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Abstract

Kinases play important roles in cell signaling, and adenosine monophosphate (AMP) is known
to modulate cellular energy homeostasis through AMP-activated protein kinase (AMPK). Here,
we explored novel AMP-binding kinases by employing a desthiobiotin-conjugated AMP acyl-
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phosphate probe to enrich efficiently AMP-binding proteins. Together with a parallel-reaction
monitoring-based targeted proteomic approach, we uncovered 195 candidate AMP-binding
kinases. We also enriched desthiobiotin-labeled peptides from adenine nucleotide-binding sites
of kinases and analyzed them using LC-MS/MS in the multiple-reaction monitoring mode, which
resulted in the identification of 44 peptides derived from 43 kinases displaying comparable or
better binding affinities toward AMP relative to adenosine triphosphate (ATP). Moreover, our
proteomic data revealed a potential involvement of AMP in the MAPK pathway through binding
directly to the relevant kinases, especially MEK2 and MEKS3. Together, we revealed the AMP-
binding capacities of a large number of kinases, and our work built a strong foundation for
understanding how AMP functions as a second messenger to modulate cell signaling.
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Adenosine monophosphate (AMP) is produced from the hydrolysis of adenosine
diphosphate (ADP) or adenosine triphosphate (ATP) and consumed by its conversion to
ADP by adenylate kinase (AK).L AMP is present in cells in all domains of life and plays
important roles in numerous cellular metabolic processes.? The cellular ATP/AMP ratio is
generally maintained at approximately 100/1, and its perturbation is a rheostat of cellular
energy status.3 An elevated concentration of AMP activates AMP-activated protein kinase
(AMPK) to maintain energy homeostasis in cells.

So far only two groups of kinases are known to be activated by AMP, namely, AMPK and 6-
phosphofructokinase (PFK), where AMPK is the best-known AMP-binding protein. AMPK
is switched on by increases in cellular AMP concentration through three mechanisms, all of
which are antagonized by ATP: (a) promotion of phosphorylation of Thrl172 by upstream
activating kinases; (b) inhibition of Thr172 dephosphorylation by phosphatases; and (c)
allosteric activation of the phosphorylated kinase.® Given the crucial roles of kinases in
modulating cell signaling, proliferation, and metabolism,® it is important to examine whether
there are other kinases that can bind to AMP and respond to cellular AMP/ATP ratio.
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In the present study, we synthesized a desthiobiotin-tagged AMP acyl-phosphate probe and
employed this probe (Figures 1a and S1), together with a previously reported desthiobiotin-
conjugated ATP probe, which exhibits high specificity in reacting with lysine residues at
the ATP-binding pockets of proteins,”8 to assess the AMP-binding capacities of kinases at
the whole proteome scale. We first examined the relative efficiencies of these two probes in
labeling proteins in the lysate of HEK293T cells (Figure 1b). After the labeling reactions,
the protein mixtures were reduced, alkylated, and digested with trypsin. The biotinylated
peptides in the mixture were enriched with avidin agarose and subjected to LC-MS/MS
analyses in the data-dependent acquisition (DDA) mode. Consistent with the fact that

there are numerous ATP-binding proteins in cells, our results showed that the ATP-affinity
probe led to the identification of many more desthiobiotin-labeled peptides and proteins
than the AMP-affinity probe (Figure 1c, Table S1). Furthermore, labeling with the ATP
probe conferred much better enrichment of ATP-binding proteins and ATPases than the
AMP probe (Figure 1d). Nevertheless, the AMP probe still facilitated the identification of
appreciable numbers of ATP-binding proteins and ATPases (Figure 1d).

We next employed the aforementioned desthiobiotin-conjugated ATP and AMP probes,
together with stable isotope-labeling by amino acids in cell culture (SILAC),® To examine
the relative efficiencies of these two probes in labeling kinase proteins in the lysate of
HEK?293T cells (Figure 1e). After labeling, the desthiobiotin-conjugated proteins were
enriched using avidin agarose and digested with trypsin, and the ensuing peptides were
subjected to LC-MS/MS analysis in the parallel-reaction monitoring (PRM) mode. In this
regard, we used a previously developed PRM kinome library, which contains 1050 unique
tryptic peptides derived from 478 non-redundant human kinases, including 395 protein
kinases, 21 lipid kinases, and 62 other kinases, and covers approximately 80% of the human
protein kinome.10-17

Our scheduled LC-PRM analysis with forward and reverse SILAC-labeling led to the
quantification of 295 kinases (Figure 2, Table S2). The quantification results showed

that the AMP probe was not as effective as the ATP probe in enriching most kinases

(Figure 2, Table S2), which is not surprising viewing that most kinases employ ATP as

the phosphate group donor for substrate phosphorylation. Interestingly, the two groups of
known AMP-activated kinases, AMPK and PFK, display similar enrichments with the use of
desthiobiotin-conjugated AMP and ATP probes (Figure 3a). Since AMP/ATP probe-labeling
ratios ranged from 0.83 to 1.37 for AMPK and PFK, we employed a cutoff ratio of 0.83 for
considering a kinase to have AMP-binding capacity. With this criterion, 195 kinases exhibit
AMP-binding capacity. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis!8 suggested a high enrichment of the insulin and MAPK signaling pathways for
these candidate AMP-binding kinases (Figure 3b).

MAP2K2, a.k.a. MEKZ2, is an important kinase involved in insulin signaling and MAPK
pathways.1® MEK2 was identified as an AMP-binding protein in our data set with similar
binding capacities toward AMP and ATP (Figures 3¢ and S2a). Autodocking with UCSF
Chimera?0 predicted AMP binding to the ATP-binding pocket of MEK?2, with the best
predicted binding free energy being —7.3 kcal/mol (Figures 3 and S2b), which is indicative
of a “valid” binding event.2! We also employed microscale thermophoresis (MST) to

J Proteome Res. Author manuscript; available in PMC 2023 August 05.
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quantify the binding affinity of MEK2 toward AMP. The result showed a strong interaction
between recombinant MEK2 protein and AMP (Figures 3e and S2c, Ky = 0.56 1M), which
is approximately 2-fold stronger than the corresponding interaction with ATP (Figure 3e,
Ky =1.33 ¢M). In addition, the binding of ATP to MEK2 was decreased by more than
10-fold in the presence of a cellular concentration of AMP (10 M, Figure 3f),3 suggesting
the competitive binding of ATP and AMP with MEK2. This finding of MEK2’s competitive
binding to AMP and ATP is reminiscent of previous observations made for AMPK and
PFK.5'22

To further explore the competitive binding of kinases toward AMP and ATP, we applied our
recently developed kinome MRM library, which includes 818 unique peptides representing
474 distinct human kinases,’ together with AMP/ATP acylphosphate probes and LC-

MRM analysis, to assess quantitatively the AMP-binding capacities of the ATP-binding
pockets of kinases (Figure 4a). In this vein, our initial MRM kinome library incorporated
isotope-coded ATP-affinity probes for peptide quantification.8:23 To obviate the need of
synthesizing the stable isotope-labeled desthiobiotin-AMP probe, we adapted the MRM
kinome library by incorporating SILAC-based quantification, which involved the conversion
of MRM transitions of heavy isotope-labeled linker-containing, desthiobiotin-modified
peptides to those of the corresponding peptides with heavy isotope-labeled amino acids, i.e.,
[13Cg,15N,]-lysine and [13Cg]-arginine. By using the revised version of the MRM kinome
library and SILAC, we were able to quantify 406 desthiobiotin-labeled tryptic peptides
derived from 279 kinases (Table S3). Among them, 44 desthiobiotin-labeled peptides from
43 kinases exhibited AMP/ATP ratios of over 0.67 (Table 1), indicating comparable or
stronger binding affinities of these kinases toward AMP vs ATP. The KEGG pathway
analysis of the 43 candidate AMP-binding kinases reveals the MAPK pathway as the most
enriched pathway, which are accompanied by pathways known to be regulated by AMP, i.e.,
the FoxO, Rap1, and AMPK pathways (Figure 4b),24-26 suggesting that AMP might bind
to and regulate kinases in the MAPK pathway. Among these 43 proteins, three are known
AMP-binding proteins, i.e., PRKAG1 (a.k.a. AMPK 1), PRKAG2 (a.k.a. AMPK»2), and
PFKP (Table 1). In this vein, Lys161 in AMPK y1 was labeled with desthiobiotin, which

is consistent with a previous X-ray crystal structure study showing that the corresponding
lysine, i.e., Lys169, in rat AMPK 1 is involved in binding with the phosphate group in
AMP.27 This result indicates the effectiveness of our approach in revealing the AMP-binding
sites of kinases. Next, we investigated the 44 AMP-binding sites for motif enrichment

by Multiple Em for Motif Elicitation (MEME). MEME identified a highly specific AMP-
binding motif of VAXK (Figure 4c), which is present in more than 50% of the enriched
peptides (Figure S2d). There are three known ATP-binding motifs, VAXK, HRDxK, and
GxxxxGK (“x’ represents any of the 20 natural amino acids),28 among which the VAXK
motif interacts with the a and B phosphates of ATP to anchor and orient ATP.2% Thus,

the enrichment of the VAXK-motif is in keeping with the fact that AMP only carries an a
phosphate.

As mentioned above, we were able to enrich peptides from the AMP-binding sites of

AMPK 1 and AMPK »2 with similar binding affinities toward ATP and AMP (Figure 4d,
Table 1), validating the ability of our approach in uncovering novel AMP-binding kinases
together with their binding sites. For the above-mentioned MAPK pathway, we identified

J Proteome Res. Author manuscript; available in PMC 2023 August 05.
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not only MEK2 but also other kinase proteins in the MAPK pathway, e.g., MEK3 (a.k.a.
MAP2K3), RPS6KA4, MAP3K2, MAP4K2, MAP3K3, INSR, AKT3, IRAK4, EGFR,
MAP3K11, and STK3, as candidate AMP-binding kinases. Among these kinases, MEK3
exhibits an ~2-fold stronger binding to AMP than ATP (Figure 4e). Similar to MEK2, AMP
binds to the ATP-binding site of MEK3 (Uniprot), where the desthiobiotin-labeled K93 is
located in the ATP-binding pocket. Importantly, K93 in MEK3 is the homologous lysine

to K101 in MEK?2, further indicating that AMP binds to the ATP-binding domain of both
MEK2 and MEKS3.

The PRM and MRM targeted proteomic methods provide the quantitative information for
295 and 278 kinases, respectively, with 156 kinases being commonly quantified with both
approaches (Figure 4f). By comparing the kinases with AMP-binding capacities obtained
from PRM analysis and kinases with AMP-binding capacities in the ATP-binding domains
from MRM analysis, we found an overlap of 16 kinases (Figure 4f), including the known
AMP-activated kinases (i.e., PRKAG1, PRKAG2 and PFKP, Figure 4g). In addition, kinases
such as INSR, CDK2, SYK, SMG1, NEK7, CSK, TNIK, IRAK4, CDK7, BCR, LATS1,
MAP4KS5, and AKT3 performed similarly as the three known AMP-activated kinases
(Figure 49), suggesting that they are potential AMP-activated kinases.

It is worth discussing the moderate overlap between the data acquired from pull-down at
the protein (for PRM analysis) and peptide (for MRM analysis) levels. In this vein, some
kinase proteins (e.g., MEK2) are in the PRM library but not the MRM library, and vice
versa is also true. In particular, our PRM and MRM libraries encompass 478 and 474
kinase proteins, respectively, and 350 kinase proteins are commonly present in the two
libraries.19:30 In addition, the MRM library was established based on affinity pull-down
using the ATP acyl-phosphate probe, and some AMP-binding proteins may not bind strongly
to ATP and hence are not included in the MRM library. On the other hand, the majority
of shotgun proteomic data used for constructing the PRM library were acquired from the
analyses of tryptic digestion mixtures of whole-cell protein lysates without enrichment;
hence, low-abundance kinases may escape the detection and are not included in the PRM
library.

In summary, we synthesized a desthiobiotin-AMP acyl-phosphate probe. By employing this
probe and a previously synthesized desthiobiotin-ATP probe, together with a PRM-based
targeted proteomics approach, we uncovered 195 kinases with potential AMP-binding
capacity. Additionally, our analysis of the desthiobiotin-labeled peptides from ATP-binding
sites of kinases led to the discovery of 44 peptides from 43 kinases manifesting comparable
or stronger binding toward AMP relative to ATP. We also uncovered VAXK as the AMP-
binding motif for kinases. Additionally, our work suggests the potential involvement of
AMP in the MAPK pathway by binding directly to the relevant kinases, especially MEK2
and MEKS3. Together, our chemoproteomic approaches revealed AMP-binding capacities for
a large number of kinases, and our work built a strong foundation for understanding how
AMP functions as a second messenger and a regulator of cell signaling.

J Proteome Res. Author manuscript; available in PMC 2023 August 05.
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An AMP acyl-phosphate probe-based chemoproteomic method for interrogating the AMP-
binding capacities of kinases. (a) The chemical structures of the ATP- (top) and AMP-
(bottom) affinity probes. (b) The working principle of the AMP-affinity probe. (c) Venn
diagrams illustrating the comparisons of the numbers of desthiobiotin-labeled sites (left)
and desthiobiotin-labeled proteins (right) obtained from ATP- and AMP-affinity probe pull-
down followed by desthiobiotinylated peptide enrichment and shotgun proteomic analysis.
(d) Gene ontology analysis of the desthiobiotin-labeled proteins identified from ATP- and
AMP-affinity probe pull-downs, where the p-values were exported from DAVID functional
annotation. (e) A SILAC and PRM-based targeted proteomic approach for proteome-wide
identification of AMP-binding kinases. Displayed here is the forward SILAC-labeling
experiment. In the reverse SILAC-labeling experiment, the light- and heavy-labeled lysates
are incubated with the ATP and AMP probes, respectively.
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Figure 2.

Differential AMP- and ATP-binding capabilities of kinases. The ratios represent the proteins
enriched by the AMP- vs ATP-affinity probe from the lysate of HEK293T cells. Plotted

are the quantification results from the means of two biological replicates (one forward and
one reverse SILAC labeling experiment, see Table S2 for ratios obtained from individual
measurements). Blue, red, and gray bars represent those kinases with ratios (AMP/ATP)
being <0.67, >1.5, and between 0.67 and 1.5, respectively.
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Figure 3.

AMP binds to MEK2. (a) The relative ratios of AMPK and PFK proteins enriched from
AMP over ATP acyl-phosphate probes and quantified from LC-PRM analyses. (b) KEGG
pathway analysis of the kinases with AMP/ATP probe-labeling ratios being >0.83, where
the p-values were exported from Enrichr. (c) PRM traces for the MEK2 kinase peptide. (d)
Molecular docking by UCSF Chimera shows the predicted binding site of AMP to MEK2
(PDB: 1S9I). MST analysis of the binding affinity of MEK2 with ATP or AMP (e) or with
ATP in the presence or absence of 10 /M AMP (f).
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Figure 4.

Systematic analysis of competitive binding of kinases to AMP and ATP. (a) Experimental
strategy for the MRM-based targeted proteomic approach for assessing the competitive
binding of kinases toward AMP and ATP, and displayed here is the forward-labeling
experiment. (b) KEGG pathway analysis of kinases with AMP/ATP > 0.67, where p-values
were exported from Enrichr. (c) The most enriched motif in desthiobiotin-labeled peptides
with AMP/ATP > 0.67. (d) MRM traces of the AMPK y1 kinase peptide. (¢) MRM traces
of the MEKS kinase peptide. (f) Venn diagrams showing the number of kinases quantified
from MRM and PRM experiments (top) and the number of potential AMP-binding kinases
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quantified from MRM and PRM (bottom). (g) The enrichment ratios (AMP/ATP-probes) for
the 16 candidate AMP-binding kinases commonly quantified from PRM and MRM analyses.
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