mL, and 0.001 mg/mL.

Chromatographic data is analyzed via Agilent ChemStation software with the offline data 

analysis version. The Unchained Labs CM3 platform Library Studio software communicates 

directly to the Agilent HPLC and prepares the chromatography plate sequence based on 

the library design. The HPLC sequence is initiated by an instruction from Unchained Labs 

Automation Studio software. Details of the chromatography data from the entire sequence, 

such as the retention time, peak height, integrated peak area, and the corresponding drug 

concentration are stored in ChemStation software where it can be further curated by the 

analyst.

pKa Determination:

The pKa was calculated by measuring the concentration of the compounds in Britton-

Robinson buffers of various pH (2–12). 1 mg of drug substance was added to 500 μL of 

buffer, with the overall workflow shown in Figure 3. The experiments were primarily carried 

out in a high throughput manner on the Unchained Labs Freeslate CM3 robotic platform 

(Unchained Labs, Pleasanton, CA, USA) in high throughput microtiter plates (MTP).

The 96-well MTP plates contain 1 mL vials according to the layout in Figure 4. A target of 

1 mg of drug substance was weighed into 1 mL 96-well plate vials using a Mettler-Toledo 

Quantos QX96 automated powder dispensing platform (Mettler-Toledo GmbH, Greifensee, 

Switzerland). One Teflon-coated flea stir-bar was added to each vial to facilitate mixing 

of the constituents. 500 μL of buffer media was then added to each individual vial using 

a Rainin multichannel pipette, ensuring that the drug substance was in a saturated state 

before continuation. The vials were capped, and the entire 96-well plate was placed on 

an Unchained Labs Freeslate CM3 platform and stirred for 24 hours at 500 RPM with 

temperature controlled at 22 °C. At the conclusion of stirring, the magnetic stir bars were 

removed from the vials and the supernatant from the samples were filtered using the 

Hamilton Microlab NIMBUS liquid handler (The Hamilton Company, Boston, MA, USA) 

through a Millipore 0.45-micron hydrophilic filter plate by way of plate centrifugation. A 

Thermo Lynx 4000 plate centrifuge was set for 5 minutes at 3500 RPM under controlled 

temperature conditions of 22 °C. The filtrate was diluted from the source plate using a 

Hamilton NIMBUS Microlab pipetting robot to prepare dilutions at 10X and 100X with 

(50:50 v/v) acetonitrile/water mixture as a diluent. An appropriate dilution factor was 

applied to ensure that the final concentration of the sample was within the linear range of the 

calibration curves collected, between 0.001 mg/mL to 1 mg/mL. At this point, the samples 

were ready for chromatography analysis on an Agilent 1290 HPLC. At the conclusion of 

each HPLC run, the plates were returned to the Freeslate CM3 to measure the final pH of the 

solutions for confirmation.

pH-solubility was plotted using Synergy Software’s Kaleidagraph data analysis application 

(Synergy Software, Reading PA) based on the chromatography results, and a curve was 

fitted for each compound using the Henderson-Hasselbalch solubility equations (35, 36). 

The approach used for modeling the pKa was originally established by Jagannadham 

and Sanjeev, and later confirmed by Bahr et al, whereby the final pH of the solution is 

Bahr et al. Page 6

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plotted against the log of the concentration, and the resulting plot is modeled against the 

solubility equations provided in Table 2 (13, 37). Each curve was unique to the nature of 

the compound, for example there were unique equations for acids, bases and ampholytes as 

well as for mono- and di-protic acids and bases. The model curve for the pKa determination, 

chosen by the software, was based on the compound’s acidic or basic functional groups. The 

curve fitting equations used to solve the optimization and determine the pKa for each drug 

molecule are shown in Table 2.

The five equations listed in Table 2 are the Kaleidagraph software iterations of the 

Henderson-Hasselbalch solubility equation. The constants correspond to different ionization 

states of the compound (pKa values), while the pS0 term represents the solubility of neutral 

species.

Distribution Coefficient Protocol:

Once the experimental pKa was determined for each molecule, automated experiments 

to measure the distribution coefficient could then be progressed as demonstrated in the 

flowchart illustrated in Figure 5.

The diagram shown in Figure 6 illustrates the experimental design on the HTE platform. 

Each organic solution is placed on the Freeslate CM3 deck in 20 mL vials on an 8-well 

plate, along with dispensing heads for each of the drug substances (labeled “API”). Since a 

greater volume of aqueous buffer is used across all samples in this design, a larger 125 mL 

glass container holds the aqueous medium.

As previously mentioned, seven different solvent combinations were selected. The Mettler 

Toledo Quantos was used to dispense powder into 8 mL vials which were assembled onto 

a 24-well plate. After each compound was dispensed into the vials, the organic and the 

aqueous phases were added respectively.

3 mL of each solvent phase was added to the vials containing compounds. The samples 

were vortexed for 30 minutes and then allowed to settle for 60 minutes. Once the solutions 

reached equilibrium, they were checked for any particulate in both the top and bottom 

phases to ensure that the drug was in solution. If particulate was still observed in the phases, 

the vials would be vortexed for an additional 30 minutes, then allowed to reach equilibrium. 

500 μL of solution was drawn from the upper and lower phases of the 8 mL vials (Figure 7) 

by way of a 22 gauge syringe needle attached to the Unchained Labs CM3 platform. This 

narrow-gauge needle is beneficial to reducing potential error due to the low surface area of 

the exposed needle, the positive air gap inside the needle capillary, and the presence of a 

septum on the vial cap which wipes away any errant solvent when the needle is withdrawn 

from the vial. The aliquots of solution were then individually transferred into separate 1 

mL vials on the 96-well plate for HPLC analysis using the Agilent 1290 auto-sampler. The 

sampling height was optimized so that the needle withdraws the liquid at the mid-height 

position for each of the phases to avoid cross contamination due to liquid eddies that may 

potentially form due to the sampling needle creating turbulence at the solution interface. 

This ensured consistent and reproducible sampling conditions for every sample analyzed.
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The aqueous phase used in the above experiments involved the use of Britton-Robinson 

buffers. The pH of the buffers used in the solution mixture was selected based on the 

pKa of the compound. This approach was necessary due to the low aqueous solubility of 

the drug substances in their neutral state, hence it was necessary to determine logD at 

a pH that the molecules were significantly ionized in the aqueous state to ensure total 

dissolution of the drug within the bi-phasic solvents. The samples were analyzed using the 

HPLC analytical instrument, which included a needle-wash for the HPLC injection needle 

to eliminate cross-contamination, and the distribution coefficient was computed using the 

equation below (Equation 3):

logD = log10
Concentration in organic pℎase
Concentration in aqueous pℎase Equation 3. Distribution Coefficient (logD)

In the case of cyclohexane and dimethylformamide, the cyclohexane was taken as the 

top phase and the dimethylformamide was taken as the bottom phase. The experimentally 

computed pKa and distribution coefficient for each compound was compared to predicted 

pKa and distribution coefficient that were found using Schrodinger software package, 

LiveDesign.

RESULTS

As described in the Methods section, final pH was measured for each aqueous sample 

and was plotted against the LogC (concentration). This data was fitted to the Henderson-

Hasselbalch equation to determine the pKa. An example is shown in Figure 8. The 

experimental pKa for the example of SAMPL8–7 was calculated to be 6.63 (R2= 0.997).

Although the pH range of viability for modeling the pKa, based on the Henderson-

Hasselbalch equation, is pH 5–9 (36), much of our experimental data provided sufficient 

information to fit calculated pKa values, with a high degree of confidence, that were outside 

of that range. For each molecule studied in this investigation, ChemAxon JChem software 

with the pKa Plugin (ChemAxon, Budapest, Hungary) was used to predict pKa values 

based on the structure and functional groups of each molecule. These predicted values are 

excellent starting points, but since they are not based on experimentally measured values, 

it is important to confirm the acid dissociation experimentally. Reijenga et al. investigated 

several methods historically used for pKa determination, and concluded that HPLC analysis 

is a strongly favorable approach with good precision, but is limited at the far ends of the 

lower and upper pH scale (38). The use of HPLC instrumentation is reported, also by 

Reijenga, as a time-consuming experimental approach that is only effective if the analyte 

has a chromophore. The novelty of this work is in the use of automation to streamline 

the data collection process. However, due to a limited amount of drug substance available 

for these studies, repeated replicate samples could not be prepared, which we acknowledge 

could be a risk for uncertainty in the reported pKa values. Settimo et al. reported that 

pKa predictors may provide a degree of inaccuracy due to a significant molecular weight 

difference between the generic organic molecules used in modeling software and the larger 

and more complex molecules typically found in drug research (39). In some cases of the 

molecules investigated, the experimentally determined pKa did not match the predicted 
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values, and this was likely due to pKa values that were at the extreme ends of the upper 

or lower pH scale and therefore could not be experimentally measured. An example of 

this is SAMPL8–13, which had a predicted pKa of 13.86, which could not be confirmed 

experimentally. This same approach was used for all twenty-three compounds, with the 

results provided in Table 4.

There were no replicate measurements performed for pKa estimation, hence it is difficult 

to estimate any uncertainty associated with the pKa values obtained. However, a robustness 

study was performed with the distribution coefficient samples as mentioned above in the 

methods. This accounted for the error and variability associated with any measurement 

performed by the HPLC instrument and hence can be associated with both the pKa 

measurements as well as the distribution coefficient measurements. As previously stated, 

limits on the amount of available drug substance made it not possible to prepare replicate 

samples for testing, as might commonly be expected of high throughput experimentation. 

Table 3 below lists the mean absolute deviation (MAD) (Equation 4) and the standard mean 

error (Equation 5) for the three compounds that were subjected to replicate HPLC injections 

to ensure robustness in the chromatography instrumentation.

MAD = ∑ X − μ
n Equation 4. Mean Absolute Deviation.

error = σ
n Equation 5. Standard Mean Error.

Where σ is the standard deviation, n is the total number of samples, X is an individual 

sample and μ is the mean.

Given the lack of opportunity to produce replicate samples over the course of this 

invesigation, the authors are confident that every opportunity was taken to ensure 

accurate sample preparation and data collection. In pre-candidate selection experimental 

methodology at GSK, it is commonly accepted to perform high throughput studies without 

replicates when access to drug substance is limited. Rather, the experimental approach may 

typically sacrifice statistical significance in favor of generating volumes of data over a larger 

span of experimental design. That was the same approach taken in this investigation, where 

the collaborators agreed to focus on as many bi-phasic solvent combinations as possible. 

One of the purposes of this publication is report on the data that was generated for the 

SAMPL8 challenge, and not necessarily to introduce a new assay.

As described in the Compound Selection section in Materials in Methods, twenty-three 

compounds were ultimately investigated in the work. Where it was possible to calculate 

acid dissociation, the results are provided in Table 4 along with a standardized compound 

identifier (beginning with “SAMPL8-X”), the molecular scaffolding structure, molecular 

weight, and the pH range tested for the drug substance.

From the twenty-three molecules that were tested for pH-solubility to determine pKa, 

automated logD experiments were successfully conducted for eleven molecules. The eleven 
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that were successful are presented in Table 5 and are composed of four weakly acidic 

compounds (SAMPL8–1, 3, 5, 6) and seven weakly basic compounds (SAMPL8–7, 9, 10, 

12, 14, 16, 17). For the weak acids, Britton-Robinson pH 8 buffer (identified in the table 

as BR-8) was selected for the aqueous phase to ensure that the drug was in a protonated 

state, whereby the drug would be in a concentration below saturation for proper partitioning. 

Similarly, for the weak bases, Britton-Robinson pH 3 buffer (identified as BR-3) was 

selected for the aqueous phase to ensure the drug was de-protonated for partitioning with 

the organic phase. In each experiment, the final pH of the aqueous phase was measured, 

and is included in Table 5 where appropriate. In many cases, either the drug did not 

adequately dissolve in the organic phase, or the measured concentration was below the 

limit of quantification. In those instances, logD cannot be calculated from an indeterminate 

fraction, and is therefore represented by a “−“.

DISCUSSION

Several drug substances initially selected for this study failed to progress through the 

screening process. This was mainly due to a few factors; the first being that there were 

multiple compounds for which a calibration curve for the analytical HPLC method could not 

be established. This was caused by a lack of solubility of these compounds in the solvent 

used for preparation of standards which meant that a standard curve for measurement of 

solubility of these compounds could not be applied. An often standardized solvent for 

dissolving poorly-soluble molecules is dimethyl sulfoxide (DMSO); considered a universal 

solvent because it can dissolve both polar and non-polar molecules (40). However, since 

the melting point of pure DMSO is 19°C, it can pose a risk when running high throughput 

experiments near room temperature, as was the case for the work presented here. As a result, 

the HTE lab at GSK standardizes on a common “backing solvent” consisting of 62.5% 

acetonitrile, 25% tetrahydrofuran, and 12.5% HPLC-grade water v/v for all high-throughput 

experiments on the Unchained Labs CM3 platforms. This backing solvent serves multiple 

purposes in the HTE lab, and is the primary diluent of choice. The use of this backing 

solvent has proven beneficial in nearly all applications in GSK’s HTE lab, with few 

exceptions. Using a DMSO-based solution in place of backing solvent would not likely have 

improved the outcome, since the few compounds that were excluded due to low solubility 

were not soluble at the lower concentrations of 0.001 mg/mL. One of the goals of this 

research was to develop a standardized automated approach to measuring the ionization 

constant and distribution coefficients of a large number of molecules. The utility of the 

backing solvent selected for this work extends beyond the experiments described here. This 

solvent mixture is employed in a variety of applications throughout the lab, and is used 

as the primary diluent for the majority of our experiments, by default. For this reason, 

we elected not to complicate any aspects of the experimental design by using customized 

solutions for each individual molecule.

The second reason that some of the molecules from the initial group were rejected was due 

an inability to estimate the pKa of the compound due to a lack of trends shown in their 

respective pH-solubility curves. In other words, across the pH 2–12 range, an ionization 

state was not observed, indicating that the actual pKa was either outside of the test limits, or 

that the molecule was indeed a non-ionizable species. The third possible reason for rejecting 
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a drug substance was due to the inability of the compound to dissolve completely in either 

phase of a bi-phasic mixture. Hence all three of the above-mentioned factors are related to 

poor solubility of certain compounds under specific conditions, and cause for removal from 

the study.

High Throughput pH-solubility Assessment

Accurate measurement of aqueous solubility across a range of pH provides an ideal starting 

point for ultimately determining the distribution coefficient of a drug substance. Without 

first knowing the pH-solubility profile, the appropriate pH of the aqueous phase for the 

aqueous/organic bi-phasic mixture would be in question. The research presented here 

initially focuses on the development of an automated approach to determine pH-solubility 

profiles for a variety of drug substances with a wide range of physicochemical properties 

such as molecular weight, scaffolding, and tendencies for protonation/deprotonation. The 

experimental designs leveraged several HTE robotic platforms to enable the development of 

aqueous solubility profiles. Because of the efficiency of these automated platforms, the pH-

solubility studies were conducted with minimal demand on resources for the investigators, 

so it was determined early in the project to include these studies as part of the experimental 

approach. At the onset of this portion of work, the investigators assumed that specific pH 

buffers would be required for each drug molecule, with the goal of being at least 3 pH 

away from the measured pKa in order to ensure that the molecule was fully dissolved in the 

aqueous phase. However, after the data was collected and analyzed, it was recognized that 

the distribution coefficient experiments could standardize on either pH 3 or pH 8 buffers as 

the aqueous phase, depending on the ionic state of each molecule.

Ultimately, twenty-three compounds were successfully measured for pH-solubility using 

an HTE approach. These included weak acids, weak bases, amphoteric, and (apparently) 

non-ionizable molecules. The primary goal was to efficiently conduct the experiments 

with a simplified and standardized design, while also ensuring accurate data capture for 

the range of Britton-Robinson buffers selected. A primary limitation to consider was a 

lack of abundant drug substance availability, so it was determined that experiments which 

utilized a 96-well plate were ideal for this first portion of the study. The limitation of 

available drug substance also prevented any possibility of running these experiments with 

replicate samples. Following sample preparation, the vials were mixed for 24 hours at room 

temperature to ensure that full drug saturation was achieved. A standardized analytical 

HPLC method was developed with the intent of using the same primary method for all 

drug substances investigated in this study, with the exception of establishing the appropriate 

wavelength and retention time for each drug substance. The final pH of each sample was 

collected from the multi-tip pH probe configuration on the Unchained Labs CM3 platform. 

This automated pH measurement process includes a water bath followed by blow-drying 

each pH probe in between measurements. It is possible that some error is introduced into the 

final pH reading, if there remains a small droplet of water on the pH probe when it is being 

inserted into the 500 μL volume sample. This is likely not to be a considerable introduction 

of possible error, but it needs to be included as a possible source if one exists.
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This experimental approach seemed ideally suited for pKa determination. With solubility 

data that was collected, ionization constants were computed using Kaleidagraph software 

(37). Once established, the ionization constants were then used to confirm at which pH 

the appropriate aqueous buffer would be selected for the subsequent distribution coefficient 

experiments. Predicted pKa values are provided by ChemAxon/JChem, and are not based 

on experimental data, but rather from models that calculate all possible ionization constants 

based on the molecular structure. Three of the molecules from this set of 23 were selected 

because of their commonality as matched sets (SAMPL8–7, 8–9, and 8–17). These three 

weak bases are all benzimidazole scaffolds with molecular weights between 324.2 and 340.2 

dalton. One reason for including these three was to ascertain how closely their JChem 

predicted pKa values align with the experimentally determined pKa values. The JChem 

predicted pKa values for these three molecules were close together, and averaged 7.56. The 

experimentally determined pKa’s for these three molecules, as reported in Table 4, average 

6.43. The experimentally determined pKa’s were 85% less than the predicted values, and 

provide support to the decision for measuring the ionization constants rather than relying 

exclusively on the JChem predicted values. The original intent was to select individual pH 

buffers as the aqueous media depending on the experimentally determined pKa. However, 

after evaluation of the complete data set, it was concluded that the distribution coefficient 

experiments could be conducted with standardized pH buffers in groupings. This resulted 

in running entire sets of distribution coefficient experiments with either pH 3 or pH 8 

buffers. This significantly simplified the experimental process, and conveniently eliminated 

any additional complexity in the automated design.

Determination of logD Values

The acid dissociation and distribution coefficient measurements prepared for this study 

were entirely solubility-based. Solubility workflows are easily adaptable to the current 

automated platforms available for sample preparation and high throughput chromatography 

for determining drug concentrations in a variety of solutions. Utilizing an HTE approach 

ensured that a multitude of drug substances and solvent systems could be analyzed in 

a rapid manner, with limited availability of raw materials. The conventional shake-flask 

method continues to remain as the gold standard for traditional distribution coefficient 

measurements, despite the high drug substance demand for experiments involving large 

volumes of solvents (41, 42). The automated method presented here, for determining logD, 

has similarities to the shake-flask method yet was performed at a significantly lower volume. 

However, instead of manually shaking the flask, the sample vials were vortexed for no 

less than 30 minutes, and then allowed to reach equilibrium. The traditional shake-flask 

approach for partition coefficient studies that use octanol and water may sometimes involve 

pre-saturation of the biphasic systems for 72 hours, primarily because water is 20% soluble 

in octanol (43). However, due to the high-throughput nature of the experiments presented 

here and the number of solvent mixtures investigated, our experiments did not pre-saturate 

all of the solvent combinations. It is possible that the lack of pre-saturated solvents may 

introduce error in the solubility readings, which should be considered when performing final 

data analysis. Since traditional experiments typically focus on octanol/water, the benefits of 

the approach presented in this manuscript include the ability to perform experiments at a 

smaller scale using glass vials to explore a multitude of solvent combinations, and to allow 
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the SAMPL participants an opportunity to determine if the range of solvent combinations 

are beneficial to data science and modeling.

The automated approach used here overcomes certain limitations by reducing the time 

required to prepare and execute the experiment while also providing for an opportunity 

to create the volume of samples per compound that were desired for this iteration of the 

SAMPL challenge. This approach extended into the chromatography analysis by way of 

an autosampler and a high-throughput sequence on the HPLC instrumentation for data 

collection. Because the experimental design was automated, the goal was to prepare samples 

that ensured the solute would go completely into solution, thereby avoiding the need for 

determining mass balance.

The pH of the aqueous phase of bi-phasic mixture was selected according to the pKa 

of the compound being used. This was done to ensure that the entirety of solid drug 

substance would go into solution for the analysis of the bi-phasic mixture, to provide for 

the computation of the distribution coefficient. Typically, logD measurement experiments 

are performed at a specific pH of interest, such as physiological pH. In this study which 

aims to create a benchmark dataset for evaluating computational predictions, there wasn’t 

a need to focus on a particular pH. We had the freedom to select any pH that would make 

the logD measurements easier and more accurate by ensuring adequate aqueous solubility. 

If any solid particles were to be found in either phase, it could hinder the chromatography 

analysis which may contribute to a significant error when computing logD.

Limits of Detection

As can be observed in Table 5, there are several instances of data for logD that could not be 

computed since the logarithm of zero is undefined. This result is determined by the lowest 

concentration that could be detected on the HPLC instrument. Chromatography instruments 

are very precise and can calculate an analyte to a high degree of accuracy. However, there 

are limits of detection (LoD) based on the inherent molar absorptivity of the compounds 

and the dynamic range of the photo-diode array detector used to analyze the compounds. 

Additionally, the precision of the balances and pipettes that are used for sample preparation 

have a role in assessing the LoD. In the experiments presented here, it was determined 

that any chromatography data that presented an area below 5 milli-absorbance units (mAU), 

which equates to concentrations at or below 5 μg/mL, could not justifiably be provided.

Experimental Design Considerations

Given the large number of compounds and experiments that were investigated, 

standardization of the experimental design was very beneficial wherever possible, given that 

one of the goals was to utilize high-throughput instrumentation. While this approach enabled 

experiments to be conducted with a high degree of efficiency, and produced accurate data for 

analysis, it was noted during the investigation that improvements could be made for future 

work. The inclusion of replicates for future experiments would be beneficial, since this could 

establish standard errors associated with either human error or with sample preparation and 

would allow for statistical data analysis. Further improvements to the experimental design 

could be accommodated using larger vials to possibly improve dissolution of the samples 
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and utilizing light scattering as a means of monitoring the presence of undissolved particles. 

To ensure full dissolution of the drug particles in the bi-phasic sample vials, the vials could 

possibly be mixed for a longer time period, and analyzed at various timepoints, to ensure 

equilibrium is reached.

Uncertainty Analysis

From the robustness study that was performed, it is evident that Mean Absolute Deviation 

and Standard Mean Error values for the three samples (SAMPL8–16, SAMPL8–17 and 

SAMPL8–14) that contained replicate measurements were very similar and demonstrated 

that the measured drug concentrations of those three samples were repeatable. However, 

it should be noted that these replicates were sampled from the same sample vial, which 

may imply that the MAD and SME are measures related to the sampling capabilities of the 

robotic platform rather than the actual samples themselves. To improve upon the uncertainty 

analysis, replicate sample vials should be prepared, and replicate measures should be drawn 

from each individual vial.

CONCLUSIONS

The investigations described here provide a collection of data intended for use in the 

SAMPL8 Physical Properties Challenge (https://doi.org/10.5281/zenodo.4245127) (44). 

The zenodo link provides a presentation from the SAMPL satellite conference at the 

2020 German Conference on Cheminformatics. The presentation describes the automated 

approaches taken to determine the distribution coefficients and pKa for the set of 

GSK compounds used in this investigation. This challenge is composed of two distinct 

components: the pKa challenge and the logD challenge. The data was generated 

predominantly using high-throughput experimentation platforms and instrumentation. pKa 

values were determined for 23 compounds, and logD values were determined for 11 

compounds in a variety of bi-phasic systems with an Unchained Labs Freeslate CM3 robotic 

platform and an Agilent 1290 HPLC with auto-sampler. The logD for these compounds was 

determined using the following bi-phasic mixtures: aqueous-octanol, aqueous-cyclohexane, 

aqueous-ethyl acetate, aqueous-heptane, aqueous-MEK, aqueous-TBME, and cyclohexane-

DMF. Not all combinations of distribution coefficient are available because we experienced 

compound solubility issues below the limit of detection in several of the different phases 

which resulted in incalculable distributions due to an undefined logarithm. At the onset of 

the experimental design, we did not anticipate that some of the solvent combinations would 

eventually result in incalculable distributions, but the investigators favored the inclusion of 

any data that could be provided rather than eliminating any solvent combination data series 

(such as CYHL/BR8) despite the presence of only a single data point being available. There 

were several integratable peaks in some of the data, however the limit of detection restricts 

the authors from publishing those values.

During this work, we determined that several areas for improvement could be implemented 

to enhance the volume of data collected. Of those, we recognize that two calibration curves – 

one for the organic, one for the aqueous – would greatly improve the logD calculations 

by producing appropriate quantification limits on the chromatography instrumentation. 
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Streamlining this process could be realized by employing emerging technologies such 

as an online mini-LC to reduce sampling time, resulting in the ability to screen more 

compounds (45). This process can be further enhanced and automated with the deployment 

of imaging tools and imaging analysis software packages. In addition, further insight may be 

gained from future studies if the analytical approach included the use of LC-MS/MS (46). 

LC-MS/MS is highly sensitive and selective and can provide insight into the ionization state 

which may not be possible with the chromatography approach presented here (47).

The experimental data collected could potentially be used in future SAMPL blind prediction 

challenges as the data sets continue to grow and provide more information that is useful in 

building accurate and comprehensive drug substance prediction models.
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ABBREVIATIONS

OCTL Octanol

CYHL Cyclohexane

ETAC Ethyl Acetate
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MEK Methyl ethyl ketone

TBME Tert butyl methyl ether

DMF Dimethylformamide

BR Britton Robinson

API Active Pharmaceutical Ingredient
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Figure 1. 
Molecules Used in the SAMP8 pKa Challenge.
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Figure 2. 
Overview of the experimental steps involved in the computation of the distribution 

coefficient.
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Figure 3. 
Flow chart of the different steps involved in estimation of experimental pKas of compounds.
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Figure 4. 
Typical MTP plate design for automated pH-Solubility experiments. Different colors along 

the columns represent the pH2–12 Britton-Robinson buffers. 6 different compounds were 

added to the vials, one per row.

Bahr et al. Page 22

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Flow chart of the different steps involved in determination of experimental distribution 

coefficients of compounds.

Bahr et al. Page 23

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Depiction of a typical automated distribution coefficient design. Refer to the list of 

abbreviations for the names of the solvents used in the experiment. The 8-well plates contain 

20 mL vials while the 2-well plate on the bottom left contains 125 mL vials. The solvents 

and the compounds are added to 24-well plates on the top containing 8 mL vials. Extracted 

samples are transferred into a 96-well plate containing 1 mL vials.

Bahr et al. Page 24

J Comput Aided Mol Des. Author manuscript; available in PMC 2022 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Image of an 8 mL vial showing the organic (top) and aqueous (bottom) phases.
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Figure 8. 
Example table listing the data points obtained experimentally using pH-solubility 

experiments for a single compound (SAMPL8-7) and a plot of the data fitted with a 

monoprotic base version of the Henderson-Hasselbalch Equation to obtain the pKa of the 

compound.
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Table 1.

Britton-Robinson Buffers

pH Catalog # pH Catalog #

1.98 1154.20–16 7.96 1154.80–16

2.87 1154.29–16 8.95 1154.90–16

4.10 1154.41–16 9.91 1154.99–16

5.02 1154.50–16 10.88 1155.09–16

6.09 1154.61–16 11.96 1155.20–16

7.00 1154.70–16
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Table 2:

The table below shows the model curves used to fit the pH-solubility data and determine the experimental 

pKas for the compounds. It should be noted that a0, b0, c0 represent the optimization constants being solved. 

These are pKa1, pKa2 and pS0.

Type of Model Curve Equation

Monoprotic Acid weakacid1 a0, b0 = log 1 + 10x − pKa1 − pS0

Diprotic Acid weakacid2 a0, b0, c0 = log 1 + 10x − pKa1 + 102x − pKa1 − pKa2 − pS0

Monoprotic Base weakbase1 a0, b0 = log 1 + 10pKa1 − x − pS0

Diprotic Base weakbase2 a0, b0, c0 = log 1 + 10pKa1 − x + 10pKa1 + pKa2 − 2x − pS0

Ampholyte ampℎolite1 a0, b0, c0 = log 1 + 10pKa1 − x + 10pKa2 − x − pS0
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Table 3.

Results of Robustness Study performed for three compounds (n= 3 replicates for each compound).

Compound Mean absolute deviation Standard mean error

SAMPL8–16 0.01 0.05

SAMPL8–17 0.01 0.07

SAMPL8–14 0.01 0.07
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Table 4.

Compound List with Experimentally Determined pKa Values.

Compound Scaffold MW pH Range Tested Measured pKa1, Measured pKa2 Confidence (R2)

SAMPL8–1 anthranilate 281.2 2–9 2.54 5.01 0.978

SAMPL8–2 phenyl 228.3 2–7 4.41 - 0.999

SAMPL8–3 furosemide 330.7 2–8 4.00 - 0.931

SAMPL8–4 anthranilate 293.7 2–11 5.77 - 0.948

SAMPL8–5 anthranilate 296.1 2–8 3.92 - 0.993

SAMPL8–6 phenyl 281.8 2–8 4.17 - 0.994

SAMPL8–7 benzimidazole 326.2 3–12 6.63 - 0.997

SAMPL8–8 benzimidazole 244.2 2–10 2.78 - 0.952

SAMPL8–9 benzimidazole 324.2 4–12 6.08 - 0.968

SAMPL8–10 phenyl 403.9 4–12 7.71 - 0.985

SAMPL8–11 undetermined 305.4 2–12 - - n/a

SAMPL8–12 pyrimdine-diamino 284.4 3–12 6.98 - 0.995

SAMPL8–13 benzimidazole 476 2–12 - - n/a

SAMPL8–14 pyrimdine-diamino 286.4 5–11 7.27 - 0.990

SAMPL8–15 quinazoline 269.7 2–11 2.54 - 0.993

SAMPL8–16 benzimidazole 247.3 2–9 5.10 - 0.967

SAMPL8–17 benzimidazole 340.2 3–12 6.58 - 0.990

SAMPL8–18 quinazoline 315.8 2–12 2.72 - 0.910

SAMPL8–19 benzimidazole 394.5 2–12 4.93 6.99 0.986

SAMPL8–20 pyrazolo[3 4-dlpyrimidine 244.7 2–12 2.44 11.44 0.918

SAMPL8–21 pyrimdine-diamino 306.3 2–12 5.38 - 0.930

SAMPL8–22 quinazoline 239.7 2–12 3.36 - 0.926

SAMPL8–23 benzothiazole 165.2 2–12 2.65 9.02 0.992

Note: SAMPL8–11 and SAMPL8–13 were not progressed to partitioning studies due to a lack of measurable pKa.
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Table 5.

Compound List with Experimentally Determined logD Values.

Compound Measure OCTL/BR-8 CYHL/BR-8 ETAC/BR-8 HP/BR-8 MEK/BR-8 TBME/BR-8 CYHL/DMF

SAMPL8–1 logD 0.8 - 0.3 - −0.2 0.1 −0.7

pH 7.91 7.88 7.74 7.91 8.10 7.99 -

SAMPL8–3 logD - - −0.8 - −0.6 - -

pH 7.98 7.97 7.82 7.97 8.19 8.07 -

SAMPL8–5 logD −0.5 −1.1 0.1 −1.2 −0.4 - -

pH 8.01 8.02 7.81 8.02 8.20 8.09 -

SAMPL8–6 logD −0.4 - −0.1 - −0.5 −0.2 -

pH 7.97 7.96 7.79 7.97 8.15 8.03

Compound Measure OCTL/BR-3 CYHL/BR-3 ETAC/BR-3 HP/BR-3 MEK/BR-3 TBME/BR-3 CYHL/DMF

SAMPL8–7 logD −1.3 - - - −0.4 - -

pH 3.1 3.1 3.2 3.1 3.5 3.1 -

SAMPL8–9 logD −0.1 - −0.8 - 0.4 - -

pH 3.1 3.1 3.2 3.1 3.7 3.1 -

SAMPL8–10 logD −0.6 - 0.1 −1.0 0.0 −0.9 -

pH 3.09 3.01 3.13 3.04 3.39 3.08 -

SAMPL8–12 logD −0.7 - −1.4 - −0.4 - -

pH 3.1 3.05 3.35 3.07 3.42 3.12 -

SAMPL8–14 logD −1.0 - −0.8 - 0.1 - -

pH 3.07 3.05 3.26 3.05 3.48 3.13 -

SAMPL8–16 logD −0.4 - −0.5 −1.0 −0.3 −1.2 −1.3

pH 3.13 3.10 3.29 3.11 3.46 3.18 -

SAMPL8–17 logD - - −1.4 - −0.8 - -

PH 3.17 3.09 3.21 3.10 3.35 3.16 -

Note: “−” indicates that the drug did not dissolve in the organic phase.
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