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A Three-Dimensional Quasi-Static Model for High Brightness Beam Dynamics

Simulation

Ji Qiang, Steve Lidia, and Robert D. Rymne

Lawrence Berkeley National Laboratory,
Berkeley, G'A 94720

Ceeile Limborg-Depiey
Stanford Linear Aé¢eelerator Center,
Menlo Park, CA4 94309

Inthispaper, we preseit atinee-dimensional quasi-static model for high bright-
ness beam dviiamics simulation in RF/DC photoinjectors, RF lingcs and similar
devices on parallel computers. In this model. electrostatic space-charge forces
within a charged particle beam are calculated self-consistently at each time step
by solving the three-dimensional Poisson equation in the beam frame and then
transforming back to the laboratory frame. When the beam has a large en-
ergy spread. it is divided into a number of energy bins or dices so that the
space-charge forces are calculated from the contribution of each bin and summed
together. Image charge effects from conducting photocathode are also included
efficiently using a shifted Green function method. For a beam with large aspect
ratio, e.g. during emission. an integrated Green function method is used to solve
the three-dimensional Poisson equation. Using this model, we studied the beam
transport in the Linac Coherent Light Sources (L.CLS) photoinjector through the
first traveling wave linac. The final normalized transverse emiittance is below 2
mm — #rad and the uncorrelated energy spread is within arange of afew KeV
to about 10 KeV:.

I. INTRODUCTION

High brightness, low eétiiitt#iice electron beams from photoiijectors Idve important applica-
tioms in next generation light sources and linear colliders. Simplified theoretical models have been
used to provide some guidelines for photoinjector design [1-3]. For a systematic machine design

and optimization, it still depends heavily on the use of self-congisterit computer simulations. A



number of computer models have been used in the past years to simulate beam transport inside
photoinjectors [4-12]. As far as we know, a model which can efficiently and accurately haudle a
three-dimensional beam with large aspect ratio and large energy spread including possible image-
charge effects has not previously been available on parallel computers. In this paper, we report on
developing a three-dimensional quasi-static particle-in-cell model to simulate the beam transport
through the photoinjector using a shifted integrated Green function method for space-charge cal-
culation [13]. Using a shifted integrated Green function, we can accurately and efficiently calculate
the three-dimensional space-charge forces of a beam with large aspect ratio and the image charge
effects with arbitrary separation using a fast Fourier transform (FFT) method. The large energy
spread in the laboratory frame is haudled by dividing the beam into multiple energy bins/slices
and the space-charge forces are calculated for each slice and are summed together before being
interpolated to individual particles. Besides the efficient numerical algorithm for calculation of the
3D space-charge forces, we have also implemented this model on parallel computers using a domain
decomposition method. This enables us to run a simulation with both high resolution (e.g. a large

nuinber of macroparticles) and fast return time.

II. PHYSICAL MODEL AND COMPUTATIONAL METHODS

The physical model assumed here is a relativistic quasi-static charged particle beam subject to
the external acceleration and focusing and the space-charge forces from the beam itself (here, the
quasi-static means that the static electric field is calculated in the beam frame and both electric and
transverse magnetic fields are included in the laboratory frame). Radiation effects of the beam are
not included. Comparison studies with and without the radiation effects suggest that the radiation
effects should not be significant for the current generation of photoinjectors [14, 15]. The simulation
starts by generating a three-dimensional beam bunch behind the photocathode according to the
laser pulse length and distribution. This bunch is then moved out of the cathode within the
given emission time. During the process of emission, the space-charge forces of particles outside
the cathode are included together with external fields from the RF cavity and solenoid maguet.
Besides the RF/DC cavity and solenoid maguet beam line elements, the model also includes dipole,
quadrupole, sextupole, octupole, and decapole magnets in the beam line element list. The external
fields can be supplied in the form of discrete data on a three-dimensional Cartesian coordinate
mesh or a cylindrical coordinate mesh. They can also be supplied in the form of Fourier expansion

coefficients on the axis when the fields have azimuthal symmetry. These elements can be arranged



with arbitrary longitudinal overlap so that a traveling wave structure (including coupling cells) can
be modeled using two overlapped standing wave structures and an input and an output standing
wave structures [16].

The particles inside a photoinjector are advanced self-consistently using a particle-in-cell ap-

proach. The general equations of motion are:

: p
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where, v = 1/\/w7 Bi = wvi/c with ¢« = z,y,z, ¢ is the speed of light, m is the rest mass
of particle, ¢ is the charge of particle. The electric field, E, and magnetic field, B, include the
contributions from external focusing and accelerating fields and space-charge fields of intra-particle
Coulomb interactions. For an RF linac, under proper gauge (¢ = 0), the external electromagnetic

fields iu a cylindrically symmetric accelerating structure can be obtained from [17, 18]:
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where the vector potential A is given by
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where eg(z) 1s the electric field on the axis, w is the RF angular frequency, 6 is the initial phase
of the RF field with respect to global time zero, and superscript prime denotes the derivative with
respect to z. If the RF cavity does not have a cylindrical symmetry, the fully three-dimensional
electromagnetic fields are read in from the external supplied data files. The equations of motion
are solved using a second-order leap-frog algorithm: the particles are drifted half time step; the
particles are collected and deposited onto a three-dimensional grid; the PPoisson equation is solved

in the beam frame; the electric and magnetic fields are obtained in the laboratory frame through



the Lorentz transformation; the particle momenta are updated using both the space-charge fields
and external fields for one time step according to Eq. 2; the particles are drifted another half time
step. This procedure is repeated for many time steps until the beam is out of the computational
domain.

To calculate the space-charge forces, we solve the three-dimensional Poisson equation. The

solution of Poisson’s equation can be written as:

1
d7eq

o(r,y,2) = /G(.’I;,:I:',y, vz, 2N pla 2 da dy'd2! (9)

where GG is Green’s function, p is the charge density distribution function. For a high brightness
beam inside a photoinjector, the conducting pipe is normally much larger than the size of the
beam. In this case, an open boundary condition except near the conducting photocathode can be
assurned for the solution of the Green’s function in above equation. Here, the Green function is
given by:

_ 1
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Now consider a simulation of an open system where the computational domain containing the

Gz, 2 y,y',2,2")

(10)

particles has a range of (0, Lz), (0, L,) and (0, L,), and where each dimension has been discretized

using N, Ny and N, points. From Eq. 9, the electric potentials on the grid can be approximated

as
hohoh, Yo Ny N
o(wis v, 20) = % SO Glai — miys — vy 2k — )oYy, 2) (11)
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where z; = (i — 1)hy, y; = (§ — Dhy, and 2 = (K — 1)h,. As discussed later, a more accurate
approximation to Eq. 9 is needed for a beam with large aspect ratio. This is possible by using
an integrated Green function method. The computational cost of above convolution by a direct
numerical summation can be very expensive and scales as N%, where N is number of grid points
in each dimension. Fortunately, this convolution can be replaced by a cyclic convolution in a
double-gridded computational domain:

2N, 2Ny 2N,
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These equations make use of the syminetry of the Green function in Eq. 10. From above definition,
one can show that the cyclic convolution will give the same electric potential as the convolution

Eq. 11 within the original domain, i.e.
(/’('/I:ivyjazk) = (/)C('/I"iayjazk) f(),,. i = 17NT7 .7 =1 Nyv k= 1 N” . (17)

The potential outside the original domain is incorrect but is irrelevant to the physical domain.
Since now both G, and p, are periodic functions, the convolution for ¢, in Eq. 12 can be computed
efficiently using an FFT as described by Hockney and Eastwood [19]. The computational cost of
this algorithm scales as N*log(N) instead of the NS in the direct summation.

For a conducting photocathode, the space-charge forces from both the image charge and from
the beam itself are included. To find the forces on the beam from the image charge by the
standard Green function method, we need to solve the Poisson equation with a computational
domain containing both the image charge and the beam. This can be very inefficient since ouly the
fields within the beam are needed and the fields outside of the beam are not used. This inefficiency
can be avoided by using a shifted-Green function method [13]. Using the shifted Green function,
the center of the field domain (the beam domain) is shifted to the center of the particle domain
(the image charge domain). The rauge of x, y and 2z covers both the particle domain and the field
domain in one computational domain. The shifted Green function is defined as

1
V@et+tz =22+ Ge+y—y)2 + (zc +2— )2

Ga(z, 2" y,y',2,2") = (18)

where ., y. and z. are the center coordinates of the field domain. The electric potential in the

field domain is written as

D+ T,y + Yoy 2+ 2¢) = /GS (z. 'y, 2,2V p(a ), 2) do'dy'dz . (19)
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On the doubled computational grid, the shifted Green function is given as:
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The FFT used to calculate the cyclic convolution in Hockney’s algorithm can be used to calculate

the potential in the shifted field domain using the new shifted Green function. This avoids the
requirement that the particle domain and the field domain be contained in one large computational
domain. This leads to improved numerical resolution for the charge densities and the resulting
electric fields than the conventional method, because the empty space between the charged bunches
is not included in the calculation. It is also far more efficient, in terms of computational effort
and storage, than the traditional approach of gridding the entire problem domain. To test this
algorithm, we have calculated the potential distribution on the axis from the image charge of a
round beam as shown in Fig. 1. Here, the 1 nC electron charge has a 3D waterbag distribution
with 1 mm rims size and located 5 mimn after the cathode. The numerical solution of the electrical
potential using the shifted Green function method is given in Fig. 2 together with the analytical
solution. It is seen that the numerical solution and the analytical solution agree with each other
very well.

The image charge of a beam can have significant effects on the beam quality in photoinjectors.
Using the LCLS S-band RF gun [20], we did simulations with and without the image space-charge
effects. Here, the initial distribution of electron bunch is a cold 10ps long uniform cylinder with
Irnan radius. The total charge in this bunch is 1nC. The peak acceleration field is 120MV/m.
Fig. 3 shows the transverse and longitudinal rms sizes of the bunch with and without the image
charge effects of the conducting photocathode in the simulation. It is seen that the beam without
image charge has a larger initial transverse size than the beam with image charge. The space-
charge forces from the image charge of the beam have opposite directions compared with the
space-charge forces from the beam itself. This helps to reduce the initial beam blow-up driven by
the space-charge forces.

In the above algorithmns, both the Green function and the charge density distribution are dis-
cretized on the grid. For a beam with aspect ratio close to one, this algorithm works well. However,
during the emission of electrons out of the cathode, the beam can have a very large transverse to

longitudinal ratio. For example, the typical transverse size is on the order of milimeters while the

longitudinal size can be about a few tens to hundred microns. Under this situation, the direct use
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FIG. 1: A schematic plot of an electron bunch in front of the conducting photocahtode together with its

image charge.
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FIG. 2: Image charge electric potential on the axis for a round beam from the shifted Green function solution

together with the analytical solution.

of the Green function at each mesh point is not efficient since it requires a large number of mesh
points along the transverse direction in order to get sufficient resolution for the Green function
along that direction. A two-dimensional integrated Green function method has successfully been
used in previous studies of the beam with large aspect ratio [13, 21-23]. Here, we generalize that
method to three-dimensional space-charge force calculations. If we assuine that the charge density
function is uniform within each cell centered at the grid point (x;, y;, zx), we can define an effective
Green function as:
B zy+ha /2 yjr+hy/2 zpt+he /2
GeTi — Tw, ¥ — Yy, 2 — 210) = / dm'/ dy'/ dz'G(z; — ' y; — ' 2 — 2')21)
Ty —ha/2 Y —hy/2 zr —h2/2

This integral can be calculated analytically in a closed form:

1
/// ——————drdydz = yzIn(z + /22 +y> +22) +xzln(y+ V22 + 32+ 22) +ayln(z + Va2 + y2 + 2?)
/172 _|_y? +Z2
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FIG. 3: Transverse (left) and longitudinal (right) rms sizes as a function of distance with and without the

image charge effects from photocathode.
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In the above algorithm, we assumed a uniform density distribution within each cell. It is also
possible to assume a tri-linear density distribution inside a cell. As a test of this algorithm, we
calculated the electric fields along the x-axis and z-axis of a charged beam with uniform density
distribution. The numerical results from the integrated Green function together with the solutions
from the standard Green function method and the analytical method are given in Figs.4 and 5 for
two transverse to longitudinal aspect ratios. Here, 128 x 128 x 128 computational grid points have
been used. In Fig. 4, the aspect ratio is one, which corresponds to a uniform spherical ball, all
three solutions agree with each other very well. In Fig. 5, the aspect ratio is 30, we can see that the
integrated Green function method and the analytical method agree with each other very well. The
standard Green function method gives significant discrepancy for the electric field along z-axis,
near the edge. For a beam with a Gaussian distribution, the major discrepancy of the electric field
occurs around the core, which is given in Fig. 6. These errors in the calculation of electric field
for a large aspect ratio beamn using the standard Green function method and the integrated Green

function method could sigunificantly affect the accuracy of the beam dynamics simulation inside

(22)



the RF photoinjector. Fig. 7 shows a comparison of the transverse and longitudinal rins size of
an electron beam in the S-band photoinjector using the standard Green function method and the
integrated Green function method in the space-charge force calculation using the same number of
grid points. The longitudinal rms size from the standard Green function method is significantly
larger than that from the integrated Green function method. This is due to an error observed in
solving the Poisson equation and calculating the electric field in longitudinal direction using the
standard Green function method as shown in Fig. 5 and 6.

In photoinjectors, for a finite length input laser pulse, the electron emitted from the photocath-
ode at head of the beam can have significantly different morenturn from the electron at the tail if
the acceleration gradient is high. In this case, to calculate the space-charge forces by solving the
Poission equation in a single beam frame is not sufficient since there is no single Lorentz transform
available in which the spread in longitudinal particle velocities is non-relativistic [24]. If we divide
the initial laser pulse into a number of slices, each slice having a very short pulse length, this re-
sults in a small velocity spread within each slice. The Poisson equation can be solved in the beam
frame of each slice and the electromagnetic fields are Lorentz transformed back to the laboratory
frame for each slice. The total space-charge fields at a given location are then added up from the
contribution of each slice. Fig. 8 shows the transverse and longitudinal rms sizes of an electron
beam with an initial 10ps flattop laser pulse and 1nC' charge in an S-band photoinjector. It is
seen that the simulation results converge between two and four slices. The results using only one
slice shows about 10 — 30% different beam sizes at the exit of the gun. This suggests that for such
a beam with 10ps pulse length, 1nC electron and 120MV/m peak accelerating field, at least two

slices (i.e. energy bins) are needed in order to obtain accurate simulation results.

III. APPLICATIONS

As an application, we have implemented this quasi-static model into a parallel particle-in-cell
code, IMPACT-T, to simulate the beam transport through the LCLS photoinjector. The initial
laser pulse is assumed to have a 9 ps flat top longitudinal density distribution and a 1 ps Gaussian
fall-off near the end of the beam. The transverse density distribution is assumed to be uniform
within a round cross section with 1.2 mm radius and 0.72 mm-mnrad thermal emittance. The
sirnulation was done using 10° macroparticles with 64 x 64 x 64 mesh points and two slices. The
photoinjector in this simulation consists of a one-and-half cell 2.856 GHz S-band gun, an 85 cell

traveling wave structure, and two solenoid magnets for initial emittance compensation at low
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FIG. 5: Electric fields along x-axis (left) and along z-axis (right) of an uniform ellipsoidal beam with aspect
ratio 30 from solutions of the integrated Green function method, the standard Green function method, and

the analytical method.

energy and transverse focusing [20]. The peak electric field ou the cathode is 120MV/m and
18 MV /rn inside the linac. The electrons out of the photocathode are accelerated to 62 MeV at
the end of the traveling wave structure. To emulate real conditions, we have assumed that the
initial laser pulse on the cathode has a 100pm horizontal offset. This centroid offset is corrected
by steering magnets so that at the entrance to traveling wave linac structure, the bunch centroid
is set back to zero numerically. The effects of wakefields are not included in this simulation. Fig. 9
shows the normalized rms emittance as a function of distance from the simulation. Here, the
rms emittance is caculated using the mechanical momenta of indivdual particles in the laboratory
frame. Comparing with the case without initial offset, the transverse emittance is not significantly

affected by the initial 100pum offset. The final projected rms emittance is below 2 mm-mrad. The

energy spread of the beam could affect the beam stability and lasing in the LCLS. Fig. 10 shows
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using the standard and integrated Green function method.

the sliced rms energy spread at the entrance to the traveling wave linac with and without the

initial offset. It appears that the initial 100 offset has no significant effect on the beamn energy

spread. The uncorrelated slice energy spread increases from the centroid of the beam to the end

of the beam. This is caused by the stronger nonlinear fields near the edge of the beam. Fig. 11

shows the uncorrelated sliced rms energy spread at the exit of the first traveling wave linac. The

uncorrelated energy spread has decreased in general comparing with that before the linac due to

RF acceleration and bunching. The total correlated rims energy spread at the output 62 MeV is

about 150 KeV, while the uncorrelated rms energy spread varies from a minimum 3 KeV near the

center to 17 KeV at the tail of the beam.
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IV. CONCLUSIONS

In this paper, we have presented a three-dimensional quasi-static model for high brightness
beam dynamics simulation on parallel computers. The parallel implementation of the model is
based on a domain-decomposition method which has been discussed in another publication [25].
It is unique in its use of space-charge solvers based on an integrated Green function to efficiently
and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently
treat image charge effects of a cathode. This is of major interest to understand the possibility to
produce self-generated ellipsoidal photo-electron bunches as proposed by Luiten et al. [26]. Tn that
proposed scenario, ultra-thin sheets of charge would be emitted using a laser pulse as short as 30fs
but with a lrnn radius. The study of such beams requires a model able to handle very large aspect
ratio beams. The model presented in this paper is also unique in its inclusion of energy binning in

the space-charge calculation to model beams with large energy spread. Together, all these features
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FIG. 11: Uncorrelated rms energy spread after the first traveling wave linac with and without initial offset.

make it a powerful and versatile tool for modeling beams in photoinjectors and other systems.
As an application, we have studied a beam transport in the LCLS photoinjector through the first
traveling wave linac with an initial 100um offset and then steered back to the axis at the entrance
of linac. The simulation gives the final normalized transverse emittance below 2 mm — mrad and
the uncorrelated energy spread within a range of a few KeV to about 10 KeV. There appears no

significant effect from the initial offset of beam at the photocathode.
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