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Abstract 

Quantitative and temporal measurement of autophagy rates and morphological profiles 

Autophagy is a multistep dynamic degradative process that is essential for maintaining cellular 

homeostasis. Autophagy is linked to a wide range of diseases, including cancer, metabolic 

diseases, and aging. Therefore, autophagy is emerging as a promising therapeutic target for 

many diseases. Systematically quantifying autophagy is critical for gaining fundamental insights 

and effectively modulating this dysregulated process during diseases. However, current methods 

do not quantitatively capture the dynamic nature of autophagy with high sensitivity and scalability. 

In this work, we proposed two approaches to address these limitations and characterize 

autophagy comprehensively.  

 

Established methods to quantify individual autophagy steps are restricted to steady-state 

measurements, which provide limited information about the perturbation and the cellular 

response. We present a theoretical and experimental framework to measure autophagic steps in 

the form of rates under non-steady state conditions. We use this approach to measure temporal 

responses to small-molecule drugs and nutrient-deprived conditions.  We quantified changes in 

autophagy rates in as little as 10 min, which can establish direct mechanisms for autophagy 

perturbation before feedback begins. In summary, this new approach enables the quantification 

of autophagy flux with high sensitivity and temporal resolution and facilitates a comprehensive 

understanding of this process.  

 

Dynamic autophagy rate measurements are useful but resource-intensive and limited by the 

throughput and number of phenotypic measurements. High-throughput methods to characterize 

autophagy are essential for accelerating the drug discovery process. We developed a highly 
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scalable image-based profiling approach to characterize ~900 morphological features at a single-

cell level with high temporal resolution.  We differentiated drug treatments based on morphological 

profiles using a random forest classifier with ~90% accuracy and identified the key morphological 

features that govern the classification. Additionally, temporal morphological profiles accurately 

predicted complex changes in autophagy after perturbation, such as total cargo degradation. This 

approach can characterize the mechanism of action of perturbations with less resource-intensive 

measurements. Therefore, this study acts as proof of principle for using image-based profiling in 

high-throughput autophagy characterization and to identify biologically relevant phenotypes, 

which can accelerate drug discovery.    
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Chapter 1: Introduction 

Macroautophagy (hereafter referred to as autophagy) is an intracellular recycling process that 

breaks down misfolded proteins and damaged organelles into their primary building blocks. This 

dynamic process involves autophagosome formation, the fusion of autophagosomes with 

lysosomes, and the degradation of autolysosomes. The word autophagy was derived from the 

Greek words auto (“self”) and phagy (“eating”) and was first coined and discovered by Christian 

de Duve in the 1960s [1]. The field remained dormant until early 1990 when Yoshinori Ohsumi’s 

group developed a method that enabled the monitoring of autophagosomes in yeast, 

revolutionizing the field. Using this method, Yoshinori Ohsumi’s group then identified the essential 

autophagy-related genes in yeast [2].  His group and many others have later revealed biological 

mechanisms governing autophagy in yeast as well as in mammalian cells and established 

autophagy as a crucial cellular process.   

 

Constitutive autophagy is essential for cellular homeostasis and is modulated during many 

extrinsic stresses such as nutrient deprivation or pathogen infection [3,4]. This process is also 

dysregulated during chronic diseases associated with aging, neurodegeneration, and cancer 

[5,6]. Autophagy can be modulated using pharmacological agents and is a major drug 

development target for treating cancer, neurodegeneration, and pathogen infection [7,8]. Along 

with medical applications, autophagy modulation has also shown the potential to enhance 

biomanufacturing by increasing cell longevity [9]. Thus, tools to measure autophagy 

systematically and extensively will be critical in any application that involves modulating this 

process. However, the existing methods to measure autophagy do not capture autophagy 

dynamically and comprehensively.  
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In this chapter, we briefly introduce the biological mechanism of the autophagy pathway and 

commonly used autophagy modulators and their mechanism of action. We next discuss 

autophagy in relevance to cancer and flavivirus infection and address the associated challenges. 

Finally, we discuss the shortcomings of methods used for measuring autophagy which motivated 

this study.  

 

Background and motivation 

Biology of the autophagy pathway 

The autophagy pathway is initiated by the formation of phagophores which are double membrane 

structures derived from the endoplasmic reticulum of the cell [10]. The phagophores grow and 

simultaneously encapsulate cytoplasmic components to form closed double-lipid bilayer 

structures called autophagosomes [11]. The captured cytoplasmic components are commonly 

referred to as cargo and the cargo captured can either be selective or non-selective. For example, 

the selective degradation of mitochondria through the autophagy pathway is termed mitophagy.  

Several autophagy-related (ATG) proteins that are responsible for autophagosome formation and 

maturation and cargo receptors that mediate the degradation of selective cargo have been 

identified [12]. MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) is a vital autophagy 

protein that is involved in the elongation and development of the autophagosome [13,14]. LC3 

also acts as an adaptor protein for capturing specific cargo [15]. LC3 is the most commonly used 

marker for tracking the autophagy pathway. LC3 is first cleaved by ATG4B to expose the glycine 

residue at the C-terminus of the protein. This form of the protein is termed LC3-I. LC3-I is then 

conjugated to phosphodiethaloamine to form LC3-II which is bound to the autophagosome 

membrane. Processing of the LC3 to LC3-II is shown in detail in Figure 1-1. The closed 

autophagosomes then fuse with lysosomes with the help of many cellular components such as 
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SNARE complexes, motor proteins and phospholipids to form autolysosomes [16]. The 

degradative enzymes present inside the lysosomes such as hydrolases degrade the captured 

material into basic building blocks.  

 

Figure 1-1. Autophagy pathway, key signaling nodes, and commonly used modulators. 

 

The autophagy pathway is linked to many signaling pathways [17]. Here, we briefly discuss some 

of the key nodes of the autophagy signaling pathway and the commonly used regulators to disrupt 

the autophagy process (Fig 1-1). In nutrient-rich conditions, the mechanistic target of rapamycin 

kinase complex 1 (mTORC1) is one of the key upstream inhibitors of the autophagy pathway 

[18,19]. Rapamycin is one of the commonly used small-molecule drugs to selectively inhibit 

certain aspects of mTORC1 activity [20–22]. Therefore, rapamycin is frequently used for 

upregulating the autophagy pathway. Class III PI3K complex is another key signaling node that 

facilitates the growth of the phagophore membrane [23]. Wortmannin is a commonly used 

regulator that inhibits the autophagy pathway by inhibiting class III PI3K activity [24,25]. On the 

other hand, bafilomycin A1 is another small molecule drug that is used to disrupt the later stages 

of the autophagy pathway. The specific role of bafilomycin A1 as an inhibitor of the fusion step of 
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autophagosome-lysosome or as an inhibitor of the acidification of autolysosomes or both is still 

unclear [26].   

 

Autophagy and disease  

Autophagy has been linked to many diseases such as neurodegenerative diseases, cancer, 

infectious diseases, and aging (Fig 1-2A). In certain diseases, the role of autophagy is complex 

and the direction of autophagy modulation for therapeutic benefit is ambiguous. As an example, 

we focus on autophagy in cancer and flavivirus infection, discuss the challenges, and the need 

for better tools to address these challenges.  

 

 

Figure 1- 2. Autophagy and disease. (A) Autophagy is linked to various diseases. (B) Precise regulation of 
autophagy is critical for averting further disease.  

 

Autophagy and cancer 

Autophagy plays anti-tumorigenic and pro-tumorigenic roles in cancer [27]. The consensus is that 

the basal level of autophagy is important to maintain cellular quality and to prevent cancer initiation 
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in healthy cells [28–30].  In later stages of tumor progression, autophagy helps facilitate cancer 

progression by supplying amino acids and fatty acids for tumor cells growing in a nutrient-starved 

environment [29,31,32].  Cytostatic effects on tumors were also associated with the upregulation 

of autophagy during MTOR inhibitor treatments to reduce cell proliferation [33,34]. Therefore, 

inhibition of autophagy is currently proposed as one of the strategies to maximize therapeutic 

benefit [7]. Upregulation of autophagy also suppresses tumor growth by initiating autophagy-

dependent cell death (ACD) [35,36]. Given such a convoluted relationship between cancer and 

autophagy, comprehensive characterization and precise modulation of autophagy are pivotal to 

minimize further disease progression and maximizing therapeutic efficiency (Fig 1-2B). Many 

other key questions that can improve precise regulation strategies remain unanswered as well. 

For example, the precise amount of autophagy that needs to be perturbed to initiate cell death 

context dependent? Given the dual roles of autophagy in promoting nutrient availability and 

initiating cell death, could the same cancer cell be driven to cell death by inhibiting and inducing 

autophagy, but with different amounts of perturbation? To address such questions and develop 

rational therapies, accurate and dynamic measurements of autophagy are vital. Nevertheless, 

most current methods rely on steady state measurements and are inadequate in capturing the 

dynamic nature of autophagy with high sensitivity and resolution. Dynamic measurements are 

pivotal in understanding the autophagy system holistically under various genetic and 

environmental conditions. Quantitative measurements that can distinguish different autophagy 

steps with high sensitivity would assist in identifying the mechanism of action of new treatments 

and the cellular response.  

Autophagy and flaviviruses 

Autophagy is involved in the replication of flaviviruses [37,38].  We generated an extensive list of 

protein interactions between viral and autophagy proteins from unbiased proteomic screens 

indicating the involvement of autophagy during flavivirus infection (Table 1-1). However, the 
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overall role of autophagy as a proviral or antiviral in flavivirus replication is complex and has no 

clear consensus [4,39]. One of the major reasons that cause the ambiguity in implicating the role 

of autophagy in flavivirus infection is the lack of quantitative and sensitive methods to measure 

autophagy.  Additionally, although both autophagy and virus replication are highly dynamic 

processes, most methods currently available cannot quantify individual autophagy steps 

temporally leading to an incomplete picture. Therefore, the need for systematic methods to 

measure autophagy dynamically and precisely during virus infection cannot be overstated. Such 

methods will provide insights into the specific autophagy step perturbed by the viral components 

as a function of time, the cellular response, and hence the overall role of autophagy in the life 

cycle of virus replication. Interestingly, most of the autophagy proteins that were identified in our 

search were cargo receptors such as FAM134C, CALCOCO1, and BNIP3 (Table 1-1). This leads 

to the hypothesis that selective autophagy plays a key role in virus replication and is consistent 

with existing studies showing the upregulation of lipophagy and downregulation of reticulophagy 

during dengue virus infection [40,41]. This adds a layer of complexity to measuring autophagy 

where the cargo that’s captured and processed also needs to be monitored. Hence, tools to 

capture the temporal change in autophagy state, cargo captured, and degraded are essential for 

understanding the interplay between autophagy and virus replication.   
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Table 1-1. Protein–protein interaction (PPI) found between autophagy proteins and viral proteins.  Six data 
sets were used for analysis [42–47].  Superscript represents the viral protein and study reporting the 
interaction. 1Shah et al. (2018) (ZIKV) [44]. 2Shah et al. (2018) (DENV) [44]. 3 Scaturro et al. (2018) (ZIKV) 
[43], 4Coyaud et al. (2018) (ZIKV) [42]. 5 Li et al. (2019) (WNV) [45]. 6Golubeva et al. (2020) (ZIKV) [46]. 
7 Zeng et al. (2020) (ZIKV) [47]. PPIs that were found significant by the authors were considered for the 
search. Approximately, 100 autophagy proteins were probed for interactions based on a list of proteins 
mentioned in these studies [12,48,49].   

 

Challenges associated with measuring autophagy and limitations of current 

methods. 

Western blot 

Western blot is commonly used to estimate the change in protein levels. For autophagy 

measurement, the amount of LC3-II protein is compared before and after autophagy regulation. 

To further comprehend if autophagosome initiation is modulated or autophagosome fusion, 

lysosome inhibitors are added to prevent autophagosome clearance and LC3-II levels are 

Autophagy protein Autophagy related role Viral proteins

ACBD5 Pexophagy receptor NS4A
1

AMBRA1
Key regulator of autophagy by modulating the BECN1-PIK3C3 

complex
NS1

7
, NS2B

7

ATG9A Supplies membrane for the growing autophagosome  E
7

BNIP3 (NIP3) Mitophagy receptor NS5
1,2

EI24(EPG4)
Regulates the formation of degradative autolysosomes during 

autophagy
NS1

2
, NS4B

3

LGALS8
Restricts infection by initiating autophagy via interaction with 

CALCOCO2/NDP52
NS3

6

MTOR
Key regulator of autophagy through phosphorylation of ULK1, 

DAP, AMBRA1, and RUBCNL
NS4A

1,2

PHB2 Mitophagy receptor NS2B3
3
, NS4B

3

SQSTM1 (p62) Multiple cargo receptor NS4B
2

STX17 Regulates autophagosome fusion with lysosomes NS2A
7

VCP

Essential for the maturation of ubiquitin-containing 

autophagosomes and the clearance of ubiquitinated protein by 

autophagy
NS2B3

5

WAC Regulator of autophagy NS2B
6

AUP1 Lipophagy regulator NS2A
4
, NS4B

3,4

FAM134C Reticulophagy receptor NS4A
1
, NS4B

3

RTN3 Reticulophagy receptor NS4A
1

SEC62 Reticulophagy receptor NS4A
2

CALCOCO1 Reticulophagy receptor NS5
5

NBR1 Aggrephagy, pexophagy and xenophagy receptor NS2A
4

VMP1 Required for autophagosome biogenesis NS4A
4

TMEM41B Required for autophagosome biogenesis NS4B
3
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compared. Lack of requirement of sophisticated equipment makes western blot a widely used 

method for estimating autophagy. However, western blots are typically low throughput and less 

quantitative. Moreover, western blot measurements do not allow the dissection of all the 

autophagic steps as the measured LC3-II is associated with both autophagosomes and 

autolysosomes. 

 

Fluorescence microscopy and flow cytometry 

Fluorescent reporter systems have enabled the quantification of autophagosomes in live cells. 

Green fluorescent protein (GFP) labeling of LC3 allows for the quantification of autophagosomes 

as spots in cells using fluorescence microscopy. GFP is pH sensitive and is bleached in the acidic 

environment of the autolysosome in this system [50,51]. Tandem green and red (GFP-RFP) 

labeling of LC3 has also been used to identify acidic autolysosomes since RFPs are more acid-

stable [52,53]. Even though these systems allow direct monitoring of autophagosomes and 

autolysosomes in real-time, they do not provide direct quantification of each step, also known as 

‘autophagy flux’. For instance, the accumulation of autophagosomes could be a result of an 

increase in the formation or decrease in the clearance of autophagosomes. The same principle 

applies to autolysosomes.  

 

To quantitatively measure autophagy flux, the inputs and outputs of autophagosome and 

autolysosome accumulation must be dissected. Measuring autophagosome accumulation after 

inhibiting clearance with small molecules such as bafilomycin A1 is a commonly used approach 

for measuring autophagic flux [54]. Nevertheless, this approach does not provide a direct 

quantification of autophagosome and autolysosome clearance steps. Using a similar approach, 

Loos and colleagues have formalized a theoretical framework to systematically measure 
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autophagy in the form of steady-state rates [55]. In 2018, they experimentally validated this 

theoretical approach using fluorescence-based live cell imaging and described a detailed 

experimental setup [56].  Although steady-state measurements provide critical information about 

the end state of the system, it lacks information about the path taken by the system to reach that 

state. For example, two opposite perturbations might reach the same final state but might have a 

different mechanism of action (Fig 1-3A and B).  

 

A new approach using a novel fluorescent probe was described to quantify autophagic flux by 

measuring the GFP/RFP signal ratio without adding lysosomal inhibitors [57]. The GFP/RFP 

intensity can be measured using flow cytometry or fluorescence microscopy. However, this 

method does not provide a direct quantification of autolysosomes. It is also not sensitive to 

identifying differences in the autophagic flux if the changes are relatively similar. For example, 

inhibition of autophagosome formation could lead to similar changes in both GFP and RFP 

signals. Thus, a true change in flux may still result in a similar GFP/RFP ratio as basal, leading to 

ambiguity. Another case could be equal and simultaneous initiation and inhibition of 

autophagosome formation and clearance (resulting in a constant GFP signal), which could lead 

to no observable difference in the fluorescence levels. Finally, most measurements made using 

the methods discussed above are made long after perturbation, when the system reaches a new 

steady state where the rates of all the steps are equal. Although this provides very useful 

information about the final autophagy state, it is incapable of informing the nature of the 

perturbation and the dynamic response of the cells to the perturbation. To illustrate, an 

autophagosome formation inhibitor and an autophagosome formation inducer might reach the 

same final steady state even though they perturb autophagy very differently. Therefore, it is 

essential to temporally quantify all the steps involved in autophagy to gain a better understanding 

of the perturbation as well as the regulatory mechanisms of this dynamic process.  
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Figure 1-3.  Dynamic response of autophagy to perturbations. (A) Perturbations that can change the 
steady state level of autophagy. (B) Perturbation affects autophagy, but the final steady state is the same 
as the initial.  

 

Conclusion 

In conclusion, methods that can measure individual autophagy steps with high temporal resolution 

and sensitivity would assist in a better understanding of the biological mechanism of autophagy, 

and perturbations that affect autophagy and would ultimately lead to the development of precision 

therapies for treating diseases. Furthermore, developing such methods that can be scalable 

would accelerate the drug discovery process.  

 

To address these challenges, we propose two new methods for systematically characterizing the 

dynamic change in the autophagy state. Both these methods rely on automated live cell imaging, 

fluorescence microscopy, and image analysis. The first method is based on a theoretical 

framework that allows the monitoring of individual autophagy steps in terms of rates with high 

sensitivity and temporal resolution. This method highlighted the importance of measuring 

autophagy dynamically and revealed novel insights into the timescale of autophagy regulation for 
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various perturbations. The second method is based on an image-based profiling approach where 

about 900 phenotypic measurements were measured at a single cell level temporally. This 

approach allows high-throughput characterization of autophagy and accurately captures the 

dynamic changes in the autophagy state.  Together, these methods would accelerate drug 

discovery for autophagy modulation, provide new fundamental insights into biological 

mechanisms and facilitate the establishment of systematic autophagy measurements.  
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Chapter 2: Quantitative and temporal measurement of dynamic autophagy 

rates 

Introduction 

In this chapter, we present an approach to quantify the rates of each step of the autophagy 

pathway under non-steady state conditions. This approach directly builds upon previous 

advances that provided a quantitative framework to measure autophagy rates at a steady state 

[1,2] and is enabled by high-throughput live cell imaging and measurement of instantaneous 

autophagy rates. With this approach, we study the effects of well-characterized autophagy 

regulators rapamycin and wortmannin. Through our non-steady state analysis, we show that 

rapamycin dynamically regulated autophagy flux to reach an elevated state that decreases back 

to basal levels over time. We use the non-steady state rate approach to reveal two modes of 

regulation that cause this dynamic behavior. We further show that rapamycin concentrations can 

be used to precisely modulate autophagy flux. Conversely, we show wortmannin initially inhibits 

autophagy flux, which recovers over time in a concentration-dependent manner. Additionally, we 

performed a similar analysis during serum and glutamine starvation. Measuring rates after 

starvation indicated that autophagy rates are rapidly and transiently induced by serum starvation, 

while glutamine starvation inhibited autophagy rates on a longer time scale. Taken together, this 

innovative approach has the potential to provide novel insights related to autophagy and 

mechanisms driving autophagy-regulating perturbations through quantitative measurements. 

 

Results 

Non-steady state measurement of autophagy rates 

Measurement of steady state autophagy flux has long been performed [3,4]. Loos and colleagues 

established a formal framework to quantify autophagy flux or the rate of autophagosome formation 
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under steady state conditions [1,2]. The model considers the whole autophagic process as a 

multistep process governed by three steps: 1) the rate of formation of autophagosomes (R1), 2) 

the rate of autolysosome formation via fusion of autophagosomes with lysosomes (R2) and 3) the 

rate of degradation of autolysosomes (R3) (Fig 2-1A). This method relies on quantifying 

autophagosomes and their accumulation over time in live cells by using GFP-labeled LC3 as 

described above. Performing a mass balance on the autophagosomes (AP) yields an expression 

for the rate of change of autophagosomes: 

 
𝑑𝐴𝑃

𝑑𝑡
= 𝑅1 − 𝑅2                (1) 

Similarly, the rate of change of autolysosomes (AL) can be written as:  

 
𝑑𝐴𝐿

𝑑𝑡
= 𝑅2 − 𝑅3                (2) 

Under steady state, no change in autophagosomes or autolysosomes over time is observed 

because R1, R2, and R3 are equal. Using bafilomycin A1 to inhibit the fusion of the autophagosome 

with lysosomes sets 𝑅2 = 0 and results in autophagosome accumulation. Immediately post 

inhibition: 

 (
𝑑𝐴𝑃

𝑑𝑡
)

𝑖𝑛ℎ
= 𝑅1                (3) 

where (
𝑑𝐴𝑃

𝑑𝑡
)

𝑖𝑛ℎ
 is the accumulation rate of autophagosomes following inhibition of R2 by 

bafilomycin A1 [1,2] (Fig 2-1B).  
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Figure 2-1. Conceptual framework of non-steady state analysis of autophagy rates. (A) Phagophores 
expand to form autophagosomes. Autophagosomes fuse with lysosomes to form autolysosomes. Contents 
are degraded in autolysosomes. The rates of each of these steps (R1, R2, and R3) can be measured using 
a mass action model and live-cell imaging. Fluorescently tagged LC3 (pHluorin-mKate2-LC3) can be used 
to quantify autophagosomes (pHluorin- and mKate2-positive) and autolysosomes (mKate2-positive, 
pHluorin is quenched at low pH). (B) Measurement of autophagosome numbers following inhibition of 
autophagosome-lysosome fusion using bafilomycin A1 allows for measurement of R1, the rate of 
autophagosome formation. When performed at a steady state, this rate is equal to the other rates in the 
pathway. (C) When changes in autophagosome and autolysosome numbers are measured using an 
instantaneous rate approach, all rates in the autophagy pathway (R1, R2, and R3), which may not be equal 
under dynamic conditions, can be measured.  

 

Despite the success of quantitative autophagy flux measurements, non-steady state 

measurements (dynamic conditions in which R1, R2, and R3 may not be equal) remain out of 

reach. We expanded on this previous work to develop a non-steady state rate approach that 

enables the evaluation of all three rates under dynamic conditions (Fig 2-1C). Measuring the 

change in the number of autophagosomes with time just before the chemical inhibition would 
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provide the net rate of change of autophagosomes at that time point (
𝑑𝐴𝑃

𝑑𝑡
)

0
. R2 can then be 

evaluated using equations (1) and (3): 

 𝑅2 = 𝑅1 − (
𝑑𝐴𝑃

𝑑𝑡
)

0
                (4) 

We can extend this analysis to also quantify the instantaneous net rate of change of 

autolysosomes (
𝑑𝐴𝐿

𝑑𝑡
)

0
 prior to chemical inhibition. R3 can be evaluated using equations (2) and 

(4):  

              𝑅3 = 𝑅2 − (
𝑑𝐴𝐿

𝑑𝑡
)

0
                                                    (5)   

Thus, we can recover the absolute formation and fusion rates of autophagosomes along with the 

degradation rate of autolysosomes as a function of time by carrying out this approach at multiple 

time points.  

 

Experimental system to monitor autophagy dynamics. 

Accurately quantifying autophagy rates over time requires a method to distinguish 

autophagosomes from autolysosomes and to track them in live cells simultaneously. Several 

tandem reporter systems that can distinguish autophagosomes from autolysosomes have been 

previously described [5–7], though none have been used to extract rate data for all steps in the 

autophagy pathway. We used the previously developed Super-Ecliptic, pHluorin-mKate2-LC3 

system [8]. pHluorin is an acid-sensitive GFP, while mKate2 is an acid-stable RFP. Thus, 

autophagosomes are green and red, while the acidic autolysosomes are only red (Fig 2-1A).  
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We first confirmed that the accumulation of pHluorin-mKate2-labeled puncta is specific to 

autophagosomes using the tandem reporter with wild-type (WT) LC3 and a LC3 mutant (LC3 ΔG). 

LC3 ΔG lacks the glycine at the carboxyl-terminus, which is essential for proper lipidation and 

association with autophagosomes [9,10]. The addition of bafilomycin A1 and rapamycin, two well-

established modulators of autophagy [11,12], lead to the expected accumulation of pHluorin-

mKate2-labeled puncta in cells expressing WT LC3, but not in LC3 ΔG-expressing cells (Fig 2-

2A). 

  

We then calibrated our experimental system to determine the optimal concentration of bafilomycin 

A1 to inhibit R2 completely. We monitored autophagosome and autolysosome dynamics over time 

before and after the addition of bafilomycin A1 at various concentrations (Fig 2-2B and C). 

Autophagosome and autolysosome numbers were confirmed to be at a steady state prior to the 

addition of bafilomycin A1. We observed a constant increase in autophagosomes over time 

following the addition of bafilomycin A1 for all concentrations tested, with more dramatic increases 

at higher concentrations. For autolysosomes, we did not observe any considerable changes for 

higher concentrations (100 nM and above) but for 10 nM bafilomycin A1 we observed an increase 

in the autolysosome numbers. This could be due to complete inhibition of autolysosome clearance 

by bafilomycin A1 [3,11] but only partial inhibition of the fusion step as indicated by the lower slope 

of autophagosome increase, leading to continuous autolysosome production but no clearance.  
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Figure 2-2. Calibration of system conditions for data collection. (A) Images of cells expressing the 
pHluorin-mKate2-LC3 tandem fluorescent reporter following DMSO, 100 nM rapamycin (Rapa) and 500 
nM bafilomycin A1 (Baf A1) treatment. WT LC3 represent wild type and LC3 ΔG was used as a negative 
control because this mutant cannot be lipidated for phagophore association. (B) Autophagosomes and 
(C) autolysosomes were quantified over 90 min before addition of bafilomycin A1 and 60 min after. R1 
was calculated using the first 20 min of data following bafilomycin A1 treatment. (D) R1 rates are plotted 
as a function of bafilomycin A1 concentration. At least 150-200 cells were imaged for all experiments.  

 

We used autophagosome data to determine R1 as a function of bafilomycin A1 concentration. R1 

was measured as the slope using 20 min of data immediately following the addition of bafilomycin 

A1 (Fig 2-2B). The ability to measure rates within 20 min is a major advantage of this system as 
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it allows the measurement of instantaneous R1 with minimal feedback from bafilomycin A1 

addition. A saturation of R1 was observed starting at 100 nM bafilomycin A1 (Fig 2-2D). However, 

to ensure complete inhibition of R2 even during induced conditions (e.g., higher autophagosome 

and lysosome numbers), a concentration of 500 nM bafilomycin A1 was used for all subsequent 

experiments. We also acknowledge that it may not be possible to differentiate between 

autophagosomes and autolysosomes after bafilomycin A1 treatment. This is due to the unclear 

mechanism of bafilomycin A1 of either inhibiting fusion of autophagosomes with lysosomes or 

inhibition of acidification of autolysosomes [13]. Therefore, the measured number of 

autophagosomes could be accumulated either in the form of unfused autophagosomes or 

unacidified autolysosomes. Nevertheless, this does not affect our analysis as the approach only 

relies on measuring autophagosome accumulation after inhibition and we can measure the 

accumulation in either form. A mathematical explanation is provided in the Appendix A.  

 

Rapamycin-induced autophagosome and autolysosome dynamics are concentration-

dependent.  

We next tested the ability to monitor autophagosome and autolysosome temporal dynamics using 

rapamycin, which induces autophagosome formation through the inhibition of MTORC1 

(mechanistic target of rapamycin kinase complex 1)[14–16]. We tested seven concentrations of 

rapamycin (Fig 2-3, A-1A-B). Autophagosomes increased following rapamycin treatment, with 

higher rapamycin concentrations resulting in a more rapid increase (Fig 2-3A, A-1A). For the 

highest concentrations of rapamycin (> 10 nM), this rapid increase peaked at 30 min post-

treatment, followed by a gradual decrease. We observed a saturation behavior for concentrations 

above 10 nM. A mid-range concentration of rapamycin (1 nM) resulted in a more gradual increase 

in autophagosome numbers, followed by a slight decrease. The lowest concentration of 

rapamycin tested (0.1 nM) had no effect. Autolysosome dynamics followed similar concentration-
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dependent trends, with slightly delayed peaks at 1.5-2 h post-treatment for higher concentrations 

(Fig 2-3B, A-1B). Interestingly, there was no difference in autophagosome and autolysosome 

peak time (3.5-4 h) for the mid-range concentrations of rapamycin (0.5 and 1 nM). The raw 

autophagosome and autolysosome data are provided in the Appendix A (Fig A-1C and D). We 

also confirmed rapamycin inhibition of MTORC1 activity by monitoring change in the 

phosphorylation status of the RPS6/S6 ribosomal protein at the Ser 240/244 site, which is a 

downstream substrate of mTORC1 (Fig A-1E).  

 

Figure 2-3. Autophagosome and autolysosome dynamics are a function of rapamycin concentration. (A) 

Autophagosome and (B) autolysosome number dynamics after rapamycin treatment. The 

indicated concentration of rapamycin was added at 0 min. The number of autophagosomes and 

autolysosomes at 0 min was used as the normalization factor. Data points represent mean while 

shaded area represents + standard deviation. Four independent replicates were performed. At 

least 150-200 cells were imaged for all experiments.  
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Time evolution of autophagy rates reveals initial rate-limiting steps. 

The autophagosome dynamics for high concentrations of rapamycin (> 10 nM) suggested two 

possible models of cellular response to rapamycin treatment. The sudden increase in 

autophagosome numbers followed by a decrease could be driven by a rapid increase in the rate 

of autophagosome formation (R1), while the rates of autolysosome formation and degradation (R2 

and R3, respectively) lag due to latency in the pathway response. Alternatively, R1 could increase 

and then decrease due to feedback mechanisms induced by sustained rapamycin treatment. We 

next sought to distinguish between these two possible cellular response models using the non-

steady state rate approach described earlier.  

 

To understand which mode of response cells were operating, we measured R1, R2, and R3 over 

time following rapamycin treatment. Initially, we focused on cells treated with a high concentration 

of rapamycin (100 nM) compared to untreated cells (DMSO). Raw autophagosome and 

autolysosome data used for rate measurements at 30 min are shown as an example to illustrate 

the procedure followed (Fig 2-4A and B). Cells were at a steady state before rapamycin 

treatment, with no changes in either autophagosome or autolysosome numbers. Following 

rapamycin addition, we observed an increase in autophagosome and autolysosome numbers, 

similar to our previous experiments. Bafilomycin A1 was then added to measure rates. This overall 

procedure was repeated to collect rate data from 10 min to 15 h post-treatment. Importantly, the 

rates of untreated cells (basal autophagy rates) were at a steady state, meaning all three rates 

were equal and did not vary over time (Fig A-2).  
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Figure 2-4. Autophagy rates change over time following rapamycin treatment. (A) Raw autophagosome 

and (B) raw autolysosome dynamics for rate measurement at 30 min post-rapamycin treatment. R1 was 

calculated using the autophagosome data 20 min post-bafilomycin A1 addition. (
𝑑𝐴𝑃

𝑑𝑡
)

0
 and (

𝑑𝐴𝐿

𝑑𝑡
)

0
  were 

calculated using the autophagosome and autolysosome data respectively 10 min before bafilomycin A1 

addition. (C) Change in R1 (D) R2 and (E) R3 over time. Data points represent the mean while shaded area 
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represents + standard deviation. Four independent replicates were performed. (*) indicates p-value < 0.05 

and NS indicates not significant. P-values were calculated using an independent two-tail t-test. (F) LC3-II 

and GAPDH protein quantification using western blot. Cells were treated with 100 nM rapamycin for 

different time points followed by 500 nM bafilomycin A1 (Baf A1) treatment. Basal samples represent DMSO-

treated cells. (G) Quantification of the western blot shown in Fig 2-4F using densitometry. LC3-II band 

intensity is normalized with the respective GAPDH band intensity in the same lane. At least 150-200 cells 

were imaged for all imaging experiments. 

 

For rapamycin-treated cells, we observed a nearly immediate increase in R1, with significant 

changes in R1 measured as soon as 10 min post-treatment compared to untreated cells (Fig 2-

4C). This significantly elevated rate was maintained until 12 h post-treatment. This result is 

consistent with the known mechanism of rapamycin inducing autophagy upstream of phagophore 

expansion and thus validates the proposed non-steady state approach to characterize the effects 

of external perturbation on autophagy. Interestingly, R2 and R3 were slower to increase, with 

significantly increased rates starting at 30 min post-treatment (Fig 2-4D and E). Similar to R1, R2 

and R3 maintained significantly elevated rates until 12 h post-treatment. At 15 h post-treatment, 

all rapamycin rates were statistically indistinguishable from the basal rates of untreated cells. The 

dynamics we observed suggest that R2 and R3 may represent rate-limiting steps initially, after 

which there is a general decrease in all rates.  

 

To confirm the puncta and rate dynamics observed using the new method are consistent with the 

traditionally used method, we measured LC3-II protein levels using western blot. We treated cells 

with 100 nM rapamycin for different time points followed by the addition of 500 nM bafilomycin A1 

to measure R1 (Fig 2-4F-G and A-3A-B). Cells were treated with bafilomycin A1 for 2 h to ensure 

a consistent and detectable change in the LC3-II levels. Here, the higher sensitivity of the new 

method is noteworthy, as it can detect changes as soon as 20 min after bafilomycin A1 treatment 

compared to 2 h for western blot. We confirmed the increase in LC3-II levels for DMSO samples 

after treatment with bafilomycin A1, indicating the inhibition of the fusion step. For just rapamycin 
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treatment, we observed an increase in LC3-II levels starting at 30 min followed by constant 

maintenance of LC3-II levels until 12 h post-treatment. This is contrary to the observed 

autophagosome and autolysosome puncta dynamics where there is an initial increase followed 

by a decrease (Fig 2-3A-B). We hypothesize that the variation between puncta dynamics 

measurements and western blot measurements is caused by the intrinsic nature of each 

measurement. LC3-II protein levels measured using western blot indicate the summation of LC3-

II protein on autophagosomes and autolysosomes. Both autophagosome and autolysosome 

puncta remained higher than the initial state even at 15 h, indicating higher levels of LC3-II protein 

at those time points. Moreover, the number of LC3-II molecules bound to each autophagosome 

could be dynamic and challenging to measure. Nonetheless, the initial accumulation of LC3-II 

was consistent between the two methods. To validate the observed R1 dynamics, bafilomycin A1 

was added at multiple time points after treatment with rapamycin (Fig 2-4F-G and A-3A-B). We 

observed a clear increase in LC3-II accumulation at 30 min, while for the later time points, it only 

caused a modest increase. This indicates R1 is higher initially and declines over time. These 

results were also consistent with measurements made using the non-steady state method, where 

R1 increased over 2.5 h post-treatment, followed by a gradual decrease. 

 

Latency and feedback contribute to rapamycin-driven autophagy rate dynamics.  

We next set out to test these temporal differences in rates by comparing rates at different time 

points for rapamycin-treated cells. At 10 and 30 min post-treatment, R1 was significantly greater 

than R2 and R3 (Fig 2-5A), consistent with the rapid increase in the autophagosome numbers 

until 30 min post-treatment. But this difference was eliminated by 1.5 h post-treatment because 

of increases in R2 and R3 (Fig 2-5A), which is also consistent with the peak time of autolysosome 

numbers (Fig 2-3B). We focused our detailed temporal analysis on R1 since R2 and R3 reached 

the same level as R1 and followed the same trend from 1.5 h onward. Interestingly, we observed 
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a constant R1 until 2.5 h post-treatment, at which point there was a gradual decrease until 15 h 

(Fig 2-5B). Thus, an increase in the overall flux through the pathway in response to rapamycin is 

initially limited by latency in R2 and R3, but not R1. This is followed by a general decrease in 

autophagy rates after 2.5 h. Thus, both models of regulation we initially hypothesized to exist are 

playing a role in the autophagy dynamics we observed.  

 

To illustrate this hybrid model of cellular response and regulation of autophagy rates, we 

juxtaposed the autophagosome and autolysosome dynamics with rate data (Fig 2-5C). We used 

30 min as a reference point to compare the temporal changes in R1 since autophagosome 

numbers peak at 30 min. The immediate spike in R1 but lag for R2 and R3 caused the initial 

accumulation of autophagosomes in the first 30 min. From 30 min to 2.5 h, the decrease in 

autophagosomes was caused by an increase in R2 and R3 to the same level as R1, leading to the 

degradation of accumulated autophagosomes, which we named the degradative regime (DR). 

However, after 2.5 h, the decrease in autophagosome numbers was a result of the decrease in 

R1 along with R2 and R3, which we named the feedback regime (FR). These results underscore 

the overall consistency of temporal rate data with the autophagosome and autolysosome 

dynamics.  
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Figure 2-5. Autophagy rates indicate a hybrid model of cellular response to high concentrations of 
rapamycin. (A) Statistical comparison of autophagy rates for cells treated with 100 nM rapamycin at three 

different time points. (B) Temporal change in R1 for cells treated with 100 nM rapamycin. (*) indicates p-

value < 0.05 and NS indicates not significant.  Statistical significance for the first four points was 

calculated using a one-way ANOVA test. The P-value for the statistical test between 2.5 and 15 h is 

calculated using paired two-tail t-test. (C) Normalized mean values of autophagosome (AP:AP0) and 

autolysosome numbers (AL:AL0) along with mean values of autophagic rates (R1, R2, R3) are compared to 

visualize the two regimes of cellular response. DR and FR represent degradative and feedback regimes, 

respectively. (D) A549 cells stained with LAMP1 antibody. (E) LAMP1 positive puncta detection (shown in 

red). Scale bar: 10 µm. (F) Temporal change in the normalized LAMP1 puncta/ cell (rapamycin treated to 

DMSO treated) after treatment with 100nM rapamycin. Error bars represent standard error for four 
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independent replicates. NS indicates not significant, statistical significance was calculated using a one-

way ANOVA test. At least 150-200 cells were imaged for all experiments.  

 

We hypothesized that the initial lag in R2 and R3 in degradative regime is due to a lack of 

lysosomes to fuse with the newly formed autophagosomes. To test this hypothesis, we performed 

immunofluorescence staining for LAMP1 (Lysosomal Associate Membrane Protein 1) after 

treating cells with 100 nM rapamycin for 4 h (Fig 2-5D). We chose 4 h, as R2 and R3 reach R1 by 

1.5 h and remain the same thereafter. We quantified the LAMP1-positive puncta for basal and 

100 nM rapamycin-treated cells (Fig 2-5E). Contrary to our hypothesis, there was no significant 

difference in the normalized puncta (rapamycin-treated relative to basal) between 10 min and 4 h 

of rapamycin treatment (Fig 2-5F). This indicates that the number of lysosomes is not a limiting 

factor for the fusion step, and another aspect of autophagosome-lysosome fusion is limiting.  

 

Initial autophagy rates and time evolution of rates depend on rapamycin concentration. 

 

Given the concentration-dependent effects of rapamycin on autophagosome and autolysosome 

dynamics, we hypothesized that autophagy rates might also exhibit concentration-dependent 

effects. We thus measured all the rates for a range of rapamycin concentrations over 15 h (Fig 

2-6A and A-4). Mid-range concentrations of rapamycin (0.5-1.0 nM) resulted in a more gradual 

increase in R1 compared to high rapamycin concentrations (10-100 nM). To quantify rapamycin’s 

ability to induce autophagy, we modeled  R1 using the Hill equation [17] (Fig 2-6B). R1 at 10 min 

was used to model rapamycin induction kinetics because this time point represents the effect of 

rapamycin on autophagy with minimal time for feedback mechanisms from the cells. In the Hill 

equation, (R1) Basal represents the basal rate of autophagosome formation in the absence of any 

perturbation. This basal rate was estimated to be 0.90 puncta per cell per minute. Vm and Km 
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represent the rapamycin-induced maximal autophagy level and half-maximal rapamycin 

concentration, respectively. Vm and Km were estimated to be 0.685 puncta per cell per minute and 

1.1 nM. The exponent n represents the observed Hill coefficient and was estimated to be 1.9. 

This model can be used to predict rapamycin’s ability to induce R1 at early stages and will be 

useful in developing a complete temporal model. This method may be extended to various 

autophagy perturbations, which may relate to the mechanism of action based on the perturbed 

initial response and enable modeling of the response.  

 

In addition to concentration-dependent effects on initial R1, we also observed concentration-

dependent effects on the time evolution of R1. For a mid-range concentration of rapamycin (0.5 

nM), R1 gradually increased and reached the same level as R1 of higher concentrations (100 nM) 

over 6 h (Fig 2-6C). This was surprising given the very low accumulation of autophagosomes and 

autolysosomes for 0.5 nM treatment (Fig A-1A and B). Consequently, we explored the temporal 

nature of all autophagy rates (R1, R2, and R3) for this mid-range concentration of rapamycin. We 

hypothesized that the slower response time for R1 at mid-range concentrations of rapamycin (Fig 

2-6A) might allow adequate time for R2 and R3 to adjust in sync with R1, even at early time points, 

compared to the rapid response for high concentrations of rapamycin (100 nM). Measuring R2 

and R3 over time showed a similar trend, equal to R1 over the entire 15 h time course, thus 

resulting in a low accumulation of the autophagic vesicles (Fig 2-6D). Interestingly, rates 

decreased at longer time points. R1 was indistinguishable from basal levels by 15 h post-treatment 

for 0.5 nM rapamycin (Fig 2-6C), similar to the high concentration of rapamycin (Fig 2-4C-E). This 

led us to look at long-term impacts on R1 for all concentrations of rapamycin. For all concentrations 

tested, R1 was not significantly different from basal levels by 15 h post-treatment (Fig 2-6E), 

suggesting adaptation of the autophagy response to long-term inhibition of mTOR complexes. 

Taken together, rapamycin treatment results in early responses that are concentration-
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dependent, with mid-range concentrations resulting in slower responses that evolve as steady 

state flux through the pathway. These results further signify the importance of measuring all the 

autophagy rates temporally to capture the complete response. 

 

Given the temporal and concentration-dependent behavior of autophagy, we wanted to develop 

a simple metric for measuring the total amount of autophagy processed until steady state 

conditions are reached. We measured the area under the curve (AUC) for R3. Assuming the 

average cargo captured and degraded are the same for each condition, this measure would 

indicate the total amount of cargo completely degraded through the autophagic pathway. For 

example, perturbations such as rapamycin that induce autophagic flux would have higher AUC 

while perturbations that inhibit autophagy initiation or clearance would have low AUC. Using the 

R3 temporal data spanning 15 h, we calculated the AUC for basal and all rapamycin treatments 

(Fig 2-6F). While 0.1 nM rapamycin was indistinguishable from the basal condition, all other 

rapamycin concentrations lead to significantly higher AUC, indicating higher autophagic flux. 

Intriguingly, all rapamycin concentrations above 0.1 nM degraded similar amounts of cargo. 

These results were consistent with the observed slow response for the mid-range concentration 

(0.5 and 1 nM) and a faster but shorter response for higher concentrations (10 and 100 nM) as 

discussed earlier. Henceforth, this measurement can be used as an additional metric to track the 

total amount of autophagy perturbed.  
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Figure 2-6. Initial and time evolution of autophagy rates depend on rapamycin concentration. (A) 

Temporal dynamics of R1 for different concentrations of rapamycin. Data points represent the mean while 

shaded area represents + standard deviation. Four independent replicates were performed. (B) R1 at 10 

min after rapamycin addition is plotted as a function of rapamycin concentration. Individual data points 

represent experimental data while the dotted line represents the model fit. The model used for fitting the 

data along with the adjusted R2 value is also shown. (C) Statistical comparison of R1 for three different 

rapamycin concentrations at three different time points. (*) indicates p-value < 0.05 and NS indicates not 

significant. P-values were calculated using an independent two-tail t-test. (D) Temporal evolution of all 

autophagic rates (R1, R2, R3) for 0.5 nM rapamycin-treated cells. Data points represent the mean while 

the shaded area represents + standard deviation. (E) R1 at 15 h as a function of rapamycin concentration. 

NS indicates not significant. P-values were calculated using a one-way ANOVA test. (F) AUC for R3 data 

for different concentrations of rapamycin. Data represent mean + standard deviation. P-values were 

calculated using a one-way ANOVA test followed by Tukey’s post hoc test for pairwise comparison. At 

least 150-200 cells were imaged for all experiments.  

 

Wortmannin temporarily inhibits basal and rapamycin-induced autophagosome 

formation. 

After validating our non-steady state approach using an autophagy inducer, we next set out to 

test the method using wortmannin, a commonly used inhibitor of autophagosome formation 

[18,19]. We used 1 µM wortmannin to test its ability to inhibit basal and rapamycin-induced 

autophagy. First, we measured the autophagosome and autolysosome temporal dynamics after 

treating with wortmannin and/or rapamycin (Fig 2-7A and 2-7B). We observed an immediate 

decrease in the autophagosome numbers for wortmannin, as well as wortmannin with rapamycin-

treated conditions, while the autolysosome numbers remained constant. Surprisingly, after 30 

min, we observed an increase in the autophagosome numbers in cells treated with wortmannin 

only and a combination of wortmannin with rapamycin. Moreover, the rate of increase in 

autophagosome number for wortmannin with rapamycin-treated cells was faster than just 

wortmannin-treated cells. The autophagosomes for wortmannin with rapamycin reached initial 

levels by 1 h and kept increasing to saturate at a higher level than basal (~1.8 fold) by 6 h, followed 

by a slight downward trend by 15 h. Wortmannin-only treatment took 3.5-4 h for autophagosome 

numbers to reach the initial level and saturated at a slightly higher level (~1.3 fold). For 

autolysosomes, we observed a higher accumulation for wortmannin with rapamycin treatment 
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(~1.5 fold) compared to just wortmannin (~1.1 fold), similar to the autophagosome behavior. We 

used 100 nM rapamycin and basal (DMSO) as controls and their behavior remained the same as 

in earlier experiments. From the known inhibitor mechanism of wortmannin, we hypothesize the 

initial drop in autophagosomes is a result of the inhibition of R1. However, the increase after 30 

min could either be a result of an increase in R1 or a much lower decrease in R2 and R3 compared 

to R1 or a combination of both. Rates for each step is needed to uncover the dynamics involved.  

 

We used the non-steady state method discussed earlier to measure the individual rates following 

wortmannin treatment. At 10 min, we observed an immediate decrease in the R1 while R2 and R3 

remained at the basal level for wortmannin-treated cells, confirming the known inhibitory 

mechanism of action of wortmannin (Fig 2-7C-E). Moreover, R1 for wortmannin with rapamycin 

was also significantly lower at 10 min compared to basal and rapamycin treatments (Fig 2-7C 

and F). Therefore, wortmannin initially inhibits basal as well as rapamycin-induced 

autophagosome formation. R2 and R3 decreased by 30 min due to the lack of autophagosomes 

to degrade because of decreased R1 (Fig 2-7D and E). Interestingly, R1 increased over time 

following initial inhibition by wortmannin. Wortmannin is less stable in cell culture media and could 

be the major reason for recovery after wortmannin treatment [20]. However, the possibility of 

feedback cannot be completely ruled out. R2 and R3 follow a similar trend as R1 after 30 min with 

a slight delay (Fig A-5A and B). This indicates that the behavior is mainly driven by R1 and the 

downstream flow of autophagosomes through the pathway is unperturbed. Rapamycin and basal 

rate behaviors were consistent with the previous results (Fig 2-7C- E).  
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Figure 2-7. Variable autophagy recovery time from wortmannin’s inhibition.(A) Autophagosome and (B) 

autolysosome number dynamics after treatment. The indicated concentration of small molecule was 

added at 0 min. The number of autophagosomes and autolysosomes at 0 min was used as the 

normalization factor. Data points represent the mean while the shaded area represents + standard 

deviation. Three independent replicates were performed. (C) R1 (D) R2 (E) R3 temporal dynamics for 

basal, 1 µM wortmannin (Wort) with and without 100 nM rapamycin (Rapa), and 100 nM rapamycin alone. 

Data points represent the mean while the shaded area represents + standard deviation. Three 

independent replicates were performed. (*) indicates p-value < 0.05, p-values were calculated using an 

independent two-tail t-test. (F) Statistical comparison of R1 at 10 min for different treatments. (*) indicates 

p-value < 0.05, p-values were calculated using an independent two-tail t-test. (G) Time taken for R1 of 

each treatment condition to reach the basal level. (H) R1 at 15 h plotted as a function of treatment 

condition. NS indicates not significant. p-values were calculated using a one-way ANOVA test. (I) AUC for 

R3 for different treatments. P-values were calculated using a one-way ANOVA test followed by Tukey’s 

post hoc test for pairwise comparison. (*) indicates p-value < 0.05 and NS indicates not significant. At 

least 150-200 cells were imaged for all experiments.  

 

We tested a higher wortmannin concentration (10 µM) to probe if it plays a role in the recovery of 

R1 (Fig A-5C-E). We analyzed the time taken for R1 to reach back to a statistically insignificant 

level as basal and potentially exceed it (Fig 2-7G). A treatment of 1 µM wortmannin reached basal 

level by 4 h while 10 µM wortmannin took approximately 12 h, suggesting wortmannin’s 

concentration is a governing factor. Moreover, we observed a faster recovery of wortmannin with 

rapamycin-treated cells. For 1 µM wortmannin, cells also treated with rapamycin reached basal 

level by 30 min compared to 4 h for wortmannin alone. Similarly, for 10 µM wortmannin, the cells 

with rapamycin took 9 h compared to 12 h with wortmannin alone. The accelerated recovery of 

rapamycin-treated cells could be due to the additional autophagosome induction capacity of 

rapamycin.  

 

We next analyzed the final steady state rates and the total cargo degraded in terms of R3 AUC 

over 15 h. At 15 h, the rates of all treatment conditions were indistinguishable from each other as 

well as the basal condition (Fig 2-7H). This result reemphasizes the importance of temporal 

monitoring of autophagy, as rapamycin and wortmannin, which have opposing effects on 

autophagosome formation, reach the same final steady state. Finally, using the R3 data collected 
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over 15 h, we calculated the AUC for 1 µM and 10 µM wortmannin treatment conditions (Fig 2-

7I). We anticipated a decrease in the overall cargo degraded as wortmannin inhibited the initiation 

of autophagosome formation and thus reduced the overall flux through the pathway. We did not 

observe a significant decrease in the overall cargo degraded for 1 µM wortmannin treatment 

compared to basal but did for 10 µM wortmannin treatment. For cells treated with wortmannin 

along with rapamycin, 1 µM wortmannin caused a clear decrease in cargo degraded compared 

to the rapamycin sample even though it did not meet our statistical criteria (p-value= 0.0542). 

Conversely, rapamycin with 10 µM wortmannin treatment significantly decreased the cargo 

degraded compared to rapamycin-induced conditions. These results are consistent with the faster 

recovery of autophagy under 1 µM wortmannin treatment compared to 10 µM. These 

measurements can be utilized to further guide the precise tuning of autophagy.  

 

As these observations were made using a single A549- pHluorin-mKate2-LC3 clone, we tested 

the behavior of bulk sorted A549-pHluorin-mKate2-LC3 cells. We measured the change in 

autophagosome and autolysosome dynamics as well as the rates for 100 nM rapamycin and 1 

µM Wortmannin treatment. The overall behavior of the bulk sorted cells was similar to that of the 

individual clone which was used for all the measurements (Fig A-6A-E), indicating the clone’s 

behavior is representative of the general A549 cell line. To further confirm that the method is 

expandable to other cell lines, we developed a bulk sorted U2OS-pHluorin-mKate2-LC3 cell line. 

A similar analysis was performed on U2OS cells and parallel behaviors were observed between 

U2OS and A549 cell lines under rapamycin and wortmannin treatment (Fig A-6F-J). There was 

substantial variation in the amount of LC3 expressed among the bulk sorted cells, which could be 

the main reason for the variation observed in the data. Finer optimization of the sorting process 

for selecting similar expressing populations could mitigate such variability.   
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Serum and glutamine starvation regulate autophagosome dynamics on different 

timescales.  

Serum starvation and nutrient deprivation regulate autophagy in many biological systems such 

as cancer and bioproduction [21,22]. We tested the dynamic autophagy response to serum 

starvation, glutamine starvation, and a combination of both in our clonal A549 cell line. Under 

normal conditions, cells were stably cultured at 8% fetal bovine serum (FBS) and 4 mM glutamine 

concentration. Cells were imaged for 1 h before diluting the FBS and glutamine concentration to 

0.64% and 0.32 mM respectively by serial dilution via repeated partial media replacements. A 

serial dilution approach was used to minimize the stress induced by replacing the media in the 

wells and to prevent cells from being completely dry. Nevertheless, due to the high sensitivity of 

the system, we noticed differences between unperturbed conditions, in which cells were 

completely undisturbed, compared to the basal control, which involved removing and adding 

complete media to the cells (Fig A-7A). 

 

Serum starvation caused an immediate increase in autophagosome and autolysosome numbers, 

peaking within two hours followed by a decrease (Fig 2-8A-B). Thereafter, the autophagosome 

numbers stabilized at the initial steady state number, while the autolysosomes saturated at an 

appreciably lower steady state number (Fig 2-8A-B). Conversely, glutamine starvation led to a 

modest increase in autophagosome number compared to basal fluctuations (Fig 2-8A). As 

discussed previously, the fluctuations in basal can be associated due to the stress induced by the 

removal and addition of media to cells (Fig A-7A). By 20 h we observed a downward trend in the 

autophagosome numbers for glutamine-starved conditions compared to basal (Fig 2-8A). 

Autolysosomes overall followed similar trends as autophagosomes, with a modest increase 

followed by a modest decrease (Fig 2-8B). For combined serum and glutamine starvation, there 

was a rapid increase and decrease in autophagosomes and autolysosomes in the first 8 h, similar 
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to serum starvation (Fig 2-8A-B). We then observed a continuing downward trend in 

autophagosomes, similar to glutamine starvation (Fig 2-8A-B). This suggests that serum 

starvation may dominate at the initial stages while glutamine starvation comes into effect at a later 

stage.   

 

Serum and glutamine starvation have opposing impacts on autophagy rates. 

To decipher the rate dynamics leading to the observed autophagosomes and autolysosome 

dynamics, we measured the rates using the non-steady state approach described earlier. Rates 

were measured from 30 min to 20 h after starvation. An early timepoint was not chosen because 

the unstarved cells were also stressed initially due to the mixing involved during the change of 

media (Fig A-7B-D).  Therefore, all the rates were normalized with the basal condition to account 

for the stress induced by the exchange of media (Fig 2-8C-K). We only observed a significant 

difference between serum starvation and basal rates at 2 h post starvation, where all rates from 

serum starvation were higher (Fig 2-8C-E). This was consistent with the observed maximum 

autophagosomes and autolysosome accumulation during that time period. We also observed that 

the differences among the three rates were minor, indicating that the overall flux was increased 

at two hours post starvation with minimal lag. After two hours, all three rates returned to basal 

levels.  

 

For glutamine starvation, we did not detect a significant difference between basal and glutamine-

starved rates until 20 h post starvation (Fig 2-8F-H). This was consistent with the observed late 

response of autophagosome and autolysosome dynamics for glutamine starvation (Fig 2-8A-B). 

We also observed no significant differences between the three rates, indicating that the overall 

flux decreased at 20 h post starvation.  
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For both glutamine and serum starvation, we observed a significant increase in all the rates at 

two hours, similar to serum starvation alone, while at 20 h we observed a significant decrease in 

all three rates, similar to glutamine starvation alone (Fig 2-8I-K).  

 

Although significant, we only observed minor differences between the three rates at two hours, 

suggesting an increase in overall flux with minor lag. At 20 h, there was no significant difference 

among the three rates, indicating that the overall flux decreased relative to the basal flux at a 

longer time period.  As hypothesized earlier, this behavior corroborates the observed 

autophagosome and autolysosome dynamics and highlights the different timescales of glutamine 

and serum starvation responses. In summary, these results suggest that serum starvation 

transiently induces autophagy flux on a short time scale while glutamine starvation inhibits 

autophagy flux on a longer time scale.  
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Figure 2-8. Serum starvation induces autophagy flux while glutamine starvation inhibits autophagy flux.(A) 

Autophagosome and (B) autolysosome number dynamics under starvation conditions.  Normal media was 

removed partially and media with no serum or no glutamine or both were added at 0 min to dilute the 

concentration. The number of autophagosomes and autolysosomes at 0 min was used as the normalization 

factor. Data points represent the mean while shaded area represents + standard deviation. Three 

independent replicates were performed. Normalized (C) R1 (D) R2 (E) R3 temporal dynamics of serum-

starved with respect to basal. Basal line at one is provided for reference. Normalized (F) R1 (G) R2 (H) R3 

temporal dynamics for glutamine-starved with respect to basal.  Normalized (I) R1 (J) R2 (K) R3 temporal 

dynamics for glutamine + serum-starved with respect to basal.   Data points represent the mean while the 

shaded area represents + standard deviation. Three technical replicates were performed.  Statistical 

comparisons between various starvation conditions and basal rates at every time point were made using 

an independent two-tail t-test. (*) indicates p-value < 0.05 and NS indicated not significant. At least 150-

200 cells were imaged for all experiments. 

 

Serum addition to serum-starved cells transiently inhibits autophagy flux.  

Given the faster response to serum starvation, we added back serum to the serum-starved cells 

at 20 h post-starvation to observe the dynamics. Serum-starved cells that were replenished with 

serum immediately decreased autophagosome numbers within 30 min while the continuously 

serum-starved cells remained at the same level (Fig 2-9A). Lower levels of autophagosomes 

were observed for 3-4 h after replenishment followed by an increase of autophagosomes to the 

basal level (Fig 2-9A).  The autolysosome numbers had a slower response to serum 

replenishment (Fig 2-9B). These observations suggest that serum is an inhibitor of autophagy 

flux, which could be confirmed by rate measurements.  

 

We measured the rates after serum addition at 21, 25, and 30 h (1, 5, and 10 h post-serum 

addback, respectively). We observe lower rates for serum addback cells compared to serum-

starved cells at 21 h. After 21 h, the rates recover to reach the basal level at 25 and 30 h (Fig 2-

9C-E). As all three rates reach the same level by 21 h, we measured the rates immediately (10 

min) after adding back serum to capture the latency in decrease among R1, R2, and R3. Even 

though not significant, we observe a considerable decrease in R1 immediately compared to R2 

and R3 after the serum is added back compared to cells that continue in serum-starved conditions 
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(Fig 2-9F). Overall, these results indicate serum transiently inhibits autophagy flux, with an initial 

latency in R2 and R3 responses.  

 

Figure 2-9. Serum addback to serum-starved cells transiently inhibits autophagy flux.(A) Autophagosome 

and (B) autolysosome number dynamics under continued serum-starved, serum-starved with serum 

replenishment at 20 h, and basal. The number of autophagosomes and autolysosomes at 0 min was used 
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as the normalization factor. Data points represent the mean while the shaded area represents + standard 

deviation. Three independent replicates were performed. Combined serum and glutamine starvation data 

are plotted on all the plots to facilitate comparison (E) R1 (F) R2 (G) R3 temporal dynamics for basal, 

serum-starved, and serum-starved after serum replenishment at 20 h.  Data points represent mean while 

the shaded area represents + standard deviation. Three independent replicates were performed. 

Independent two-tail t-test was used to compare statistical significance between serum-starved with no 

replenishment and serum-starved with replenishment. (*) indicates p-value < 0.05. (H) Comparison of R1 

R2, and R3 after 10 min of serum addback to serum-starved cells compared to continued serum-starved 

cells. Bar graphs represent the mean while the error bars represent + standard deviation. Three technical 

replicates were performed. (*) indicates p-value < 0.05, p-values were calculated using an independent 

two-tail t-test. At least 150-200 cells were imaged for all experiments. 

 

Conclusion and Discussion 

Quantitatively measuring all the autophagic steps remains a significant challenge and is key to 

developing better autophagy-based applications. This is especially critical for developing 

autophagy-based therapies, where dysfunction of cellular pathways is disease- and environment-

specific, leading to a variable response to the same treatment. Therefore, it is crucial to 

systematically characterize the disease state, kind of perturbation (for example, inducer or 

inhibitor) as well as the cellular response to gain a comprehensive understanding. Moreover, 

since autophagy is a dynamic process, it is pivotal to temporally monitor the process to capture 

the complete dynamic response until a steady state is reached. These measurements will be 

essential in informing the overall change in the autophagic state after a perturbation, the feedback 

mechanisms involved, and their timescales. For example, this information will assist in developing 

combinatorial therapies for effectively modulating autophagy to treat diseases with finer control 

and minimal side effects [23,24]. 

 

We present a method to quantify autophagy rates in live cells. Previous studies have quantified 

the rate of autophagosome production under steady state conditions [1,4,25]. We expand on 

these studies by creating a theoretical and experimental framework to measure autophagy rates 

for all three steps in the autophagy pathway under non-steady state conditions. We do so by 
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monitoring autophagosome and autolysosome numbers before and after inhibition of 

autophagosome-lysosome fusion. When combined with the instantaneous rate approach it 

enables measurement of all three autophagy rates without the requirement of them being equal.  

 

By measuring autophagy rates under non-steady state conditions for rapamycin, we were able to 

validate our system using a well-characterized inducer of autophagy. We observed concentration-

dependent increases in initial rates of autophagosome formation. These results were consistent 

with previous studies measuring autophagy flux [26,27]  and rapamycin’s well-established mode 

of action upstream of phagophore formation. We also observed an overall return to basal 

autophagy rates, consistent with previous indirect observations [28]. These results are indicative 

of long-term feedback mechanisms at play. Importantly, our approach enables measuring initial 

rates with high time resolution (~10 min), which can uncover the direct mode of action of an 

autophagy perturbation, before long-term feedback mechanisms convolute measurements.  

 

The non-steady state approach also revealed novel insights into the mechanisms regulating the 

cellular response to rapamycin. We uncovered temporal responses to high concentrations of 

rapamycin that could be explained by a hybrid model of regulation of autophagy rates. Latency in 

the rates of autolysosome formation and degradation revealed rate-limiting steps leading to 

autophagosome accumulation at very early time points. Moreover, we have also shown the 

latency in the fusion step is not due to a limited number of lysosomes, and future efforts to dissect 

mechanisms of latency could be leveraged to overcome them. Probing for the fusion governing 

proteins that may be rate limiting can be valuable for elucidating the fundamental mechanism 

involved as well as for developing new targets to inhibit the fusion step. At later time points, 

feedback mechanisms lowered the overall flux through the pathway. Understanding the timeline 
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of feedback mechanisms for additional perturbations could help refine control over autophagy. 

Conversely, low concentrations of rapamycin treatment led to a slower but steady response in 

rates. We hypothesize this behavior is due to the complex interplay between multiple feedback 

mechanisms of MTORC1 [29,30]. Using these measurements in conjunction with fluorescent 

protein activity reporters at a single cell level can elucidate the complex dynamics involved [31,32] 

and will be important to dissect in the future. The temporal nature of this new approach also 

enabled the development of a new metric in the form of overall cargo degraded (AUC for R3) 

which can be used as an additional property to characterize the system. This result underlines 

the dynamic nature of the pathway and the significance of this metric to fine-tune the flux through 

the pathway. In the future, it will also be interesting to determine if autophagy-associated diseases 

are due to a general reduction in degradative capacity (AUC for R3), or defects in the degradation 

of specific cargo. 

 

We also measured rates for wortmannin to demonstrate the universality of this method to different 

types of perturbations. We observed concentration-dependent effects as well as a differential rate 

of recovery from wortmannin inhibition. This information can be used for modeling the system and 

extracting parameters such as half-maximal concentration, degradation constants, and maximal 

induction capacity. Additionally, this information can also be used to probe for the feedback 

mechanisms involved and their specific pathways. For example, if there is a MTORC1 

independent feedback mechanism involved in the increase of R1 after wortmannin inhibition, the 

addition of rapamycin after recovery would lead to a higher R1 value and vice versa. Future work 

can be focused on extracting system parameters to develop a predictive model using the current 

data and some additional experimentation.  
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To validate the behavior observed beyond a single clone and cell line, we tested the dynamics of 

bulk A549 and U2OS cells for rapamycin and wortmannin treatment. The overall behavior of bulk 

cells was similar to that of the single clone and consistent across cell lines. Therefore, this method 

can also be used to characterize different cell lines about the inherent basal state and their 

response to perturbations and makes measurements in unique cancer and neurodegenerative 

disease models a possibility. However, various parameters, such as the variability in the amount 

of fluorescent LC3 protein expressed in each line need to be carefully assessed before drawing 

such comparisons.  

 

We expanded our analysis to physiological conditions such as serum and glutamine starvation. 

Serum starvation transiently upregulated autophagy flux while adding back serum almost 

immediately inhibited autophagy flux, indicating, that serum inhibits autophagy. Conversely, 

glutamine starvation inhibited autophagy flux on a longer time scale indicating glutamine is 

required for autophagy. Our observations were consistent with previously reported findings 

[33,34]. However, the measurements were noisier compared to chemical perturbations. One 

important reason for this could be the significant cell to cell variability observed under these 

starvation conditions, especially glutamine starvation (data not shown). Single-cell measurements 

could alleviate these limitations and could provide interesting new findings.  

 

While our method enables novel measurements of autophagy rates, expanding its use will require 

improvements in autophagy-related tools. For example, our current approach uses fluorescent 

proteins to monitor autophagosome and autolysosome numbers and is thus limited to engineered 

cells. Performing similar experiments with live-cell organelle dyes could overcome this limitation. 

This would enable autophagy rate measurements in difficult-to-engineer cells, and open the door 
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to measurements in patient-derived cells [35,36]. Possible applications include precision medicine 

for autophagy-related diseases such as cancer and neurodegeneration [37,38]. Moreover, 

expanding such measurements to in vivo systems is vital for clinical translation [39].  

 

In conclusion, our work demonstrates quantitative measurement of rates for all three steps in the 

autophagy pathway under non-steady state conditions. This study revealed novel mechanisms of 

regulation for rapamycin induction of autophagy and differential temporal kinetics of wortmannin’s 

inhibition. In the future, these approaches could be applied to uncover mechanisms of action for 

novel autophagy-regulating compounds, develop predictive models, and characterize unique 

responses based on cellular genetic background. Moreover, integration with other live cell 

measurements would create a quantitative and holistic picture of autophagy as it connects to 

other cellular pathways. 

 

Materials and Methods 

Cell culture and media 

A549 cells (ATCC, CCL-185) and U2OS cells (ATCC, HTB-96) were used for autophagy 

experiments. HEK 293T cells (ATCC, CRL-11268) were used for lentivirus packaging. Cells were 

cultured in a humidified incubator at 37°C and 5% CO2. All cell lines were maintained in DMEM 

(Gibco, 11965118) supplemented with 8% fetal bovine serum (FBS [Gibco, 10438-026]). U2OS 

cells were also cultured with 1% penicillin-streptomycin (Gibco, 15070063). For live-cell imaging, 

A549 cells were cultured in FluoroBrite DMEM (Gibco, A1896701) supplemented with 8% FBS 

and 4 mM of GlutaMAX (Gibco, 35050061). U2OS reporter cells were cultured in the same 

imaging media along with 1% penicillin-streptomycin (Gibco, 15070063). 
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Reporter cell line construction 

The FUGW-PK-hLC3 lentivirus was used to develop A549 and U2OS reporter cell lines. Lentivirus 

was packaged in HEK 293Ts in 6-well format as previously described [40]. The harvested 

lentivirus media was stored at -80°C until further use. A549 and U2OS cells were plated overnight 

at a density of 0.1 million cells per well in a 24-well plate. The media was replaced with lentivirus-

containing media. After an hour, the lentivirus media was replaced with fresh media, and the cells 

were scaled up upon reaching confluency. For bulk populations, A549 and U2OS cells positive 

for pHluorin and mKate2 signal were sorted using a Beckman Coulter “Astrios EQ”:18-Color cell 

sorter. For clonal selection, transduced A549 cells were sorted into individual cells into a 96-well 

plate using a Beckman Coulter “Astrios EQ”:18-Color cell sorter. Each clone population was 

scaled up upon reaching confluency. A single clone population was used for most experiments to 

decrease noise arising from different integration sites. FUGW-PK-hLC3 ΔG reporter cell line was 

also developed using the same approach. FUGW-PK-hLC3 and FUGW-PK-hLC3 ΔG were gifts 

from Isei Tanida (Addgene, 61460; http://n2t.net/addgene:61460; RRID: Addgene_61460; 

Addgene, 61461; http://n2t.net/addgene:61461; RRID: Addgene_61461, respectively).  

 

Chemical treatments 

Bafilomycin A1 (Selleck Chemicals, S1413), rapamycin (Selleck Chemicals, S1039), and 

wortmannin (Selleck Chemicals, S2758) were used for treating the cells. For measuring rates, 

500 nM bafilomycin A1 was added along with a final concentration of 0.2 µg/mL Hoechst 33342 

trihydrochloride solution (Hoechst 33342 [Invitrogen, H3570]) to ensure proper mixing. All basal 

conditions were treated with DMSO (Sigma Aldrich, 472301).  

 

http://n2t.net/addgene:61460
http://n2t.net/addgene:61461
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Starvation conditions 

A549 reporter cells were stably cultured in FluoroBrite DMEM (Gibco, A1896701) supplemented 

with 8% FBS and 4 mM of GlutaMAX (Gibco, 35050061) for 12-16 h before the experiment in a 

96 well plate. Each well contained a culture volume of 100 µL. To initiate starvation conditions, 

60 µL of media were removed and 160 µL of FluoroBrite DMEM containing either containing 8% 

FBS or 4 mM GlutaMAX or neither was added to the wells. After mixing, 160 µL of the media were 

removed from the wells and an additional 60 µL of FluoroBrite DMEM containing either 8% FBS 

or 4 mM GlutaMAX or neither was added to the wells. Therefore, leading to a 12.5-fold dilution. 

For addback experiments, FBS was added back to wells to bring back the serum levels to 8%. 

The same volume of FBS starved media and full media was added to continued serum-starved 

and basal wells, respectively.  

 

Live cell microscopy 

All reporter cell lines were seeded in 96-well glass-bottom plates with #1.5 cover glass (Cellvis, 

P96-1.5H-N). A549 cells were directly plated while U2OS cells were plated after treating the 96-

well plate with collagen solution (Gibco, A1048301) to increase cell adherence. Live cell imaging 

was performed using Nikon Ti2 inverted microscope with an okolab stage top incubator to 

maintain 37°C and 5% CO2. Cells were plated at approximately 1.7 X 104 cells per well for 12-18 

h prior to performing the experiment. A total of 4-5 positions were imaged in each well at the 

indicated time using the NIS-Elements AR software. A549 reporter cell line and A549 bulk sorted 

cells for all chemical treatment experiments were imaged at 25% LED intensity and 200 ms 

exposure for GFP channel and at 30% LED intensity and 350 ms for TRITC channel images. 

U2OS reporter cells and A549 reporter clonal cell line for starvation experiments were imaged at 

35% LED intensity and 200 ms exposure for GFP channel and at 45% LED intensity and 350 ms 

for TRITC channel images. Images were acquired using CFI PLAN APO LAMBDA 40X CF160 
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Plan Apochromat Lambda 40X objective lens, N.A. 0.95, W.D. 0.17-0.25mm, F.O.V. 25mm, DIC, 

Correction collar 0.11-0.23 mm, Spring Loaded, and using Andor Zyla VSC-08688 camera.  

 

Immunofluorescence 

A549s were seeded in a 96-well glass-bottom plate. Cells were treated with either DMSO or 100 

nM rapamycin for indicated times. After treatment, 100% ice-cold methanol (Fisher Scientific, 

A412-4) was added to the cells and were incubated for 20 min at -20°C. After aspirating methanol, 

cells were rinsed thrice with 1X DPBS (Gibco, 21600069) solution for 5 min each. Following DPBS 

wash, cells were incubated with 5% goat serum (Sigma Aldrich, G9023) in 1X DPBS with 0.3% 

TritonTM X-100 (Fischer Scientific, BP151-100) for an hour. After aspirating the serum solution, 

cells were incubated with 1:600 anti-LAMP1 primary antibody solution (LAMP1 [D2D11] XP rabbit 

mAb [Cell Signaling Technology, 9091], 1X DPBS, 1% bovine serum albumin [BSA; Sigma 

Aldrich, 126609], 0.3% TritonTM X-100) overnight. After removing the primary antibody solution, 

cells were rinsed thrice with 1X DPBS solution. After rinsing, cells were incubated with secondary 

antibody solution (1:1000 goat anti-rabbit IgG H+L] Alexa flour 488 [InvitrogenTM, A-11008], 

1:5000 Hoechst 33342 in 1% BSA in 1X DPBS with 0.3% TritonTM X-100) for an hour in the dark. 

Finally, cells were washed thrice with 1X DPBS solution for 5 min each before imaging. Each 

condition at each time point had three replicates. The average number of LAMP1 positive puncta 

from the triplicates was used as one biological replicate value. The experiment was repeated four 

times independently.  

 

Immunofluorescence microscopy 

After fixation, cells were imaged using Nikon Ti2 inverted microscope. LAMP1 positive puncta 

and nuclear staining were imaged using the green channel (GFP) and blue channel (DAPI), 
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respectively. GFP images were acquired at 25% LED intensity and 200 ms exposure. DAPI 

images were acquired at 15% LED intensity and 75 ms exposure settings. Images were acquired 

using CFI PLAN APO LAMBDA 40X CF160 Plan Apochromat Lambda 40X objective lens, N.A. 

0.95, W.D. 0.17-0.25mm, F.O.V. 25mm, DIC, Correction collar 0.11-0.23 mm, Spring Loaded, 

and using Andor Zyla VSC-08688 camera.  

 

Western blot  

Cells (80,000 per well) were plated in a 12-well plate overnight. The next day, cells were treated 

with DMSO or 100 nM rapamycin for different time points. Bafilomycin A1 (500 nM) was added to 

the cells for 2 h at different timepoints for measuring LC3 accumulation. At the specific time point, 

the media in the wells was aspirated and the cells are quickly rinsed using 1X DPBS. Cells were 

then lysed with RIPA buffer (150 mM sodium chloride [NaCl; Fischer Scientific, S271], 50 mM 

Tris, pH 8 [Fischer Scientific, BP152], 1% Triton X-100 [Fisher Scientific, BP151-100], 0.1% 

sodium dodecyl sulfate [Fischer Scientific, BP166-500], 0.5% sodium deoxycholate [Sigma 

Aldrich, D6750]) containing protease inhibitors (Thermo ScientificTM, A32955). The lysed cells in 

RIPA buffer were incubated on ice for 30 min. After 30 min, the samples were centrifuged at 

16128 x g for 20 min, after which the supernatant of the samples was collected and stored at -

20°C. Sample protein content was normalized using the PierceTM BCA protein assay kit (Thermo 

ScientificTM, 23225). LDS (InvitrogenTM, NP0007) and TCEP (Thermo ScientificTM, 77720) in 4:1 

ratio was then added to the normalized samples and were heated in a thermocycler for 10 min at 

95°C. The samples were then run on an SDS gel containing 4% stacking and 15% resolving gel 

compartments. The proteins were resolved at 115 volts for 15 min initially followed by 150 volts 

for an hour. The proteins were then transferred onto methanol-activated Amersham Hybond P 

0.2 PVDF membrane (Cytiva, 10600021) at 150 volts for an hour. The membrane is then 

reactivated using methanol and quickly rinsed in distilled water. After reactivation, the membrane 
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is blocked using 5% milk in TBS-T buffer (Tris-Buffered Saline pH 7.6 [TBS; 20 mM Tris, pH 8, 

150 mM NaCl, hydrochloric acid [Sigma Aldrich, 320331] with 0.1% Tween- 20 [Fischer Scientific, 

BP337-100]) solution for an hour. The membrane slices were then incubated in their respective 

primary antibody diluted in 2.5% BSA in TBS-T solution overnight with gentle agitation. The 

antibody dilution for each antibody is as follows, 1: 1000 anti- phopho-RPS6/S6 ribosomal protein 

(Ser240/244; D68F8) rabbit mAb (Cell Signaling Technology, 5364), 1:1000 anti-RPS6/S6 

ribosomal protein (5G10) rabbit mAb (Cell Signaling Technology, 2217), 1:1000 anti- LC3B (D11) 

XP rabbit mAb (Cell Signaling Technology, 3868), and 1:1000 anti-GAPDH (14C10) rabbit mAb 

(Cell Signaling Technology, 2118). Following primary antibody incubation, the membrane was 

rinsed thrice with TBS-T solution for 5 min each. The membrane was then incubated with 1:5000 

goat anti-rabbit IgG-HRP (SouthernBiotech, 4030-05) secondary antibody in 5% Milk TBS-T 

solution. The membrane was washed twice with TBS-T followed by a TBS wash. Finally, the 

membrane was incubated with ECL western blotting substrate (Thermo ScientificTM, 32109) for 5 

min before acquiring images. Amersham Imager 600 system (GE Healthcare) was used for 

imaging.  

 

Image processing for live cell imaging  

NIS-Elements AR software was used for extracting autophagosomes and autolysosome puncta 

numbers. GFP and TRITC channel images were processed and analyzed using the General 

analysis job functionality in the NIS-Elements AR software. Both GFP and TRITC channel images 

were background corrected using the rolling ball correction method with a radius of 1.95 𝜇m. 

Following background correction, Spot Detection functionality was used for thresholding and 

detecting puncta in both channels. GFP channel images were used for estimating 

autophagosome puncta numbers as the green signal is only detected in autophagosomes. Bright-

clustered detection method in the Spot Detection tool was used for detecting circular areas in the 
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GFP channel with a typical spot diameter of 0.8 𝜇m and a minimum contrast value of 5. The 

contrast value acts as a thresholding parameter to only detect puncta whose difference between 

mean intensity inside and mean intensity outside the spot is higher than the contrast value 

provided. Similarly, for the TRITC channel, 0.8 𝜇m was used as the typical spot diameter and 7.5 

was used as the contrast value. A higher contrast value was used for detecting puncta in the 

TRITC channel because of the lower signal-to-noise ratio and thus to minimize false positive 

puncta. However, the puncta from the TRITC channel includes both autophagosomes as well as 

autolysosomes count as both have a red signal. Therefore, to extract autolysosome-only count, 

we compared the colocalization of puncta in GFP and TRITC channels using the AND binary 

operation. The number of colocalized puncta (representing autophagosomes) were then 

subtracted from the total TRITC puncta, thus providing the autolysosome count. All the other 

parameters in the spot detection tool were left as default. The puncta detection accuracy was 

confirmed through manual inspection of multiple images under various conditions (untreated, 

rapamycin and bafilomycin A1 treatment). Post analysis, the autolysosome and autophagosome 

count for each image were exported as a spreadsheet.  

 

Cellpose was used for counting cells in each image [41]. The ND2 files were converted to RGB 

tif files and the GFP channel images were used for segmenting and extracting the cell count. 

Cellpose was implemented in Python 3.7 using a custom script and 120 was used as the diameter 

input for segmenting individual cells. The segmentation accuracy was confirmed by manual 

inspection as well as by comparing with Hoechst-based nucleus count.  

 

After extracting the cell, autophagosome and autolysosome count from each position imaged in 

a well. The total number of autophagosomes and autolysosomes in all the positions imaged were 
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added and was divided by the total number of cells providing a population level autophagosome 

and autolysosome count per cell. This analysis was done using a custom script in MATLAB.  

 

Image processing for immunofluorescence microscopy 

LAMP1-positive puncta in fixed samples were estimated using spot detection tool in NIS-Elements 

AR software. A radius of 0.8 µm and a contrast value of 10 was used for detecting LAMP1-positive 

puncta. Similarly, the number of cells was estimated using the spot detection tool on the nuclear 

stain with a typical diameter of 15 µm and a contrast value of 1.5 as parameters.  

  

Data fitting and area under the curve estimation 

Curve fitting toolbox in MATLAB was used to fit the data. Custom equations were provided for 

fitting the data and the Nonlinear least squares method was used for the fit. Trapz function in 

MATLAB was used for calculating the area under the curve and a custom script was used for 

propagating the error.  

 

Statistical analysis 

At least 150-200 cells were imaged for all experiments. A minimum of three experimental 

replicates was performed for all the quantitative experiments. Independent t-test, paired t-test, 

and one-way ANOVA were used as indicated for comparing statistical significance for various 

experiments. All statistical tests were performed in Python 3.8 using the SciPy package. ANOVA 

along with Tukey post hoc test for AUC calculations was performed using a webpage 

(https://statpages.info/anova1sm.html). Box and whisker plots indicate the median value as an 

https://statpages.info/anova1sm.html
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orange line, interquartile range (IQR) as a box, and range [𝑄1 − 1.5 ∗ 𝐼𝑄𝑅, 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅] as 

whiskers.   
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Chapter 3: Image-based temporal profiling of autophagy-related phenotypes 

Introduction 

The quantitative approach to measure rates discussed in Chapter 2 holds promise for precisely 

fine-tuning autophagy flux. However, this approach is not easily scalable as it involves destructive 

sampling. It also does not take advantage of the high-dimensional nature of time-resolved live-

cell imaging experiments, in which sub-cellular features can be tracked in single-cell trajectories. 

Image-based profiling facilitates the simultaneous quantification of various morphological features 

of sub-cellular components at a single-cell level. Characterization of autophagy-related 

phenotypes using image-based profiling approaches was performed for various applications such 

as the identification of small molecule regulators and genetic modulators [1–3]. These studies 

highlight the potential of using image-based profiling for high-throughput autophagy 

characterization. However, these studies were performed at a single time point after fixing cells 

limiting our understanding of dynamic changes in autophagy phenotypes.  

 

To address these challenges, we created a pipeline to systematically characterize temporal 

changes in autophagy-related morphological phenotypes at a single-cell level. We investigated 

changes in morphological features under common small molecule autophagy modulators, 

rapamycin, and wortmannin. We examined the key morphological features that were differentially 

modulated under various treatments as a function of time. Using a random forest classifier, we 

identified the features with high importance that can be used to differentiate these treatments. 

Additionally, we identified novel phenotypes such as increased autophagosome area during 

rapamycin treatment using this approach.  We also used a rudimentary approach to test the 

possibility of characterizing autophagy regulation based on morphological features. The inclusion 

of features from various time points after treatment efficiently captured autophagy modulation. 
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Moreover, we observed that the inclusion of morphological features better-captured autophagy 

modulation compared to just monitoring autophagy vesicle numbers. This study serves as proof 

of concept for using image-based profiling to characterize autophagy temporally, which can reveal 

fundamental insights into autophagy phenotypes and facilitate high-throughput drug 

characterization.   

 

Results 

Experimental setup and image-based profiling pipeline.  

We reanalyzed the images to quantity the morphological features that were previously collected 

[8]. pHluorin-mkate2-LC3 system was used to track autophagosomes and autolysosomes in real-

time (Fig 3-1A).  An illustrative image of the change in morphology after treatment with small 

molecule drugs is shown in Figure 3-1B. Individual autophagosomes (red spots in the pHluorin 

channel) and autolysosomes (cyan spots in the mKate2 channel) are quantified using the spot 

detection tool (Fig 3-1C). Cellpose was used to segment single cells and generate single-cell 

masks which were then used to track cells over time using the bTrack algorithm [4,5] (Fig 3-1D). 

The entire pipeline is shown in Figure B-1.  Along with autophagosome and autolysosome 

numbers, three main morphological properties were quantified at a single-cell level.  Namely, 1) 

Structural features describing features such as area, major axis length, and Zernike moments [6], 

2) Intensity-based features such as mean intensity and minimum intensity, and 3) Texture 

features quantified using haralick features [7]. These morphological features were quantified for 

three biological entities- a whole cell level (Cell), autophagosomes (AP), and autolysosomes (AL). 

Approximately 900 features were quantified at a single-cell level for the entire time course of the 

experiment.  
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Temporal profiling of morphological features during small molecule treatment 

We characterized morphological changes in cells treated with high concentrations of rapamycin 

and wortmannin. We previously observed that rapamycin and wortmannin have an opposing 

effects on autophagy [8]. Rapamycin increased the overall autophagy flux while wortmannin 

decreased the autophagy for 15 hours when we quantified individual autophagy rates. We 

identified the features that varied significantly compared to untreated at each time point for both 

treatments. All features with a median modified Z score of 0.5 and above with an adjusted P-value 

of lower than 0.05 were considered significant.  A representative analysis is shown at 0.5 hours 

after treatment with wortmannin and rapamycin (Fig 3-2A-B). A median value of 0.5 was chosen 

as a threshold to avoid the inclusion of any noisy false positive features. An identical analysis was 

performed on the same cells before treatment to confirm that a threshold of 0.5 removes any false 

positive features (Fig B-2A-B).    
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Figure 3-1. Experimental and image analysis pipeline to quantify autophagy-related phenotypes. (A) The 

autophagy pathway and pHluorin-mKate2 were the fluorescent markers used for tracking autophagosomes 

and autolysosomes. (B) Representative images of change in morphology of cells after treatment with 100 

nM rapamycin and 10 µM Wortmannin for 6 hours. The scale bar represents 10 µm. (C) Representative 

images of spot detection tool for detecting autophagosomes and autolysosomes. Scale bar represents 10 

µm. (D) Representative image of segmented cell mask used for tracking individual cells. (E) Three main 

categories of morphological features were extracted at a cellular level as well as an autophagy vesicle level.   
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We next analyzed the number of features that varied significantly as a function of time. A high 

number of features varied immediately (30 minutes) after treatment with rapamycin and 

wortmannin (Fig 3-2C-D). This was expected, given the immediate impact of these drugs on cells. 

We observed a decrease in the number of features after 30 minutes until about 3 hours for 

wortmannin treatment which stabilized until 6.5 hours. Interestingly, morphological features for 

rapamycin treatment recovered more drastically after the initial response for 6 hours compared to 

wortmannin treatment.  After 6-7 hours, we observed an increase in the differential features for 

both treatments. Wortmannin-treated cells remarkably showed few variable features after ~12 

hours, indicating that they have returned to the basal state which was consistent with rate 

measurements made previously [8]. Conversely, rapamycin-treated cells maintained a high 

number of differential features until 15 hours. Interestingly, autophagic rate dynamics did not 

necessarily correlate with feature dynamics, since previous measurements demonstrated that 

rapamycin-treated cells returned to their basal rates [8] even though features remained altered. 

The sustained morphological changes could indicate that rapamycin is still active and has an 

impact on cells even though the cells reached a new steady state that is equal to the basal rates. 

Furthermore, these results signify the importance of characterizing autophagy dynamically to gain 

a complete understanding of the perturbation.  

 

We next set out to understand the kind of features that were altered. We grouped the features 

based on two classifications, biological entities, and morphology.  Features categorized based on 

biological entities were divided into cellular (Cell), autophagosomes (AP), and autolysosomes 

(AL) features. Features based on morphology were classified into intensity, texture, and structure. 

After separating the variable features into their specific category and timepoint, highly correlated 

features (except one) were removed to account for redundancy and then normalized to the 

highest number of features in the respective category to account for the uneven number of 
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features in each group. This provides insights into the categories that are mainly affected by the 

treatment.  

 

Wortmannin treatment largely affected cellular and autophagosome features over 15 hours (Fig 

3-2E). Cellular features were impacted the most for the first 7 hours, after which there was 

diminishing variability in cellular morphology compared to basal until 15 hours. Interestingly, the 

majority of the autophagosome features vary between 7-12 hours. Conversely, rapamycin 

primarily impacted autophagosome features initially compared to cellular and autolysosome 

features (Fig 3-2F). We observed a sharp decrease in autophagosome features until ~4 hours. 

After 6 hours of rapamycin treatment, the increase in variable features is primarily driven by 

cellular features and stabilized by 15 hours. Furthermore, we examined the change in 

morphological features as a function of time for both treatments (Fig 3-2G-H). Autophagosome 

and autolysosome numbers were excluded from this analysis as they are only two biological 

features that do not fit into any category. Intensity features were impacted at all time points after 

treatment with wortmannin (Fig 3-2G). Several texture features differ uniformly until ~9 hours 

followed by a decrease in the variability. Variability in structural features peaked between 7-10 

hours, which coincides with the peak in differential autophagosome features (Fig 3-2G). 

Conversely, rapamycin affects structural features initially which also coincides with the differential 

autophagosome features (Fig 3-2H). After 4-4.5 hours, we observed an increase in the intensity 

features which stabilizes by 15 hours. Texture features are mainly impacted at later time points 

(9- 15 hours) for rapamycin treatment. The minimal effect on autolysosomes was not surprising 

as both treatments majorly impact upstream autophagosome formation.  
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Figure 3-2. Temporal change in morphological features after rapamycin and wortmannin treatment. 
Volcano plot of cellular features after 30 minutes of treatment with (A) 10 µM wortmannin and (B) 100 nM 

rapamycin. Cellular features that varied significantly as a function of time for (C) 10 µM wortmannin and (D) 

100 nM rapamycin.  Cumulative ratio of features of biological entities that varied significantly as a function 

of time after treatment with (E) 10 µM wortmannin and (F) 100 nM rapamycin, respectively.  Cumulative 

ratio of morphological features that varied significantly as a function of time after treatment with (G) 10 µM 

wortmannin and (H) 100 nM rapamycin. (I) UMAP of cells treated with DMSO, 100 nM rapamycin, and 10 

µM Wortmannin at different time points. UMAP parameters used were neighbors= 250 and mindist=0.90. 

A minimum of 300 cells were analyzed for each condition. Features that changed significantly and have a 

median difference of 0.5 with basal were used for generating the UMAPs. 
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Using dimensionality reduction on all differentially regulated features, we visualized a single cell 

landscape for basal, wortmannin, and rapamycin treatment at multiple time points (Fig 3-2I). 

There is no distinction between the three treatments at 0 hours, indicating that the cells are 

indistinguishable before treatment. Immediately after treatment at 30 minutes, we observed a 

major shift in the clustering of wortmannin and rapamycin-treated cells from basal. Wortmannin 

caused a more drastic shift at all time points before 12 hours compared to rapamycin. But after 

12 hours, the wortmannin-treated cells cluster together with untreated cells which is consistent 

with the decrease in the differential features at later time points (Fig 3-2C). Conversely, 

rapamycin-treated cells start to segregate again from basal cells beginning at 12 hours and are 

noticeable at 15 hours. In conclusion, wortmannin impacts cellular morphology reversibly for 15 

hours while rapamycin causes a mild but persistent change in morphological features.  

 

Feature importance in classifying rapamycin and wortmannin treatment using random 

forest classifier.  

Identifying governing features of autophagy response to one drug versus another could be a 

powerful tool for dissection of drug mechanism of action and discovery of new phenotypes. 

Toward this end, we constructed a random forest model to identify the primary feature set that 

could be used to differentiate rapamycin and wortmannin treatment from basal and from each 

other. We aggregated features that changed significantly after the treatment from all time points 

at a single cell level. We removed features that are linearly correlated with a Pearson correlation 

of 0.75 and above except the first feature. We used a lower Pearson correlation threshold of 0.75 

to remove correlated features as collinearity can considerably affect the feature importance 

interpretation [9]. Random forest model accuracy was measured using a 5-fold cross-validation 

method. To elaborate, data were split into 5 folds, where 4 folds were used for training while the 

remaining fold was used for testing the accuracy of the prediction. We iteratively performed this 
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step 5 times and calculated the average and standard deviation of the micro F1 score. The model 

achieved a F1 score of 0.89 + 0.033 or 89% + 3.3%. A representative confusion matrix is shown 

in Figure 3-3A. This random forest classifier was then examined to comprehend the importance 

associated with each feature in differentiating the treatments using Shapely Additive Explanations 

(SHAP) values [10]. The importance of each feature is equal to the mean absolute SHAP values 

for each observation. A higher importance value represents a stronger influence in classifying the 

treatments. The features were grouped based on the biological object and the morphological 

feature as discussed earlier. Autophagosome and autolysosome numbers were categorized as 

vesicle numbers. The feature importance for each group was measured using cumulative 

importance as well as average importance. Feature importance for each group in classifying 

wortmannin and rapamycin treatments are shown in Figure 3-3B-C, respectively. 

Autophagosome texture and structure have a high cumulative importance for both treatments. 

However, it’s important to note that these groups contain the major fraction of the features which 

could contribute to the overall high cumulative value. Vesicle numbers and Cell/Intensity features 

have a low number of uncorrelated features but contribute majorly towards the classification 

represented by the average importance. For wortmannin, the Cell/Intensity group has the highest 

average importance and a higher magnitude compared to other groups, indicating that these 

features are important in identifying wortmannin treatment (Fig 3-3B). For rapamycin treatment, 

vesicle numbers and Cell/Intensity groups have the highest average importance. Nevertheless, 

groups such as the AP/Texture also contribute considerably towards the prediction (Fig 3-3C). 

This indicates the rapamycin classification relies on multiple features and is not dominated by a 

single feature or group.   

 

We next analyzed the top 15 individual features that have the highest feature importance value 

in classifying the cells into the three treatments (Fig 3-3D). The mean intensity of the cell after 

0.5 hours is the top feature that contributes towards the differentiation of wortmannin and basal 
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conditions. The texture of autophagosomes represented by contrast_mean measurement is also 

a key feature in differentiating wortmannin from basal. Initial autophagosome number and 

autophagosome structural features such as maximum autophagosome area (max_AP_area) and 

maximum autophagosome Zernike moment_10 contribute heavily towards the classification of 

rapamycin treatment.  

 

We generated a 2-dimensional representation of the cellular landscape to understand the impact 

of these treatment on the features with high importance as a function of time (Fig 3-3E). This 

UMAP for all cells was created using variable features from all time points and a clear segregation 

of cells based on the treatment can be observed. We visualized mean intensity, autophagosome 

number, minimum_AP_contrast mean, and max_AP_area for understanding relative change in 

these features based on treatment and time (Fig 3-3F). The mean intensity of the wortmannin-

treated cells showed a strong increase after 30 minutes and then decreased over time. The initial 

increase in mean intensity occurred from reduced clearance of fluorescent LC3 molecules, and 

as the autophagy rates increase over time, the accumulated LC3 molecules are degraded. On 

the contrary, rapamycin does not affect mean intensity initially. However, over time we observed 

a decrease due to the degradation of LC3 molecules. Wortmannin and rapamycin have opposite 

effects on initial autophagosome numbers. The feature min_AP_contrast_mean, which was a 

strong indicator of wortmannin treatment, was increased for a major fraction of cells. The 

max_AP_area feature increased after rapamycin treatment, indicating that bigger 

autophagosomes are formed after rapamycin treatment, which was confirmed using manual 

inspection. This analysis helped uncover phenotypes that were previously unknown and 

illustrated the features that can be used for classifying treatments based on morphological 

properties. Moreover, we also observed heterogeneity in response to certain features based on 

the treatment. For example, 30 minutes after wortmannin treatment caused a small portion of 
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cells to have an opposite response compared to the rest for min_AP_contrast_mean and 

max_AP_area features. This could be an interesting direction to investigate in the future.  

 

Temporal morphological profiling accurately predicts the dynamic change in autophagy 

modulation.  

We subsequently assessed the predictive value of temporal morphological profiling for 

characterizing autophagy perturbation and biologically-relevant flux measurements. We used 

wortmannin and rapamycin treatments as the test case as we characterized this system in detail 

in our previous study [8]. We tested 6 different conditions – 10 µM Wortmannin (10-W), 1 µM 

Wortmannin(1-W), 100 nM rapamycin (Rapa), 10 µM Wortmannin with rapamycin (10-WR), and 

1 µM Wortmannin with rapamycin (1-WR). Based on our previous autophagy rate measurements, 

we concluded that rapamycin increases the overall cargo degradation over 15 hours, while 

wortmannin inhibits cargo degradation. Wortmannin with rapamycin combination initially behaves 

like wortmannin but induces cargo degradation at later time points. The extent to which cargo 

degradation is inhibited using wortmannin was dependent on the concentration of wortmannin 

used.  
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Figure 3-3. Differentiating rapamycin and wortmannin treatment and governing features.(A) Confusion 

matrix to visualize the performance of the random forest model. A minimum of 70 cells for each condition 

were used for testing the accuracy of the model. (B-C) After grouping the features based on biological entity 

and morphological type, the average and cumulative feature importance were calculated for 10 µM 

wortmannin and 100 nM rapamycin, respectively. (D) The top 15 features with the highest cumulative 

feature importance for all conditions. (E) UMAP of individual cells constructed using variable features from 

all time points. UMAP parameters used were neighbors= 250 and mindist=0.90 (F) Change in feature 

values at a single cell level as a function of time after treatment with 100 nM rapamycin and 10 µM 

wortmannin.  
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We then examined if image-based temporal profiling can accurately capture such complex 

temporal changes in the autophagy state without the need of measuring autophagy rates using 

lysosomal inhibitors. To compare the performance, we used the number of autophagosomes and 

autolysosome temporal data which is traditionally analyzed for estimating autophagy. This would 

allow us to evaluate the significance of measuring additional morphological features for 

determining the autophagy state. A very simple profile similarity approach was used for assessing 

the performance. We first aggregated all the features that varied significantly from basal for all 

conditions at all time points. In parallel, we used just the number of the autophagosome, and 

autolysosome features from all time points for comparison. We then performed principal 

component analysis (PCA) to remove redundancy and performed hierarchical clustering on 

median profiles. The workflow is shown in Figure B-3. Associations identified based on 

morphological features were different compared to associations identified just based on 

autophagosome and autolysosome vesicle dynamics (Fig 3-4A-B). We compared the profile 

similarity between drug treatments to quantitatively assess the accuracy of using either of these 

measurements in capture biologically relevant changes in the autophagy state (Fig 3-4C-D). We 

used rapamycin as our reference treatment to which all other conditions were compared since it 

had a unidirectional highest induction effect on autophagy. Treatments that affect morphological 

profiles of cells similar to rapamycin would have a high correlation and vice versa ranging between 

-1 to 1. We then used the overall cargo degraded for each treatment measured previously as our 

measurement for overall autophagy perturbed [8]. Overall cargo degraded was used as the 

standard because it is a single measurement that captures the change in autophagy state 

temporally. Cargo degraded for each treatment is normalized with cargo degraded during 

rapamycin treatment (normalized cargo degradation score). Normalizing with rapamycin 

linearizes the cargo degradation score and bounds the range between 0 and 1. If the treatment 

affects cargo degradation comparable to rapamycin, the normalized cargo degradation score 

would be closer to one while higher cargo degradation much lower than rapamycin would lead to 



 

79 
 

a value closer to zero. We then compared the fit between profile similarity measured by correlation 

based on image features or just autophagy vesicle numbers to the normalized cargo degradation 

score (Fig 3-4E). We observed a better fit between normalized cargo degradation score and 

profile similarity measured using image features (R2= 0.8787) compared to profile similarity 

measured using just autophagy vesicle count (R2= 0.6454). Indicating morphological features 

capture the overall perturbation to the autophagy system more accurately than just measuring 

autophagosome and autolysosome dynamics. Although simple, this analysis shows the potential 

of using image-based temporal profiling to accurately evaluate changes in the autophagy state 

during modulation.   
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Figure 3-4. Comparing performance accuracy of characterizing autophagy modulation using morphological 

features vs just autophagy vesicle dynamics. (A) Hierarchical clustering of median profiles after principal 

components analysis (PCA) based on temporal image features. Color bar for heatmap represents median 

principal component (PC) values. (B) Hierarchical clustering based on of median profiles after PCA based 

on just temporal vesicle numbers. Color bar for heatmap represents median principal component (PC) 

values. (C) Pearson correlation between profiles based on temporal image features. (D) Pearson correlation 
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between profiles based on just temporal vesicle numbers. (E) Correlation between profile similarity and 

normalized cargo degradation score. Abbreviations represent- 10 µM Wortmannin (10-W), 1 µM 

Wortmannin (1-W), 100 nM rapamycin (Rapa), 10 µM Wortmannin with rapamycin (10-WR), and 1 µM 

Wortmannin with rapamycin (1-WR). 

 

Discussion 

 

Autophagy is a highly dynamic cellular process that is involved in many diseases. High throughput 

characterization of autophagy would not only accelerate the screening of new drugs but would 

enable understanding of the fundamental mechanisms involved. Image-based morphological 

profiling offers a comprehensive and high-throughput approach for characterizing cellular 

phenotypes and perturbations. 

 

The dynamic nature and the inclusion of multiple steps in the pathway make measuring autophagy 

challenging. Methods developed previously can accurately measure each autophagy step with 

high sensitivity [8,11]. However, these methods rely on lysosomal inhibitors such as bafilomycin 

A1 to the cells to inhibit autophagosome or autolysosome clearance to make these observations. 

This perturbs the sample irreversibly and necessitates the requirement of a new sample for 

measuring the autophagy state at the next time point limiting the scalability. We have performed 

a proof-of-concept analysis that indicates temporal profiling of morphology can precisely 

represent the change in autophagy levels.  Such approaches will allow high-throughput 

characterization of perturbations that would allow the screening of drugs and identification of 

molecular mechanisms. Profile correlation between standard drug (here rapamycin) and the 

untreated can be used to determine the threshold in identifying the nature of perturbation. For 

example, we found a correlation of 0.53 between rapamycin and basal profiles. Therefore, 0.53 

can be used as a threshold and any treatment with a higher correlation would represent an 
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autophagy inducer and vice versa. Validating the most promising hits using traditional methods 

would provide additional confirmation.  

 

Destructive sampling at each time point to probe for the autophagy rates also limits our capability 

in associating a certain phenotype with the temporal change in the autophagy state at a single 

cell level. For example, autophagy parameters that govern autophagy-dependent cell death after 

certain perturbations are not fully understood. This might require monitoring various autophagy 

parameters such as the change of different rates over time until cell death to derive a correlation 

between autophagy and cell death which cannot be achieved by using lysosomal inhibitors. 

Image-based profiling could address these issues by assessing the autophagy state without 

perturbing the cells. Training models based on morphological profiles and rates to predict rates 

of autophagy steps as a function of morphological features and time could overcome such 

challenges.  

 

Comparing the performance of pathway-specific phenotypic characterization to pathway-agnostic 

phenotypic characterization for drug screening is another interesting route for analysis. To 

elaborate, autophagy-related phenotypic characterization performed here is a pathway-specific 

phenotypic characterization approach while assays such as Cell Painting are pathway agnostic 

[12]. Assays such as Cell Painting offer an unbiased and comprehensive measurement of cellular 

phenotypes. Such holistic measurements can capture any off-target effects that the drug might 

have which can be overlooked if a specific pathway is monitored and targeted alone. Conversely, 

Cell Painting is limited by the temporal resolution it can achieve which might be important for 

biological processes that are highly dynamic such as autophagy. Therefore, studies comparing 
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the performance of either method would be useful in understanding the optimal approach for 

characterizing perturbations.  

 

In this study, we focused on characterizing morphological phenotypes at a bulk level and did not 

fully leverage the benefits of the single-cell temporal resolution. We observed heterogeneity in 

multiple features and time points for both rapamycin and wortmannin treatments.  Identifying 

features correlated to the heterogeneity could reveal novel insights. Coupling this of analysis with 

biosensors can also elucidate biological mechanisms involved in heterogeneity. 

 

Monitoring cargo sequestered such as mitochondria along with autophagy vesicles can provide 

additional information about the change in morphology of the autophagy vesicles based on cargo 

sequestered. Identifying morphological markers of autophagy vesicles that correlate with cargo 

sequestered could lead to the identification of various cargo sequestered by just profiling 

autophagy vesicles without the need of tagging each cargo.  In conclusion, image-based profiling 

of autophagy is an exciting route that can be explored in various directions which can improve 

fundamental understanding of the autophagy pathway as well as expedite drug screening for 

various disease indications.    
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Materials and Methods 

 

Cell culture, Chemical treatments, and Live cell imaging 

Cell culture, generation of the A549-pHluroin-mKate2 reporter cell line, image acquisition for live 

cell imaging, and chemical treatments using rapamycin, wortmannin, and DMSO were previously 

discussed [8]. Three individual replicates were performed for collecting data for rapamycin and 

wortmannin experiments. Third replicate consisted of technical duplicates.  

 

Image analysis, feature extraction and interpretation 

Cell masks were generated using the Cellpose algorithm [4]. A custom-trained model was used 

for extracting cell masks [Available on GitHub]. Individual cells were tracked using the cell masks 

and bTrack algorithm [5]. Custom-optimized parameters were used as input for btrack [Available 

on GitHub]. Cell tracking efficiency was confirmed manually for various independent experiments. 

An example track series is available on GitHub. After the division of a cell, one of the daughter 

cells continues to have a parent ID and these cells were followed for the entire time course. The 

other daughter's cell information is discarded. This leads to the loss of immense data and could 

be improved in the future.   

 

Puncta mask for autophagosomes and autolysosomes are created using a spot detection tool in 

NIS elements software. Spot detection in different channels was previously elaborated[8]. The 

main changes to this protocol were 1) the Contrast value for detecting puncta in the TRITC 

channel was changed to 6. 2) The detected spots were further dilated using Grow Bright regions 

to Intensity operation to capture different sizes of puncta. 3) Puncta present in GFP and TRITC 

channels were detected using BOTH= TRITC HAVING (TRITC AND GFP) binary operation. 4) 
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Only red puncta (autolysosomes) were detected using TRITC SUB BOTH. The general analysis 

file is available on GitHub. The accuracy of the masks was confirmed manually for cells under 

various treatment conditions. The total cell count detected using cell masks was also compared 

to cell count based on nucleus count Hoechst staining. The puncta masks are then subject to the 

watershed algorithm to differentiate conjoined adjacent puncta. The raw images, cell masks, and 

puncta masks of cells that are fully tracked are then used for extracting features.  

 

Feature were extracted for three biological entities- Cell as whole, Autophagosome (AP) and 

autolysosomes (AL).  GFP channel images were used for extracting AP and cellular features. For 

AL, TRITC channel images were used for extracting morphological features. GFP channel images 

have better signal to noise ratio compared to TRTIC, hence used for extracting cellular features. 

Cell, AP and AL masks generated as described above were used for feature extraction. 

Regionprops from skimage.measure was used for extracting some of the features[13]. The mean 

and range of all 14 Haralick texture features calculated in all directions were included as features. 

25 Zernike moments were calculated using 0.5*major_axis_length of the object as radius. 

Hararlick features and Zernike moments were estimated using  Mahotas package [14]. After 

calculating features for each vesicle, descriptive statistics of each feature for all the vesicles in an 

individual cell were calculated. The descriptive statistics include mean, median (50%), lower 

quartile (25%), upper quartile (75%), maximum value(max), and minimum value(min).  AP and AL 

features have their specific prefix before the feature and the prefix before AP/AL refers to the 

descriptive statistic of that feature. For example, mean_AP_area refers to the mean AP area of 

the all the AP in that specific cell. The list of 949 features extracted along with their respective 

categorization as biological entity and morphological type for each feature is available on GitHub.  
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Data preprocessing and standardization 

Features containing NAN values were removed. Each individual feature for each cell was 

centralized using the median value of DMSO-treated cells (median (XDMSO)) and divided by 1.2532 

times the mean absolute deviation (mad (XDMSO)) of that feature from the respective plate 

(equation is shown below). 1.2532 times the mean absolute deviation (mad (XDMSO)) is 

approximately equal to the standard deviation [15]. This approach was used to account for the 

batch effects between experiments.       

Xs =
X − median(XDMSO)

1.2532 ∗ mad(XDMSO)
 

 

Random forest classification and feature importance 

Features that vary significantly after adding rapamycin and wortmannin at all time points were 

combined at a single cell level.  Features with a correlation of 0.75 and above with other features 

were removed to reduce redundancy and minimize multicollinearity. RandomForestClassifier 

algorithm from sklrean.ensemble was used as the model . The dataset was split into 5-folds. 4 

folds were used for training the algorithm while the extra fold was used for testing the accuracy of 

the model using the micro F1 score. 1000 trees were used as the random forest model, entropy 

as the criterion, and other hyperparameters are left as default. F1 micro score package from 

sklearn.metrics was used for calculating the F1 score [16].  A minimum of 70 cells were used for 

testing the accuracy of the model. Shapley Additive exPlanations (SHAP) method was used to 

interpret the feature importance from the classifier [10]. In short, SHAP assigns feature 

importance value for each feature by considering all possible combinations of features and the 

contribution of an individual feature to the final prediction. This was employed using SHAP 

package in Python.  
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Statistical analysis 

Mann- Whitney U statistical test was used for estimating the statistical significance of each feature 

between untreated and treated cells. Benjamin-Hochberg method was used for false discovery 

rate correction. All features with an adjusted p-value lower than 0.05 were considered significant.  

 

Data availability 

The analyzed data is available on GitHub. Raw image data is available upon request.  

 

Code availability 

All codes for feature extraction, preprocessing, and analysis are available on 

https://github.com/shahlab247/ATG_morphological_profiling  
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Chapter 4: Implications and Future work 

 

The lack of methods to characterize autophagy quantitatively and comprehensively is a major 

bottleneck in gaining a fundamental understanding of biology as well as in developing 

applications. Chapter -2 and Chapter 3 delve into novel approaches for characterizing autophagy 

dynamically with high sensitivity and resolution. Chapter 2 highlighted the importance of 

measuring individual autophagy steps dynamically to gain a comprehensive understanding of the 

system and the perturbation targeting autophagy. While in Chapter 3, we tested the potential of 

using image-based temporal profiling for characterizing autophagy. In this chapter, we discuss 

the utilization of these methods to tackle some of the unaddressed challenges and propose 

conceptual ideas for future work. These studies can provide novel insights into fundamental 

biological questions, enable precise autophagy modulation, and accelerate drug screening.  

 

What are the autophagy system parameters governing homeostasis or cell 

death? 

Autophagy is pivotal in maintaining homeostasis and is heavily linked to cell death which can be 

utilized to maximize therapeutic benefit [1,2]. Especially in cancer, the complex interplay between 

autophagy, homeostasis, and cell death affects tumorigenesis. Therefore, understanding the role 

of autophagy parameters that govern these processes is critical.  Here, we provide a list of 

questions that can elucidate the role of autophagy in cancer systematically.  

1) What are the basal and optimal levels of autophagy activity (Fig 4-1A)? 

2) How does the basal level of autophagy change in diseased cells and what is the influence of 

microenvironmental conditions such as amino acid starvation (Fig 4-1B)? 

3) Can the homeostasis levels change due to a higher metabolic burden, making the diseased 

cells more sensitive to small perturbations (Fig 4-1C)?  
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4) Could the same diseased cell be driven to cell death by inhibiting as well as inducing 

autophagy but with different thresholds? An example illustration is shown in Figure 4-1B 

where the altered basal activity is closer to the lower threshold and therefore inhibiting could 

be a better strategy. 

 

These questions remained far from reach because of a lack of quantitative, sensitive, and 

comprehensive. We briefly discuss experimental setups to tackle these questions using 

autophagy measurements discussed in previous chapters. First and foremost, establishing 

morphological profiles and basal rates for various mutants under normal and starvation conditions 

would act as a great resource to understand the change in basal state as a function of 

microenvironmental conditions. Combined with drug perturbations, these measurements can 

elucidate the fundamental mechanism involved and the responsiveness to therapeutic 

intervention based on genetic background and starvation conditions. Thus, aiding the 

development of therapies tailored to the genetic and microenvironmental makeup of the tumor.  

 

Determining homeostatic levels requires extending autophagy limits in either direction of basal 

activity using modulators.  However, it’s important to remember, the phenotypic response is highly 

context-dependent and can vary based on the metabolic state and the pathway targeted [3]. 

Moreover, most small molecule drugs have off-target effects which could convolute the 

interpretation of the data. For example, the response to the same level of inhibition of autophagy 

through a Class III PI3K inhibitor can be different from a ULK1 inhibitor. Therefore, it is crucial to 

account for the pathway that is targeted along with the amount of autophagy perturbed. 

Optogenetic-based tools could partially overcome these challenges by allowing better specificity, 

precision, and reversibility [4]. Moreover, measuring key regulatory signaling nodes such as 

mTORC1, AMPK, Akt, and ULK1 simultaneously along with autophagy at a single cell level can 
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elucidate the decision-making process of the cell and the heterogeneity in response. This can be 

achieved by using biosensors and time-lapse imaging experiments [5]. 

 
Figure 4-1: Variability in basal and homeostasis levels of autophagy. (A) Basal homeostasis. (B) Mutant 

cell population with altered basal but same homeostasis levels as healthy cells. (C) Mutant cell population 

with altered basal and altered homeostasis levels compared to healthy population.  

 

It is also critical to understand the specific autophagy parameter governing a phenotype. For 

instance, if autophagy induction leads to cell death, probing the relationship between cell death 

and various parameters such as rate of induction and cargo degradation can provide fundamental 

insights. Performing such analysis need perturbations that can modulate specific characteristic of 

autophagy while keeping the other parameters constant. Rapamycin behavior observed in 

chapter 2 acts as one such example where we found a variable rate of induction as a function of 

time. Therefore, rapamycin can be used to identify the correlation between the phenotype and 

altered rate of change of autophagy. However, the number of well-characterized perturbations is 

limited and the need for such measurements is underlined. Identifying autophagy-related 

morphological signatures of cells before undergoing cell death can provide biomarkers for early 

detection and diagnosis of disease.  In conclusion, systematic and sensitive measurements can 

reveal governing autophagy parameters related to homeostasis and cell death and enable 

modulation with precise control. Here we focused on cell death, but similar ideas can be applied 

to any phenotype of interest. 



 

93 
 

What is getting sequestered/ degraded and is it dynamic? 

Selective cargo degradation is an important aspect of the autophagy pathway [6]. However, little 

work is done in characterizing the change in selective cargo captured and degraded under 

different perturbation conditions. The tools discussed in previous chapters are focused on 

characterizing all autophagy vesicles carrying various kinds of cargo. Similar tools can be 

extended for monitoring selective cargo along with autophagy vesicles. A simple but powerful 

study is understanding the specific cargo degraded under various perturbations. Simultaneously 

imaging of cargo of interest such as mitochondria and autophagy vesicles could facilitate the 

quantification of system parameters such as the fraction of specific cargo degraded at basal and 

under perturbation (Fig 4-2). It’s important to note that the colocalization of cargo and autophagy 

vesicles does not automatically imply cargo degradation and the flow through the pathway needs 

to be confirmed using the rate measurements discussed in earlier chapters. Moreover, identifying 

the correlation between changes in autophagy vesicle morphology as a function of the kind of 

cargo sequestered would eventually allow the identification of the cargo sequestered without 

tagging the cargo using image-based profiling and predictive machine learning models.  

 

Another aspect of cargo degradation that’s interesting to investigate is whether the specific cargo 

degradation is dynamic or relatively uniform after a perturbation. As discussed in Chapter 1, many 

dynamic biological perturbations such as viruses exploit temporal and selective degradation of 

specific cargo. Measuring autophagy vesicles and cargo sequestered during virus replication 

dynamically can provide insights into the specific role of each cargo and its influence on virus 

replication. For example, lipophagy can be upregulated to provide ATP for virus replication but 

simultaneously reticulophagy could be inhibited as it’s the primary site of flavivirus replication as 

discussed in Chapter 1.  It is also important to remember that these processes are executed with 

high temporal accuracy. Therefore, measuring selective autophagy temporally during virus 
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infection could clear some of the ambiguity associated. Such information would enable the 

development of anti-viral therapies targeted toward the host. A limitation of such kind of analysis 

is the limited availability of non-overlapping fluorophores to simultaneously image multiple 

cargoes as well as autophagy vesicles using live cell imaging. Multiplexed immunofluorescence 

staining can overcome such limitations at the expense of single-cell temporal resolution.  

 
Figure 4-2:  Quantification of selective autophagy can provide novel fundamental insights.  

 

Can temporal resolution discern molecular components of the autophagy 

pathway? 

Although significant progress has been made to understand molecular components involved in 

autophagy, there is still much that is not known [7,8]. The ability to capture changes on small-time 

resolution and to retain temporal information at a single cell level is a big advantage of the 

approaches discussed in chapter-2 and 3. Combining genetic perturbation with single-cell 

measurements with high temporal resolution can accelerate our understanding of the molecular 

components involved in the pathway. For instance, in Chapter 2 we have shown a delay in the 

increase in R2 and R3 after treatment with rapamycin even though the number of lysosomes 

remains constant. We hypothesized that there are other molecular components involved that are 

responsible for the delay. To uncover such molecular components involved in the fusion of 

autophagosome and autolysosome, the delay in the increase of fusion and acidification rates can 

be measured after downregulating various genes. An increase in delay after down-regulation 
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could indicate that the specific gene/protein is involved in the fusion step and vice versa (Fig 4-

3). Coupling these approaches with methods such as optical pooled screening will increase the 

throughput of such experiments [9]. A recent study has highlighted the use of optical pooled 

screening and live cell imaging to confirm genes involved in the mitotic division by measuring the 

change in the duration of the division process [10]. Similar approaches can be applied to 

understand the machinery involved in autophagosome formation by measuring the timescale of 

response after genetic perturbation.  

 
Figure 4-3: Conceptual representation of combining genetic perturbation and temporal measurements to 
reveal molecular components.  

 

Scope for improvement 

Integrating rates and image-based profiling measurements 

Rate measurements discussed in Chapter 2 did not account for the change in morphology of the 

vesicles in the cells.  Morphological features such as the size of the vesicles could play a key role 

in estimating the amount of cargo degraded along with the number. For instance, can 

perturbations increase the flux by increasing the amount sequestered in each vesicle instead of 

the number of vesicles or vice-versa? Therefore, incorporating morphological features such as 

size into the rate/cargo degradation measurements can be useful. Rates measurements are also 
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limited by the throughput which is pivotal for the screening drugs targeting autophagy. Both these 

challenges can be addressed by image-based profiling approaches discussed in Chapter 3  

 

Although image-based profiling offers a high throughput and comprehensive characterization of 

autophagy phenotypes, direct measurement of individual steps of autophagy is not feasible, yet. 

This is important to understand the kinetics of the pathway, time scales of perturbation and 

feedback, and develop a correlation between autophagy steps or a parameter to a phenotype. 

Nevertheless, from chapter 3 we highlighted the potential of using morphological profiles to 

accurately differentiate and characterize autophagy activity. A similar principle can be used to 

develop predictive models to estimate autophagy rates based on the morphological profiles, time, 

and treatment.  Therefore, combining morphological features with rate measurements would 

enable high-throughput characterization of the autophagy system without losing rate information 

about the individual steps.   

Concluding remarks 

The importance of autophagy in biomedicine is growing rapidly, but the lack of quantitative, 

sensitive, and dynamic measurements hinders the development of precise therapies and a full 

understanding of the process. In this dissertation, we proposed two new temporal methods to 

characterize autophagy and address these challenges. Quantitative and temporal rate 

measurements allow precise evaluation of individual rates of autophagy pathway temporally. 

Temporal image- based profiling approach facilitates the quantification of a various autophagy-

related phenotypes at a single-cell level which can then be used to estimate the change in 

autophagy state accurately. Together, these approaches can facilitate high-throughput and 

precise measurement of autophagy. This work will accelerate drug discovery process and unravel 

new fundamental biological insights.   
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Appendix A: Supplemental information for quantitative and temporal 

measurement of autophagy rates 

Bafilomycin A1 mechanism of action does not affect non-steady state 

measurements. 

Governing equations 

          
𝑑𝐴𝑃

𝑑𝑡
= 𝑅1 − 𝑅2            (1) 

𝑑𝐴𝐿

𝑑𝑡
= 𝑅2 − 𝑅3                     (2) 

Autophagy vesicles under normal conditions.  

1) Autophagosomes (AP) are yellow (both green and red). Yellow puncta are denoted by Y 

2) Autolysosomes (AL) are red because of acidification. 

3) Note- if bafilomycin A1 mechanism of action is to stop autolysosome acidification, 

autolysosomes would also be yellow.  

Case 1: Bafilomycin A1 inhibits the fusion step.  

𝑅2 = 0 

In this case, the rate of accumulation of autophagosomes, which are in yellow, represents the 

rate of autophagosome formation.  

𝑌 = 𝐴𝑃                 (3) 

(
𝑑𝑌

𝑑𝑡
)

𝑖𝑛ℎ
= (

𝑑𝐴𝑃

𝑑𝑡
)

𝑖𝑛ℎ
= 𝑅1                (4) 

 

Case 2: Bafilomycin A1 inhibits the acidification step. 

𝑅3 = 0                  (5) 
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In this case, the total number of yellow puncta that would accumulate after the addition of 

bafilomycin A1 is equal to the sum of autophagosomes and autolysosomes following bafilomycin 

A1 treatment. 

     𝑌 = 𝐴𝑃 + 𝐴𝐿       (6) 

 

Differentiating equation 6 with respect to time would provide 

     
𝑑𝑌

𝑑𝑡
=

𝑑𝐴𝑃

𝑑𝑡
+

𝑑𝐴𝐿

𝑑𝑡
       (7) 

 

While adding equations 1 and 2 would provide 

 

        
𝑑𝐴𝑃

𝑑𝑡
+

𝑑𝐴𝐿

𝑑𝑡
= 𝑅1 − 𝑅2 + 𝑅2 − 𝑅3       (8) 

 

As we know, 𝑅3 = 0 because acidification/degradation is completely inhibited. So, equation 8 

reduces to  

𝑑𝐴𝑃

𝑑𝑡
+

𝑑𝐴𝐿

𝑑𝑡
= 𝑅1      (9) 

Comparing equation 7 and equation 9 shows that 

𝑑𝑌

𝑑𝑡
=  𝑅1          (10) 

Therefore, the rate of accumulation of yellow puncta, in either case, would provide the rate of 

formation of autophagosomes from which other rates can be calculated as discussed in the main 

text.   
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Figure A-1. Autophagosome and autolysosome dynamics for additional rapamycin concentration. 

Dynamics of (A) Autophagosome and (B) autolysosome number after rapamycin treatment. The indicated 

concentration of rapamycin was added at 0 min. The number of autophagosomes and autolysosomes at 

0 min was used as the normalization factor. Data points represent mean while shaded area represents 

standard deviation. Four independent replicates were performed. Raw (C) autophagosome and (D) 

autolysosomes dynamics of one individual replicate after rapamycin treatment (E) Western blot of p-RPS6 

(phospho-RPS6 ribosomal protein (Ser 240/244)) after treatment with 100 nM rapamycin for 2.5 h. Total 

RPS6 ribosomal protein was used as a control. 
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Figure A-2. Basal autophagy rates remain constant over time. (A) Rate of autophagosome formation 

(R1). (B) Rate of autolysosome formation (R2). (C) Rate of autolysosome degradation (R3). NS indicates 

not significant. P-values were calculated using a one-way ANOVA test. 
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Figure A-3. Western blot of LC3-II accumulation during rapamycin treatment. (A) LC3-II and GAPDH 

protein measurement using western blot. Cells were treated with 100 nM rapamycin for indicated times 

followed by 500 nM bafilomycin A1 (Baf A1) treatment for 2 h. Basal samples represent DMSO-treated 

cells. (B) Quantification of the western blot shown in Fig A-3A using densitometry. LC3-II band intensity 

was normalized with the respect to GAPDH band intensity in the same lane.    

 

  

Figure A-4. Rapamycin concentration modulates autolysosome formation and degradation rates. (A) 

Temporal dynamics of rate of autolysosome formation (R2) and (B) Autolysosome degradation (R3) for 

different concentrations of rapamycin. Data points represent the mean, while the shaded area represents 

+ standard deviation. Four independent replicates were performed.   
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Figure A-5. Temporal evolution of autophagy rates during wortmannin treatment. All three autophagic 

rates (R1, R2, R3) were measured at indicated times for (A) 1 µM Wortmannin only and (B) 1 µM 

wortmannin with 100 nM rapamycin. Measurement of (C) R1 (D) R2 (E) R3 for basal, 10 µM wortmannin 

with and without 100 nM rapamycin, and 100 nM rapamycin alone at indicated times. Data points 

represent the mean, while the shaded area represents + standard deviation. Three independent 

replicates were performed. 
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Figure A-6. Validation of autophagy rate measurements using bulk A549- pHluorin-mKate2-LC3 and 
U2OS-pHluorin-mKate2-LC3 cell line. (A) Autophagosome and (B) autolysosome dynamics of bulk A549- 

pHluorin-mKate2-LC3 cell line after chemical treatment. Temporal evolution of (C) R1 (D) R2 (E) R3  of bulk 

A549- pHluorin-mKate2-LC3 cell line for basal, 1 µM wortmannin, and 100 nM rapamycin. Data points 

represent the mean, while the shaded area represents + standard deviation. Three technical replicates 

were performed. (F) Autophagosome and (G) autolysosome dynamics of bulk U2OS- pHluorin-mKate2-

LC3 cell line after chemical treatment. Temporal evolution of (C) R1 (D) R2 (E) R3 of bulk U2OS- pHluorin-

mKate2-LC3 cell line basal after treatment with 1 µM wortmannin, and 100 nM rapamycin. Data points 

represent the mean, while the shaded area represents + standard deviation. Three technical replicates 

were performed. 

 

 

Figure A-7. Replacing media perturbs autophagy. (A) Autophagosomes dynamics for basal condition, 

where media was replaced with normal media, compared to completely unperturbed condition. Data 

points represent the mean, while the shaded area represents + standard deviation. Three independent 

replicates were performed. Temporal dynamics of (B) R1 (C) R2 (D) R3 under basal treatment where 

media was replaced compared to unperturbed condition. Data points represent the mean, while the 

shaded area represents + standard deviation. Three technical replicates were performed. 
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Appendix B: Supplemental information for image-based temporal profiling 

of autophagy-related phenotypes 
 

 
Figure B-1: Image analysis pipeline 

 

 

Figure B-2. Confirmation of no change in morphological features before treatment. A-B: Volcano plot of 

cellular features before treatment.   
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Figure B-3. Stepwise procedure for calculating profile correlation. 90% of the variance is retained after 

PCA. For hierarchical clustering based on median profiles, sns.clustermap function was used. ‘average’ 

method and ‘euclidean’ metric was used for generating the clusters. 




