
UCLA
UCLA Electronic Theses and Dissertations

Title
Fast Training of Generalizable Deep Neural Networks

Permalink
https://escholarship.org/uc/item/5z69139z

Author
POOLADZANDI, OMEAD BRANDON

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5z69139z
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Fast Training of Generalizable Deep Neural Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Omead Brandon Pooladzandi

2023

© Copyright by

Omead Brandon Pooladzandi

2023

ABSTRACT OF THE DISSERTATION

Fast Training of Generalizable Deep Neural Networks

by

Omead Brandon Pooladzandi

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Gregory J. Pottie, Chair

Effective natural agents excel in learning representations of our world and efficiently gen-

eralizing to make decisions. Critically, developing such advanced reasoning capabilities can

occur even with limited information-rich samples. In stark contrast, the major success of

deep learning-based artificial agents is primarily trained on massive datasets. This disser-

tation focuses on curvature-informed learning and generative modeling methods that boost

efficiency and close the gap between natural and artificial agents, thus enabling computa-

tionally efficient and improved reasoning.

This dissertation is comprised of two parts. First, we formally lay the foundations for

learning. The goal is to establish optimization techniques, understand datasets, establish

probabilistic generative models, and provide natural learning objectives even in settings with

limited supervision. We discuss various first and second-order optimization methods, show

the importance of modeling distributions in Variational Auto Encoders (VAEs), and discuss

which points are essential for generalization in supervised learning. Building on these in-

sights, we develop new algorithms to boost the performance of state-of-the-art models, select

subsets to improve data quality, speed up training, mitigate their biases, and generate new

augmentations on large labeled and partially labeled datasets. These contributions enable

ii

ML systems to better model and generalize to unseen and potentially out-of-distribution

samples while drastically reducing training time and computational cost.

iii

The dissertation of Omead Brandon Pooladzandi is approved.

Lieven Vandenberghe

Jonathan Kao

Baharan Mirzasoleiman

Zaid Towfic

Gregory J. Pottie, Committee Chair

University of California, Los Angeles

2023

iv

To my parents.

v

Contents

List of Figures . xii

List of Tables . xviii

Preface . xxi

Curriculum Vitae . xxii

1 Introduction . 1

1.1 Approach . 1

1.2 General Contribution . 4

1.3 Dissertation Overview . 5

2 Fundamental Background . 7

2.1 Empirical Risk Minimization . 7

2.1.1 Unsupervised learning . 8

2.1.2 Semi-supervised learning . 9

2.1.3 Generation . 9

2.1.3.1 Variational Auto Encoders 10

2.1.4 Optimization . 12

2.1.4.1 Quasi-Newton Method . 13

2.1.4.2 Hessian-Free . 14

2.1.5 Learning . 16

vi

3 Preconditioned Stochastic Gradient Descent 20

3.1 Introduction . 20

3.2 Background . 22

3.2.1 Notations . 22

3.2.2 The Preconditioner Fitting Criterion 23

3.2.3 Preconditioners on Lie Groups . 24

3.3 Curvature-Informed SGD via General Purpose Lie-Group Preconditioners . . 25

3.3.1 Simple Matrix Free Preconditioners 25

3.3.2 Low-Rank Approximation Preconditioner 27

3.4 Practical Considerations . 28

3.5 Empirical Results . 29

3.5.1 CIFAR-10 and Friends on ResNet18 29

3.5.2 Language Modeling . 31

3.5.3 Reinforcement Learning . 33

3.5.4 Towards Understanding Second Order Optimizers 34

3.6 Conclusion . 38

4 Adaptive Curvature-Informed Coreset Selection 40

4.1 Motivation for Coreset Selection . 40

4.2 Related Work . 43

4.3 AdaCore: Background and Problem Setting 44

4.4 AdaCore: Adaptive Second order Coresets 45

4.4.1 When First-order Coresets Fail . 45

4.4.2 Adaptive Second-order Coresets . 46

vii

4.4.3 Scaling up to Over-parameterized Models 47

4.4.4 Extracting Second-order Coresets . 49

4.4.5 Convergence Analysis . 51

4.5 Experiments . 53

4.5.1 Convex Experiments . 54

4.5.2 Non-Convex Experiments . 55

4.6 Conclusion . 61

4.6.1 Further Research . 62

5 Generating High Fidelity Synthetic Data via Coreset selection and En-

tropic Regularization . 64

5.1 Introduction . 64

5.2 Related Work . 66

5.3 Synthetic Data Generation for Semi-Supervised Learning 67

5.3.1 Latent Energy Based Model . 67

5.4 Learning the model with variational inference 69

5.4.1 Sampling Synthetic data from the EBM 70

5.4.2 Entropic Regularization . 71

5.4.3 Coreset Selection . 73

5.4.4 Implicit learned data augmentation 74

5.5 Experiments: Learning data augmentation 77

5.6 Comparison to other Methods . 78

5.6.0.1 Difficult Examples hurt Contrastive Lethat arning 79

5.7 Conclusion . 80

viii

6 Gamma-VAE: Speech Re-Synthesis and Beyond 82

6.1 Introduction . 82

6.2 Background . 84

6.3 Problem Setting . 85

6.4 Understanding Decoder Distributions . 86

6.4.1 Directly Modeling The Signal . 87

6.4.2 Separately Modeling Magnitude and Phase 88

6.4.3 Phase Agnostic Decoders . 90

6.5 Experiments . 91

6.5.1 Decoder Compression Capabilities . 93

6.6 Conclusion . 94

7 Conclusions . 97

7.1 Summary of Contributions . 97

7.1.1 General Purpose Curvature-Informed Preconditioner 97

7.1.2 Curvature-Informed Subset Selection 98

7.1.3 Subset Selection for Self- & Semi-Supervised Generative Classifiers . . 98

7.1.4 GammaVAE . 98

7.2 Future Work . 99

7.2.1 Applications of General Preconditioner 99

7.2.2 Causal Generative Classifier . 101

7.2.2.1 Causal Counterfactual Generative Models (CCGM) 102

7.2.3 Next Steps for Causal Latent Manipulation: 103

7.2.4 Closing Statements . 104

ix

A Additional Proofs . 107

A.1 Proofs for PSGD: Chapter 2 . 107

A.1.1 On the Convergence of PSGD . 107

A.1.2 Construction of matrix-free preconditioner 112

A.1.3 Construction of low-rank approximation preconditioners 113

A.1.4 Low-rank approximation preconditioner fitting 115

A.1.4.1 Fundamental operations on Lie Group 116

A.2 Proofs for AdaCore: Chapter 3 . 119

A.2.1 Proof of Theorem 4.4.1 . 119

A.2.2 Proof of Theorem 4.4.3 and 4.4.4 . 123

A.2.3 Discussion on Greedy to Extract Near-optimal Coresets 128

A.2.4 Bounding the Norm of Difference Between Preconditioned Gradients . 128

A.2.4.1 Convex Loss Functions . 128

A.2.4.2 Neural Networks . 130

A.2.5 Analytic Hessian for Logistic Regression 132

B Additional Experiments . 133

B.1 More Experimental Results: Chapter 3 . 133

B.1.1 MNIST Handwriting Digit Recognition 133

B.1.2 CIFAR10 Image Classification with ResNet18 134

B.1.2.1 PSGD is robust to hyper-parameters 135

B.1.3 A Large-Scale Logistic Regression Problem 136

B.1.4 Forgettability & Uncertainty: Rank Analysis 138

B.1.4.1 Generalization Gap Between High and Low Entropy Subsets 139

x

B.1.5 Effect of Rank on XOR . 141

B.2 Further Empirical Evidence: Chapter 4 . 142

B.2.1 AdaCore estimates full gradient closely, reaching smaller loss 142

B.2.2 Class imbalance CIFAR-10 . 142

B.2.3 Class imbalance BDD100k . 143

B.2.4 CIFAR-100 . 144

B.2.5 When first order coresets fail, continued 144

B.2.6 MNIST . 147

B.2.7 How batch size affects coreset performance 147

B.2.8 Potential Social Impacts . 148

xi

List of Figures

2.1 VAE: Where x is the input signal and x̂ is estimated via the parameters of the

decoder distribution. 11

2.2 Left Difference in generalization performance when contiguous chunks of 5000

increasingly forgotten examples are removed from the training set. The most

important examples tend to be those that are forgotten the most. Right General-

ization performance on CIFAR-10 of ResNet18 where increasingly larger subsets

of the training set are removed (mean +/- std error of 5 seeds). When the re-

moved examples are selected at random, performance drops very fast. Selecting

the examples according to forgetting ordering can reduce the training set signif-

icantly without affecting generalization. The vertical line indicates the point at

which all unforgettable examples are removed from the training set. 17

2.3 Distributions of the first presentation at which each unforgettable and forgettable

example was learned in MNIST, permutedMNIST, and CIFAR-10 respectively.

Rescaled view where the number of examples has been capped between 0 and

1500 for visualization purposes. Unforgettable examples are generally learned

early during training, thus may be considered as “easy” and may have a low loss

during most of the training. 18

3.1 PSGD outperforms SOTA optimizers on PPO RL on Walker2d & HalfCheetah. 33

3.2 a) Solutions found by SGD are harder to optimize compared to PSGD. Note

for SGD we used a lucky initialization (see 3.5.1). The blue and yellow dotted

line are the average accuracy of PSGD and SGD after 100 epochs respectivly. b)

Removing the blur-deficit at epoch 100, PSGD is be more neuro-plastic compared

to SGD, achieving better train and test performance. 37

xii

4.1 Loss residual of SGD and Newton’s method for training Logistic Regression on

Ijcnn1. Comparing AdaCore (blue), Craig (orange), and random subsets

(green) of size 10% vs. entire data (red dot). AdaCore achieves 2.5x speedup

for training with SGD and Newton’s method. 55

(a) Ijcnn1 SGD . 55

(b) Ijcnn1 Newton . 55

4.2 Normalized gradient difference between subsets of various sizes found by Ada-

Core (blue), AdaCore (orange), Random (green) vs full data, when training

Logistic Regression with SGD and Newton on Ijcnn1. AdaCore has a smaller

gradient error at the end of training. 56

(a) Ijcnn1 SGD . 56

(b) Ijcnn1 Newton . 56

4.3 Training ResNet-18 on subsets of size S=1% selected every R=1 epoch, with

AdaCore, Craig, Glister, GradMatch and Random for 200 epochs vs. full

for 15 epochs. (a) AdaCore outperforms baselines by providing 2x speedup over

full, and more than 4.5x speedup over Random. (b) Histograms of the number of

times a point is selected by AdaCore, Craig, and GradMatch. AdaCore

selects a more diverse set of examples compared to Craig, and GradMatch

augments several randomly selected examples. (c)Forgetting scores for examples

of a class sorted by AdaCore at the end of training. AdaCore priorities less

forgettable examples compared to Craig. 57

(a) Test Accuracy . 57

(b) Distribution of selected points . 57

(c) Forgetting vs class ranking . 57

4.4 Speedup of various methods over training on random subsets and full data, for

training ResNet18 on CIFAR100 and ResNet50 on BDD100k with batch size=128. 61

xiii

(a) BDD100k, ResNet50 . 61

(b) CIFAR100, ResNet18 . 61

4.5 Training ResNet20 on S=1% subsets of CIFAR-10 selected by AdaCore. (a)

Forgetting scores, and (b) uncertainty of examples in a class sorted by AdaCore

at the end of training. AdaCore prioritize selecting more forgettable and uncer-

tain examples. (c) Six images selected by AdaCore most frequently (25 times)

from the airplane class. (d) The subset of images never selected by AdaCore. 63

(a) Forgetting vs class ranking . 63

(b) Uncertainty vs class ranking . 63

(c) Most selected . 63

(d) Not selected . 63

5.1 Lifting log-sum-exp into latent space. Left: Latent-space EBM fα on top of

generator gβ. Right: Fα allows mapping from label y to latent z and vice versa. 68

5.2 Class conditional samples drawn from pβ(x|z)pα(z|y). (a) Outliers suffer from low

visual fidelity (e.g., the last sample in the row of “ones”) or wrong label identity

(e.g., the last image of the row of “sevenths”. (b) Conditional samples sorted by

increasing Shannon entropy H(z) over the logits. 72

5.3 a) Shows that points that have low entropy are correlated with unimportant

forgettable points b) Shows that central cluster points correspond to low entropy

points. 78

6.1 VAE: Where x is complex spectrogram of original signal and x̂ is estimated via

the parameters of the decoder distribution. x̂ is complex or real depending on

decoder distribution. 85

xiv

6.2 Effect of architecture on Gamma Decoder vs FCN IS-VAE. a. Ground Truth, b.

IS-VAE, c. Gamma FC, d. Gamma Conv1d e. Conv1d GRU, f. Conv1d BiGRU.

We see that the Gamma VAE FC and Conv1d capture high-fidelity speech pat-

terns found in the ground truth signal as compared to other architectures and

the IS-VAE. 95

6.3 We see that the power spectrum of speech is being learned with high precision.

We that the phase spectra are being learned in the frames of speech. 95

6.4 From left to right we have Gamma, Log Normal von Mises, Itakura-Saito, and

Gamma von Mises decoder. We see that the Gamma distribution can capture the

spectrogram at a high compression ratio with more detail. The Log Normal von

Mises distribution captures speech features above the red dotted line whereas the

IS decoder only captures features under it. With a high compression ratio, the

Gamma von Mises fails to capture speech detail. 96

7.1 1500 MCMC Steps . 106

7.2 1500 Precond MCMC Steps . 106

7.3 15000 MCMC Steps . 106

7.4 15000 Precond MCMC Steps . 106

7.5 Comparing standard MCMC sampling to Lie group curvature preconditioned

MCMC sampling: We see that we sample from an energy-based model with

ϵ = 1e− 2 and MCMC temperature t = 1e− 5 standard MCMC is unstable and

results in severely degraded images which cannot be used. On the other hand,

preconditioned MCMC is able to preserve stability. 106

B.1 MNIST test classification error rates over 50 runs using preconditioners with dif-

ferent orders of LRA. The one with order 0 reduces to the diagonal preconditioner.

Table 1 reports the results of classification accuracy for r = 5. Higher is better. 134

xv

B.2 CIFAR10 image classification with ResNet18. The order of low-rank Hessian

approximation is 10. Mean and variance are estimated over 16 runs. Higher is

better. 136

B.3 Standard MNIST dataset: Typical convergence curves on the logistic regression

problem. Lower is better. When comparing the convergence speed, one should

be aware that one step of LM-BFGS may take up to ten iterations, while SGD

and PSGD always one iteration per step. 137

B.4 We consider logistic regression on the MNIST dataset with Bernoulli noise. We

see PSGD finds the lowest loss on the train set, with the Belief mechanism also

working well. PSGD and AdaBelief generalize well to the Accuracy of the Test

Dataset. 138

B.5 There is a strong correlation between the forgettability ordering and the entropy

ordering. i.e. points that are unforgettable have a very low entropy. 139

B.6 Success rate over ten runs in solving the XOR problem with a simple RNN and

LRA preconditioners of orders 0, 1, 2, 5, and 10. Higher is better. 141

B.7 Normalized loss for Logistic Regression over different subset sizes on Ijcnn1 dataset

using SGD. AdaCore corsets, considering curvature information, to classify

Ijcnn1 dataset using logistic regression consistently reaches a lower loss compared

to CRAIG, which only considers the gradient information. 142

B.8 Classification accuracy of ResNet20 across training on the CIFAR10 dataset, se-

lecting coresets with AdaCore, Craig and GradMatch. Here, all coreset

selection methods used the gradients of the model’s last layer (dimension 64).

The algorithms were calculated every R = 20 epoch with coreset size S = 10%.

Note that Craig and GradMatch are vulnerable to catastrophic forgetting,

but not AdaCore. 145

xvi

(a) AdaCore with gradient w.r.t the penultimate layer, training with

SGD + Momentum . 145

B.9 (a) Test accuracy of AdaCore, CRAIG, Random, GradMatch and GLISTER

with ResNet-18 selecting subsets of size 1% each epoch, batch size 256. (b)

Training ResNet-18 on subsets of size S=1% selected every R=1 epoch, with

AdaCore, Craig, Glister and GradMatch for 200 epochs vs. Random for

1000 epochs and full for 15 epochs. AdaCore outperforms baselines by providing

2x speedup over full, and more than 4.5x speedup over Random. 146

(a) Accuracy vs. Epoch . 146

(b) Accuracy vs. Time . 146

B.10 Test accuracy and training loss of SGD with momentum applied to subsets found

by AdaCore vs. CRAIG, and random subsets on MNIST with a 2-layer neural

network. AdaCore achieves 2.5x speedup and better test accuracy, compared

to training on full dataset. 147

(a) MNIST . 147

(b) MNIST . 147

xvii

List of Tables

3.1 Test accuracy of LeNet5 on MNIST over 10 runs. 28

3.2 Stage & cosine learning rate and residual-free ResNet18-RF on CIFAR10. 28

3.3 Accuracy of ResNet18 on diverse CIFAR10 derived tasks using PSGD vs SGD. . 31

3.4 Test perplexity (lower is better) on Penn Treebank for one-, two- and three-layered

LSTMs. All results except PSGD in the table are reported by AdaBelief and Adan. 32

3.5 Comparing different test loss of optimizers over GPT-2 style transformers on

the Shakespeare-char dataset. PSGD outperforms other optimizers over various

model sizes. 33

3.6 Uncertainty Statistics: PSGD’s higher uncertainty leads to better generalization

and less over-fitting. 36

3.7 Forgetting statistics for CIFAR10 on ResNet18. PSGD finds better forgettability

statistics outperforming SGD. 36

3.8 Delayed XOR problem at length 32,55,64, and 112 averaged over 10 runs. An

RNN optimized with PSGD outperforms other optimizers with an RNN or LSTM.

This hints that the choice of optimizer may be more important than network

architecture. 38

4.1 Training ResNet20 using AdaHessian and SGD+momentum on coresets of size

1% selected by different methods from CIFAR10. Percent of full data selected

during the entire training is shown (in parentheses). Using bH=64, AdaCore

achieves up to 16.8% higher accuracy while selecting a smaller fraction of data

points. Exponential averaging of gradient and Hessian, and a smaller bH helps. . 58

4.2 Test accuracy and percent of full data selected (in parentheses), when selecting

S=1% coresets every R epochs from Imbalanced CIFAR-10 to train ResNet18. 58

xviii

4.3 Training ResNet18 with S=1% subsets every R=1 epoch from CIFAR10 using

batch size b= 512, 256, 128. AdaCore can leverage larger mini-bath size and

obtain a larger accuracy gap to Craig and Random. For b=512, we have 1

mini-batch (GD). Std is reported in Appendix TableB.8. 59

4.4 Test accuracy and percent of full data selected (in parentheses), when selecting

S% coresets every R epochs from CIFAR-10 and Imbalanced CIFAR-10 to train

ResNet18. 60

5.1 Test accuracy with varied number of conditional samples L on SVHN (NWC11). 77

5.2 Test accuracy with varied number of conditional samples L on SVHN (NWC11). 79

6.1 Formulations of Type I and Type II a & b decoders such as Complex Normal &

Laplace, Log Normal von Mises, Gamma von Mises, Gamma, and Itakura-Saito.

These decoder distributions can be used to derive negative log-likelehoods as done

in eq. (6.9) & eq. (6.12). 88

6.2 Train VAEs on 1% of the VCTK dataset with STFT 3/4th overlap to train

fully connected, convolutional and recurrent architectures with different decoder

distributions. Evaluate PESQ and FAD using ground truth (GT) or Griffin Lim

(GL) phase information. 94

B.1 We see that PSGD is robust to hyper-parameter selection making tuning signifi-

cantly easier compared to other optimization methods. 135

B.2 Comparison of correlation metrics comparing Entropy Score vs Forgettability

score between SGD and PSGD. We see that PSGD’s average correlation between

entropy and forgettability is stronger than that of SGD. 139

xix

B.3 Comparing generalization accuracy of a LeNet5 trained on either 10k high or 10k

low entropy datapoints. We see high entropy datasets can match the generaliza-

tion of the full dataset with a higher test entropy compared to the other datasets.

We see that the distance from initialization is less for the low entropy points. . . 140

B.4 CIFAR-10 Class Imbalance, ResNet18. Final test accuracy and percent of full

data selected (in parentheses). Trained with SGD + Momentum, selecting a

coreset every R epochs that is S percent of the full dataset. Note AdaCore has

greater accuracy while seeing fewer data points. 143

B.5 AdaCore outperforms other baseline subset selection algorithms as well as train-

ing on the full dataset, reaching a better accuracy in less time. This provides up

to a 2.3x speedup compared to the state of the art. 143

B.6 AdaCore outperforms other baseline subset selection algorithms as well as train-

ing on the full dataset, reaching a better accuracy in less time. This provides up

to a 2.3x speedup compared to the state of the art. 144

B.7 AdaCore outperforms other baseline subset selection algorithms as well as train-

ing on the full dataset, reaching a better accuracy in less time. This provides up

to a 4.3x speedup compared to the state of the art. 145

B.8 Training ResNet18 with S=1% subsets every R=1 epoch from CIFAR10 using

batch size b= 512, 256, 128. AdaCore can leverage larger mini-bath size and

obtain a larger accuracy gap to Craig and Random. For b=512, we have 1

mini-batch (GD). 148

xx

Preface

I would like to thank my Ph.D. advisor, Gregory Pottie, for being the support I needed

and giving me the freedom to explore all these topics. To my dear lab mates Sunay Bhat

and Jeffery Jiang, whom I worked closely with on many projects and who have been kind,

supportive, and always excited to brainstorm and try out crazy new ideas together. My time

in Professor Pottie’s lab has been a blessing.

My experience at UCLA would be incomplete without the company of my dear friends

Pasha and Lev, who were always eager to chat about research or play games. Arash and

Darius for always having an open door and exploring LA with me. Brandon, Brayan, Xavier,

and the rest of Flush for coaxing me to take time away from school and relax since undergrad.

Calvin, for keeping me sane through the pandemic. And Joseph for being my best friend

since high school. Thank you, Tara, for always being there for me no matter the situation;

you provide me with stability and reason.

I have also had the privilege of standing on the shoulders of amazing mentors and col-

laborators over the years: Barbra Hudgins, who taught me calculus and believed in me in

high school; Glenn Healey, who shared his love of classical computer vision during undergrad

with me, Zaid Towfic, who pushed me at JPL and UCLA, Jonathan Kao, who taught me the

fundamentals of Deep Learning, Lieven Vandenberghe, who taught me convex optimization,

Baharan Mirzasolaiman, who taught me how to write my first research paper and to optimize

rebuttals, and Xi-Lin Li who taught me the beauty of Lie groups. I am also grateful to all

my additional collaborators and administrators who kept the wheels turning.

And to Ryo Arreola and Deeona Columbia, who so kindly helped me navigate the treach-

erous waters of my master’s and Ph.D. For without their guidance, this work would not be.

Finally, and certainly above all, I will forever remain indebted to my parents, Arezou and

Shahbahram, for their unconditional love, unwavering encouragement, boundless support,

and steadfast care for my happiness and well-being. This one is for you.

xxi

Curriculum Vitae

2014 – 2017 B.S. in Electrical Engineering, University of California, Irvine

(UCI), Irvine, California.

2017 – 2018 M.S. in Electrical and Computer Engineering, University of Cali-

fornia, Los Angeles (UCLA), Los Angeles, California.

2017 – 2023 Graduate Research Assistant at The University of California, Los

Angeles (UCLA), Los Angeles, California.

2023 Teaching Assitant at The University of California, Los Angeles

(UCLA), Los Angeles, California.

xxii

REFEREED CONFERENCE PUBLICATIONS
Adaptive Second Order Coresets for Data-efficient Ma-
chine Learning

2022

International Conference on Machine Learning

Generating High Fidelity Synthetic Data via Corset se-
lection and Entropic Regularization

2022

Neural Information Processing Systems

Improving Levenberg-Marquardt Algorithm for Neural
Networks

2022

Neural Information Processing Systems

Causal Structural Hypothesis Testing and Data Gener-
ation Models

2022

Neural Information Processing Systems

Towards Mapping Latent Space Representations via Im-
age Augmentation Priors

2023

Information Theory Applications

De-Biasing Generative Models using Counterfactual
Methods

2022

Information Theory Applications

Exploring the Potential of VAE Decoders for Enhanced
Speech Re-Synthesis

2023

IEEE Statistical Signal Processing

REFEREED PREPRINTS
Curvature-Informed SGD via General Purpose Lie-
Group Preconditioners

2023

Neural Information Processing Systems

xxiii

CHAPTER 1

Introduction

Learning amounts to elucidating the unknown. The ability to effectively combine information

and make accurate inferences or generalizations has been a long-standing goal of Artificial-

intelligence (AI) research. In the last few decades, there has been an explosion in the

scale of datasets, algorithmic complexity, and computational resources available to allow

machine learning models to capture complex data with high fidelity. We have witnessed the

emergence of Generative Adversarial Networks (GANs), Variational Auto Encoders (VAEs),

and diffusion models, along with a profusion of novel optimizers, transformers, and deep

causal modeling techniques. These new massive architectures, datasets, and computationally

intensive methods provide ample room for industry to make huge leaps forward like chatGPT-

4 and Stable Diffusion, both incredibly popular at the time of writing this dissertation. Yet,

many fundamental questions about learning remain unanswered. This dissertation focuses

on methods for identifying, selecting, and generating the most salient representations of

large datasets, discovering new learning dynamics facilitated via optimization, manipulating

latent representations of data, and exploring the effect of generative modeling under different

distribution assumptions. All these techniques are to enable a deeper form of learning for

state-of-the-art AI.

1.1 Approach

To improve machine learning we need first to understand what makes it work. Three of the

most important factors of machine learning are 1) Rich Datasets 2) Powerful, Efficient, and

1

Generalizable Optimizers, and 3) Distributional Modeling. If we are armed with these three

approaches we can model the unknown.

In the field of machine learning, rich and comprehensive datasets play a critical role

in enabling algorithms to learn and make accurate predictions. The abundance of data

provides a foundation on which models can be trained to recognize complex patterns and

make informed decisions. As such, the quality of the dataset is a key determinant of the

performance of a machine-learning model.

One of the key advantages of rich datasets is the ability to improve the generalization

capabilities of the model. By providing a diverse range of examples, a dataset enables a

model to learn patterns that are representative of the true underlying distribution of data.

This, in turn, allows the model to make accurate predictions on new, previously unseen data.

On the other hand, insufficient or biased datasets can lead to models that fail to generalize

and perform poorly on new tasks.

To motivate the efficient identification of the most salient points of a dataset, consider

the recent study by Toneva (TSC18) which showed more than half of the data points

of many large-scale datasets can be pruned without loss in generalization. This shows

that certain points are crucial to learning. Hence if these defining points can be effi-

ciently identified, selected, and generated we should see a reduction in modeling the un-

known, while reducing the substantial computational costs of training machine learning

models on massive datasets. To alleviate such costs, there has been a sustained effort

(MBL19; BMB19; KF18; TSC18; MBL20) to develop data-efficient training methods that

can carefully select subsets of training data that generalize on par with the full dataset.

Further, generative models can synthesize data points drawn from the data distribution,

however, not all generated samples are high quality. Naively training on all points drawn

from a generative model will increase uncertainty in the overall learning system. As such to

reduce uncertainty in the system, one needs to generate high-fidelity points while filtering

out bad-quality points. Note, what serves as high-quality information for one training regime

2

might be bad for another.

Stochastic optimization is the workhorse of modern Deep Learning as it allows for efficient

and effective optimization of complex models with large datasets. By randomly selecting

subsets of the data, stochastic optimization algorithms such as stochastic gradient descent

and Adam (KB14) can converge faster and avoid getting stuck in local minima. This makes it

possible to train deep neural networks with millions of parameters, which would be infeasible

with traditional optimization methods. First-order optimization methods such as SGD &

Adam have driven DL forward by finding generalizable solutions that minimize risk. This

ultimately allows us to model and draw inferences from data distributions using DL. Very

recently, Li (Li18b) and Martines (MG15b) showed that second-order optimizers can be

applied to deep learning methods to outperform first-order methods. Yet in practice, most

applications still use first-order methods due to scaling issues. Forming an efficient, scalable,

and generalizable higher-order optimizer can potentially improve DL.

Distributional modeling is a critical aspect of deep learning that has become increasingly

relevant in recent years. Deep learning models are often trained on large datasets, which

can exhibit complex and varied distributions. To capture the patterns within these datasets,

it is essential to model the distribution of the data accurately. By doing so, we can gain

insights into the underlying structure of the data, which can help us to develop more robust

and effective models. Currently, most traditional deep-learning models assume that the data

is normally distributed, which may not always be the case. By incorporating more flexible

distributional models, it is possible to better capture the underlying structure and true prior

distribution of the data to improve performance. Once we have learned a distribution of data,

generating data from the model is equivalent to sampling from this induced distribution. This

leads to an entire sub-field of deep learning called generative modeling.

3

1.2 General Contribution

Throughout my Ph.D., I have had the opportunity to research many exciting topics. These

have fallen under two nonexclusive thematic groups: curvature-informed deep learning and

generative modeling. One crucial insight I received through Professor Vandenberghe’s op-

timization class is that preconditioning with curvature information can greatly improve a

gradient’s quality. I first surveyed second-order methods and implemented an improved ver-

sion of the Levenberg–Marquardt method presented at HOO NeurIPs 2022 (PZ22). Using

the insight from this paper, I began working on a subset selection method named AdaCore

that used submodular optimization to select an optimal subset whose curvature precondi-

tioned gradients covered the preconditioned gradients of the entire dataset. This resulted

in a significant speedup and accuracy of deep learning models, published at ICML 2021

(PDM22a). Finally, during my internship with Meta, I developed two families of efficient

general-purpose curvature-informed gradient preconditioners. Although in this dissertation

we mostly discuss preconditioning Stochastic Gradient Descent, the preconditioners can be

used for any task.

With respect to generative modeling, I have worked on pairing Latent Energy-Based

Models (LEBMs) with coreset methods to guide the generative model to automatically learn

the best augmentation distribution for a given dataset via semi- and self-supervised learning

(PKN23). Furthermore, I have worked on generative causal modeling, where one uses prior

causal knowledge to restrict, manipulate and map the latent space of a VAE to generate

out-of-distribution samples (PJB23; BJP22; JPB22). Finally, during my internship with

Meta, I studied the effect of a VAEs decoder distribution for speech re-synthesis. This

work, published at IEEE SSP (PLG23), found that the gamma distribution is particularly

well-suited for speech re-synthesis.

4

1.3 Dissertation Overview

This dissertation will concentrate primarily on the research papers that I have published.

Specifically, I will describe an efficient second-order optimizer, Preconditioned Stochastic

Gradient Descent (PSGD), which exploits curvature information for improving convergence

rates. Additionally, I will discuss Coreset selection for speeding up training, which leverages

curvature information and provides provable convergence guarantees (AdaCore). Further-

more, I will describe my research on Latent Energy-Based Models (L-EBM), which utilizes

Coresets and Entropy Regularization to enhance classification generalization and generation

quality for contrastive and semi-supervised learning. Finally, I will investigate different de-

coder distributions to improve speech re-synthesis (Gamma-VAE).

This dissertation will discuss:

• Chapter 2 - Background : we provide the necessary background to machine learning

and briefly review some key prior works.

• Chaper 3 - Preconditioned Stochastic Gradient Descent (PSGD): a second-

order optimization method that outperforms state-of-the-art first and second-order op-

timization methods, such as SGD, AdaBelief (ZTD20), KFAC (MG15a), and Shampoo

(GKS18), with only negligible computational overhead compared to SGD. Moreover,

PSGD demonstrates better neuroplasticity than other optimizers.

• Chapter 4 - AdaCore: a theoretically rigorous subset selection method that extracts

the most salient subsets from large datasets, significantly reducing the computational

costs associated with training models on massive datasets. This is accomplished by

selecting a subset whose curvature preconditioned gradient matches that of the full

dataset.

• Chapter 5 - LEBM + Coresets: Enhanced performance of contrastive models in

5

semi- and self-supervised settings – focusing on low entropy and forgettable points

selected through coreset methods from a generative model.

• Chapter 6 - Gamma-VAE: exploring the potential of different Variational Autoen-

coder (VAE) decoders for improved speech resynthesis.

• Chapter 7 - Conclusion: summarizing what we have learned and what we can

do in the future, as well as some very preliminary experiments showing direct future

directions of this work.

6

CHAPTER 2

Fundamental Background

This dissertation covers many general topics in deep learning. To provide some background

we will review some core concepts needed for this dissertation. We will begin by discussing

some basic math from optimization needed for deep learning. Then we will discuss some

simple learning regimes such as classification and generation.

Next, we will go over some recent work by (TSC18) which elucidates which points of

the dataset are important for generalization in the supervised setting. This will set the

scene for understanding points selected for coreset selection for supervised and self- and

semi-supervised learning well as the behavior of optimizers.

Finally, we will review some basics about the Variational Auto Encoder (VAE) which

will be used as the base generative model for Chapter 5 and Chapter 6.

2.1 Empirical Risk Minimization

Training machine learning models often reduces to minimizing an empirical risk function.

Given a not-necessarily convex loss L , one aims to find the model parameter vector θ∗ over

the parameter space Θ that minimizes the loss L over the training data X :

θ∗ ∈ argminθ∈ΘL(θ), (2.1)

L(θ) :=
∑
i∈X

ℓi(θ), ℓi(θ) = ℓ(f(xi, θ), yi),

7

where X = {1, . . . , n} is an index set of the training data, θ ∈ Rd is the parameter set of the

model f being trained, and ℓi is the loss function associated with training example i ∈ X

with feature vector xi ∈ Rd and label yi.

In binary classification, Y = 0, 1, and a commonly used loss function is the logistic loss:

ℓ(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ), (2.2)

where y ∈ 0, 1 is the true label, and ŷ ∈ [0, 1] is the predicted probability of the positive

class. The logistic loss is a convex surrogate for 0-1 loss, which is the loss function that

measures the error of the classifier in terms of the misclassification rate. However, 0-1 loss

is non-convex and difficult to optimize, hence the use of logistic loss as a proxy.

In multiclass classification, Y contains more than two classes, and a commonly used loss

function is the cross-entropy loss:

ℓ(ŷ, y) = −
K∑
k=1

yk log(ŷk), (2.3)

where y ∈ 0, 1K is a one-hot encoding of the true label, and ŷ ∈ [0, 1]K is the predicted

probability vector over the K classes. The cross-entropy loss measures the negative log-

likelihood of the true label under the predicted probability distribution. The performance of

a classification model is often evaluated on a held-out test set using metrics such as accuracy,

precision, recall, F1 score, or area under the receiver operating characteristic (ROC) curve.

These metrics quantify the performance of the classifier in terms of its ability to correctly

predict the true class labels.

2.1.1 Unsupervised learning

Unsupervised learning is a type of learning where the goal is to learn the underlying structure

of the data without using labeled training data. Formally, given an unlabeled dataset xini=1,

8

where xi ∈ X is input, the goal of unsupervised learning is to learn a function f : X → Z

that maps each input to a lower-dimensional representation z ∈ Z. Unsupervised learning

algorithms typically involve the optimization of some objective function that captures the

structure of the data, such as clustering, dimensionality reduction, or generative modeling.

The performance of unsupervised learning algorithms is often evaluated using measures such

as clustering accuracy, reconstruction error, or likelihood of the generative model.

2.1.2 Semi-supervised learning

Semi-supervised learning is a type of learning where both labeled and unlabeled data are

used to learn a model. Formally, given a dataset (xi, yi)i = 1n, where xi ∈ X is the input

and yi ∈ Y is the corresponding label for the labeled data, and an unlabeled dataset xiNi=n+1,

where N is the total number of examples, the goal of semi-supervised learning is to learn a

function f : X → Y that minimizes the expected risk over both labeled and unlabeled data:

R(f) = E(x,y)∼p(x,y) [ℓ(f(x), y)] , (2.4)

where ℓ is the loss function as in supervised learning, and the expectation is taken over

both labeled and unlabeled data. Semi-supervised learning algorithms typically involve a

combination of supervised and unsupervised learning, where the objective function is opti-

mized over both labeled and unlabeled data. The performance of semi-supervised learning

algorithms is evaluated using metrics such as accuracy on the labeled data or classification

performance on the unlabeled data.

2.1.3 Generation

Generative modeling is a type of unsupervised learning problem that involves learning the

underlying probability distribution of the data. The goal is to learn a model pg(x) that can

generate new samples from the same distribution as the training data.

9

Formally, given a training dataset (xi)
n
i=1, where xi ∈ X and X is the data space, the

goal of generative modeling is to find a generative model pg(x) that approximates the true

data distribution pdata(x). This can be done by maximizing the log-likelihood of the training

data under the generative model:

ℓtrain(θ) =
1

n

n∑
i=1

log pg(xi); θ), (2.5)

where θ is the parameter set of the generative model.

2.1.3.1 Variational Auto Encoders

The Variational Auto Encoder (VAE) (KW13a) is a framework that learns a latent repre-

sentation, z, of the data x, which captures the underlying structure of the data distribution.

VAEs are trained to learn an encoder function, eϕ(z|x), which maps the input data x to

the latent space z. The approximate posterior distribution over the latent variables is given

by eϕ(z|x). Typically, the encoder estimates the parameters of a normal distribution in

the latent space, such as the mean and variance, which define the location and scale of the

distribution. Recently, (TIY18) showed that encoding the latent variables as a student-t dis-

tribution can lead to more stable training of a VAE as well as enable the generator to produce

higher-quality samples. The VAE also learns a marginalized distribution, mθ(z), for the la-

tent variable encoding, and a decoder function, dθ(x|z). Thus the joint distribution, pθ(x, z),

can accurately model the true data distribution, p(x). The decoder estimates the parameters

of a distribution, such as the shape and rate parameters of a Gamma distribution, to recon-

struct the input signal x. The decoding side defines a joint pdf, qθ(x, z) = mθ(z)dθ(x|z),

with everything explicit, resulting in a joint pdf, pϕ(x, z) = p(x)eϕ(z|x) that we can readily

draw samples from, although p(x) is unknown.

The VAE is based on the principle of maximum likelihood estimation (MLE), where

the goal is to maximize the likelihood of the training data under the model. To make the

10

Figure 2.1: VAE: Where x is the input signal and x̂ is estimated via the parameters of the
decoder distribution.

optimization process more feasible, the VAE introduces the variational reparameterization

trick, which involves re-parameterizing the random noise used to sample from the latent

distribution so that the resulting samples can be transformed into the latent space in a

differentiable manner. By using this trick, VAEs can be trained more efficiently on large

datasets using a variational lower bound on the log-likelihood, written as:

L(θ, ϕ;x) = Eeϕ(z|x) [log dθ(x|z)]−KL (eϕ(z|x)||mθ(z)) (2.6)

where x is a single training example, and θ and ϕ are the parameters of the decoder and

encoder, respectively. The first term in the lower bound, Eeϕ(z|x) [log dθ(x|z)], is known as

the reconstruction loss, and it measures the difference between the reconstructed data and

the original data. The second term, KL (eϕ(z|x)||mθ(z)), is known as the KL divergence,

and it measures the difference between the approximate posterior distribution and the latent

distribution.

11

2.1.4 Optimization

To be able to train any of the above types of machine learning models we need some sort of

optimization mechanism to minimize a given loss function. We denote the gradient of the

loss w.r.t. model parameters by g = ∇L(θ) = 1
|X |
∑

i∈V
∂ℓi
∂θ

, and the corresponding second

derivative (i.e., Hessian) by H = ∇2L(θ) = 1
|X |
∑

i∈X
∂2ℓi
∂θj∂θk

.

First-order gradient methods are popular for solving Problem (2.1). Such methods start

from an initial point θ0, and every iteration t steps in the negative direction of the gradient.

The most popular first-order method, Stochastic Gradient Descent (SGD) (RM51), is often

used with momentum accelerating it in directions whose gradients point in the same di-

rections and dampens oscillations in dimensions whose gradients change directions (Qia99):

θt+1 = θt − ηtvt, vt = gt, (2.7)

Here, ηt is the learning rate, and gt is the gradient of a batch at the t-th iteration. SGD

is, however, sensitive to learning rate, as it uses the same learning rate for different dimen-

sions with possibly very different scales. To address this, adaptive first-order methods such

as AdaGrad (DHS11), RMSProp (HSS12), AdaDelta (Zei12), and Adam (KB17) perform

smaller updates (i.e. smaller learning rates) for parameters that frequently have a large

gradient, and larger updates (i.e. larger learning rates) for parameters that rarely have a

large gradient.

Second-order gradient methods rely on the geometry of the problem to automatically

rotate and scale the gradient vectors, using the curvature of the loss landscape. In doing so,

second-order methods can both choose a better descent direction and automatically adjust

the learning rate for each parameter. Hence, second-order methods have superior convergence

properties compared to first-order methods. Newton’s method (Ber82) is a classical second-

order method that preconditions the gradient vector with the inverse of the local Hessian at

12

every iteration, H−1
t :

θt+1 = θt − ηtH−1
t gt. (2.8)

As inverting the Hessian matrix requires quadratic memory and cubic computational com-

plexity, several methods that approximate the Hessian information significantly reduce time

and memory complexity (BLN95; SZL13; MG15b; Li15; Li19; XRM20). In addition, EGD

(DVB15) and later AdaHessian (YGS20) directly approximates the diagonal of the Hessian

parameter update.

2.1.4.1 Quasi-Newton Method

The quasi-Newton method uses inverse Hessian estimation to compute each update iteration.

The most popular one is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update.

H−1
k+1 = (I − syT

yT s
)H−1

k (I − ysT

yT s
) +

ssT

yT s
(2.9)

s = xk+1 − xk y = ∇f(xk+1)−∇f(xk) (2.10)

where H−1
k is the approximation of inverse Hessian at iteration k. Then to further tackle

the memory issue, limited-memory BFGS (L-BFGS) was proposed to avoid storing Hk and

H−1
k by evaluating Hk recursively for m iterations (j = k − 1, ..., k −m).

H−1
j+1 = (I −

sjy
T
j

yTj sj
)H−1

j (I −
yjs

T
j

yTj sj
) +

sjs
T
j

yTj sj
(2.11)

sj = xj+1 − xj yj = ∇f(xj+1)−∇f(xj) (2.12)

Very recently, this low-rank curvature-aware optimization method has been adjusted for

use in deep learning optimization (GRB20).

13

2.1.4.2 Hessian-Free

Hessian-free optimization uses the insights from Newton’s method but comes up with a

more efficent way to minimize the quadratic function. Just as in Newton’s method, given a

function f , we find the second-order Taylor expansion:

f(x+ v) ≈ f(x) +∇f(x)Tv + vTH(f)v (2.13)

We then find the minimum of this approximation (the best ∆x) using the conjugate

gradient method, take an iterative step to x = x + v, and continue this iteration until we

have convergence.

Algorithm 1 Hessian-Free
Let f be any function f : Rn → R which we wish to minimize.

1. Initialize:
Let i = 0 and xi = x0 be some initial guess.

2. Set up quadratic expansion:
At the current xn, compute the gradient ∇f (xn) and Hessian H(f) (xn) , and consider
the following Taylor expansion of f :

f(x+ v) ≈ f(x) +∇f(x)Tv + vTH(f)v

3. Conjugate gradient:
Compute xn+1 using the Conjugate Gradient algorithm for quadratic functions on the
current Taylor expansion.

4. Iterate:
Repeat steps 2 and 3 until xn has converged.

Fortunately in the Hessian free algorithm, it is possible to circumvent the full Hessian

expansion in step 2, and instead only requires us to calculate the much cheaper Hessian

14

vector product Hv.

To see this, consider the first component of Hv. The i−th row of the Hessian contains

partial derivatives of the form ∂2

∂xixj
f where j is the column index. As per normal matrix-

vector multiplication, the i−th row of Hv is the dot product of v and ith row of H. The

i−th row of H can be expressed as the gradient of the derivative of f with respect to xi,

yielding (Gib14):

(Hv)i =
N∑
j=1

∂2f

∂xixj
(x) · vj = ∇

∂f

∂xi
(x) · v

One can utilize auto-differentiation packages to calculate the exact Hessian vector prod-

uct as detailed by (Pea94) The operator is defined as

Rv{f(x)} ≡
∂

∂t
f(x+ tv)

∣∣∣∣
t=0

so Hv = Rv {∇x(x)} . (To avoid clutter we will usually write R{·} instead of Rv{·}) We can

then take all the equations of a procedure that calculates a gradient, e.g. the backpropaga-

tion procedure, and we can apply the Rv{·} operator to each equation. Because R{·} is a

differential operator, it obeys the usual rules for differential operators, such as:

R{cf(x)} = cR{f(x)}

R{f(x) + g(x)} = R{f(x)}+R{g(x)}

R{f(x)g(x)} = R{f(x)}g(x) + f(x)R{g(x)}

R{f(g(x))} = f ′(g(x))R{g(x)}

R
{
df(x)

dt

}
=
dR{f(x)}

dt

Also, note that

R{x} = v

15

These rules allow one to use existing auto-differentiation packages to calculate the vector

R{∇x} which is precisely the vector which we desire Hv.

In practice, HF sees fewer applications than SGD because its updates are much more

expensive to compute, as they involve running linear conjugate gradient (CG) for potentially

hundreds of iterations. Each of these iterations requires a matrix-vector product with the

curvature matrix (which is as expensive to compute as the stochastic gradient on the current

mini-batch). Next, HF’s estimate of the curvature matrix must remain fixed while CG

iterates. This means that the method is able to go through much less data than SGD can

in a comparable amount of time, making it less well-suited to stochastic optimizations.

2.1.5 Learning

When an entity learns, whether it be a human or a machine learning algorithm, it is natural

for certain concepts or definitions to be learned and forgotten. Sometimes all it takes for

an entity to learn is a single presentation of the information, whereas for others it may take

multiple presentations. The concept of forgetting is defined in machine learning as data

points that are learned or classified correctly at some point during training, and then at a

later time forgotten or classified incorrectly. Datapoints that are learned and then forgotten

during training are called unforgettable points. Points that are learned, and throughout

training are not forgotten are considered forgettable points. The event for which a point

that has been learned or is being classified correctly, is forgotten or classified incorrectly, is

called a forgetting event.

As discussed in (TSC19a), the procedure to collect forgetting statistics is computationally

expensive as one needs to train a network until completion to observe the forgetting statistics.

Instead, they offer the insight that the unforgettable points in a dataset can be removed from

training without a decrease in accuracy compared to the full dataset. An insight that can

be drawn from the nature of data points in machine learning datasets from this work is that

a considerable speedup in training will occur if one can quickly remove the unforgettable

16

points during training.

Removing Forgettable & Unforgettable Datapoints A simple way to see the impor-

tance of forgettable points is by removing them from a training set and seeing the decrease

in accuracy. Furthermore, the unimportance of unforgettable points is shown by removing

them from the training set and seeing that the accuracy does not drop. These scenarios are

shown in Fig. 2.2.

0 5 10 15 20
average number of forgetting events in removed subset

95.2

95.4

95.6

95.8

96.0

96.2

te
st

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

selected removed
random removed

(a) Difference in generalization performance

0 10 20 30 40 50 60
percentage of training set removed

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

te
st

 a
cc

ur
ac

y

none removed
selected removed
random removed

(b) Resnet18/CIFAR-10: Generalization performance
Figure 2.2: Left Difference in generalization performance when contiguous chunks of 5000
increasingly forgotten examples are removed from the training set. The most important
examples tend to be those that are forgotten the most. Right Generalization performance
on CIFAR-10 of ResNet18 where increasingly larger subsets of the training set are removed
(mean +/- std error of 5 seeds). When the removed examples are selected at random, perfor-
mance drops very fast. Selecting the examples according to forgetting ordering can reduce
the training set significantly without affecting generalization. The vertical line indicates the
point at which all unforgettable examples are removed from the training set.

Presentations to Learn Once one has separated a dataset into forgettable and unforget-

table points, an interesting statistic is to see the distribution of presentations required to

learn points in each group. In Fig 2.3 we see that the seemingly unimportant unforgettable

points are mostly learned within the first 3-5 presentations depending on the dataset. In

contrast, the distribution of presentations to learn the unforgettable points is long-tailed and

may take more than 20 epochs to learn. Note that the unforgettable “easy” data points may

have a low loss during most of the training.

Entropy and Margin Entropy and Margin are two metrics that can be used to identify

17

0 5 10 15 20 25 30
presentation number when first learned

0

200

400

600

800

1000

1200

1400
nu

m
be

r o
f e

xa
m

pl
es

unforgettable
forgettable

(a) MNIST

0 5 10 15 20 25 30
presentation number when first learned

0

200

400

600

800

1000

1200

1400

nu
m

be
r o

f e
xa

m
pl

es

unforgettable
forgettable

(b) permutedMNIST

0 5 10 15 20 25 30
presentation number when first learned

0

200

400

600

800

1000

1200

1400

nu
m

be
r o

f e
xa

m
pl

es

unforgettable
forgettable

(c) CIFAR-10
Figure 2.3: Distributions of the first presentation at which each unforgettable and forgettable
example was learned in MNIST, permutedMNIST, and CIFAR-10 respectively. Rescaled
view where the number of examples has been capped between 0 and 1500 for visualization
purposes. Unforgettable examples are generally learned early during training, thus may be
considered as “easy” and may have a low loss during most of the training.

the uncertainty of a classifier. Given an image, an image classifier outputs a probability for

each class that the image may belong to. Directly from Shannon, entropy is defined over the

probability space of the classifier’s logits as

H(X) = −
∑
x∈X

pθ(x)log pθ(x). (2.14)

Another metric that can be used to inform us about a classifier’s uncertainty is the classifica-

tion margin. The classification margin m, slightly modified from (TSC19b) is the difference

between the logit of the correct class and the largest logit among the other classes. Formally

we have,

m = p(x)k − argmaxk′ ̸=kp(x)k′ , (2.15)

where k is the index corresponding to the correct class. Margin is only sensitive to the

delta between the two highest predicted probabilities and is not sensitive to the rest of the

distribution like entropy. These two metrics will be used throughout this dissertation.

Conclusions The forgettability score provides a means of comprehending the significant

points that facilitate generalization and illuminates the training dynamic requisite for suc-

cessful supervised learning. However, computing the forgettability score is computationally

18

infeasible, and thus cannot be directly employed to expedite training. In this dissertation,

we will compare forgettability scores to other methods of importance ordering, conduct a di-

rect comparison of forgettability scores computed by first- and second-order optimizers, and

calculate the entropy and classification margin over the logits to apprise us of the classifier’s

uncertainty.

19

CHAPTER 3

Preconditioned Stochastic Gradient Descent

We present a novel approach to accelerate stochastic gradient descent (SGD) by uti-

lizing curvature information obtained from Hessian-vector products or finite differences

of parameters and gradients, similar to the BFGS algorithm. Our approach involves

two preconditioners: a matrix-free preconditioner and a low-rank approximation pre-

conditioner. We update both preconditioners online using a criterion that is robust to

stochastic gradient noise and does not require line search or damping. To preserve the

corresponding symmetry or invariance, our preconditioners are constrained to certain

connected Lie groups. The Lie group’s equi-variance property simplifies the precondi-

tioner fitting process, while its invariance property eliminates the need for damping,

which is commonly required in second-order optimizers. As a result, the learning rate

for parameter updating and the step size for preconditioner fitting are naturally nor-

malized, and their default values work well in most scenarios. Our proposed approach

offers a promising direction for improving the convergence of SGD with low computa-

tional overhead. We demonstrate that Preconditioned SGD (PSGD) outperforms SoTA

on Vision, NLP, and RL tasks across multiple modern deep-learning architectures.

3.1 Introduction

Optimizing machine learning models with millions of free parameters presents a significant

challenge. While conventional convex optimization algorithms such as Broyden-Fletcher-

Goldfarb-Shanno (BFGS), its limited-memory version, L-BFGS, conjugate gradient (CG),

20

and nonlinear versions like Hessian-free (HF) optimization (MS12) have succeeded in small-

scale, convex mathematical optimization problems, they are rarely used for large-scale,

stochastic optimization problems that arise in machine learning (ML). One of the main

reasons is their reliance on the line search step. In many ML models, such as variational and

reinforcement learning models, cost functions are defined as expectations and can only be

evaluated through Monte Carlo (MC) sampling averages. This can result in large variances,

making optimizers that rely on line search to ensure convergence problematic. Several recent

extensions of these methods to deep learning, such as K-BFGS and KFAC, have foregone

the line search step in favor of damping (GRB20; MG15a). However, this adds complexity

by introducing extra hyperparameters.

Empirical results indicate that plain SGD is a highly efficient optimizer for most ML

problems. However, for problems with a large eigenvalue spread, SGD may converge slowly

once the solution is located in a basin of attraction. Regret optimizers such as RMSProp and

Adam (KB15) converge faster but have been shown to generalize worse on many problems

(WRS17; ZFM20). Reducing the generalization gap between SGD and Adam remains an

active topic of research (ZTD20). This work focuses on providing SGD with a good precon-

ditioner to accelerate its convergence around the basin of attraction without undermining its

generalization capacity. The curvature information for preconditioner fitting can be sampled

from Hessian-vector products or finite differences of parameters and gradients, similar to

the BFGS algorithm. However, constructing a preconditioner in a deterministic way, as in

BFGS (BV04a; GRB20), may not be possible due to potential issues with line search and

damping. Therefore, we adopt the more general and gradient-noise-robust preconditioner

fitting criterion proposed in (Li15) and fit the preconditioner online with another “gradient

descent” algorithm. The key is to avoid making the preconditioner fitting problem more

difficult and computationally expensive than the original parameter-learning problem.

In this disseration, we propose using Lie groups as a tool for preconditioner fitting. The

“gradient descent” on a Lie group is similar to common gradient descent in Euclidean space.

21

It involves applying a series of small transforms via multiplication with I + µG, where µ

is a small scalar and G is the group generator (see A.1.4.1). The Lie group is a rich and

convenient space to work in since moving a preconditioner around any point on the group

behaves similarly to moving it around the identity element of the group, i.e., the identity

matrix I. This is known as the Lie group equivariance property.

Recent curvature-aware optimization methods such as HessianFree, KFAC, AdaHessian,

K-LBFGS, and Shampoo have shown good empirical results in Deep Learning (OIY22). Yet,

they require damping, line search, or regret and are thus susceptible to pitfalls that do not

affect PSGD.

In an empirical setting, PSGD simultaneously surpasses the corresponding SoTA optimiz-

ers across vision, natural language processing (NLP), and reinforcement learning (RL) tasks,

and estabishes new SoTA for many networks and settings, e.g. ResNet, LSTMs (HS97) and

GPT-2 (RWC19). We consider optimization problems involving MNIST (LC10), CIFAR-

10 (Kri09), Penn Treebank (MSM93), the complete works of Shakespeare, the Open Web

Text (OWT) dataset (GC19), HalfCheetah and RoboWalker (BCP16). PSGD outperforms

SoTA methods with negligible overhead compared to SGD across a wide range of optimiza-

tion problems. PSGD provides practitioners with a powerful, stable, and efficient optimiza-

tion tool that can significantly enhance the performance of deep learning models in various

domains.

3.2 Background

3.2.1 Notations

The objective is to minimize a loss function defined as an expectation, f(θ) = Ez[ℓ(θ, z)],

where θ ∈ Rn is the parameter vector to be optimized and z is a random vector that can be

sampled to evaluate the loss ℓ(θ, z). We assume that the considered problem is second-order

22

differentiable. To simplify the notation, we use f̂(θ) to denote a sampled noisy evaluation of

f(θ). A step of SGD with learning rate µ and an optional positive definite preconditioner

P is given by:

θi+1 = θi − µP ∂f̂(θ)/∂θ |θ=θi (3.1)

where i is the iteration index, µ > 0 is the learning rate, and P typically is a variable or

adaptive preconditioner. Once the solution enters a basin of attraction centered at a local

minimum θ∗, we can approximate the iteration step in (3.1) as:

θi+1 − θ∗ ≈ (I − µPĤ)(θi − θ∗) (3.2)

where Ĥ = ∂2f̂(θ)
∂θT ∂θ

|θ=θ∗ is the sampled Hessian at the local minimum. Conceivably, the

eigenvalue spread of PĤ largely determines the speed of convergence of the quasi-linear

system in (3.2). Nearly quadratic convergence is possible if we can find a good approximation

for H−1. However, Ĥ is a noisy Hessian and is not necessarily positive definite, even if the

exact one at θ∗, i.e., H, is.

3.2.2 The Preconditioner Fitting Criterion

We adopt the preconditioner fitting criterion proposed in (Li15). Let δg be the perturbation

of gradient associated with parameter perturbation δθ. Then, the fitting criterion is:

c(P) = Eδθ[δg
TPδg + δθTP −1δθ] (3.3)

With auto differentiation tools, we can replace the pair (δθ, δg) with (v, Ĥv), where v is a ran-

dom vector, and Ĥv is the noisy Hessian-vector product, which can be evaluated as cheaply

as gradients. Criterion (3.3) only has one positive definite solution, P = (H2 + Ev[ϵ
2])− 1

2 ,

even for indefinite H, where ϵ = Ĥ − H is a stochastic noise term. This preconditioner

automatically dampens gradient noise. It is worth noting that criterion (3.3) gives the same

23

preconditioner used in equilibrated SGD (ESGD) (DVB15) and AdaHessian (YGS21) when

P is diagonal, i.e., E[v⊙ v]⊘E[(Ĥv)⊙ (Ĥv)], where ⊙ and ⊘ denote element-wise product

and division, respectively.

3.2.3 Preconditioners on Lie Groups

It is natural to fit the preconditioner on a Lie group for several reasons. First, by rewriting

equation (3.1) as P − 1
2 θi+1 = P − 1

2 θi − µ∂f̂(θ)/∂(P −
1
2 θ) |θ=θi , it is clear that a preconditioned

SGD is equivalent to SGD in a new set of coordinates defined by ϑ = P − 1
2 θ. This coordinate

change consists of rotations and scalings, i.e., operations on the orthogonal group O(n) and

the group of nonsingular diagonal matrices. We can represent this coordinate transform with

matrix Q−1 and, accordingly, P = QTQ. Thus, we pursue a variable Q on the Lie group to

fit this coordinate transform.

Second, PSGD can also be viewed as SGD with transformed features when the pa-

rameters to be learned are a list of affine transform matrices (Li19). Specifically, the most

commonly used feature transformations (e.g., whitening, normalization, and scaling) can be

represented as matrices on the affine groups. For example, the popular batch normalization

(IS15), layer normalization (BKH16), and group normalization (WH18) can be represented

as a sparse Lie group matrix where only the diagonal and last column can have nonzero

values (Li19) (See A.1.1). The decorrelated batch normalization (HYL18) is related to the

whitening preconditioner in (Li19). Thus, the Lie group arises as a natural object to work

with.

Lie groups have two properties that are particularly suitable for our task. Like any

group, a specific Lie group preserves certain symmetries or invariances. For example, with

Q ∈ GL+(n,R), the general linear group with positive determinant, ϑ, and θ will always

have the same orientation. This eliminates the need for damping, or similar remedies, to

avoid degenerate solutions, since P = QTQ is guaranteed to be invertible. The equivariance

property of Lie groups further facilitates the preconditioner fitting. The same group gener-

24

ator, i.e., the one at the identity matrix, can be used to move a preconditioner on any point

of the Lie group.

In fact, the preconditioner P estimated by PSGD converges to the inverse of the Hessian

regardless of the definiteness of Hessian. From this, one can show that the parameters

converge following the established results in the open literature. For more details and proofs

see A.1.1.

The preconditioners proposed in (Li19) can only be applied to a list of affine transform

matrix parameters. Although many machine learning models exclusively consist of affine

transforms and nonlinear activation functions, this is not always the case. Additionally, it

can be impractical to reparameterize many existing modules, such as a convolutional layer,

into their equivalent affine transform forms. Hence, in this dissertation, we propose two

types of novel black box preconditioners.

3.3 Curvature-Informed SGD via General Purpose Lie-Group Pre-

conditioners

3.3.1 Simple Matrix Free Preconditioners

Lie groups are a type of abstract mathematical object that consists of transformations in

vector space, specifically mappings that take vectors in Rn and map them to other vectors

in the same space. Mathematically we have, T : Rn 7→ Rn. The following theorem gives one

systematic way to construct such sparse Lie group preconditioners.

Theorem 3.3.1. Let K = {σ1, . . . , σm} be a subgroup of the permutation group Sn. Then,

linear transform T : Rn 7→ Rn, T (x|a1, . . . , am) =
∑m

i=1 ai ⊙ σi(x), forms a subgroup of

GL(n,R) parameterized with {a1, . . . , am} if T (·|a1, . . . , am) is bijective, where both ai and x

are in Rn.

See proof of Theorem 3.3.1 in Appendix A.1.2.

25

Example 1 : the group of invertible diagonal matrices. We must have K = {e} if |K| = 1,

where e is the identity element of Sn, i.e., e(x) = x. Then, T simply has a diagonal matrix

representation, i.e., T (x|a1) = diag(a1)x. Criterion (3.3) gives the preconditioner in ESGD

(DVB15) and AdaHessian (YGS21) as a special case when P is on this group.

Example 2 : The group of “X-shape matrices.” Let K = {e, σf}, where σf denotes the flipping

permutation. Then, we can show that

T (·|a, b)T (·|u, v) = T (·|a⊙ u+ b⊙ σf (v), a⊙ v + b⊙ σf (u))

T−1(·|a, b) = T (·|σf (a)⊘ c,−b⊘ c)

where c = a ⊙ σf (a) − b ⊙ σf (b). Clearly, such transforms form a Lie group if they are

invertible, i.e., no element of c is zero. The matrix representation of this T only has nonzero

diagonal and anti-diagonal elements, thus the name X-shape matrix.

Example 3 : The butterfly matrix. For an even n, subgroup K = {e, sn
2
} induces a Lie group

whose representations are invertible butterfly matrices, where sn
2

denotes circular shifting

by n
2

positions. This group of matrices are the building blocks of the Kaleidoscope matrices

(DSG20).

Example 4 : The plain dense invertible matrix. The group GL(n,R) can be recovered by

letting K = {e, s1, . . . , sn−1}, where si denotes circular shifting by i positions.

The group GL(n,R) is too expensive for large-scale problems. The group of diagonal

matrices also called the “Jacobi preconditioner” in its matrix form, is sparse but empirically

shown to be less effective without the help of momentum for certain machine learning prob-

lems (DVB15). We are mostly interested in the cases with 2 ≤ |K| ≤ 4. These Lie groups

are sparse enough, yet simple enough to derive their inverse manually, and at the same time

can significantly accelerate the convergence of SGD by shortcutting gradients separated far

away in positions.

26

3.3.2 Low-Rank Approximation Preconditioner

Low-rank approximation (LRA) is a standard technique for processing large-scale matrices.

Commonly adopted forms of positive definite low-rank approximation, such as P = ρI+UUT ,

cannot always be factorized as P = QTQ for certain Lie groups, where ρ > 0 is a small

positive number. Additionally, this form of approximation is not effective for reducing the

eigenvalue spread. In many real-world problems, the Hessian has a few very large and very

small eigenvalues, i.e., tails on both ends of the spectrum (SBL16; SEG17). However, all the

eigenvalues of P in this form are lower bounded by ρ, meaning that it can only fit one tail

of the spectrum when rank(U)≪ n.

For this reason, we propose a new low-rank approximation with form Q = ρ(I + UV T),

where ρ is not necessarily small nor positive, and U and V has r columns with r ≪ n.

To justify this form of approximation, we need to establish two facts. First, preconditioner

P = QTQ with this form can fit both tails of the spectra of the Hessian, providing an

accurate characterization of the curvature of a function, improving optimization algorithms,

and permitting assessment of their robustness. Second, we can update this preconditioner

on Lie groups.

Theorem 3.3.2. Preconditioner P = QTQ with Q = ρ(I + UV T) can have positive eigen-

values arbitrarily larger than ρ2 and arbitrarily smaller than ρ2 with proper U and V .

Theorem 3.3.3. If ρ ̸= 0 and (I + V TU)−1 or (I +UTV)−1 exists, AV (ρ, U) = ρ(I +UV T)

defines a subgroup of GL(n,R) parameterized with ρ and U . Similarly, AU(ρ, V) = ρ(I +

UV T) defines another subgroup of GL(n,R) parameterized with ρ and V .

See proofs of Theorem 3.3.2 & 3.3.3 in Appendix A.1.3 & A.1.3.

27

Table 3.1: Test accuracy of LeNet5 on
MNIST over 10 runs.

SGD Adam KFAC PSGDA PSGDXMat PSGDLRA

99.04 99.12 99.16 99.26 99.22 99.22

Table 3.2: Stage & cosine learning rate
and residual-free ResNet18-RF on CI-
FAR10.

ResNet18 ResNet18-RF

lr cos stage cos stage
SGD 95.51 95.07 94.97 94.35

PSGD 95.54 95.43 95.36 95.17

3.4 Practical Considerations

The above-proposed preconditioners can be fit online by minimizing criterion (3.3) using

gradient descent on Lie groups. Unlike traditional gradient descent, moving an object on a

Lie group is achieved by multiplying it with I + µG, where G is the group generator and µ

is small enough such that |µG| < 1. This series of small movements trace a curve on the

Lie group manifold, and G is always in the tangent space of the group as the Lie algebra is

closed. See A.1.4 for mathematical considerations.

Note that optimizer damping is neither necessary nor generally feasible on any Lie group,

although it is widely used in other second-order optimizers to avoid degenerate solutions. On

one hand, by fitting Q on a connected Lie group, P = QTQ cannot be singular. On the other

hand, damping could be incompatible with certain forms of Lie groups, as we may not always

be able to find another Q′ on the same group such that Q′TQ′ = QTQ+λI, where λ > 0. This

eliminates the need for setting up a proper damping schedule. However, gradient clipping can

be helpful in promoting stability. The quadratic approximation leading to the quasi-linear

system (3.2) is only valid within a certain region around θ. Thus, ∥δθ∥ = µ∥P∂f̂(θ)/∂θ∥

should be small enough such that θ + δθ still locates in this trust region. We can adjust µ

or clip ∥P∂f̂(θ)/∂θ∥ to ensure that ∥δθ∥ is small enough.

Lastly, the learning rate for parameter updating and step size for preconditioner fitting

are naturally normalized to be in the range (0, 1). We have found a step size of 0.01 to be an

effective initial rate, and our method is robust to a wide range of learning rates and weight

decays. (see Appendix B.1.2.1)

28

3.5 Empirical Results

In this work, we evaluate the performance of the PSGD algorithm on a diverse set of tasks,

including vision, natural language processing (NLP), and reinforcement learning (RL). In the

domain of computer vision, we evaluate the algorithm’s performance on the MNIST (LC10)

dataset and using a LeNet5 (see Table 3.1) and a convex large-scale logistic regression (see

Appendix B.1.3). Aditionally we consider the CIFAR10 (Kri09) dataset (see Table 3.2) with

ResNet18. Finally, we consider several variants of the CIFAR10 dataset, including those

with noisy labels, blur-deficit, adversarial attacks, and class imbalances (see Table 3.3).

For NLP tasks, we study the use of LSTMs (HS97) and GPT-2 style transformers (RWC19),

on various text corpora, including the Penn Treebank (MSM93), the complete works of

Shakespeare, and the Open Web Text (OWT) dataset (GC19) (see Table 3.4 & 3.5). In

the RL setting, we consider a Proximal Policy Optimization (PPO) (SWD17) applied to the

HalfCheetah and RoboWalker environmets using OpenAI’s gym environments (BCP16) (see

Fig. 3.1).

To provide insight into the fundamental differences between SGD and PSGD, we per-

form uncertainty and forgettability analysis (TSC18). Finally, we examine the pathological

delayed XOR problem, first introduced in (HS97), in order to further our understanding of

the strengths and limitations of different optimization methods.

3.5.1 CIFAR-10 and Friends on ResNet18

We examine the effectiveness of the PSGD optimizer in classifying CIFAR10-derived datasets

using a ResNet18 and find it outperforms the SoTA optimizer SGD. Once the optimizers are

tuned on ResNet18 with the CIFAR10 dataset, we do not change them for the rest of the

experiments.

CIFAR10 ResNet18 We evaluate the performance of PSGD and SGD on the CIFAR10

29

image classification task using the ResNet18 model, following the implementation of the

AdaBelief algorithm (ZTD20). We adopt the cosine learning rate scheduler and observe

that SGD achieves the SOTA test accuracy of 95.5%. Our results (see Table 3.2) show that

PSGD slightly outperforms SGD when the shortcut connections are removed or a less-tuned

learning rate scheduler is used. Both optimizers are tuned with hyperparameters such as

learning rate and weight decay and use a momentum of 0.9. We update the preconditioner

of PSGD every ten iterations, resulting in a negligible overhead compared to SGD.

Removing Skip Connections To increase curvature in the relatively flat modern ResNet

architecture, we remove the residual skip connections that gave ResNets their namesake. A

recent study (ZBM22) demonstrated the use of Tailored Activation Transformation (TAT) in

conjunction with K-FAC (MG15a)(another second-order optimizer) to close the gap between

residual networks with and without residual skip connections. However, in our experiment,

we do not utilize TAT and instead compare the performance of SOTA optimizers on both

residual-free and standard ResNet18 models. The results, summarized in Table 3.2, indicate

that PSGD outperforms SGD by 0.61% and 0.20% on residual-free and standard ResNet18,

respectively. Our findings are consistent with the results from (ZBM22), where a difference

of 0.6% was observed between the optimization of residual-free using TAT and standard

ResNet18.

Modified CIFAR10 Next, we evaluate the performance of SGD and PSGD on three vari-

ations of the CIFAR10 image classification task using ResNet18: class imbalance, noisy

training labels, and adversarial generalization. These variations provide a rigorous test for

the generalization ability of optimizers. We maintain the hyperparameters from our previous

experiments on the ResNet18 CIFAR10 dataset for a fair comparison between the optimizers.

Class Imbalanced CIFAR10 We evaluate the optimization performance on a class-imbalanced

version of the CIFAR10 dataset, where 50% of the classes are randomly reduced by an order

of magnitude. We compare SGD and PSGD on optimizing ResNet18 and report the results

in Table 3.3. Our results show that PSGD outperforms the SOTA by 1.03% on this dataset.

30

Table 3.3: Accuracy of ResNet18 on diverse CIFAR10 derived tasks using PSGD vs SGD.

CIFAR10 Standard No Shortcut Class Imb Noisy Final Noisy Best Adversarial Blur Deficit

PSGD + M 95.490.08 95.270.09 87.160.85 78.630.11 78.630.11 85.170.04 89.510.12
SGD +M 95.470.14 94.660.16 86.320.84 26.933.75 73.9755.65 83.820.18 83.510.15

CIFAR10 with Noisy Labels We randomly select 60% of the CIFAR10 training labels,

resulting in each class having approximately 46% correct labels and the 54% consisting of

6% drawn from the other nine classes. We used SGD and PSGD to train a ResNet18 on this

task for 100 epochs with 5 different seeds. Both optimizers achieved a training accuracy of

around 44%. However, their test accuracies showed a significant difference. Among the 5

runs of SGD, only one lucky initilization achieved a test accuracy of 77%, while the other

initializations had a test accuracy of 10% with an average predicted probability of 0.999.

This is not a standard case of over-fitting nor a case of catastrophic forgetting, since the

training accuracy does not change. Instead, our experiments show there exists a tipping

point in the test accuracy at around epoch 35, where within a single epoch the test accuracy

drops from 71% to 10% while the training accuracy shows no indication of this change.

Furthermore, the test accuracy does not increase for the rest of the 65 epochs. PSGD

achieved an average accuracy of 78.63% after 200 epochs, outperforming SGD by 51.73%

and exhibiting no optimization instabilities (See Table 3.3).

Adversarial Attacked CIFAR10 Finally, we trained a ResNet18 on 10k unmodified CI-

FAR10 images and evaluated it on a test set consisting of 40k samples perturbed using Neural

Tangent Generalization Attacks (YW21). As shown in Table 3.3, PSGD outperformed SGD

by 1.35%.

3.5.2 Language Modeling

We conduct a performance comparison between second-order optimization methods and

first-order methods for training recurrent neural networks (RNNs) and transformer models.

RNNs have a recurrent structure that exhibits strong curvature properties, making them

particularly suitable for second-order optimization methods. Such methods can efficiently

31

Table 3.4: Test perplexity (lower is better) on Penn Treebank for one-, two- and three-layered
LSTMs. All results except PSGD in the table are reported by AdaBelief and Adan.

LSTM PSGD Adan AdaBelief SGD AdaBound Adam AdamW Padam RAdam Yogi
1 layer 83.5 83.6 84.2 85.0 84.3 85.9 84.7 84.2 86.5 86.5
2 layers 64.9 65.2 66.3 67.4 67.5 67.3 72.8 67.2 72.3 71.3
3 layers 59.7 59.8 61.2 63.7 63.6 64.3 69.9 63.2 70.0 67.5

leverage this structure to converge quickly to good solutions. Consequently, RNNs usually

perform better when trained with second-order optimization methods (Mar16), particularly

when the objective function has extreme local curvature properties.

In contrast, transformers employ sparse self-attention mechanisms that allow for efficient

computation of gradients. Thus, they are typically trained using first-order methods. Our

aim is to provide a comprehensive comparison of these optimization methods for both RNN

and transformer models.

LSTM based models We benchmark PSGD by predicting the Penn TreeBank Dataset

using LSTMs using (ZTD20)’s framework. Our results (see Table 3.4) indicate that PSGD

consistently outperforms (lower is better) other first-order optimization algorithms, including

the SoTA AdamW, on 1, 2, and 3 layer LSTMs.

nanoGPT In a recent study, (Kar22) proposed a framework for reproducing GPT-2 results

using the OpenWebText dataset. Here, we expand upon this by investigating the training

of GPT-2 models of different sizes on both the OpenWebText and Shakespeare character

datasets. Our primary objective is to benchmark the performance of PSGD against other

SoTA optimization algorithms.

As shown in Table 3.5, our results indicate that PSGD consistently outperforms other

optimization algorithms across various model sizes. Notably, a moderate gap in perplexity

is observed for the smaller GPT-2 model trained for 5k iterations on the Shakespeare-char

dataset, with a significantly larger gap observed on the OpenWebText dataset, which was

trained for 600k iterations using AdamW and 100k iterations using PSGD. We found that

decreasing the precond lr to 0.001 greatly improved the performance of transformer models.

32

Table 3.5: Comparing different test loss of optimizers over GPT-2 style transformers on the
Shakespeare-char dataset. PSGD outperforms other optimizers over various model sizes.

nanoGPT PSGD SGD AdamW AdanW AdaBelief AdanBelief

0.82M 4.52 4.68 4.68 5.52 5.94 6.66
1.61M 4.47 4.75 5.03 5.054 5.06 6.47
6.37M 4.53 5.31 19.53 4.92 21.04 5.34

50M 250.7 591.8

Lowering the precond lr smoothens the curvature in the sparse embedding layer of GPT-2

over time and enables the optimizer to consider a larger window of curvature information.

This ‘curvature memory’ improved performance and prevented divergence resulting from the

otherwise sparse embedding space.

3.5.3 Reinforcement Learning

Here we consider two standard Proximal Policy Optimization (PPO) problems in Reinforce-

ment Learning (RL): Walker2d and HalfCheetah. We compare the performance of the two

SOTA optimizers AdaBelief and Adan to PSGD. We optimize the actor and critic indepen-

dently. We find that PSGD can find a higher reward for both Walker2d & HalfCheetah

shown in Figure 3.1.

(a) Walker2d (b) HalfCheetah

Figure 3.1: PSGD outperforms SOTA optimizers on PPO RL on Walker2d & HalfCheetah.

33

3.5.4 Towards Understanding Second Order Optimizers

With the performance distinctions between PSGD and SGD now apparent, we aim to conduct

a series of simple experiments to provide further insight into the reasons behind the stark

contrast in the nature of the two optimizers.

Uncertainty Analysis We train a standard ResNet18 on CIFAR10 with PSGD and SGD,

and after 200 epochs we check the entropy over the softmax-logits and classification margin

(TSC18) of both NNs. We see in Table 3.6 that PSGD has higher entropy and a lower margin

of classification compared to first-order optimizers. This very low minimum entropy of first-

order optimizers may be interpreted as a form of overfitting. Intuitively, some data points

(low entropy/unforgettable) have information that is easily memorized by NNs, giving up

network capacity learning points that do not improve generalization. Conversely, we observe

that PSGD never becomes overly certain about any data point, with the minimum entropy

being six orders of magnitude larger than that of SGD. Similar trends can be observed in

the mean and maximum entropy values. In terms of margin, PSGD on average has a 95%

certainty level for classifications, while SGD has a staggering 99.9%. From these statistics, we

believe first-order optimizers can push NNs into a dangerous regime of overconfidence which

given clean labels can reduce their generalization capacity with the potential of catastrophic

forgetting. In the scenario where a network is given noisy labels (or imaginably poisoned

points), training with first-order methods may lead to memorization of the training set with

no generalization capacity as seen in Table 3.3 column Noisy Final.

PSGD’s higher entropy and lower margins are indications of a larger exploration of the

parameter space, more diverse solutions, and a lack of memorization. This suggests that

PSGD is able to better balance the trade-off between overfitting and underfitting, without

memorizing points.

Forgettability Statistics and Learning We revisit (TSC18)’s forgettability experiments,

which found that one can prune 30% of the CIFAR-10 train samples without loss of gener-

34

alization. The study found that a point’s utility for generalization increases as it is learned

and then subsequently forgotten during training, regardless of the optimizer or architecture

used. Essentially, forgettability ordering shows which data points a NN uses to define high-

dimensional boundaries akin to support vectors. We investigate whether the performance

difference between PSGD and SGD’s generalization performance can be attributed to this

forgettability ordering. Furthermore, (TSC18) revealed a strong correlation between forget-

table points and high margin, which we explore by examining the expected forgettability

ordering of the two optimizers and whether pruning points based on their orderings affects

performance.

We train the ResNet18 three times pruning CIFAR10 by 25k, 35k, and 45k points based

on each optimizer’s forgettability score. Table 3.7 shows that points PSGD focuses on based

on forgettability ordering outperform that of SGD. When we limit the dataset to only the

5k most forgettable datapoints, we see PSGD is able to outperform SGD by nearly 14%.

SGD and PSGD exhibit fundamentally different importance orderings, which is evident

from the significant generalization gap observed when training on pruned datasets using these

orderings at various degrees. We find that PSGD and SGD have a statistically significant

correlation between their forgettability orderings, but the strength of the correlation is weak

(Spearman coefficient of 0.02 and a p-value of p = 1x10−12). This indicates that the nature

of training observed through forgettability is different for PSGD compared to first-order

optimizers.

Furthermore, we see a strong correlation coefficient of 0.75 and 0.60 between a low for-

getability score and low entropy score with a p-value of p = 0 for PSGD and SGD respectively

(see Fig B.5). Hence, PSGD does a better job of shaping the NN to focus on the highly

forgettable points that are important for generalization while not becoming overconfident on

the easy unforgettable points giving up too much capacity, unnecessarily pushing the param-

eters away from initialization reducing generalization ability (CG19) (see B.3). Note while

(TSC18) shows that forgettable points are more important for generalization for supervised

35

Table 3.6: Uncertainty Statistics:
PSGD’s higher uncertainty leads to bet-
ter generalization and less over-fitting.

NTK Entropy Margin

Min Mean Max Min Mean Max
PSGD 0.139 0.260 1.545 0.144 0.956 0.994
SGD 7x10−7 0.01 0.8975 0.3925 0.999 1

Table 3.7: Forgetting statistics for CI-
FAR10 on ResNet18. PSGD finds bet-
ter forgettability statistics outperform-
ing SGD.

Forgetting 50k 25k 15k 5k

PSGD 96.65 95.83 94.95 56.46
SGD 96.21 95.56 93.7 42.48

learning, very recently (PKN23) showed low entropy points are the more important points

for learning in the unsupervised, semi-supervised, and generative model setting. See Table

B.3 showing generalization gap training low and high entropy points and how it affects the

distance from initialization.

Stubborn Solutions of First Order Optimizers From the previous examples, we learned

that first-order optimizers tend to heavily overfit certain data points, reducing entropy. In the

case of noisy labels, this often results in pure memorization where the network achieves the

training accuracy of PSGD on the train set, but only 10% accuracy on the test dataset with

an average confidence of 99.9%. To better understand the stubbornness of SGD solutions, we

consider the lucky initialization, which resulted in a test accuracy of 77% under noisy label

conditions. Here, we examine a transfer learning problem, where a ResNet18 was trained on

noisy data for 100 epochs and then on clean labels for another 100 epochs. This simulates a

real-world distributional shift where noisy labels may be refined throughout training, leading

to a distributional shift. We compare neural networks trained with each optimizer, as well

as those that changed optimizers after 100 epochs of training.

As seen in Fig 3.2a, PSGD finds a flexible solution when given noisy labels. This is seen

since when we correct the labels both PSGD and SGD can reach an accuracy of 92.42%. In

contrast, the solution found by SGD seems to be stubborn since when we correct the noisy

labels, PSGD then SGD reaches an accuracy of 91.7% and SGD then PSGD has an accuracy

of 88%. This shows the importance of curvature information in the early periods of training.

Intuitively, first-order methods cause NNs to dedicate parameters to memorizing some

data points, unnecessarily reducing entropy. When memorization occurs given incorrect

36

labels, it may be difficult to reshape the NN when the labels are corrected, leading to the

loss in generalization accuracy seen in Fig 3.2a. In contrast, as PSGD finds a less certain or

stubborn solution in the first stage of training, either optimizer can then reshape the NN to

their liking in the second stage.

(a) Noisy Label CIFAR-10 (b) Nero-Plasticity

Figure 3.2: a) Solutions found by SGD are harder to optimize compared to PSGD. Note
for SGD we used a lucky initialization (see 3.5.1). The blue and yellow dotted line are the
average accuracy of PSGD and SGD after 100 epochs respectivly. b) Removing the blur-
deficit at epoch 100, PSGD is be more neuro-plastic compared to SGD, achieving better
train and test performance.

PSGD Preserves Neuro-Plasticity Recently, (ARS17) studied the phenomenon of neuro-

plasticity in NNs. This presents a different lens to our stubborn solution hypothesis. They

found that NNs exhibit a critical learning period, during which if a learning deficit is not

removed, the NN becomes unable to learn effectively. To simulate this deficit, CIFAR10

images are blurred for the first half of training, after which the deficit is removed. Fol-

lowing (ARS17), we used an exponential learning rate decay. To investigate the impact of

optimization on neuro-plasticity we compare SGD and PSGD. We find that PSGD retains

neuro-plasticity outperforming SGD by 6 and 3% on test and train sets seen in Fig 3.2b and

Table 3.3.

We believe the noisy-label and neuro-plasticity results have strong applicability to trans-

fer learning and coreset selection (PDM22a), particularly in scenarios where the training

distribution changes during training. Recently, (OIY22) demonstrated that the affine Kro-

necker variant of PSGD outperforms other first and second-order optimizers when fine-tuning

37

a ResNet18 and ViT (DBK20) on CIFAR10 that were pre-trained on ImageNet (DDS09).

Understanding long-term dependence via Delayed XOR Problem We consider

the delayed XOR problem proposed in the LSTM paper (HS97). The task is to predict the

XOR relation of a and b scattered randomly and far away in a long sequence. This problem

is challenging for many architectures and optimizers because it cannot be ‘partially solved’

since memorizing either a or b alone does not help to predict XOR(a, b). We consider solving

this problem with standard RNNs and LSTMs optimized using SGD, AdaBelief, Adan,

AdaHessian, Hessian Free, Shampoo, KFAC, and PSGD at different sequence lengths. The

success rates for each optimizer are shown in Table 3.8. In our experiments, we find that

PSGD LRA is the only method that can solve the XOR problem past the length of 32 with an

RNN. Furthermore, LSTMs show no benefit to RNNs without using curvature information

for the XOR problem. Finally, PSGD optimizes an RNN to solve the XOR problem better

than any of the other methods using an LSTM. These result hint, that while increasing model

parameters and architecture complexity may boost performance, the choice of optimizer may

be more important for certain problems. See B.1.5 for rank analysis.
XOR PSGD LRA AdaHessian KFAC HessianFree Shampoo SGD AdaBelief Adan
Length RNN LSTM RNN LSTM RNN LSTM RNN LSTM RNN LSTM RNN LSTM RNN LSTM RNN LSTM

32 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
55 1 1 0 1 0 0 0 0.6 0 0.8 0 0 0 0 0 0
64 1 1 0 0.8 0 0 0 0 0 0.6 0 0 0 0 0 0
112 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.8: Delayed XOR problem at length 32,55,64, and 112 averaged over 10 runs. An
RNN optimized with PSGD outperforms other optimizers with an RNN or LSTM. This hints
that the choice of optimizer may be more important than network architecture.

3.6 Conclusion

This chapter has presented a comprehensive study of black-box Lie group preconditioners

for the optimization of deep learning problems. We have provided theoretical guarantees

for the convergence of Lie group preconditioned optimization methods, and empirical results

38

demonstrating PSGD outperforming SoTA optimizers in generalization, robustness, and sta-

bility across various tasks in Vision, NLP, and RL. Furthermore, our analysis of forgettability

and entropy shows that PSGD effectively focuses on forgettable points, leading to improved

generalization. These findings provide valuable insights for further developing efficient and

effective optimization techniques for deep learning models.

39

CHAPTER 4

Adaptive Curvature-Informed Coreset Selection

Training machine learning models on massive datasets incurs substantial computational

costs. To alleviate such costs, there has been a sustained effort to develop data-efficient

training methods that can carefully select subsets of the training examples that gen-

eralize on par with the full training data. However, existing methods are limited in

providing theoretical guarantees for the quality of the models trained on the extracted

subsets and may perform poorly in practice. We propose AdaCore, a method that

leverages the geometry of the data to extract subsets of the training examples for effi-

cient machine learning. The key idea behind our method is to dynamically approximate

the curvature of the loss function via an exponentially-averaged estimate of the Hessian

to select weighted subsets (coresets) that provide a close approximation of the full gradi-

ent preconditioned with the Hessian. We prove rigorous guarantees for the convergence

of various first and second-order methods applied to the subsets chosen by AdaCore.

Our extensive experiments show that AdaCore extracts coresets with higher quality

compared to baselines and speeds up the training of convex and non-convex machine

learning models, such as logistic regression and neural networks, by over 2.9x over the

full data and 4.5x over random subsets.

4.1 Motivation for Coreset Selection

Large datasets have been crucial for the success of modern machine-learning models. Learn-

ing from massive datasets, however, incurs substantial computational costs and becomes very

40

challenging (AD19; SGM19; SDS19). Crucially, not all data points are equally important

for learning (BMB19; KF18; TSC18). While several examples can be excluded from training

without harming the accuracy of the final model (BMB19; TSC18), other points need to be

trained on many times to be learned (BMB19). To improve scalability of machine learning,

it is essential to theoretically understand and quantify the value of different data points on

training and optimization. This allows identifying examples that contribute the most to

learning and safely excluding those that are redundant or non-informative.

To find essential data points, recent empirical studies used heuristics such as the fully

trained or a smaller proxy model’s uncertainty (entropy of predicted class probabilities)

(CYM20), or forgetting events (TSC18) to identify examples that frequently transition from

being classified correctly to incorrectly. Others employ either the gradient norm (ALS15;

KF18) or the loss (LH15; SQA15) to sample important points that reduce the variance of

stochastic optimization methods. Such methods, however, do not provide any theoretical

guarantee for the quality of the trained model on the extracted examples.

Quantifying the importance of different data points without training a model to con-

vergence is very challenging. First, the value of each example cannot be measured without

updating the model parameters and measuring the loss or accuracy. Second, as the effect of

different data points changes throughout training, their value cannot be precisely measured

before training converges. Third, to eliminate redundancies, one needs to look at the impor-

tance of individual data points as well as the higher-order interactions between data points.

Finally, one needs to provide theoretical guarantees for the performance and convergence of

the model trained on the extracted data points.

Here, we focus on finding data points that contribute the most to learning and automati-

cally excluding redundancies while training a model. A practical and effective approach is to

carefully select a small subset of training examples that closely approximate the full gradient,

i.e., the sum of the gradients over all the training data points. This idea has been recently

employed to find a subset of data points that guarantee convergence of first-order methods

41

to near-optimal solutions for training convex models (MBL20). However, modern machine

learning models are high dimensional and non-convex in nature. In such scenarios, subsets

selected based on gradient information only capture gradients along the sharp dimensions

and lack diversity within groups of examples with similar training dynamics. Hence, they

represent large groups of examples with a few data points with substantial weights. This

introduces a large error in the gradient estimation and results in first-order coresets that

perform poorly.

We propose ADAptive second-order COREsets (AdaCore) that incorporates the ge-

ometry of the data to iteratively select weighted subsets (coresets) of training examples

that capture the gradient of the loss preconditioned with the Hessian, by maximizing a

submodular function. Such subsets capture the curvature of the loss landscape along dif-

ferent dimensions and provide convergence guarantees for first and second-order methods.

As a naive use of Hessian at every iteration is prohibitively expensive for overparameterized

models, AdaCore relies on Hessian-free methods to extract coresets that capture the full

gradient preconditioned by the Hessian diagonal. Furthermore, AdaCore exponentially av-

erages first and second-order information in order to smooth the noise in the local gradient

and curvature information.

We first provide a theoretical analysis of our method and prove its convergence for convex

and non-convex functions. For a β-smooth and α-strongly convex loss function and a subset

S selected by AdaCore that estimates the full preconditioned gradient by an error of at

most ϵ, we prove that Newton’s method and AdaHessian applied to S with constant stepsize

η = α/β converges to a βϵ/α neighborhood of the optimal solution, in exponential rate.

For non-convex overparameterized functions such as deep networks, we prove that for a

β-smooth and µ-PL∗ loss function satisfying ∥∇L(w)∥2/2 ≥ µL(w), (stochastic) gradient

descent applied to subsets found by AdaCore has similar training dynamics to that of

training on full data, and converges at a exponential rate. In both cases, AdaCore leads

to a speedup by training on smaller subsets.

42

Next, we empirically study the examples selected by AdaCore during training. We

show that as training continues, AdaCore selects more uncertain or forgettable samples.

Hence, AdaCore effectively determines the value of every learning example, i.e., when and

how many times a sample needs to be trained on, and automatically excludes redundant and

non-informative instances. Importantly, incorporating curvature in selecting coresets allows

AdaCore to quantify the value of training examples more accurately, and find fewer but

more diverse samples than existing methods.

We demonstrate the effectiveness of various first and second-order methods, namely SGD

with momentum, Newton’s method and AdaHessian, applied to AdaCore for training mod-

els with a convex loss function (logistic regression) as well as models with a non-convex loss

function, namely ResNet-20, ResNet-18, and ResNet-50, on MNIST, CIFAR10, (Imbalanced)

CIFAR100, and BDD100k (Den12)(Kri09)(YCW20). Our experiments show that AdaCore

can effectively extract crucial samples for machine learning, resulting in higher accuracy while

achieving over 2.9x speedup over the full data and 4.5x over random subsets, for training

models with convex and non-convex loss functions.

4.2 Related Work

Data-efficient methods have recently gained a lot of interest. However, existing methods

often require training the original (BMB19; GZ19; TSC18) or a proxy model (CYM20) to

convergence, and use features or predictions of the trained model to find subsets of examples

that contribute the most to learning. While these results empirically confirm the existence

of notable semantic redundancies in large datasets (BMB19), such methods cannot identify

the crucial subsets before fully training the original or the proxy model on the entire dataset.

Most importantly, such methods do not provide any theoretical guarantees for the model’s

performance trained on the extracted subsets.

There have been recent efforts to take advantage of the difference in importance among

43

various samples to reduce the variance and improve the convergence rate of stochastic opti-

mization methods. Those that are applicable to overparameterized models employ either the

gradient norm (ALS15; KF18) or the loss (LH15; SQA15) to compute each sample’s impor-

tance. However, these methods do not provide rigorous convergence guarantees and cannot

provide a notable speedup. A recent study proposed a method, Craig, to find subsets of

samples that closely approximate the full gradient, i.e., the sum of the gradients over all the

training samples (MBL20). Craig finds the subsets by maximizing a submodular function

and provides convergence guarantees to a neighborhood of the optimal solution for strongly-

convex models. GradMatch (KSM21) proposes a variation to address the same objective

using orthogonal matching pursuit (OMP) (KSM21), and Glister Killamsetty(KSR20)

aims at finding subsets that closely approximate the gradient of a held-out validation set.

However, Glister requires a validation set, and GradMatch uses OMP which may re-

turn subsets as little as 0.1% of the intended size. Such subsets are then augmented with

random samples. In contrast, our method successfully finds subsets of higher quality by

preconditioning the gradient by the Hessian information.

4.3 AdaCore: Background and Problem Setting

Training machine learning models often reduces to minimizing an empirical risk function.

Given a not-necessarily convex loss L, one aims to find model parameter vector w∗ over the

parameter space W that minimizes the loss L over the training data V :

w∗ ∈ argminw∈WL(w), (4.1)

L(w) :=
∑
i∈V

li(w), li(w) = l(f(xi, w), yi),

where V = {1, . . . , n} is an index set of the training data, w ∈ Rd is the parameters of the

model f being trained, and li is the loss function associated with training example i ∈ V

with feature vector xi ∈ Rd and label yi. We denote the gradient of the loss w.r.t. model

44

parameters by g = ∇L(w) = 1
|V |
∑

i∈V
∂li
∂w

, and the corresponding second derivative (i.e.,

Hessian) by H = ∇2L(w) = 1
|V |
∑

i∈V
∂2li

∂wj∂wk
. First-order gradient methods are popular for

solving Problem (4.1). Such methods start from an initial point w0, and every iteration t steps

in the negative direction of the gradient. The most popular first-order method, Stochastic

Gradient Descent (SGD) (RM51), is often used with momentum accelerating it in directions

whose gradients point in the same directions and dampens oscillations in dimensions whose

gradients change directions (Qia99):

wt+1 = wt − ηtvt, vt = gt, (4.2)

Here, ηt is the learning rate, and gt is the gradient of a batch at the t-th iteration.

4.4 AdaCore: Adaptive Second order Coresets

The key idea behind our proposed method is to leverage the geometry of the data, precisely

the curvature of the loss landscape, to select subsets of the training examples that enable

fast convergence. Here, we first discuss why coresets that only capture the full gradient

perform poorly in various scenarios. Then, we show how to incorporate curvature information

in subset selection for training convex and non-convex models with provable convergence

guarantees— ameliorating problems of first-order coresets.

4.4.1 When First-order Coresets Fail

First-order coreset methods iteratively select weighted subsets of training data that closely

approximate the full gradient at particular values of wt, e.g. beginning of every epoch

(KSM21; KSR20; MBL20):

S∗
t = argmin

S⊆V,γt,j≥0 ∀j
|S| s.t. ∥gt −

∑
j∈S

γt,jgt,j∥ ≤ ϵ, (4.3)

45

where gt,j and γt,j > 0 are the gradient and the weight of element j in the coreset S. Such

subsets often perform poorly for high-dimensional and non-convex functions, due to the fol-

lowing reasons: (1) the scale of gradient g ∈ Rd is often different along different dimensions.

Hence, the selected subsets estimate the full gradient closely only along dimensions with a

larger gradient scale. This can introduce a significant error in the optimization trajectory

for both convex and non-convex loss functions; (2) the loss functions associated with differ-

ent data points li may have similar gradients but very different curvature properties at a

particular wt. Thus, for a small δ > 0, the gradients ∇li(wt + δ) at wt + δ may be totally

different than the gradients ∇li(wt) at wt. Consequently, subsets that capture the gradient

well at at a particular point during training may not provide a close approximation of the

full gradient after a few gradient updates, e.g., mini-batches. This often results in inferior

performance, particularly when selecting larger subsets for non-convex loss functions; (3)

subsets that only capture the gradient, select one representative example with a large weight

from data points with similar gradients at wt. Such subsets lack diversity and cannot distin-

guish different subgroups of the data. Importantly, the large weights introduce a substantial

error in estimating the full gradient and result in poor performance, as we show in Fig. B.8

in the Appendix.

4.4.2 Adaptive Second-order Coresets

To address the above issues, our main idea is to select subsets of training examples that

capture the full gradient preconditioned with the curvature of the loss landscape. In doing so,

we normalize the gradient by multiplying it by the Hessian inverse, H−1g, before selecting the

subsets. This allows selecting subsets that (1) can capture the full gradient in all dimensions

equally well; (2) contain a more diverse set of data points with similar gradients, but different

curvature properties, and (3) allow adaptive first and second-order methods trained on the

coresets to obtain similar training dynamics to that of training on the full data.

Formally, our goal in AdaCore is to adaptively find the smallest subset S ⊆ V and

46

corresponding per-element weights γj > 0 that approximates the full gradient preconditioned

with the Hessian matrix, with an error of at most ϵ > 0 at every iteration t, I.e.:

S∗
t = argmin

S⊆V,γt,j≥0 ∀j
|S|, s.t. (4.4)

∥H−1
t gt −

∑
j∈S

γt,jH
−1
t,j gt,j∥ ≤ ϵ,

where H−1
t gt and

∑
j∈S γt,jH

−1
t,j gt,j are preconditioned gradients of the full data and the

subset S.

4.4.3 Scaling up to Over-parameterized Models

Directly solving the optimization problem (4.4) requires explicit calculation and storage of

the Hessian matrix and its inverse. This is infeasible for large models such as neural net-

works. In the following, we first address the issue of calculating the inverse Hessian at every

iteration. Then, we discuss how to efficiently find a near-optimal subset to estimate the full

preconditioned gradient by solving Eq. (4.4).

Approximating the Gradients For neural networks, the derivative of the loss L w.r.t.

the input to the last layer (KF18; MBL20) or the penultimate layer (KSM21) can capture

the variation of gradient norm well. We extend these results (Appendix A.2.4.2) to show

that the normed difference preconditioned gradient difference between data points can be

approximately efficiently bounded by:

∥H−1
i gi −H−1

j gj∥ ≤ c1∥Σ′
L(z

(L)
i)(H−1

i gi)
(L) − Σ′

L(z
(L)
j)(H−1

j gj)
(L)∥+ c2, (4.5)

where Σ′
L(z

(L)
i)(H−1

i gi)(L) is gradient preconditioned by the inverse of the Hessian of the loss

w.r.t. the input to the last layer for data point i, and c1, c2 are constants. Since the upper

bound depends on the weight parameters, we need to update our subset S using AdaCore

47

during the training.

Calculating the last layer gradient often requires only a forward pass, which is as expensive

as calculating the loss, and does not require any extra storage. For example, having a softmax

as the last layer, the gradients of the loss w.r.t. the ith input to the softmax is pi−yi, where pi

is the ith output the softmax and y is the one-hot encoded label with the same dimensionality

as the number of classes. Using this low-dimensional approximation ĝi for the gradient gi

we can efficiently calculate the preconditioned gradient for every data point. For non-convex

functions, the local gradient information can be very noisy. To smooth out the local gradient

information and get a better approximation of the global gradient, we apply an exponential

moving average with a parameter 0 < β1 to the low-dimensional gradient approximations:

gt =
(1− β1)

∑t
i=1 β

t−i
2 ĝi

1− βt2
. (4.6)

Approximating the Hessian Preconditioner Since it is infeasible to calculate, store,

and invert the full Hessian matrix every iteration, we use an inexact Newton method, where

an approximate Hessian operator is used instead of the full Hessian. To efficiently calculate

the Hessian diagonal, we first use the Hessian-Free method (YXR18) to compute the mul-

tiplication between Hessian Ht and a random vector z with Rademacher distribution. To

do so, we backpropagate on the low-dimensional gradient estimates multiplied by z to get

Htz = ∂ĝTt z/∂wt. Now, we can use Hutchinson’s method of obtaining a stochastic estimate

of the diagonal of the Hessian matrix as follows:

diag(Ht) = E[z ⊙ (Htz)], (4.7)

without having to form the Hessian matrix explicitly (BKS07). The diagonal approximation

has the same convergence rate as using the Hessian for strongly convex, and strictly smooth

functions (Proof in Appendix A.2.1). Nevertheless, our method can be applied to general

machine learning problems, such as deep networks and regularized classical methods (e.g.,

48

SVM, LASSO), which are strongly convex. To smooth out the noisy local curvature and get

a better approximation of the global Hessian information, we apply an exponential moving

average with parameter 0 < β2 < 1 to the Hessian diagonal estimate in Eq. (4.7):

Ht =

√
(1− β2)

∑t
i=1 β

t−i
2 diag(Hi)diag(Hi)

1− βt2
. (4.8)

Using exponentially averaged gradient and the Hessian approximations in Eq. (4.6), and

(4.8), the preconditioned gradients in Eq. (4.4) can be approximated as follows:

S∗
t = argmin

S⊆V,γt,j≥0 ∀j
|S|, s.t. (4.9)

∥H−1
t gt −

∑
j∈S

γt,jH
−1
t,j gt,j∥ ≤ ϵ.

Next, we discuss how to efficiently find near-optimal weighted subsets that closely approxi-

mate the full preconditioned gradient by solving Eq. (4.4).

4.4.4 Extracting Second-order Coresets

The subset selection problem (4.4) is NP-hard (Nat95). However, it can be considered as

a special case of the sparse vector approximation problem that has been studied in the

literature, including convex optimization formulations—e.g. basis pursuit (CDS01), sparse

projections (PEC12; KBC13), LASSO (Tib96), and compressed sensing (Don06). These

methods, however, are expensive to solve and often require tuning regularization coefficients

and thresholding to ensure cardinality constraints. More recently, the connection between

sparse modeling and submodular 1 optimization have been demonstrated (EKD18; MBL20).

The advantage of submodular optimization is that a fast and simple greedy algorithm often

provides a near-optimal solution. Next, we briefly discuss how submodularity can be used

1A set function F : 2V → R+ is submodular if F (S∪{e})−F (S) ≥ F (T ∪{e})−F (T), for any S ⊆ T ⊆ V
and e ∈ V \ T .

49

to find a near-optimal solution for Eq. (4.4). We build on the recent result of (MBL20)

that showed that the error of estimating an expectation by a weighted sum of a subset of

elements is upper-bounded by a submodular facility location function. In particular, via the

above result, we get:

min
S⊆V
∥H−1

t gt −
∑
j∈S

γt,jH
−1
t,j.gt,j ∥ (4.10)

≤
∑
i∈V

min
j∈S
∥H−1

t,i.gt,i −H−1
t,j.gt,j∥.

Setting the upper bound in the right-hand side of Eq. (4.10) to be less than ϵ results in the

smallest weighted subset S∗ that approximates full preconditioned gradient by an error of

at most ϵ, at iteration t. Formally, we wish to solve the following optimization problem:

S∗ ∈argminS⊆V |S|, s.t. (4.11)

L(S) =
∑
i∈V

min
j∈S
∥H−1

t,i.gt,i −H−1
t,j.gt,j∥ ≤ ϵ,

By introducing a phantom example e, we can turn the minimization problem (4.11) into the

following submodular cover problem, with a facility location objective F (S):

S∗ ∈ argmin
S⊆V

|S|, s.t. (4.12)

F (S) = C1 − L(S ∪ {e}) ≥ C1 − ϵ,

where C1 = L({e}) is a constant upper-bounding the value of L(S). The subset S∗ ob-

tained by solving the maximization problem (4.12) is the medoid of the preconditioned

gradients, and the weights γj is the number of elements that are closest to the medoid

j ∈ S∗, i.e. γj =
∑

i∈V I[j = mins∈S ∥H−1
t,i gt,i−H−1

t,sgt,s∥]. For the above submodular cover

problem, the classical greedy algorithm provides a logarithmic approximation guarantee

|S| ≤
(
1 + ln(maxe F (e|∅))

)
|S∗| (Wol82). The greedy algorithm starts with the empty set

50

S0 = ∅, and at each iteration t, it chooses an element e ∈ V that maximizes the marginal

utility F (e|St) = F (St ∪ {e}) − F (St). Formally, St = St−1 ∪ {argmaxe∈V F (e|St−1)}. The

computational complexity of the greedy algorithm is O(nk). However, its complexity can be

reduced to O(|V |) using stochastic methods (MBK15), and can be further improved using

lazy evaluation (Min78) and distributed implementations (MKS13). The pseudocode can be

found in Alg. 3 in Appendix A.2.3.

One coreset for convex functions For convex functions, normed gradient differences

between data points can be efficiently upper-bounded by the normed difference between

feature vectors (AYS16; HLL15; MBL20). We apply a similar idea to upper-bound the

normed difference between preconditioned gradients. This allows us to find one subset before

the training. See proof in Appendix A.2.4.1.

4.4.5 Convergence Analysis

Here, we analyze the convergence rate of first and second-order methods applied to the

weighted subsets S found by AdaCore. By minimizing Eq. (4.12) at every iteration t,

AdaCore finds subsets that approximate the full preconditioned gradient by an error of

at most ϵ, i.e. ∥H−1
t gt −

∑
j∈S γt,jH

−1
t,j gt,j∥ ≤ ϵ. This allows us to effectively analyze the

reduction in the value of the loss function L at every iteration t. Below, we discuss the

convergence of a first and second-order gradient methodapplied to subsets extracted by

AdaCore.

Convergence for Newton’s Methods and AdaHessian We first provide the con-

vergence analysis for the case where the function L in Problem (4.1) is strongly convex, i.e.

there exists a constant α > 0 such that ∀w,w′ ∈ Rd we have L(w) ≥ L(w′) + ⟨∇L(w′), w −

w′⟩ + α
2
∥w′ − w∥2, and each component function has a Lipschitz gradient, i.e. ∀w ∈ W we

have ∥∇L(w) −∇L(w′)∥ ≤β∥w − w′∥. We get the following results by applying Newton’s

method and AdaHessian to the weighted subsets S extracted by AdaCore.

51

Theorem 4.4.1. Assume that L is α-strongly convex and β-smooth. Let S be a weighted

subset obtained by AdaCore that estimates the preconditioned gradient by an error of at

most ϵ at every iteration t, i.e., ∥H−1
t gt −

∑
j∈S γt,jH

−1
t,j gt,j∥ ≤ ϵ. Then with learning rate

α/β, Newton’s method with update rule of Eq. (2.8) applied to the subsets has the following

convergence behavior:

L(wt+1)− L(wt) ≤ −
α3

2β4
(∥gt∥ − βϵ)2. (4.13)

In particular, the algorithm converges to a βϵ/α-neighborhood of the optimal solution w∗.

Corollary 4.4.2. For an α-strongly convex and β-smooth loss L, AdaHessian with Hessian

power k, applied to subsets found by AdaCore converges to a βϵ/α-neighborhood of the

optimal solution w∗, and satisfies:

L(wt+1)− L(wt) ≤ −
αk+2

2βk+3
(∥gt∥ − βϵ)2. (4.14)

The proofs can be found in Appendix A.2.1.

Convergence for (S)GD in Over-parameterized Case Next, we discuss the conver-

gence behavior of gradient descent applied to the subsets found by AdaCore. In particu-

lar, we build upon the recent results of (LZB20) that guarantees convergence for first-order

methods on a broad class of general over-parameterized non-linear systems, including neu-

ral networks for which the tangent kernel, defined as JTJ are not close to constant but

satisfy the Polyak-Lojasiewicz (PL) condition. Where J = ∂f/∂w is the Jacobian of the

function f with respect to the parameters w. A loss function L is µ-PL∗ on a set W , if
1
2
∥∇L(w)∥2 ≥ µL(w),∀w ∈ W .

Theorem 4.4.3. Assume that the loss function L(w) is β-smooth, and µ-PL∗ on a set W,

and S is a weighted subset obtained by AdaCore that estimates the preconditioned gradient

52

by an error of at most ϵ, i.e., ∥H−1
t gt −

∑
j∈S γt,jH

−1
t,j gt,j∥ ≤ ϵ. Then with learning rate

η, gradient descent with update rule of Eq. (4.2) applied to the subsets have the following

convergence behavior at iteration t:

L(wt) ≤ (1− ηµα2

β2
)tL(w0)−

ηα2

2β2
(β2ϵ2 − 2βϵ∇max), (4.15)

where α is the minimum eigenvalue of all Hessian matrices during training, and ∇max is an

upper bound on the norm of the gradients.

Theorem 4.4.4. Under the same assumptions as in Theorem 4.4.3, for mini-batch SGD

with mini-batch size m ∈ N, the mini-batch SGD with update rule Eq. (4.2), with learning

rate η = m
β(m−1)

, applied to the subsets have the following convergence behavior:

E[L(wt)] ≤ (1− ηµα2

2β
)tE[L(w0)]−

α2η

2β
(βϵ2 − 2ϵ∇max) (4.16)

where α is the minimum eigenvalue of all Hessian matrices during training, and ∇max is an

upper bound on the norm of the gradients, and the expectation is taken w.r.t. the randomness

in the choice of mini-batch.

The proofs can be found in Appendix A.2.2.

We show an exponential convergence for GD (Theorem 4.4.3) and SGD (Theorem 4.4.4)

under the µ-PL∗ condition, as well as for second order methods (Theorems 4.4.1, 4.4.2),

under α-strongly convex and β-smooth assumptions on the loss.

4.5 Experiments

In this section, we evaluate the effectiveness of AdaCore, by answering the following ques-

tions: (1) how does the performance of various first and second-order methods compare

when applied to subsets found by AdaCore vs. the full data and baselines; (2) how ef-

53

fective is AdaCore for extracting crucial subsets for training convex and non-convex over-

parameterized models with different optimizers; and (3) how does AdaCore perform in

eliminating redundancies and enhancing the diversity of the selected elements.

Baselines In the convex setting, we compare the performance of AdaCore with Craig

(MBL20) that extract subsets that approximate the full gradient, as well as Random subsets.

For non-convex experiments, we additionally compare AdaCore with GradMatch and

Glister (KSM21; KSR20). For AdaCore and Craig, we use the gradient w.r.t to the

input to the last layer, and for Glister and GradMatch we use the gradient w.r.t the

penultimate layer, as specified by the methods. In all cases, we select subsets separately

from each class proportional to the class sizes, and train on the union of the subsets. We

report average test accuracy across 3 trials in all experiments.

4.5.1 Convex Experiments

In our convex experiments, we apply AdaCore to select a coreset to classify the Ijcnn1

dataset using L2-regularized logistic regression: fi(x) = ln(1 − exp(−wTxyyi)) + 0.5µwTw.

Ijcnn1 includes 49,990 training and 91,701 test data points of 22 dimensions, from 2 classes

with a 9-to-1 class imbalance ratio. In the convex setting, we only need to calculate the

curvature once to find one AdaCore subset for the entire training. Hence, we utilize the

complete Hessian information, computed analytically, as discussed in Appendix A.2.5. We

apply an exponential decay learning schedule αk = α0b
k with learning rate parameters α0

and b. For each model and method (including the random baseline) we tuned the parameters

via a search and reported the best results.

AdaCore achieves smaller loss residual with a speedup Figure 4.1 compares the

loss residual for SGD and Newton’s method applied to coresets of size 10% extracted by

AdaCore (blue), Craig (orange), and random (green) with that of full dataset (red). We

54

(a) Ijcnn1 SGD (b) Ijcnn1 Newton

Figure 4.1: Loss residual of SGD and Newton’s method for training Logistic Regression on
Ijcnn1. Comparing AdaCore (blue), Craig (orange), and random subsets (green) of size
10% vs. entire data (red dot). AdaCore achieves 2.5x speedup for training with SGD and
Newton’s method.

see that AdaCore effectively minimizes the training loss, achieving a better loss residual

than Craig and random sampling. In particular, AdaCore matches the loss achieved on

the full dataset with more than a 2.5x speedup for SGD and Newton’s methods. We note

that training on random 10% subsets of the data cannot effectively minimize the training

loss. We show the superior performance of training with SGD on subsets of size 10% to 90%

found with AdaCore vs Craig in Appendix Fig. B.7.

AdaCore better estimates the full gradient Fig. 4.2 shows the normalized gradient

difference between the gradient of the full data vs. the weighted gradient of subsets of

different sizes obtained by AdaCore vs Craig and Random, at the end of training by

each method. We see that by considering curvature information, AdaCore obtains a better

gradient estimate than Craig and Random subsets.

4.5.2 Non-Convex Experiments

Datasets We use CIFAR10 (60k points from 10 classes) , class imbalanced version of

CIFAR10 (32.5k points from 10 classes) and CIFAR100 (32.5k points from 100 classes)

55

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of data selected

0.00

0.01

0.02

0.03

0.04

No
rm

al
ize

d
No

rm
ed

 G
ra

di
en

t
Di

ffe
re

nc
e

SGD+AdaCore
SGD+CRAIG
SGD+Random

(a) Ijcnn1 SGD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of data selected

0.00

0.01

0.02

0.03

0.04 Newton+AdaCore
Newton+CRAIG
Newton+Random

(b) Ijcnn1 Newton

Figure 4.2: Normalized gradient difference between subsets of various sizes found by Ada-
Core (blue), AdaCore (orange), Random (green) vs full data, when training Logistic
Regression with SGD and Newton on Ijcnn1. AdaCore has a smaller gradient error at the
end of training.

(Kri09), BDD100k (100k points from 7 classes) (YCW20). The results on MNIST (70k

points from 10 classes) (Den12) can be found in Appendix B.2.6. Images are normalized to

[0,1] by division with 255.

Models and Optimizers We train ResNet-20 and ResNet-18 (HZR16), with convolution,

average pooling, and dense layers with softmax outputs and weight decay of 10−4. We use a

batch size of 256 in all experiments (except Table 4.3, Fig. 4.4a), and train using SGD with

momentum of 0.9 (default), or AdaHessian. For training, we use a standard learning rate

scheduler for ResNet starting with 0.1 and exponentially decaying by factor 0.1 at epochs

100 and 150. We used linear learning rate warm-up for the first 20 epochs to prevent weights

from diverging when training with subsets. All experiments were run on a 2.4GHz CPU and

RTX 2080 Ti GPU.

Calculating the Curvature To calculate the Hessian diagonal using Eq. (4.7), we use

a batch size of bH = 64 to calculate the expected Hessian diagonal over the training data.

We observed that a smaller batch size provides a higher quality Hessian compared to larger

batch sizes, as shown in Table 4.1.

56

(a) Test Accuracy (b) Distribution of selected points (c) Forgetting vs class rank-
ing

Figure 4.3: Training ResNet-18 on subsets of size S=1% selected every R=1 epoch, with
AdaCore, Craig, Glister, GradMatch and Random for 200 epochs vs. full for 15
epochs. (a) AdaCore outperforms baselines by providing 2x speedup over full, and more
than 4.5x speedup over Random. (b) Histograms of the number of times a point is selected
by AdaCore, Craig, and GradMatch. AdaCore selects a more diverse set of exam-
ples compared to Craig, and GradMatch augments several randomly selected examples.
(c)Forgetting scores for examples of a class sorted by AdaCore at the end of training.
AdaCore priorities less forgettable examples compared to Craig.

Baseline Comparison and Ablation Study Table 4.1 shows the accuracy of training

ResNet-20, using SGD with the momentum of 0.9 and AdaHessian, for 200 epochs on S=1%

subsets of CIFAR-10 chosen every R=1 epoch by different methods. For SGD+momentum,

AdaCore outperforms Craig by 12%, Random by 10%, GradMatch by 6%, and Glis-

ter by 16.8%. Note that in total, AdaCore selects 74% of the dataset during the entire

training process, whereas Random visits 87%. Thus, AdaCore effectively selects subsets

contributing the most to generalization. We see that the accuracy gap between the baselines

and AdaCore shrinks when applying more powerful optimizers such as AdaHessian. Table

4.1 also shows the effect of exponential averaging of gradients and Hessian diagonal, and

larger batch sizes for calculating the Hessian diagonal bH . We see that exponential averaging

helpsAdaCore achieve better performance, and smaller bH provides better results.

Fig. 4.3a compares the performance of ResNet-18 on 1% subsets selected from CIFAR-10

with different methods. We compare the performance of training on AdaCore, Craig,

GradMatch, Glister, and Random subsets for 200 epochs, with training on full data for

57

AdaHessian SGD+Momentum
Random 59.1%± 2.8(87%) 45.9%± 2.5(87%)
Craig 59.5%± 2.8(74%) 43.6%± 1.6(75%)
GradMatch 57.5%± 1.3(74%) 49.4%± 1.6(74%)
Glister 37.5%± 1.3(74%) 38.6%± 1.6(74%)

AdaCore (no avg) 58.4%± 0.2(73%) 51.5%± 1.1(74%)
AdaCore (avg g) 59.8%± 0.5(73%) 53.2%± 1.1(74%)
AdaCore (avg H) 60.2%± 0.5(73%) 54.4%± 1.1(74%)
AdaCore 60.2%± 0.5(73%) 55.4%± 1.1(74%)

AdaCore bh=512 57.2%± 0.5(73%) 52.4%± 1.1(74%)

Table 4.1: Training ResNet20 using AdaHessian and SGD+momentum on coresets of size
1% selected by different methods from CIFAR10. Percent of full data selected during the
entire training is shown (in parentheses). Using bH=64, AdaCore achieves up to 16.8%
higher accuracy while selecting a smaller fraction of data points. Exponential averaging of
gradient and Hessian, and a smaller bH helps.

15 epochs. This is the number of iterations required for training on the full data to achieve

comparable performance to that of AdaCore subsets. We see that training on AdaCore

coresets achieves a better accuracy 2.5x faster than training on the full dataset, and more

than 4.5x faster than the next best subset selection algorithm for this setting (c.f. Fig. B.9b

in Appendix for complete results).

Frequency and size of subsets selection Table 4.2, 4.4 shows the performance of differ-

ent methods for selecting subsets of size S% of the data every R epochs, from CIFAR-10 and

imbalanced CIFAR-10. Table 4.2 shows that selecting subsets of size 1% every R = 5, 10, 20

epochs with AdaCore achieves superior performance compared to the baselines. Table

Table 4.2: Test accuracy and percent of full data selected (in parentheses), when selecting
S=1% coresets every R epochs from Imbalanced CIFAR-10 to train ResNet18.

S=1%, R=20 S=1%, R=10 S=1%, R=5
AdaCore 57.3%(5%) 57.12(9.5%) 60.2%(14.5%)
Craig 48.6%(8%) 55(16%) 53.05%(27.5%)
Random 54.7%(8%) 54.6(18%) 54.6%(33.2%)
GradM 29.9%(8.2%) 29.1%(14.7%) 32.75%(23.2%)
Glister 21.1%(8.6%) 17.2%(16%) 14.4%(22.2%)

58

4.4 shows that AdaCore can successfully select larger subsets of size S = 10%, 30% and

outperform Craig (Std is reported in Appendix, Table B.4).

AdaCore speeds up training Fig 4.4 compares the speedup of various methods during

training ResNet18 on 10% subsets selected every R = 20 epoch from BDD 100k and CIFAR-

100. All the methods are trained to achieve a test accuracy between 72% and 74% on BDD

100k and between 57% and 50% on CIFAR-100. On BDD 100k, AdaCore achieves 74%

accuracy in 100 epochs and training on full data achieves similar performance in 45 epochs.

For CIFAR-100, AdaCore achieves 59% accuracy in 200 epochs and training on full data

achieves a similar performance in 40 epochs. Complete results on speedup and test accuracy

of each method can be found in Appendix B.2.3, B.2.4. We see that AdaCore achieves 2.5x

speedup over training on full data and 1.7x over that of training on random subsets on BDD

100k. For CIFAR-100, AdaCore achieves 4.2x speedup over training on random subsets

and 2.9x over training on full data. Compared to the baselines, AdaCore can achieve the

desired accuracy much faster.

Effect of batch size Table 4.3 compares the performance of training with different batch

sizes on subsets found by various methods. We see that training with larger batch size on

subsets selected by AdaCore can achieve superior accuracy. As AdaCore selects more

diverse subsets with smaller weights, one can train with larger mini-batches on the subsets

Table 4.3: Training ResNet18 with S=1% subsets every R=1 epoch from CIFAR10 using
batch size b= 512, 256, 128. AdaCore can leverage larger mini-bath size and obtain a
larger accuracy gap to Craig and Random. For b=512, we have 1 mini-batch (GD). Std is
reported in Appendix TableB.8.

AdaC. Craig Rand Gap/
Craig

Gap/
Rand

GD b=512 58.32% 56.32% 49.14% 1.69% 8.91%
SGD b=256 68.23% 58.3% 60.7% 9.93% 8.16%
SGD b=128 66.89% 58.17% 65.46% 8.81% 1.52%

59

Table 4.4: Test accuracy and percent of full data selected (in parentheses), when selecting
S% coresets every R epochs from CIFAR-10 and Imbalanced CIFAR-10 to train ResNet18.

ResNet20, CIFAR10
S = 30%, R = 20

ResNet20, CIFAR10
S = 10%, R = 20

ResNet18, CIFAR10-IMB
S = 30%, R = 20

ResNet18, CIFAR10-IMB
S = 10%, R = 20

AdaCore 80.57%± 0.11 (74.6%) 70.6%± 0.33 (44.8%) 85.7%± 0.1 (74%) 76%± 0.3 (43.8%)
Craig 65.8%± 0.41 (90.9%) 58.5%± 1.27 (60.75%) 79.3%± 1.6 (84.5%) 71.6%± 0.15 (56.4%)

without increasing the gradient estimate error. In contrast, Craig subsets have elements

with larger weights and hence training with fewer larger mini-batches has a larger gradient

error and does not improve the performance.

In summary, see that AdaCore consistently outperforms the baselines over various

architectures, optimizers, subset sizes, selection frequency, and batch sizes.

AdaCore selects more diverse subsets Fig. 4.3b shows the number of times differ-

ent methods selected particular elements during the entire training. We see that AdaCore

successfully selects a more diverse set of examples compared to Craig. We note that Grad-

Match may not be able to select subsets with the desired size, and instead augments the

selected subset with randomly selected examples. Hence, it has a normal-shaped distribution.

Fig. 4.3c shows the mean forgetting score for all examples within a class ranked by Ada-

Core at the end of the training, over a sliding window of size 100. We see that AdaCore

prioritizes selecting less forgettable examples. This shows that indeed AdaCore is able to

distinguish different groups of easier examples better, and hence can prevent catastrophic

forgetting by including their representatives in the coresets.

AdaCore vs Forgettability and Uncertainty Fig. 4.5a, 4.5b show mean forgettability

and uncertainty in sliding windows of size 100, 200 over examples sorted by AdaCore at

the end of training. We see that AdaCore heavily biases its selections towards forgettable

and uncertain points, as training proceeds. Interestingly, 4.5a reveals that AdaCore avoids

the most forgettable samples in favor of slightly more memorable ones, suggesting that

AdaCore can better distinguish easier groups of examples. Figure 4.5b shows similar bias

60

(a) BDD100k, ResNet50 (b) CIFAR100, ResNet18

Figure 4.4: Speedup of various methods over training on random subsets and full data, for
training ResNet18 on CIFAR100 and ResNet50 on BDD100k with batch size=128.

towards uncertain samples. Fig. 4.5c, 4.5d show the most and least selected images by

AdaCore, respectively. We see the redundancies in the never selected images, whereas

images frequented by AdaCore are quite diverse in color, angles, occluded subjects, and

airplane models. This confirms the effectiveness of AdaCore in extracting the most crucial

subsets for learning and eliminating redundancies.

4.6 Conclusion

We proposed AdaCore, a method that leverages the topology of the dataset to extract

salient subsets of large datasets for efficient machine learning. The key idea behind Ada-

Core is to dynamically incorporate the curvature and gradient of the loss function via an

adaptive estimate of the Hessian to select weighted subsets (coresets) which closely approxi-

mate the preconditioned gradient of the full dataset. We proved an exponential convergence

rate for first and second-order optimization methods applied to AdaCore coresets, under

certain assumptions. Our extensive experiments, using various optimizers e.g., SGD, Ada-

Hessian, and Newton’s method, show that AdaCore can extract higher quality coresets

compared to baselines, rejecting potentially redundant data points. This speeds up the

61

training of various machine learning models, such as logistic regression and neural networks,

by over 4.5x while selecting fewer but more diverse data points for training.

4.6.1 Further Research

Currently AdaCore uses the Hutchinson method to estimate the diagonal of the Hessian

matrix. One simple way to improve the curvature estimate is to use the general-purpose pre-

conditioner from PSGD. This improved preconditioner should improve the subset selection

quality of AdaCore.

62

0 1000 2000 3000 4000 5000
Start of window (window size = 100)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Pe
rc

en
t a

bo
ve

 th
re

sh
ol

d
=

1

Forgetting In Moving Window
Forgetting In Full Dataset

(a) Forgetting vs class ranking

0 1000 2000 3000 4000 5000
Start of window (window size = 200)

0.25

0.30

0.35

0.40

0.45

Pe
rc

en
t a

bo
ve

 th
re

sh
ol

d
=

0.
00

1

Uncertainty In Moving Window
Uncertainty In Full Dataset

(b) Uncertainty vs class ranking

(c) Most selected (d) Not selected

Figure 4.5: Training ResNet20 on S=1% subsets of CIFAR-10 selected by AdaCore. (a)
Forgetting scores, and (b) uncertainty of examples in a class sorted by AdaCore at the end
of training. AdaCore prioritize selecting more forgettable and uncertain examples. (c) Six
images selected by AdaCore most frequently (25 times) from the airplane class. (d) The
subset of images never selected by AdaCore.

63

CHAPTER 5

Generating High Fidelity Synthetic Data via Coreset

selection and Entropic Regularization

Generative models have the ability to synthesize data points drawn from the data distri-

bution, however, not all generated samples are high quality. In this chapter, we propose

using a combination of coresets selection methods and “entropic regularization” to se-

lect the highest fidelity samples. We leverage an energy-based model which resembles

a variational auto-encoder with an inference and generator model for which the latent

prior is complexified by an energy-based model. In a semi-supervised learning scenario,

we show that augmenting the labeled data-set, by adding our selected subset of samples,

leads to better accuracy improvement rather than using all the synthetic samples.

5.1 Introduction

In machine learning, augmenting data sets with synthetic data has become a common practice

that potentially provides significant improvements in downstream tasks such as classification.

For example, in the case of images, recent methods like MixMatch, FixMatch, and Mean

Teacher (BCG19) (Raf20) (TV17) have proposed data augmentation techniques that rely on

simple pre-defined transformations such as cropping, resizing, etc.

However, generating augmentations is not as straightforward in all modalities. Hence,

one suggestion is to use samples from generative models to augment the data sets. One

issue that arises is that simply augmenting a data set using a generative model can often

64

lead to the degradation of classification accuracy due to some poor samples drawn from the

generator. The question arises: can we filter the lower-quality generated samples to avoid

degradation in accuracy? In our method, we select a subset of synthetic samples which

have high fidelity to the underlying data set via Craig (MBL19); additionally, we introduce

“entropic regularization” by filtering samples with low entropy over the latent classifier.

In semi-supervised learning, the goal is to learn a classifier model which maintains high

classification accuracy while reducing the number of labeled observed examples. Generative

modeling, especially likelihood-based learning, is a principled formulation for unsupervised

and semi-supervised learning. Within this family of models, energy-based models (EBM) are

particularly convenient for semi-supervised learning, as they may be interpreted as generative

classifiers. We have access to the class predictions and may also draw samples from the model.

Another direction in supervised learning is reducing the computation involved in training

a model by reducing the data set to a smaller subset. Such sets are coined coresets as a

smaller set of representative points that attempts to approximate the geometry of a larger

point set under some metric. Recent art (MBL19) introduces a novel algorithm Craig

which constructs a weighted coreset such that the gradient over the entire training data-set

is closely estimated, which allows for gradient descent on the smaller coreset with considerable

improvement in the sample- and computational-efficiency.

In this chapter, we show that semi-supervised learning and coreset subset selection are

complementary and improve generalization and generation quality. First, a generative clas-

sifier is learned on a large set of unlabelled data and a small set of labeled data pairs. Then,

the generative model is utilized to draw class-conditional samples, which augment the la-

beled data pairs. As such augmentation might be a considerably large set, we can draw

infinite samples from the generative model; we recruit Craig to reduce the conditional sam-

ples to a much smaller coreset while approximately maintaining the full gradient over the

cross-entropy term. As the generative model might synthesize conditional samples of low

quality or even incorrect class identity, we apply an entropic filter to remove noisy sam-

65

ples. By learning a joint generative classifier, we learn a generator that can produce samples

that improve classification accuracy and a classifier that can boost generative capacity and

quality.

This method may be interpreted as a learned (and filtered) data augmentation as opposed

to classical data augmentation in which the set of augmentation functions (e.g., convolution

with Gaussian noise, horizontal or vertical flipping, etc.) is pre-defined and could be specific

to a data-set or modality. We demonstrate the method’s efficacy through a significant

improvement in classification performance.

5.2 Related Work

Data augmentation. Semi-supervised models with purely discriminative learning mostly

rely on data augmentation, exploiting the class-invariance properties of images. Pseudo-

labels (Lee13) train a discriminative classifier on a small set of labeled data and sample

labels for a large set of unlabelled data, which in turn is used to train the classifier further

supervised. MixMatch (BCG19) applies stochastic transformations to an unlabeled image,

and each augmented image is fed to a classifier for which the average logit distribution

is sharpened by lowering the soft-max temperature. FixMatch (Raf20) strongly distorts

an unlabeled image and trains the model such that the cross-entropy between the one-

hot pseudo-labels of the original image and the logits of the distorted image is minimized.

Mean teacher (TV17) employs a teacher model whose parameters are the running mean of a

student model and trains the student such that a discrepancy between teacher and student

predictions of augmented unlabeled examples is minimized. Virtual Adversarial Training

(VAT) (MMK18) finds an adversarial augmentation to an unlabeled example within an ϵ-ball

with respect to some norm such that the distance between the class distribution conditional

on the unlabeled example and the one on the adversarial example is maximized.

The methods of MixMatch, FixMatch, and Mean teacher rely on pre-defined data aug-

66

mentations, which are readily available in the modality of images as the semantic meaning

is invariant to transforms such as rotation or flipping but are challenging to construct in

modalities such as language or audio modalities. Our method is agnostic to the data modal-

ity. Pseudo-labeling is closely related in that labels are sampled given unlabeled examples,

whereas our method samples examples given labels. VAT is close to our method as it is

modality agnostic and leverages the learned model to sample labeled examples, albeit of an

“adversarial” nature. In contrast, our samples are “complementary.” DAPPER is closest to

our method as it employs a generative model to augment the data set but misses the coreset

reduction.

5.3 Synthetic Data Generation for Semi-Supervised Learning

Notation Let x ∈ RD be an observed example. Let y be a K-dimensional one-hot vector

as the label for classification with K categories. Suppose L = {(xi, yi) ∈ RD × {k}Kk=1, i =

1, ...,M} denotes a set of labeled examples where K indicates the number of categories and

U = {xi ∈ RD, i =M + 1, ...,M +N} denotes a set of unlabeled examples.

Semi-Supervised Learning Let pθ(y | x) denote a soft-max classifier with parameters

θ. Semi-supervised learning aims to learn θ with “good” generalization while decreasing the

number of labeled examples M .

5.3.1 Latent Energy Based Model

Let z ∈ Rd be the latent variables, where D ≫ d. We assume a Markov chain y → z → x.

Then the joint distribution of (y, z, x) is

pθ(y, z, x) = pα(y, z) pβ(x|z), (5.1)

67

where pα(y, z) is the prior model with parameters α, pβ(x|z) is the top-down generation

model with parameters β, and θ = (α, β). Then, the prior model pα(y, z) is formulated as

an energy-based model (PHN20),

pα(y, z) = Z(α)−1 exp(Fα(z)[y]) p0(z). (5.2)

p0(z) is a reference distribution, assumed to be isotropic Gaussian. Fα(z) ∈ RK is param-

eterized by a multi-layer perceptron. Fα(z)[y] is the yth element of Fα(z), indicating the

conditional negative energy. Z(α) is the partition function. In the case where the label y is

unknown, the prior model pα(z) =
∑

y pα(y, z) = Z(α)−1
∑

y exp(Fα(z)[y])p0(z). Taking the

log of both sides:

log pα(z) = log
∑
y

exp(Fα(z)[y]) + log p0(z)− logZ(α), (5.3)

Figure 5.1 illustrates the extension of the symbol-vector coupling to the latent-space

energy-based model.

Figure 5.1: Lifting log-sum-exp into latent space. Left: Latent-space EBM fα on top of
generator gβ. Right: Fα allows mapping from label y to latent z and vice versa.

The prior model can be interpreted as an energy-based correction or exponential tilting

of the reference distribution, p0. The correction term is Fα(z)[y] conditional on y, while it is

log
∑

y exp(Fα(z)[y]) when y is unknown. Denote

fα(z) = log
∑
y

exp(Fα(z)[y]), (5.4)

68

and then−fα(z) is the free energy (GWJ19). The soft-max classifier is pα(y|z) ∝ exp(⟨y, Fα(z)⟩) =

exp(Fα(z)[y]).

The generation model is the same as the top-down network in VAE (KW13b), x =

gβ(z) + ϵ, where ϵ ∼ N (0, σ2ID), so that pβ(x|z) ∼ N (gβ(z), σ
2ID).

We use variational inference to learn our latent space EBM by minimizing the evidence

lower bound (ELBO) over our energy, encoder, and generator models jointly. Refer to

appendix 5.4 for more details about learning the model.

In summary, we can use the above model to i) classify data points, ii) generate class-

conditional samples and iii) compute entropy for each generated sample. We will leverage

these properties in the later sections to get better augmentation for our data set.

5.4 Learning the model with variational inference

Given a data point in the unlabeled set, x ∈ U , the log-likelihood log pθ(x) is lower bounded

by the evidence lower bound (ELBO),

ELBO(θ) = Eqϕ(z|x)[log pβ(x|z)]−DKL[qϕ(z|x)∥pα(z)] (5.5)

where θ = {α, β, ϕ} is overloaded for simplicity and qϕ(z|x), is a variational posterior, an

approximation to the intractable true posterior pθ(z|x).

For the prior model, the learning gradient, for example, is

∇αELBO(θ) = Eqϕ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)] (5.6)

where fα(z) is the negative free energy defined in equation (5.4), Eqϕ(z|x) is approximated

by samples from the variational posterior and Epα(z) is approximated with short-run MCMC

chains (NPH20) initialized from the variational posterior qϕ(z|x).

69

Let ψ = {β, ϕ} collect parameters of the inference and generation models, and the learn-

ing gradients for the two models are,

∇ψELBO(θ) = ∇ψEqϕ(z|x)[log pβ(x|z)]−∇ψDKL[qϕ(z|x)∥p0(z)] +∇ψEqϕ(z|x)fα(z) (5.7)

where DKL[qϕ(z|x)∥p0(z)] is tractable, and the expectation in the other two terms is approx-

imated by samples from the variational posterior distribution qϕ(z|x).

For one example of labeled data, (x, y) ∈ L, the log-likelihood can be decomposed as

log pθ(x, y) = log pθ(x) + log pθ(y|x). While we optimize log pθ(x) as the unlabeled data,

we maximize log pθ(y|x) by minimizing the cross-entropy as in standard classifier training.

Notice that given the Markov chain assumption y → z → x, we have

pθ(y|x) =
∫
pθ(y|z)pθ(z|x)dz = Epθ(z|x)pθ(y|z) ≈ Eqϕ(z|x)

exp(Fα(x)[y])∑
k exp(Fα(x)[k])

. (5.8)

In the last step, the true posterior pθ(z|x), which requires expensive MCMC, is approximated

by the amortized inference qϕ(z|x).

5.4.1 Sampling Synthetic data from the EBM

Naturally, increasing the cardinality of the set of labeled samples L may improve the clas-

sification accuracy of soft-max classifier pθ(y | x). In the case of image models, traditional

methods recruit a set of transformations or permutations of x, such as convolution with

Gaussian noise or random flipping. Instead, we leverage the learned top-down generator

pβ(x|z) to augment L with class conditional samples. This is beneficial as (1) the generative

path is readily available as an auxiliary model of learning the variational posterior qϕ(z|x)

by auto-encoding variational Bayes, (2) hand-crafting of data augmentation is domain and

modality-specific, and (3) in principle the number of conditional ancestral samples is infinite

and might capture the underlying data distribution well.

70

We may construct the augmented set of L labeled samples L+ = {(xi, yi)} by drawing

conditional latent samples from the energy-based prior model pα(y, z) in the form of Markov

chains. Then, we obtain data space samples by sampling from the generator pβ(x|z).

First, for each label y, we draw an equal number of samples Z = {zi} in latent space.

One convenient MCMC is the overdamped Langevin dynamics, which we run for TLD steps

with target distribution pα(y, z),

z ∼ p0(z), (5.9)

zt+1 = zt + s∇z

[
fα(z)[y]− ∥z∥2

/
2] +
√
2sϵt, t = 1, . . . , TLD (5.10)

with negative conditional energy fα(z)[y], discretization step size s, and isotropic ϵt ∼

N(0, I).

Then, we draw conditional samples {xi} in data space given {zi} from the top-down

generator model pβ(x|z),

L+ = {(xi ∼ pβ(x|zi), yi) | i =M +N, . . . ,M +N + L} (5.11)

which results in an augmented data set of L class conditional samples.

5.4.2 Entropic Regularization

When learning the generative classifier on both labeled samples L and the above naive

construction of augmentation L+, the classification accuracy tends to be worse than solely

learning from L. As depicted in Figure 5.2a, a few conditional samples suffer from either low

visual fidelity or even incorrect label identity. This reveals the implicit assumption of our

method is that
∫
pβ(x|z)pα(z|y) is reasonably “close” to the true class conditional distribution

p(x|y) under some measure of divergence, which is not guaranteed.

To address the issue of outliers, we propose to exclude conditional samples for which the

71

(a) Unsorted Conditional Samples. (b) Sorted Conditional Samples of Class 9.
Figure 5.2: Class conditional samples drawn from pβ(x|z)pα(z|y). (a) Outliers suffer from
low visual fidelity (e.g., the last sample in the row of “ones”) or wrong label identity (e.g., the
last image of the row of “sevenths”. (b) Conditional samples sorted by increasing Shannon
entropy H(z) over the logits.

entropy in logits H(pθ(y|z)) exceeds some threshold T . We propose the following two criteria

for outlier detection,

H1(z) = log
∑
y

exp(Fα(z)[y]), (5.12)

H2(z) = −
∑
y

pθ(z|y) log pθ(z|y). (5.13)

Note,(5.13) is the classical Shannon entropy over the soft-max normalized logits of the

classifier. Then, we may construct a more faithful data augmentation as follows,

ZT = {zi ∼ p(z|yi) | H(zi) < T , i =M +N, . . . ,M +N + L}, (5.14)

L+
H = {(xi ∼ pβ(x|zi), yi) | i =M +N, . . . ,M +N + L}. (5.15)

Figure 5.2b depicts conditional samples sorted by H(z) for which samples with relatively

large Shannon entropy suffer from low visual fidelity.

The learning and sampling algorithm is described in Algorithm 2 as an extension of

(PHN20).

72

Algorithm 2 Semi-supervised learning of generative classifier with coreset selection.
input : Learning iterations T , augmentation iteration Ta, learning rates (η0, η1, η2, η3), initial parameters (α0, β0, ϕ0), observed

unlabelled examples {xi}Mi=1, observed labelled examples {(xi, yi)}M+N
i=M+1, unlabelled, labelled and augmented batch

sizes (n,m, l), number of augmented samples L, entropy threshold T , and number of Langevin dynamics steps TLD.
output: (αT , βT , ϕT).

1 for t = 0 : T − 1 do
2 1. Mini-batch:

Sample {xi}mi=1 ⊂ U , {xi, yi}m+n
i=m+1 ⊂ L, and {xi, yi}m+n+l

i=m+n+1 ⊂ L+
H.

2. Prior sampling:
For each unlabelled xi, initialize a Markov chain z−0i ∼ qϕ(z|xi) and update by MCMC with target distribution pα(z) for
TLD steps.
3. Posterior sampling:
For each xi, sample z+i ∼ qϕ(z|xi) using the inference network and reparameterization trick.
4. Unsupervised learning of prior model:
αt+1 = αt + η0

1
m

∑m
i=1[∇αFαt (z

+
i)−∇αFαt (z

−
i)].

5. Unsupervised learning of inference and generator models:
ψt+1 = ψt + η1

1
m

∑m
i=1[∇ψ [log pβt (x|z

+
i)]−∇ψKL(qϕt (z|xi)∥p0(z)) +∇ψ [Fαt (z

+
i)].

6. Supervised learning of prior and inference model:
θt+1 = θt + η2

1
n

∑m+n
i=m+1

∑K
k=1 yi,k log(pθt (yi,k|z

+
i)).

7. Augment at iteration Ta:
ZT = {zi ∼ p(z|yi) | H(zi) < T , i =M +N, . . . ,M +N + L},
L+
H = {(xi ∼ pβ(x|zi), yi) | i =M +N, . . . ,M +N + L}.

8. Approximate the gradient below with Craig after iteration Ta according to (5.17):
θt+1 = θt+1 + η3

1
n

∑m+n+l
i=n+m+1

∑K
k=1 yi,k log(pθt (yi,k|z

+
i)).

3 end for

5.4.3 Coreset Selection

Training machine learning models on large data sets incurs considerable computational costs.

There has been substantial effort to develop subset selection methods that can carefully select

a subset of the training samples that generalize on par with the entire training data (MBL19)

(PDM22b). Since we can generate a virtually infinite amount of synthetic samples, we must

select the best subset of points to augment our base data set with. Intuitively Craig selects

a subset that can best cover the gradient space of the full data set. It does this by selecting

exemplar medoids from clusters of data points in the gradient space. As a bi-product,

Craig robustly rejects noisy and even poisoned data points. The subset corset algorithm

AdaCore improves on Craig’s results by selecting diverse subsets (PDM22b). Utilizing

coreset methods allows us to select samples from the generator representative of the ground

truth data set while rejecting points that may negatively impact our network performance.

Formally, the Craig (MBL19) algorithm aims to identify the smallest subset S ⊂ V and

corresponding per-element stepsizes γj > 0 that approximate the full gradient with an error

73

at most ϵ > 0 for all the possible values of the optimization parameters w ∈ W .

S∗ =arg min
S⊆V,γj≥0∀j

|S|, s.t. max
w∈W

∥∥∥∥∥∑
i∈V

∇fi(w)−
∑
j∈S

γj∇fj(w)

∥∥∥∥∥ ≤ ϵ (5.16)

For deep neural networks, calculating the above metric is more costly than calculating

vanilla SGD. In deep neural networks, the variation of the gradient norms is mostly captured

by the gradient of the loss w.r.t the inputs of the last layer L. (MBL19) shows that the

normed gradient difference between data points can be efficiently bounded approximately by

∥∇fi(w)−∇fj(w)∥ ≤ c1

∥∥∥Σ′
L

(
z
(L)
i

)
∇f (L)

i (w)− Σ′
L

(
z
(L)
j

)
∇f (L)

j (w)
∥∥∥+ c2 (5.17)

where z(l)i = w(l)x
(l−1)
i . This upper bound is only slightly more expensive than calculating

the loss. In the case of cross entropy loss with soft-max as the last layer, the gradient of the

loss w.r.t. the i-th input of the soft-max is pi − yi, where pi are logits and y is the one-hot

encoded label. As such, in this case, Craig does not need a backward pass or extra storage.

This makes Craig a practical and scalable tool to select high-quality generated synthetic

data points.

5.4.4 Implicit learned data augmentation

In the following, we will re-interpret the above explicit data augmentation and entropic

regularization into an implicit augmentation which can be merged into a simple term of the

learning objective function.

The assumed Markov chain underlying the model is y → z → x. Let ẑ ∼ qϕ(z|x)

denote the conditional sample ẑ from the approximate posterior given an observation x.

Let ŷ ∼ pθ(y|ẑ) denote the predicted label for which the logits of C classes are given as

Fα(z) = (Fα(z)[1], Fα(z)[2], . . . , Fα(z)[C]).

The factorization which recruits the log-sum-exp lifting (5.3) as exponential tilting of

74

the reference distribution p0(z) so that the conditional pα(y|z) is defined and amortized

inference (7.6) with a variational approximation of the posterior qϕ(z|x). These conditional

distributions allow us to express learned data augmentation as the chain,

y
qT (z|y)→ z

pθ(x|z)→ x
qϕ(z|x)→ ẑ

Fα(z)[y]→ ŷ. (5.18)

in which the conditional z|y is given as an MCMC dynamics. Specifically, we define qT (z|y) as

K-steps of an overdamped Langevin dynamics on the learned energy-based prior exp(Fα(z)[y])p0(z),

which iterates

zk+1 = zk + s∇z log p(zk|y) +
√
2Tsϵk, k = 0, . . . , K − 1, (5.19)

with discretization step-size s, temperature T and isotropic noise ϵk ∼ N(0, I).

For the (labeled) data distribution pdata the labels y are known. For the data augmen-

tation, we assume a discrete uniform distribution over labels y ∼ U{1, C}. Then, we define

augmentation of synthesized examples as the marginal distribution

paug(x) = EyEz|y[p(x|z)p(z|y)]. (5.20)

Then, we may introduce an augmented data distribution as the mixture of the underlying

labeled data distribution pdata and the augmentation paug and mixture coefficient λ,

pλ(x) = λpdata(x) + (1− λ)paug(x). (5.21)

As we have access to pθ(y|x) = Epθ(z|x)pθ(y|z) and can extend the objective to minimize

the KL divergence under the augmented data distribution such that the labels y of (labeled)

75

pdata and paug are recovered under the model,

Epλ(x)[KL(p(y|x)∥p(ŷ|x))]. (5.22)

In information theory, the Kraft-McMillian theorem relates the relative entropyKL(p∥q) =

Ep[log p/q] to the Shannon entropy H(p) and cross-entropy H(p, q),

KL(p∥q) = H(p, q)−H(p). (5.23)

In our case, the first term reduces to soft-max cross entropy over the (labeled) data distri-

bution pdata and sampled labels y ∼ U{1, C}. Hence, to minimize the above divergence, we

must minimize the cross entropy, which is consistent with classical learning of discriminative

models. However, note that in our case the steps in (5.18) are fully differentiable so that the

data augmentation turns into an implicit term in the unified objective function rather than

an explicitly constructed set of examples.

Lastly, we wish to re-introduce the entropic regularization for implicit data augmentation.

Note, the entropic filter can be interpreted as a hard threshold on H(p(ŷ|x))) < T . Here

the Langevin dynamics qT on z maximizes the logit Fα(z)[y], i.e. minimizes H(p(ŷ|x))),

for which the Wiener process materialized in the noise term
√
2Tsϵk with temperature T

introduces randomness, or, smoothens the energy potential such that the dynamics converge

towards the correct stationary distribution. High temperature T leads to Brownian motion,

while low T leads to gradient descent. We realize that T controls H(p(ŷ|x))) as it may be

interpreted as a soft or stochastic relaxation of T . We can express the entropic filter in terms

of the temperature T of qT and only need to lower T to obtain synthesized samples with

associated low entropy in the class logits.

76

5.5 Experiments: Learning data augmentation

We evaluate our method on standard semi-supervised learning benchmarks for image data.

Specifically, we use the street view house numbers (SVHN) (NWC11) data set with 1, 000

labeled images and 64, 932 unlabeled images. The inference network is a standard Wide

ResNet (ZK16). The generator network is a standard 4-layer de-convolutional network reg-

ularly used in DC-GAN. The energy-based model is a fully connected network with 3 layers.

Adam (KB14) is adopted for optimization with batch sizes n = m = l = 100. The models are

trained for T = 1, 200, 000 steps with augmentation after Ta = 600, 000 steps. The short-run

MCMC dynamics in (7.12) is run for TLD = 60 steps.

At iteration Ta, we take L class conditional samples from the generator with an equal

amount of samples (L/10 for each digit). We filter conditional samples based on H as

described in Section 5.4.2 for which the threshold T = 1e−6 was determined by grid search.

Next, we run Craig on the generated samples to keep a subset of 10% of the samples. For

these additional examples, we compute the soft-max cross-entropy gradient with per-example

weights obtained by Craig and update the model with step size η3 < η2 or a loss coefficient

of 0.1 to weaken the gradient of L+
H relative to the original labeled data L. Additionally, for

every 10k iteration, we rerun Craig to choose an updated subset of generated samples.

L
Method 0 10,000 40,000 100,000 200,000

Baseline 92.0 ± 0.1 88.1 ± 0.1 - - -
H - 93.5 ± 0.1 93.8 ± 0.1 - -
H & Craig - 93.0 ± 0.1 93.5 ± 0.1 93.9 ± 0.1 93.9± 0.1
H & Craig & PL - - 94.5 ± 0.1 - -

Table 5.1: Test accuracy with varied number of conditional samples L on SVHN (NWC11).

Table 5.1 depicts results for the test accuracy on SVHN for a varied number of conditional

samples L. First, we learned the model without data augmentation as a baseline. Then,

77

(a) Forgettability vs Entropy (b) t-SNE Entropy Visualization
Figure 5.3: a) Shows that points that have low entropy are correlated with unimportant
forgettable points b) Shows that central cluster points correspond to low entropy points.

we draw L conditional samples without an entropic filter and observe worse classification

performance. As described earlier, we introduce the entropic filterH to eliminate conditional

samples of low quality, which significantly improves classification performance with increasing

L. Finally, we combine the entropic filter H and coreset selection by Craig to increase L

further. For L = 10, 000, there is a significant improvement in classification accuracy when

introducing Craig, which, however, decreases with increasing L. Lastly, to further boost

accuracy, we pseudo-label unlabeled data points from the SVHN data set using the latent

classifier. We reject data points whose entropy over the latent classifier is above 10−6. See

5.2 for more results.

5.6 Comparison to other Methods

Here we include some different methods in Table 5.2. Our model outperforms FlowGMM

and JEM, and other likelihood-based models. The improvement is especially clear on SVHN

(with almost 10% absolute improvement compared to FlowGMM). Furthermore, we close

the performance gap between our model and GAN-based and discriminative methods, which

are highly tuned for images as we beat TrippleGAN.

All competing methods use explicit image-based data transformations to augment their

78

L
Method 0 10,000 40,000 100,000 200,000

Baseline 92.0 ± 0.1 88.1 ± 0.1 - - -
H - 93.5 ± 0.1 93.8 ± 0.1 - -
H & Craig - 93.0 ± 0.1 93.5 ± 0.1 93.9 ± 0.1 93.9± 0.1
H & Craig & PL - - 94.5 ± 0.1 - -

VAE M1+M2 64.0 ± 0.1
AAE 82.3 ± 0.3
JEM 66.0 ± 0.7
FlowGMM 82.4
TripleGAN 94.2 ± 0.2

BadGAN 95.6 ± 0.03
Π-Model 94.6 ± 0.2
VAT 96.3 ± 0.1

Table 5.2: Test accuracy with varied number of conditional samples L on SVHN (NWC11).

base dataset. Instead, we learn augmentations that can be applied to domains that do not

have explicit augmentation transforms, such as audio, text, etc.

Note the coreset method can be used to refine samples of competing generative methods.

5.6.0.1 Difficult Examples hurt Contrastive Lethat arning

Toneva (TSC18) showed that points with high forgettability are the most critical for gen-

eralization in supervised learning. In Chaper 3 Figure B.5, we showed that there is a

strong correlation between points with high forgettability and high entropy. Furthermore,

we showed in section B.1.4.1 Table B.3 that training on only the high entropy points leads to

the same generalization as training on the full dataset and outperforms training on only the

low entropy by 25.1%. Furthermore, when we plot gradient clusters from supervised learning

and show where the high and low entropy points show up on the plot using t-SNE, we find

that the core points of the clusters correspond to low entropy points. Yet in this chapter,

we find that if we accept high entropy points from the generator, our contrastive model will

79

degrade in performance in row 1 of Table 5.1. Effectively, the most critical subsets for SSL

and contrastive learning are the least important for supervised learning.

Easy Examples are the Most Important Finally, to speed up training and select

the most salient data points sampled from pλ(x)to train on, we select a coreset of 10% of

the generated dataset. In this, we see only a marginal degradation (between rows 2 and 3

of Table 5.1) to the classification accuracy while benefiting from significant speedup. This

demonstrates that taking the representative core points is the most important for contrastive

learning.

5.7 Conclusion

In the semi-supervised learning setting, we have investigated combining generative models

with a coreset selection algorithm, Craig. Such a combination is appealing as a generative

model can, in theory, sample an infinite amount of labeled data. At the same time, a coreset

algorithm can reduce such a large set to a much smaller informative set of synthesized

examples. Moreover, learned augmentation is helpful as many discrete data modalities, such

as text, audio, graphs, and molecules, do not allow the definition of hand-crafted semantically

invariant augmentations (such as rotations for images) easily.

We illustrated that a naive implementation of this simple result deteriorates the classi-

fier’s accuracy over a baseline without such data augmentation. The underlying issue here

was isolated to being related to the Shannon entropy in the predicted logits over classes for

a synthesized example. High entropy indicates samples with low visual fidelity or wrong

class identity, which may confuse the discriminative component of the model and lead to a

loop in which uncertainty in the predictions leads to worse synthesis. In the first attempt,

we constraint the class entropy in the set of augmented examples by taking a subset of the

generated data set with a hard threshold on the Shannon entropy. This resulted in signif-

icant empirical improvement of classification accuracy of two percentage points on SVHN.

80

Moreover, we introduced pseudo labels, which further improved performance.

Then, we show that the latent energy-based model with symbol-vector couplings has con-

ditional distributions for readily available end-to-end training of learned augmentations. We

formulate learned data augmentation as the KL-divergence between two known conditional

distributions, show the relation to cross-entropy, and relax the entropy regularization into the

temperature of the associated Langevin dynamics. This allows learning data augmentations

as an alteration of the learning objective function and paves the way toward a theoretical

analysis.

Finally, in contrast to supervised learning, the most critical data points for self- and

semi-supervised learning under contrastive settings are the low-entropy forgettable points.

One final note: when these experiments were run, AdaCore was still in its infancy. The

results from Chapter 4 show that AdaCore selects better quality subsets compared to

Craig. As such, one would expect AdaCore to improve the results from this chapter.

81

CHAPTER 6

Gamma-VAE: Speech Re-Synthesis and Beyond

In this chapter, we study different Variational Autoencoders (VAEs) decoder distribu-

tions in the audio setting to see how to improve magnitude and phase reconstruction on

speech resynthesis tasks. We first provide background on the existing decoder distribu-

tions, such as Complex Gaussian and Laplace, which are equivalent to a Gamma decoder

under certain conditions. We then consider separately modeling speech’s magnitude and

phase information to see if we can improve the quality of either component, yielding

an improvement in speech resynthesis. Extensive experiments show the Gamma de-

coder significantly improves magnitude reconstruction and that the von Mises decoder

can weakly learn phase information. The novel Gamma decoder outperforms previous

approaches, achieving a near-perfect PESQ of 4.4, representing a 42% improvement

upon the state-of-the-art IS-VAE and an 86% decrease in the FAD metric. Our results

demonstrate the effectiveness of the novel approach, improving the quality of speech

resynthesis and compression capacity of VAEs.

6.1 Introduction

The goal of the VAE is to find an optimal trade-off between rate and distortion (APF), such

that the reconstructed data is as close as possible to the original data while still requiring a

minimal amount of information to represent it.

In the audio setting, VAEs have been applied to tasks such as music generation, speech

synthesis, speech source-filter representation and audio denoising (FBD09; LAG19; GRH19;

82

BGL21; Nak20; WWR21). One key aspect of VAE performance is the choice of decoder

loss function, which determines how well the model is able to capture the underlying distri-

bution of the data. Different decoder distributions have been used in the context of VAEs

for speech, including Gaussian decoders, complex-valued probability density functions, and

a combination of magnitude and phase reconstruction (FBD09; LAG19; GRH19; BGL21;

Nak20; WWR21). Yet, the Itakura-Saito (IS) VAE has emerged as the state-of-the-art

(SOTA) decoder loss, thanks to its ability to accurately model the distribution of audio

signals and generate high-quality samples.

This chapter considers the effect of different decoder distributions on audio-quality speech

resynthesis, as well as compression capacity. We explore whether we can learn phase infor-

mation in our decoder formulation and compare it to the IS-VAE. We believe that if we can

find a better spectrum representation via a new decoder, it will improve current VAE-based

audio processing methods that currently use IS-divergence.

To this end, we explore multiple novel decoder distributions that can more accurately

capture the underlying distribution of speech signals. This results in improved reconstruc-

tion performance on speech resynthesis tasks. The role of the decoder distribution in the

VAE architecture and its relationship to speech codec is discussed first. Our novel decoder

distributions are then introduced, and results demonstrating their improved performance on

speech resynthesis tasks compared to the IS-VAE are presented.

Our experimental findings suggest that: a) Phase information can be learned to a lim-

ited extent; b) There exist many distributions that can model speech leading to different

properties; c) The Gamma distribution is the best-tested model for speech re-synthesis and

compress-ability; d) Network architecture does not greatly affect performance. All models

are evaluated using the Perceptual Evaluation of Speech Quality (PESQ) metric (RBH01),

which ranges from [-0.5, 4.5], and the Fŕechet Audio Distance (FAD) metric (KZR18), whose

range is unbounded, with a lower value indicating a greater similarity between the two sets

of audio features. Unlike PESQ, FAD does not require a reference signal but instead takes

83

the distance in the embedding space of an NN-based audio classifier between a distribution

of natural audio and a generated dataset. The best-performing decoder explored in this

chapter is the Gamma decoder. This decoder achieves a near-perfect PESQ of 4.4, improves

PESQ by 42% and reduces FAD by 86% compared to the IS-VAE.

6.2 Background

In recent years, the Itakura-Saito VAE (IS-VAE) has become the SOTA VAE used in the

domain of speech modeling. Typically, the IS-VAE models the probability density function

(pdf) of the magnitude spectrum of the Short-Time Fourier Transform (STFT) domain. Only

considering the magnitude spectrum of the speech signal, rather than both the magnitude

and phase, can potentially lead to a loss of quality of the synthesized speech. To address this

issue, (Nak20) proposed using a VAE to directly model the speech signal using a complex-

valued Gaussian decoder. This approach may not be the most effective for capturing phase

information because the magnitude and phase may follow different distributions. To this

end, we propose modeling the magnitude and phase of speech separately using a positive

distribution for the magnitude and a circular distribution for the phase. By inputting x =

[xr, xi], where |x| =
√
x2r + x2i = r represents the magnitude spectrum of the speech signal,

and estimating both the magnitude, |x̂|, and phase, ∠x, we aim to improve the performance

of VAEs for speech re-synthesis tasks. This approach differs from the recently proposed

method (Nak20), which uses a singular complex-valued Gaussian distribution to model the

magnitude and phase of the signal x.

Overall, our proposed method offers a new approach to modeling the magnitude and

phase of speech separately, with the goal of improving the performance of VAEs in speech

re-synthesis tasks.

84

Figure 6.1: VAE: Where x is complex spectrogram of original signal and x̂ is estimated
via the parameters of the decoder distribution. x̂ is complex or real depending on decoder
distribution.

6.3 Problem Setting

The VAE is a framework that learns a latent representation, z, of the data x, which captures

the underlying structure of the data distribution. VAEs are trained to learn an encoder

function, eϕ(z|x), which maps the input data x to the latent space z. The approximate

posterior distribution over the latent variables is given by eϕ(z|x). The encoder estimates

the parameters of a normal distribution in the latent space, such as the mean and variance,

which define the location and scale of the distribution. The VAE also learns a marginalized

distribution, mθ(z), for the latent variable encoding, and a decoder function, dθ(x|z). Thus

the joint distribution, pθ(x, z), can accurately model the true data distribution, p(x). The

decoder estimates the parameters of a distribution, such as the shape and rate parameters of

a Gamma distribution, to reconstruct the input signal x. The decoding side defines a joint

pdf, qθ(x, z) = mθ(z)dθ(x|z), with everything explicit, resulting in a joint pdf, pϕ(x, z) =

p(x)eϕ(z|x) that we can readily draw samples from, although p(x) is unknown.

The VAE is based on the principle of maximum likelihood estimation (MLE), where

85

the goal is to maximize the likelihood of the training data under the model. To make the

optimization process more feasible, the VAE introduces the variational reparameterization

trick, which involves re-parameterizing the random noise used to sample from the latent

distribution so that the resulting samples can be transformed into the latent space in a

differentiable manner. By using this trick, VAEs can be trained more efficiently on large

datasets using a variational lower bound on the log-likelihood, written as:

L(θ, ϕ;x) = Eeϕ(z|x) [log dθ(x|z)]−KL (eϕ(z|x)||mθ(z)) (6.1)

where x is a single training example, and θ and ϕ are the parameters of the decoder and

encoder, respectively. The first term in the lower bound, Eeϕ(z|x) [log dθ(x|z)], is known as

the reconstruction loss, and it measures the difference between the reconstructed data and

the original data. The second term, KL (eϕ(z|x)||mθ(z)), is known as the KL divergence,

and it measures the difference between the approximate posterior distribution and the latent

distribution.

6.4 Understanding Decoder Distributions

One way to understand the impact of phase information on VAEs for speech modeling is

to consider a general decoder that models both the magnitude and phase of speech signals.

There are two main categories of decoder distributions that can be used for this purpose:

(Type I) decoders that directly model the complex-valued signal x̂ = [x̂r, x̂i], such as Gaus-

sian or Laplace decoders, and (Type II) Decoders that model the magnitude |x̂| and phase

∠x̂ information separately, such as a Positive Distribution for magnitude and Circular Dis-

tribution for phase. The Itakura-Saito VAE (IS-VAE) can be seen as a special case of the

general family of decoders that only model magnitude information. However, the general

family of decoders has the potential to directly generate phase information, as they are

theoretically phase-aware. Since there is a clear connection between magnitude and phase

86

information in speech signals, modeling phase information may inherently improve the mod-

eling of the magnitude spectrum. This is in line with the assumption often made by Vocoders

(MG76), which is that the phase of a speech signal can be approximately reconstructed from

its magnitude spectrum.

In this chapter, for Type II decoders we consider Log-Normal and Gamma distributions

to model magnitude and von Mises distribution to model phase information of speech. The

Log Normal Distribution corresponds to the Log Spectral Distance used in speech codec

(RRJ93) and the Gamma distribution has been used as a strong prior in noise suppression

(MIY14; DB19) and as we will show is directly related to the IS-divergence. The von Mises

distribution is a natural choice for modeling the phase of speech because it is a circular

continuous and smooth distribution, which allows for more accurate modeling of the phase

information in speech signals. Additionally, it is symmetric around the mean, which is useful

for modeling the cyclical nature of phase. See Table 6.1 for all decoder distributions used in

this paper.

For all experiments, we consider the pdf of bins which are conditionally independent

given z, in the STFT domain. We only consider one bin, x = [xr, xi], and assume that power

and phase spectra are conditionally independent given z.

6.4.1 Directly Modeling The Signal

Many decoder distributions exist that implicitly model the magnitude and phase components

of speech. Here we discuss the Normal and Laplace Decoders.

Complex Normal The Gaussian decoder models a complex-valued spectrogram, implicitly

modeling the magnitude & phase of speech

dθ(x|z) =
1

πσ2
e−|x−µ|2/σ2

. (6.2)

87

Table 6.1: Formulations of Type I and Type II a & b decoders such as Complex Normal
& Laplace, Log Normal von Mises, Gamma von Mises, Gamma, and Itakura-Saito. These
decoder distributions can be used to derive negative log-likelehoods as done in eq. (6.9) &
eq. (6.12).

Decoder Distribution Formulation Models
Complex Normal eq. (6.2) 1

πσ2 e
−|x−µ|2/σ2 Joint Complex Spectrum

Complex Laplace eq. (6.3) 1
2πσ2 e

−|x−µ|/σ Joint Complex Spectrum

Log Normal von Mises
exp

(
κ
xTx0
|x||x0|

− (log |x|/ log |x0|)
2

2σ2

)
(2π)1.5 σ I0(κ) |x|2

Separate Magnitude & Phase

Gamma von Mises eq. (6.7) βα|x|α−2e
κ
xTx0
|x||x0|

−β|x|

2π I0(κ) Γ(α)
Separate Magnitude & Phase

Gamma eq. (6.10) e
−|x|2

2σ2

2πσ2 Magnitude Only
Itakura-Saito eq. (6.11) 1

Γ(α)
|x|α
|y|α |x|

−2e−
|x|
|y| Magnitude Only

Complex Laplace Similarly, the Laplace decoder models a complex-valued spectrogram,

modeling the magnitude & phase of speech

dθ(x|z) =
1

2πσ2
e−|x−µ|/σ. (6.3)

Assuming that µ = 0, the probability density functions of both decoders are related to the

Gamma distribution. Specifically, |x|2 and |x| follow the Gamma distribution for Gaussian

and Laplace decoders, respectively. Empirical results demonstrate that for speech signals,

µ→ 0. However, it is not currently known if it is possible to learn µ theoretically.

Another similar decoder is the multivariate Laplace distribution. We forego this decoder

since it does not correspond to either the Gamma or log-normal distribution even though it

may have more favorable properties than the complex Laplace one.

6.4.2 Separately Modeling Magnitude and Phase

To explicitly capture both magnitude and phase information, we propose combining a pos-

itive distribution, such as the Log Normal or Gamma distribution, to capture magnitude

information and a circular distribution, such as the von Mises distribution, which is an ap-

88

proximation to the Circular Normal distribution, to capture phase information.

Gamma + von Mises Decoder generates three outputs, α, β, and κ: α represents the

shape parameter, β represents the rate parameter, and α
β
= |x̂| determines the central lo-

cation of the Gamma distribution. The precision of the phase spectrum of the von Mises

distribution is represented by κ. The probability density function of x can be expressed as

a function of its parameters, which varies depending on the specific distribution. We use

change of variables to rewrite the pdf p(xr, xi) as p(|x|,∠x).

p(xr, xi) =
∣∣∣ ∂(r,θ)
∂(xr,xi)

∣∣∣−1

p(r, θ) =
1

|x|
p(|x|)p(θ) (6.4)

where

p(|x|) = βα|x|α−1e−β|x|

Γ(α)
, p(θ) =

eκ cos(θ−θ0)

2πI0(κ)
(6.5)

where Γ is a Gamma function, I0 is a Bessel function, and p(θ) is the von Mises distribution.

We can write the decoder as

dθ(x|z) =
1

|x|
βα|x|α−1e−β|x|

Γ(α)

e
κ
xTx0
|x||x0|

2πI0(κ)
(6.6)

which can be rewritten with a more pleasant form as

dθ(x|z) =
βα|x|α−2e

κ
xTx0
|x||x0|

−β|x|

2π I0(κ) Γ(α)
(6.7)

where α, β and κ are functions of z (all defined by the decoder). We constrain α > 0 and

β > 0 through reparameterization. As such we can formulate our loss function as the sum

89

of the natural log of dθ(x|z) and the KLD as in eq (6.1). The negative Log Loss becomes:

− log dθ(x|z) = log 2π + log I0(κ) + log Γ(α) + β|x| (6.8)

−α log β − (α− 2) log |x| − κ xTx0
|x||x0|

When κ→ 0 the von Mises distribution becomes uniformly distributed and the phase infor-

mation is not learned.

6.4.3 Phase Agnostic Decoders

Some decoders, such as the IS-VAE, do not model phase information. To generate a signal,

one will need to use the ground truth oracle phase or find a magnitude consistent phase via

Griffin-Lin style methods (GL83). This style of magnitude spectrum modeling is tantamount

to having a von Mises distribution with infinite dispersion. As such we derive the Gamma

distribution as a special case of the Gamma von Mises distribution, with κ = 0. We then

derive the IS-VAE as a Gamma VAE.

Gamma Distribution Consider the Gamma von Mises Decoder which produces three

outputs, α, β, and κ. Where α is the shape, β is the rate and α/β = |x̂| gives the center

location of the Gamma distribution. The precision of phase spectrum of the von Mises

distribution is given by κ. If we set κ = 0, the Gamma von Mises Distribution degenerates

into the Gamma Distribution. The pdf of x can be written as:

p(xr, xi) =
∣∣∣ ∂(r,θ)
∂(xr,xi)

∣∣∣−1

p(r, θ) = 2βe−βrp(θ) (6.9)

where x0 = [r0.5 cos(θ), r0.5 sin(θ)], r = x2r + x2i , θ = tanh−1(xi
xr
). The decoder is

dθ(x|z) = 2βe−βr =
1

2πσ2
e−

|x|2

2σ2 (6.10)

90

We can write β = 1
2σ2 . This decoder is a special case of the 2D-normal decoder where the

mean µ = 0. This gives us a direct connection between Type I and Type II decoders.

Itakura-Saito Divergence We derive the Itakura-Saito-VAE as the Gamma decoder. We

assume the probabilistic decoder takes the form of a Gamma distribution.

dθ(x|z) = p(|x|) = 1

Γ(α)

|x|α

|y|α
|x|−2e−

|x|
|y| (6.11)

We take the negative log-likelihood of this distribution and we get our negative log-likelihood

loss of,

− log dθ(x|z) =
|x|
|y|
− α log

|x|
|y|

+ log Γ(α) + 2 log |x|. (6.12)

In this formulation, x is the ground truth signal, y is the estimated signal, and α is a

parameter of the distribution estimated by the NN.

6.5 Experiments

In this section we evaluate the effectiveness of different decoder distributions to learn speech

by answering the following questions: (1) can we learn phase information directly in the VAE

process, and does explicitly penalizing for phase lead to a better power spectrum represen-

tation? (2) does modeling time dependence help model magnitude and phase of speech? (3)

do decoders have different compressive capacities?

Dataset The VCTK dataset consists of 110 English speakers both male and female with

various accents resampled from 48 KHz to 16 KHz. We randomly select 10% of the speakers

for the training dataset and the rest are the test dataset. The time-domain speech signals

are converted to power spectrograms using the short-time Fourier transform (STFT) with a

periodic Hann analysis window of length 64 ms (1,024 samples) and a hopsize of 128 sam-

ples. For fully connected architectures, the training set is then subsampled over time, every

91

10 frames. This results in a training set of 1% of the full dataset. For convolution-based

networks, we use a random window of 5ms and directly use 1% of the dataset. The frequency

signal is then separated into log power and complex phase components before being input

to the NN.

Baselines In this chapter we propose several decoder distributions derived above to the

widely excepted baseline decoder enforced by the Itakura-Saito divergence as the recon-

struction loss in the VLB. We train a VAE with two fully connected layers in the encoder

and two fully connected layers for the decoder on 1% of the VCTK Corpus dataset and

test on the rest of the dataset. Alternatively, we use a 1D Convolution over the time axis

of the STFT as well as adding a GRU to model time dependencies in the latent space of

the VAE. For all VAEs, we use a latent space of size 32 unless otherwise stated. We use

the Perceptual Evaluation of Speech Quality (PESQ) score (RBH01) and the Fréchet Audio

Distance (FAD) (KZR18) as metrics for comparing different decoders. In our experiments,

we considered a few different optimizers to train the VAEs. SGD + M took too long to

converge, and Adam-style optimizers often diverged due to parameter instability. We found

PSGD + M to be the most stable optimizer which reliably converged to a good solution

(Li18a; Li18b; Li18c; Li22).

Experimental Results Our experiments demonstrate that using ground truth or recon-

structed phase via the Griffin-Lim Algorithm with Gamma or Log-Normal von Mises decoders

significantly outperform the IS-VAE in terms of PESQ and FAD across various network ar-

chitectures (see Table 6.2). The Gamma decoder, which does not explicitly encode for phase,

achieves the highest PESQ and lowest FAD using an FCN and 1D Convolution architecture

respectively. These two models capture the spectrum information at high and low frequen-

cies better than other architectures, including an Itakura-Saito-VAE (see 6.2). We omit the

Complex Gaussian decoder from Table 6.2 as empirically we saw that µ → 0 and it carries

little information for speech reconstruction.

The precision of the decoder distribution in a VAE-based speech processing model can be

92

utilized as a measure of the extent to which the magnitude and phase information has been

captured by the model. Precision, defined as the inverse of the variance of a distribution,

characterizes the tightness with which the data is concentrated around the mean.

If the precision of the decoder distribution is high, this suggests that the decoder is

producing outputs that are tightly concentrated around the mean, indicating that the phase

information has been effectively captured by the model. Conversely, a low precision indicates

that the decoder outputs are spread out, which may indicate that the phase information has

not been captured well or has been lost during the encoding-decoding process.

Figure 6.3 (a) illustrates that the noise power has higher precision due to its stationarity

and therefore higher predictability compared to the speech power spectra. Additionally, in

(b) it is shown that the phase was learned with higher precision at low frequencies during

the speech frames. However, the learned phases are still too noisy for high-quality speech

reconstruction. Using ground truth or consistent phase through the Griffin-Lim Algorithm

results in improved speech resynthesis compared to using the phase learned by either Type

I or Type II decoders.

Overall, the proposed Gamma decoder improves PESQ by 42% (near-perfect PESQ of

4.4) and reduces FAD by 86% compared to IS-VAE.

6.5.1 Decoder Compression Capabilities

We evaluate the ability of various decoders to preserve the details of the spectrogram when

compressing the data using a latent space of size 16, which results in a compression ratio of

48. As shown in Figure 6.4, the Gamma decoder produces the spectrogram with the most

detailed features. The Log Normal + von Mises and IS decoders capture the general spectral

details but are less rich in the region around 2 kHz (red horizontal line). The Gamma +

von Mises decoder fails to preserve the speech features. This comparison highlights the

fundamental differences in the compression capabilities among decoder distributions.

93

Table 6.2: Train VAEs on 1% of the VCTK dataset with STFT 3/4th overlap to train fully
connected, convolutional and recurrent architectures with different decoder distributions.
Evaluate PESQ and FAD using ground truth (GT) or Griffin Lim (GL) phase information.

Decoder Loss PESQ (↑ Better) FAD (↓ Better)
Phase Source GT GL GT GL

Gamma FC 4.4 3.8 0.6 1.8
Log Normal Von Mises FC 3.8 3.6 1.5 2.0
Gamma Von Mises FC 3.7 3.5 2.5 3.0
Gamma Conv1d 4.3 3.6 0.4 0.8
Gamma Conv1d + GRU 4.2 3.5 0.8 1.3
Gamma Conv1d + BiGRU 4.1 3.3 0.8 1.4
Itakura-Saito FC (baseline) 3.1 2.8 4.3 5.4

It is worth mentioning that Log Normal von Mises and Gamma von Mises decoders must

encode both magnitude and phase information into the latent space of 16, whereas Gamma

and IS decoders only need to encode the magnitude information.

6.6 Conclusion

In conclusion, this study has demonstrated that the use of a Gamma decoder, which models

the magnitude spectrum, in VAEs significantly improves speech resynthesis when compared

to the state-of-the-art IS-VAE. While our research has shown promising results in directly

learning phase information within the VAE, further work is necessary to achieve speech

quality comparable to using ground truth phase. Our experiments have also established that

VAEs with decoders that explicitly estimate the parameters of a negative log loss function

perform better than those using the IS-divergence. Additionally, we have evaluated the

performance of both phase-agnostic and phase-aware decoders on various types of VAEs

such as fully connected, convolution, and recurrent architectures. Among these, the Gamma

decoder, which does not explicitly encode for phase, achieves the highest PESQ and lowest

FAD using an FCN and 1D Convolution architecture respectively. Thus, while the use of a

Gamma decoder can lead to improved performance in speech resynthesis, the challenge of

directly learning phase information within the VAE remains a subject of ongoing research.

94

Figure 6.2: Effect of architecture on Gamma Decoder vs FCN IS-VAE. a. Ground Truth, b.
IS-VAE, c. Gamma FC, d. Gamma Conv1d e. Conv1d GRU, f. Conv1d BiGRU. We see
that the Gamma VAE FC and Conv1d capture high-fidelity speech patterns found in the
ground truth signal as compared to other architectures and the IS-VAE.

(a) Power Spectra
Precision

(b) Phase Spectra
Precision

Figure 6.3: We see that the power spectrum of speech is being learned with high precision.
We that the phase spectra are being learned in the frames of speech.

95

Figure 6.4: From left to right we have Gamma, Log Normal von Mises, Itakura-Saito, and
Gamma von Mises decoder. We see that the Gamma distribution can capture the spectro-
gram at a high compression ratio with more detail. The Log Normal von Mises distribution
captures speech features above the red dotted line whereas the IS decoder only captures
features under it. With a high compression ratio, the Gamma von Mises fails to capture
speech detail.

96

CHAPTER 7

Conclusions

7.1 Summary of Contributions

7.1.1 General Purpose Curvature-Informed Preconditioner

I believe the most impactful work of this dissertation is coming up with a novel, scalable,

second-order preconditioner. In the context of this dissertation, we applied the preconditioner

to SGD to improve the generalization capabilities of deep neural networks. This resulted in

higher accuracies for classification networks and significantly lower perplexities for language

models like LSTMs and GPT-2 style Transformers. We also showed that PSGD can preserve

neuroplasticity in NNs far better than the SoTA optimization method. This will allow for

better transfer learning as well as fine-tuning of models. Additionally, we saw that if we

trained NNs with PSGD we no longer needed fundamental architectural advancements like

the residual skip connection. I believe PSGD has the ability to become the go-to optimizer

in ML.

In addition to standard optimization the preconditioner developed in this dissertation

can be directly applied to many other places such as Langevin Dynamics for sampling from

Energy-Bases and Diffusion models, Preconditioned Gradient Descent for Advaserial Attack,

curvature-aware network pruning (see (WZG20)), etc.

97

7.1.2 Curvature-Informed Subset Selection

AdaCore is a curvature-aware subset selection method that builds on top of the Craig

algorithm. NNs trained on AdaCore subsets outperform other SoTA subset selection meth-

ods in generalization while providing 4.5x speedup. This method can greatly reduce the

computational overhead seen in ML training pipelines. We provide theoretical convergence

guarantees as well as ample empirical evidence for our method.

7.1.3 Subset Selection for Self- & Semi-Supervised Generative Classifiers

We propose to leverage the generator of a LEBM as a learned means of data augmentation.

That is while learning, conditional ancestral samples are drawn from the generative model

to augment the labeled dataset. As the cardinality of such a set may be large, we propose

to recruit coreset methods to reduce the set to a smaller coreset while maintaining an ap-

proximation of the cross-entropy gradient over the full augmented dataset. We show that

an entropic regularization on the conditional samples is required to improve generalization.

This is the first work to propose subset selection methods for self- or semi-supervised machine

learning. In contrast to supervised learning where the unforgettable points are most impor-

tant for generalization, we are the first to show that the forgettable points are important for

model generalization for semi-supervised learning.

7.1.4 GammaVAE

In this dissertation, we explore the effect of decoder distribution on the re-synthesis ability

of a VAE on speech data. We find that the Gamma distribution is exceptionally well-suited

to modeling the distribution of speech. Using a NN for phase reconstruction is still an open

task.

98

7.2 Future Work

7.2.1 Applications of General Preconditioner

The General purpose preconditioner we have developed in Chaper 3 does not need to only be

used for preconditioning SGD. In fact, it can be applied to any scenario to provide curvature

information to the gradient.

Projected Gradient Descent Consider the standard Advaserial Attack (MMS17):

xt+1 = Πx+S(x
t + αsgn(∇xL(θ, x, y))) (7.1)

can be easily converted to a preconditioned projected gradient descent attack via:

xt+1 = Πx+S(x
t + αsgn(P∇xL(θ, x, y))). (7.2)

Riemann Manifold Metropolis Adjusted Langevin Algorithm Another situation

where the general purpose preconditioner can be directly applied is Metropolis Adjusted

Langevin Algorithm. Consider the random vector θ ∈ RD with density p(θ) and denote the

log density as L(θ) = log p(θ), then the Metropolis Adjusted Langevin Algorithm (MALA)

is based on a Langevin diffusion, with stationary distribution p(θ), defined by the stochastic

differential equation (SDE)

dθ(t) =
1

2
∇θL(θ(t))dt+ db(t) (7.3)

99

where b denotes a D-dimension Brownian motion. A first-order Euler discretization of the

SDE gives the following proposal mechanism:

θn+1 = θn +
ϵ2

2
∇θL (θn) + ϵzn (7.4)

where z N (z | 0, I) and ϵ is the integration step size. This fundamental method has become

the main way to do sampling in diffusion and energy-based models.

A theoretical counterpart to MALA is the Riemann Manifold Metropolis Adjusted Langevin

Algorithm (RMMALA) which takes the local and global curvature information into account

on the Riemannian manifold. In the most simple of applications, this method is reduced to

a flat manifold with constant curvature becoming the pre-conditioned MALA proposal.

θn+1 = θn +
ϵ2

2
P (θn)∇θL (θn) + ϵ

√
P (θn)zn (7.5)

This method can directly be implemented using the general purpose Lie Group precondi-

tioner to improve the stability of the sampling scheme. Note, in RMMALA we are not only

preconditioning the gradient but also the isotropic noise. Consider the following scenarios

depicted in 7.5. We take a single image of a frog from the CIFAR10 dataset X and we repeat

it 20 times. We run independent MCMC on the images using an energy-based model trained

on the CIFAR10 dataset. We see that the preconditioned version of MCMC doesn’t diverge

where the standard version either severely degrades the image 7.5 (a) or totally diverges 7.5

(c).

Diffusion models utilize the same general equation with Langevin dynamics and exhibit

the same instability (KAA22). Hence these results can be directly applied to improve the

sampling ability of diffusion models, resulting in higher-quality sample generation.

BFGS Stye Rank updates to PSGD Convex optimization has many tools that can

be directly used to improve PSGD. Right now we re-calculate the curvature information

100

in PSGD with probability p, and in the meantime use a possibly outdated version of the

curvature information to precondition the gradient. In BFGS low-rank updates are made to

keep the curvature up to date between curvature re-calculations. I believe this will allow for

faster convergence and potentially find better solutions.

Final Takeaways

• The Lie group is well suited to deal with noise.

• Use the preconditioner liberally – the LRA computation is fast and strong.

• For Deep CNNs (relatively flat) updating the preconditioner with p = 0.1 is sufficient.

• For Deep RNNs (highly curved) update the curvature as much as you can.

• For Transformers (sparse embedding) reduce lr preconditioner to accumulate informa-

tion over time to beat sparsity

7.2.2 Causal Generative Classifier

At the core of machine learning models lies the objective of generalization, which involves

the ability of the model to extend its learning beyond the training data. In the case of

generative models, this entails the capacity to produce data that goes beyond the data used

for training, with a desirable feature of controllability via disentanglement. We believe, that

generative models can be considerably improved by integrating causal prior knowledge (i.e.

via a causal graph). This integration will allow for principled generalization of generative

models beyond the observed data, enabling out-of-distribution generalization that involves

interventions and counterfactuals.

Although not discussed in depth in this dissertation, I have spent some time working

on deep causal generative modeling. Similar to the rest of the dissertation, the generative

model that was used to explore causal modeling was the VAE.

101

7.2.2.1 Causal Counterfactual Generative Models (CCGM)

Following the classic VAE model, given inputs x, we encode into a latent space z with

distribution qϕ where we have priors given by p(·).

ELBO = EqX
[
Ez∼qϕ [log pθ(x | z)]−D (qϕ(z | x)∥pθ(z))

]
(7.6)

In the Causal Counterfactual Generative Model (CCGM), the causal layer is described

as a non-linear SCM

zi = gi(Ai ◦ z) (7.7)

which finds some causal structure of the latent space variables z with respect to a matrix

A. Suppose A is composed of column vectors Ai. For each latent space concept i, gi is

defined as a non-linear function gi : Rn → R. Where ◦ is the Hadamard product. In this

formulation, Ai forms an A adjacency matrix. That is if A is viewed as a binary adjacency

matrix, the gi functions take the responsibility of reconstructing z given only the parents,

dictated by Ai ◦ z. The model balances a reconstruction loss, a latent loss that enforces an

SCM, a standard VAE KL loss, as well as the differentiable DAG loss.

Our CCGM, allows for counterfactual models and not just counterfactuals within the

learned DAG. By this, we mean one can modify a learned DAG by removing a connection

and realizing an alternate DAG in which a “de-biasing” has occurred. The language here

assumes that a learned connection is a “bias” within the true/learned generative model that

we do not desire in our generated dataset - an implicit bias. In CCGM, the encoder directly

generates the output z, which is enforced to be standard-normally distributed. We pass this

through our causal layer as one final mutatable bottleneck.

z = ATz (7.8)

102

We solidify the structure of A by having exogenous and endogenous priors. This way, A

can be split into a DAG term and a diagonal term

A = G︸︷︷︸
DAG

+ B︸︷︷︸
diag.

(7.9)

where B has 1 on the diagonal for exogenous variables and 0 if endogenous. This ensures

that the trivial solution where A = I is never learned and enforces a causal relationship from

the exogenous variables to the endogenous variables. So we assume parent/child priors are

known.

Ultimately, this style of a causal latent-space model allows us to manipulate the la-

tent space of a model to enforce priors and generalize to unseen data out of the training

distribution. For more work not included in this dissertation on latent manipulation see

(JPB22; BJP22; PJB23).

7.2.3 Next Steps for Causal Latent Manipulation:

I believe Latent Energy-Based Models will pair well with causal models. We have shown in

this dissertation that LEBMs can be used in the self-supervised setting to learn augmenta-

tions that will boost classification accuracy as well as the generative quality of NNs. I believe

a missing link that will allow us further boost classification and generation performance, ob-

tain fine-grain control in sample generation, and allow for the debiasing of classifiers and

generators is the integration of causality into our models.

Recall that the generative model resembles a variational auto-encoder with inference

and generator model for which the latent prior is complexified by an energy-based model.

The inference model allows for amortized inference of a latent vector given an observed

example. The energy-based model couples the latent vector with a one-hot label vector, so

that classification is based on the inferred latent vector for a given observed example. The

generator model is required to learn the model by auto-encoding variational Bayes and is

103

auxiliary as such.

Since the LEBM is basically a VAE whose latent prior has been complexified with an

energy-based model we can directly add a causal layer in the latent space. This not only

enables causal generation but also causal classification. Causal classification is novel and is

important because it would allow us to directly de-bias and direct our classifiers.

We have some encoder e(z|x) which transports x → z. We can then use the causal

model from (JPB22; BJP22) to adjust z via ẑ = g(A ◦ z). Now that we have some causally

manipulated version of z, using the LEBM, the soft-max classifier becomes

pα(y|ẑ) ∝ exp(⟨y, Fα(ẑ)⟩) = exp(Fα(ẑ)[y]). (7.10)

To have a causal class conditional generation paired with latent Langevin dynamics one

follows a similar procedure. We encode an image with label y via e(z|x, y), and we then

sample from the LEBM using the overdamped Langevin dynamics, which we run for TLD

steps with target distribution pα(y, z),

z ∼ p0(z), (7.11)

zt+1 = zt + s∇z

[
fα(z)[y]− ∥z∥2

/
2] +
√
2sϵt, t = 1, . . . , TLD (7.12)

Conclusion Generative modeling has taken the modern world of machine learning by

storm. Introducing robust causal priors will allow us to generalize to out-of-distribution

data as well as break potentially harmful biases in our data.

7.2.4 Closing Statements

Machine learning is a fast-moving and large research field today. It can be challenging to

navigate all the new theoretical and empirical results as every day hundreds of new papers

are uploaded to Arxiv. In my opinion, the best way to make progress is to read as many

104

papers as you can on whatever topics interest you. If there is some seminal work in some

subfield you don’t necessarily find interesting, still read it. Eventually, the math and the

intuition you build from reading these papers will allow you to draw new conclusions and

make improvements to ML. Additionally, do not blindly believe everything you read just

because it was published at a conference. There is a lot of conflicting research out there due

to the rate of progress and experimental nature of the field. The best way to navigate it

all is to consider your intuition, consider theory, and try out some experiments to see if you

can get empirical results. At the end of the day, if you are learning, forming intuition, and

having fun I believe the rest of the research will fall into place.

105

Figure 7.1: 1500 MCMC Steps Figure 7.2: 1500 Precond MCMC Steps

Figure 7.3: 15000 MCMC Steps Figure 7.4: 15000 Precond MCMC Steps
Figure 7.5: Comparing standard MCMC sampling to Lie group curvature preconditioned
MCMC sampling: We see that we sample from an energy-based model with ϵ = 1e− 2 and
MCMC temperature t = 1e−5 standard MCMC is unstable and results in severely degraded
images which cannot be used. On the other hand, preconditioned MCMC is able to preserve
stability.

106

APPENDIX A

Additional Proofs

A.1 Proofs for PSGD: Chapter 2

A.1.1 On the Convergence of PSGD

In this section, we show that the preconditioner P estimated by PSGD converges to the

inverse of Hessian under mild conditions. We forgo convergence of network parameters since

it is a well-studied topic in the literature.

To begin, let us formulate the problem clearly. Let (v, h) be a pair of vector and the

associated noisy Hessian-vector product. We assume that v is drawn from distribution

N (0, I). The noisy Hessian-vector product h is modeled by

h = H0v + ε

where H0 is the true Hessian, and ε is a noise term independent of v due to use of sample

averaged loss instead of the true loss. Then, we can write the criterion for the preconditioner

estimation in PSGD as

c(P) =E[hTPh+ vTP−1v]

=tr(PE[hhT] + P−1E[vvT])

=tr(PH2 + P−1) (A.1)

107

where

H2 = H2
0 + E[εεT]

Clearly, H2 is positive semi-definite regardless of the definiteness of H0.

Note, we do not assume any definiteness or sparsity properties for H0. Hence, in general,

we assume that Q is fitted on a connected branch of the general linear group with learning

rule

Qnew = Qold + dQ = Qold +QE (A.2)

where Q relates to P as

P = QTQ,

and both dQ and E are sufficiently small matrices related by dQ = QE . One technical

difficulty in proving the convergence of Q with the learning rule (A.2) is that it cannot

exclude any rotation ambiguity of Q as suggested by

(UQ)T (UQ) = QT (UTU)Q = QTQ

where U can be any matrix on the orthogonal group. To ameliorate this technical issue, we

constrain dQ to take on certain structure. In our proof, we assume that both Qold and dQ

are symmetric such that Qnew is always symmetric as well. To achieve such a constraint, we

should update Qold on the Lie group as

Q′ =Qold +QE

Qnew =[(Q′)TQ′]0.5 (A.3)

108

In this way, dQ = Qnew − Qold is guaranteed to be symmetric as long as the starting guess

Qold is symmetric as well. Still, in practice we used the learning rule (A.2), and (A.3) only

serves for the purpose of proof.

Assume that H is invertible, and dQ = −µ ∂c
∂Q

or E = −µQT ∂c
∂Q

. Then, Q converges to

H−0.5 or −H−0.5 with the learning rule (A.3) and a small enough positive step size µ.

Proof. Given a small perturbation dQ of Q, the change of P is given by

dP =(Q+ dQ)T (Q+ dQ)−QTQ

=QTdQ+ dQTQ+ dQTdQ

The change of P−1 is a little more complicated. We omit any terms smaller than O[(dQ)2],

and can expand dP−1 as below

dP−1 =(P + dP)−1 − P−1

=− P−1dPP−1 + P−1dPP−1dPP−1

=
(
−Q−1dQP−1 − P−1dQTQ−T − P−1dQTdQP−1

)
+ (Q−1dQQ−1dQP−1 +Q−1dQP−1dQTQ−T

+ P−1dQTdQP−1 + P−1dQTQ−TdQTQ−T)

=−Q−1dQP−1 − P−1dQTQ−T +Q−1dQQ−1dQP−1

+Q−1dQP−1dQTQ−T + P−1dQTQ−TdQTQ−T

109

Now, the change of the PSGD criterion is given by

dc =tr(dPH2 + dP−1)

=tr(H2QTdQ+H2dQTQ+H2dQTdQ)

+ tr(−Q−1dQP−1 − P−1dQTQ−T +Q−1dQQ−1dQP−1

+Q−1dQP−1dQTQ−T + P−1dQTQ−TdQTQ−T)

=2tr(H2QTdQ− P−1Q−1dQ) (A.4)

+ tr(dQTdQH2 + 2dQQ−1dQP−1Q−1 + dQP−1dQTQ−TQ−1)

From (A.4), the first order derivatives of c with respect to Q is given by

∂c

∂Q
= QH2 −Q−TP−1

A stationary point is obtained by letting ∂c
∂Q

= 0, which leads to H2 = P−2. Hence, such a

P always exists as long as H2 is invertible. Via relationship dQ = QE , the gradient on the

Lie group is

∇E = QT ∂c

∂Q

Thus, fitting Q on the Lie group yields the same stationary point since Q is invertible. Note

that the stationary points only tell us that QTQ = H−1 without excluding the rotation

ambiguity.

Without the constraint dQ = dQT , the second order derivative of c with respect to Q

can be shown to be

∂2c

∂(vec(Q))2
= 2I ⊗H2 + 2JT [Q−1 ⊗ (QP)−T] + 2[Q−T ⊗ (QP)−1]J + 2(QQT)−1 ⊗ P−1

110

where J is the permutation matrix satisfying

vec(dQT) = J vec(dQ)

Via relationship dQ = QE , the second order derivative on the Lie group is

∇2
E = (QT ⊗ I) ∂2c

∂(vec(Q))2
(Q⊗ I) (A.5)

We see that neither ∂2c
∂(vec(Q))2

nor∇2
E is guaranteed to be positive definite. Hence, the learning

rule (A.2) does not convergence to a point as expected due to the rotation ambiguity.

On the other hand, both Q and dQ are symmetric with the learning rule (A.3). Thus,

the second order derivative of c with respect to Q simplifies to

∂2c

∂(vec(Q))2
= 2I ⊗H2 + 2Q−1 ⊗ (QP)−T + 2Q−T ⊗ (QP)−1 + 2(QQT)−1 ⊗ P−1

At a stationary point, we have Q = ±P 0.5 = ±H−0.5. Thus, this second order derivative

reduces to

∂2c

∂(vec(Q))2
|Q=±H−0.5 = 2I ⊗H2 + 4H0.5 ⊗H1.5 + 2H ⊗H (A.6)

By (A.5), the second order derivative on the Lie group is

∇2
E |Q=±H−0.5 = 2H−1 ⊗H2 + 4H−0.5 ⊗H1.5 + 2I ⊗H (A.7)

Now, both ∂2c
∂(vec(Q))2

and ∇2
E are positive definite for an invertible H at the stationary point.

Thus, Q converges to either stationary point, i.e., H−0.5 or −H−0.5.

111

A.1.2 Construction of matrix-free preconditioner

The following statement gives a systematic way to construct a family of black-box matrix-free

preconditioners.

Theorem 3.3.1. Let K = {σ1, . . . , σm} be a subgroup of the permutation group Sn. Then,

linear transform T : Rn 7→ Rn, T (x|a1, . . . , am) =
∑m

i=1 ai ⊙ σi(x), forms a subgroup of

GL(n,R) parameterized with {a1, . . . , am} if T (·|a1, . . . , am) is bijective, where both ai and x

are in Rn.

Proof. The proof follows by showing that such matrices have the following four properties

required to form a Lie group.

First, we show that I is the identity element. Note that K has element e since it is a

subgroup of Sn. Then without the loss of generality, we can set σ1 = e and a1 to be a vector

of ones, and all the other ai, i > 1, to be vectors of zeros. This leads to T (x|a1, . . . , am) = x,

and thus T (·|a1, . . . , am) = I when represented as a matrix.

Second, we show that such transforms are closed with binary operation T (1) ◦T (2) defined

as [T (1) ◦ T (2)](x) = T (1)[T (2)(x)]. Specifically, we have

[T (1) ◦ T (2)](x) =
m∑
i=1

a
(1)
i ⊙ σ

(1)
i

(
m∑
j=1

a
(2)
j ⊙ σ

(2)
j (x)

)

=
m∑
i=1

m∑
j=1

[a
(1)
i ⊙ σ

(1)
i (a

(2)
j)]⊙ σ(1)

i (σ
(2)
j (x))

Since K is a subgroup of Sn, σ
(1)
i (σ2

j (·)) still belongs to K. Hence, T (1) ◦ T (2) will have the

same form as T (·|a1, . . . , am) after merging like terms.

By representing T (·|a1, . . . , am) as a matrix, it is clear that the associativity property,

i.e., (T (1) ◦ T (2)) ◦ T (3) = T (1) ◦ (T (2) ◦ T (3)), holds since matrix multiplication is associative.

Lastly, the inverse of T (·|a1, . . . , am) exists since we assume that T (·|a1, . . . , am) is bijective,

112

and thus its representation is an invertible matrix.

Corollary A.1.1. We want to point out that not all simple matrix-free preconditions can be

constructed by Theorem 3.3.1. Let us take the widely used feature normalization transform,

e.g., batch normalization (IS15), layer normalization (BKH16) and group normalization

(WH18) as an example. We have

T (x|µ, σ) = (x− µ)/σ

where µ and σ are either scalar or vector mean and standard deviation of x, respectively.

This T (·|µ, σ) form a sparse affine group for σ ̸= 0 (Li19). However, we cannot use such

preconditioners as black-box ones.

A.1.3 Construction of low-rank approximation preconditioners

The following property states that the proposed low-rank approximation preconditioners can

fit both ends of the spectra of Hessian. It is not difficult to prove this statement. But, it

reveals an important advantage over traditional low-rank approximation preconditions with

form P = ρI + UUT , whose eigenvalues are lower bounded by ρ.

Notations

Let Q = (I+UV T)B, where U and V are two tall thin matrices, and B is a matrix on certain

group, e.g., the group of diagonal matrix, or simply a scalar. It is an important preconditioner

as after reparameterization, we can have Q = diag(d) + UV T for diagonal matrix B, which

relates to the LM-BFGS, HF, and conjugate gradient (CG) methods. This preconditioner is

efficient if low-rank modication can significantly further reduce the condition number 1 after

1Since PH is not symmetric, smaller eigenvalue spread does not always suggest smaller condition number,
e.g., [1, a; 0, 1] has arbitrarily large conditioner number for |a| → ∞. In PSGD, P does not amplify the
gradient noise (ref (Li15), page 5-6, section IV.B), and thus avoids such degraded solution.

113

preconditioning the Hessian with a diagonal matrix, i.e., a Jacobi preconditioner. One also

can think Q as a low-rank approximation of the inverse square root of a positive definite

Hessian. Note that this form of preconditioner can fit both tails of the spectra of Hessian.

Theorem 3.3.2. Preconditioner P = QTQ with Q = ρ(I + UV T) can have positive eigen-

values arbitrarily larger than ρ2 and arbitrarily smaller than ρ2 with proper U and V .

Proof. Let us check the simplest case, i.e., ρ = 1, U = u and V = v. Then, P is shown to be

P =(I + vuT)(1 + uvT)

=I + vuT + uvT + (uTu)vvT

This P has two eigenvalues determined by u and v, say λ1 and λ2. They satisfy

λ1λ2 =(1 + uTv)2

λ1 + λ2 =2 + 2uTv + ∥u∥2∥v∥2

By choosing u and v properly, these two eigenvalues can be arbitrarily smaller or larger than

1. For example, by letting uTv = 0 and ∥u∥ = ∥v∥ → ∞, we have λ1λ2 = 1 and λ1+λ2 →∞.

Hence, we must have one eigenvalue arbitrarily large, and the other one arbitrarily small. In

general, the order of rank can be larger than 1, and thus more degree of freedoms for fitting

the spectra of Hessian.

Theorem 3.3.3. If ρ ̸= 0 and (I + V TU)−1 or (I +UTV)−1 exists, AV (ρ, U) = ρ(I +UV T)

defines a subgroup of GL(n,R) parameterized with ρ and U . Similarly, AU(ρ, V) = ρ(I +

UV T) defines another subgroup of GL(n,R) parameterized with ρ and V .

Proof. Without the loss of generality, we assume ρ = 1, and simplify rewrite AV (1, U) as

AV (U) = I + UV T . We can show that AV (U) forms a Lie group by revealing the following

114

facts

AV (0) =I

AV (U1)AV (U2) =AV (U1 + U2 + U1V
TU2)

A−1
V (U) =AV [−U(I + V TU)−1]

i.e., the existence of identity element, closed with respect to matrix multiplication, and the

existence of inverse, respectively. The last equation is simply the rewriting of the Woodbury

matrix identity, i.e.,

[I + UV T]−1 = I − U(I + V TU)−1V T

The condition that (I + V TU)−1 exists is necessary as otherwise AV (U) is singular. Lastly,

the associativity property clearly holds for matrix multiplications. Hence, all such matrices

form a Lie group. Similarly, we can show that AU(V) = I +UV T defines another Lie group.

The rotation ambiguity and Schur decomposition

Note that UV T = UQ(V Q)T for any orthogonal matrix Q. Thus, we can remove this rotation

ambiguity by selecting a Q such that QT (V TU)Q is an upper triangular block matrix with

block size 1 or 2, i.e., the Schur decomposition. AV (U) and AU(V) still form groups by

constraining V TU to be quasi-triangular.

A.1.4 Low-rank approximation preconditioner fitting

In practice, we seldom use Q = ρ(I + UV T) as a preconditioner directly. Its limitation is

clear, i.e., most of its eigenvalues are ρ2 with r ≪ n. In our method, we start from a rough

preconditioner guess, say B, and modify it with I +UV T to have the refined preconditioner

115

as

Q = (I + UV T)B

If matrix B is from another Lie group, we still can update Q efficiently. For example, B can

be a diagonal matrix with nonzero diagonals. Then this composited preconditioner reduce

to a diagonal one when r = 0.

A.1.4.1 Fundamental operations on Lie Group

The concept of group generator

Unlike the additive update to move a point in a Euclidean space, we use multiplicative

update to move a point on the Lie group. For example, we can move AV (U) to any its

neighbor, say AV (U + E), as

AV
(
E(I + V TU)−1

)
AV (U) = AV (U + E)

Since AV (µU) = I + µUV T = eµUV
T for µ → 0, UV T is a group generator for any U ̸= 0.

Indeed, the Lie algebra is closed as shown by

< U1V
T , U2V

T >= U1V
TU2V

T − U2V
TU1V

T = (U1V
TU2 − U2V

TU1)V
T

where < ·, · > is the Lie bracket.

The gradients for preconditioner updating

Here, the gradient always refers to the one on the Lie group. Thus dA, say on group AV (U),

is either AV (E)AV (U) or AV (U)AV (E), where E → 0. Since we will update both groups,

we simple put it as dA = E1A or dA = AE2. Let’s drop the E in the PSGD preconditioner

116

fitting criterion and derive the stochastic gradient as below,

d(hTPh+ vTP−1v)

=hTdPh− vTP−1dPP−1v

=2hTdQTQh− 2vTP−1dQTQP−1v

Since we are to fit A and B on the Lie groups, thus let

dQ =dAB + AdB

=E1AB + ABE2

=E1Q+QE2

Then, we have

d(hTPh+ vTP−1v)

=2hTdQTQh− 2vTP−1dQTQP−1v

=2hTQTET1 Qh+ 2hTET2 QTQh− 2vTP−1QTET1 QP−1v − 2vTP−1ET2 QTQP−1v

=2hTQTET1 Qh+ 2hTET2 Ph− 2vTQ−1ET1 Q−Tv − 2vTP−1ET2 v

=2tr
{
ET1
[
(Qh)(Qh)T − (Q−Tv)(Q−Tv)T

]}
+ 2tr

{
ET2
[
(Ph)hT − v(P−1v)T

]}
(A.8)

(A.9)

Gradient with respect to B

For the diagonal matrix, we simply have

0.5∇B = diag[(Ph)hT − v(P−1v)T]

117

from (A.8), and thus update B as

B ← B(I − µ∇B)

where the step size µ is small enough such that µ∥∇B∥ < 1, and ∥∇B∥ is just the max

absolute diagonal element for a diagonal matrix. Here, ∥ · ∥ denotes spectral norm.

For a diagonal matrix, we also can update its diagonals with element-wise step sizes as the

Lie group reduces to the direct sum of a series smaller ones with dimension one. This could

lead to faster convergence when the true Hessian is diagonal. Otherwise, we do not observe

any significant difference between these two step size selection strategies in our numerical

results.

Gradient with respect to U on group AV (U)

Since

dA = (I + EV T)(I + UV T)− (I + UV T) = EV TA

we replace the E1 in (A.8) with EV T to obtain gradient

0.5∇U = [(Qh)(Qh)T − (Q−Tv)(Q−Tv)T]V

Then, we update A as

A← A− µ∇UV
TA

which suggests its parameter can be updated as

U ← U − µ∇U(I + V TU)

since we are operating on the group AV (U), where the step size is small enough such that

µ∥∇UV
T∥ < 1. Note that ∇UV

T has at most rank two. Hence, its Frobenius norm can be

118

used to bound its spectral norm tightly, as shown by

∥∇UV
T∥F/

√
2 ≤ ∥∇UV

T∥ ≤ ∥∇UV
T∥F

Gradient with respect to V on group AU(V)

As

dA = (I + UET)(I + UV T)− (I + UV T) = UETA

we replace the E1 in (A.8) with UET to give gradient

0.5∇V = [(Qh)(Qh)T − (Q−Tv)(Q−Tv)T]U

Thus, we update A as

A← A− µU∇T
VA

which implies that its parameter V should be updated as

V ← V − µ(I + V UT)∇V

where the step size is small enough such that µ∥U∇T
V ∥ < 1. Again, U∇T

V has at most rank

two, and its Frobenius norm gives a tight enough estimation of its spectral norm.

A.2 Proofs for AdaCore: Chapter 3

A.2.1 Proof of Theorem 4.4.1

Theorem 4.4.1. Assume that L is α-strongly convex and β-smooth. Let S be a weighted

subset obtained by AdaCore that estimates the preconditioned gradient by an error of at

most ϵ at every iteration t, i.e., ∥H−1
t gt −

∑
j∈S γt,jH

−1
t,j gt,j∥ ≤ ϵ. Then with learning rate

119

α/β, Newton’s method with update rule of Eq. (2.8) applied to the subsets has the following

convergence behavior:

L(wt+1)− L(wt) ≤ −
α3

2β4
(∥gt∥ − βϵ)2. (4.13)

In particular, the algorithm converges to a βϵ/α-neighborhood of the optimal solution w∗.

Proof. We prove Theorem 4.4.1 (similarly to the proof of Newton’s method in (BV04b)) for

the following general update rule for 0 ≤ k ≤ 1:

∆wt = H−k
t gt (A.10)

wt+1 = wt − η∆wt (A.11)

For k = 1, this corresponds to the update rule of the Newton’s method. Define λ(wt) =

(gTt H
−k
t gt)

1/2. Since L(w) is β-smooth, we have

L(wt+1) ≤ L(wt)− ηgTt ∆wt +
η2β∥∆wt∥2

2
(A.12)

≤ L(wt)− ηλ(wt)2 +
β

2αk
η2λ(wt)

2, (A.13)

where in the last equality, we used

λ(wt) = ∆wtH
k
t∆w

T
t . (A.14)

Therefore, using step size η̂ = αk

β
we have wt+1 = wt − η̂∆wt

L(wt+1) ≤ L(wt)−
1

2
η̂λ(wt)

2 (A.15)

120

Since αI ⪯ Ht ⪯ βI, we have

λ(wt)
2 = gTt H

−k
t gt ≥

1

βk
∥gt∥2, (A.16)

and therefore L decreases as follows,

L(wt+1)− L(wt) ≤ −
1

2βk
η̂∥gt∥2 = −

αk

2βk+1
∥gt∥2. (A.17)

Now for the subset, from Eq. (4.4) we have that ∥H−1
t gt −

∑
j∈S γt,jH

−1
t,j gt,j∥ ≤ ϵ. Hence,

via reverse triangle inequality ∥H−1
t gt∥ ≤ ∥

∑
j∈S γt,jH

−1
t,j gt,j∥+ ϵ, and we get

∥gt∥
β
≤ ∥(Ht)

−1gt∥ ≤ ∥(HS
t)

−1gSt γγγ∥+ ϵ ≤ ∥g
S
t ∥
α

+ ϵ, (A.18)

where gSt =
∑

j∈S gt,j and HS
t =

∑
j∈S Ht,j. are the gradient and Hessian of the subset

respectively. In Eq. (A.18) the RHS follows from operator norms and the LHS follows from

the following lower bound on the norm of the product of two matrices:

∥AB∥ = max
∥x∥=1

∥xTAB∥

= max
∥x∥=1

∥xTA∥
∥∥∥∥ xTA

∥xTA∥
B

∥∥∥∥
≥ max

∥x∥=1
σmin(A)

∥∥∥∥ xTA

∥xTA∥
B

∥∥∥∥
= max

∥y∥=1
σmin(A)

∥∥yTB∥∥
= σmin(A)∥B∥,

(A.19)

Hence,

∥gSt ∥ ≥
α

β
(∥gt∥ − βϵ) (A.20)

121

Therefore, on the subset we have

L(wt+1)− L(wt) ≤ −
αk

2βk+1
∥gSt ∥2 (A.21)

≤ − αk

2βk+1
(
α

β
)2(∥gt∥ − βϵ)2 (A.22)

= − αk+2

2βk+3
(∥gt∥ − βϵ)2. (A.23)

The algorithm stops descending when ∥gt∥ = βϵ. From strong convexity we know that

∥gt∥ = βϵ ≥ α∥w − w∗∥ (A.24)

Hence, we get

∥w − w∗∥ ≤ βϵ/α. (A.25)

As such we have Corollary 4.4.2. and when we set k = 1 we have proof of Theorem

4.4.1.

Descent property for Equation 4.4 For a strongly convex function, L, we have that

the diagonal elements of the Hessian are positive (YGS20). This allows the diagonal to

approximate the full Hessian which has good convergence properties.

Given a function L(w) which is strongly convex and strictly smooth, we have that∇2L(w)

is upper and lower bounded by two constants β and α, so that αI ≤ ∇2L(w) ≤ βI, for all

w. For a strongly convex function the diagonal elements in diag(Ht) are all positive, and we

have:

α ≤ eTi Htei = eTi diag(Ht)ei = diag(Ht)i,j ≤ β (A.26)

where ej represents the natural basis vectors. Therefore, the diagonal entries of diag(Ht)

122

are in the range [α, β]. Therefore, the average of a subset of the numbers is still in the range

[α, β]. As such, we can prove that Eq. (4.9) has the same convergence rate as its full matrix

counterpart, by following the same proof as Theorem 4.4.1.

A.2.2 Proof of Theorem 4.4.3 and 4.4.4

A loss function L(w) is considered µ-PL on a set S, if the following holds:

1

2
∥g∥2 ≥ µ (L(w)− L (w∗)) ,∀w ∈ S (A.27)

where w∗ is a global minimizer. When additionally L (w∗) = 0, the µ-PL condition is

equivalent to the µ-PL∗ condition

1

2
∥g∥2 ≥ µL(w),∀w ∈ S. (A.28)

Theorem 4.4.3. Assume that the loss function L(w) is β-smooth, and µ-PL∗ on a set W,

and S is a weighted subset obtained by AdaCore that estimates the preconditioned gradient

by an error of at most ϵ, i.e., ∥H−1
t gt −

∑
j∈S γt,jH

−1
t,j gt,j∥ ≤ ϵ. Then with learning rate

η, gradient descent with update rule of Eq. (4.2) applied to the subsets have the following

convergence behavior at iteration t:

L(wt) ≤ (1− ηµα2

β2
)tL(w0)−

ηα2

2β2
(β2ϵ2 − 2βϵ∇max), (4.15)

where α is the minimum eigenvalue of all Hessian matrices during training, and ∇max is an

upper bound on the norm of the gradients.

For Lipschitz continuous g and µ-PL∗ condition, gradient descent on the entire dataset

123

yields

L(wt+1)− L(wt) ≤ −
η

2
∥gt∥2 ≤ −ηµL(wt), (A.29)

and,

L(wt) ≤ (1− ηµ)tL(w0) (A.30)

which was shown in (LZB20).

We build upon this result to an AdaCore subset.

Proof. From Eq. (A.18) we have that

∥gt∥
β
≤ ∥(Ht)

−1gt∥ ≤ ∥(HS
t)

−1gSt γγγ∥+ ϵ ≤ ∥g
S
t ∥
α

+ ϵ (A.31)

Hence solving for ∥gSt ∥ we have,

∥gSt ∥ ≥
α

β
(∥gt∥ − βϵ). (A.32)

For the subset we have

L(wt+1)− L(wt) ≤ −
η

2
∥gSt ∥2 (A.33)

124

By substituting Eq. (A.32) we have.

≤ −ηα
2

2β2
(∥gt∥ − βϵ)2 (A.34)

= −ηα
2

2β2
(∥gt∥2 + β2ϵ2 − 2βϵ∥gt∥) (A.35)

≤ −ηα
2

2β2
(∥gt∥2 + β2ϵ2 − 2βϵ∇max) (A.36)

≤ −ηα
2

2β2
(2µL(wt) + β2ϵ2 − 2βϵ∇max) (A.37)

Where we can upper bound the norm of gt in Eq. (A.35) by a constant ∇max. And Eq.

(A.37) follows from the µ-PL condition from Eq. (A.27).

Hence,

L(wt+1) ≤ (1− ηµα2

β2
)L(wt)−

ηα2

2β2
(β2ϵ2 − 2βϵ∇max) (A.38)

Since,
∑k

j=0(1−
ηµα2

β2)j ≤ β2

ηµα2 , for a constant learning rate η we get

L(wt+1) ≤ (1− ηµα2

β2
)t+1L(w0)−

ηα2

2β2
(β2ϵ2 − 2βϵ∇max) (A.39)

Theorem 4.4.4. Under the same assumptions as in Theorem 4.4.3, for mini-batch SGD

with mini-batch size m ∈ N, the mini-batch SGD with update rule Eq. (4.2), with learning

rate η = m
β(m−1)

, applied to the subsets have the following convergence behavior:

E[L(wt)] ≤ (1− ηµα2

2β
)tE[L(w0)]−

α2η

2β
(βϵ2 − 2ϵ∇max) (4.16)

where α is the minimum eigenvalue of all Hessian matrices during training, and ∇max is an

upper bound on the norm of the gradients, and the expectation is taken w.r.t. the randomness

in the choice of mini-batch.

125

For Lipschitz continuous g and µ-PL∗ condition, gradient descent on the entire dataset

yields

L(wt+1)− L(wt) ≤ −
η

2
∥gt∥2 ≤ −ηµL(wt), (A.40)

and,

L(wt) ≤ (1− ηµ)tL(w0), (A.41)

which was shown in (LZB20).

We build upon this result to an AdaCore subset.

Proof. From Eq. (A.18) we have that

∥gt∥
β
≤ ∥(Ht)

−1gt∥ ≤ ∥(HS
t)

−1gSt γγγ∥+ ϵ ≤ ∥g
S
t ∥
α

+ ϵ (A.42)

Hence solving for ∥gSt ∥ we have,

∥gSt ∥ ≥
α

β
(∥gt∥ − βϵ). (A.43)

For the subset we have

L(wt+1)− L(wt) ≤ −
η

2
∥gSt ∥2 (A.44)

Fixing wt and taking expectation with respect to the randomness in the choice of the

126

batch i(1)t . . . i
(m)
t (noting that those indices are i.i.d.), we have

E
i
(1)
t ...i

(m)
t

[L(wt+1)− L(wt)] ≤ −η(α− η
β

m
(α
m− 1

2
+ β)L(wt) (A.45)

≤ − η(1− ηβ(m− 1)

2m
)︸ ︷︷ ︸

c1

∥gt∥2 +
η2βλ

m︸ ︷︷ ︸
c2

L(wt) (A.46)

≤ −c1
α2

β2
∥gt + βϵ∥)2 + c2L(wt) (A.47)

We can upper bound the norm of gt in Eq. (A.37) by a constant ∇max. And Eq. (A.37)

follows from the µ-PL condition from Eq. (A.27) and assuming η ≤ 2
β
.

≤ −c1
α2

β2
(µL(wt)− 2∇maxβϵ+ β2ϵ2) + c2L(wt) (A.48)

≤ −η(1− ηβ(m− 1)

2m
)
α2

β2
(µL(wt)− 2∇maxβϵ+ β2ϵ2) +

η2βλ

m
L(wt) (A.49)

= η(µ
α2

β2
− η β

m
(µ
α2(m− 1)

β22
+ λ))L(wt) +

η2βλ

m
L(wt) + c1

α2

β2
(2∇maxβϵ− β2ϵ2) (A.50)

= ηµ
α2

β2
(1− ηβm− 1

2m
)E[L(wt)] + η

α2

β2
(1− ηβm− 1

2m
)(2∇maxβϵ− β2ϵ2) (A.51)

By optimizing the quadratic term in the upper bound with respect to η we get η = m
β(m−1)

.

E[L(wt+1)] ≤ (1− µα2m

2β2(m− 1)
)E[L(wt)] +

α2m

β2

2∇maxβϵ− β2ϵ2

2β(m− 1)
(A.52)

Hence,

E[L(wt+1)] ≤
(
1− η∗(m)µα2

2β

)
E[L(wt)] +

α2η∗(m)

β
(∇maxϵ− βϵ2/2) (A.53)

127

A.2.3 Discussion on Greedy to Extract Near-optimal Coresets

As discussed in Section 4.4.4, a greedy algorithm can be applied to find near-optimal core-

sets that estimate the general descent direction with an error of at most ϵ by solving the

submodular cover problem Eq. (4.12). For completeness, we include the pseudocode of the

greedy algorithm in Algorithm 3. The AdaCore algorithm is run per class.

Algorithm 3 AdaCore (Adaptive Coresets for Accelerating First and Second Order Op-
timization Methods)
Require: Set of component functions fi for i ∈ V = [n].
Ensure: Subset S ⊆ V with corresponding per-element stepsizes γj ∈ S.
S0 ← ∅, s0 = 0, i = 0.;
while F (S) < C1 − ϵ do

j ∈ argmaxe∈V \Si−1
F (e|Si−1);

Si = Si−1 ∪ j;
i = i+ 1;

end while
for j = 1 to |S| do

γj =
∑

i∈V I
[
j = argmins∈Smaxw∈W |H−1

t gt −
∑

j∈S γt, jH
−1
t,j gt,j|

]
end for

A.2.4 Bounding the Norm of Difference Between Preconditioned Gradients

A.2.4.1 Convex Loss Functions

We show the normed difference for ridge regression. Similar results can be deduced for other

loss functions such as square loss (AYS16), logistic loss, smoothed hinge losses, etc.

For ridge regression fi(w) = 1
2
(⟨xi, w⟩ − yi)

2 + λ
2
∥w∥2, we have ∇fi(w) = xi(⟨xi, w⟩ −

yi) + λw. Furthermore for invertable Hessian H, let H−1
i = A and H−1

j = B. Therefore,

∥A∇fi(w)−B∇fj(w)∥ = ∥A(xi⟨xi, w⟩ − xiyi + λw)−B(xj⟨xj, w⟩ − xjyj + λw)∥ (A.54)

128

= ∥Axi⟨xi, w⟩ −Bxj⟨xj, w⟩+Bxjyj − Axiyi + λ(A−B)w∥ (A.55)

= ∥Axi⟨xi, w⟩+Bxj⟨xi, w⟩ −Bxj⟨xi, w⟩ −Bxj⟨xj, w⟩

+Bxjyj − Axiyi +Bxjyi −Bxjyi + λ(A+B)w∥ (A.56)

= ∥⟨xi, w⟩(Axi −Bxj) + ⟨xi − xj, w⟩Bxj + (yj − yi)Bxj + yi(Bxj − Axi) + λ(A−B)w∥

(A.57)

= ∥(⟨xi, w⟩ − yi)(Axi −Bxj) + (⟨xi − xj, w⟩+ yj − yi)Bxj + λ(A+B)w∥ (A.58)

≤ |⟨xi, w⟩ − yi|∥Axi −Bxj∥+ |⟨xi − xj, w⟩+ yj − yi|∥Bxj∥+ λ∥(A−B)w∥ (A.59)

≤ |⟨xi, w⟩ − yi|(∥A−B∥∥xi∥+ ∥B∥∥xi − xj∥) + |⟨xi − xj, w⟩+ yj − yi|∥Bxj∥

+ λ∥(A+B)w∥ (A.60)

≤ O(∥w∥)(∥A−B∥+ ∥B∥∥xi − xj∥) +O(∥w∥)∥B∥∥xj∥∥xi − xj∥ (A.61)

≤ O(∥w∥)(∥A∥+ ∥B∥+ ∥B∥∥xi − xj∥) +O(∥w∥)∥B∥∥xj∥∥xi − xj∥ (A.62)

In Eq. (A.62) we have the norm of the inverse of the Hessian matrix. Since H is invertible

we have miniσi > 0,

min
i
σi = inf

x ̸=0

∥Hx∥2
∥x∥2

⇐⇒ 1

mini σi
= sup

x ̸=0

∥x∥2
∥Hx∥2

(A.63)

1

mini σi
= sup

x ̸=0

∥x∥2
∥Hx∥2

= sup
H−1z ̸=0

∥H−1z∥2
∥z∥2

= sup
z ̸=0

∥H−1z∥2
∥z∥2

=
∥∥H−1

∥∥
2
, (A.64)

where the substitution Hx = z was made, and utilized that H−1z = 0⇐⇒ z = 0 since H is

invertible. Hence,

≤ O(∥w∥)∥B∥∥xi − xj∥ (A.65)

≤ O(∥w∥)∥xi − xj∥ (A.66)

For ∥xi∥ ≤ 1, and |yi − yj| ≈ 0 .

Assuming that ∥w∥ is bounded for all w ∈ W , an upper bound on the euclidean distance

129

between preconditioned gradients can be precomputed.

A.2.4.2 Neural Networks

We closely follow proofs from (KF18) and (MBL20) to show that we can bound the difference

between the Hessian inverse preconditioned gradients of an entire NN up to a constant of

the difference between the Hessian inverse preconditioned gradients of the last layer of the

NN, between arbitrary datapoints i and j.

Consider an L-layer perceptron, where w(l) ∈ RMlxMl−1 is the weight matrix for the lth

layer with Ml hidden units. Furthermore assume σ(l)(.) is a Lipschitz continuous activation

function. Then we let,

x
(0)
i = xi, (A.67)

z
(l)
i = w(l)x

(l−1)
i , (A.68)

x
(l)
i = σ(l)

(
z
(l)
i

)
. (A.69)

With,

Σ′
l

(
z
(l)
i

)
= diag

(
σ′(l)

(
z
(l)
i,1

)
, · · ·σ′(l)

(
z
(l)
i,Ml

))
(A.70)

∆
(l)
i = Σ′

l

(
z
(l)
i

)
wTl+1 · · ·Σ′

l

(
z
(L−1)
i

)
wTL . (A.71)

We have,

130

∥H−1
i gi−H−1

j gj∥ (A.72)

=
∥∥∥(∆(l)

i Σ′
L(z

(L)
i)(H−1

i)(L)g(L)
i

)
(x

(l−1)
i)T −

(
∆

(l)
j Σ′

L(z
(L)
j)(H−1

j)(L)g(L)
j

)
(x

(l−1)
j)T

∥∥∥
(A.73)

≤
∥∥∥∆(l)

i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥ · ∥∥∥Σ′
L

(
z
(L)
i

)
(H−1

i)(L)g(L)
i − Σ′

L

(
z
(L)
j

)
(H−1

j)(L)g(L)
j

∥∥∥ (A.74)

+
∥∥∥Σ′

L

(
z
(L)
j

)
(H−1

i)(L)g(L)
i

∥∥∥ · ∥∥∥∥∆(l)
i

(
x
(l−1)
i

)T
−∆

(l)
j

(
x
(l−1)
j

)T∥∥∥∥
≤
∥∥∥∆(l)

i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥ · ∥∥∥Σ′
L

(
z
(L)
i

)
(H−1

i)(L)g(L)
i − Σ′

L

(
z
(L)
j

)
(H−1

j)(L)g(L)
j

∥∥∥ (A.75)

+
∥∥∥Σ′

L

(
z
(L)
j

)
(H−1

i)(L)g(L)
i

∥∥∥ · (∥∥∥∆(l)
i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥+ ∥∥∥∆(l)
j

∥∥∥ · ∥∥∥x(l−1)
j

∥∥∥)
≤max

l

(∥∥∥∆(l)
i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥)︸ ︷︷ ︸
cl,i

·
∥∥∥Σ′

L

(
z
(L)
i

)
(H−1

i)(L)g(L)
i − Σ′

L

(
z
(L)
j

)
(H−1

j)(L)g(L)
j

∥∥∥
(A.76)

+
∥∥∥Σ′

L

(
z
(L)
i

)
(H−1

i)(L)g(L)
i

∥∥∥ ·max
l,i,j

(∥∥∥∆(l)
i

∥∥∥ · ∥∥∥x(l−1)
i

∥∥∥+ ∥∥∥∆(l)
j

∥∥∥ · ∥∥∥x(l−1)
j

∥∥∥)︸ ︷︷ ︸
c2

From (KF18), (MBL20), we have that the variation of the gradient norm is mostly captured

by the gradient of the loss function with respect to the pre-activation outputs of the last layer

of our neural network. Here we have a similar result, where, the variation of the gradient pre-

conditioned on the inverse of the Hessian norm is mostly captured by the gradient precondi-

tioned on the inverse of the Hessian of the loss function with respect to the pre-activation out-

puts of the last layer of our neural network. Assuming
∥∥∥Σ′

L

(
z
(L)
i

)
(H−1

i)(L)g(L)
i

∥∥∥ is bounded,

we get

∥H−1
i gi−H−1

j gj∥ ≤ c1

∥∥∥Σ′
L

(
z
(L)
i

)
(H−1

i)(L)g(L)
i − Σ′

L

(
z
(L)
j

)
(H−1

j)(L)g(L)
j

∥∥∥+ c2 (A.77)

where c1, c2 are constants. The above holds for an affine operation followed by a slope-

bounded non-linearity (|σ′(w)| ≤ K).

131

A.2.5 Analytic Hessian for Logistic Regression

Here we provide the analytical formulation of the Hessian of the binary cross entropy loss

per data point n with respect to weights w for Logistic Regression.

For Binary Logistic Regression we have a loss function L(w) defined as:

L(w) = −
N∑
i=1

li(w) = −
N∑
i=1

yiln(σ̂) + (1− yi)ln(1− σ̂), where σ̂i = σ(wTxi + b) (A.78)

and σ is the sigmoid function.

We form a Hessian matrix for each data point i based on loss function ℓi(w) as follows:

Hn =

 ∂
∂w2 li(w) ∂

∂w∂b
li(w)

∂
∂b∂w

li(w) ∂
∂b∂b

li(w)

 =

σ̂i(1− σ̂i)xix
T
i

σ̂i(1− σ̂i)xi

[σ̂i(1− σ̂i)xi]
T σ̂i(1− σ̂i)


This allows us to analytically form the Hessian information per point which is needed to

precompute a single coreset which will be used throughout training of the convex regularized

logistic regression problem.

132

APPENDIX B

Additional Experiments

B.1 More Experimental Results: Chapter 3

B.1.1 MNIST Handwriting Digit Recognition

To have a fair comparison between the diagonal and low-rank approximation (LRA) precon-

ditioners, we slightly upgrade Q in the LRA preconditioner to form

Q = diag(d)(I + UV T)

where d is a vector. This form of Q cannot form a Lie group. Still, its two factors, diag(d)

and I + UV T , can be fitted on their own Lie groups. Now, the diagonal preconditioner is a

special case of this LRA one with order r = 0.

We have tested orders r = 0, 1, 2, 5, and 10. The batch size is 64. Totally ten epochs of

training are performed. The learning rate for parameter updating is annealed exponentially

from 0.1 for the first epoch to 0.001 for the tenth epoch. The step size for preconditioner

fitting is annealed exponentially from 0.1 for the first epoch to 0.01 for the tenth epoch.

Preconditioned gradient norm is clipped to 10 if too large. No momentum is used. Figure

1 summarizes the test classification error rates for preconditioners with different order of

approximations over 50 runs. From Fig. 1, we see that the simple diagonal preconditioner

performs well. Still, LRA brings marginal gains up to order r = 5. This cost function is

fairly ‘flat’ since the only nonlinearities in LeNet5 are two piece-wise linear functions, i.e.,

133

the activation function ReLU and max pooling one. Only the cross entropy loss introduces

the ‘curvature’.

0 1 2 5 10

r

6.5

7

7.5

8

8.5

9

9.5

te
s
t
e
rr

o
r

ra
te

10
-3

Figure B.1: MNIST test classification error rates over 50 runs using preconditioners with
different orders of LRA. The one with order 0 reduces to the diagonal preconditioner. Table
1 reports the results of classification accuracy for r = 5. Higher is better.

B.1.2 CIFAR10 Image Classification with ResNet18

We follow the implementations of Adabelief1 algorithm (ZTD20) to test preconditioned SGD

(PSGD) on the CIFAR10 image classification task with the ResNet18 model. One main

difference from the implementations in (ZTD20) is that we reduce the learning rate by

tenfold twice for all the optimizers, while the original stage learning rate scheduler only

anneals the step size once. We also consider the cosine learning rate scheduler, which helps

SGD to achieve the state-of-the-art (SOTA) test accuracy of about 95.5%. Training and

testing accuracy convergence curves over 16 runs are plotted in Fig. 2. We only show the

results of PSGD and SGD here as SGD is known to achieve the SOTA results for this

problem.

For PSGD, we use step size 0.02 for parameter updating and 0.01 for preconditioner

fitting. The preconditioner is only updated once per ten iterations, and thus its overhead

1https://github.com/juntang-zhuang/Adabelief-Optimizer

134

over SGD is marginal. The same momentum factor, 0.9, is used for both SGD and PSGD.

Since the step size in PSGD is normalized, we update the momentum as m← 0.9m+ 0.1g,

instead of m ← 0.9m + g as in the SGD. No gradient clipping is used. Weight decay is

realized by adding the L2 regularization term 0.5λθT θ to the cross entropy loss. We have

found that λ between 0.01 and 0.02 performs the best.

From Fig. 2, we observe that SGD performs very well with the cosine learning rate

scheduler. This is expected as these residual networks are highly evolved to be first-order

optimizer-friendly. The extensive use of piece-wise linear functions, residual connections and

batch normalizations make these models fairly ‘flat’ and resemble shallow models, instead of

deep ones (VWB16). Still, PSGD slightly outperforms SGD when we remove the shortcut

connections or use a less tuned learning rate scheduler, e.g., the stage one here.

B.1.2.1 PSGD is robust to hyper-parameters

To showcase the robustness of PSGD to hyper-parameters we show in table B.1 the test

classification accuracy of a ResNet18 trained on CIFAR10 using different learning rate and

weight decay.

PSGD XOR Learning Rate Weight Decay Test Accuracy

XMat 2e-2 2e-2 95.32
LRA 2e-2 2e-2 95.69
LRA 5e-2 2e-2 95.48
LRA 5e-2 2e-2 95.46
LRA 4e-2 2e-2 95.55
LRA 3e-2 2e-2 95.57
LRA 2e-2 1e-2 95.45
LRA 2e-2 3e-2 95.51

Table B.1: We see that PSGD is robust to hyper-parameter selection making tuning signifi-
cantly easier compared to other optimization methods.

We clearly see the test accuracy of PSGD in a wide range or learning rate and weight

135

0 50 100 150 200

Epoch

85

90

95

100

T
ra

in
 a

c
c
u
ra

c
y
 (

%
)

stage lr

0 50 100 150 200

Epoch

82

84

86

88

90

92

94

96

T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

stage lr

0 50 100 150 200

Epoch

85

90

95

100

T
ra

in
 a

c
c
u
ra

c
y
 (

%
)

cos lr

0 50 100 150 200

Epoch

82

84

86

88

90

92

94

96

T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

cos lr

0 50 100 150 200

Epoch

85

90

95

100

T
ra

in
 a

c
c
u
ra

c
y
 (

%
)

cos lr, no shortcut

0 50 100 150 200

Epoch

82

84

86

88

90

92

94

96

T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

cos lr, no shortcut

Figure B.2: CIFAR10 image classification with ResNet18. The order of low-rank Hessian
approximation is 10. Mean and variance are estimated over 16 runs. Higher is better.
decay converges within the expected rage of 95.49± 0.08%.

B.1.3 A Large-Scale Logistic Regression Problem

We consider a simple logistic regression model to solve the MNIST classification problem,

with and without Bernoulli noise. We considered AdaHessian, AdaBelief, SGD, LBFGS,

PSGD LRA/XMat, KFAC, and HessianFree optimizers. Let x be the vector of the image with

length 282. Instead of regression on vector x, we do the regression on the outer product vector

of x, which has length 284. This significantly increases the test classification accuracy but

leads to a large regression matrix with over six million coefficients. The KFAC preconditioner

did not fit on our GPU and the HessianFree optimizer would diverge far from all other

optimizers in more than 50% of our runs. Both are omitted from further discussion in this

section.

136

2 4 6 8 10 12 14 16 18 20

Epoch

10
-3

10
-2

10
-1

10
0

T
ra

in
 c

ro
s
s
 e

n
tr

o
p

y

SGD

LM-BFGS

PSGD

Figure B.3: Standard MNIST dataset: Typical convergence curves on the logistic regression
problem. Lower is better. When comparing the convergence speed, one should be aware
that one step of LM-BFGS may take up to ten iterations, while SGD and PSGD always one
iteration per step.

No momentum is considered since this is the case for LM-BFGS. The train batch size is

500. It is tricky to select the initial learning rate for LM-BFGS even though we exponentially

anneal it. We have found that LM-BFGS diverges on roughly one-third of the trials with an

initial learning rate of 0.1, but 0.05 is too small and may lead to worse performance than

SGD. For PSGD, we consider the LRA preconditioner with order 10 and set the learning

rates for parameters and preconditioner to 0.05 and 0.1, respectively. Since LM-BFGS might

diverge with a learning rate of 0.1, we only show a few typical convergence curves of SGD,

LM-BFGS, and PSGD in Fig. B.3. LM-BFGS converges to regression losses a few times

smaller than SGD. PSGD could converge to losses about one order of magnitude lower than

that of SGD and LM-BFGS. Regarding test classification error rate, we have 2.37%± 0.08,

2.09% ± 0.18, 1.98% ± 0.08 for SGD, LM-BFGS, and PSGD, respectively, averaged over

ten runs. Again, LM-BFGS outperforms SGD, and PSGD performs the best on the test

classification error rate as well.

Next, we simply randomly add Bernoulli noise to the MNIST dataset to add diversity

to the dataset. Even though LM-BFGS is the standard optimizer for large-scale logistic

137

regression we wanted to consider some other SOTA optimizers for deep learning. PSGD

UVd/XMat performed the best in this scenario but we found that AdaBelief does surprisingly

well given its lack of second-order information. Losses and Accuracies plotted in Fig B.4

(a) Train Loss (b) Test Accuracy
Figure B.4: We consider logistic regression on the MNIST dataset with Bernoulli noise. We
see PSGD finds the lowest loss on the train set, with the Belief mechanism also working well.
PSGD and AdaBelief generalize well to the Accuracy of the Test Dataset.

We see that PSGD significantly outperforms the SOTA optimizers in the convex logistic

regression setting under noise-free or noisy domains while being memory efficient.

B.1.4 Forgettability & Uncertainty: Rank Analysis

Very recently, (TSC18) shows that Forgettable points are crucial for generalization in the

supervised setting. In the unsupervised, semi-supervised, self-supervised, and generative

setting (PKN23) shows that one can use the low entropy samples generated by the generative

model to significantly boost the classification performance of the Latent Energy Based Model

which acts as generative-classifier. Here we acknowledge the previous findings and focus

on the supervised setting. We train a ResNet18 on CIFAR-10 and record entropy and

forgettability statistics. We plot the strong correlation between low forgettability score and

low entropy found in our statistics in Fig. B.5 and provide correlation coefficients in Table

B.2.

138

Figure B.5: There is a strong correlation between the forgettability ordering and the entropy
ordering. i.e. points that are unforgettable have a very low entropy.

Entropy v Forgettability Score Correlation Coefficient p-value
SGD PSGD SGD PSGD

Spearman 0.72 0.73 0 0
Pearson 0.57 0.65 0 0

Kedal Tau 0.54 0.56 0 0
Weighted Tau 0.60 0.75 0 0

Table B.2: Comparison of correlation metrics comparing Entropy Score vs Forgettability
score between SGD and PSGD. We see that PSGD’s average correlation between entropy
and forgettability is stronger than that of SGD.

B.1.4.1 Generalization Gap Between High and Low Entropy Subsets

We train an oracle LeNet5 on the full MNIST dataset for 20 epochs, we categorize the train

set into two subsets; a high entropy subset and a low entropy subset, each consisting of 10k

points. The entropy is defined over the softmax of the logits. We then train two different

LeNet5’s on each dataset. We find that the low entropy dataset does not generalize to the

test set well achieving a test accuracy of 74%, whereas the high entropy dataset achieves

a 99.3% which is on par with oracle LeNet5 (see B.3). This clearly shows for supervised

learning the high entropy points are most important for generalization.

Furthermore, we find that training on low entropy points results in low entropy a lower

139

mean entropy network. This supports the hypothesis that there are certain points that the

net can lower the entropy over which do not lead to generalization. In fact we see in Table

B.3 that training over the full dataset resulted in a higher mean low entropy compared to

that of the full dataset. This supports the idea that high entropy points are important for

supervised learning.

In terms of distance from initialization, we see that the network is pushed farther from ini-

tialization when using the full dataset than while using the high entropy points and the least

when using the low entropy points. This supports that training with low-entropy or unfor-

gettable points unnecessarily pushes a network’s parameters far from initialization reducing

generalization capacity. Furthermore, we see that when training on low entropy points,

PSGD does not push the neural network far from initialization preserving generalization

capacity (CG19).

MNIST
Statistics Accuracy Expected

Low Entropy
Expected

High Entropy

Distance from
Initialization

SGD

Distance from
Initialization

PSGD

Full Dataset 99.3% 5e-16 6e-3 23.1 26
High Entropy Subset 99.3% 1e-10 2e-2 21.7 21.2
Low Entropy Subset 74.2% 6e-18 4e-4 9.2 8.7

Table B.3: Comparing generalization accuracy of a LeNet5 trained on either 10k high or
10k low entropy datapoints. We see high entropy datasets can match the generalization of
the full dataset with a higher test entropy compared to the other datasets. We see that the
distance from initialization is less for the low entropy points.

Finally, we see that a NN trained on low entropy points has mean low entropy 2 orders

of magnitude smaller than training on the full dataset, and 8 orders of magnitude smaller

than training on the high entropy subset. This shows that low entropy points cause a level

of confidence in a NN which is not needed and in some cases can be hurtful to generalization

3.5.1.

140

B.1.5 Effect of Rank on XOR

The full rank version of PSGD (Li19) can solve the XOR problem with an RNN past delay

of 128. Since we can arbitrarily increase the rank of Hessian approximation in our LRA

version of PSGD, we consider the effect of rank on convergence on the XOR problem using

an RNN. We find rank approximations of r = 0, 1, 2, 5, and 10 converge with probability

p = 0.1, 0.4, 0.8, 1 and 1 respectively.

0 1 2 3 4 5 6 7 8 9 10

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c
e

s
s
 r

a
te

Figure B.6: Success rate over ten runs in solving the XOR problem with a simple RNN and
LRA preconditioners of orders 0, 1, 2, 5, and 10. Higher is better.

This example shows a typical problem where the diagonal preconditioner struggles, while

a low-order Hessian approximation works perfectly for preconditioning.

For all experiments, both step sizes for parameter and preconditioner updating are fixed

at 0.01. The gradient clipping threshold is set to 1. No momentum is used. We run 10

runs per optimizer for 100, 000 iterations or until convergence. The success rates over ten

runs for each r are plotted in Fig. B.6. This example shows a typical problem where the

diagonal preconditioner struggles, while a low-order Hessian approximation works perfectly

for preconditioning.

141

B.2 Further Empirical Evidence: Chapter 4

B.2.1 AdaCore estimates full gradient closely, reaching smaller loss

AdaCore obtains a better estimate of the preconditioned gradient by considering curvature

and gradient information compared to the state-of-the-art algorithm Craig and random

subsets. This is quantified by calculating the difference between the weighted gradients of

coresets and the gradient of the complete dataset.

Fig B.7, shows the difference in loss reached by AdaCore vs Craig over different subset

sizes. This shows that corsets selected using AdaCore to classify the Ijcnn1 dataset using

logistic regression can reach a lower loss over varying subset sizes than Craig.

Figure B.7: Normalized loss for Logistic Regression over different subset sizes on Ijcnn1
dataset using SGD. AdaCore corsets, considering curvature information, to classify Ijcnn1
dataset using logistic regression consistently reaches a lower loss compared to CRAIG, which
only considers the gradient information.

B.2.2 Class imbalance CIFAR-10

To provide further empirical evidence, we include results using a class-imbalanced version

of the CIFAR-10 dataset for ResNet18. We skewed the class distribution linearly, keeping

90% of class 9, 80% of class 8 . . . 10% of class 1, and 0% of class 0, and trained for 200

epochs. Selecting a coreset for every epoch can be computationally expensive; instead, one

can compute a coreset once every R epoch. Here we investigate AdaCore’s performance

142

on various R values. As Table B.4 shows, AdaCore can withstand class imbalance much

better than Craig and randomly selected subsets. When R = 20, AdaCore achieves 57.3%

final test accuracy, +8.7% above Craig, +2.6% above Random, 27.4% above GradMatch

and 36.2% above Glister.
Table B.4: CIFAR-10 Class Imbalance, ResNet18. Final test accuracy and percent of full
data selected (in parentheses). Trained with SGD + Momentum, selecting a coreset every
R epochs that is S percent of the full dataset. Note AdaCore has greater accuracy while
seeing fewer data points.

Accuracy S = 1%R = 20 S = 1%R = 10 S = 1%R = 5
AdaCore 57.3%± 0.5 (5%) 57.12± 0.96 (9.5%) 60.2%± 0.36 (14.5%)
Craig 48.6%± 0.8 (8%) 55± 1 (16%) 53.05%± 0.24 (27.5%)
Random 54.7%± 0.3 (8%) 54.6± 0.76 (18%) 54.6%± 0.74 (33.2%)
GradMatch 29.9%± 0.4 (8.2%) 29.1%± 0.8 (14.7%) 32.75%± 0.83 (23.2%)
Glister 21.1%± 0.42 (8.6%) 17.2%± 0.75 (16%) 14.4%± 0.83 (22.2%)

Not only is AdaCore able to outperform Craig, random, GradMatch, and Glister,

but it can do so while selecting a smaller fraction of the data points during training, as shown

under all settings in Table B.4.

B.2.3 Class imbalance BDD100k

Additionally, we compared AdaCore to Craig and random selection for the BDD100k

dataset, which has seven inherently imbalanced classes and 100k data points. We train

ResNet50 with SGD + momentum for 100 epochs choosing subset size (s = 10%) every (R

= 20) epoch on the weather prediction task. We see that AdaCore can outperform Craig

by 2% and random by 8.8% seen in Table B.5.
Table B.5: AdaCore outperforms other baseline subset selection algorithms as well as
training on the full dataset, reaching a better accuracy in less time. This provides up to a
2.3x speedup compared to the state of the art.

SGD + Momentum Accuracy S = 10% R = 20
AdaCore 74.3%
Craig 72.3%
Random 65.5%

143

Additionally, Table B.6 shows that AdaCore outperforms baseline methods on BDD100k

providing 2.3x speedup vs. training on the entire dataset and a 1.8x speedup vs. random.

We see that Craig, GradMatch & Glister do not reach the accuracy of AdaCore

even given more time and epochs. The epoch value is seen in parenthesis by accuracy. These

experiments were run with SGD+momentum.
Table B.6: AdaCore outperforms other baseline subset selection algorithms as well as
training on the full dataset, reaching a better accuracy in less time. This provides up to a
2.3x speedup compared to the state of the art.

BDD100k Speedup over

S = 10%
R = 20

Accuracy
(epoch)

Time
(s) Rand Full

AdaCore 74.3%(100) 7331 1.8 2.3
Craig 73.1%(150) 10996 1.3 1.6
Random 73.3%(180) 13050 1 1.2
GradMatch 72%(200) 14040 .7 1.1
Glister 73%(200) 12665 1.03 1.2
Full Dataset 74.3%(45) 16093 0.8 1

B.2.4 CIFAR-100

Table B.7 shows that AdaCore outperforms baseline methods on CIFAR100, providing

4x speedup vs. training on the entire dataset and a 3.8x speedup vs. Random. We see

that Craig, GradMatch, and Glister do not reach the accuracy of AdaCore even

given more time and epochs. The epoch value is seen in parenthesis by accuracy. These

experiments were run with SGD+momentum.

B.2.5 When first order coresets fail, continued

By preconditioning with curvature information, AdaCore is able to magnify smaller gra-

dient dimensions that would otherwise be ignored during coreset selection. Moreover, it

144

Table B.7: AdaCore outperforms other baseline subset selection algorithms as well as
training on the full dataset, reaching a better accuracy in less time. This provides up to a
4.3x speedup compared to the state of the art.

CIFAR100 Speedup over

S = 10%
R = 20

Accuracy
(epoch)

Time
(s) Rand Full

AdaCore 58.8%(200) 341 4.3 2.8
Craig 57.3%(250) 426 3.5 2.2
Random 58.1%(864) 1470 1 0.65
GradMatch 57%(200) 980 1.5 0.97
Glister 56%(300) 1110 1.3 0.86
Full Dataset 59% (40) 960 1.5 1

allows AdaCore to include points with similar gradients but different curvature properties.

Hence, AdaCore can select more diverse subsets compared to Craig as well as Grad-

Match. This allows AdaCore to outperform first-order coreset methods in many regimes,

such as when the subset size is large (e.g. ≥10%) and for larger batch size (e.g. ≥ 128).

(a) AdaCore with gradient w.r.t the penulti-
mate layer, training with SGD + Momentum

Figure B.8: Classification accuracy of ResNet20 across training on the CIFAR10 dataset,
selecting coresets with AdaCore, Craig and GradMatch. Here, all coreset selection
methods used the gradients of the model’s last layer (dimension 64). The algorithms were
calculated every R = 20 epoch with coreset size S = 10%. Note that Craig and Grad-
Match are vulnerable to catastrophic forgetting, but not AdaCore.

In addition to the results shown in Figure 4.3a, (reproduced here as Fig B.9a) where

R = 1, AdaCore outperforms Craig as well as GradMatch when we increase the core-

set selection period R. Fig B.8 shows that for larger R, first-order methods succumb to

145

(a) Accuracy vs. Epoch (b) Accuracy vs. Time

Figure B.9: (a) Test accuracy of AdaCore, CRAIG, Random, GradMatch and GLISTER
with ResNet-18 selecting subsets of size 1% each epoch, batch size 256. (b) Training ResNet-
18 on subsets of size S=1% selected every R=1 epoch, with AdaCore, Craig, Glister and
GradMatch for 200 epochs vs. Random for 1000 epochs and full for 15 epochs. AdaCore
outperforms baselines by providing 2x speedup over full, and more than 4.5x speedup over
Random.
catastrophic forgetting each time a new subset is chosen, whereas AdaCore achieves a

smooth rise in classification accuracy. This increased stability between coresets is another

benefit of AdaCore’s greater selection diversity. Interestingly, AdaCore achieves higher

final test accuracy while selecting a smaller fraction of data points to train on during the

training than Craig. Note that since AdaCore takes curvature into account while select-

ing the coresets, it can successfully select data points with a similar gradient but different

curvature properties and extract a more diverse set of data points than Craig. However,

as the coresets found by AdaCore provide a close estimation of the full preconditioned

gradients for several epochs during training, the number of distinct data points selected by

AdaCore is smaller than Craig.

For completeness, we provide Fig B.9b, in which we allow training random subset selection

1000 epochs. We see that it takes over 4.5x longer for Random to near the accuracy of

ResNet18 trained with AdaCore and Full. We use the same experimental setup as seen in

Fig B.9a.

146

B.2.6 MNIST

For our MNIST classifier, we use a fully-connected hidden layer of 100 nodes and ten softmax

output nodes; sigmoid activation and L2 regularization with µ = 10−4 and mini-batch size

of 32 on the MNIST dataset of handwritten digits containing 60,000 training and 10,000 test

images all normalized to [0,1] by division with 255. We apply SGD with a momentum of

0.9 to subsets of size 40% of the dataset chosen at the beginning of each epoch found by

AdaCore, CRAIG, and random. Fig B.10 compares the training loss and test accuracy of

the network trained on coresets chosen by AdaCore, CRAIG, and random, with that of the

entire dataset. We see that AdaCore can benefit from the second-order information and

effectively finds subsets that achieve superior performance to that of baselines and the entire

dataset. At the same time, it achieves a 2.5x speedup over training on the entire dataset.

0 50 100 150 200 250
Time (s)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Lo
ss

AdaCore
CRAIG
Random Subset
Full Dataset

(a) MNIST

0 50 100 150 200 250
Time (s)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

AdaCore
CRAIG
Random Subset
Full Dataset

(b) MNIST

Figure B.10: Test accuracy and training loss of SGD with momentum applied to subsets
found by AdaCore vs. CRAIG, and random subsets on MNIST with a 2-layer neural
network. AdaCore achieves 2.5x speedup and better test accuracy, compared to training
on full dataset.

B.2.7 How batch size affects coreset performance

We see in Table B.8 that training with larger batch size on subsets selected by AdaCore can

achieve a superior accuracy. We reproduce Table 4.3 here with standard deviation values.

147

Table B.8: Training ResNet18 with S=1% subsets every R=1 epoch from CIFAR10 using
batch size b= 512, 256, 128. AdaCore can leverage larger mini-bath size and obtain a
larger accuracy gap to Craig and Random. For b=512, we have 1 mini-batch (GD).

AdaCore Craig Rand Gap/
Craig

Gap/
Rand

GD b=512 58.32%± 0.45 56.32%± 0.32 49.14%± 1.19 1.69% 8.91%
SGD b=256 68.23%± 0.2 58.3%± 1.38 60.7%± 1.04 9.93% 8.16%
SGD b=128 66.89%± 0.73 58.17%± 1.34 65.46%± 0.93 8.81% 1.52%

B.2.8 Potential Social Impacts

Regarding social impact, our coreset method can outperform other methods in accuracy

while selecting fewer data points over training and providing over 2.5x speedup. This will

allow for a more efficient learning pipeline resulting in a lesser environmental impact. Our

method can significantly decrease the financial and environmental costs of learning from big

data. The financial costs are due to expensive computational resources, and environmental

costs are due to the substantial energy consumption and the produced carbon footprint.

148

References

[AD19] Hilal Asi and John C Duchi. “The importance of better models in stochastic

optimization.” arXiv preprint arXiv:1903.08619, 2019.

[ALS15] Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, and Yoshua

Bengio. “Variance reduction in sgd by distributed importance sampling.” arXiv

preprint arXiv:1511.06481, 2015.

[APF] Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A. Saurous,

and Kevin Murphy. “Fixing a Broken ELBO.”.

[ARS17] Alessandro Achille, Matteo Rovere, and Stefano Soatto. “Critical Learning Peri-

ods in Deep Neural Networks.” CoRR, abs/1711.08856, 2017.

[AYS16] Zeyuan Allen-Zhu, Yang Yuan, and Karthik Sridharan. “Exploiting the struc-

ture: Stochastic gradient methods using raw clusters.” In Advances in Neural

Information Processing Systems, pp. 1642–1650, 2016.

[BCG19] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital

Oliver, and Colin A Raffel. “Mixmatch: A holistic approach to semi-supervised

learning.” In Advances in Neural Information Processing Systems, pp. 5049–5059,

2019.

[BCP16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. “Openai gym.” arXiv preprint

arXiv:1606.01540, 2016.

[Ber82] Dimitri P Bertsekas. “Projected Newton methods for optimization problems with

simple constraints.” SIAM Journal on control and Optimization, 20(2):221–246,

1982.

149

[BGL21] Xiaoyu Bie, Laurent Girin, Simon Leglaive, Thomas Hueber, and Xavier

Alameda-Pineda. “A Benchmark of Dynamical Variational Autoencoders applied

to Speech Spectrogram Modeling.” CoRR, abs/2106.06500, 2021.

[BJP22] Sunay Bhat, Jeffrey Jiang, Omead Pooladzandi, and Gregory Pottie. “De-

Biasing Generative Models using Counterfactual Methods.” arXiv preprint

arXiv:2207.01575, 2022.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normaliza-

tion.”, 2016.

[BKS07] C. Bekas, E. Kokiopoulou, and Y. Saad. “An estimator for the diagonal of a

matrix.” Applied Numerical Mathematics, 57(11):1214–1229, 2007. Numerical

Algorithms, Parallelism and Applications (2).

[BLN95] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. “A limited mem-

ory algorithm for bound constrained optimization.” SIAM Journal on scientific

computing, 16(5):1190–1208, 1995.

[BMB19] Vighnesh Birodkar, Hossein Mobahi, and Samy Bengio. “Semantic Redundancies

in Image-Classification Datasets: The 10% You Don’t Need.” arXiv preprint

arXiv:1901.11409, 2019.

[BV04a] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

[BV04b] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press, USA, 2004.

[CDS01] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. “Atomic de-

composition by basis pursuit.” SIAM review, 43(1):129–159, 2001.

150

[CG19] Yuan Cao and Quanquan Gu. “Generalization Error Bounds of Gradient Descent

for Learning Over-parameterized Deep ReLU Networks.”, 2019.

[CYM20] C Coleman, C Yeh, S Mussmann, B Mirzasoleiman, P Bailis, P Liang, J Leskovec,

and M Zaharia. “Selection via Proxy: Efficient Data Selection for Deep Learning.”

In International Conference on Learning Representations (ICLR), 2020.

[DB19] Nikolaos Dionelis and Mike Brookes. “Modulation-Domain Kalman Filtering for

Monaural Blind Speech Denoising and Dereverberation.” IEEE/ACM Transac-

tions on Audio, Speech, and Language Processing, 27(4):799–814, 2019.

[DBK20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. “An Image is

Worth 16x16 Words: Transformers for Image Recognition at Scale.” CoRR,

abs/2010.11929, 2020.

[DDS09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Ima-

geNet: A large-scale hierarchical image database.” In 2009 IEEE Conference on

Computer Vision and Pattern Recognition, pp. 248–255, 2009.

[Den12] Li Deng. “The mnist database of handwritten digit images for machine learning

research.” IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods

for online learning and stochastic optimization.” Journal of machine learning

research, 12(7), 2011.

[Don06] David L Donoho. “Compressed sensing.” IEEE Transactions on information

theory, 52(4):1289–1306, 2006.

151

[DSG20] Tri Dao, Nimit S. Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan

Leszczynski, Atri Rudra, and Christopher Ré. “Kaleidoscope: an efficient, learn-

able representation for all structured linear maps.” In International Conference

on Learning Representations (ICLR) 2020. OpenReview.net, 2020.

[DVB15] Y. N. Dauphin, H. Vries, and Y. Bengio. “Equilibrated adaptive learning rates

for non-convex optimization.” In NIPS, pp. 1504–1512. MIT Press, 2015.

[EKD18] Ethan R Elenberg, Rajiv Khanna, Alexandros G Dimakis, Sahand Negahban,

et al. “Restricted strong convexity implies weak submodularity.” Annals of Statis-

tics, 46(6B):3539–3568, 2018.

[FBD09] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. “Nonnegative Matrix

Factorization with the Itakura-Saito Divergence: With Application to Music

Analysis.” Neural Computation, 21(3):793–830, 03 2009.

[GC19] Aaron Gokaslan and Vanya Cohen. “OpenWebText Corpus.”, 2019.

[Gib14] Andrew Gibiansky. “Hessian Free Optimization.”, 2014.

[GKS18] Vineet Gupta, Tomer Koren, and Yoram Singer. “Shampoo: Preconditioned

stochastic tensor optimization.” In International Conference on Machine Learn-

ing, pp. 1842–1850. PMLR, 2018.

[GL83] Daniel W. Griffin and Jae S. Lim. “Signal estimation from modified short-time

Fourier transform.” In ICASSP, 1983.

[GRB20] Donald Goldfarb, Yi Ren, and Achraf Bahamou. “Practical Quasi-Newton Meth-

ods for Training Deep Neural Networks.” CoRR, abs/2006.08877, 2020.

[GRH19] Laurent Girin, Fanny Roche, Thomas Hueber, and Simon Leglaive. “Notes on

the use of variational autoencoders for speech and audio spectrogram modeling.”

152

In DAFx 2019 - 22nd International Conference on Digital Audio Effects, pp. 1–8,

Birmingham, United Kingdom, September 2019.

[GWJ19] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud,

Mohammad Norouzi, and Kevin Swersky. “Your classifier is secretly an energy

based model and you should treat it like one.” arXiv preprint arXiv:1912.03263,

2019.

[GZ19] Amirata Ghorbani and James Zou. “Data shapley: Equitable valuation of data

for machine learning.” In International Conference on Machine Learning, pp.

2242–2251. PMLR, 2019.

[HLL15] Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien, and Brian

McWilliams. “Variance reduced stochastic gradient descent with neighbors.” In

Advances in Neural Information Processing Systems, pp. 2305–2313, 2015.

[HS97] S. Hochreiter and J. Schmidhuber. “Long short-term memory.” Neural Compu-

tation, 9(8):1735–1780, 1997.

[HSS12] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. “Neural networks for

machine learning lecture 6a overview of mini-batch gradient descent.” Cited on,

14(8), 2012.

[HYL18] Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. “Decorrelated Batch Normal-

ization.” CoRR, abs/1804.08450, 2018.

[HZR16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learn-

ing for image recognition.” In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 770–778, 2016.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating

153

Deep Network Training by Reducing Internal Covariate Shift.” CoRR,

abs/1502.03167, 2015.

[JPB22] Jeffrey Jiang, Omead Pooladzandi, Sunay Bhat, and Gregory Pottie. “Hypothesis

Testing using Causal and Causal Variational Generative Models.” arXiv preprint

arXiv:2210.11275, 2022.

[KAA22] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. “Elucidating the Design

Space of Diffusion-Based Generative Models.”, 2022.

[Kar22] Andrej Karpathy. “NanoGPT: Small GPT Implementations.” https://github.

com/karpathy/nanoGPT, 2022. Accessed on 22 February 2023.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-

tion.” arXiv preprint arXiv:1412.6980, 2014.

[KB15] D. P. Kingma and J. L. Ba. “Adam: a method for stochastic optimization.” In

ICLR. Ithaca, NY: arXiv.org, 2015.

[KB17] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-

tion.”, 2017.

[KBC13] Anastasios Kyrillidis, Stephen Becker, Volkan Cevher, and Christoph Koch.

“Sparse projections onto the simplex.” In International Conference on Machine

Learning, pp. 235–243. PMLR, 2013.

[KF18] Angelos Katharopoulos and François Fleuret. “Not all samples are created equal:

Deep learning with importance sampling.” In International conference on ma-

chine learning, pp. 2525–2534. PMLR, 2018.

[Kri09] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images.” pp.

32–33, 2009.

154

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT

[KSM21] Krishnateja Killamsetty, Durga Sivasubramanian, Baharan Mirzasoleiman,

Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. “GRAD-MATCH: A Gradi-

ent Matching Based Data Subset Selection for Efficient Learning.” arXiv preprint

arXiv:2103.00123, 2021.

[KSR20] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and

Rishabh Iyer. “GLISTER: Generalization based Data Subset Selection for Effi-

cient and Robust Learning.” arXiv preprint arXiv:2012.10630, 2020.

[KW13a] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes.”, 2013.

[KW13b] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes.” arXiv

preprint arXiv:1312.6114, 2013.

[KZR18] Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi.

“Fr\’echet Audio Distance: A Metric for Evaluating Music Enhancement Al-

gorithms.” arXiv preprint arXiv:1812.08466, 2018.

[LAG19] Simon Leglaive, Xavier Alameda-Pineda, Laurent Girin, and Radu Horaud.

“A Recurrent Variational Autoencoder for Speech Enhancement.” CoRR,

abs/1910.10942, 2019.

[LC10] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database.” 2010.

[Lee13] Dong-Hyun Lee. “Pseudo-label: The simple and efficient semi-supervised learning

method for deep neural networks.” In Workshop on challenges in representation

learning, ICML, volume 3, 2013.

[LH15] Ilya Loshchilov and Frank Hutter. “Online batch selection for faster training of

neural networks.” arXiv preprint arXiv:1511.06343, 2015.

[Li15] Xi-Lin Li. “Preconditioned Stochastic Gradient Descent.”, 2015.

155

[Li18a] Xilin Li. “Online Second Order Methods for Non-Convex Stochastic Optimiza-

tions.”, 2018.

[Li18b] Xilin Li. “Preconditioned Stochastic Gradient Descent.” IEEE Transactions on

Neural Networks and Learning Systems, 29(5):1454–1466, 2018.

[Li18c] Xilin Li. “Preconditioner on Matrix Lie Group for SGD.”, 2018.

[Li19] X. L. Li. “Preconditioner on matrix Lie group for SGD.” In 7th International

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019. OpenReview.net, 2019.

[Li22] Xilin Li. “Black Box Lie Group Preconditioners for SGD.” arXiv preprint

arXiv:2211.04422, 2022.

[LZB20] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. “Toward a theory of optimization for

over-parameterized systems of non-linear equations: the lessons of deep learning.”

arXiv preprint arXiv:2003.00307, 2020.

[Mar16] James Martens. Second-order Optimization for Neural Networks. PhD thesis,

University of Toronto, Canada, 2016.

[MBK15] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Von-

drák, and Andreas Krause. “Lazier than lazy greedy.” In Twenty-Ninth AAAI

Conference on Artificial Intelligence, 2015.

[MBL19] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. “Coresets for Data-

efficient Training of Machine Learning Models.” arXiv preprint arXiv:1906.01827,

2019.

[MBL20] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. “Coresets for data-

efficient training of machine learning models.” In International Conference on

Machine Learning, pp. 6950–6960. PMLR, 2020.

156

[MG76] John D. Markel and Augustine H. Gray. Vocoders, pp. 227–262. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1976.

[MG15a] J. Martens and R. B. Grosse. “Optimizing neural networks with Kronecker-

factored approximate curvature.” In ICML, pp. 2408–2417, 2015.

[MG15b] James Martens and Roger Grosse. “Optimizing neural networks with kronecker-

factored approximate curvature.” In International conference on machine learn-

ing, pp. 2408–2417, 2015.

[Min78] Michel Minoux. “Accelerated greedy algorithms for maximizing submodular set

functions.” In Optimization techniques, pp. 234–243. Springer, 1978.

[MIY14] Akira Maezawa, Katsutoshi Itoyama, Kazuyoshi Yoshii, and Hiroshi G. Okuno.

“Nonparametric Bayesian Dereverberation of Power Spectrograms Based on

Infinite-Order Autoregressive Processes.” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 22(12):1918–1930, 2014.

[MKS13] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. “Dis-

tributed submodular maximization: Identifying representative elements in mas-

sive data.” In Advances in Neural Information Processing Systems, pp. 2049–

2057, 2013.

[MMK18] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. “Virtual ad-

versarial training: a regularization method for supervised and semi-supervised

learning.” IEEE transactions on pattern analysis and machine intelligence,

41(8):1979–1993, 2018.

[MMS17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. “Towards deep learning models resistant to adversarial attacks.”

arXiv preprint arXiv:1706.06083, 2017.

157

[MS12] J. Martens and I. Sutskever. “Training deep and recurrent neural networks with

Hessian-free optimization.” In G. Montavon, G. B. Orr, and K. R. Muller, editors,

Neural Networks: Tricks of the Trade. Springer, Berlin Heidelberg, 2012.

[MSM93] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. “Building

a Large Annotated Corpus of English: The Penn Treebank.” Computational

Linguistics, 19(2):313–330, 1993.

[Nak20] Toru Nakashika. “Complex-Valued Variational Autoencoder: A Novel Deep

Generative Model for Direct Representation of Complex Spectra.” In INTER-

SPEECH, 2020.

[Nat95] Balas Kausik Natarajan. “Sparse approximate solutions to linear systems.” SIAM

journal on computing, 24(2):227–234, 1995.

[NPH20] Erik Nijkamp, Bo Pang, Tian Han, Linqi Zhou, Song-Chun Zhu, and Ying Nian

Wu. “Learning multi-layer latent variable model via variational optimization of

short run MCMC for approximate inference.” stat, 1050:17, 2020.

[NWC11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-

drew Y Ng. “Reading digits in natural images with unsupervised feature learning.”

2011.

[OIY22] Kazuki Osawa, Satoki Ishikawa, Rio Yokota, Shigang Li, and Torsten Hoefler.

“ASDL: A Unified Interface for Gradient Preconditioning in PyTorch.” In Order

Up! The Benefits of Higher-Order Optimization in Machine Learning, NeurIPS

2022 Workshop, 2022.

[PDM22a] Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. “Adaptive Sec-

ond Order Coresets for Data-efficient Machine Learning.” In Kamalika Chaud-

huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,

158

editors, Proceedings of the 39th International Conference on Machine Learn-

ing, volume 162 of Proceedings of Machine Learning Research, pp. 17848–17869.

PMLR, 17–23 Jul 2022.

[PDM22b] Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. “Adaptive Sec-

ond Order Coresets for Data-efficient Machine Learning.” In Kamalika Chaud-

huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,

editors, Proceedings of the 39th International Conference on Machine Learn-

ing, volume 162 of Proceedings of Machine Learning Research, pp. 17848–17869.

PMLR, 17–23 Jul 2022.

[Pea94] Barak A Pearlmutter. “Fast exact multiplication by the Hessian.” Neural com-

putation, 6(1):147–160, 1994.

[PEC12] Mert Pilanci, Laurent El Ghaoui, and Venkat Chandrasekaran. “Recovery of

sparse probability measures via convex programming.” 2012.

[PHN20] Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. “Learning

latent space energy-based prior model.” arXiv preprint arXiv:2006.08205, 2020.

[PJB23] Omead Pooladzandi, Jeffrey Jiang, Sunay Bhat, and Gregory Pottie. “To-

wards Composable Distributions of Latent Space Augmentations.” arXiv preprint

arXiv:2303.03462, 2023.

[PKN23] Omead Pooladzandi, Pasha Khosravi, Erik Nijkamp, and Baharan Mirza-

soleiman. “Generating High Fidelity Synthetic Data via Coreset selection and

Entropic Regularization.”, 2023.

[PLG23] Omead Pooladzandi, Xilin Li, Yang Gao, and Lalin Theverapperuma. “Exploring

the Potential of VAE Decoders for Enhanced Speech Re-Synthesis.” In 2023 IEEE

Statistical Signal Processing Workshop (SSP), 2023.

159

[PZ22] Omead Pooladzandi and Yiming Zhou. “Improving Levenberg-Marquardt Algo-

rithm for Neural Networks.” arXiv preprint arXiv:2212.08769, 2022.

[Qia99] Ning Qian. “On the momentum term in gradient descent learning algorithms.”

Neural networks, 12(1):145–151, 1999.

[Raf20] Colin Raffel. “FixMatch: Simplifying Semi-Supervised Learning with Consistency

and Confidence.” 2020.

[RBH01] A.W. Rix, J.G. Beerends, M.P. Hollier, and A.P. Hekstra. “Perceptual evaluation

of speech quality (PESQ)-a new method for speech quality assessment of tele-

phone networks and codecs.” In 2001 IEEE International Conference on Acous-

tics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), volume 2,

pp. 749–752 vol.2, 2001.

[RM51] H. Robbins and S. Monro. “A stochastic approximation method.” The Annals of

Mathematical Statistics, pp. 400–407, 1951.

[RRJ93] L. Rabiner, L.R. Rabiner, and B.H. Juang. Fundamentals of Speech Recognition.

Prentice-Hall Signal Processing Series: Advanced monographs. PTR Prentice

Hall, 1993.

[RWC19] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. “Language Models are Unsupervised Multitask Learners.” 2019.

[SBL16] Levent Sagun, Léon Bottou, and Yann LeCun. “Singularity of the Hessian in

Deep Learning.” CoRR, abs/1611.07476, 2016.

[SDS19] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. “Green ai.” arXiv

preprint arXiv:1907.10597, 2019.

160

[SEG17] Levent Sagun, Utku Evci, V. Ugur Güney, Yann N. Dauphin, and Léon Bot-

tou. “Empirical Analysis of the Hessian of Over-Parametrized Neural Networks.”

CoRR, abs/1706.04454, 2017.

[SGM19] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and Policy

Considerations for Deep Learning in NLP.” In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pp. 3645–3650, 2019.

[SQA15] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. “Prioritized

experience replay.” arXiv preprint arXiv:1511.05952, 2015.

[SWD17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

“Proximal Policy Optimization Algorithms.”, 2017.

[SZL13] Tom Schaul, Sixin Zhang, and Yann LeCun. “No more pesky learning rates.” In

International Conference on Machine Learning, pp. 343–351. PMLR, 2013.

[Tib96] Robert Tibshirani. “Regression shrinkage and selection via the lasso.” Journal of

the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[TIY18] Hiroshi Takahashi, Tomoharu Iwata, Yuki Yamanaka, Masanori Yamada, and

Satoshi Yagi. “Student-t Variational Autoencoder for Robust Density Estima-

tion.” In IJCAI, pp. 2696–2702, 2018.

[TSC18] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler,

Yoshua Bengio, and Geoffrey J Gordon. “An empirical study of example forgetting

during deep neural network learning.” arXiv preprint arXiv:1812.05159, 2018.

[TSC19a] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler,

Yoshua Bengio, and Geoffrey J Gordon. “An Empirical Study of Example For-

getting during Deep Neural Network Learning.” In ICLR, 2019.

161

[TSC19b] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler,

Yoshua Bengio, and Geoffrey J. Gordon. “An Empirical Study of Example For-

getting during Deep Neural Network Learning.” In International Conference on

Learning Representations, 2019.

[TV17] Antti Tarvainen and Harri Valpola. “Mean teachers are better role models:

Weight-averaged consistency targets improve semi-supervised deep learning re-

sults.” In Advances in neural information processing systems, pp. 1195–1204,

2017.

[VWB16] Andreas Veit, Michael Wilber, and Serge Belongie. “Residual Networks Behave

Like Ensembles of Relatively Shallow Networks.”, 2016.

[WH18] Yuxin Wu and Kaiming He. “Group Normalization.” CoRR, abs/1803.08494,

2018.

[Wol82] Laurence A Wolsey. “An analysis of the greedy algorithm for the submodular set

covering problem.” Combinatorica, 2(4):385–393, 1982.

[WRS17] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin

Recht. “The Marginal Value of Adaptive Gradient Methods in Machine Learn-

ing.”, 2017.

[WWR21] Zhong-Qiu Wang, Gordon Wichern, and Jonathan Le Roux. “On The Com-

pensation Between Magnitude and Phase in Speech Separation.” CoRR,

abs/2108.05470, 2021.

[WZG20] Chaoqi Wang, Guodong Zhang, and Roger Grosse. “Picking winning tickets

before training by preserving gradient flow.” arXiv preprint arXiv:2002.07376,

2020.

162

[XRM20] Peng Xu, Fred Roosta, and Michael W Mahoney. “Second-order optimization for

non-convex machine learning: An empirical study.” In Proceedings of the 2020

SIAM International Conference on Data Mining, pp. 199–207. SIAM, 2020.

[YCW20] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu,

Vashisht Madhavan, and Trevor Darrell. “BDD100K: A Diverse Driving Dataset

for Heterogeneous Multitask Learning.” In IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020.

[YGS20] Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer, and Michael W Mahoney.

“ADAHESSIAN: An adaptive second order optimizer for machine learning.” arXiv

preprint arXiv:2006.00719, 2020.

[YGS21] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and

Michael W. Mahoney. “AdaHessian: an adaptive second order optimizer for

machine learning.” In AAAI, 2021.

[YW21] Chia-Hung Yuan and Shan-Hung Wu. “Neural Tangent Generalization Attacks.”

In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International

Conference on Machine Learning, volume 139 of Proceedings of Machine Learning

Research, pp. 12230–12240. PMLR, 18–24 Jul 2021.

[YXR18] Zhewei Yao, Peng Xu, Farbod Roosta-Khorasani, and Michael W Mahoney. “In-

exact non-convex Newton-type methods.” arXiv preprint arXiv:1802.06925, 2018.

[ZBM22] Guodong Zhang, Aleksandar Botev, and James Martens. “Deep Learning with-

out Shortcuts: Shaping the Kernel with Tailored Rectifiers.” arXiv preprint

arXiv:2203.08120, 2022.

[Zei12] Matthew D Zeiler. “Adadelta: an adaptive learning rate method.” arXiv preprint

arXiv:1212.5701, 2012.

163

[ZFM20] Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and Weinan E. “To-

wards Theoretically Understanding Why SGD Generalizes Better Than ADAM

in Deep Learning.”, 2020.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks.” arXiv

preprint arXiv:1605.07146, 2016.

[ZTD20] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek,

Xenophon Papademetris, and James S. Duncan. “AdaBelief optimizer: adapting

stepsizes by the belief in observed gradients.” In NeurIPS 2020, 2020.

164

	Title Page
	Abstract
	Committee
	Dedication
	Contents
	List of Figures
	List of Tables
	Preface
	Curriculum Vitae
	Introduction
	Approach
	General Contribution
	Dissertation Overview
	Fundamental Background
	Empirical Risk Minimization
	Unsupervised learning
	Semi-supervised learning
	Generation
	Variational Auto Encoders
	Optimization
	Quasi-Newton Method
	Hessian-Free
	Learning
	Preconditioned Stochastic Gradient Descent
	Introduction
	Background
	Notations
	The Preconditioner Fitting Criterion
	Preconditioners on Lie Groups
	Curvature-Informed SGD via General Purpose Lie-Group Preconditioners
	Simple Matrix Free Preconditioners
	Low-Rank Approximation Preconditioner
	Practical Considerations
	Empirical Results
	CIFAR-10 and Friends on ResNet18
	Language Modeling
	Reinforcement Learning
	Towards Understanding Second Order Optimizers
	Conclusion
	Adaptive Curvature-Informed Coreset Selection
	Motivation for Coreset Selection
	Related Work
	AdaCore: Background and Problem Setting
	AdaCore: Adaptive Second order Coresets
	When First-order Coresets Fail
	Adaptive Second-order Coresets
	Scaling up to Over-parameterized Models
	Extracting Second-order Coresets
	Convergence Analysis
	Experiments
	Convex Experiments
	Non-Convex Experiments
	Conclusion
	Further Research
	Generating High Fidelity Synthetic Data via Coreset selection and Entropic Regularization
	Introduction
	Related Work
	Synthetic Data Generation for Semi-Supervised Learning
	Latent Energy Based Model
	Learning the model with variational inference
	Sampling Synthetic data from the EBM
	Entropic Regularization
	Coreset Selection
	Implicit learned data augmentation
	Experiments: Learning data augmentation
	Comparison to other Methods
	Difficult Examples hurt Contrastive Lethat arning
	Conclusion
	Gamma-VAE: Speech Re-Synthesis and Beyond
	Introduction
	Background
	Problem Setting
	Understanding Decoder Distributions
	Directly Modeling The Signal
	Separately Modeling Magnitude and Phase
	Phase Agnostic Decoders
	Experiments
	Decoder Compression Capabilities
	Conclusion
	Conclusions
	Summary of Contributions
	General Purpose Curvature-Informed Preconditioner
	Curvature-Informed Subset Selection
	Subset Selection for Self- & Semi-Supervised Generative Classifiers
	GammaVAE
	Future Work
	Applications of General Preconditioner
	Causal Generative Classifier
	Causal Counterfactual Generative Models (CCGM)
	Next Steps for Causal Latent Manipulation:
	Closing Statements
	Additional Proofs
	Proofs for PSGD: Chapter 2
	On the Convergence of PSGD
	Construction of matrix-free preconditioner
	Construction of low-rank approximation preconditioners
	Low-rank approximation preconditioner fitting
	Fundamental operations on Lie Group
	Proofs for AdaCore: Chapter 3
	Proof of Theorem 4.4.1
	Proof of Theorem 4.4.3 and 4.4.4
	Discussion on Greedy to Extract Near-optimal Coresets
	Bounding the Norm of Difference Between Preconditioned Gradients
	Convex Loss Functions
	Neural Networks
	Analytic Hessian for Logistic Regression
	Additional Experiments
	More Experimental Results: Chapter [sec:chap3]3
	MNIST Handwriting Digit Recognition
	CIFAR10 Image Classification with ResNet18
	PSGD is robust to hyper-parameters
	A Large-Scale Logistic Regression Problem
	Forgettability & Uncertainty: Rank Analysis
	Generalization Gap Between High and Low Entropy Subsets
	Effect of Rank on XOR
	Further Empirical Evidence: Chapter [sec:chap4]4
	AdaCore estimates full gradient closely, reaching smaller loss
	Class imbalance CIFAR-10
	Class imbalance BDD100k
	CIFAR-100
	When first order coresets fail, continued
	MNIST
	How batch size affects coreset performance
	Potential Social Impacts

