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Abstract

We investigate the air quality impact of record-breaking wildfires in Southern California during 5–

18 December 2017 using the Weather Research and Forecasting model with Chemistry in 

combination with satellite and surface observations. This wildfire event was driven by dry and 

strong offshore Santa Ana winds, which played a critical role in fire formation and air pollutant 

transport. By utilizing fire emissions derived from the high-resolution (375 × 375 m2) Visible 

Infrared Imaging Radiometer Suite active fire detections, the simulated magnitude and temporal 

evolution of fine particulate matter (PM2.5) concentrations agree reasonably well with surface 

observations (normalized mean bias = 4.0%). Meanwhile, the model could generally capture the 

spatial pattern of aerosol optical depth from satellite observations. Sensitivity tests reveal that 

using a high spatial resolution for fire emissions and a reasonable treatment of plume rise (a fair 

split between emissions injected at surface and those lifted to upper levels) is important for 

achieving decent PM2.5 simulation results. Biases in PM2.5 simulation are relatively large (about 

50%) during the period with the strongest Santa Ana wind, due to a possible underestimation of 

burning area and uncertainty in wind field variation. The 2017 December fire event increases the 

14-day averaged PM2.5 concentrations by up to 231.2 μg/m3 over the downwind regions, which 

substantially exceeds the U.S. air quality standards, potentially leading to adverse health impacts. 

The human exposure to fire-induced PM2.5 accounts for 14–42% of the annual total PM2.5 

exposure in areas impacted by the fire plumes.

1. Introduction

In December 2017, a series of wildfires broke out in Southern California. The fires were 

exacerbated by powerful and long-lasting Santa Ana winds, as well as large amounts of dry 
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vegetation due to the absence of any significant precipitation this fall/winter (National 

Wildfire Coordinating Group, 2018). The fires burned over 307,900 acres (1,246 km2), 

forced 230,000 people to evacuate, and caused traffic disruptions, school closures, hazardous 

air conditions, and massive power outages (Wikipedia, 2018). The largest fire was the 

Thomas Fire, which grew to 1,141 km2, becoming California’s largest modern wildfire at 

the time (CalFire, 2018; National Wildfire Coordinating Group, 2018).

Southern California’s Mediterranean climate, rugged terrain, and shrub-dominated 

landscape are conducive to wildfire activities that are among the highest in the United States 

(Kolden & Abatzoglou, 2018). During 1959–2009, an average of 41 large fires (>40 ha each) 

occurred in Southern California each year, resulting in a mean annual burned area of 5.33 × 

104 ha (Jin et al., 2014). The burned area in Southern California has been increasing since 

1980 (Westerling et al., 2006) and is expected to increase further with future climate change 

(Jin et al., 2015; Yue et al., 2014). Wildfires can claim lives, destroy homes and properties, 

and result in hazardous air pollution conditions at local to regional scales (Gupta et al., 

2018). Fine particulate matter (PM2.5) from wildfires has been associated with 

cardiorespiratory symptoms (Cascio, 2018; Thelen et al., 2013; Youssouf et al., 2014) and 

mortality (Cascio, 2018), with varying degree of impacts and uncertainty.

Two distinct wildfire regimes have been distinguished in Southern California: fires occurring 

in October through April driven by Santa Ana winds, that is, the dry and strong offshore 

winds blowing out of Southern California’s eastern deserts and mountains (Cao & Fovell, 

2016) and fires occurring in the hot Mediterranean summer from June to September (Faivre 

et al., 2016; Jin et al., 2015). While these two fire types contributed almost equally to burned 

area, the fires driven by Santa Ana winds were responsible for 80% of the cumulative $3.1 

billion in economic losses from 1990 to 2009, because these fires tend to spread much faster, 

occur closer to urban areas, and burn into areas with greater housing values (Jin et al., 2015). 

California has the largest number of houses in the urban-wildland interface in the United 

States, and this number is expected to increase further in the future (Stephens et al., 2009). 

Due to the proximity of Santa Ana wind-driven fires to populous areas such as urban-

wildland interface, it is critically important to improve our understanding and quantification 

of the air quality impacts of these fires. Chemical transport models can be useful tools to 

simulate the evolution of smoke from wildfire emissions and to provide early pollution 

warnings for nearby communities. However, the performance of the model is often limited 

by the complex weather conditions, rugged terrain, and fast-changing fire emissions.

There have been numerous modeling studies investigating the impact of wildfires on the air 

quality over different scales (Herron-Thorpe et al., 2014; Reid et al., 2016). However, only a 

few studies (Kochanski et al., 2016; Pfister et al., 2008) have specifically simulated the air 

quality consequences of Santa Ana wind-driven fires, the most costly and dangerous fire 

regime over Southern California. For example, using a global chemical transport model and 

surface O3 observations, Pfister et al. (2008) found that fire emissions enhanced afternoon 8-

hr O3 concentrations by about 10 ppb during a fall 2007 California wildfire event. 

Kochanski et al. (2016) developed an integrated forecast system for smoke prediction by 

coupling a fire/smoke model with a chemical transport model and demonstrated its 

preliminary application to two Santa Ana wind-driven fire events in 2007 and 2012. Further 
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in-depth modeling studies are still needed to adequately understand the formation, evolution, 

and air quality impacts of Santa Ana wildfires and to build reliable operational prediction 

capacity. Moreover, integration of model simulation with satellite and surface observational 

data sets is critically important for the evaluation and improvement of modeling systems, 

especially with respect to Santa Ana wind-driven fires, which are associated with intricate 

meteorological conditions and formation mechanisms.

In this study, we investigate the impact of the December 2017 extreme fires on air quality 

and human exposure to pollutants using the Weather Research and Forecasting model with 

Chemistry (WRF-Chem) in combination with satellite and surface observations. To improve 

the model performance and better quantify the air quality impacts, we use observed fire 

spots and meteorological reanalysis data rather than forecast-mode data to derive wildfire 

emissions, but the results from this study inform the improvement of air quality forecast 

capacity in such fire events.

2. Methodology

2.1. WRF-Chem Configurations

We simulate the impact of fire emissions on air quality using WRF-Chem version 3.9.1, a 

fully coupled meteorology-chemistry model. The simulation period is from 1 to 23 

December 2017, covering the time range when most wildfires in Southern California 

occurred (i.e., 5 to 18 December). We apply the model to two domains (Figure 1): Domain 1 

covers the western United States and its surrounding areas at a 12 km × 12 km horizontal 

resolution; the nested domain 2 covers California with a 4 km × 4 km resolution. We use 23 

vertical model layers from the surface to 100 hPa. The vertical layers are defined on a sigma 

coordinate. The 24 sigma levels defining the 23 model layers are 1.000, 0.995, 0.988, 0.980, 

0.970, 0.956, 0.938, 0.916, 0.893, 0.868, 0.839, 0.808, 0.777, 0.744, 0.702, 0.648, 0.582, 

0.500, 0.400, 0.300, 0.200, 0.120, 0.052, and 0.000, with denser layers at lower altitudes to 

resolve the planetary boundary layer. A sensitivity run with 46 layers is also conducted to 

examine the impact of higher vertical resolution on simulated surface PM2.5 concentration, 

column aerosol optical depth (AOD), and vertical distributions of PM2.5 concentrations and 

cloud fraction (supporting information Figures S6–S8). The simulation results with 23 and 

46 layers are generally very similar to each other. An exception is that the cloud fraction 

between 200 and 300 hPa (about 9.2–11.8 km) shows significant difference. Since this study 

focuses on surface air quality, the discrepancy in high cloud should not noticeably affect on 

our results and conclusion. The meteorological initial and boundary conditions of domain 1 

are generated from the Final Operational Global Analysis data (ds083.2) of the National 

Center for Environmental Prediction (NCEP) at a 1.0° × 1.0° and 6-hr resolution. The 

chemical initial and boundary conditions of domain 1 are extracted from the output of the 

Model for Ozone and Related Chemical Tracers version 4 (Emmons et al., 2010; University 

Corporation for Atmospheric Research, 2013). The simulation results of domain 1 provide 

the meteorological and chemical boundary conditions for domain 2 through two-way 

(online) nesting. A 6-day spin-up period is used to minimize the influence of initial 

conditions on simulation results. The physical options used include the NCEP, Oregon State 

University, Air Force, and Hydrologic Research Lab’s land-surface module (Chen & 
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Dudhia, 2001), the Yonsei University planetary boundary layer scheme (Hong et al., 2006), 

the Grell-Freitas cumulus scheme (Grell & Freitas, 2014), the Morrison double-moment 

scheme for cloud microphysics (Morrison et al., 2009), and the Fu-Liou-Gu radiative 

transfer scheme (Fu & Liou, 1992; Gu et al., 2006; B. Zhao et al., 2016). For the chemical 

scheme, we employ an extended Carbon Bond 2005 scheme (Yarwood et al., 2005) with 

chlorine chemistry (Sarwar et al., 2008) coupled with the Modal for Aerosol Dynamics in 

Europe/Volatility Basis Set (VBS; Ahmadov et al., 2012; K. Wang et al., 2015). Modal for 

Aerosol Dynamics in Europe/VBS uses a modal aerosol size representation and an advanced 

secondary organic aerosol module based on the VBS approach. The aqueous-phase 

chemistry is based on the AQChem module used in the Community Multiscale Air Quality 

model (K. Wang et al., 2015). Our model also considers aerosol direct radiative effects and 

first and second aerosol indirect effects on grid-scale clouds following our previous study 

(B. Zhao et al., 2017). The inclusion of aerosol radiative feedback affects both meteorology 

and chemistry simulations during the fire period, which is discussed through a sensitivity 

analysis in Supporting Information S1 (J. Wang et al., 2014; Zhou et al., 2019).

For anthropogenic emissions, we use the National Emission Inventory in 2011 (US 

Environmental Protection Agency, 2018a). We scaled the National Emission Inventory in 

2011 inventory to the 2017 levels according to the “NEI trend report” (US Environmental 

Protection Agency, 2018b). The biogenic emissions are calculated online using the Model of 

Emissions of Gases and Aerosols from Nature (Guenther et al., 2006). Dust emissions are 

calculated online following C. Zhao et al. (2010), which is revised based on the Goddard 

Chemical Aerosol Radiation Transport dust emission scheme (Ginoux et al., 2001). Sea-salt 

emission calculation follows previous studies (Gong, 2003; C. Zhao, Chen, et al., 2013).

2.2. Estimation of Fire Emissions

We calculate the real-time wildfire emissions employing the Brazilian Biomass Burning 

Emission Model (Longo et al., 2010), which is based on the active fires detected by satellite. 

For each fire pixel detected, the mass of the emitted pollutants is calculated by equation (1), 

which considers the estimated values for carbon density (the amount of aboveground 

biomass available for burning per unit area, αveg), the combustion factor (βveg), the emission 

factor (EFveg) for a certain species (η) from the appropriate type of vegetation, and the 

burning area (afire) for each fire pixel.

M[η] = αveg ⋅ βveg ⋅ EFveg
[η] ⋅ afire . (1)

For the detection of active fires, we use the Moderate Resolution Imaging Spectroradiometer 

(MODIS) fire product (Justice et al., 2002) and the Visible Infrared Imaging Radiometer 

Suite (VIIRS) fire product (Schroeder et al., 2014). The fire detection maps are merged with 

1-km resolution land use data (Belward, 1996) to provide the associated emission and 

combustion factors through a look-up table. The emission and combustion factors for each 

vegetation (land use) type are based on the work of Ward et al. (1992) and Andreae and 

Merlet (2001). The corresponding carbon density is derived from Olson et al. (2000) and 

Houghton et al. (2001). The detailed sources and values of emission factor, combustion 

factor, and carbon density are described in Longo et al. (2010). The vegetation density 
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changed by less than 10% between 2000 (the year for which the carbon density database was 

derived) and 2017, so we did not update the carbon density to 2017 in this study (see details 

in Supporting Information S1). The determination of burning area is detailed in the next 

paragraph. Then, the emission sources are distributed with the same spatial and temporal 

resolution as that of the atmospheric transport model. The Gaussian function is applied to 

convert one time fire detection into the emission diurnal cycle (Longo et al., 2010).

The combustion process of wildfires includes two phases: the flaming phase and the 

smoldering phase. The emissions in the smoldering phase are released into the first model 

layer, and those in the flaming phase are released at effective injection heights provided by a 

plume rise model documented in Freitas et al. (2007, 2010). According to the vegetation 

types present in Southern California, the fraction of biomass consumed in the flaming phase 

is prescribed to be 85% following Freitas et al. (2007, 2010), unless otherwise stated below. 

In the plume rise model, the final height that the plume reaches is controlled by the 

thermodynamic stability of the atmospheric environment and the surface heat flux release 

from the fire (Freitas et al., 2007). To estimate the heat fluxes from fires, we aggregate all 

fires into three categories (forest, woody savanna, and grassland) by merging the fire 

location with the land use data set. For each category, the lower and upper estimates of heat 

fluxes, which are used to calculate lower and upper limits of the injection height, are set to 

prescribed values reported in Freitas et al. (2007), with forest fires releasing more heat than 

savannah or grassland fires. We compared simulated vertical distribution of primary aerosol 

emissions from the December 2017 fire event with that retrieved by the Multiangle Imaging 

SpectroRadiometer (MISR; Martin et al., 2018), as shown in Figure S1. The plume vertical 

distributions from the model and MISR agree fairly well (correlation coefficient = 0.943), 

except that the model predicts more fire emissions at 250–500 m and less at 0–250 m 

compared with MISR. Therefore, our plume rise estimate appears to be reasonable overall 

(see details in Supporting Information S1; Archer-Nicholls et al., 2015; Martin et al., 2018).

To investigate the impact of real-time wildfire emissions in Brazilian Biomass Burning 

Emission Model on simulated air quality, six scenario simulations are conducted with WRF-

Chem (Table 1). In the first scenario (referred to as V_MODIS), we use the MODIS fire 

product (both Terra and Aqua) with 1 km × 1 km resolution, which has been widely used to 

estimate wildfire emissions (Justice et al., 2002). We adopt the assumption of Longo et al. 

(2010) that each active fire pixel corresponds to 0.22 km2 of burning area, accounting for 

22% of the mean area of a MODIS pixel.

The next four scenarios (called V_VIIRS, V_VIIRS_Plu, V_VIIRS_100, and 

V_VIIRS_nudging) are conducted with VIIRS fire product with a spatial resolution of 375 

m. Compared with MODIS, the higher resolution of VIIRS enables a more accurate 

detection of the fire location. Therefore, when a fire is detected, the fraction of burning area 

in the VIIRS pixel (~0.14 km2) is presumably larger than that in MODIS. In the V_VIIRS 

scenario, we assume that 50% of each VIIRS pixel is burnt (personal communication with 

the VIIRS Science Team, July 1, 2018), resulting in a burning area of about 0.07 km2 per 

fire pixel. The other assumptions of V_VIIRS are the same as V_MODIS. Moreover, to 

evaluate the uncertainty of plume rise calculation on simulated air pollutant concentrations, 

we design a scenario named V_VIIRS_Plu, which is same as V_VIIRS except that the 
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fraction of biomass consumed in the flaming phase is assumed to be 100% (cf. 85% in 

V_VIIRS).

As will be shown later, the preceding scenarios significantly underestimate the PM2.5 

concentrations and AOD during the beginning stage of the fire event (i.e., before 9 

December). To investigate the causes of the underestimation, we develop two more scenarios 

(referred as V_VIIRS_100 and V_VIIRS_nudging) on the basis of the V_VIIRS scenario. 

Specifically, in the V_VIIRS_100 scenario, the burning area is modified to 100% (0.14 km2 

per fire pixel), considering the intense and violent burning during the wildfire’s initial 

lifetime. Because the evolution of fire plumes is strongly affected by the wind field, we also 

design a scenario called V_VIIRS_nudging which employs wind field nudging in the 

meteorological modeling using the NCEP’s operational surface (ds461.0) and upper-air 

(ds351.0) observation data sets. The objective is to test whether wind nudging could 

potentially improve the simulation results of meteorological fields and hence air pollutant 

concentrations.

Finally, in the last scenario (V_FINN), we use the Fire INventory from NCAR (FINN; 

Wiedinmyer et al., 2011), a widely used fire emission product in the research community, as 

input for the WRF-Chem model. FINN uses MODIS observations of active fires and land 

cover, together with estimated burning area, fuel loadings, and emission factors to provide 

daily, 1-km resolution open burning emission estimates (Wiedinmyer et al., 2011). For each 

fire identified, the assumed burned area is 1 km2, except that 0.75 km2 is assigned for fires 

located in grasslands/savannas. This burned area is further scaled based on the percent bare 

cover from the MODIS Vegetation Continuous Fields product at the fire point. The emission 

factors are compiled from a recent study of Akagi et al. (2011) and a number of other 

references (e.g., Andreae & Merlet, 2001; McMeeking, 2008).

2.3. Surface and Satellite Observations

We use multiple sources of in situ and satellite observations to validate our simulations. 

First, we compare the meteorological predictions with observational data obtained from the 

National Climatic Data Center (NCDC), where hourly or 3-hr observations of wind speed at 

10 m (WS10), wind direction at 10 m (WD10), temperature at 2 m (T2), and water vapor 

mixing ratio at 2 m (Q2) are available for 134 sites distributed within the modeling domain.

We obtain hourly surface observations of PM2.5 in 31 sites in Southern California from the 

Air Quality System, the Interagency Monitoring of Protected Visual Environments, the 

Clean Air Status and Trends Network, and the California Air Resources Board. We focus on 

nine sites located in the Santa Barbara and Ventura counties (Figure 1), which are the areas 

most significantly affected by the wildfires.

Compared with surface observations, satellite data provide much greater spatial coverage. 

We use the column AOD retrievals from the level 2 aerosol product (MOD04, 10 km × 10 

km resolution) of MODIS onboard Terra to evaluate the evolution of the simulated plumes. 

MODIS/Terra overpasses California at 10:30 am local time. The averaged AOD of 10:00 and 

11:00 am local time from WRF-Chem is calculated to match the satellite overpass time.
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3. Results

3.1. Evolution of the Wildfire Event

Figure 2 shows the evolution of simulated PM2.5 concentrations and wind field from the 

V_VIIRS, which is the scenario that agrees best with observations, as discussed in sections 

3.2 and 3.3. This wildfire event was a typical Santa Ana wind-induced fire. We divide the 

temporal span of this event into three stages with distinct characteristics of wind fields: the 

pre-Santa-Ana wind stage (1 to 4 December), the Santa-Ana wind stage (5 to 12 December), 

and the post-Santa-Ana wind stage (from 13 December onward).

At the first stage, the wind field was weak and inhomogeneous over Southern California, and 

northern wind was dominant over ocean around 12:00 UTC 2 to 3 December 2017 (Figures 

2a and 2b). One day later, the Santa Ana wind—northeast wind blowing out of Southern 

California’s eastern mountains—commenced around 12:00 UTC 4 December 2017 over 

land (Figure 2c). Subsequently, the northeast winds became dominant over both land and 

ocean on 5 December, when the Thomas fire broke out (Figure 2d). The very strong 

northeast offshore wind (~30 m/s) was recorded in the NCDC data over Santa Barbara and 

Ventura counties. The predominant Santa Ana wind lasted throughout the second stage 

(Figures 2e and 2f). As a result, the fire plume kept flowing westward along with the wind. 

While most of the smoke plume flowed to the ocean, some populous areas to the north and 

west of the fire spots (mainly Santa Barbara and Ventura counties) were affected by the fire 

plume, especially after 7 December. At the last stage of the fire event, the Santa Ana wind 

gradually weakened and finally disappeared over land on 12 December (Figure 2h), and the 

north wind dominated over the ocean again. An interesting finding is that the smoke plume 

at this stage covers a large area over the coastline zones with intense population, leading to a 

wide spread deterioration of air quality in counties of Los Angeles, Orange, San Luis 

Obispo, Kern, and parts of Riverside, San Diego, and San Bernardino (Figure 2i). In short, 

the Santa Ana wind in Southern California played a critical role in the formation and 

evolution of the December 2017 wildfires and the distribution of fire-induced emissions.

3.2. Evaluation of Simulations

3.2.1. Meteorology—We compare the meteorological predictions with observational 

data obtained from the NCDC. We apply a number of statistical indices to quantitatively 

evaluate the model performance, as summarized in Table 2. Simulated meteorological fields 

from different emission scenarios have very small differences, so here we only analyze the 

results from the V_VIIRS scenario. In general, model simulations agree fairly well with 

surface meteorological observations, with the mean biases of wind speed, wind direction, 

temperature, and specific humidity of −0.10 m/s, 4.52°, −0.02 K, and −0.08 g/kg, 

respectively. The performance statistics for these meteorological parameters are mostly 

within the benchmark ranges proposed by Emery et al. (2001). Considering the key role of 

wind fields in the evolution of this fire event, we further compare time series of wind fields 

from the V_VIIRS scenario and NCDC observations at four sites near the fire zones, as 

presented in Figure 3. The simulated wind fields are generally consistent with the 

observations throughout the simulation period. In the second stage defined in section 3.1, 

strong northeast wind dominated the area near the fires according to both observations and 
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simulations. In the first and third stages, both simulated and observed wind speeds were 

weaker, and the wind fields were inhomogeneous. However, there are relatively large errors 

in simulated wind direction variations with Gross Error of 48.43° (Table 2). Specifically, 

compared with NCDC observations, the simulated wind direction shift occurs less frequently 

and has a smaller amplitude, during both strong wind episodes and relatively stagnant 

episodes (Figure 3).

3.2.2. Air Quality—To evaluate the model performance with regard to the temporal 

variations in air pollutants, we compare simulated PM2.5 concentrations with observational 

data at nine surface sites in Santa Barbara and Ventura counties (Figures 4 and S2 for hourly 

and daily data, respectively). Sites 2, 4, 7, and 8 are close to the large Thomas fire, and sites 

1, 3, 5, 6, and 9 are relatively far away (see in Figure 1b). In general, results from V_VIIRS 

capture the magnitude and temporal evolution of PM2.5 concentrations reasonably well, with 

an averaged normalize mean bias (NMB) of 4.0% across all sites (Table 3). Before 9 

December, the predicted PM2.5 concentrations show significant underestimation, which will 

be detailed in section 3.3.

Subsequently, we assess the spatial distribution of simulated PM2.5 concentrations using 

observations over a larger spatial domain in Southern California. Figure 5 overlays the 

simulated PM2.5 concentrations from the V_VIIRS and observational data averaged over the 

three stages discussed in section 3.1. Before the fire began, the simulated distributions of 

PM2.5 concentrations match the observations well—hot spots occur in Los Angeles and 

Bakersfield city due to urban air pollution (Figure 5a). After the fire broke out, fire smoke 

flowed westward due to the strong northeast Santa Ana wind and impacted Santa Barbara 

and Ventura counties, as indicated by the simulated and observed high PM2.5 concentrations 

in these two counties (Figure 5b). Both the observations and simulations show that the 

upwind regions were not polluted by the fire emissions (Figure 5b). At the last stage, the 

simulations and observations show that the area polluted by the fire emission expanded to 

most counties around the fire spots (including Los Angeles and San Luis Obispo counties) 

and the nearby ocean (Figure 5c). However, the simulations overestimate the observations in 

certain areas to the west of the fire spots.

While surface observations are only available at limited sites, the AOD retrieved from 

MODIS has extensive spatial coverage. We compare the spatial distribution of AOD from 

V_VIIRS with the retrievals of MODIS onboard Terra (see section 2.3) on individual days 

during the three stages (Figure 6). During the first stage, both simulated and retrieved AODs 

over Southern California were less than 0.2. The values of AOD increased after the fire 

began. The simulated AOD shows an underestimation with NMB of −13.1% at the second 

stage. During the early second stage (5 to 9 December), compared to the MODIS AOD, the 

simulation displays a narrower plume with lower AOD. Consequently, more limited 

coastline zones are influenced by fire emissions in the simulation than in the observations, 

which is consistent with the apparent underestimations of PM2.5 concentrations during this 

period, especially along the southern coastline of Santa Barbara and Ventura counties. At the 

last stage, the AOD plume spread widely, especially to the southeast. The simulated AOD 

captures the general shape of the smoke plume, though the magnitude is still underestimated 

(NMB = −21.3%). It should be noted that the MODIS AOD has a large number of missing 
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values in some days (7, 8, 14, and 15 December) due to the presence of clouds, which 

hinders a more complete model-observation comparison.

3.3. Sensitivity Analysis of Various Control Factors

In this section we explore how various control factors used in the model (plume rise 

treatment, fire emission inventory, and wind fields) may impact the simulation of air quality. 

We intercompare the hourly concentrations of PM2.5 from the six scenarios described in 

section 2.2, as well as observational data at nine sites in Santa Barbara and Ventura counties.

3.3.1. Plume Rise Treatment—First, we compare simulated PM2.5 concentrations 

from V_VIIRS and V_VIIRS_Plu, which involve different treatments of plume rise. Both 

simulations are conducted with fire emissions from VIIRS products. Unlike the V_VIIRS 

scenario, the V_VIIRS_Plu scenario assumes all biomass burning is in the flaming phase 

and all emissions are released to the model with an injection height. Figure 7 shows that the 

PM2.5 concentrations from the V_VIIRS_Plu at the level of 925 hPa (where peak PM2.5 

concentration occurs) are larger than those from the V_VIIRS scenario, whereas the results 

at the surface level are opposite during the entire fire event. As expected, more fire 

emissions are lifted into the upper air and transported away from the fire in the 

V_VIIRS_Plu scenario. Consequently, the V_VIIRS_Plu scenario underestimates surface 

PM2.5 concentrations significantly (NMB = −17.9%), especially at the sites of 2, 4, and 8 

(NMB from −81.2% to −51.4%, see Figure 4 and Table 3). Besides, we have conducted 

simulations for two additional scenarios, that is, V_VIIRS_Plu_50 and V_VIIRS_Plu_0 

(Figure S3). The former scenario assumes that the fraction of biomass burned in the flaming 

phase is 50%. The latter one assumes no flaming emissions; in other words, all emissions are 

emitted at the ground level. Figure S3 shows that both V_VIIRS_Plu_50 and 

V_VIIRS_Plu_0 substantially overestimate surface PM2.5 concentrations during most of the 

simulation period except for the initial stage of the fire event (before 9 December). Also, 

compared to V_VIIRS, the underestimate before 9 December is not noticeably improved by 

the high surface emission assumption in V_VIIRS_Plu_50 and V_VIIRS_Plu_0. Therefore, 

V_VIIRS with 85% flaming emissions appears to be a more reasonable treatment than the 

scenarios with either 100% or <50% fraction of flaming emissions.

3.3.2. Fire Emission Inventory—Figure 8 shows time series of PM2.5 hourly 

concentrations from two simulations forced with two other fire emission inventories: 

V_MODIS and V_FINN. In the V_MODIS scenario, the concentrations of PM2.5 are 

significantly overestimated (NMB = 33.8%, Table 3), except for the beginning stage of the 

fire event (before 9 December). The overestimation is especially significant for certain sites 

(sites 4, 7, and 8) close to the wildfire (NMB from 24.3% to 87.5%). The agreement with 

observations from this simulation is significantly lower than that from the V_VIIRS 

scenario, suggesting that the refined spatial resolution of active fires derived from VIIRS 

375-m data provides more accurate burning area and emission estimates (Schroeder et al., 

2014). This indicates that a sufficiently high resolution of fire emissions is important for a 

successful simulation of PM2.5 concentrations. For the V_FINN scenario, it is clear that 

simulated concentrations of PM2.5 are considerably lower than observations (NMB = 
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−43.8%). In addition, the simulated temporal variation of PM2.5 concentrations differs 

significantly from the observed pattern.

During the beginning stage of the fire (before 9 December), the predicted PM2.5 

concentrations from all scenarios above show significant underestimation. One possible 

reason is an underestimation of burning area per fire pixel. In the V_VIIRS_100 sensitivity 

scenario, we increase the fraction of burning area in a VIIRS pixel to 100%, which means 

full combustion in each fire pixel of VIIRS. This assumption leads to higher PM2.5 

concentrations in the simulation which agrees better with observations, but they are still 

underestimated in sites 2, 4, and 8 (Figure 9).

Another factor that may lead to an underestimate of fire emission before 9 December is that 

some fire pixels, especially those at the smoldering phase, might be missed by VIIRS. By 

comparing the spatial ranges of VIIRS-detected active fire pixels and fire perimeter from 

Inciweb (https://inciweb.nwcg.gov/incident/maps/5670/), we show that the undetected fire 

pixels could lead to an underestimate of fire-induced PM2.5 concentrations but may not be 

the main cause of the large underestimate before 9 December (see details in Supporting 

Information S1). In addition, a possible reason for the underestimate is that the fire may have 

grown extremely quickly during the gap between the 13:30 VIIRS/MODIS-Aqua overpass 

and the subsequent overpasses (22:30 for MODIS-Terra and 01:30 for VIIRS/MODIS-

Aqua). Future studies are needed to investigate the potential impact of this possibility.

3.3.3. Wind Fields—The underestimation before 9 December may also be associated 

with the bias in simulated spatiotemporal variability of instantaneous wind fields. A large 

variability of winds could enhance the horizontal dispersion of pollutants and widen the fire 

plume, which increases the probability for Santa Barbara and Ventura counties (where the 

observational sites are located) to be affected by the fire plume. In the V_VIIRS_nudging 

scenario, the observed wind field is assimilated with the objective of improving wind 

simulations. The assimilated wind fields in the V_VIIRS_nudging are slightly different from 

those simulated by the V_VIIRS_100 scenario (Figure S5). However, the simulated PM2.5 

concentrations at most sites do not respond strongly to the modified wind field, except site 7. 

More studies are need in the future to further improve the simulation of Santa Ana wind 

fields and their impact on surface air pollutant concentrations.

3.4. Impact of Wildfire on Air Quality and Human Exposure

To investigate the impact of the wildfire on air quality, we quantify the average PM2.5 

concentrations and human exposure induced by the fire during the 14-day event (5–18 

December). The average fire-induced PM2.5 concentrations are estimated using the 

difference between two simulations with and without fire emissions. For the simulation with 

fire, we combine the V_VIIRS_100 scenario before 9 December and the V_VIIRS scenario 

from 9 December onward. The reason for using V_VIIRS_100 (a scenario with larger 

burning area per pixel) before 9 December is that the Santa Ana wind is extremely strong in 

this period; thus, the fire can be very intense and violent, presumably leading to a more 

complete burning within a fire pixel. Also, during this period, the active fire pixels detected 

by VIIRS tend to be densely arranged with few gaps (Figure S4). In fact, the V_VIIRS_100 
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improves the PM2.5 simulations before 9 December, as discussed in section 3.3.2. Figure 10 

shows the spatial distribution of the averaged fire-induced PM2.5 concentrations throughout 

the 14-day fire event. The heavy polluted regions are around the fire spots and the downwind 

zones, that is, the Santa Barbara and Ventura counties, where the 14-day averaged fire-

induced PM2.5 concentrations are larger than 30 μg/m3, with a maximum of 231.2 μg/m3. 

The San Luis Obispo county and the southwestern part of the Los Angeles County are also 

noticeably influenced, with 14-day average fire-induced PM2.5 concentrations of 2–25 

μg/m3.

Furthermore, we estimate the human exposure to fire-induced PM2.5 and compare with 

annual total exposure. The human exposure to fire-induced PM2.5 is defined as the 

integration of fire-induced PM2.5 concentrations with time during the fire event. We 

subsequently calculate the fraction of fire-induced PM2.5 exposure during the 14-day event 

with respect to annual total PM2.5 exposure. Due to lack of yearlong PM2.5 concentrations in 

the whole domain, we focus on the human exposure at nine sites discussed in section 3.2. 

Figure 11 presents the 14-day average fire-induced PM2.5 concentrations (quantified using 

the difference between simulations with and without fire emissions as described above) and 

fraction of the fire-induced exposure relative to the annual total amount for the nine sites. 

The maximum of fire-induced PM2.5 reaches 68.5 μg/m3 at site 4 on the downwind side of 

the fire spots, and the minimum is 1.9 μg/m3 at site 9 on the upwind side. Accordingly, the 

fraction of fire-induced PM2.5 exposure relative to the annual total ranges from 42% at site 4 

to 0.9% at site 9. In addition, the fraction reaches 25% in site 1 and exceeds 14% in two 

other sites, which are mostly in the downwind regions. This indicates that, for the regions 

influenced by the wildfire, this fire event makes a critically important contribution to the 

annual total PM2.5 exposure and the associated health impacts. The U.S. Environmental 

Protection Agency’s most recent ambient air quality standards for PM2.5 are 12 and 35 

μg/m3 for annual and daily average concentrations, respectively (Environmental Protection 

Agency documents, 2012). The total number of exceedances of the 24-hr average standard 

(35 μg/m3) during 2017 ranges from 5 to 13 days in the downwind region, and all of these 

exceedances occurred within the 14-day fire event. Therefore, the intense wildfire is a 

leading contributor to both acute and cumulative PM2.5 exposure for this region. Exposure to 

PM2.5 can cause premature death and harmful cardiovascular effects and is linked to a 

variety of other significant health problems.

4. Conclusions

In December 2017, a record-breaking wildfire broke out in Southern California. We 

investigated the impact of this wildfire on air quality and human exposure to pollutants using 

the WRF-Chem in combination with satellite and surface observations. This wildfire event is 

driven by a typical Santa Ana wind. The wind field plays a critical role in the formation and 

evolution of the fire and the distribution of fire-induced emissions.

The predicted meteorological parameters agree fairly well with surface observations. 

However, there are relatively large errors in simulated wind direction variations. The 

simulations capture the magnitude and temporal evolution of PM2.5 concentrations 
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reasonably well (NMB = 4.0%) by utilizing the VIIRS fire product. Meanwhile, the spatial 

patterns of simulated AOD generally agree with satellite observations.

Our sensitivity analysis reveals that a reasonable treatment of plume rise with a fair split 

between flaming and smoldering phases is important for achieving decent simulation results 

of PM2.5 concentrations. The V_VIIRS_Plu scenario with excessively large fraction of 

biomass consumed in the flaming phase (100%) underestimated the surface PM2.5 

concentrations (NMB = −17.9%), as almost all fire emissions are lifted to upper air and 

transported far away. A sufficiently high resolution of fire emissions is also critical to a 

successful and accurate fire simulation. If fire emissions derived from the MODIS fire 

product at a lower resolution were used, the simulated concentrations of PM2.5 would 

significantly overestimate observations (NMB = 33.8%).

For all preceding scenarios, there are relatively large biases in PM2.5 simulations during this 

initial period of the fire (before 9 December). Through the two additional scenarios, we 

illustrate that this is attributable to a possible underestimation of burning area and 

uncertainty in the simulation of wind field variation.

This fire event significantly increased the PM2.5 concentrations in nearby and downwind 

regions with a maximum fire-induced PM2.5 of 231.2 μg/m3, averaged throughout the entire 

fire event (14 days from 5 to 18 December). In these regions, the PM2.5 concentrations 

exceed the national ambient air quality standards (i.e., above 35 μg/m3) for 5 to 13 days, 

representing all exceedances in the year 2017. In the region downwind of the fires, human 

exposure to fire-induced PM2.5 accounts for 14–42% of the total PM2.5 exposure.

The results and findings of this study have important implications for the modeling studies 

and practical early warning of Santa Ana wind-driven wildfires. First, the wildfire has a 

great impact on the air quality and human health in the regions affected by smoke. Thus, a 

greater focus should be placed on accurate simulation and early prediction of wildfire in the 

future to protect public health. Second, a high-resolution real-time fire detection and a 

precise estimate of burned biomass amount play important roles in an accurate simulation of 

fire-induced air pollution. Future studies should make the best of available high-resolution 

fire detections and improve the method and parameters used to calculate the burned biomass. 

Third, further research could also be conducted to improve the representation of plume rise, 

particularly the split between flaming and smoldering phases for different vegetation types 

and weather conditions. Last but not least, the simulated fire-induced PM2.5 concentrations 

are very sensitive to the instantaneous Santa Ana wind. This motivates us to further 

investigate the formation mechanism and improve the model simulation of Santa Ana wind, 

with the final objective to improve the ability of simulating the impact of wildfire on air 

quality and human health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• WRF-Chem simulations capture the magnitude and spatiotemporal variations 

of PM2.5 and aerosol optical depth fairly well in the fire event

• Using a sufficiently high resolution for fire emission and a proper treatment of 

plume rise is important for a successful fire simulation

• Increased PM2.5 exposure due to this fire event accounts for 14–42% of the 

annual total exposure in nearby and downwind regions
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Figure 1. 
Illustration of the modeling domains (left panel), locations of fire spots (red dots, right 

panel), and nine observational sites (black stars, right panel) managed by the California Air 

Resources Board in Santa Barbara and Ventura counties. The red texts denote names of the 

fires, while the blue texts denote names of counties.
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Figure 2. 
Contours of evolution of simulated PM2.5 concentrations from V_VIIRS scenario along with 

surface wind field (arrows). (a)–(c) for the pre-Santa-Ana wind stage, (d)–(f) for the Santa 

Ana wind stage, and (g)–(i) for the post-Santa-Ana wind stage.
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Figure 3. 
Comparison between surface observed wind fields from NCDC and Weather Research and 

Forecasting model with Chemistry simulations in the V_VIIRS scenario at four sites near 

the fires. NCDC = National Climatic Data Center; VIIRS = Visible Infrared Imaging 

Radiometer Suite.
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Figure 4. 
Time series of PM2.5 concentrations at nine sites around wildfires during 1 to 23 December 

2017. The black line is observed hourly PM2.5 concentration. The red and green lines are 

simulation results of V_VIIRS and V_VIIRS_Plu, respectively. VIIRS = Visible Infrared 

Imaging Radiometer Suite.

Shi et al. Page 21

J Geophys Res Atmos. Author manuscript; available in PMC 2020 May 22.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 5. 
Overlay plots of the simulated (contour) and observed (circles) PM2.5 concentrations during 

the three stages: (a) the pre-Santa Ana wind stage, (b) the Santa Ana wind stage, and (c) the 

post-Santa-Ana wind stage.
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Figure 6. 
Comparison of (a) the spatial distribution of aerosol optical depth from V_VIIRS with (b) 

the retrievals from Moderate Resolution Imaging Spectroradiometer onboard Terra during 

the three stages of December 2017 Southern California fire event. The 4 December belongs 

to the pre-Santa Ana wind stage. The 5 and 12 December belong to the Santa Ana wind 

stage. The 14 and 15 December belong to the post-Santa-Ana wind stage.
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Figure 7. 
Distribution of PM2.5 concentration difference between the V_VIIRS and V_VIIRS_Plu 

scenarios at 925 hPa (a–c) and 1,000 hPa (d–f) levels.
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Figure 8. 
Time series of hourly concentrations of PM2.5 at nine sites around wildfires during the 

period of 1 to 23 December 2017. The black line is observed hourly PM2.5 concentration. 

The red and green lines are simulation results of V_MODIS and V_FINN, respectively. 

MODIS = Moderate Resolution Imaging Spectroradiometer; FINN = Fire INventory from 

NCAR;
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Figure 9. 
Time series of hourly concentration of PM2.5 at nine sites around wildfires during the period 

of 1 to 9 December 2017. The black line is observed hourly PM2.5 concentration. The red, 

green, and blue lines are simulation results from V_VIIRS, V_VIIRS_100, and 

V_VIIRS_nudging, respectively. VIIRS = Visible Infrared Imaging Radiometer Suite.
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Figure 10. 
Distribution of the simulated fire-induced PM2.5 concentrations averaged over the entire fire 

event (5 to 18 December 2017).
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Figure 11. 
(a) Fire-induced PM2.5 concentrations during the fire event and (b) fraction of the fire-

induced exposure relative to the annual total amount for the nine sites (averaged from 5 to 18 

December).
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Table 1

Summary ofthe Six Simulation Scenarios Used in This Study

Name Fire detection Fire pixel resolution
Fraction of burning 
area in pixels (%)

Fraction in the 
flaming phase (%) Others

V_MODIS MODIS 1 km 22 85

V_VIIRS VIIRS 375 m 50 85

V_VIIRS_Plu VIIRS 375 m 50 100

V_VIIRS_100 VIIRS 375 m 100 85

V_VIIRS_nudging VIIRS 375 m 100 85 Wind nudging

V_FINN FINN algorithm with 
MODIS

1 km 85 Wiedinmyer et al. 
(2011)

Note. MODIS = Moderate Resolution Imaging Spectroradiometer; VIIRS = Visible Infrared Imaging Radiometer Suite; FINN = Fire INventory 
from NCAR.

J Geophys Res Atmos. Author manuscript; available in PMC 2020 May 22.



N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Shi et al. Page 30

Table 2

Model Performance of Meteorological Parameters as Compared to Observational Data From the National 

Climatic Data Center

Variable Index Value Ref
a Variable Index Value Ref

Wind speed (m/s) Mean observation 4.17 Temperature (K) Mean observation 276.53

Mean prediction 4.07 Mean prediction 276.52

Bias −0.10 ≤ ±0.5 Bias −0.02 ≤ ±0.5

Gross error 1.71 ≤2 Gross error 3.36 ≤2

IOA 0.75 ≥0.6 IOA 0.89 ≥0.8

Wind direction (deg) Mean observation 286.45 Humidity (g/kg) Mean observation 2.98

Mean prediction 280.24 Mean prediction 2.90

Bias 4.52 ≤ ±10 Bias −0.08 ≤ ±1

Gross error 48.43 ≤30 Gross error 0.68 ≤2

IOA 0.80 ≥0.6

Note. IOA = Index of Agreement.

a
The reference values are taken from Emery et al. (2001).
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Table 3

Evaluation of Hourly PM2.5 Concentrations From Four Simulations Against Surface Observations at Nine 

Sites in Santa Barbara and Ventura Counties During the 14-day Fire Event

NMB_all S1 S2 S3 S4 S5 S6 S7 S8 S9

V_MODIS 33.8 17.8 −0.02 31.1 24.3 28.8 20.7 77.7 87.5 −22.0

V_VIIRS 4.0 33.9 −19.6 20.9 −8.5 45.3 21.8 27.7 −17.9 −32.9

V_VIIRS_Plu −17.9 25.2 −51.4 22.3 −57.1 65.2 41.9 12.8 −81.2 −26.6

V_FINN −43.8 −46.9 −66.8 −35.5 −62.1 14.5 8.8 −4.8 −81.2 −39.0

Note. NMB_all means normalize mean bias (NMB) averaged across all nine sites. S1 to S9 represent NMB (in %) of each site (Figure 1). MODIS 
= Moderate Resolution Imaging Spectroradiometer; VIIRS = Visible Infrared Imaging Radiometer Suite; FINN = Fire INventory from NCAR.
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