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ABSTRACT OF THE DISSERTATION

Selection into the Sample and into Treatment:

Tools for Internally Valid Causal Inference

by

Adam Robert Rohde

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2023

Professor Chad J. Hazlett, Chair

Studies often seek to estimate the causal effect of a treatment on an outcome using a sample

that has been drawn from a larger population. Such samples may not be randomly drawn

and researcher may not observe all confounding variables that drive selection into treatment.

Though researchers may be content to study causal effects averaged over only the sample

in hand, selective sampling and unobserved confounding can still bias such effect estimates,

threatening their “internal validity” (Campbell, 1957). Sample selection and unobserved

confounding are related in how they threaten internal validity and can be examined in

conjunction. We develop graphical tools to help evaluate threats from sample selection and

unobserved confounding. These tools also allow us to determine when covariate adjustment

can overcome these threats. It will not always be possible to solve these problems, however,

and we thus generalize sensitivity analyses for unobserved confounding to also address sample

selection. We then consider the use of instrumental variables, which in some cases can be

biased by these concerns, but in other cases offer a solution to them. Finally, shifting emphasis

to unobserved confounding, we discuss the use of placebo variables in partial identification.
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CHAPTER 1

Introduction

Researchers often seek to estimate the causal effect of a treatment on an outcome using a

sample that has been drawn from a larger population. Often such samples are not randomly

drawn and researchers do not observe all confounding variables that drive selection into

treatment. Though researchers may be content to study causal effects averaged over only

the sample in hand, selective sampling can still bias estimates of even these causal effects,

thus threatening the “internal validity” (Campbell, 1957) of effect estimates. These threats

are closely related to, and can be examined in conjunction with, the problem of unobserved

confounding in the selected sample. In this dissertation, we aim to help understand and

overcome the threats that sample selection and unobserved confounding pose to internal

validity. We start with a focus on sample selection.

That selective sampling can threaten even internal validity has long been known, and

over the decades different research traditions have offered guidelines for assessing the threats

to internal validity posed by sample selection. Further, it is not possible to know what

the causal effect would be in any other population of eventual interest if we cannot first

obtain an unbiased estimate in the observed sample—a result we formalize. In Chapter

2, we develop graphical tools to help clarify and evaluate threats from sample selection

(together with possible additional sources of unobserved confounding). These tools also allow

us to determine when covariate adjustment can overcome these threats. We employ formal

graphical tools for causal reasoning to more fully and rigorously characterize the (i) the

settings in which selective sampling does and does not bias the “internal effect estimate,”
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and (ii) the conditions under which this bias can theoretically be corrected, and how to do

so using covariate adjustment. These results are collectively conveyed through a graphical

criterion that investigators can apply in their circumstances to examine the threats of bias

and opportunities for correction given a graphical causal model. A number of common

lessons emerge, including that many forms of sample selection, including selection processes

influenced by the treatment or a mediator, are not always problematic. That said, the central

lesson is that many complications may arise, requiring the researcher to use these tools to

examine how selection processes may bias results and whether this can be corrected under

specific causal structures the user cannot reject as implausible.

In many cases it will not be possible to confidently solve these problems by adjusting for

observed covariates, and we thus introduce a sensitivity analysis framework that combines

sample selection and (other) unobserved confounding threats. In Chapter 3, we discuss the

omitted variable based sensitivity analyses of Cinelli and Hazlett (2020) and Chernozhukov

et al. (2022) and how these can be generalized to evaluate threats from sample selection

and threats from unobserved confounding. Since sample selection as a threat to internal

validity is typically the result of collider stratification, the parameters in naive applications

of such sensitivity analyses can be difficult to interpret. We show how more interpretable

expressions for the sensitivity parameters in these frameworks can be derived in some simple,

parametric settings. Using these as a guide, we propose bounds on the parameters for the

general, non-parametric settings by drawing on information theory.

Could additional information like an instrumental variable be used to overcome threats to

internal validity from sample selection? How does sample selection alter the use and usability

of instrumental variables? In Chapter 4, we discuss interesting cases in which sample selection

presents opportunities to use instrumental variables and in which using instrumental variables

can be used to overcome sample selection. However, we discuss how these opportunities may

arise only in very specific settings, as is the case for credible instrumental variables in general.

We also discuss the numerous threats that sample selection can pose to the credibility of

2



instrumental variable approaches. To facilitate this discussion, we revise existing graphical

criteria for instrumental variables to highlight the special role that sample selection plays in

the instrumental variables setting. We do this by first introducing an extension to typical

causal graphs that visualizes how sample selection alters the relationships between variables

in the sample. We then provide rules (graphical criteria) that allow researchers to use these

extended graphs to evaluate the key assumptions of instrumental variables in their own

applications, while responsibly accounting for sample selection. In this way, we generalize

recent discussions of sample selection and instrumental variables and connect these to existing

graphical criteria.

Another way additional information can be used to estimate causal effects comes in the

form of “placebo” or proxy variables. Shifting our focus from sample selection to unobserved

confounding, in Chapter 5, we discuss how, in the quest to make defensible causal claims from

observational data, it is sometimes possible to leverage information from “placebo treatments”

and “placebo outcomes” (aka “negative control outcomes”) unaffected by the treatment.

Traditional approaches employing such information focus largely on point identification and

assume (i) “perfect placebos” (placebo treatments have precisely zero effect on the outcome;

the real treatment has precisely zero effect on a placebo outcome); and (ii) that the placebo

treatment/outcome suffers the same amount of confounding as does the real treatment-

outcome relationship on some scale (“equiconfounding”). We take a different approach,

showing how the analysis of “omitted variable bias” in regression provides a flexible and

powerful way to leverage information from placebo treatments and outcomes while violating

these assumptions by postulated degrees. This allows investigators to examine results under

(i) any chosen assumption about the relative strengths of confounding suffered by a placebo

treatment/outcome compared to the true treatment-outcome relationship, and (ii) “imperfect

placebos”, i.e. placebo treatments with up to some postulated non-zero effect on the outcome,

or placebo outcomes experiencing effects of treatment up to some postulated strength. These

tools can be easily applied with any choice of placebo treatment or outcome. Pre-treatment

3



outcomes can often be employed as placebo outcomes in this way. Relatedly, conventional

difference-in-difference approaches, in both the repeated cross-section and panel settings,

are a special case of this setting in which a strict equiconfounding assumption (regarding

the pre-treatment outcome’s relationship to the treatment group indicator) is claimed. We

demonstrate multiple relaxations of this that are natural under our framework. In certain

settings, these tools can also be applied to sample selection as a threat to internal validity.

Thus, in this dissertation, we explore the threats posed by sample selection and unobserved

confounding to internal validity of causal effect estimates and discuss various approaches to

overcome these threats. While our emphasis shifts, each tool we present can apply to both

sample selection and unobserved confounding as threats to internal validity. I hope that the

tools developed here aid researchers in recognizing, understanding, and taming threats to

internal validity.

4



CHAPTER 2

Sample selection as a threat to internal validity

In applied quantitative research, we often estimate quantities of interest using samples of

data drawn in non-random ways from a population of eventual scientific or policy interest.

In other settings, we may have a sample that is representative of a sub-population of interest,

whether by design or circumstance, but the sub-population may not be representative of a

larger population from which the sample was drawn. Where we are interested in learning

the causal effect of one thing (D) on another (Y ), this can create two types of problems.

One problem involves external validity (Campbell, 1957): how might the effect of interest

look when averaged over some population of interest, as compared to its average in our

sample? This is an important question which has achieved considerable recent attention (for

a recent review and development, see Egami and Hartman (2022)). While investigators are

accustomed to obviating this problem by restricting their inferences to the observed sample,

the second and more pernicious problem is that selective sampling can threaten even internal

validity, biasing our estimate of the treatment effect as defined as an average over the sample.

This has long been known. For example, Berk (1983) states, that under selective sampling,

“Both internal and external validity are implicated. There is no escape by limiting one’s causal

conclusions to the population from which the nonrandom sample was drawn (or even the

sample itself).”

Notwithstanding increased recent attention to external validity through a rapidly advancing

literature on “transportation” and “generalization” (e.g., Pearl and Bareinboim (2011); Pearl

(2015b); Bareinboim and Pearl (2016); Correa et al. (2018, 2019); Egami and Hartman (2021)),

5



internal validity remains a key concern for investigators for two reasons. First, internal validity

may reasonably be of sufficient scientific interest in many settings. For example, we may

study a causal mechanism that is thought to be approximately the same in most or all

individuals or populations thereof. Or, we may design a study so that the sample in hand

is already representative of a sufficiently interesting target group, e.g. those who would be

eligible for a new policy or therapeutic intervention. Second, even where ultimate interest

lies in a claim of generalization to some broader or different population, we formally show

how internal validity is always required for (and easier to achieve than) external validity:

identification of internally valid causal effects invokes a subset of the causal assumptions

invoked for identification of causal effect estimates that generalize from the sample.1

What detailed knowledge must investigators have to avoid or remedy these biases? What

types of selection processes are problematic and what types are not? Can the internal

validity of randomized experiments be threatened by sample selection? Where there are

threats, under what conditions can they be remedied and how? How can we deal with

the problems of confounding and sample selection simultaneously? Methodologists in a

variety of disciplines have long sought to address these perennial questions, providing careful

examinations, guidelines, and methodological fixes since at least Campbell (1957), with

well-known later contributions in Greenland (1977), Heckman (1979), Berk (1983), Hernán

et al. (2004), and Elwert and Winship (2014), among others. However, these approaches

do not amount to a comprehensive and rigorous treatment of the problem, nor have they

resulted in an approach that a researcher can apply to reveal any problem or solution that

exists for any causal structure they deem plausible in their setting. As noted by Berk (1983),

1While we offer a formalization of these claims, we do so to add rigor to statements that have long
been made. For example, Campbell (1957) states that “Internal validity is the prior and indispensable
consideration”, and Campbell and Stanley (1963) argue that “Internal validity is the basic minimum without
which any experiment is uninterpretable...” Shadish et al. (2002) clarify that the primacy of internal validity
is specific to “cause-probing research,” which is the context of our paper. Additionally, any claim of internal
validity entails some conception of the population from which the sample was drawn. Without this, we cannot
begin to analyze whether the sample selection mechanism threatens our ability to draw causal inferences for
the selected sample, since the selection must be from some population.
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“while considerable effort has been devoted to documenting sampling biases within traditional

survey sample approaches...we are a very long way from a formal theory.”

Fortunately, we are now in a position to answer Berk’s 1983 call for such a formal theory,

and indeed to provide a procedure for answering such questions as they apply to any causal

structure. In recent years, researchers have benefited from the growth and formalization of

methods that rigorously define causal quantities, characterize when they can or cannot be

estimated from the data, and point to solutions for correcting biases, employing the devices of

potential outcomes, structural causal models, and graphical causal models.2 With these tools

comes the possibility of more completely and rigorously posing and answering questions about

sample selection and internal validity. However, existing graphical approaches neglect the

role that sample selection plays for internal validity. Thus, we develop a graphical approach

to understanding the threats such sample selection can pose for internally valid causal

effect estimates. This involves first introducing “internal selection graphs”, an extension of

standard graphical approaches that visually shows the consequences of sample selection for

the relationships between variables. Second, we provide rules for how to use these extended

graphs to determine when causal quantities are identifiable under selective sampling. These

tools aim to provide a wider audience with the ability to analyze how sample selection might

threaten internal validity in their applications. Applied to a number of common causal

structures, our tools support a few broad findings of note, including: (i) sample selection is

not always problematic to internal validity (e.g., post-treatment selection, or confounders

of selection and the outcome (Hernán, 2017) are not biasing on their own), (ii) some causal

effects can still be identified when sample selection is based on a mediator,3 (iii) sample

selection can influence the identification of causal effects even when it is not a collider, and

2While we direct readers to texts such as Pearl (1988, 2009); Imbens and Rubin (2015); Hernán and Robins
(2020) for a fuller review of these concepts, our goal is to explain our use of these tools as they arise so as to
provide a mostly self-contained guide to users.

3Mediators are nodes in causal graphs the lie on at least one causal path from the treatment to the
outcome. See below for a discussion of causal graphs and paths.
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(iv) the threats from sample selection for internal validity are not the same as those for

external validity, nor are the means of addressing those threats. While communicating those

broad conclusions helps to signal the complexity and possibly non-intuitive nature of this

problem, our key message echoing Berk, 1983 and Greenland, 2022, is that for any specific

application, the details of the causal structure and sample selection mechanism determine

whether sample selection threatens internal validity and what might be done about it. Our

primary contribution is thus the graphical criterion we provide that enables investigators to

reliably perform such diagnostic and prescriptive analyses in their setting.

2.1 Working example: Racial bias in policing

For concreteness, we employ a single working example throughout the paper.4 Inspired by

Knox et al. (2020), we look to data from police “stops” (an encounter in which a police officer

stops and interacts with a civilian, on foot or in a vehicle). The question is then what can

be learned from such data about how the police-perceived race of the civilian stopped alters

the chances that police employ force in that encounter. The emphasis on police-perceived

race is important for two reasons. First, it reminds us of the possible misperception and

conceptual ambiguity regarding the police officer’s belief about the civilian, as opposed to how

the civilian would identify. Second, it reminds us that we are interested in the question of how

the police officer’s belief regarding the civilian’s race might have influenced the outcome.5

The key challenge we consider here is that the data are limited to administrative records

that are produced only when the police officer stops a civilian, thus making a report, citation,

or arrest that appears in the data. Hence, such studies are restricted to a sample of civilian-

4Appendix A.8 offers additional illuminating—and perhaps entertaining—exercises which the reader can
use to test and develop their understanding. These include understanding why taller NBA players are worse
free-throw shooters, whether imagining applying eyeliner helps one lose weight, seeing if doing more can feel
like less, and more.

5For additional discussion of perceived race and racism in causal studies see Grogger and Ridgeway (2006);
Greiner and Rubin (2011); Robinson and Bailey (2019); Khazanchi et al. (2020); Lett et al. (2022).
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police encounters that has been selected in a non-random way, as the encounters in which

the officers stop the civilian depends greatly on characteristics of the encounter (in particular

on characteristics of the officer and the civilian).

To begin addressing this, we must first be willing to contemplate the causal structure of

the system in question, meaning that we consider how each variable in this system could

cause or be caused by other observed variables, or by a web of unobserved variables that

influence more than one observable. Here we assume it is possible that police-perceived race

influences the ways in which the officers interact with the civilian, both through whether or

not the officers make a stop and whether or not the officers use force. Second, police stopping

a civilian is a prerequisite to police use of force; if no stop is made, then officers cannot use

force. Third, the police administrative records do not capture all of the factors that influence

whether or not officers make a stop and/or use force; that is, there are unobserved common

causes of making a stop and of using force. These possible relationships are represented in

the usual causal graphical form (that is, as a directed acyclic graph (DAG)) in Figure 2.1(a),

which mimics Knox et al. (2020) Figure 1.6 Here D represents an indicator for police–civilian

encounters involving a civilian that was perceived to be from a minority ethnic group, S

represents an indicator for police–civilian encounters in which the police make a stop, Y is

an indicator for police use of force, and U are the unobserved common causes of making a

stop and use of force.

This causal structure immediately points to a number of familiar problems. We use

Figure 2.1(b) to annotate the original DAG in ways that make these problems apparent.

First, and central to this project, we are forced to “select” data for which a stop occurred

6For those unaccustomed to relying on DAGs, we note that it is important that the user include on such a
DAG any arrow that could exist, meaning that to leave out an arrow requires a strong argument for why no
such arrow exists. The requirement that such a causal structure be assumed at this level of detail may seem
like a drawback. However, it asks little more than what is absolutely necessary to draw conclusions about
how selection impacts the result and what can be done about it indeed depends on the causal structure at
this level of detail. An unwillingness to transparently state what causal structure the researcher believes to
be plausible would not free us from the consequences of that structure, only blind us to the possible problems
and solutions associated with that structure.
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Figure 2.1: Racial Discrimination in the Use of Force by Police

Perception of Race (D) Use of Force (Y )Stop Made (S)

Unobserved Factors (U)

(a) (a) Proposed directed acyclic graph (DAG)

Perception of Race (D) Use of Force (Y )S

Unobserved Factors (U)

(b) (b) Extended DAG revealing “bridge” formed by selection

(S = 1), and this stop is a mediator between perceived ethnicity (D) and the use of force

(Y ). This conditioning on S is represented by the circle around S in Figure 2.1(b), and it has

two immediate consequences. First, because some of the effect of D flows through S to Y ,

conditioning on S in this way blocks some of the effect we wish to study, leaving only the part

of the effect that flowed directly from D to Y as estimable. Second, by conditioning on S = 1,

we are conditioning on a “collider” or a common consequence of D and U .7 Conditioning on

a collider (or a descendant8 of a collider) can create purely statistical associations between

the parents of the collider. We can represent this purely statistical association with a dashed

undirected edge D U on Figure 2.1 (b). This leads to additional problems. For example,

by generating an association between D and U , the pathway D U → Y now generates an

association between D and Y that is not due to the effect of D on Y . Thus, a comparison of

the rates of use of force across values for (perceived) civilian race will be biased for the total

7A collider is a node in the graph into which two arrows point: D → S ← U . See Pearl (2009) for an
introduction to causal graphical models and colliders.

8We do not consider a node to be a descendant of itself. See Definition A.2.9 in Appendix A.
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effect and direct effect even for encounters in which a stop was made (the selected sample).

Knox et al. (2020) agree with these conclusions but use other tools to reach them.

We note that conditioning on a collider does not always create an association among

its parents nodes, as there are a number of counterexamples. These counterexamples often

impose strong or knife-edge assumptions and cannot easily be defended, but in other cases they

are plausible. In Section A.6 of Appendix A, we discuss conditions under which marginally

independent parents of a collider maintain their independence conditional on the collider

for discrete variables and the implausible circumstances under which no association would

be created between D and U conditional on S = 1 in the present example. In Section

A.7 of Appendix A, we show that zero “interaction information” implies that marginally

independent parents of a collider maintain their independence conditional on the collider.

Because conditioning on a collider can and often will create an association among the parents,

we proceed as though it does to maintain a more conservative analysis.

Finally, an important feature of these scenarios is to be clear and explicit about the causal

estimand we are aiming to identify and estimate. In plain language, we are interested in “the

effect of perceived race on use-of-force”, specifically among (averaged over) those cases where

a stop occurred. This description, however, is ambiguous regarding which counterfactuals we

mean to compare. Specifically we could be referring to two different quantities:

• The direct effect, among those who were stopped. Once a stop is made, how

does perceived race influence the risk that force is used? This considers an individual i

for whom a stop was actually made, and compares whether force would have been used

had they been perceived to be of one race (Di = d) or another (Di = d′).

• The total effect, among those who were stopped considers the “the effect of

perceived race through triggering a stop that might not have otherwise occurred”, as

well as the direct effect above that applies “once a stop occurs”. Consider an individual

i with perceived race Di = d, for whom a stop really did occur (Si = 1). For this

individual, had they been perceived to be of a different race (Di = d′), a stop may or
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may not have still occurred, and force may or may not have been used. We are interested

in the outcome (use-of-force) for this individual, had we changed their perceived race,

recognizing that doing so might also have changed whether a stop would have occurred.

The average total effect among those who were stopped — or more generically the

(average) “internal total effect” — is be composed of such counterfactual comparisons for

all units i that were, in the real data, actually subject to a stop (without manipulation

of their perceived race).9

2.2 Background

Notation and key quantities Let’s introduce some notation to clarify the types of casual

effects we mean when we say internally valid causal effects and causal quantities. A potential

outcome, Ydi, is the value that the variable Y would have taken for unit i, if the variable D

for unit i had been set, possibly counterfactually, to the value d. (Splawa-Neyman et al.,

1990; Rubin, 1974, 1978, 1990) The unit-level causal effect of setting D to d relative to D to

d′ is τi = Ydi − Yd′i.

The fundamental problem of causal inference, however, is that we are never able to observe

more than one of the potential outcomes for a given unit and so cannot calculate unit level

9Describing these quantities in terms of the “ideal” or “target” randomized trials can be a useful exercise,
in part for the gap it may reveal between causal quantities and what can straightforwardly be learned by
experimentation. For the “total effect,” we must be able to randomly manipulate the perceived race of the
civilian at the beginning of the encounter (before the officer decides whether to make a stop). Yet, to limit
our inference to the individuals who would have been stopped, we must have a way of recording whether,
when the officer perceived the race as they would have without intervention, they would have made a stop.
Such an experiment would require a time-travel or memory-wiping mechanism, or the ability to monitor
“two worlds” (one with the natural perceived race, one with the counterfactual). For the direct effect, the
manipulation in question comes later: we wait and see if a stop is made, and only wipe the officer’s memory
and randomly intervene on their perception of race when they made a stop naturally. Alternatively we could
intervene on perceived race prior to the encounter, determine when a stop would have occurred for unit i
under their naturally perceived race (keeping only individuals i for whom that is the case), and then, when
we set perceived race for each such individual i to its non-unobserved value, we must simultaneously force a
stop to occur, even if it would not have otherwise. Such interventions are clearly infeasible, which gives some
researchers pause, whereas others are satisfied to make such comparisons regardless, as they can be clearly
defined by their counterfactuals and/or by the structural causal model and DAG they reference.
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causal effects. (Rubin, 1978; Holland, 1986; Imbens and Rubin, 2015; Westreich et al., 2015)

Despite this, these are often the building blocks of typical causal inferential targets. When

readers see “internally valid causal effects,” we suspect that most have in mind something

like the sample average treatment effect (SATE), 1
N

∑N
i=1 τi, which is the simple average of

the unit level effects across the units that are observed in the sample. This is a perfectly good

target causal effect and the discussion that follows will apply to this. However, researchers

might also be interested in the causal effect for the sub-population for which the selected

sample is representative. We write this as E[τi|Si = 1] and call it the selected-population

average treatment effect (SPATE). We will use a binary variable, S, to denote non-random

sample selection. Si = 1 can be interpreted as indicating that a unit is included in the

observed study sample. It may also be thought of as indicating the subset of the population

from which the observed study sample was randomly drawn.10 Both the SATE and SPATE

are different from the population average treatment effect (PATE), E[τi].

SATE =
1

N

N∑
i=1

τi

SPATE = E[τi|Si = 1]

PATE = E[τi] = E[τi|Si = 1]p(Si = 1) + E[τi|Si = 0]p(Si = 0)

In the case of a non-random sample from the population, we have that E[SATE|Si = 1] =

E[ 1
N

∑N
i=1 τi|Si = 1] = 1

N

∑N
i=1 E[τi|Si = 1] = E[τi|Si = 1] = SPATE. As we discuss further

below, SPATE = E[τi|Si = 1] = E[τi] = PATE when Yd ⊥⊥ S, as in the case of a random

10In a setting like our running example, police-civilian encounters in the study sample are selected based on
whether or not the police made a stop, which we represent with Si = 1. The specific set of encounters that we
observe and are able to analyze may not contain all encounters for which police made stops, however. Perhaps
we only have a sample of such encounters - a random sample or one based on geography, time, or other
constraints. If we are willing to assume that these other constraints are not material to the causal relationships
between perceived race and use of force, then we might aim to estimate a causal effect for all police-civilian
encounters in which a stop was made. The fact that we only have a sample of all such encounters does not
pose a problem for causal identification of causal effects for the sub-population of encounters in which a stop
was made. However, only having a sample that contains encounters in which a stop was made may threaten
our ability to identify such a causal effect.
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sample from the population. In the non-random sampling case, the SATE is unbiased for

the SPATE, not the PATE, since the sample at hand can be thought of as a representative

sample of the sub-population indicated by S = 1.

This brings us to a more formal definition of internal validity: An estimation strategy is

said to be “internally valid” if it can unbiasedly or consistently estimate the SPATE (of other

causal effects for the selected population). In what follows, we do not always differentiate

between units eligible to be in the selected sample from those specifically in the sample in

hand. Obtaining a valid estimate of a causal effect for the specific sample, we can then

generalize this to the subpopulation. So going forward, we often refer to just the units in

the sample at hand, even if our target is really the subpopulation. Other causal effects (i.e.,

not just means of τi) might be of interest as well, but in what follows, we will focus on

distributional primitives that allow for the identification of any causal effect.

Identification under conditional ignorability. Any internally valid causal effect can

be written using p(Yd|S = 1). For example, E[Yd − Yd′|S = 1] =
∑

y × p(Yd = y|S =

1) −
∑

y × p(Yd′ = y|S = 1). Such quantities can be identified under sufficiently strong

assumptions, including that covariates Z are observed such that in each stratum of Z in the

selected population, treatment is ignorable, i.e. Yd ⊥⊥ D|Z, S = 1.11

p(Yd|S = 1) =
∑
z

p(Yd|Z = z, S = 1)p(Z = z|S = 1) by law of total probability

=
∑
z

p(Yd|D = d, Z = z, S = 1)p(Z = z|S = 1) by Yd ⊥⊥ D|Z, S = 1

=
∑
z

p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1) by consistency

Structural causal models and DAGs. The key practical concern is: how can we know

if D and Yd are in fact independent conditional on Z in the selected sub-population? It is

11Here, we ignore problems of measurement bias, missingness, interference, and other wrinkles that are
important in practice.
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simple to write a conditional ignorability statement of this kind, and even to understand a

hypothetical randomization scheme that would justify such a choice. With observed data,

however, supporting or defending such an assumption turns on detailed claims about the

underlying data generating process. To convincingly defend an assumption of conditional

ignorability is to convincingly argue that the data were generated from one of a class of

“structural causal models” that would produce such ignorability. Specifically, such a model

must make claims as to how the treatment and outcome causally relate to each other and

relevant observed and unobserved covariates. The key assumptions in these models often

regard which variables do not influence other variables. Such causal relationships can often

be non-parametrically encoded in a structural causal model (SCM) which can be represented

graphically as a directed acyclic graph (and extensions thereof). See Pearl (2009) and

Appendix A for details on SCMs and DAGs. See Figure 2.2 for example DAGs. DAGs allow

us to visualize dependencies and independencies between variables. On a given DAG, a set of

rules known as graphical criteria can then be used to determine if ignorability holds under

the sample selection mechanism implied by that DAG. However, existing approaches that

deal with sample selection focus entirely on generalization and external validity. In addition,

existing approaches focused on internal validity do not address sample selection explicitly

and can be violated by sample selection in settings where causal progress is possible. In

the following section, we therefore develop a graphical approach that incorporates sample

selection for internal validity.

2.3 Proposal

Our set of tools for analyzing how sample selection can threaten internal validity begins with

a method for displaying the effects of sample selection graphically. Next, we present a formal

graphical criterion for determining whether internally valid causal effects are identifiable.

Our proposed approach is similar to those presented in Pearl (1995); Shpitser et al. (2010);
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Daniel et al. (2012); Correa et al. (2018), but emphasizes the impact of sample selection for

internal validity regardless of the role that sample selection takes in the causal graph. We

conclude this section by drawing connections with the generalizability results in Correa et al.

(2018) and with a discussion of sample selection based on mediators in more detail. It is

important to emphasize that we should have some population in mind from which the sample

was selected. This will allow us to attempt to non-parametrically model the sample selection

process.12 As discussed above, we will use a binary variable, S, to denote sample selection.

2.3.1 Showing selection: internal selection graphs

We will now detail our simple graphical approach to determining whether conditional ignora-

bility of the form Yd ⊥⊥ D|Z, S = 1 holds. The key is to graphically represent the ways in

which sample selection alters the relationships in the selected sample. We do this by defining

internal selection graphs, which visually extend traditional causal graphs to represent all the

ways that sample selection can change relationships between variables.13

Definition 1 (Internal Selection Graph, G+
S ). Let G be the DAG induced by a SCM.

1. Create GS by adding an appropriately connected binary selection node, S.

2. Draw a circle around S to clearly indicate that we must limit our analysis to S = 1.

3. Add to GS any node which is a parent of the treatment or a parent of a descendant of

the treatment. (US, the background factors contributing to selection, can be excluded.)

4. Add a dashed undirected edge between all variables between which S is a collider or an

ancestor of S is a collider. We will call these dashed, undirected edges bridges.

Call the resulting graph an internal selection graph, G+
S .

12While having a population in mind is important, “There is also the problem of infinite regress. Even if
one has a random sample from a defined population, that population is almost certainly a nonrandom subset
from a more general population. ... In principle, therefore, there exists an almost infinite regress for any
dataset in which at some point sample selection bias becomes a potential problem.” Berk (1983)

13See Appendix A for a brief discussion of why we do not use Single World Intervention Graphs. (Richardson
and Robins, 2013a)
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(This definition is similar to the “modified extended diagram” in Daniel et al. (2012).)

Let us dwell briefly on why we’ve chosen to denote sample selection with a separate

binary selection node, rather than conditioning on some variable already in the causal model.

Consider a simple two node DAG, D → Y , in which both variables are continuous and there

is sample selection on the outcome. Suppose this represents the effect of education (D) on

income (Y ) in a simplified setting in which we assume no common causes of education and

income. (Elwert and Winship, 2014; Hausman and Wise, 1977) If we have a sample that is

filtered to units with a particular range of (low) incomes, then sample selection, S, is not

identical to income. There is still some variation in income, despite sample selection. As

such, we should represent sample selection as a child of income: Y → S. In other cases,

like our running example related to the the effect of racial discrimination on police use of

force, selection may be equivalent to a binary variable in the causal model (in our example

sample selection is equivalent to police making a stop). In this case, we should represent the

existing binary variable as the sample selection variable. There are also many settings in

which sample selection is caused by more than one variable and the binary representation

can simplify things while also showing how such variables can become related by selection.

In cases when the binary selection variable is not equivalent to another variable in the causal

graph, selection may not eliminate all variation in that other variable. This means that paths

running through that variable may not be blocked by sample selection. Only paths that run

directly through variables equivalent to selection will be blocked. We are not the first to use

a binary selection variable in this way. See Bareinboim et al. (2014); Correa et al. (2018);

Egami and Hartman (2021), among others. We echo Greenland (2022) in the sentiment that

“realistic causal diagrams should always have a selection (sampling) indicator node S ... as a

part of the data-generating process.”14

14This sentiment is not new, though the graphical form may be. Berk (1983) states “When considering
whether potential sample selection bias is likely to be realized, the initial step is to formulate a theoretical
model of the selection process. One needs a theory of selection. Without a theory, it is difficult to draw even
preliminary inferences about the nature of the problem and impossible to choose how best to implement
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Figure 2.2: Examples of DAGs and Internal Selection Graphs

D Y S

(a.i.) DAG
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(b.ii.) Internal Selection Graph
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(c.i.) DAG

D YS

U

UYUD

(c.ii.) Internal Selection Graph

The key features of internal selection graphs15 are the inclusion of an encircled sample

selection node, specific background variables,16 and bridges17 that capture the statistical

sample selection corrections.”

15The value of this sort of graph for evaluating sample selection can be seen in Elwert and Winship (2014);
Schneider (2020), papers that explore various types of selection bias in sociology and economic history. These
papers, without stating a formal approach for doing so, add bridge-like undirected edges to the graphs they
use to illustrate issues related to sample selection, but do not formally discuss how these non-causal edges can
be incorporated into attempts to identify causal quantities, as we do in this paper. Greenland et al. (1999);
Daniel et al. (2012) also discuss approaches in which undirected edges are added to the graph.

16Step three of the internal selection graph definition requires that we include additional nodes in our causal
graph. This means including background noise nodes for the treatment and all descendants of the treatment.
As a result, these nodes are entirely determined by their parents represented in the graph. Including US

would lead to the direct parents of S to be associated with each other via bridges through US . But the direct
parents of S will already be associated with each other and connected with a bridge due to conditioning
on selection itself. The associations between US and any direct parents of S are otherwise immaterial to
ignorability, making the inclusion of US unnecessary.

17Bridges are simply graphical representations of the purely statistical relationships that arise as a result of
conditioning on a collider or the purely statistical alteration of relationships as a result of sample selection.
Here, we are forced to filter to S = 1; so when S is a collider, we are conditioning on a collider.
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associations that result from sample selection. Bridges are created as a result of conditioning

on a collider; this is also referred to as “collider stratification”.18 These additions ensure

sample selection and the changes it requires for identification are visualized in the graph and

can be analyzed easily. See Figure 2.2 for examples. Figure 2.2(c.ii.) contains the internal

selection graph for our working example. At first glance, it appears that the types of sub-paths

in internal selection graphs has expanded. We might wonder if the usual chains, forks, and

colliders are joined by additional sub paths containing bridges. But the new additions are

just built up from the old. The possible sub-paths incldue: chains (A → B → C), forks

(A ← B → C), colliders (A → B ← C), bridge chains (A B → C or A B ← C) and

double bridges (A B C). A double bridge might result from something like in Figure

2.3(a). A bridge chain might result from something like Figure 2.3(b,c,d,e). So colliders are

still defined only with respect to directed edges. Bridges cannot create colliders, since they

are really just graphical representations of purely statistical relationships created by sample

selection.

Next, we will differentiate between a few types of paths. Generalized paths are any

sequence of nodes and edges (directed edges and/or bridges) where each node appears only

once (e.g., D Z → Y , D → Y , D → S ← Z, UD → D → Y ). Causal paths are any

generalized path where all edges between the nodes are directed and point in the same

direction (e.g., D → Y , UD → D → Y ). Generalized non-causal paths are any generalized

path that isn’t a causal path (e.g., D Z → Y ).19 Any generalized non-causal path between

D and Y can be considered a “confounding path” that provides an alternative explanation

18Conditioning on a collider allows information to flow between the direct parents of the collider. This is
the opposite of what happens when we condition on other types of nodes, in which case conditioning “blocks”
the flow of information along a path. We can state these relationships as follows. Two sets of nodes, D,Y , in
a graph G are said to be d-separated by a third set, Z, if every path from any node D0 ∈ D to any node in
Y0 ∈ Y is blocked. A path is blocked by Z if either [1] some W is a collider on the path between D,Y and
W ̸∈ Z and the descendants of W are not in Z or [2] W is not a collider on the path but W ∈ Z (see e.g.
Pearl, 2009, Chapter 1 for details).

19Following the above discussion, d-separation is defined in the same way for these paths as for regular
paths, since colliders are defined in the same way. See Appendix A, in particular, Corollary 5 and Definition
A.2.10 for details.
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Figure 2.3: New sub-paths are built from the old.
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for why D and Y covary, other than due to their causal relationship. Considering causal

paths (those that we would like to study) versus confounding paths (those we do not want to

study) can be useful for building intuition for how graphical criteria work.

Consider again the two node example of education and income where the sample has

been selected to include only low income individuals. Figure 2.2(a) captures this. We do not

assume that education explains the entirety of the variation in income and add a separate

selection node. We also add the UY background noise term. Since S is a descendant of Y and

Y is a collider between D and UY , there is a purely statistical association created between

D and UY . Therefore, there is a generalized non-causal path from D UY → Y that will

confound estimates of the effect of education on income, despite the fact that we assumed

there were no common causes between education and income in this simplified example.

This is the simplest example of the need to include such background terms in the analysis

of how sample selection alters relationships between variables in the sample. Let us also

consider again our running example of racial discrimination’s effect on police use of force for
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civilian-police encounters in which the police make a stop. This is described in Figure 2.2(c).

We see that the internal selection graph is essentially identical to the graph in Figure 2.1(b)

but with two additional background terms. In this example, the background terms do not

play a role, but as we’ve just seen they can play an important role in many cases. They are

included here since internal selection graphs are constructed so that all the ways that sample

selection can alter relationships in the sample are captured for any causal graph and sample

selection mechanism.

2.3.2 Internal Selection Adjustment Criterion

How can we use internal selection graphs to determine whether conditional ignorability holds

more generally? Using the intuition of ruling out “alternative explanations” (other than the

causal effect of interest) for why the treatment and outcome covary, we want to leave the

causal paths between the treatment and the outcome that we hope to study untouched while

removing any other systematic relationships between the treatment and outcome that could

provide an alternate explanation. That is, first, we don’t want to conditioning on variables

that are on causal paths we are interested in, since this would block some of the effect we

want to study. Second, we want to block any open generalized non-causal paths between

the treatment and outcome. These paths are not those we want to study and confound the

causal paths that we do want to study. Third, we don’t want to open any previously closed

generalized non-causal paths between treatment and outcome as a result of our covariate

adjustment. (Pearl, 2009) Sample selection may block paths whether we would like them

blocked or not and may open previously closed paths. We formalize these intuitions as a set

of rules that fold in the effects of sample selection; we refer to them as the internal selection

adjustment criterion.
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Definition 2 (Internal Selection Adjustment Criterion (ISAC)). A set of nodes Z in G+
S

satisfies the internal selection adjustment criterion relative to D (treatment) and Y (outcome)

if

1. No element of Z lies on or is a descendant of a node that lies on a causal path originating

from D and arriving at Y . Note that an element of Z could be a descendant of D itself,

if it is not on a causal path from D to Y . Note also that elements of Z should not be

on, or descendants of nodes on, causal paths even if S is also on the causal path.

2. Z blocks every generalized non-causal path between D and Y that does not pass

through S. Note that generalized non-causal paths passing through M , when S is a

descendant of mediator M , on which M is an ancestor of Y also do not need to be

blocked, assuming the previous condition is not violated. Further, M should not be a

member of Z from the previous condition.

An important component of this criterion is that we do not need to worry about blocking

paths on which S appears. If S is a collider, we have already added bridges that circumvent

S itself. If S is not a collider but is on a path, it blocks the path.20 This also shows us that

sample selection can alter relationships in the sample, even when the sample selection node

is not a collider. As in the case when the sample selection node is a collider, we also need to

take care to account for how it alters relationships when it is not a collider.

Our criterion builds on powerful, well-known, existing criteria like those presented in Pearl

(1995); Shpitser et al. (2010); Daniel et al. (2012); Correa et al. (2018). Using these building

blocks, ISAC focuses us on what is required to attain internal validity under non-random

sample selection by relying on internal selection graphs and allowing us to determine whether

20When the sample selection node is on a generalized non-causal path but is not a collider, we do not
need to consider blocking this path with some additional node Z. Sample selection will already block this
path. Further, the associations created when sample selection is a collider are captured by the bridges
that circumvent S. So we do not need to consider any path that passes through S. When selection is the
descendant of a mediator M , we will be working with potential outcomes for which we intervene on M ; see
below. This means that paths running through M on which M is an ancestor of Y will be blocked and since
we already condition on a descendant of M , parents of M will already be associated due to selection, when
M is a collider.
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causal effects are identifiable under non-random sample selection, regardless of the role that

sample selection plays in the casual graph. See Section 2.4 for a more detailed discussion.

The following results use our internal selection adjustment criterion to show how to identify

internal causal quantities in the presence of sample selection and confounding, whether

selection is post-treatment or not. Recall that mediators are nodes that lie on at least one

causal path from the treatment to the outcome. Mediators are discussed further below.

Internal Validity Results. If a set of nodes Z in G+
S satisfies ISAC relative to D (treatment)

and Y (outcome) and

• S is not a mediator or descendant of a mediator between D and Y , then

– (ignorability) Yd ⊥⊥ D|Z, S = 1.

– (identification) We can identify p(Yd|S = 1) =
∑

z p(Y |D = d, Z = z, S = 1)p(Z =

z|S = 1).

• S is a mediator between D and Y (but S is not also a descendant of another mediator),

then

– (ignorability) Yd,S=1 ⊥⊥ D|Z, S = 1.

– (identification) We can identify p(Yd,S=1|S = 1) =
∑

z p(Y |D = d, Z = z, S =

1)p(Z = z|S = 1).

– (non-ignorability) For any set of observables, W , Yd ̸⊥⊥ D|W,S = 1 and Yd,Sd′
̸⊥⊥

D|W,S = 1.

• S is a descendant of an observed mediator, M , between D and Y (but S is not also a

mediator itself), then

– (ignorability) Yd,m ⊥⊥ D|Z, S = 1 and Yd,m ⊥⊥ M |D,Z, S = 1, where M = m is

observed.

– (identification) We can identify

p(Yd,m|S = 1) =
∑

z p(Y |D = d,M = m,Z = z, S = 1)p(Z = z|S = 1).

– (non-ignorability) For any set of observables, W , Yd ̸⊥⊥ D|W,S = 1 and Yd,Md′
̸⊥⊥

D|W,S = 1.
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These results are proved in Appendix A in Theorems 6, 7, and 8. Note that all of these

identification results equate internal causal quantities with expressions that are estimable

from the selected sample alone.21 The first bullet can be used to identify “internal total

effects”; the second and third bullets can be used to identify “internal direct effects.” The

above results show that sample selection can often be seen as an omitted variable problem.

Heckman (1979) discusses “the bias that results from using nonrandomly selected samples

to estimate behavioral relationships as an ordinary specification bias that arises because

of a missing data problem.” The idea is essentially that, in many cases, sample selection

can be thought of as an omitted variable or misspecification problem. Heckman’s discussion

was in the context of a parametric framework and he proposed a correction procedure in

this context. Our results show that something similar is true when we take the graphical,

non-parametric view on sample selection as a threat to internal validity. When the threat

that sample selection poses to the internal validity of causal effect estimates of D (treatment)

on Y (outcome) can be overcome through adjustment on some covariates, Z, the problem of

sample selection for internal validity can be viewed as an omitted variable problem, when Z

is unobserved. Before turning to a discussion of internal direct effects and mediators, we first

consider some connections to generalizability.

2.3.3 Connections to generalizability

As previously discussed, researchers are often concerned with how a causal effect might look

averaged over some population of interest, as opposed to averaged over the sample at hand.

When the sample is drawn from the target population in some (random or non-random)

way, we may hope to use information on the causal effect available from the sample to

21Estimation strategies that would apply to a covariate adjustment or conditional ignorability identification
strategy will also apply when we properly account for sample selection. In Section A.5 of Appendix A, we
present a discussion of IPW estimation of E[Yd|S = 1], E[Yd,S=1|S = 1], and E[Yd,m|S = 1]. This is meant
to illustrate one example of how estimation might proceed for internal causal effects. We also provide this
discussion to demonstrate that estimation of “internal controlled direct effects” is also straightforward.
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generalize to a statement about the causal effect in the population.22 Generalizability in this

sense is a form of external validity. We will show that internal validity is more permissive

than generalization, by which we mean the causal assumptions invoked to identify (and the

observed data required to estimate) internally valid causal effects are a subset of those invoked

for causal effect estimates that generalize from the sample. In doing so, we formalize what

Campbell and Stanley (1963) first claimed with respect to experiments for approaches using

covariate adjustment: “Internal validity is the basic minimum without which any experiment

is uninterpretable...”2324 We illustrate this in more formal terms using graphical criteria; we

limit our discussion to causal quantities containing potential outcomes of the form Yd for

simplicity, i.e. those relating to total effects.

Definition 3 (Generalization Criterion (GC)). A set of nodes Z in G+
S satisfies the general-

ization criterion relative to D (treatment) and Y (outcome) if

• Z satisfies ISAC relative to D and Y and

• ZExt ⊂ Z blocks all causal and generalized non-causal paths between Y and S in G+
S

other than those that end in a causal path from D to Y .

22In this section, we discussion connections between our results and recent results addressing generalization
(Correa et al., 2018). This is a distinct but related to the problem of transportability. See Bareinboim
and Pearl (2016) for a discussion of the differences between generalization and transportability. We are
considering a single SCM. In many interesting observational settings, the same SCM might not hold across
all settings of interest. For example, there may be a reason why, at the particular hospital we have data from,
the SCM we are evaluating holds and further that we can sustain related ignorability statements or satisfy
graphical criteria related to this SCM, but the SCM might be different at other hospitals. Often we have to
be identification opportunists, looking for someplace that the treatment was assigned in some way that is
conducive to identification, but those mechanisms (SCM) may not hold elsewhere. You might be able to
extend to a larger population in which the same SCM holds, but not to a population in which the SCM does
not hold. When considering external validity, you have to have a specific target population in mind; and here
we’re talking about external validity for the population in which the same SCM holds; i.e., generalization not
transportation.

23Shadish et al. (2002) clarify that the special role of internal validity is specific to “cause-probing research”,
as we are discussing here, but not all forms of research.

24An alternative version of this idea can be stated as follows. If observed covariates and data limited to the
selected sample (S = 1) are insufficient identify p(Yd|S = 1), then they will also be insufficient to identify
p(Yd) = p(Yd|S = 1)p(S = 1)+ p(Yd|S = 0)p(S = 0), since p(Yd) extends beyond the selected sample which is
all we have information about. We show this within the context of graphical criteria in this section.
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This definition is a translation of Definition 8 from Correa et al. (2018).

Generalization Results. If a set of nodes Z in G+
S satisfies GC relative to D (treatment)

and Y (outcome) and S is not a mediator or descendant of a mediator between D and Y ,

then

• (ignorability) Yd ⊥⊥ D|Z, S = 1 and Yd ⊥⊥ S|ZExt.

• (identification) We can identify p(Yd) =
∑

z p(Y |D = d, Z = z, S = 1)p(ZInt =

zInt|ZExt = zExt, S = 1)p(ZExt = zExt), where ZInt = Z − ZExt.

This translates Definition 7 and Theorem 1 in Correa et al. (2018) to use potential outcomes.

The causal assumptions invoked by ISAC to identify p(Yd|S = 1) are a subset of those

invoked by GC to identify p(Yd) using covariate adjustment. Not only do we need Yd ⊥⊥

D|Z, S = 1, we also need Yd ⊥⊥ S|ZExt. Further, we can estimate p(Yd|S = 1) with observed

data from the selected sample for Y,D,Z alone. On the other hand, p(Yd) can be estimated

with observed data from the full population on ZExt in addition to data from the selected

sample for Y,D,Z. In this way, we have formalized that generalization “costs more” in terms

of both causal assumptions and observed data. These generalization results are proved in

Appendix A; see Theorem 9. Additional connections are also shown in Lemma 24.25

Let’s explore some examples and discuss how identifiability can differ for internal and

external validity. First, let’s consider our running example of racial discrimination in policing

in which we are interested in the effect of perceived civilian race on police use of force in

which we have data only on civilian-police encounters in which the police made a stop. The

internal selection graph for this can be found in Figure 2.2(c.ii.). We immediately see that

there is no hope for generalizing: since S is a direct cause of Y there is no hope of satisfying

GC, regardless of the choice of ZExt. Further, we only have access to data for police-civilian

encounters in which the police made a stop, so we do not have any data for the full population.

But do we satisfy the internal selection adjustment criterion? As we saw before, no we don’t.

25See Correa et al. (2018) for an IPW estimator for generalization.
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This is because of the generalized non-causal path from D U → Y , which violates ISAC. So

no total or direct effect is identifiable.

Next let’s consider Figure 2.4(a), which we will just consider in the abstract. Here there is

a common cause of sample selection and the outcome, but the two are not directly associated

and sample selection is not a collider. Let’s consider internal validity first. Suppose we choose

not to condition on any covariates. We easily see that we satisfy ISAC. This means that

we are indeed able to identify internal causal quantities without any covariate adjustment.

We also only need data from the selected sample to estimate effects for the selected sample.

What about identifying external causal quantities? We see that letting Z = ZExt means that

we satisfy GC. So we can identify external causal quantities. However, since we need to

adjust for Z, we could only estimate generalized effects so long as we have data for Z for the

full population. Finally, Figure 2.4(b) is similar to Figure 2.4(a), but it turns out that we

can identify internal causal quantities adjusting for W or Z or both. Estimation would only

require data on one of these for the selected sample. However, to identify external causal

quantities we must adjust for Z (or Z and W ). Estimation would require data on Z for the

full population, data for the selected sample alone is insufficient, as is data only on W , even

if it is for the entire population.

Figure 2.4: Examples for comparison of ISAC and GC.
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2.3.4 Sample Selection based on a mediator

In this section, we return to potential outcomes of the the form Yd,S=1 and Yd,m, which allow

us to consider particular types of direct effects called “controlled direct effects.” Above we saw

that, when sample selection plays the role of a mediator or the descendant of a mediator and

we satisfy ISAC, we can identify p(Yd,S=1|S = 1) or p(Yd,m|S = 1), respectively. Identifying

these internal causal quantities allows us to identify what we call “internal controlled direct

effects,” which are defined below. But what are these strange looking effects?

Definition 4 (Internal Controlled Direct Effects (ICDEs)). Define E[YD=d,S=1−YD=d′,S=1|S =

1] and E[YD=d,M=m−YD=d′,M=m|S = 1] to be the internal controlled direct effect when selection

is a mediator between D and Y and when selection is a descendant of a mediator, M , between

D and Y , respectively.

In mediation analysis, we have a treatment D, a mediator M , and an outcome Y , in

addition to other relevant covariates. There are two possible paths along which the treatment

might effect the outcome. First is the familiar direct path: D → Y . Second is the indirect

path: D → M → Y . This set up follows the mediation discussion from Baron and Kenny

(1986). For our purposes, we consider the settings in which the sample selection node is

itself a mediator between D and Y 26 or is a descendant of a mediator between D and Y .

There are a variety of causal effects to consider when considering mediation, including total

effects, controlled direct effects, natural direct effects, and natural indirect effects (Robins

and Greenland, 1992; Pearl, 2001; VanderWeele, 2011; VanderWeele and Vansteelandt, 2009;

Richiardi et al., 2013). In both of our settings, a causal path between D and Y is blocked

or partially blocked as a result of sample selection. This means that total effects, like

SPATE = E[Yd− Yd′ |S = 1], which capture all causal paths along which the treatment D can

effect the outcome Y , are not identifiable. The indirect effect of D on Y that runs along the

26Selection can be a mediator only when it is equivalent to a substantive binary variable in the causal
graph. Our working example is an example of this.
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path on which S lies or is a descendant will also not be identifiable. Only the causal paths

D → Y that do not relate to S remain unaltered. Are we able to identify the direct effects

that run along these unaltered paths?

In our present discussion, we are limited to the study sample. So the type of causal

effects that we may be able to identify when sample selection is a mediator or descendant of

a mediator will still be for the selected sample alone. We are therefore interested in direct

effects for the selected sample. ICDEs are just this sort of effect: direct effects averaged over

the units in the selected sample. ICDEs are distinct from CDEs for the entire population

and are also distinct from total effects for the selected sample. Instead, ICDEs compare

setting D = d with setting D = d′, while also setting M to m (or S to 1) for both versions of

treatment interventions, for units in the selected study sample. To understand ICDEs better,

let’s return to our working example. First, we note that total effects cannot be identified

since sample selection (police making a stop) is a mediator blocking one of the causal paths

between the treatment (police perception of race) and outcome (police use of force). But we

might consider an ICDE as a possible effect of interest. The ICDE is the difference in police

use of force between

• a setting in which we intervene to force police to perceive each civilian as being from

the minority racial group and intervene to force police to stop each civilian

• a setting in which we intervene to force police to perceive each civilian as being from

the majority racial group and intervene to force police to stop each civilian

where we average this difference in use of force only over the police-civilian encounters in

which police actually did make a stop. Therefore, the ICDE in this example captures the

effect of perceptions of rave on use of force, once a stop occurs, averaged over the ecnounters

in which a stop was made in reality. A key to understanding this effect is to consider that,

for some encounters in which a stop was made in reality, under a different perceived civilian

race the officer may not have made a stop. ICDEs evaluate what would have happened if

we intervened in these cases to ensure that the officer still made a stop. In this example,
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the path D U → Y violates ISAC and confounds even the ICDE. That is, sample selection

creates a purely statistical association between perceptions of race and use of force that we

cannot disentangle from the direct effect, even for police-civilian encounters we observe.

2.4 Discussion

2.4.1 Connections to existing work

Numerous literatures relate closely to the problems of sample selection and internal validity,

yet we argue that the tools proposed here fill a gap in the toolkit available to researchers to

fully and reliably examine the potential threats to internal validity due to sample selection and

to illuminate possible solutions. Sample selection can arise at various points in the a study:

during study entry (e.g., from non-participation or participation that is not representative of

the population) or the data gathering process (e.g., only gathering data on some segment of

the population), between study entry and analysis (e.g., loss to follow-up), or even during

analysis as a result of conditioning or subsetting. Montgomery et al. (2018) illustrate how

sample selection can threaten not only observational studies but also experiments. Sample

selection and the associated bias goes by many different names in various fields: sample

truncation bias, non-response bias, attrition bias, ascertainment bias, Heckman selection

bias (Heckman, 1979), selection on the treatment, selection on the outcome, Berkson’s

bias, homophily bias, survival bias, m-bias, differential loss to follow up, volunteer bias,

self-selection bias, healthy worker bias, and others. See Hernán et al. (2004); Elwert and

Winship (2014); Schneider (2020) for overviews of the various forms that sample selection

can take. Different research traditions have proposed informal guidelines for determining

when sample selection threatens internal validity. Most notably, Campbell, Stanley, and their

co-authors (Campbell, 1957; Campbell and Stanley, 1963; Cook and Campbell, 1979; Shadish
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et al., 2002) introduce the language of validity27 to discuss conceptually how bias can arise in

the design and implementation of studies and how these challenges can be overcome. Pearl

and others (Pearl, 1995, 2009, 2014; Shpitser et al., 2010; Spirtes et al., 2000) advocate causal

graphs and structural causal models that can be seen as subsuming the potential outcomes

approach (Rubin, 1974, 1978, 1990) to causal inquiry. Matthay and Glymour (2020) take the

very useful step of explicitly connecting the graphical approach to the Campbell tradition.

There are graphical approaches focused on identification of causal effects (Pearl, 1995;

Shpitser et al., 2010) that do not directly discuss sample selection. There are many recently-

developed approaches focused on generalizability and transportability (Bareinboim and Pearl,

2012, 2016; Correa and Bareinboim, 2017; Correa et al., 2018, 2019; Bareinboim et al., 2014;

Lesko et al., 2017; Pearl, 2015b; Pearl and Bareinboim, 2011, 2014, 2019; Hartman et al.,

2015; Egami and Hartman, 2021). There are graphical approaches focused on generalizing

conditional causal effects from complete cases when there is missing data (Daniel et al., 2012),

generalizing in the face of missing data and sample selection (Saadati and Tian, 2019), and

generalizing from missing data alone (Mohan and Pearl, 2014, 2021).28 Didelez et al. (2010)

focus on outcome dependent sampling, on the causal odds ratio, and mostly on generalization;

they also present some results on testing for the presence of conditional causal effects.

Our criterion builds on these powerful, existing graphical criteria, but focuses on and

facilitates easy analysis of internal validity under non-random sample selection by visualizing

the effects of sample selection and illustrating whether identification of internally valid causal

effects is possible regardless of the role that the sample selection node plays in the causal

graph. For instance, ISAC is similar to the back-door criterion of Pearl (1995). However,

understanding that sample selection is a form of conditioning that could be contemplated on

a DAG, simply including S in the adjustment set of the back-door criterion would violate the

27Shadish et al. (2002) describe “internal validity” as concerning whether the covariation between the
treatment and outcome results from a causal relationship for the study sample.

28Missing data can be seen as a generalization of sample selection. (Saadati and Tian, 2019; Westreich,
2012; Howe et al., 2015)
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back-door criterion when S is post-treatment, since the back-door criterion does not allow

post-treatment conditioning. Thus, we would violate the back-door criterion in cases where

we can make causal progress. Further, Pearl (2009) Section 11.3 discusses how background

noise nodes that are often left off of DAGs can become important under certain types of

conditioning. We ensure that, when relevant, such variables are included on internal selection

graphs so that all effects of sample selection are represented graphically. Second, ISAC is

also similar to the adjustment criterion of Shpitser et al. (2010). However, simply including

S in the adjustment set of the adjustment criterion would violate the adjustment criterion

when S is a mediator or a descendant of a mediator. This is because the adjustment criterion

disallows conditioning on nodes that appear on causal paths or that are descendants of

nodes on causal paths. Thus, we would violate the adjustment criterion in cases where we

can make causal progress. Third, ISAC is similar to the generalized back-door criterion of

Daniel et al. (2012), which is focused on generalization from complete cases when there is

missing data but not internal validity. However, the generalized back-door criterion does not

allow for any post-treatment adjustment and, in Daniel et al. (2012), is shown to only to

identify Z-conditional causal quantities. Finally, ISAC is similar to the generalized adjustment

criterion of Correa et al. (2018), but ISAC is less restrictive since it focuses on internal rather

than external validity. Specifically, ISAC requires a subset of the causal assumptions required

by the generalized adjustment criterion.

Despite existing approaches not focusing on sample selection and internal validity, sample

selection is recognized as a threat to internal validity that is fundamentally different from

common cause confounding (Hernán et al., 2004; Hernán and Robins, 2020; Infante-Rivard

and Cusson, 2018; Matthay and Glymour, 2020; Smith, 2020; Elwert and Winship, 2014;

Schneider, 2020). Other authors discuss sample selection in the context of external validity

(Arah, 2019; Flanders and Ye, 2019; Thompson and Arah, 2014) and mention the threat

to internal validity posed by sample selection (Berk, 1983; Tripepi et al., 2010; Cuddeback

et al., 2004; Hernán and Robins, 2006; Larzelere et al., 2004; Smith and VanderWeele, 2019;
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Westreich et al., 2018; Mathur, 2022). The celebrated approach presented in Heckman (1979)

makes parametric assumptions and requires data for the entire population to estimate a

model for the probability of selection. Hernán (2017) shows how sample selection can present

different problems for generalization and external validity than it does for internal validity; we

provide clarity on this in the general. Recent papers have also parsed specific types of sample

selection using graphical tools. (Lu et al., 2022; Sjölander, 2023) Finally, recent literature on

competing events (Stensrud et al., 2021, 2022) appeal to the notion of separable effects in

examples like our running policing example.

2.4.2 Lessons

We now draw several important lessons from our discussion. First, researchers need to be

careful about the details of the causal graph that they are studying. Including a sample

selection node in every causal model and careful consideration of the sample selection

mechanisms is required to determine the threat that sample selection poses to internal validity

and what, if anything, might be done about it. Second, there is potential for users to

intentionally or unintentionally favor one graph over another very similar graph in order to

show that some causal quantity is identifiable. These are difficult but inherent problems in

causal study and good-faith efforts to do credible causal inference should spend ample time

defending the specific causal model being analyzed. Let’s consider what other lessons we can

take away from what we’ve seen.

• Informal applications of other graphical criteria to internal validity and sample selection

can be misleading and should be avoided.

• Sample selection can influence identification, even when it is not a collider.

• When sample selection manifests as attrition or some other post-treatment type of

selection, randomization of treatment assignment does not automatically ameliorate

sample selection problems even for internal validity. Therefore, the discussion here is

not limited to observational studies.
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• Sample selection does not always threaten internal validity or external validity.

• Selection on the outcome is usually problematic.29 However, association of the outcome

and selection does not automatically present a problem. When a third variable causes

both and the two are only indirectly related, there may be no problem.

• Post-treatment selection is typically not a problem on its own.

• Indirect association between selection and the outcome or selection and the treatment

are typically not problems on their own but can be when they appear together.

• When selection is a mediator, causal quantities can be identified.

We again emphasize that these types of lessons do not apply universally. The specific

causal quantities that may be identified, and whether identification of them is possible,

depends on the causal model and which variables are observed. Whether selection is a collider,

confounder, mediator, or indirectly related to variables of interest, ISAC provides clear

guidance on identification. Formal tools like this should be the default mode for determining

when and how internally valid causal effects can be identified. The target of causal studies is

often a causal effect averaged across the study sample alone. The ability to estimate such an

effect without bias is called internal validity. We’ve presented a simple graphical framework

for dealing with sample selection that allows us to reliably attain internal validity for causal

effects for the selected study sample. This framework allows sample selection to play any

role in the original causal graph and provides clear guidance on which causal quantities are

identifiable and what is required for identification through covariate adjustment. We’ve also

seen examples and lessons that, we hope are prove useful for researchers as they attempt to

obtain internally valid estimates of causal effects for their study sample.

29Though it can be allowed in certain circumstances, like case control studies in which the causal odds
ratio is the target. See Daniel et al. (2012) section 4.5 “Missingness driven only by outcome.” This and
examples like (1.h.) highlight that rules of thumb like “selection on the outcome is biasing” might not
correctly characterize all scenarios. Hence, while such general lessons can be useful guidance, it is important
to consider the specifics of each application and use formal tools and systematic analysis.
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CHAPTER 3

Sensitivity analysis

Both sample selection and unobserved confounding can threaten the internal validity of

causal effect estimates by creating spurious associations (i.e., confounding paths) between

the treatment and outcome variables in a dataset. In Chapter 2, we provide a framework for

evaluating these threats and whether covariate adjustment can be used to eliminate them.

However, there are many settings in which covariate adjustment on observed variables alone is

insufficient to overcome these threats to internal validity. In such settings, sensitivity analysis

based on the omitted variables paradigm can be productive. Existing sensitivity analysis

frameworks (Cinelli and Hazlett, 2020; Chernozhukov et al., 2022) based on omitted variables

can be generalized to address the threats to internal validity from sample selection, in addition

to unobserved confounding. Some sensitivity frameworks have already been adapted to the

sample selection and internal validity setting. However, when applied to sample selection

and internal validity, the quantities that researchers are required to reason about (i.e. the

sensitivity parameters) can be “not as intuitive to specify.” (Smith and VanderWeele, 2019)

Our main contribution is to develop an approach that formally bounds such unintuitive

parameters in terms of quantities that are intuitive, thus allowing existing omitted variable

based sensitivity analyses to be used for sample selection and unobserved confounding.

Suppose an investigator is interested in estimating the effect of a treatment, D, on an

outcome, Y , for the selected sample alone or for the subpopulation for which the selected

sample is a representative sample (denoted with S = 1).1 Suppose further that the investigator

1See Chapter 2 for further discussion of internal validity, causal effects for the selected sample, and causal
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knows or is willing to assume that Yd ̸⊥⊥ D|X,S = 1 but Yd ⊥⊥ D|W,X, S = 1 based on the

tools discussed in Chapter 2. Yd ⊥⊥ D|W,X, S = 1 is a conditional ignorability statement

that can be used to identify internally valid casual effects. Ydi is a potential outcome; that is,

value the variable Y would have taken for unit i, if the variable D for unit i had been set,

possibly counterfactually, to the value d. Suppose that X contains observed covariates. If W

is not observed, we can consider it as an omitted variable and use an omitted variable based

sensitivity analysis to understand the threats to internal validity posed by sample selection.

In the present setting, W may be a variable that blocks confounding paths or spurious

associations between the treatment and outcome created by sample selection.2 Figure 3.1

presents simple examples. The graphs in Figure 3.1 are internal selection graphs, which

explicitly show how sample selection alters the relationships between variables in the selected

sample. See Chapter 2 for how such graphs can be constructed.

Figure 3.1: Internal selection graph examples
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In this Chapter we discuss the omitted variable based sensitivity analyses of Cinelli

and Hazlett (2020) and Chernozhukov et al. (2022) and how these can be leveraged to

evaluate the threats that sample selection poses for internal validity. We discuss how the

sensitivity parameters in these frameworks, in the sample selection setting, can be difficult

to interpret. We show how alternative expressions for these sensitivity parameters can be

effects for the subpopulation for which the selected sample is representative.

2W could also be a simple common cause confounder of the Y,D relationship. This would put you in the
settings already discussed in Cinelli and Hazlett (2020) and Chernozhukov et al. (2022).
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derived in terms of more easily interpreted quantities in simple parametric settings. Using

these parametric settings as inspiration, we then propose bounds on the difficult to interpret

sensitivity parameters for general, non-parametric settings again in terms of more easily

interpreted quantities.

3.1 Omitted variable based sensitivity analyses

We review three settings in which an investigator may consider the threats to internal validity

from sample selection as a omitted variable bias problem. Each of these settings allow us

to use expressions for or bounds on such bias as the basis for a sensitivity analysis. These

settings are those considered in Cinelli and Hazlett (2020) and Chernozhukov et al. (2022).

Linear Model We may be interested in estimating a linear regression model, using

the selected sample, like in Equation 3.1a. Since we know that Yd ̸⊥⊥ D|X,S = 1 and

Yd ⊥⊥ D|W,X, S = 1, βY∼D|X,S=1 contains some bias relative to what we would estimate if

we were to include W in the regression, as in Equation 3.1b. We will refer to βY∼D|X,S=1 as

θs and βY∼D|W,X,S=1 as θl. These are the parameters of interest for the “short” and “long”

regressions, respectively.

[
Y = βY∼D|X,S=1D +XβY∼X|D,S=1 + ϵs

]
|S = 1 (3.1a)[

Y = βY∼D|W,X,S=1D +XβY∼X|D,W,S=1 + βY∼W |D,X,S=1W + ϵl
]
|S = 1 (3.1b)

Partially Linear Model Alternatively, we may be interested in estimating a partially

linear model, as in Equation 3.2b. As in the fully linear case, we are only able to estimate

Equation 3.2a, which omits W from our estimation.3

3In both the linear and partially linear cases, we assume that the user is considering how a linear or
partially linear model (and the inclusion of a covariate in these models) differs from a fully non-parametric
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[Y = θsD + fs(X) + ϵs] |S = 1 (3.2a)

[Y = θlD + fl(X,W ) + ϵl] |S = 1 (3.2b)

Non-parametric Model Finally, we may be interested in estimating a linear functional of

the conditional expectation function of the outcome in a non-parametric setting, like Equation

3.3b. Here we assume a binary treatment D. Yd = fY (d,X,W,UY ) is the equation for Y in

the structural causal model4 under intervention to set D = d. Again, the investigator is only

able to estimate Equation 3.3a, where f ∗
Y (D,X)

∆
= E[Y |D,X] = E[fY (D,X,W )|D,X].

θs = E[f ∗
Y (1, X)− f ∗

Y (0, X)|S = 1] (3.3a)

θl = E[Y1 − Y0|S = 1] = E[fY (1, X,W )− fY (0, X,W )|S = 1] (3.3b)

In all three settings, there will be some bias resulting from not adjusting for W in our

estimation. The bias is θs − θl. The bias may arise from sample selection or common

cause confounding or both. We can use existing omitted variable bias frameworks to obtain

expressions for the bias. Using these we can conduct sensitivity analysis to see how our

estimate would change if we had included W in our estimation.

3.1.1 Expressions for omitted variable bias

For each of the settings above, Cinelli and Hazlett (2020) and Chernozhukov et al. (2022)

provide expressions for or bounds on the omitted variable bias that can be expressed in terms

of simple sensitivity parameters that capture relationships between variables in the sample.

setting, before considering that they want to know how inclusion of W in the model changes θs.

4See Chapter 2 for more discussion of structural causal models under sample selection.
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Linear Model Following Cinelli and Hazlett (2020), we can show that omitted variable

bias for linear regression conditional on S = 1 can be expressed as in Equation 3.4. See

Appendix B Section B.1 for the full derivation.

|β̂Y∼D|X,S=1 − β̂Y∼D|X,W,S=1| =
SD(Y ⊥D,X |S = 1)

SD(D⊥X |S = 1)

√√√√R2
Y∼W |D,X,S=1R

2
W∼D|X,S=1

1−R2
W∼D|X,S=1

(3.4)

SD(Y ⊥D,X |S=1)
SD(D⊥X |S=1)

is estimable from observed data. R2
Y∼W |D,X,S=1 is a partial R2 that equals the

fraction of residual variation in Y explained by W after partialling out both D and X, in the

selected sample. R2
W∼D|X,S=1 is a partial R2 that equals the fraction of the residual variation

in D explained by W after partialling out X, in the selected sample. See Cinelli and Hazlett

(2020) for further discussion of how to interpret partial R2s.

Partially Linear Model Chernozhukov et al. (2022) show that omitted variable bias

in the partially linear setting can be bounded by an expression in terms of η2Y∼W |D,X,S=1,

η2D∼W |X,S=1, and terms that are estimable from the data. η2Y∼W |D,X,S=1 and η2D∼W |X,S=1 are

Pearson’s correlation ratios (or non-parametric R2s).5 η2Y∼W |D,X,S=1 is the proportion of

residual variation in Y explained by W , in the selected sample. η2D∼W |X,S=1 is the proportion

of residual variation in D explained by W , in the selected sample. See Chernozhukov et al.

(2022) for the specific bound and further discussion of how to interpret partial η2s.

Non-parametric Model Chernozhukov et al. (2022) also show that omitted variable bias

in the non-parametric setting can be bounded by an expression in terms of η2Y∼W |D,X,S=1 and

a second term that, in the case of targeting θl = E[Y1 − Y0|S = 1] with a binary treatment

D, is the “average gain in the conditional precision with which we predict D by using W in

5η2D∼W |X,S=1 = Var(E[D|W,X,S=1]|S=1)−Var(E[D|X,S=1]|S=1)
Var(D|S=1)−Var(E[D|X,S=1]|S=1) =

η2
D∼WX|S=1−η2

D∼X|S=1

1−η2
D∼X|S=1

. η2Y∼W |D,X,S=1 can be

similarly interpreted.
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addition to X,” which is somewhat similar to η2D∼W |X,S=1. See Chernozhukov et al. (2022)

for the specific bound and details.

The sensitivity parameters in the above settings are either partial R2s or η2s, measures of

dependence with which most researchers will have some familiarity.6 However, our ability

to productively conduct sensitivity analysis hinges on our ability to interpret the sensitivity

parameters on which the sensitivity analysis relies. Researchers intending to conduct a

sensitivity analysis using these approaches must be able to build an understanding of the

relationships captured by these sensitivity parameters based on external knowledge, first

principles, existing literature, intuition, and subject matter expertise. Such understanding

reflects causal relations between the variables.7 As we discuss next, obtaining such knowledge

is complicated by sample selection.

3.1.2 Difficulty interpreting sensitivity parameters in selected samples

Let us allow for either of the sensitivity parameters R2
Y∼W |D,X,S=1 or R2

W∼D|X,S=1 (or

η2Y∼W |D,X,S=1 or η2D∼W |X,S=1) to contain a spurious relationship that results from strati-

fying to S = 1 where S, sample selection, is a collider,8 as opposed to or in addition to causal

relationships that operate in the full population. Sensitivity analysis is productive when

researchers are able to leverage external knowledge about the relationships captured by the

6While these may be familiar measures of dependence, they do not have all properties of dependence
measures that are desirable. For example, an R2 of zero can exist for dependent variables and an R2 reflects
only the linear relationship between variables. Their familiarity and simplicity may compensate for some
of their drawbacks, however. See Rényi (1959) for a discussion of these measures of dependence and the
properties that make good measures of dependence. Cinelli and Hazlett (2020) and Chernozhukov et al.
(2022) provide thorough discussions of sensitivity analysis using these bias expressions and reasoning about
these types of sensitivity parameters, in addition to tools and examples for conducting such analysis. We refer
the reader to those discussions for important guidance on these measures and sensitivity analysis in general.

7It is important to recognize that the R2s or η2s in the expressions for or bounds on omitted variable
bias from Cinelli and Hazlett (2020) and Chernozhukov et al. (2022) are statistical measures of dependence
between the variables. These could measure direct causal relationships between variables or more complex
chains of causal relationships.

8Colliders are nodes in causal graphs into which two edges point. For example, A→ B ← C.
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sensitivity parameters to inform the range of plausible values that the sensitivity parameters

may take. This can then be used to determine how θs may change if W were included in

the estimation using bias expressions or bounds. However, such external knowledge will be

difficult to obtain when a sensitivity parameter contains a purely statistical (i.e., non-causal)

relationship created by conditioning on a collider due to sample selection.9 This is because

the association captured by such a sensitivity parameter does not result from structural

relationships in which one variable causes another. Instead, the association results from, or

is changed by, the often counterintuitive phenomenon of conditioning on a common effect

(a collider). Such associations do not exist in the population from which the sample was

selected, do not reflect mechanisms that appear in nature, and will, therefore, be difficult to

understand from first principles, previous studies (unless those studies suffered from similar

sample selection), intuition, or subject matter expertise concerning mechanisms. See the

worked example below for an example. In what follows, we consider how we might deal

with this problem by appealing to relationships between the variables in the full popula-

tion, as opposed to the selected sample.10 Relationships in the population should reflect

causal mechanisms and should, therefore, be easier to reason about. In our discussion, we

focus on R2
W∼D|X,S=1 and η2D∼W |X,S=1. Similar discussion could apply to R2

Y∼W |D,X,S=1 or

η2Y∼W |D,X,S=1.
11 We start by building a sense for how these sensitivity parameters can be

expressed in terms of structural relationships between the variables in the full population in

simple parametric settings.

9By “purely statistical relationship,” we mean one that arises due to conditioning, as opposed to a
relationship that exists causally in the population from which the sample was selected.

10If one or both of the sensitivity parameters does not contain a relationship altered by collider stratification,
then the parameters for the selected sample may be the same as those for the population. An exception is
when sample selection blocks a causal path that operates in the population but not in the selected sample.
See Chapter 2 for more discussion.

11We do not fully address the non-parametric case, since not all of the sensitivity parameters can be
expressed as R2s or η2s, but if the sample selection collider alters the association between Y and W , then
our discussion will still apply.
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Binary random variables We consider the case where W and D are binary. We assume

that data are generated according to a simple collider graph: D → S ← W . Assume

X = {∅}. In Appendix B Section B.2, we show that R2
D∼W |S=1 can be written in terms of six

probabilities as shown in Equation 3.5.12

R2
D∼W |S=1 = [PS=1|11PS=1|00 − PS=1|10PS=1|01]

2×
PW=1PD=1PW=0PD=0[PS=1|11PD=1 + PS=1|10PD=0][PS=1|01PD=1 + PS=1|00PD=0]×

[PS=1|11PW=1 + PS=1|01PW=0][PS=1|10PW=1 + PS=1|00PW=0]

 (3.5)

The relationship between W and D in the selected sample (S = 1) can be expressed in terms

of the relationships between S,W and D, in the full population, in addition to P (D = 1)

and P (W = 1). These quantities capture structural (i.e., causal) relationships between the

variables. Thus, R2
D∼W |X,S=1 can be understood by considering structural relationships in

the full population that comprise the sample selection mechanism.

Truncated multivariate normal random variables Next consider the case where W,D,

and S have the causal structure shown in Figure 3.2, W,D, and S0 have a multivariate normal

joint distribution, and S = 1[S0 ≥ C] for some C ∈ R. Again X = {∅}. S0 can be thought of

as a latent variable that captures how W and D relate to S. The bidirected edge captures

that W and D could have some relationship in the population that is altered as a result of

sample selection. Within the stratum S = 1, we have a truncated multivariate normal joint

distribution. In Appendix B Section B.3, we show that R2
W∼D|S=1 can be expressed as in

Equation 3.6.13

12PW=w = P (W = w), PD=d = P (D = d), PS=1 = P (S = 1), PS=1|wd = P (S = 1|W = w,D = d),
PW=0 = 1− PW=1 and PD=0 = 1− PD=1.

13In Equation 3.6, if ρW∼D = 0, then R2
D∼W |S=1 =

R2
S∼DR2

SW θ2

√
1−R2

S∼Dθ
√

1−R2
S∼W θ

.
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Figure 3.2: Internal selection graph for truncated multivariate normal example

D W

S0

S

R2
D∼W |S=1 =

(
ρD∼W − ρS∼DρS∼W θ√
1− ρ2S∼Dθ

√
1− ρ2S∼W θ

)2

,

where θ can be written as a function of P (S = 1) or C

(3.6)

The relationship between W and D in the selected (truncated) sample can be expressed

in terms of the relationships between S,W and S,D as well as between W,D, in the full

population. Additionally, we need P (S = 1), the probability of selection. Again, these

quantities capture structural (i.e., causal) relationships that govern the sample selection

mechanism and the relationship between W,D in the population.

Partial correlation and “constant selection effects” It is important to note that

truncation on S or stratification to S = 1 (i.e., sample selection) is not the same as linearly

conditioning on S. Conditioning on S (linearly) would give Equation 3.7, based on the

partial correlation formula.14 This does not equal R2
W∼D|S=1 in general. Equations 3.6 and

3.7 are remarkably similar, however, with their only differences being the need to account for

where truncation happens (i.e., the probability of selection). Equation 3.7 holds for linear

conditioning on S, without any restrictions on the distribution or relationships between W ,

D, and S. Equation 3.6 only holds for truncated normals.

14In Equation 3.7, if ρW∼D = 0, then R2
D∼W |S =

R2
S∼DR2

S∼W√
1−R2

S∼D

√
1−R2

S∼W

. Without restrictions on the

distribution or relationships between W , D, and S, recall that ρWD = 0 does not mean that W and D are
marginally independent.
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R2
D∼W |S =

(
ρD∼W − ρS∼DρS∼W√
1− ρ2S∼D

√
1− ρ2S∼W

)2

(3.7)

We might wonder under what circumstances we would be able to use Equation 3.7 to

inform discussion of R2
W∼D|S=1. We explore this in Appendix B Section B.4. We could assume

“constant selection effects” (akin to constant treatment effects) between the S = 1 and S = 0

strata. Such an approach would also require assumptions about the strata specific variances

for W and D. While this could be used as a first pass analysis, the assumptions are typically

unrealistic and using this approach could underestimate R2
W∼D|S=1.

15

In the next section, we propose bounds on R2
D∼W |S=1 and η2D∼W |S=1 (as well as R

2
W∼D|X,S=1

and η2D∼W |X,S=1) for the non-parametric case in which we make no restrictions on the

distribution or functional relationships between W , D, and S. In spirit, these bounds are

similar to Equations 3.5 and 3.6 in that they ask us to reason about the relationships

between W , D, and S (i.e., the sample selection mechanism) in the population, as well as the

probability of selection. That we need to reason about the structural, causal relationships

that define the sample selection mechanism in the population makes intuitive sense. This is

the mechanism that leads to the spurious relationship in the selected sample in the first place.

Researchers should be able to appeal to a combination of first principles, previous studies

and existing literature, intuition, and subject matter expertise to understand the range of

plausible strengths of these relationships.

3.2 Proposal

Since one of the sensitivity parameters in the omitted variable bias expression might contain

some spurious association created by sample selection (and is therefore difficult to interpret),

15In Appendix B Section B.5, we discuss a simple bound on R2
W∼D|S=1 that relies on the partial correlation

formula. However, this bound is typically uninformative (i.e., not less than 1).
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we aim to bound this sensitivity parameter with structural relationships from the full

population, about which investigators should be able to reason more easily. We will bound

R2
D∼W |S=1, η

2
D∼W |S=1, R

2
D∼W |X,S=1, and η2D∼W |X,S=1 by appealing to mutual information.

What is mutual information? Before we try to work with mutual information, what is it?

Mutual information is a measure of how similar the joint distribution of two random variables,

say A and B, is to the product of their marginal distributions. Therefore, it is a measurement

of the total dependence between A and B, whether this dependence is linear or non-linear.

It makes no assumptions about the distribution of A and B or the form their dependence

takes. As we will discuss further below, it turns out that mutual information has a number

of useful properties for measuring dependence that R2s and η2s do not. Mutual information

between A and B, MI(A;B), can be thought of as the information obtained (or reduction

in uncertainty) about variable A that results from learning the value of variable B. (Smith,

2015) Mutual information is defined in the following ways, where DKL is Kullback–Leibler

divergence and H is entropy.

MI(A;B) = DKL

(
P(A,B)∥PA ⊗ PB

)
=
∑
a

∑
b

P(A,B)(a, b) log

(
P(A,B)(a, b)

PA(a)PB(b)

)
= H(A) +H(B)−H(A,B)

(3.8)

There are also useful notions of conditional mutual information and joint mutual in-

formation and entropy. See Ihara (1993); MacKay (2003); Cover and Thomas (2006) for

details.16 Mutual information measures the amount of Shannon information revealed about

A as a result of knowing B. The Shannon information (or surprisal) of an event is defined as

IA(a) = log (1/PA(a)). Events that occur with certainty are perfectly unsurprising and hence

16We’ve shown the definition of mutual information for discrete random variables; analogous definitions
exist for arbitrary random variables.
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have no information. As the probability of an event decreases, the surprise that the event

occurred increases, and so does the information content. The entropy of a random variable

is the average information of the outcomes of the variable, H(A) =
∑

a PA(a) log(1/PA(a)),

and can be thought of as the uncertainty in the variable’s outcomes. (MacKay, 2003) While

mutual information can be an improvement as a measure of dependence over R2 or η2,

in practice, interpreting mutual information can be difficult. Therefore, we appeal to a

normalized version that has nice properties discussed below. Estimating mutual information

and its normalized variants can also difficult in practice; however, we will be using it for

sensitivity parameters that researchers reason about rather than estimate.

Mutual information for Gaussians In order to connectR2
D∼W |S=1, η

2
D∼W |S=1, R

2
D∼W |X,S=1,

and η2D∼W |X,S=1 with mutual information, we draw inspiration from the relationship between

R2 and mutual information for Gaussian random variables. For random variables, W and D,

with a bivariate Gaussian joint distribution, there is an exact relationship between R2 and

mutual information. (Ihara, 1993; Cover and Thomas, 2006)

MI(W ;D) = −1

2
log(1−R2

D∼W ) ⇐⇒ R2
D∼W = 1− exp(−2×MI(W ;D)) (3.9)

While this relationship do not hold for arbitrary random variables, many authors have

considered this type of transformation of mutual information as a way to obtain a useful

mutual information based measure of dependence.17 Lu (2011) presents such a measure of

dependence that is defined for arbitrary variables and that has many nice properties we

discuss below. We employ a slight variation on Lu (2011)’s L-measure, to create a useful

normalized version of mutual information for our purposes. The L-measure takes the form

L(MI) = 1 − exp(−2 × IF ×MI), where IF is an “inflation factor” that ensures that the

17See Linfoot (1957); Kent (1983); Joe (1989); Kojadinovic (2005); Lu (2011); Speed (2011); Kinney and
Atwal (2014); Asoodeh et al. (2015); Smith (2015); Shevlyakov and Vasilevskiy (2017); Laarne et al. (2021),
among others.

46



L-measure takes appropriate values for arbitrary variables, not just continuous variables. See

Appendix B Section B.6 for details.

Bounds This normalization of mutual information and Theorem 1 (below) allow us to build

interpretable bounds on R2
D∼W |S=1, η

2
D∼W |S=1, R

2
D∼W |X,S=1, and η2D∼W |X,S=1 without any

assumptions on the distrubutions or functional relationships between the variables. Theorem

1 can be applied to the case for which S is a collider between D and W (e.g., D → S ← W ),

demonstrating how conditioning on a collider alters the relationship between the parents

of the collider. We leverage our normalized version of mutual information, which we call

normalized scaled mutual information (NSMI), to give interpretable bounds on R2
D∼W |S=1,

η2D∼W |S=1, R
2
D∼W |X,S=1, and η2D∼W |X,S=1 that rely on Theorem 1. These bounds can be found

in Theorems 2 and 3. These results are proved and NSMI is defined in detail in Appendix B

Section B.6. While we use these results in the context of conditioning on a collider, S, they

hold for stratification to S = 1 in general.

Theorem 1. For random variables D,W, S, conditioning on S alters the relationship be-

tween D and W according to the expression MI(D;W |S) = MI(D;W ) + MI(S; [D,W ]) −

MI(S;D) − MI(S;W ). Therefore, the change in dependence due to conditioning on S

can be characterized using mutual information according to MI(D;W |S) − MI(D;W ) =

MI(S; [D,W ])−MI(S;D)−MI(S;W ). The dependence is not changed when MI(S; [D,W ]) =

MI(S;D) +MI(S;W ). When S is binary, it is also possible to write MI(D;W |S) = p(S =

1)MI(D;W |S = 1)+p(S = 0)MI(D;W |S = 0), meaning that MI(D;W |S = 1) ≤ MI(D;W |S)
p(S=1)

=

MI(D;W )+MI(S;[D,W ])−MI(D;S)−MI(W ;S)
p(S=1)

.
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Theorem 2. For random variables D,W , and S, where S is binary, the R2
D∼W |S=1 and

η2D∼W |S=1 resulting after stratification to S = 1 can be bounded in the following ways:

1. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(S;[D,W ])]

[1−NSMI(S;D)][1−NSMI(S;W )]

) 1
p(S=1)

2. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(D;S|W )]

[1−NSMI(S;D)]

) 1
p(S=1)

3. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(W ;S|D)]

[1−NSMI(S;W )]

) 1
p(S=1)

4. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1− NSMI(D;W )][1− NSMI(D;S|W )])

1
p(S=1)

5. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1− NSMI(D;W )][1− NSMI(W ;S|D)])

1
p(S=1)

6. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1− NSMI(D;W )][1− NSMI(S; [D,W ])])

1
p(S=1)

Theorem 3. For random variables D,W, S,X, where S is binary, the R2
D∼W |X,S=1 and

η2D∼W |X,S=1 resulting after stratification to S = 1 can be bounded in the following ways, where

λ =
[
[1−NSMI(D;[W,X])][1−NSMI(S;[D,W,X])]

[1−NSMI(D;S)][1−NSMI([W,X];S)]

]
and Λ =

[
[1−NSMI(D;W |X)][1−NSMI(S;[D,W ]|X)]

[1−NSMI(D;S|X)][1−NSMI(W ;S|X)]

]
.

1. R2
D∼W |X,S=1 ≤

1
1−R2

D∼X|S=1

×
(
1− λ

1
p(S=1) −R2

D∼X|S=1

)
2. R2

D∼W |X,S=1 ≤
1

1−R2
D∼X|S=1

×
(
1− [1− NSMI(D;X|S = 1)]Λ

1
p(S=1) −R2

D∼X|S=1

)
3. η2D∼W |X,S=1 ≤

1
1−η2

D∼X|S=1

×
(
1− λ

1
p(S=1) − η2D∼X|S=1

)
4. η2D∼W |X,S=1 ≤

1
1−η2

D∼X|S=1

×
(
1− [1− NSMI(D;X|S = 1)]Λ

1
p(S=1) − η2D∼X|S=1

)
where R2

D∼X|S=1 or η2D∼X|S=1 is estimated from the data. We can approximate or inform

the choice of NSMI(D;X|S = 1) using the estimated R2
D∼X|S=1, η

2
D∼X|S=1, or the related

L-measure.18 These bounds are all analogous to bound 1 in Theorem 2. Analogs to bounds 2 -

6 in Theorem 2 could also be formed.

Normalized scaled mutual information (NSMI) Theorems 2 and 3 ask us to reason

about NSMI values. So how should we think about NSMI? NSMI is a mutual information

based measure of dependence between random variables. Therefore, it measures the full

dependence relationship of two random variables, not just the linear dependence or dependence

18We cannot directly estimate NSMI(D;X|S = 1), since we cannot estimate Ω. See Appendix B Section
B.6 for discussion of Ω.
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related through the conditional expectation function. We show in Appendix B Section B.6

that, for two random variables (X, Y ), NSMI(X;Y ) can be thought of as a measure of the

proportion of the certainty in the outcomes of X, after we learn the value of Y , that is

gained as a result of learning the value of Y . (As opposed to the proportion of the certainty

in the outcomes of X, after we learn the value of Y , that existed before we learned the

value of Y .) This echoes the typical interpretation of mutual information as the “amount

of information” obtained or gained about X as a result of learning the value of Y . NSMI

can indeed also be interpreted just as a normalized and scaled version of mutual information;

but it also has this additional interpretation that is similar to an R2 being the proportion

of variance in one variable explained by another variable. NSMI, and the L-measure it is

based on, is a useful measures of dependence between random variables in that it satisfies

the following properties discussed in Rényi (1959), Smith (2015), Lu (2011), and others as

the properties possessed by “an appropriate measure of dependence.”1920

1. NSMI is defined for arbitrary pairs of random variables.21

2. NSMI is symmetric.

3. NSMI takes values between 0 and 1.

4. NSMI equals 0 if and only if the variables are independent.

19Mutual information satisfies properties 1, 2, 4, and 6. Squared Pearson correlation (i.e., R2) satisfies
properties 1, 2, 3, 5, and 7. η2 also does not satisfy all of these properties. See Rényi (1959) for further
discussion.

20The transformation ℓ2(MI(X;Y )) = 1 − exp (−2×MI(X;Y )) ensures that properties 2, 3, 6, and 7
are satisfied; it is the transformation that turns mutual information into an R2 for Gaussian distributed
variables. The transformation L2(MI(X;Y )) = 1− exp (−2× IF×MI(X;Y )) is the square of Lu (2011)’s
L-measure, where IF is chosen to ensure that properties 1 and 5 are satisfied, while also maintaining properties

2, 3, 6, and 7. The transformation NSMI(X;Y )
∆
= L2

Ω(MI(X;Y )) = 1 − exp (−2×Ω× IF×MI(X;Y ))
is our normalized and scaled measure of mutual information, where Ω ≥ 0 is also chosen to ensure that
NSMI(D;E[D|W,S = 1]|S = 1) = R2

D,E[D|W,S=1]|S=1 = η2D∼W |S=1 is satisfied, while also maintaining

properties 1 through 7. Lu (2011) demonstrates that properties 1 through 7 hold for the L-measure. Given
this, it is trivial to see that they also hold for NSMI. See Appendix B Section B.6 for discussion of Ω and IF.

21When there are multiple unobserved variables contained in W , we can consider them in combination
and consider their NSMI. That is, let W = {W1,W2, . . . ,Wk} and consider NSMI like NSMI(S; [D,W ]) =
NSMI(S; [D,W1,W2, . . . ,Wk]) or NSMI(D;W ) = NSMI(D; [W1,W2, . . . ,Wk]).
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5. NSMI equals 1 if and only if the variables have a strict dependence.

6. NSMI is invariant to marginal, one-to-one transformations of the variables.

7. If the variables are Gaussian distributed, then NSMI equals their R2.

Laarne et al. (2021) notes that “MI is invariant under monotonic transformations of

variables. This means that the MI correlation coefficient of a non-linear model (X, Y ) matches

the Pearson correlation of the linearized model (f(X), g(Y )). General conditions for f and g

are described in” Ihara (1993). The “MI correlation coefficient” discussed in Laarne et al.

(2021) is defined in a similar way to NSMI for continuous variables. Thus, NSMI might be

thought of as the R2 for a linearized model.22

We also provide examples to help readers gain some familiarity with NSMI. In Figures 3.3

and 3.4, we show 12 different types of bivariate relationships with the corresponding R2, η2,

and NSMI. In these examples, we estimate NSMI using the rmi and infotheo R packages

and η2 with the KRLS R package using simulated samples of 1000 data points. (Michaud,

2018; Meyer, 2014; Hainmueller and Hazlett, 2014; Ferwerda et al., 2017) There is estimation

error in these, since mutual information can be difficult to estimate in practice, but the

figures should still be informative.23 We see that NSMI is larger that η2 but is often very

comparable. When η2 does a poor job of capturing the full relationship between the variables,

NSMI can be much larger than η2. Lu (2011)’s L-measure is close to or larger than NSMI.

So it is possible to reason about the L-measure as an approximation or as a bound on NSMI.

22It is worth noting that, although we might be more comfortable thinking about correlations and R2’s,
they are not necessarily capturing what we expect. First, correlation and R2 capture only the strength of
linear association; these do not necessarily capture an intuitive sense of dependence but one restricted to
linear relationships. Also, “Mutual Information is a nonlinear function of ρ which in fact makes it additive.
Intuitively, in the Gaussian case, ρ should never be interpreted linearly: a ρ of 1

2 carries ≈ 4.5 times the
information of a ρ = 1

4 , and a ρ of 3
4 12.8 times!” (Taleb, 2019) “One needs to translate ρ into information.

See how ρ = 0.5 is much closer to [ρ =]0 than to a ρ = 1. There are considerable differences between .9 and
.99.” (Taleb, 2019) See Figure B.1 for a series of plots that illustrate how changes in correlation and R2

compare to changes in mutual information for standard Gaussian random variables. See Figure B.2 for a plot
of the relationship between mutual information and R2 for Gaussian variables, this is also the normalization
curve we use. Mutual information can capture our intuitive sense of dependence better than correlation and
R2 even in the simple Gaussian case.

23In addition, we present the L-measure and Ω. See Appendix B Section B.6.
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See Appendix B Section B.6 for more detail on NSMI and the L-measure. See Figure B.1

for a series of plots that illustrate how changes in correlation and R2 compare to changes in

mutual information for standard Gaussian random variables. In the Gaussian case, NSMI

equals R2; and so interpretation of NSMI should be familiar.

Figure 3.3: NSMI Examples. These are generated with various linear and non-linear
relationships between x and y. The blue line is an linear fit. The red line is a flexible fit or
the true non-linear relationship.

Discussion of bounds Theorems 2 and 3 contain several bounds. All the bounds presented

in Theorem 3 correspond to bound 1 from Theorem 2. Analogs to bounds 2-6 from Theorem

2 can also be created for the case where there are covariates X. We expect that the simplest

bounds to use will often be bounds 4-6 from Theorem 2. See the worked example below for

an example of how bound 5 from Theorem 2 can be adapted to include covariates.
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Figure 3.4: More NSMI Examples. These are generated by selecting a non-random sample
from two uniform random variables. S is the sample selection variable. The blue line is an
linear fit. The red line is a flexible fit.

Bounds 1 through 3 in Theorem 2 are tighter than bounds 4 through 6, but require

additional sensitivity parameters as well as some knowledge about how mutual information

works. That is, since some of the NSMI quantities are related in the bounds in Theorem

2, users need to take care to reason about coherent combinations of the NSMI quantities.

In particular, the bounds all take the form 1 − (τ)
1

p(S=1) but with different τ ; τ must take

a value between 0 and 1. This reflects the fact that 1 − (1 − NSMI(W ;D|S))
1

p(S=1) equals

bounds 1 through 3 and NSMI(W ;D|S) takes values between 0 and 1. This, in turn, reflects

that MI(D;W |S) = MI(D;W )+MI(S; [D,W ])−MI(S;D)−MI(S;W ) ≥ 0. For this reason,

we encourage users unfamiliar with mutual information to use bounds 4 through 6, where the

condition that τ ∈ [0, 1] will always be satisfied given NSMI values between 0 and 1. Bounds
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4 and 5 are tighter than bound 6. If W and D are assumed to be marginally independent,

then NSMI(D;W ) = 0. Which bound is most useful depends on the relationships that

practitioners feel most comfortable reasoning about in terms of NSMI’s.

We consider in detail bound 6 from Theorem 2. This bound is an expression of normalized

scaled mutual information for the marginal mutual information between D and W , for

the mutual information between S and [D,W ] together, and the probability of selection,

P (S = 1).24 As we saw in the case of binary random variables and truncated normal

random variables, we have an expression in terms of structural (i.e., causal) relationships

between the variables in the full population. In Figure 3.5, we show how bound 6 from

Theorem 2 changes for different values of NSMI(S; [D,W ]) and p(S = 1). For this, we

assume that W,D are marginally independent and so NSMI(D;W ) = 0 and the bound

becomes B
∆
= 1− (1− NSMI(S; [D,W ]))

1
p(S=1) . As p(S = 1)→ 1, B → NSMI(S; [D,W ]). As

p(S = 1)→ 0, B → 1. As NSMI(S; [D,W ])→ 1, B → 1. As NSMI(S; [D,W ])→ 0, B → 0.

These dynamics are easy to see in the expression for the bound itself. They reflect the bounds

on MI(W ;D|S = 1) from Theorem 1 that we then scale and normalize. It is worth noting

that small probabilities of selection can lead to bounds close to 1, regardless of the value

for NSMI(S; [D,W ]). MI(D;W |S) = p(S = 1)MI(D;W |S = 1) + p(S = 0)MI(D;W |S = 0)

will be dominated by MI(D;W |S = 0) when p(S = 1) is small. Further, we use MI(D;W |S)
p(S=1)

to

bound MI(D;W |S = 1); a small p(S = 1) ca lead to large values for MI(D;W |S)
p(S=1)

, even when

MI(D;W |S) is small.

24P (S = 1) can be thought of as the proportion of the population captured by the sub population for which
our selected sample is a representative. It is not necessarily the size of our data sample relative to the size of
the population. Note that it is important to have a clear sense of the population from which the sample has
been selected here, but this is already required to be able to think about the sample selection mechanism in
the first place and hence know whether conditioning on W will yield conditional ignorability or not.
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Figure 3.5: Bound 6 from Theorem 2 on R2
D∼W |S=1 and η2D∼W |S=1 given values for

NSMI(S; [D,W ]) and p(S = 1) and assuming NSMI(D;W ) = 0

3.3 Worked example

We now turn our attention to an application of the proposed methods. Hazlett (2020) considers

the effect of being directly harmed in the conflict in Darfur in early 2000s on attitudes about

peace using a survey of individuals in refugee camps. Motivated by “long-standing neglect

of the region by the central government” and a “history of attacks on civilians by both the

Sudanese army and irregular militia,” rebel groups attacked government air force base in

February 2003. The government responded with an operation aiming to “punish, kill, or

displace” ethnic groups thought to be supporting the rebellion. The article argues that

“violence was targeted by village and gender but was indiscriminate beyond this” and that the

“evidence is consistent not with the ‘angry’ response but rather with claims of a ‘pro-peace’

or ‘weary’ effect of exposure to violence.” The paper also describes that “Most refugees or

internally displaced persons left their homes during 2003 to 2004. A large number of those in
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the Western regions of West Darfur made the decision to cross the border into eastern Chad.

Very few of these refugees had returned home by the time of this survey in mid-2009, when

approximately 250,000 Darfurians were registered in refugee camps in eastern Chad.” The

study relies on data “drawn from a survey conducted between April and June of 2009 by

the ‘Darfurian Voices’ team with support of the US Department of State... The full survey

was thus representative of adult refugees (eighteen years or older) from Darfur, living in the

twelve Darfurian refugee camps in eastern Chad at the time of sampling.” Let us assume

the population is the set of refugees who made it to the camps at some point. Since some

individuals left these camps before the time of the survey, we have a threat of bias from

sample selection.

The study controls for things like village, gender, and other important covariates in

estimating the causal effect of being directly harmed on attitudes about peace. While

adjustment for these covariates is important, we still need to consider sample selection. Being

harmed may effect whether someone re-entered the conflict (and hence was not captured in

the survey). An individual’s pro-peace predisposition (before the conflict, an unobserved

variable) may be a common cause of both whether they re-entered the conflict and their

peace attitudes at the time of the survey. This may create a non-causal path running from

harm to pro-peace predisposition to attitude about peace that could threaten the internal

validity of estimated effects. In Figure 3.6, D is direct harm, Y is attitudes about peace, W

is pro-peace predisposition (before the conflict), S is being in the survey from the refugee

camp (i.e., did not re-enter the conflict), and X is observed covariates like village and gender.

Hazlett (2020) is able to adjust for the observed covariates, but the path D Z → Y cannot

be blocked since pro-peace predisposition is not observed. That is, we are able to estimate

an effect controlling for age, gender, village, and other covariates. But this effect could be

biased by the spurious relationship created by sample selection as a collider between direct

harm (D) and pro-peace predisposition (W ). Using OLS regression (among other estimation

strategies), Hazlett (2020) estimates that peace index is .09 to .10 units higher among those
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directly harmed. See Table 3.1.

Figure 3.6: Possible sample selection bias in Hazlett (2020)
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Table 3.1: Causal effect estimate from Hazlett (2020)

Outcome: peace factor

Treatment: Est. S.E. t-value
directly harmed 0.097 0.023 4.184
df = 783

The process that would drive individuals back into the conflict would “act more powerfully

for men of fighting age because in this context, few women or elderly participate directly in

the armed opposition groups. If such a process drove the results, we would see the apparent

effect most strongly among young men but should see little or no apparent effect among

women or the elderly who are far less likely to join the opposition. This is not the case.”

(Hazlett, 2020) We might then claim that the effect of direct harm on peace attitudes among

women and the elderly is perhaps not biased by this sample selection mechanism. But this

sample selection mechanism might not allow us to obtain an internally valid effect estimate

for fighting age men or the full set of refugees captured in the survey.

We can use the bounds from Theorems 2 and 3 in a sensitivity analysis for linear

regression following Cinelli and Hazlett (2020) using the software from Cinelli et al. (2020).

This omitted variable bias based sensitivity analysis requires that we consider hypothetical

values for R2
W∼D|X,S=1 and R2

Y∼W |D,X,S=1. Inspecting Figure 3.6, we see that R2
Y∼W |D,X,S=1

captures just the causal path W → Y , that is, the strength of the relationship between
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pro-peace predisposition (W ) and attitudes about peace after the conflict (Y ) after controlling

for observed covariates (X) like village and gender. This is a structural relationship that we

will be able to build some intuition about. On the other hand, reasoning about R2
W∼D|X,S=1

is more difficult. This captures the path W D and relates to the strength of the relationship

between pro-peace predisposition (W ) and direct harm (D) within the selected sample of

refugees that did not reenter the fight after controlling for observed covariates (X) like village

and gender. These variables do not have a direct relationship in the population that we can

build intuition about that would allow us to directly reason about R2
W∼D|X,S=1. In fact, the

assumption in Figure 3.6 is that pro-peace predisposition (W ) is independent of direct-harm

(D) in the population, conditional on the observed covariates like village and gender. So their

entire relationship is created as a result of conditioning on a collider due to sample selection.

Figure 3.7: Sensitivity analysis contour plots for Darfur example. Contours represent revised
effect estimates.
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Given the difficulty in interpreting and building intuition for R2
D∼W |X,S=1, we use bound

2 from Theorem 3 to bound R2
D∼W |X,S=1, where we assume that D and W are independent

conditional on X in the population. We also choose a bound analogous to bound 5 from

Theorem 2. The bound we use is therefore

R2
W∼D|X,S=1 ≤

1

1−R2
D∼X|S=1

×(
1− [1− NSMI(D;X|S = 1)] [1− NSMI(S;W |D,X)]

1
p(S=1) −R2

D∼X|S=1

)
,

(3.10)

where we estimate R2
D∼X|S=1 from the data and approximate NSMI(D;X|S = 1) based on

that estimate. We simply assume that we have the worst case where R2
W∼D|X,S=1 equals this

bound and substitute the bound into the omitted variable bias expression provided in Cinelli

and Hazlett (2020) and use this to calculate revised estimates given hypothesized values

of R2
YW |D,X,S=1, NSMI(S;W |D,X), and p(S = 1). Contour plots that show the surface of

revised estimates for the breadth of values these three sensitivity parameters can take are

displayed in Figure 3.7.

We will make some assumptions on p(S = 1) and on R2
Y∼W |D,X,S=1 for the purpose

of illustration so that we may focus on the remaining parameter, NSMI(S;W |D,X). We

emphasize these assumptions are for illustration only; subject matter experts may debate

these. We can take 1 − p(S = 1) to represent the portion of refugees that reentered the

fighting and were, therefore, not eligible to be captured by the survey. We might suppose

that no more than 20% of individuals reentered the fighting. If we believe this is a plausible

bound on 1− p(S = 1), we might then consider the contour plot at the bottom middle of

Figure 3.7. Suppose also that we believe that no unobserved variable, including pro-peace

predisposition, will explain more of the outcome than the female variable. We show 1x, 2x,

and 3x how much the female variable explains of the outcome in the contour plots. In the

p(S = 1) = 0.8 panel of Figure 3.7, we see that assuming that R2
Y∼W |D,X,S=1 equals the
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partial R2 between the female variable and the outcome, peace index, an NSMI(S;W |D,X)

of about 0.13 or so would bring our effect estimate to zero.

Do we think that an NSMI(S;W |D,X) of 0.13 or more is plausible? NSMI(S;W |D,X)

can be thought of as the proportion of the certainty inherent to whether someone re-enters

the fight, given that we know whether they were directly harmed and their pro-peace pre-

disposition (as well as their gender, village, and other observed covariates), that is gained as

a result of learning their pro-peace pre-disposition. If the variables shared a joint Gaussian

distribution, then this would correspond to an R2 of 0.13. The question becomes: to what

extent does reentering the fight depend on pro-peace predisposition, after controlling for the

observed covariates and direct harm? How much of the information we have about reentering

the fight is gained as a result of learning the value of this variable? The key is that this is a

substantive question that subject matter experts can debate. We no longer are in a situation

in which the threat of bias from sample selection means that we cannot gain anything from

our effect estimates. Instead, we can appeal to external knowledge about a substantive

question. If we believe that pro-peace predisposition does not have a strong relationship

with whether or not someone was captured in the survey, then perhaps an NSMI(S;W |D,X)

of 0.13 or less is plausible. This type of analysis shifts criticism away from whether or not

there exists a threat of sample selection bias towards discussions that attempt to discern

whether some substantive structural relationships meet a threshold level of strength that

would change the conclusions of the estimated effect. We hope that this example provides

some guidance to how such sensitivity analysis can be conducted in practice.

3.4 Discussion

We have proposed an approach to generalizing the omitted variable bias sensitivity analyses

of Cinelli and Hazlett (2020) and Chernozhukov et al. (2022) for evaluating the threats posed

to the internal validity of causal effects by sample selection. We saw how the non-parametric
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bounds on sensitivity parameters require users to reason about structural (causal) relationships

comprising the sample selection mechanism in the population, mirroring expressions we derived

for the sensitivity parameters in simple parametric settings. We also worked through an

application illustrating how the approach might be used. Other approaches to sensitivity

analysis for sample selection also exist. Smith and VanderWeele (2019) discuss approaches

with sensitivity parameters that capture the relationships between unobserved variables

and the observed variables, as we do here. However, building intuition for their parameters

may not be as familiar as using R2s or η2s. Moreover, in their discussion of “the selected

population as the target population,” they only provide heuristic guidance on how researchers

might deal with the counterintuitive nature of sensitivity parameters capturing associations

between marginally independent variables that are made dependent due to sample selection.

Thompson and Arah (2014) also present an approach for sensitivity analysis for sample

selection. This approach requires specifying sensitivity parameters that filter into a model of

the selection mechanism. Greenland (2003); Hernán et al. (2004); Elwert and Winship (2014);

Infante-Rivard and Cusson (2018); Arah (2019), and many others also provide insightful

discussions into sample selection bias and potential remedies. The benefit of our approach is

the improved interpretation of the sensitivity parameters and connections to the very useful,

existing omitted variable bias based sensitivity analysis frameworks of Cinelli and Hazlett

(2020) and Chernozhukov et al. (2022) for which software already exists.
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CHAPTER 4

Instrumental variables and sample selection

When researchers are interested in the causal effect of a treatment on an outcome but are

not confident that conditioning on observed covariates eliminates all confounding of the

treatment-outcome relationship, they might appeal to an instrumental variables identification

strategy. The instrumental variables (“IV”) identification strategy attempts to leverage

variation in a variable that is associated with the treatment but not directly with the outcome

(this variable is called the instrument) to try to understand the causal relationship between

the treatment and the outcome. (Imbens and Angrist, 1994; Angrist et al., 1996; Hernán

and Robins, 2006; Pearl, 2001, 2009; Baiocchi et al., 2014; Hernán and Robins, 2020) In

it’s simplest form, this boils down to looking at how the outcome and the instrument are

associated and how the treatment and the instrument are associated and then trying to use

these components to get at how the treatment and outcome are causally related. To go from

associations between the instrument and outcome and the instrument and treatment to a

causal relationship between the treatment and outcome requires restrictions on the causal

relationships between the three variables. The specific restrictions are discussed in detail in

subsequent sections but at a minimum these include “ignorability” and “relevance” to bound

the treatment effect. (Pearl, 2009; Balke and Pearl, 1994a) Other assumptions can allow

for point identification. These restrictions are often demanding and do not hold in many

cases. But even when these restrictions do appear to be met, we must also consider how the

sample of units available to study was selected from possible larger populations and whether

this sample selection mechanism could bias the effect estimate. In particular, we concern

ourselves with whether or not an estimated effect obtained from a sample drawn in some
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non-random way is an unbiased estimate of the causal effect averaged over the members of

the selected group, which is traditionally referred to as “internal validity.” (Campbell, 1957;

Campbell and Stanley, 1966; Cook and Campbell, 1979; Shadish et al., 2002)

Many other authors have pointed out that sample selection can violate the assumptions

of instrumental variables approaches. Canan et al. (2017); Swanson et al. (2015); Swanson

(2019); Hughes et al. (2019); Ertefaie et al. (2016); Gkatzionis and Burgess (2018); Hernán

and Robins (2020); Elwert and Segarra (2022) all discuss sample selection and instrumental

variables. Canan et al. (2017) discusses how one form of sample selection can violate IV

assumptions. Hughes et al. (2019) provides a broader view into how sample selection can

violate IV assumptions. They provide several examples, run simulation studies, and provide

some guidance and description on the reason violations arise in their examples. Swanson

(2019) discusses broad questions about how sample selection can bias IV studies and provides

guidance for applied researchers. They discuss threats posed by sample selection problems

that are unique to IV (e.g., selection on the treatment can be a problem for IV whereas

it is not typically for a simple covariate adjustment approach). They also mention that

not all types of sample selection that might threaten internal validity in the context of

other designs threaten internal validity for instrumental variables. Hernán and Robins

(2020) in their discussion of instrumental variables mention that sample selection can violate

instrumental variables assumptions and also briefly mention some interesting cases that we

analyze further in this paper. There are various papers that focus on applications that explore

specific examples. Of particular interest is where researchers are interested in comparing two

treatment levels and select only units that receive either of these treatment levels, but more

than two treatment levels exist (Swanson et al., 2015). Sheehan et al. (2008) provides good

examples of proxy and confounded instruments, as does Hernán and Robins (2020). Swanson

and Hernán (2013) suggest a checklist for reporting IV conditions and results. These authors,

however, do not provide systematic guidance for if/when instrumental variables can apply in

an arbitrary causal graph with any sample selection mechanism. Though other authors have

62



provided comprehensive guidance for instrumental variables. Van Der Zander et al. (2015);

Van Der Zander and Lískiewicz (2016); Kumor et al. (2020) present graphical approaches

to finding instruments and their generalizations, but do not focus on how sample selection

relates to these. Galles and Pearl (1998); Pearl (2001, 2009); Elwert and Segarra (2022)

discuss conditional instruments and graphical criteria for them. While Pearl (2001); Elwert

and Segarra (2022) focus primarily on linear models, Galles and Pearl (1998); Pearl (2009)

discuss potential outcomes. Further, Elwert and Segarra (2022) focus on sample selection

resulting from conditioning on a descendant of the treatment; we extend our analysis beyond

such cases and provide clear graphical guidance on when instrumental variables can be used

for any sample selection mechanism. Elwert and Segarra (2022) provide exact expressions for

sample selection bias in linear models under a few important sample selection mechanisms.

We aim to bridge the gap between these two sets of papers. We use the internal selection

graph from Chapter 2 to simply and intuitively visualize the effects that sample selection

has on the relationships between variables in the causal graph. We restate the graphical

criterion from Galles and Pearl (1998); Pearl (2001, 2009) highlighting the special role that

sample selection plays. We therefore provide a comprehensive guide to how sample selection

can threaten the internal validity of instrumental variables approaches. This generalizes the

discussions of sample selection as a potential source of bias for instrumental variables found

in Canan et al. (2017); Hughes et al. (2019); Swanson (2019); Elwert and Segarra (2022) and

elsewhere. We then use these tools to we explore many interesting implications of sample

selection for instrumental variables evaluating both threats and opportunities.

4.1 Instruments under sample selection

We are interested in the causal effect of a treatment, D, on an outcome, Y , for units in

the selected sample. We will use a binary variable, S, to denote sample selection. Our

approach is grounded in structural causal models (SCM; Pearl (2009)), potential outcomes
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(Splawa-Neyman et al. (1990), Rubin, 1974, 1978, 1990), and directed acyclic graphs (DAGs;

Pearl (2009)). Potential outcomes are solutions to the equations in SCMs, under intervention.

The equations and variables in SCMs correspond to the edges and nodes in DAGs. A potential

outcome, Ydi, is the value that the variable Y would have taken for unit i, if the variable

D for unit i had been set, possibly counterfactually, to the value d. The unit-level causal

effect of setting D to d relative to D to d′ is τi = Ydi − Yd′i. The fundamental problem of

causal inference, however, is that we are never able to observe more than one of the potential

outcomes for a given unit and so cannot calculate unit level causal effects. (Rubin, 1978;

Holland, 1986; Imbens and Rubin, 2015; Westreich et al., 2015) Our target will therefore

instead be the average of τi taken over some subset of the units in our sample, in which

some units have D = d and others have D = d′. An estimation strategy is said to be

“internally valid” if it can unbiasedly or consistently estimate such quantities. See Chapter 2

for additional discussion of these concepts.

Instrumental variables can be used to bound causal effects of the treatment on the outcome

in the presence of relationships between the treatment and outcome other than the causal

relationship. This can be a powerful capacity, as ruling out unobserved confounding and

other forms of non-causal relationships between the treatment and outcome can be difficult.

The key to an instrumental variables approach is the presence of a variable (that we call

an instrument, IV ) that is associated with the treatment, D, but that is not otherwise

associated with the outcome, Y . We want the instrument to covary with the treatment but

only covary with the outcome as a result of the causal relationship between the treatment

and the outcome. When such a variable exists, we are able to use the association between

the instrument and the outcome as well as the association between the instrument and the

treatment to bound (or, with additional assumptions, identify) a causal effect of the treatment

on the outcome.

We alter the definition of an instrument found in Pearl (2009) to explicitly state that we

must restrict ourselves to the selected sample, that is, we must condition on S = 1. The

64



following definition is adapted from Pearl (2009), Definition 7.4.1.1

Definition 5 (Instruments, Relevance, and Ignorability). A variable IV is an instrument

relative to the total effect of D on Y within the stratum S = 1 if there exists an X, unaffected

by D, such that the following hold.

1. (relevance) D ̸⊥⊥ IV |X,S = 1

2. (ignorability) Yd ⊥⊥ IV |X,S = 1

Relevance captures the idea that, in order to study the relationship between the treatment

and outcome, the instrument must be associated with the treatment. Otherwise, we cannot

use the instrument to isolate any of the variation between the treatment and the outcome.

Ignorability captures the idea that, while we want the instrument to be associated with

the treatment, we do not want it to directly cause the outcome or to be related with the

outcome other than through the causal relationship between the treatment and the outcome.

If it were associated with the outcome in one of these ways, then we could not isolate the

causal relationship between the treatment and the outcome from the association between the

instrument and the outcome. Our alteration to Pearl’s definition simply makes explicit that

we want these conditions to hold in the selected sample.

How do we know whether relevance and ignorability hold? In practice, we can never be

certain that some set of covariates will provide the relevance and ignorability we need. The

1This definition is by no means the only way to define an instrument. Pearl (2009) also provides conditions
that are purely graphical and do not involve potential outcomes. Angrist et al. (1996); Lousdal (2018) require
that the IV - D relationship is causal and unconfounded, which Pearl (2009) points out is unnecessary in
general. Hernán and Robins (2006); Hernán and Robins (2020) split ignorability into two conditions, one
of which is the well known ”exclusion” restriction: Yd,iv = Yd,iv′ = Yd and Yiv,d ⊥⊥ IV . As shown in the
main text, we can combine exclusion and ignorability into Yd ⊥⊥ IV ; see Hernán and Robins (2020). (Proof:
Yd,iv′ = Yd and Yiv,d ⊥⊥ IV =⇒ Yd ⊥⊥ IV : (Yiv,d = Yd) ⊥⊥ IV . Yd ⊥⊥ IV =⇒ Yd,iv′ = Yd and Yiv,d ⊥⊥ IV :
Suppose Yiv,d ̸= Yd. Then there is a path from IV to Y that does not run through D. This means that
IV is a common cause of Y and D and so Yd ̸⊥⊥ IV , a contradiction. So Yiv,d = Yd, which in turn means
(Yiv,d = Yd) ⊥⊥ IV .) Greenland (2000); Didelez and Sheehan (2007a,b); Sheehan et al. (2008) use somewhat
different conditions that invoke an unobserved confounder explicitly. Swanson et al. (2018) discuss bounds
that can be found for the ATE under various alternative IV conditions. We adopt what they describe as the
“least restrictive” set of IV conditions here.
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onus is on researchers to make plausible arguments for relevance and ignorability. To aid

in this, we can build a causal graph that captures how the treatment and outcome causally

relate to each other and relevant covariates. Causal graphs allow us to visualize dependencies

and independencies between variables in terms of a path separation criterion, d-separation.

(Pearl, 2009) Two sets of nodes, D, Y , in a graph G are said to be d-separated by a third

set, Z, if every path from any node D0 ∈ D to any node in Y0 ∈ Y is blocked. A path is

blocked by Z if either [1] some W is a collider2 on the path between D, Y and W ̸∈ Z and

the descendants of W are not in Z or [2] W is not a collider on the path but W ∈ Z. See

Pearl (2009) for further introduction to causal graphs and structural causal models. Simple

rules can then be used to determine when relevance and ignorability hold.

It is acceptable for IV and D to be associated due to a common cause or some other

relationship, as long as all the association between IV and Y is through the causal path

from D to Y . IV and D need only be associated conditional on X and S = 1, we do

not require that IV directly causes D. However, we might consider a few sub-types of

instruments. “Causal” instruments are those for which there is an unconfounded causal

path IV → D. “Proxy” instruments are those for which the association between IV and

D flows through a path like IV ← U∗ → D, where U∗ is a causal instrument and IV is a

proxy for U∗. Van Der Zander et al. (2015) define an “ancestral” instrument as one for which

conditioning on a variable creates the relevance needed for an instrument. This might look

like IV → X ← U∗ → D, where, again, U∗ is a causal instrument and IV is a proxy for U∗,

conditional on X.

2A collider is a node in the graph into which two arrows point: A → S ← B. See Pearl (2009) for an
introduction to causal graphical models and colliders. Conditioning on a collider or a descendant of a collider
can induce an association between the parents of the collider. Shahar and Shahar (2017) discuss the conditions
under which such an association is created. Since our approach is non-parametric and graphical, we assume
such an association is created when sample selection is a collider or a descendant of a collider.
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4.2 Proposal

We propose using extended causal graphs that explicitly show how sample selection alters

the relationships between variables in the sample. We also provide rules (graphical criteria)

for using these graphs to determine when relevance and ignorability hold. In doing so, we

revise the existing graphical approaches for instruments to highlight the special role of sample

selection. At the same time, we formalize and generalize recent discussions of sample selection

in the instrumental variables context.

4.2.1 Internal selection graphs

The key to our proposal is to graphically represent the ways in which sample selection alters

the relationships in the selected sample. We do this by slightly altering the internal selection

graphs defined in Chapter 2, which visually extend traditional causal graphs to represent all

the ways that sample selection can change relationships between variables.

Definition 6 (Internal Selection Graph, G+
S ). Let G be the DAG induced by a SCM.

1. Create GS by adding an appropriately connected binary selection node, S.

2. Draw a circle around S to clearly indicate that we must limit our analysis to S = 1.

3. Add to GS any node which is a parent of the treatment or a parent of a descendant

of the treatment. Add to GS any node which is a parent of the potential instrument

or a parent of a descendant of the potential instrument. (US, the background factors

contributing to selection, can be excluded.)

4. Add a dashed undirected edge between all variables between which S is a collider or an

ancestor of S is a collider. We will call these dashed, undirected edges bridges.

Call the resulting graph an internal selection graph, G+
S . (These graphs are similar to those

discussed in Daniel et al. (2012) and Chapter 2.)
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Figure 4.1: Examples of Internal Selection Graphs
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The key features of internal selection graphs3 are the inclusion of an encircled sample

selection node, specific background variables, and bridges that capture the statistical associ-

ations that result from sample selection. These additions ensure sample selection and the

changes it requires for identification are visualized in the graph and can be analyzed easily.

See Figure 4.1 for examples. We will differentiate between a few types of paths. Following the

discussion in Chapter 2, d-separation is defined in the same way for these paths as for regular

paths, since colliders are defined in the same way. See Appendix C for details. Generalized

paths are any sequence of nodes and edges (directed edges and/or bridges) where each node

appears only once (e.g., D Z → Y , D → Y , D → S ← Z, UD → D → Y ). Causal paths

are any generalized path where all edges between the nodes are directed and point in the same

direction (e.g., D → Y , UD → D → Y ). Generalized non-causal paths are any generalized

path that isn’t a causal path (e.g., D Z → Y ). Figure 4.1(e) provides a clear example

of a setting in which internal selection graphs greatly facilitate understanding how sample

selection can alter relationships between the variables in the selected sample. The statistical

associations created due to sample selection between many variables, as well as some of the

3See Chapter 2 for more discussion of internal selection graphs.
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variables themselves, would be missing from the corresponding DAG.

4.2.2 Graphical criteria

Internal selection graphs already go a long ways toward facilitating analysis of instrumental

variables under samples election. But how can we use internal selection graphs to determine

whether relevance and ignorability hold reliably? We’ll use a set of rules captured in the

following graphical criteria.

4.2.2.1 Relevance

Relevance is the first condition in our definition of instruments and is perhaps the simpler

of the two conditions. It captures the idea that, in order to study the relationship between

the treatment and outcome using an instrument, the instrument must be associated with

the treatment in some way. Otherwise, we cannot use the instrument to understand any of

the variation between the treatment and the outcome. The relevance criterion is similar to

condition (ii) in the graphical criterion provided in Pearl (2009) and similar to the condition

(G1) in the graphical criterion provided in Elwert and Segarra (2022), but altered to indicate

the special role that sample selection plays and to work with internal selection graphs.

Definition 7 (Relevance Criterion). A set of nodes X and a possible instrument IV in G+
S

satisfy the relevance criterion relative to D (treatment), and Y (outcome) if there is at least

one (causal or generalized non-causal) path between IV and D that does not pass through S

and is not blocked by X.

Theorem 4. If a set of nodes X and a possible instrument IV in internal selection graph

G+
S satisfy the relevance criterion relative to D (treatment), and Y (outcome), then D ̸⊥⊥

IV |X,S = 1.

This result is proved in Appendix C. We need the instrument to be associated with the
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treatment. Whether this association manifests as a causal relationship (e.g., IV → D) or

a non-causal relationship (e.g., IV ← U → D) is not important. For relevance to hold,

we just need that the values the instrument takes are related some how to the values that

the treatment takes.4 So we just want there to be some path between these two variables.

Moreover, we need this association to persist (or to arise) when we condition on both X and

S = 1. Hence, our criterion requires that there is at least one path that does not pass through

S. The paths through S become irrelevant in internal selection graphs because if S is not a

collider on a path, then the path is blocked and we can ignore it; further, if S is a collider on

a path, then we have already drawn a bridge between the nodes that form the collider and so

we can bypass the path that actually includes S itself. If we must condition on X to achieve

ignorability, we don’t want it to ruin relevance. So we need a path between IV and D that is

not blocked by X. Finally, there are situations in which selection and/or conditioning on

X can give us relevance. Such instruments are called “ancestral” instruments, as discussed

above (Van Der Zander et al., 2015). This might arise due to X being a collider in which

case conditioning on X may unblock a path between IV and D; of course such a path would

not be blocked by X and would satisfy the relevance criterion. No matter the specific type of

path or paths that yield relevance, the key idea of relevance is simple: that IV and D should

relate along some unblocked path.

4.2.2.2 Ignorability

Ignorability is the second condition in our definition of instruments and is somewhat more

subtle than relevance. It captures the idea that, while we might not be very particular about

how the instrument associates with the treatment, we want to be very careful about how the

instrument associates with the outcome. The ignorability criterion is similar to condition (i)

4There are also problems associated with weak associations between the instrument and treatment. These
are referred to as the weak instruments. In this paper, we focus on whether relevance holds at all and not
on whether the instrument is a weak instrument. Fortunately, relevance is a condition that can actually be
tested with data. Further discussion of this is also outside the scope of this paper.
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in the graphical criterion provided in Pearl (2009) and similar to the conditions (G2) and

(G3) in the graphical criterion provided in Elwert and Segarra (2022), but altered to indicate

the special role that sample selection plays and to work with internal selection graphs.

Definition 8 (Ignorability Criterion). A set of nodes X and a possible instrument IV in G+
S

satisfy the ignorability criterion relative to D (treatment), and Y (outcome) if

1. No element of {X,S} is a descendant of D and D is not in {X,S}.

2. X blocks every (causal and generalized non-causal) path between IV and Y except

(a) those that pass through S and

(b) those ending with a causal path from D to Y (e.g., paths between IV and Y that

pass through D but where D or one of its descendants touches a bridge or paths

on which D is an ancestor of IV must be blocked by X).

Theorem 5. If a set of nodes X and a possible instrument IV in internal selection graph

G+
S satisfy the ignorability criterion relative to D (treatment), and Y (outcome), then Yd ⊥⊥

IV |X,S = 1.

This result is proved in Appendix C. We want the instrument to associate with the

outcome only along paths that end in a causal path between the treatment and the outcome.

This is because the causal paths between the treatment and the outcome are those that

we ultimately are interested in studying. So other paths that associate the instrument

and the outcome are a problem for instrumental variables approaches. If the instrument

were associated with the outcome along some other type of path, we would not be able to

disentangle the association between the instrument and the outcome from the association

that runs from the instrument to the treatment and then to the outcome along causal paths

between the treatment and outcome alone. The latter contains the relationship we want to

study, namely the causal relationship between the treatment and the outcome. Conditioning

on D or a descendant of D will either block the paths that end in a causal path from the

treatment to the outcome or will open non-causal paths between the instrument and the
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outcome. The ignorability criterion formalizes these ideas. Our ignorability criterion leaves

the types of paths between IV and Y that we want to leverage unblocked and requires us to

block the types of paths that introduce covariation between IV and Y that can contaminate

our analysis.

4.3 Discussion

We now have all the necessary machinery in place to start analyzing how sample selection

can threaten or provide opportunities for relevance and ignorability and, hence, instruments.

We start in this section by briefly considering some simple examples. Figure 4.1 provides

a good starting place. When sample selection is not causally related to any of the other

variables in the causal model and we have the canonical instrumental variables graph, as in

Figure 4.1(a), we see that we can easily verify relevance and ignorability, where X is the

empty set. There is a causal path connecting IV and D, giving relevance. The empty set

blocks all paths between IV and Y , except for one that ends in a causal path from D → Y

and S is not a descendant of D and D ̸∈ {X,S}, giving ignorability.

Figure 4.1(b,c) both also meet the relevance and ignorability criteria, as the reader can

verify for themselves. Figure 4.1(b) is interesting in that the instrumental variables approach

here can actually be used to overcome both the unobserved confounding between D and Y

from U as well as the sample selection bias between D and Y , even when U , U1, and U2 are

all unobserved. Figure 4.1(c) is an example of an ancestral instrument that only satisfies

the relevance criterion due to the purely statistical association created by sample selection.

Perhaps there are opportunities to exploit these types of sample selection mechanisms that

have been underappreciated. We will discuss settings like Figure 4.1(b,c) in more detail in a

subsequent section.

Figure 4.1(d) is interesting in that it shows that selection on the treatment actually leads

to a violation of the ignorability criterion. In simple covariate adjustment approaches (i.e.,
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not instrumental variables), selection based on the treatment is, on its own, not biasing.

See Chapter 2 for details. However, in the instrumental variables case, such a selection

mechanism clearly does not satisfy the ignorability criterion. This is perhaps the simplest

example for which sample selection does not operate in the same way for covariate adjustment

approaches and instrumental variables. Researchers should not assume sample selection can

be treated similarly in these two approaches. Figure 4.1(e) is a simple example of how, as in

simple covariate adjustment approaches, selection on the outcome can violate ignorability.

Together, these demonstrate that heuristics from other research designs should not be applied

to instrumental variables without thoughtful consideration or the use of formal design-specific

criteria, like those in this paper and Chapter 2. We emphasize to the reader that one cannot

credibly ascertain the implications of sample selection on an instrumental variables (or any

other design) without laying out how sample selection fits into the causal model and using

tools like internal selection graphs and our graphical criteria. Less formal approaches will

not confer the same assurance that the researcher has not missed some subtle alteration

that sample selection makes to the relationships in the data. In the following discussion, we

look at more examples aimed at exploring the various ways that sample selection can alter

instrumental variables approaches.

4.3.1 Interesting cases

We now consider settings in which the way that sample selection interacts with the in-

strumental variables design is perhaps under-appreciated or under-discussed. These cases

highlight potential opportunities in which to use instrumental variables and also illustrate

how sample selection can threaten internal validity of instrumental variables. We hope they

are thought-provoking and clarifying.
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4.3.1.1 Instrumental variables can be used to recover from sample selection

There are settings in which sample selection can create generalized non-causal paths between

the treatment and the outcome, and hence bias designs other than instrumental variables,

but for which an instrumental variables design can overcome the sample selection bias. This

setting has been recognized elsewhere in the literature (Swanson, 2019). See Figure 4.1(b) for

a simple example. The particular form shown in Figure 4.1(b) is commonly called “M-Bias.”

More generally, an instrumental variables approach could be used to overcome sample selection

bias that takes the form of a generalized non-causal paths running between the treatment

and outcome created by sample selection (i.e., containing a bridge) that start with an arrow

pointing into the treatment. There are really two equivalent ways to look at such settings.

One is that instrumental variables is immune to this type of sample selection bias. The

other is that instrumental variables is an approach that could be used when this form of

sample selection bias is suspected to threaten the validity of simple covariate adjustment

approaches. Both views are interesting. The former is useful to know when a researcher plans

to employ instrumental variables before considering sample selection. The latter actually

presents opportunities for which instrumental variables approaches might be employed. For

example, if a researcher suspects that they have a sample selection M-bias problem, they

might use an instrumental variables approach to overcome this bias.

4.3.1.2 Ancestral instruments via sample selection

Another interesting case arises when we consider how sample selection can alter relevance.

Above, we mentioned the idea of “ancestral” instruments. These are instruments that meet

the relevance criterion only when we condition on some covariate(s). (Van Der Zander et al.,

2015) It turns out that sample selection can also create ancestral instruments. This is another

setting that has been mentioned in the literature (Hernán and Robins, 2020) but is not widely

used or discussed and presents additional opportunities for the use of instrumental variables.

74



A simple version of this appears in Figure 4.1(c). In this setting, U∗ is an unobserved but

causal instrument. Sample selection creates a purely statistical relationship between IV and

U∗ in the sample at hand. It is then easy to verify that IV satisfies both the relevance and

ignorability criteria. So we can view IV as a proxy for the causal instrument U∗.

While this setting at first sounds quite promising, we urge caution. The nature of this

setting makes it likely that there will be violations of ignorability. This setup is only useful if

the causal instrument, U∗, is unobserved but is not a common cause to the wrong variables.

For instance, ignorability will be violated if U∗ is also a parent of Y or U or if there is an

unobserved common cause of U∗ and Y or various other relationships that might arise in

realistic settings. So, while ancestral instruments that arise from sample selection might be

intriguing, great care should be taken in evaluating whether ignorability holds for them.

4.3.1.3 Restricting to units that receive two treatments when more exist

Swanson et al. (2015); Ertefaie et al. (2016) discuss the common practice of employing

instrumental variables approaches to study how two particular treatments or treatment levels

compare, where the sample is limited to units receiving these two treatments, but where more

than two treatments are possible. Such studies suffer from selection on the treatment, which,

as we can see in Figure 4.1(d), can violate ignorability and bias effect estimates. However, the

“ensuing selection bias that occurs due to this restriction has gone relatively unnoticed” and

is “pervasive.” (Swanson et al., 2015) We echo that this and similar practices are a problem

as they violate ignorability.

4.3.1.4 Randomized experiments can have sample selection problems

Random experiments are often held as the gold-standard for causal inference. However, they

are not impervious to threats to validity. Often experiments, especially when related to

human subjects, have non-compliance with assigned treatments. This means that participants
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choose not to, say, take a drug when they’ve been prescribed it. Which participants choose

not to comply could have common causes with the outcome, confounding the treatment-

outcome relationship. Instrumental variables can be used to address this non-compliance by

using assigned treatment as an instrument for whether or not someone is actually treated

(e.g., actually takes the drug). A second threat to the validity of randomized experiments

is differential attrition from the study. This means that some participants or units drop

out of the study and so complete data is not available for all participants. When both

non-compliance and attrition both occur, a researcher might be in a scenario where, despite

randomly assigning treatment, they are attempting to use instrumental variables while also

worrying about sample selection. The simplest forms of this would be captured by Figure

4.1(d) and (e). Despite the randomization of treatment assignment, there are violations of

ignorability and effect estimates will be biased. Alternatively, if attrition is based on the

instrument and there is a common cause of attrition and the outcome, we might also have

a violation of ignorability. See Montgomery et al. (2018) for a very useful discussion about

post-treatment conditioning and selection in randomized experiments in political science and

the bias that can result.

4.3.1.5 Sample selection can make and break both ignorability and relevance

As we saw with ancestral instruments, sample selection can sometimes help provide relevance.

This is also true for ignorability. See Figure 4.2(a) and (b). However, it can also create

ignorability while breaking relevance, as in Figure 4.2(c). Similarly, sample selection can also

create relevance while breaking ignorability. See Figure 4.2(d) and (e). At first, glance these

last two example may seem like they satisfy ignorability. While paths like IV D → Y are

allowed since they contain D → Y , IV D also creates the path IV D ← U → Y , which

breaks ignorability.
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Figure 4.2: Sample selection can make and break both ignorability and relevance
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4.3.1.6 Small changes to the causal graph matter

We’ve stressed the importance of including a sample selection node in every causal graph.

We now stress that great care must be taken in constructing causal graphs containing sample

selection node. In Figure 4.3 we see the same graph as in Figure 4.1(b) but where we flip

the direction of just one edge. The conclusions for the two variations on the graph are

opposites. In Figure 4.3(a) we satisfy the ignorability criterion but in Figure 4.3(b) we do not.

Researchers need to be careful about the details of the causal graph that they are studying.

Including a sample selection node in every causal model and careful consideration of the

sample selection mechanisms is required to determine the threat that sample selection poses

to internal validity and what, if anything, might be able to be done. There is also potential

for users to intentionally or unintentionally favor one graph over another very similar graph

in order to show that ignorability holds. These are difficult but inherent problems in causal

study and good-faith efforts to do credible causal inference should spend ample time defending

the specific causal model being analyzed.
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Figure 4.3: Small changes to the causal graph matter
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4.3.1.7 Blocking non-causal paths between treatment and outcome can invalidate

instruments

The final interesting case we consider again cautions against applying heuristics from simple

covariate adjustment approaches (or other designs) in the instrumental variables setting.

In both simple covariate adjustment and instrumental variables, we want to learn about

the causal effect of the treatment on the outcome. In a covariate adjustment setting, we

attempt to de-confound the true treatment effect by blocking non-causal paths between the

treatment and the outcome. We can reduce the bias of our estimates by limiting the number

of non-causal paths that run between the treatment and the outcome. Doing so helps to make

the treated group comparable to the untreated group (assuming a binary treatment), making

a comparison of these groups useful for causal analysis. We employ instrumental variables

approaches only when we cannot block all the non-causal paths between the treatment and

the outcome. And when this is the case, there are settings in which blocking non-causal paths

between the treatment and the outcome can actually lead to violations of the ignorability we

need for instruments. This can happen even if we would have had a valid instrument before

blocking the non-causal paths between the treatment and the outcome. See Figure 4.4 for

three examples. Note that not all of these examples hinge on sample selection creating bias.

In these examples, conditioning on W would block a non-causal path between the treatment

and the outcome but open others between IV and Y , even though no open non-causal paths

existed between IV and Y before conditioning on W .
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Figure 4.4: Blocking non-causal paths between treatment and outcome can invalidate
instruments
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We hope the settings discussed in this section provide some further insight into how sample

selection can effect instrumental variables. We again stress that, without incorporation of

the sample selection mechanism into the causal model and use of a formal framework like

that presented here, there is no reliable way to determine how sample selection might alter

relevance or ignorability for your specific instrumental variables application.

4.3.2 Lessons

After considering the above examples, let us review key lessons.

• Only the incorporation of the sample selection mechanism into the causal model can

reliably lead to correct conclusions about how sample selection might effect instrumental

variables. Moreover, graphical analysis and a formal framework for the analysis of

sample selection can greatly reduce the burden on researcher in analysis of how sample

selection alters their instrumental variables approach.

• Informal applications of simple heuristics related to sample selection can be misleading

and should be avoided. Further, we should not use heuristics from other research

designs, like simple covariate adjustment, in the instrumental variables setting. These

might not apply (e.g., like selection on the treatment being non-biasing) and can result
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in unreliable conclusions.

• Sample selection can influence instrumental variables, even when it is not a collider.

• When sample selection manifests as attrition or some other post-treatment type of

selection, randomization of treatment or instrument assignment does not automatically

ameliorate problems of sample selection even for internal validity.

• Sample selection does not always present a problem.

• Selection on the outcome is usually a problem for instrumental variables.

• Post-treatment selection is typically a problem on its own.

• Indirect association between selection and the outcome or selection and the treatment

are typically not problems on their own and also typically not when they appear together

for instrumental variables.

• There are various ways that sample selection can threaten relevance and ignorability.

• There are also opportunities presented by sample selection for instrumental varibles as

well as by instrumental variables for sample selection.

In conclusion, instrumental variables approaches leverage specific types of variation

between the instrument and treatment and the instrument and outcome to identify causal

effects of the treatment on the outcome. We’ve seen how these associations can be altered

in a non-randomly selected sample in a variety of ways. Sample selection can create many

wrinkles in an instrumental variables analysis but is not always problematic. However, the

already high bar of finding a good instrument is only made higher by responsibly considering

how sample selection can influence instruments. We hope that our discussion provides clarity

and credibility to researchers that hope to use instrumental variables.
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CHAPTER 5

Partial identification leveraging imperfect placebos

In this chapter, we shift our focus from sample selection to unobserved confounding. As in

previous chapters, however, the tools we develop can be applied to address either or both

threats to internal validity. Unobserved confounding plagues many attempts to draw causal

inferences from observational data. When we suspect unobserved confounding exists, we

often look for additional sources of information that can aid us in identifying causal effects of

interest. This may take the form of an instrumental variable or some sort of discontinuity in

the assignment of which units get treated. Researchers can also seek out observed variables

that are “similar to” the treatment or outcome in the form of placebo treatments or placebo

outcomes (also known as “negative control outcomes” and “negative exposure controls”).

We focus here on how to make use of such placebo treatment and outcomes variables

to improve causal inferences. Existing approaches using such information typically focus

on detecting bias or on point identification (i.e., bias correction), assuming (i) that these

are “perfect placebos” (treatment has precisely zero effect on a placebo outcome, or placebo

treatments have precisely zero effects on the outcome of interest) and (ii) that the placebo

outcome/treatment suffers the same amount of confounding as does the real treatment-

outcome relationship on some scale (“equiconfounding”). As discussed below, difference-in-

difference can be understood as one such approach. Another recent innovation of this kind

is proximal causal inference (Miao et al., 2020; Tchetgen et al., 2020). In this approach,

point identification is possible, at the expense of (i) assuming that placebos are “perfect,” (ii)

requiring a placebo treatment and a placebo outcome, and (iii) requiring equiconfounding on
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a transformation of a placebo outcome.1

We start from the position that assumptions such as exact equiconfounding and/or having

“perfect” placebos are often indefensible in practice. Nevertheless, information from outside the

data may allow us to reasonably bound a set of parameters pertaining to these assumptions.

Specifically, consider a set of assumptions about (i) the relative confounding felt by the

treatment-outcome relationship compared to that in the placebo treatment to real outcome or

real treatment to placebo outcome relationship; and (ii) the degree of “imperfection” in each

placebo. For any range of assumptions on these that cannot be ruled out by argumentation,

there is a set of effect estimates that consequently must be entertained as possible. In short,

we leverage the assumptions investigators may be willing to make about imperfect placebo

treatment and outcomes and about the relative confoundedness of placebos versus “real”

treatments and outcomes, to produce partial identification of parameters in a linear model.

In what follows, we begin by discussing causal structures in general that involve placebo

treatments and outcomes, including cases where these labels become ambiguous. We then

develop a simple framework for working with a single placebo outcome, relaxing assumptions

that treatment has no effect on this placebo outcome and postulating different strengths

of confounding between treatment and the real outcome vs. treatment and the placebo

outcome. We can then extend similar tools and mechanics to work with placebo treatments,

and finally cases with both placebo treatments and outcomes.2 We then explore at some

length how conventional difference-in-differences (DiD) can be seen as a special case, where

1Tchetgen et al. (2023a) presents a related approach that requires a single “perfect” placebo outcome. That
is, the placebo, W , must satisfy Wd = W , W ⊥⊥ YD=0, and W ⊥⊥ D|YD=0, where D is the treatment, Y is the
outcome, and YD=0 is the value for the Y if D were to be, perhaps counterfactually, to take the value D = 0.
The authors state that “the key assumption that conditioning on the treatment-free potential outcome, would
in principle make the NCO or outcome proxy irrelevant to treatment mechanism (sic) is ultimately untestable,
and may in certain settings not hold exactly.” Our approach can be seen as relaxing the these conditions.
Tchetgen et al. (2023a) also require more technical conditions related to solutions to integral equations. For
example, they require that there is a solution b(W ) to the equation YD=0 = E[b(W )|YD=0], when the previous
conditions are also met. This condition can be thought of as a generalization of measurement error.

2We also explore generalizations to partially linear and non-parametric settings in Appendix D.2.
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the pre-treatment outcome is a (perfect) placebo outcome, and the parallel trends assumption

is a strict equiconfounding assumption on a specific scale. The tools we develop, by relaxing

the equiconfounding assumption, profitably relax the parallel trends assumption and offer a

partial identification approach to produce a range of estimates the investigator is prepared to

defend. Finally, we provide two applications, employing an R package we developed. First, we

look to observational data designed to examine the impact of the National Supported Work

Demonstration, a job training program in the 1970s. A pre-treatment measure of pariticpants’

income serves as a placebo outcome. Assumptions are then required on how strongly pre-

treatment income is confounded compared to how strongly treatment and subsequent income

are confounded. Under arguably defensible assumptions, the resulting range of estimates is

informative and includes the benchmark value obtained from a randomized trial with the same

treatment group. Second, we show that for a likely range of relative levels of confounding,

the Zika virus decreased birth rates in Brazil in 2016, using 2014 birth rates as a placebo.

5.1 Leveraging placebos

5.1.1 Placebo causal structures

We begin by ensuring clarity regarding what we mean by placebo treatments and outcomes,

perfect and imperfect, by reference to their position in a causal model as represented by a

directed acyclic graphs (DAGs) (Pearl, 1995). To start with “perfect” placebos, two simple

examples are shown in Figure 5.1(a,b). In this figure N is a placebo outcome and P is a

placebo treatment; however, Figure 5.1(b) is essentially a mirror image of Figure 5.1(a) with

N relabelled as P . What we consider a placebo treatment versus what what we consider

a placebo outcome will often have this “Necker cube” quality (Necker, 1832).3 Depending

on the substantive context, the same causal graph might arise in two settings, one in which

3A Necker cube is a simple optical illusion in which the perceived orientation of a a two-dimensional
drawing of a cube can continuously switch back and forth between two distinct possibilities.
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the placebo is viewed as a placebo treatment and one in which the placebo is viewed as a

placebo outcome. We explore this more in Section 5.2 and discuss how the perspective taken

by researchers should influence the methods they use. To call a placebo “imperfect” is to

allow for an additional causal effect, and so always implies an additional edge in the causal

structure. Figure 5.1(c,d) contains simple examples of such imperfect placebos. Figure 5.1(c)

adds the D → N edge to Figure 5.1(a), while 5.1(d) adds the P → Y edge to Figure 5.1(b).

Figure 5.1: DAGs with a placebo outcome, N , and with a placebo treatment, P . D is
treatment, Y is outcome, Z contains unobserved confounders, and X contains observed
covariates.
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5.1.2 Placebo outcomes

Our proposed framework for using information from placebo treatments and outcomes relies

the omitted variable bias analysis for linear regression. However, we also explore relaxations

to this parametric approach in Appendix D.2, in which we illustrate similar methods adapted

to partially linear and non-parametric estimation of treatment effects. In either case, we show
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how the omitted variable bias paradigm can be augmented to incorporate information from

placebo treatments and outcomes to make causal progress with unequal levels of confounding

for a placebo treatment/outcome compared to the true treatment-outcome relationship and

with imperfect placebos. We emphasize this approach as a partial identification strategy,

but it can equivalently be seen as providing sensitivity analysis for more traditional placebo

approaches. We start by discussing placebo outcomes, then discuss placebo treatments, and

finally discuss “double placebos.”

We start our discussion of placebo outcomes by leveraging the traditional omitted variable

bias framework. (Angrist and Pischke, 2008; Cinelli and Hazlett, 2020; Hansen, 2022) Suppose

that we want to estimate the “long” regression of Y on D,X, and Z in Equation 5.1. In

particular, we are interested in the coefficient βY∼D|Z,X as a measure of the causal effect of

D on Y or as an approximation to the causal effect of D on Y . X and Z are each vectors

of covariates. We can consider Z(Y.DX) = ZβY∼Z|D,X to be the linear combination of Z that

“de-confounds” the D → Y relationship in the same way that including Z in Equation 5.1

does.4 That is βY∼D|Z,X = βY∼D|Z(Y.DX),X from Equation 5.1 and 5.2.5

Y = βY∼D|Z,XD +XβY∼X|D,Z + ZβY∼Z|D,X + ϵl (5.1)

Y = βY∼D|Z(Y.DX),XD +XβY∼X|D,Z(Y.DX)
+ βY∼Z(Y.DX)|D,XZ(Y.DX) + ϵl (5.2)

In practice, we typically do not observe all the covariates that would allow us to estimate

or approximate the causal effect of D on Y by estimating this long regression. Therefore, let

us assume that Z is unobserved. We will refer to these as “unobserved confounders.” Since Z

4Note that in this section and others, we will refer to including Z in the long regression as “de-confounding”.
Readers should recognize that, in reality, we are only partialling out the linear relationships with Z. This is,
therefore, a linear approximation to full non-parametric elimination of confounding from Z. On the other
hand, Z can be assumed to contain arbitrary functions of the relevant variables, making this very flexible for
de-confounding.

5Indeed R2
Y∼Z(Y.DX)|D,X will also equal R2

Y∼Z|D,X . But R2
D∼Z(Y.DX)|X ≤ R2

D∼Z|X , since Z(Y.DX) is chosen

to maximize the R2 between Z and Y not Z and D. (Cinelli and Hazlett, 2020)
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are unobserved, we must estimate the “short” regression of Y on D and X in Equation 5.3,

rather than the desired long regression. Z is “omitted” from the regression, though we wish

we could have included it.

Y = βY∼D|XD +XβY∼X|D + ϵs (5.3)

Traditional omitted variable bias analysis tells us that βY∼D|X − βY∼D|Z(Y.DX),X can be

characterised as the product of two regression coefficients, as in Equation 5.4. βY∼Z(Y.DX)|D,X

captures the relationship between Y and Z(Y.DX) after linearly partialling out D and X.

βZ(Y.DX)∼D|X captures the relationship between D and Z(Y.DX) after linearly partialling out X.

bias(YD.X)
∆
= βY∼D|X − βY∼D|Z(Y.DX),X = βY∼Z(Y.DX)|D,XβZ(Y.DX)∼D|X (5.4)

These components alone are enough to build a powerful partial identification framework,

as discussed in Cinelli and Hazlett (2020). But can more be done when there also exists an

observed placebo outcome, N? If we think that the relationship between D and N suffers from

a similar level of unobserved confounding as does the relationship between D and Y , then

how might we leverage N to understand bias(YD.X) and, hence, βY∼D|Z,X = βY∼D|Z(Y.DX),X?

Consider a long and short regression with N as the outcome and with D as the treatment.

The long regression of N on D,X, and Z can be found in Equation 5.5. We can again

consider Z(N.DX) = ZβN∼Z|D,X to be the linear combination of Z that “de-confounds” the

D → N relationship in the same way that including Z in Equation 5.5 does. Note that we

can consider Z to be a rich enough set of variables to de-confound both the D → Y and

the D → N relationships. Thus, βN∼D|Z,X = βN∼D|Z(N.DX),X from Equation 5.5 and 5.6. It

is important to note that Z(N.DX) will not equal Z(Y.DX) when βN∼Z|D,X ̸= βY∼Z|D,X . The

short regression of N on just D and X can be found in Equation 5.7. As with Y , we are

only able to consider estimating the short regression for N , as Z is unobserved. Here too

βN∼D|X − βN∼D|Z(N.DX),X can be characterised as in Equation 5.8.
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N = βN∼D|Z,XD +XβN∼X|D,Z + ZβN∼Z|D,X + ξl (5.5)

N = βN∼D|Z(N.DX),XD +XβY∼X|D,Z(N.DX)
+ βN∼Z(N.DX)|D,XZ(N.DX) + ξl (5.6)

N = βN∼D|XD +XβN∼X|D + ξs (5.7)

bias(ND.X)
∆
= βN∼D|X − βN∼D|Z(N.DX),X = βN∼Z(N.DX)|D,XβZ(N.DX)∼D|X (5.8)

From Equations 5.4 and 5.8, it is easy to see how to leverage information about the placebo

outcome, N . There is some m ∈ R such that bias(YD.X) = m× bias(ND.X). Thus, we can write

Equations 5.9 and 5.10; in these expressions, we substitute βN∼D|Z,X for βN∼D|Z(N.DX),X and

βY∼D|Z,X for βY∼D|Z(Y.DX),X , since they are equal. This can be thought of as using the placebo

outcome to re-express the confounding path D ← Z → Y in Figure 5.1(a).

bias(YD.X) = βY∼D|X − βY∼D|Z,X = m×
(
βN∼D|X − βN∼D|Z,X

)
(5.9)

⇐⇒ βY∼D|Z,X = βY∼D|X −m×
(
βN∼D|X − βN∼D|Z,X

)
(5.10)

Equation 5.9 is an expression for bias(YD.X) in terms of m
∆
=

βY ∼Z(Y.DX)|D,XβZ(Y.DX)∼D|X

βN∼Z(N.DX)|D,XβZ(N.DX)∼D|X
=

bias(YD.X)

bias(ND.X)
, βN∼D|Z(N.DX),X , and βN∼D|X . We have a similar expression for βY∼D|Z(Y.DX),X in

Equation 5.10, our target parameter, that also includes βY∼D|X . We can estimate βN∼D|X

and βY∼D|X from the data.6 The remaining terms in these expressions can be treated as

parameters that can be specified by investigators. Thus, we can use Equation 5.10 for partial

identification of βY∼D|Z,X by establishing plausible ranges of values for m and βN∼D|Z,X .

m captures the level of relative confounding. This can be thought of as comparing the

strength of the D ← Z → Y relationship to the D ← Z → N relationship in Figure 5.1(a).

6Note that we do not need the placebo outcome to be observed in the same dataset or for the same units
as the primary outcome to estimate βN∼D|X and βY∼D|X .
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βN∼D|Z,X = βN∼D|Z(N.DX),X captures any direct causal relationship between D and N , like the

D → N path in Figure 5.1(c). Therefore, this βN∼D|Z,X parameter allows for “imperfect”

placebo outcomes that are directly affected by the treatment. Since both N and D are

observed variables, their relationship conditional on Z,X should be able to be specified as a

regression coefficient. In many cases differing scales for N and Y might lead to difficulty in

interpreting or reasoning about the values for m. Can we do better?

Re-expressing m Let us consider a reparameterization of m in terms of scale-independent

partial-correlation parameters, rather than regression coefficients. This will allow us to

circumvent the scale issues we just mentioned. To do this, we use the reparameterizations

of omitted variable bias similar to that discussed in Cinelli and Hazlett (2020) shown in

Equation 5.11.

bias(YD.X) = βY∼D|X − βY∼D|Z(Y.DX),X = RY∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X(SD(Y
⊥D,X)/SD(D⊥X))

bias(ND.X) = βN∼D|X − βN∼D|Z(N.DX),X = RN∼Z(N.DX)|D,XfD∼Z(N.DX)|X(SD(N
⊥D,X)/SD(D⊥X))

(5.11)

m =
bias(YD.X)

bias(ND.X)

=
RY∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X

RN∼Z(N.DX)|D,XfD∼Z(N.DX)|X
× SD(Y ⊥D,X)

SD(N⊥D,X)
= k × SD(Y ⊥D,X)

SD(N⊥D,X)
(5.12)

k
∆
=

RY∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X

RN∼Z(N.DX)|D,XfD∼Z(N.DX)|X
=

bias(YD.X)

bias(ND.X)

× 1

SF

=
bias(YD.X) × (1/SF)

bias(ND.X)

=
bias(YD.X)

bias(ND.X) × SF

where SF =
SD(Y ⊥D,X)

SD(N⊥D,X)

(5.13)

Equation 5.12 provides an expression for m in terms of k7 and SF. SF (“scale factor”)

7If partial R2 are more intuitive, users can substitute in k = sign(k) ×
√
k2 and consider sign(k) =
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captures the scale issues and deals only with observables. The numerator and denominator are

moments of the residuals from the two short regressions. k is a scaled version of the ratio of

bias(YD.X) over bias(ND.X). This is a scale independent measure of the level of confounding of

the Y,D relationship relative to the level of confounding of theN,D relationship. Alternatively

put, it is the level of unobserved confounding in the Y,D relationship as a percentage of

the level of unobserved confounding in the N,D relationship, after resclaing to account for

possible differences in the scale of Y and N . If SD(N⊥D,X) = SD(Y ⊥D,X), then k is simply the

ratio of biases. Quantities like RY∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X and RN∼Z(N.DX)|D,XfD∼Z(N.DX)|X are

called “bias factors” in Cinelli and Hazlett (2020). fD∼Z|X is Cohen’s f which equals R√
1−R2 .

We can also re-write the bias-factors as RY∼Z|D,XfD∼Z|X = fY∼D|X − fY∼D|Z,X

√
1−R2

Y ∼Z|D,X

1−R2
D∼Z|X

.

See Appendix D.3 for the derivation. Equations 5.9 and 5.10 can be rewritten as Equation

5.14 and 5.15.

bias(YD.X) = k ×
(
βN∼D|X − βN∼D|Z,X

)
× SD(Y ⊥D,X)

SD(N⊥D,X)
(5.14)

βY∼D|Z,X = βY∼D|X − k ×
(
βN∼D|X − βN∼D|Z,X

)
× SD(Y ⊥D,X)

SD(N⊥D,X)
(5.15)

Estimator and partial identification Equation 5.15 provides us with a moment estimator

for βY∼D|Z,X in Equation 5.16.89

sign

(
RY ∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X

RN∼Z(N.DX)|D,XfD∼Z(N.DX)|X

)
and k2 =

R2
Y ∼Z(Y.DX)|D,Xf2

D∼Z(Y.DX)|X

R2
N∼Z(N.DX)|D,X

f2
D∼Z(N.DX)|X

. The denominator of k cannot equal

zero. This will be the case for any useful placebo outcome. Otherwise, the placebo outcome will not have a
confounded relationship with the treatment and not have any useful information that we can leverage to
understand the confounding of the relationship between the treatment and the actual outcome.

8We follow a similar presentation of our estimators and approaches to inference as in Zhang and Ding
(2022).

9It is also possible to show that ŜD(Y ⊥D,X)

ŜD(N⊥D,X)
=

[
ŜD(Y ⊥D,X )

ŜD(D⊥X )

]
[

ŜD(N⊥D,X )

ŜD(D⊥X )

] =
se(β̂Y ∼D|X)

se(β̂N∼D|X)
×
√

dfY
dfN

, which is an expression

containing only commonly reported regression summary statistics from the two short regressions that are
estimable from the observed data. se(β̂Y∼D|X) and se(β̂N∼D|X) are the estimated standard errors from
standard regression estimation of the short regressions. dfY and dfN are the degrees of freedom from the
estimated short regressions.
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β̂Y∼D|Z,X = β̂Y∼D|X − k ×
(
β̂N∼D|X − βN∼D|Z,X

)
× ∥Y

⊥D,X∥2
∥N⊥D,X∥2

(5.16)

Given k and βN∼D|Z,X , the estimator β̂Y∼D|Z,X from Equation 5.16 is consistent for

βY∼D|Z,X and asymptotically normal. We will discuss estimating standard errors in Section

5.1.5. Using Equation 5.16 in a partial identification framework, we can reason about plausible

ranges of values for βN∼D|Z,X and k to arrive at a range for plausible estimates of βY∼D|Z,X .

In this way, we can partially identify βY∼D|Z,X . In the special cases when there is only a

single omitted variable, Z(N.DX) = Z(Y.DX), or fD∼Z(N.DX)|X = fD∼Z(Y.DX)|X , then k can also be

written as k =
RY ∼Z|D,X

RN∼Z|D,X
. This can be thought of as comparing the strength of the Z → Y

“arm” of the confounding path D ← Z → Y to the relative strength of the Z → N “arm” of

the confounding path D ← Z → N in Figure 5.1(a).

5.1.3 Placebo treatments

It is possible to use similar machinery to leverage imperfect placebo treatments rather

than imperfect placebo outcomes in a partial identification framework for effects of actual

treatments on outcomes. Suppose that we want to run the long regression for Y on D

(Equation 5.1) but, again, Z is an unobserved vector of variables that we would have liked to

include in the regression but cannot. Suppose also that we have a placebo treatment, P , for

which we believe the confounding of P and Y from Z is similar to the confounding of D and Y

from Z. We might consider running two separate regressions as we did for placebo outcomes.

However, that approach is not easily adapted to imperfect placebo treatments (i.e., those for

which there is a direct relationship between P and Y ).10 Instead, suppose that P is not a

descendant of D, D is not a descendant of P , P is a neutral control for the effect of D on Y ,

10Suppose we have a causal model like Figure 5.1(d). βY∼Z|P,X (or RY∼Z|P,X) will capture the causal
relationship D → Y , since the path Z → D → Y will remain open conditional on P and X alone. Expressing
the bias in the regression coefficient on D from the short regression using a two regression approach like we
used for placebo outcomes would, therefore, require us to reason about the causal effect of interest itself,
which is not useful.
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and P is a neutral control for D on Y , conditional on Z and X.11 Further, suppose that we

want to run the “long” regression of Y on D,P,X, and Z in Equation 5.17. In particular, we

are interested in the coefficient βY∼D|P,Z,X as a measure of the causal effect of D on Y or as

an approximation to the causal effect of D on Y . However, since Z is unobserved, we must

run the “short” regression of Y on D,P and X in Equation 5.18, rather than the desired

long regression.

Y = βY∼D|P,Z,XD + βY∼P |D,Z,XP +XβY∼X|D,P,Z + ZβY∼Z|D,P,X + ϵl (5.17)

Y = βY∼D|P,XD + βY∼P |D,XP +XβY∼X|D,P + ϵs (5.18)

Following a similar omitted variables based approach as we took for placebo outcomes

(see Equation 5.19), we can arrive at similar partial identification expressions for the placebo

treatment case.

11We require that D and P are neutral controls for each other in that they do not change the regression
coefficients for the outcome Y when we include them in the same regression. This will simplify interpretation.
If a user is concerned that there could be a path opened or closed by conditioning on D or P , we suggest
drawing the DAG to check. See Section 5.2 for further discussion.
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bias(YD.PX) = βY∼D|P,X − βY∼D|P,Z(Y.DPX),X

= RY∼Z(Y.DPX)|D,P,XfD∼Z(Y.DPX)|P,X(SD(Y
⊥D,P,X)/SD(D⊥P,X))

bias(YP.DX) = βY∼P |D,X − βY∼P |D,Z(Y.DPX),X

= RY∼Z(Y.DPX)|D,P,XfP∼Z(Y.DPX)|D,X(SD(Y
⊥D,P,X)/SD(P⊥D,X))

bias(YD.PX) = m× bias(YP.DX)

=⇒ βY∼D|P,Z(Y.DPX),X = βY∼D|P,X −m× (βY∼P |D,X − βY∼P |D,Z(Y.DPX),X)

m =
bias(YD.PX)

bias(YP.DX)

=
RY∼Z(Y.DPX)|D,P,XfD∼Z(Y.DPX)|P,X

RY∼Z(Y.DPX)|D,P,XfP∼Z(Y.DPX)|D,X

× SD(P⊥D,X)

SD(D⊥P,X)
= k × SD(P⊥D,X)

SD(D⊥P,X)

(5.19)

bias(YD.PX)
∆
= βY∼D|P,X − βY∼D|P,Z,X = k ×

(
βY∼P |D,X − βY∼P |D,Z,X

)
× SD(P⊥D,X)

SD(D⊥P,X)
(5.20)

βY∼D|P,Z,X = βY∼D|P,X − k ×
(
βY∼P |D,X − βY∼P |D,Z,X

)
× SD(P⊥D,X)

SD(D⊥P,X)
(5.21)

Equations 5.20 and 5.21 contain the results. All components of these expressions except

for k
∆
=

RY ∼Z(Y.DPX)|D,P,XfD∼Z(Y.DPX)|P,X

RY ∼Z(Y.DPX)|D,P,XfP∼Z(Y.DPX)|D,X
and βY∼P |D,Z,X can be estimated from the data. We

can use this for partial identification by considering plausible ranges of values for k and

βY∼P |D,Z,X . βY∼P |D,Z,X captures any direct causal relationship between P and Y . Since both

P and Y are observed variables, their relationship conditional on D,Z,X should be able to

be specified as the regression coefficient βY∼P |D,Z,X despite scale considerations. As with

placebo outcomes, k captures the relative levels of confounding. Note that we can compare

the level of confounding of the P → Y relationship from Z to the level of confounding of the

D → Y relationship from Z by using the same linear combination, Z(Y.DPX) = ZβY∼Z|D,P,X .

This is because in the placebo treatment approach we run a single regression with Y as the

outcome that includes both D and P on the right-hand side. Since we assume that Z contains
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a rich enough set of unobserved variables to de-confound both P → Y and D → Y , Z(Y.DPX)

is also sufficient for this. k is the ratio of the level of total confounding of D → Y from

D ← Z → Y to the level of total confounding of P → Y from P ← Z → Y , after re-scaling

one of these biases to account for scale differences between P and D.12

Estimator and partial identification Equation 5.21 provides us with a moment estimator

for βY∼D|P,Z,X in Equation 5.22.13

β̂Y∼D|P,Z,X = β̂Y∼D|P,X − k ×
(
β̂Y∼P |D,X − βY∼P |D,Z,X

)
× ∥P

⊥D,X∥2
∥D⊥P,X∥2

(5.22)

Given k and βY∼P |D,Z,X , the estimator β̂Y∼D|P,Z,X from Equation 5.22 is consistent for

βY∼D|P,Z,X and asymptotically normal. We discuss computing standard errors in Section 5.1.5.

Using Equation 5.22 in a partial identification framework, we can reason about plausible

ranges of values for βY∼P |D,Z,X and k to arrive at a range of plausible estimates of βY∼D|P,Z,X .

In the special case when there is only a single omitted variable, then k can also be written

as k =
fD∼Z|P,X

fP∼Z|D,X
. This can be thought of as comparing the strength of the Z → D “arm”

of the confounding path D ← Z → Y to the relative strength of the Z → P “arm” of the

confounding path P ← Z → Y in Figure 5.1(b).

12Note that we do not cancel terms in k =
RY ∼Z(Y.DPX)|D,P,XfD∼Z(Y.DPX)|P,X

RY ∼Z(Y.DPX)|D,P,XfP∼Z(Y.DPX)|D,X
since this would force us to

reason about how fD∼Z(Y.DPX)|P,X differs from fD∼Z|P,X and how fP∼Z(Y.DPX)|D,X differs from fP∼Z|D,X . It
is more intuitive to reason about relative levels of bias, which does not require us to directly consider those
differences.

13It is also possible to show that ŜD(P⊥D,X)

ŜD(D⊥P,X)
= ŜD(P⊥D,X)

ŜD(D⊥P,X)
× ŜD(Y ⊥D,P,X)

ŜD(Y ⊥D,P,X)
=

se(β̂Y ∼D|P,X)

se(β̂Y ∼P |D,X)
×
√

dfD
dfP

, which is

an expression containing only commonly reported regression summary statistics from the short regression
that is estimable from the observed data. se(β̂Y∼D|P,X) and se(β̂Y∼P |D,X) are the estimated standard errors
from standard regression estimation of the short regression. dfY and dfN are the degrees of freedom from the
estimated short regression, these will be equal in this case.
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5.1.4 Double placebos

Finally, we consider the setting in which we have two placebos. Suppose we are interested

in βY∼D|Z,X from the “long” regression in Equation 5.1. However, Z is unobserved and so

we must only consider estimating “short” regression in Equation 5.3. Further, suppose we

are in a setting like Figure 5.2 - that is, we observe both a placebo outcome (N) and a

placebo treatment (P ). In such a “double placebo” setting, we can also develop a partial

identification framework. Consider the following two sets of short and long regressions. Again,

Z is an unobserved confounder. So we can only consider estimating the short regressions

(i.e., Equations 5.23b and 5.23d). Z(Y.DPX) = ZβY∼Z|D,P,X is the linear combination that

de-confounds the Y,D and the Y, P relationship. Z(N.DPX) = ZβN∼Z|D,P,X is the linear

combination that de-confounds the N,D and the N,P relationship. We choose Z to be a

rich enough set of variables to allow for this interpretation.

Y = βY∼D|P,Z,XD + βY∼P |D,Z,XP +XβY∼X|D,P,Z + ZβY∼Z|D,P,X + ϵy,l (5.23a)

Y = βY∼D|P,XD + βY∼P |D,XP +XβY∼X|D,P + ϵy,s (5.23b)

N = βN∼D|P,Z,XD + βN∼P |D,Z,XP +XβN∼X|D,P,Z + ZβN∼Z|D,P,X + ϵn,l (5.23c)

N = βN∼D|P,XD + βN∼P |D,XP +XβN∼X|D,P + ϵn,s (5.23d)

In Appendix D.1, we detail a similar omitted variables bias based approach for this setting.

The approach results in the expression for βY∼D|P,Z(Y.DPX),X = βY∼D|P,Z,X in Equation 5.24.

βY∼D|P,Z,X = βY∼D|P,X − k(YD
YP )
× k(NP

ND)
×

(βY∼P |D,X − βY∼P |D,Z,X)(βN∼D|P,X − βN∼D|P,Z,X)

(βN∼P |D,X − βN∼P |D,Z,X)
(5.24)

Equation 5.24 provides us with a moment estimator for βY∼D|P,Z,X in Equation 5.25.
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Figure 5.2: A single causal graph with both a placebo outcome, N , and with a placebo
treatment, P . D is treatment, Y is outcome, and Z contains unobserved confounders. X
contains observed covariates.

(a) Perfect Double Placebo

D Y

P N

Z

X

(a) Imperfect Double Placebo

D Y

P N

Z

X

β̂Y∼D|P,Z,X = β̂Y∼D|P,X − k(YD
YP )
× k(NP

ND)
×

(β̂Y∼P |D,X − βY∼P |D,Z,X)(β̂N∼D|P,X − βN∼D|P,Z,X)

(β̂N∼P |D,X − βN∼P |D,Z,X)
(5.25)

Given k(YD
YP )

, k(NP
ND)

, βY∼P |D,Z,X , βN∼D|P,Z,X , and βN∼P |D,Z,X , the estimator β̂Y∼D|P,Z,X

from Equation 5.25 is consistent for βY∼D|P,Z,X and asymptotically normal. We discuss comput-

ing standard errors in Section 5.1.5. Using Equation 5.25 in a partial identification framework,

we can reason about plausible ranges of values for k(YD
YP )

, k(NP
ND)

, βY∼P |D,Z,X , βN∼D|P,Z,X , and

βN∼P |D,Z,X to arrive at a range of plausible estimates of βY∼D|P,Z,X .

In Figure 5.2(b), the partial identification parameters for double placebos capture paths

as follows: βY∼P |D,Z,X = βY∼P |D,Z(Y.DPX),X captures P → Y and P → N → Y (the

effect of P on Y conditional on D); βN∼D|P,Z,X = βN∼D|P,Z(N.DPX),X captures D → N ;

βN∼P |D,Z,X = βN∼P |D,Z(N.DPX),X captures P → N . We can disentangle the P → Y and

P → N → Y components of βY∼P |D,Z,X for Figure 5.2(b) by using the following omit-

ted variable expression: βY∼P |D,Z,X = βY∼P |N,D,Z,X + βY∼N |P,D,Z,XβN∼P |D,Z,X . βY∼P |N,D,Z,X

captures P → Y ; βY∼N |P,D,Z,X captures N → Y ; βN∼P |D,Z,X captures P → N and al-
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ready a partial identification parameter. k(YD
YP )
× k(NP

ND)
=

RY ∼Z(Y.DPX)|D,P,XfZ(Y.DPX)∼D|P,X

RY ∼Z(Y.DPX)|D,P,XfZ(Y.DPX)∼P |D,X
×

RN∼Z(N.DPX)|D,P,XfZ(N.DPX)∼P |D,X

RN∼Z(N.DPX)|D,P,XfZ(N.DPX)∼D|P,X
. k(YD

YP )
captures the scaled ratio of the level of confounding of

the Y,D relationship (conditional on P ) to the level of confounding of the Y, P relationship

(conditional on D), after re-scaling one of these biases, or the ratio of bias factors. k(NP
ND)

captures the scaled ratio of the level of confounding of the N,P relationship (conditional on

D) to the level of confounding of the N,D relationship (conditional on P ), after re-scaling

one of these biases, or the ratio of bias factors.

This type of expression can be used in a wide variety of settings. Though the interpretation

of the partial identification parameters and of βY∼D|P,Z,X will depend on the underlying causal

model being considered. See Section 5.2 for more details. With two imperfect placebos, users

have a choice between the “single placebo” approaches and the “double placebo” approach.

If we are in a setting like in Figure 5.2(a), where “perfect” placebos are available, then

βY∼P |D,Z,X , βN∼D|P,Z,X , and βN∼P |D,Z,X will all equal zero. If it is reasonable to assume

that either we have a single unobserved variable, Z(Y.DPX) = Z(N.DPX), or RZ(Y.DPX)∼D|P,X =

RZ(N.DPX)∼D|P,X and RZ(Y.DPX)∼P |D,X = RZ(N.DPX)∼P |D,X , then k(YD
YP )
×k(NP

ND)
= 1.14 If we are in

both of these settings at the same time, then we can point identify βY∼D|Z,X using observed

data. This is similar to the proximal causal inference point identification results (Miao et al.,

2020). See Liu et al. (2022) for an application of a double placebo approach.

5.1.5 Standard Errors

For fixed values for the partial identification parameters, the moment estimators in Equations

5.16, 5.22, and 5.25 are consistent for the target regression coefficient on the treatment

from the “long” regression and are asymptotically normal. We can use the non-parametric

bootstrap to estimate standard errors. See Zhang and Ding (2022); Freidling and Zhao (2023)

14If these relationships approximately hold, we could also consider a narrow range of values for k(YD
YP )
×k(NP

ND )
close to 1.
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for similar partial identification approaches that rely on the non-parametric bootstrap for

standard errors.

5.2 A taxonomy of causal graphs

How do we know if we have a useful placebo? How do we know if it is better to treat a

placebo as a placebo outcome or a placebo treatment? Are there settings in which the above

approaches should not be used? Are there settings in which the proposed methods can be

used for problems other than unobserved confounding? We will address these questions by

developing a taxonomy of causal graphs when a single placebo is available and when two are

available. For introductions to graphical causal models see Pearl (2009), Richardson and

Robins (2013a), Matthay and Glymour (2020), and Cinelli et al. (2022). We re-emphazise the

Necker cube quality of placebos. Two causal graphs, each with a placebo, that have the same

structure may invite different interpretations for whether the placebo is a placebo treatment

or outcome. These choices are context specific. Sometimes the placebo may feel more like an

outcome, while in other contexts the placebo feels more like a treatment.

5.2.1 Single Placebos

We start by listing all possible causal graphs when a single placebo is observed in Figure

5.3. We assume that all relevant unobserved common causes are bundled into the vector

of unobserved variables Z. Observed covariates X are omitted from the graphs for clarity.

We refer to the placebo as P . Figure 5.3(a) contains a template from which the rest of the

graphs in Figure 5.3 are derived. The two dashed edges can point in either direction or not

exist.15 Different approaches should be used when dealing with each causal structure.16

15There are 32 − 1 = 8 possible graphs, excluding those with cycles.

16The approaches presented in Section 5.1.2 and 5.1.3 hold for any causal graph. However, the interpretation
of the partial identification parameters depend on the causal graph. We, therefore, provide guidance on which
approaches we suggest for each causal graph. Assuming a causal graph (or set of causal graphs) that are
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Figure 5.3: Single placebo DAGs.

(a) Template

D Y

P

Z

(b) Perfect Placebo

D Y

P

Z

(c) D → P

D Y

P

Z

(d) P → Y

D Y

P

Z

(e) Mediator (D → P and P → Y )

D Y

P

Z

(f) P → D

D Y

P

Z

(g) Observed Confounder

D Y

P

Z

(h) Post-Outcome

D Y

P

Z

(i) Post-Outcome; Post-Treatment

D Y

P

Z

plausible in any application is a pre-requisite to making any credible causal claims. This section includes
some additional approaches not yet discussed. Details of these can be found in the Appendix.
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Placebos Figure 5.3(b) is the simplest setting in which P has no direct relationship with

either the treatment, D, or the outcome, Y . That is, P is a “perfect” placebo. There are two

options for how we might proceed in this case. We can look at P as a placebo outcome and

follow the approach laid out in Section 5.1.2, or we can look at P as a placebo treatment

and follow the approach laid out in Section 5.1.3. In either case, since P is a perfect placebo,

we will only have one partial identification parameter that captures the relative levels of

confounding.

Figure 5.3(c) has the addition of D → P . Since the placebo is post-treatment in this

setting, it is likely that we will want to treat the placebo as an imperfect placebo outcome.

Therefore, we can follow the approach laid out in Section 5.1.2 17 Figure 5.3(d) has P → Y .

Here there are also two options. The first would be to treat P as an imperfect placebo

treatment and follow the approach laid out in Section 5.1.3. The second would be to view P

as a placebo outcome, as in the case that P is a pre-treatment version of the outcome. In

this setting, we can employ the approach laid out in Section 5.1.2 or Equation 5.26. The key

in using Equation 5.26 is the inclusion of P in the regression of Y on D.18

17In Figure 5.3(c), the approach from Section 5.1.3 will not work well. The regression Y ∼ D + P will
run into the problem that βY∼D|P = βY∼D|P,Z + βY∼Z|D,PβZ∼D|P and βZ∼D|P captures both Z → D and
Z → P ← D. This means that a parameter that we will need to reason about will capture the effect of
conditioning on a collider.

18Note that Chabé-Ferret (2017), Ham and Miratrix (2022), and others warn that conditioning on pre-
treatment outcomes in a difference-in-differences type approach can create amplify bias under certain
circumstances. However, since we take a partial identification approach, this should not present any issues
for using Equation 5.26.
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bias(YD.PX) = βY∼D|P,X − βY∼D|P,Z(Y.DPX),X

= RY∼Z(Y.DPX)|D,P,XfD∼Z(Y.DPX)|P,X(SD(Y
⊥D,P,X)/SD(D⊥P,X))

bias(PD.X) = βP∼D|X − βP∼D|Z(P.DX),X

= RP∼Z(P.DX)|D,XfD∼Z(P.DX)|X(SD(P
⊥D,X)/SD(D⊥X))

bias(YD.PX) = m× bias(PD.X)

=⇒ βY∼D|P,Z(Y.DPX),X = βY∼D|P,X −m× (βP∼D|X − βP∼D|Z(P.DX),X)

m =
bias(YD.PX)

bias(PD.X)

=
RY∼Z(Y.DPX)|D,P,XfD∼Z(Y.DPX)|P,X

RP∼Z(P.DX)|D,XfD∼Z(P.DX)|X
× SD(Y ⊥D,P,X)

SD(D⊥P,X)
× SD(D⊥X)

SD(P⊥D,X)

= k × SD(Y ⊥D,P,X)

SD(D⊥P,X)
× SD(D⊥X)

SD(P⊥D,X)

∴ βY∼D|P,Z(Y.DPX),X

= βY∼D|P,X − k × (βP∼D|X − βP∼D|Z(P.DX),X)×
SD(Y ⊥D,P,X)

SD(D⊥P,X)
× SD(D⊥X)

SD(P⊥D,X)

(5.26)

In Equation 5.26, k
∆
=

RY ∼Z(Y.DPX)|D,P,XfD∼Z(Y.DPX)|P,X

RP∼Z(P.DX)|D,XfD∼Z(P.DX)|X
is the ratio of the level of confounding

D and Y , conditional on P , to the level of confounding D and P , after re-scaling one of these

biases to account for scale differences. Since we included P in the regression of Y on D, we

see that the confounding of D and Y does not include the Z → P → Y path, possibly making

comparison with the confounding of D and P easier. βP∼D|Z(P.DX),X = βP∼D|Z,X measures the

causal effect of D on P , which based on Figure 5.3(d) should be zero.

Mediators Figure 5.3(e) has D → P and P → Y , making P a mediator between D and Y .

In this case there is more than one option. First, Zhang and Ding (2022) provide guidance

on how to take an omitted variables bias approach to partial identification of the direct effect

and indirect effect. The direct effect approach deals with the fact that conditioning on P

opens the collider path D → P ← Z and involves specifying partial identification parameters
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for each of the Z → D, Z → P , and Z → Y relationships. Suppose we want to consider

the total effect. We could use the approach outlined in Cinelli and Hazlett (2020), but this

approach for the total effect applied to a setting with a mediator requires that we reason

about R2
Y∼Z|D which captures the Z → Y and Z → P → Y relationships. A wrinkle is that

P → Y is a component of the total effect we want to identify. An alternative would be to

follow the approach laid out in Section 5.1.2, where the mediator is treated as a placebo

outcome. Here there is again the wrinkle that we will be required to reason about D → P

(above we refer to the placebo outcomes as N), which is a component of the total effect we

want to identify. We could also follow the approach in Equation 5.27. This does something

similar but where we treat the mediator as a placebo treatment. The wrinkle remains that

we need to reason about P → Y , a component of the total effect we want to identify.

bias(YD.X) = βY∼D|X − βY∼D|Z(Y.DX),X

= RY∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X(SD(Y
⊥D,X)/SD(D⊥X))

bias(YP.DX) = βY∼P |D,X − βY∼P |D,Z(Y.DPX),X

= RY∼Z(Y.DPX)|D,P,XfP∼Z(Y.DPX)|D,X(SD(Y
⊥D,P,X)/SD(P⊥D,X))

bias(YD.X) = m× bias(YP.DX)

=⇒ βY∼D|Z(Y.DX),X = βY∼D|X −m× (βY∼P |D,X − βY∼P |D,Z(Y.DPX),X)

m =
bias(YD.X)

bias(YP.DX)

=
RY∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X

RY∼Z(Y.DPX)|D,P,XfP∼Z(Y.DPX)|D,X

SD(P⊥D,X)

SD(D⊥X)

SD(Y ⊥D,X)

SD(Y ⊥D,P,X)

= k × SD(P⊥D,X)

SD(D⊥X)

SD(Y ⊥D,X)

SD(Y ⊥D,P,X)

∴ βY∼D|Z(Y.DX),X

= βY∼D|X − k × (βY∼P |D,X − βY∼P |D,Z(Y.DPX),X)×
SD(P⊥D,X)

SD(D⊥X)

SD(Y ⊥D,X)

SD(Y ⊥D,P,X)

(5.27)

In Equation 5.27, k
∆
=

RY ∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X

RY ∼Z(Y.DPX)|D,P,XfP∼Z(Y.DPX)|D,X
is the ratio of the level of confounding

101



D and Y to the level of confounding P and Y , conditional on D, after re-scaling one of these

biases to account for scale differences. βY∼P |D,Z(Y.DPX),X = βY∼P |D,Z,X measures the causal

effect of P on Y .

Observed Confounders Figure 5.3(f) has P → D. This is similar to an observed

confounder. Figure 5.3(g) has P → D and P → Y , making P an observed confounder. In

both of these cases, there are two options. First, we could follow the approach laid out in

Cinelli and Hazlett (2020), where P is an observed covariate. Second, we could follow the

approach in Equation 5.28. The key here is to include P in the regression of Y on D and to

also consider the regression of D on P .

bias(YD.PX) = βY∼D|P,X − βY∼D|P,Z(Y.DPX),X

= RY∼Z(Y.DPX)|D,P,XfD∼Z(Y.DPX)|P,X(SD(Y
⊥D,P,X)/SD(D⊥P,X))

bias(DP.X) = βD∼P |X − βD∼P |Z(D.PX),X

= RD∼Z(D.PX)|P,XfP∼Z(D.PX)|X(SD(D
⊥P,X)/SD(P⊥X))

bias(YD.PX) = m× bias(DP.X)

=⇒ βY∼D|P,Z(Y.DPX),X = βY∼D|P,X −m× (βD∼P |X − βD∼P |Z(D.PX),X)

m =
bias(YD.PX)

bias(DP.X)

=
RY∼Z(Y.DPX)|D,P,XfD∼Z(Y.DPX)|P,X

RD∼Z(D.PX)|P,XfP∼Z(D.PX)|X
× SD(Y ⊥D,P,X)

SD(D⊥P,X)
× SD(P⊥X)

SD(D⊥P,X)

= k × SD(Y ⊥D,P,X)

SD(D⊥P,X)
× SD(P⊥X)

SD(D⊥P,X)

∴ βY∼D|P,Z(Y.DPX),X

= βY∼D|P,X − k × (βD∼P |X − βD∼P |Z(D.PX),X)×
SD(Y ⊥D,P,X)

SD(D⊥P,X)
× SD(P⊥X)

SD(D⊥P,X)

(5.28)

In Equation 5.28, k
∆
=

RY ∼Z(Y.DPX)|D,P,XfD∼Z(Y.DPX)|P,X

RD∼Z(D.PX)|P,XfP∼Z(D.PX)|X
is the ratio of the level of confounding

D and Y , conditional on P , to the level of confounding D and P , after re-scaling one of these
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biases to account for scale differences. Since we included P in the regression of Y on D, we

see that the confounding of D and Y does not include the paths that run through P , making

comparison with the confounding of D and P easier. βD∼P |Z(D.PX),X = βD∼P |Z,X measures the

causal effect of P on D.

Post-outcome Figure 5.3(h) has Y → P . Figure 5.3(i) has Y → P and D → P . In both

cases, P is a post-outcome variable. In both of these cases, there are two options. First, we

could follow the approach laid out in Cinelli and Hazlett (2020), where we ignore P . Second,

we could follow the approach in Equation 5.29. The key is to consider the regression of P on

Y and D.

bias(YD.X) = βY∼D|X − βY∼D|Z(Y.DX),X

= RY∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X(SD(Y
⊥D,X)/SD(D⊥X))

bias(PY.DX) = βP∼Y |D,X − βP∼Y |D,Z(P.YDX),X

= RP∼Z(P.YDX)|Y,D,XfY∼Z(P.YDX)|D,X(SD(P
⊥Y,D,X)/SD(Y ⊥D,X))

bias(YD.X) = m× bias(PY.DX)

=⇒ βY∼D|Z(Y.DX),X = βY∼D|X −m× (βP∼Y |D,X − βP∼Y |D,Z(P.YDX),X)

m =
bias(YD.X)

bias(PY.DX)

=
RY∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X

RP∼Z(P.YDX)|Y,D,XfY∼Z(P.YDX)|D,X

× SD(Y ⊥D,P,X)

SD(D⊥P,X)
× SD(P⊥X)

SD(D⊥P,X)

= k × SD(Y ⊥D,X)

SD(D⊥X)
× SD(Y ⊥D,X)

SD(P⊥Y,D,X)

∴ βY∼D|Z(Y.DX),X

= βY∼D|X − k × (βP∼Y |D,X − βP∼Y |D,Z(P.YDX),X)×
SD(Y ⊥D,X)

SD(D⊥X)
× SD(Y ⊥D,X)

SD(P⊥Y,D,X)

(5.29)

In Equation 5.29, k
∆
=

RY ∼Z(Y.DX)|D,XfD∼Z(Y.DX)|X

RP∼Z(P.YDX)|Y,D,XfY ∼Z(P.YDX)|D,X
is the ratio of the level of confounding

of D and Y to the level of confounding of Y and P , after re-scaling one of these biases to
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account for scale differences. βP∼Y |D,Z(P.YDX),X = βP∼Y |D,Z,X measures the causal effect of Y

on P .

5.2.2 Double Placebos

In the double placebo case, there are many more possible graphs. Again, we assume that all

relevant unobserved common causes are bundled into the vector of unobserved variables Z.

Observed covariates X are omitted from the graphs for clarity. All the dashed edges in Figure

5.4(a) could have either direction or not exist19 (excluding combinations of edge directions

that lead to cycles). However, we limit our analysis to the specific case shown in Figure

5.4(b) and detailed in Section 5.1.4. This may cover many practical settings and researchers

interested in alternative graphs can reason through the implications of their favored graph

and its implications for interpreting the partial identification parameters based on Section

5.1.4. There may be other partial identification approaches available in the double placebo

case but we omit an exploration of these for brevity.

Figure 5.4: Double placebo causal graph.

(a) Template

D Y

P N

Z

(b) Observed confounder and mediator

D Y

P N

Z

19There are 34 = 81 possible graphs, assuming that users know which of the two placebos is causally prior
to the other; but the graphs with cycles should be excluded. Making the conservative assumption that the
dashed edges in Figure 5.4(a) do exist, then there are 24 = 16 possible fully connected graphs; again, the
graphs with cycles should be excluded.
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5.2.3 Sample selection and other applications

Arnold et al. (2016) suggests that placebos can be used to address sample selection and

measurement bias in addition to unobserved confounding. This might look like Figure 5.5.

Take Figure 5.5(a) as an example. Here selection of units into the study sample is indicated

by a special node S. Since we are limited to the study sample, we are implicitly conditioning

on S, which opens a non-causal path from D to Y . However, if sample selection also opens

a similar non-causal path from D to N , then we may be able to use information about the

placebo outcome N to inform how sample selection biases the estimate of the effect of D on

Y . See Chapter 2 for a discussion of causal graphs and sample selection.

Figure 5.5: Example causal graphs with a placebo outcome, N . D is treatment; Y is
outcome; Z contains unobserved confounders; S represents sample selection. Additional
observed covariates are omitted for simplicity.

(a)

D Y

NS

Z

(b)

D Y

NS

Z1

Z2

5.3 Difference in differences as special case

In this section, we explore how the approaches put forth in this paper correspond to various

relaxations to the standard assumptions of difference in differences identification strategies.

Let’s start by reviewing the typical difference in differences (DID) setup and identification

strategy. Suppose we have panel data for two periods for a cohort of units. We observe the

outcome of interest in period 1, which we will label N , as well as the outcome of interest in
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period 2, which we will call Y . In period 1, no units are treated but in period 2 some units

are treated. We indicate the group of units that is treated with G = 1. We indicate actual

treatment with D = 1. We therefore have that in period 1 D = 0 for all units and that in

period 2 G = D. For now, we assume that we do not need to adjust for any covariates. The

standard DID identification strategy identifies the ATT for Y (ATTY ) in the following way.

Note that Yd and Nd are the potential outcomes when D is set, perhaps counterfactually,

to D = d with d ∈ {0, 1}. We start by revisiting a standard decomposition of the simple

difference in means (DIM) between the treated and control groups for Y .

DIMY = E[Y |G = 1]− E[Y |G = 0]

= E[Y1|G = 1]− E[Y0|G = 0] by consistency and since D = G in period 2

= E[Y1|G = 1]− E[Y0|G = 1]︸ ︷︷ ︸
ATTY

+E[Y0|G = 1]− E[Y0|G = 0]︸ ︷︷ ︸
BiasY

= ATTY + BiasY

(5.30)

We make a “parallel trends” assumption that the trend in the mean control potential

outcomes for the treated group is the same as the trend for the control group (i.e., E[Y0|G =

1] − E[N0|G = 1] = E[Y0|G = 0] − E[N0|G = 0]). The parallel trends assumption can be

re-ordered into an “equiconfounding” assumption that the mean baseline difference between

the treated and control groups in period 2 is the same as the mean baseline difference

between the treated and control groups in period 1. The equivalence of parallel trends and

equiconfounding is discussed in Sofer et al. (2016).

Parallel Trends
∆
= E[Y0|G = 1]− E[N0|G = 1]︸ ︷︷ ︸

TrendG=1

= E[Y0|G = 0]− E[N0|G = 0]︸ ︷︷ ︸
TrendG=0

⇐⇒ E[Y0|G = 1]− E[Y0|G = 0]︸ ︷︷ ︸
BiasY

= E[N0|G = 1]− E[N0|G = 0]︸ ︷︷ ︸
BiasN

∆
= Equiconfounding

(5.31)
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Now, we recall our constraint that N is a pre-treatment version of the outcome. This

means that the treatment cannot have an effect on the pre-treatment outcome (and that no

units are treated in period 1). So N1 = N0 = N for both the treated and control groups. So

we see that DIMN = ATTN + BiasN = BiasN .

DIMN = E[N |G = 1]− E[N |G = 0]

= E[N1|G = 1]− E[N0|G = 0]

= E[N1|G = 1]− E[N0|G = 1] + E[N0|G = 1]− E[N0|G = 0]

= E[N1 −N0|G = 1]︸ ︷︷ ︸
ATTN

+E[N0|G = 1]− E[N0|G = 0]︸ ︷︷ ︸
BiasN

= E[N −N |G = 1] + BiasN = BiasN

(5.32)

Therefore, we have that BiasY = BiasN = DIMN and that DIMY = ATTY + BiasY .

Plugging into the later, we have DIMY = ATTY +DIMN , which can be rearranged to yield

the standard difference in differences identification result, ATTY = DIMY − DIMN , which

makes clear where the DID name comes from.

Parallel Trends and equiconfounding While it is common to make parallel trends

assumptions, equiconfounding is mathematically equivalent and is not any less intuitive to

consider. equiconfounding assumes that the difference in mean control potential outcomes

for the treated and control groups in period 2 is the same as the difference for the treated

and control groups in period 1. This means that, on average, the way that the treatment and

control groups differ for the outcome in period 1 can be used as a stand in for the way that the

treatment and control groups differ for the outcome in period 2. Researchers should be able

to consider this and possible violations to it just as easily as the parallel trends assumptions

and its violations. In what follows, we will stick to equiconfounding type assumptions, rather

than parallel trends assumptions since they have a more direct connection to the bias that

we are trying to overcome, namely BiasY . But every equiconfounding type assumption we
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might consider has analogous parallel trends assumption, as we will show.

Relaxing Assumptions It is easy to see that we can relax the assumption that there is

no effect of D on N by allowing ATTN to be non-zero. Further, we can relax the assumption

that BiasY exactly equals BiasN by recognizing that, for some m ∈ R, BiasY = m× BiasN .

Together, these relaxations give us the expression for ATTY in Equation 5.33.

ATTY = DIMY − BiasY

= DIMY −m× BiasN

= DIMY −m× (DIMN − ATTN)

(5.33)

That is, we can express ATTY as a difference between DIMY and an “adjusted” version

of DIMN , where the adjustment is parameterized by m = BiasY
BiasN

and ATTN . The statement

BiasY = m × BiasN is similar to the equiconfounding assumption from the standard DID

approach. And the expression ATTY = DIMY −m×(DIMN−ATTN ) is similar to a difference

in differences type identification result. So we are not too far from familiar results, but this

approach would apply to more general placebo outcomes and settings outside the standard

DID setting. Equation 5.33 could be used for partial identification in cases with binary

treatments and a placebo outcome. Researchers would estimate DIMY and DIMN and then

reason about plausible values for m and ATTN to partially identify ATTY .
20 But how does

20We suspect there are more settings in which multiple applications of the decomposition DIM = ATT+Bias
could yield useful expressions for causal effects with binary treatments, similar to how Section 5.1 involves
multiple applications of the omitted variables bias formula. For example, another possibility is for a binary
placebo treatment P with actual binary treatment D and outcome Y . We may have that
E[Y |D = 1]− E[Y |D = 0]︸ ︷︷ ︸

DIMY ∼D

= E[YD=1|D = 1]− E[YD=0|D = 1]︸ ︷︷ ︸
ATTY ∼D

+E[YD=0|D = 1]− E[YD=0|D = 0]︸ ︷︷ ︸
BiasY ∼D

E[Y |P = 1]− E[Y |P = 0]︸ ︷︷ ︸
DIMY ∼P

= E[YP=1|P = 1]− E[YP=0|P = 1]︸ ︷︷ ︸
ATTY ∼P

+E[YP=0|P = 1]− E[YP=0|P = 0]︸ ︷︷ ︸
BiasY ∼P

There is some m such that BiasY∼D = m × BiasY∼P . So we can write ATTY∼D = DIMY∼D − m ×
(DIMY∼P − ATTY∼P ). We could then partially identify ATTY∼D by estimating DIMY∼D and DIMY∼P

and reasoning about plausible values for m
∆
= BiasY ∼D

BiasY ∼P
and ATTY∼P .
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this all relate to the regression-based results we discuss in Section 5.1?

Connecting to Regression Since G is binary, a regression of Y or N on G will give

the difference in means DIMY or DIMN , respectively. Additionally, we can use traditional

omitted variable bias analysis to show that,

DIMY = βY∼G = βY∼G|Z(Y.G)
+ βY∼Z(Y.G)|GβZ(Y.G)∼G

DIMN = βN∼G = βN∼G|Z(N.G)
+ βN∼Z(N.G)|GβZ(N.G)∼G

(5.34)

where Z(Y.D) and Z(N.D) are linear combinations of a vector Z of all the time-varying and

non-time-varying confounders of the G, Y and G,N relationships, like in previous sections.

βY∼G is the regression coefficient on G from the regression Y = βY∼GG + ϵ1. βY∼G|Z =

βY∼G|Z(Y.G)
is the regression coefficient on G from the regression Y = βY∼G|ZG+ZβY∼Z|G+ ϵ2.

All the other regression coefficients are defined similarly. We can also see that Equation 5.35

holds.

ATTY + BiasY = DIMY = βY∼G = βY∼G|Z + βY∼Z(Y.G)|GβZ(Y.G)∼G (5.35)

Under the standard DID assumptions, we could write ATTY = βY∼G − βN∼G, but we

want to relax these assumptions. Under an assumption of effect homogeneity, or using

OLS regression as an approximation, we have that ATTY = βY∼G|Z , which means that

BiasY = βY∼Z(Y.G)|GβZ(Y.G)∼G. We can also see that, DIMN = βN∼G and so DIMN −βN∼G|Z =

βN∼G−βN∼G|Z = βN∼Z(N.D)|GβZ(N.D)∼G. Again, there is somem ∈ R such that βY∼G−βY∼G|Z =

m× (βN∼G − βN∼G|Z). Plugging this into the expression for ATTY , we get Equation 5.36.

ATTY = βY∼G|Z = βY∼G − βY∼Z|GβZ∼G = βY∼G −m× (βN∼G − βN∼G|Z) (5.36)
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m =
βY ∼Z(Y.D)|G

βZ(Y.D)∼G

βN∼Z(N.D)|G
βZ(N.D)∼G

is the ratio of biases for the regression coefficients. Under the

assumption of effect homogeneity for the effect of D on N or using OLS as an approximation,

we see that βN∼G|Z = ATTN , m = BiasY
BiasN

, and βN∼G = DIMN . Thus, Equations 5.33 and 5.36

are equivalent. Note that we don’t need to make the effect homogeneity for the effect of D

on N for Equation 5.36 to be useful, however. We can simply parameterize the expression

for ATTY with m and βN∼G|Z . Additionally, if we do not want to make such an assumption

for the effect of D on Y , we can make βY∼G|Z our inferential target and still make use of

Equation 5.36. This framing connects us back to the framework laid out in Section 5.1.

We can also define k as in Section 5.1. If the scale of N and Y differ, it will be easier to

reason about the value of k than to reason about the value of m. So we now can see how we

can relax both the assumption that N is a pre-treatment outcome with no treatment effect

from G and the assumption that we have perfect equiconfounding. We also have seen how

the latter relaxation could be parameterized in terms of βN∼G|Z and m or k. This all can

be done while maintaining an identification strategy with roots that connect easily to the

standard difference in differences assumptions and identification strategy.

Moreover, we can see standard difference in differences as the special case where we

assume that βY∼G|Z = 0 and m = 1 or equivalently k = SD(N⊥G)
SD(Y ⊥G)

. This value of k arising

could be the result of simply a fortunate balancing coincidence for scale differences and levels

of confounding. But it is more likely to be interpreted as the scale of N and Y being the same

(i.e., SD(N⊥G) = SD(Y ⊥G)) in addition to equiconfounding. In this way, the assumption

that k = 1 can be thought of as less demanding than the assumption that m = 1. So we

could consider a “new” form of difference in difference where we assume k = 1 but do not

assume that m = 1. However, the above framework need not be limited to any specific

choice for k. Rather, we can consider a range of plausible values for k, perhaps including

the value that would bring the true effect to zero under the assumption that βN∼G|Z = 0,

k = DIMY

DIMN
× SD(N⊥G)

SD(Y ⊥G)
, as well as k = 1 and k = SD(N⊥G)

SD(Y ⊥G)
.
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Transforming unequal confounding assumptions into unequal trend assumptions

Finally, we show that any assumption for m corresponds to an assumption on the trend in

control potential outcomes. We will show that any assumption for m can be turned into an

assumption about how the trends in control potential outcomes compare. An assumption

about a difference in confounding would be something like Equation 5.37. An assumption

about a difference in trend would be something like Equation 5.38.

E[Y0|G = 1]− E[Y0|G = 0]︸ ︷︷ ︸
BiasY

= m× (E[N |G = 1]− E[N |G = 0]︸ ︷︷ ︸
DIMN

−βN∼G|Z

︸ ︷︷ ︸
BiasN

)

⇐⇒ E[Y0|G = 1] = E[Y0|G = 0] +m× (E[N |G = 1]− E[N |G = 0]− βN∼G|Z)

(5.37)

E[Y0|G = 1]− E[N |G = 1]︸ ︷︷ ︸
TrendG=1

= w × (E[Y0|G = 0]− E[N |G = 0]︸ ︷︷ ︸
TrendG=0

)

⇐⇒ E[Y0|G = 1] = E[N |G = 1] + w × (E[Y0|G = 0]− E[N |G = 0])

(5.38)

For this exposition, we assume βN∼G|Z = 0 for simplicity. Both Equations 5.37 and 5.38

provide an expression for E[Y0|G = 1], which, in the DID setting, is unobserved while all

the other components of the expressions are estimable from the data. We can set these

two expressions for E[Y0|G = 1] equal to each other and then solve for w to get the trend

assumption that corresponds to our assumption on m.

E[Y0|G = 0] +m× (E[N |G = 1]− E[N |G = 0])

= E[N |G = 1] + w × (E[Y0|G = 0]− E[N |G = 0])
(5.39)
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⇐⇒ w =
E[Y0|G = 0] +m× (E[N |G = 1]− E[N |G = 0])− E[N |G = 1]

E[Y0|G = 0]− E[N |G = 0]

⇐⇒ m =
E[N |G = 1] + w × (E[Y0|G = 0]− E[N |G = 0])− E[Y0|G = 0]

E[N |G = 1]− E[N |G = 0]

(5.40)

We could similarly write m in terms of w, if we preferred to make an assumption on w, the

difference in the trend, and wanted to know what this implies about the unequal confounding.

Additionally, we know that m = k × SD(Y ⊥G)
SD(N⊥G)

so that we can make an assumption on k and

see what this implies about w, the trend, or make a trend assumption on w and see what

this implies about k.

5.4 Examples

5.4.1 National Supported Work Demonstration

Let us consider a substantive example. The National Supported Work Demonstration (NSW)

was a job training program aimed at helping disadvantaged worker build basic skills in the

1970s. The program randomly assigned participants to training positions. These consisted of

a group that received the benefits of the program (the treatment group) and a group that

did not receive any benefits (the control group). (LaLonde, 1986) The data also include a

non-experimental dataset in which individuals not from the NSW program but from the Panel

Study of Income Dynamics (PSID) are added as additional control units. The data that we

work with is “a subset that consists of males with three (2 pre-training and 1 post-training)

years of earnings data (the outcome of interest). This subset has been considered in (Dehejia

and Wahba 1999; Smith and Todd 2005; Firpo 2007).” (Callaway, 2019) The data can be found

in the “qte” R package by running the command data(lalonde,package = "qte"). We

use the non-experimental dataset (called lalonde.psid) to illustrate the methods discussed

in this paper and then compare these results with the estimates from the experimental data
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(called lalonde.exp).21 The difference in means estimate of the treatment effect from the

experimental data is 1,795.55 higher 1978 earnings in dollars for the treated group relative to

the control group. The estimate is 1,693.12 when we control for observed covariates.

We use 1974 earnings (re74) as a placebo outcome for 1978 earnings (re78). The

treatment (treat) is experiencing the job training program. We also use the set of covariates

(X) in the data including age, education (years and degree or not), marital status, and

demographic indicators. We recognize that there are unobserved covariates (Z) that we

wish we could condition on but cannot. Ideally, we would like to estimate the regression

lm(re78 ~ treat + X + Z). Due to the unobserved confounders, we will not be able to point

identify the coefficient on treat from this “long” regression. Instead, we partially identify

βY∼D|X,Z with the approach proposed by the present paper and leverage information on 1974

earnings as a placebo outcome. We note that it is likely that 1974 earnings influence 1978

earnings. However, Chabé-Ferret (2017); Ham and Miratrix (2022) warn against conditioning

on pre-treatment outcomes in a difference-in-differences type approach. We follow that

guidance here for simplicity. Thus we use the approach from Section 5.1.2. Since the placebo

outcome is pre-treatment earnings, it is reasonable to assume that the treatment has no

causal effect on the the placebo outcome. Therefore, we consider that βP∼D|Z,X = 0. We

might think that a straightforward difference in differences approach is possible. However,

we might worry that there is unequal levels of confounding between 1974 earnings and 1978

earnings. For example, minimum wages increased 32% from 1974 to 1978. (Department of

Labor, 2023) The treatment group (comprised of disproportionately lower earners) likely

experienced a larger increase in earnings from the rise in minimum wage than did the control

group. Thus, the difference in baseline earnings between the treated group and control group

in 1978 likely smaller than in 1974. So we might consider k < 1. On the other hand, pre

and post-treatment earnings are measures of the same variable, so their levels of confounding

21Since this data includes a randomized experiment, we can also estimate the effect using the experimental
data to get an unbiased estimate of the true treatment effect. This experimental estimate can be used to
back out the true value for k, assuming that βN∼D|Z,X = 0.
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should be somewhat similar. Suppose that k > 0.5. We also might worry that high inflation

in the 1970s could lead to scale differences between 1974 earnings and 1978 earnings (our

placebo and actual outcomes).

We carryout the partial identification analysis using the “placeboLM” R package the

authors built for this purpose. placeboLM is currently under development; a software paper

will accompany its release.

# install.packages("devtools")

devtools::install_github("Adam-Rohde/placeboLM")

library(placeboLM)

This package can be used in a manner reminiscent of the lm() function in R. Arguments

to the placeboLM function include the dataset, the outcome variable, the treatment variable,

the placebo variable (and whether we want to think of it as a placebo outcome or treatment),

the direction or presence of the edge from the treatment (D) to the placebo (P ), the direction

or presence of the edge from the placebo (P ) to the outcome (Y ), the observed covariates,

and finally the ranges of the partial identification parameters that we want to consider.

These ranges can be set to be the range that is plausible or something more conservative

than that. The first partial identification parameter is k, which captures the ratio of the

level of confounding of D and Y , conditional on P , to the level of confounding of D and

P , after accounting for scale differences. We can think of this as the D, Y confounding as

a percentage of the D,P confounding, where scale differences between P and Y have been

accounted for. The second partial identification parameter is βP∼D|Z,X , which captures the

direct causal relationship between D and P and we already noted should be zero. This

parameter is referred to as coef_P_D_given_XZ in the software. For this example, we set the

partial identification parameter ranges to be conservative and assume that the placebo (1974

earnings) directly causes the outcome (1978 earnings).
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plm = placeboLM(

data = "lalonde.psid",

outcome = "re78",

treatment = "treat",

placebo_outcome = "re74",

observed_covariates = c("age", "education", "black", "hispanic",

"married", "nodegree"),

partialIDparam_minmax = list(

k = c(-2,2),

coef_P_D_given_XZ = c(-15000,15000)) )

Running the placeboLM function provides us with a quick summary of the setting that

we have chosen and the regressions that we will estimate as part of the partial identification

framework. We can then use the three main analysis functions of the placeboLM package to do

partial identification for βY∼D|X,Z , which is the regression coefficient that we would get if we

could include the unobserved confounders in our regression. The first is placeboLM_table().

We can specify which percentiles of the range of plausible values for the partial identification

parameters we would like to report estimates for. The rows with these estimates are labelled

“Grid”. We get bootstrapped standard errors and confidence intervals in addition to the

estimates. Finally, we also get the estimates under common point identification assumptions:

selection on observables (SOO), standard difference in differences (DID), and DID assuming

k = 1.

set.seed(0)

placeboLM_table(plm, n_boot = 1000, ptiles = c(0.25,0.5,0.75), alpha = 0.05)

The second key partial identification function is placeboLM_contour_plot() which

provides a contour plot of the estimates as we vary the two partial identification parameters
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Table 5.1: Partial identification table for National Supported Work example with 1974
earnings as placebo outcome.

k coef_P_D_given_XZ Estimate Std. Error CI Low CI High
SOO 0 0 -5928.11 822.57 -7563.28 -4337.09
DID 0.845 0 1718.01 852.98 27.35 3393.96
k=1 DID 1 0 3115.31 882.42 1337.4 4783.3
Grid -1 -7500 -6100.92 1375.32 -8843.01 -3539.27
Grid -1 0 -14971.53 1379.99 -17615.87 -12160.46
Grid -1 7500 -23842.13 1484.07 -26566.69 -20663
Grid 0 -7500 -5928.11 809.4 -7473.88 -4304.65
Grid 0 0 -5928.11 842.29 -7549.07 -4215.56
Grid 0 7500 -5928.11 832.39 -7523.88 -4262.12
Grid 1 -7500 -5755.3 871.06 -7441.71 -4051.86
Grid 1 0 3115.31 926.64 1389.42 4907.9
Grid 1 7500 11985.91 984.87 10176.39 13963.14

within the ranges we originally provided. The plot also includes the SOO and DID estimates

for reference. We highlight the contour on which estimates are zero. See Figure 5.8.

placeboLM_contour_plot(plm, gran = 100)

The final key partial identification function is placeboLM_contour_plot() which provides

a line plot of the estimates as we vary one of the two partial identification parameters. We

can specify percentiles of the other partial identification parameter and have a line plot

generated for each. Since we believe coef_P_D_given_XZ is zero in this example, we focus

only on this case. The line plot also includes 95% confidence intervals. See Figure 5.7.

placeboLM_line_plot(plm, bootstrap=TRUE, n_boot=1000, ptiles = c(0.5),

focus_param = "k", ptile_param = "coef_P_D_given_XZ",

gran= 10, alpha = 0.05)

The contour plot shows how the effect estimate for βY∼D|X,Z changes as k and βP∼D|Z,X

change. We’ve noted that it is likely that βP∼D|Z,X = 0. The line plot shows us how the
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Figure 5.6: Contour plot for National Supported Work example with 1974 earnings as
placebo outcome.

effect estimate for βY∼D|X,Z changes as k changes, under the assumption that βP∼D|Z,X = 0.

The SOO estimate is negative. This is not the sign we would intuitively expect, since

training should probably boost earnings. The standard DID estimate, however, is positive

and implicitly makes an assumption that the bias for the treatment and 1978 earnings is 85%

of the bias for the treatment and 1974 earnings, after accounting for scale differences. The

estimate under this assumption is an increase of 1,718.01 dollars as a result of experiencing

the job training. The k = 1 DID estimate is also positive and provides an estimate of an

increase of 3,115.31 dollars as a result of experiencing the job training. k = 1 corresponds to

an assumption that the bias for the treatment and 1978 earnings is 100% of the bias for the

treatment and 1974 earnings. Under the assumption that βP∼D|Z,X = 0, the experimental

estimate (1,693.12) implies that the “true” value for k is about 0.84 or that the bias for the

treatment and 1978 earnings is 84% of the bias for the treatment and 1974 earnings, after

accounting for scale differences.
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Figure 5.7: Line plot for National Supported Work example with 1974 earnings as placebo
outcome.

Without knowledge of the experimental estimate, however, we might consider the line

plot and make an argument that the bias for the treatment and 1978 earnings and the bias

for the treatment and 1974 earnings have the same sign. This would put us on the right half

of the line plot. From our previous discussion, we might consider the range k ∈ [0.5, 1] as

plausible. This translates to non-negative effect estimates - either our effect is not statistically

significant or it is positive and statistically significant. This is proposed for illustration only.

Subject matter experts could debate this range.

5.4.2 Zika Virus

In our second application, we investigate the effect Zika virus had on birth rates in Brazil.

Zika virus can cause birth complications. Brazil was heavily impacted by the outbreak of Zika

virus in 2015. We use data that has also been analyzed by Taddeo et al. (2022); Tchetgen
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et al. (2023a). The virus had a dramatic impact on the state of Pernambuco but zero cases

were reported in the state of Rio Grande do Sul. As in previous works, we treat the former

state as the treated group and the later as the control group. We use municipality level

overall birth rates per 1000 people in 2016 as our primary outcome of interest. We use

municipality level overall birth rates per 1000 people in 2014 as our placebo outcome. We

refer curious readers to the previously cited paper for additional discussion of the virus and its

spread in Brazil. We make the reasonable assumption that the treatment has no direct causal

relationship with the pre-treatment outcome. We use the data from Amorim (2022) and run

the following application of placeboLM. We can get a full picture of partial identification just

using placeboLM_line_plot().

plm = placeboLM(

data = "data_reshape",

outcome = "Rate_2016",

treatment = "trt",

placebo_outcome = "Rate_2014",

partialIDparam_minmax = list(k = c(0,2), coef_P_D_given_XZ = c(-10,10)) )

set.seed(0)

placeboLM_line_plot(plm, bootstrap=TRUE, n_boot=1000, ptiles = c(0.5),

focus_param = "k", ptile_param = "coef_P_D_given_XZ",

gran= 10, alpha = 0.05)

We find that the naive difference in means estimate is that Zika is associated with an rise

in the birth rate by 3.4 births per 1000 people. However, the two difference in difference

estimates are negative and indicate that there were about 1.2 to 1.3 fewer births per 1000

people in Pernambuco as a result of the Zika virus. We can also see that if the level of

confounding of 2016 birth rate and treatment is above approximately 70% of the level of
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confounding of 2014 birth rate and treatment, then the effect estimates are always negative.

If the relative level of confounding is something like 120%, the effect estimate may be around

2. It is reasonable to believe that the relative level of confounding is not too far from 100%.

So we might conclude that the Zika virus reduces birth rate or at least does not increase it.

These findings are consistent with the results in Taddeo et al. (2022); Tchetgen et al. (2023a);

but using placeboLM and the partial identification framework outlined in the present paper

builds in a skepticism about whether untestable assumptions like those made in Tchetgen

et al. (2023a) actually hold. Rather than hold to a single assumption, we can explore the

range of plausible possibilities. Additionally, we could conceive of the state indicator, which

is used as a proxy for whether or not the population was exposed to Zika virus, as a direct

cause of 2014 birth rates, in that the two states likely differ in important ways that lead to

divergent birth rates in 2014. Such a view could easily be accommodated in our framework

by considering values for coef_P_D_given_XZ other than zero. This would, on the other

hand, be a violation of key assumptions in Tchetgen et al. (2023a).

5.5 Discussion

5.5.1 Related work

For a recent example of a placebo approach employing equiconfounding, see Ye et al. (2022).

Lipsitch et al. (2010) provide an early discussion of the potential of using placebo treatments

and outcomes. Arnold et al. (2016); Arnold and Ercumen (2016) discuss the potential to use

placebos to address sample selection and measurement bias as well as bias in randomized

experiments. Shi et al. (2020) review many established procedures and recent developments

in this growing literature. An important recent area of research has been dubbed “proximal”

causal inference. Tchetgen et al. (2020) provides an introduction. This line of work leverages

“double-negative control designs” (Shi et al., 2020) in which both a placebo outcome and a

placebo treatment are present. Under certain assumptions and conditions, papers like Miao
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Figure 5.8: Line plot for Zika virus example with 2014 birth rate as placebo outcome.

et al. (2018, 2020); Mastouri et al. (2021) show how causal effects are non-parametrically

identifiable using both of these placebos. While this work is very promising, it requires two

placebos, certain null effect assumptions (i.e., “perfect” placebos), and regularity conditions.22

Tchetgen et al. (2023a) provides a related approach for the case when only a single placebo is

available. In this approach, the placebo variable must be associated with the control potential

outcome and must be associated with the treatment only through the control potential

outcome; there cannot be any causal relationship between the treatment and the placebo

other than those that run through the control potential outcome for the primary outcome.

This approach involves untestable assumptions. It also requires that “for any variation in the

[primary outcome], there is corresponding variation in the [placebo].” This may preclude

us from leveraging placebos in settings where they could be informative. For example, the

22In Section 5.1.4, we show a similar point identification result for regression when both a “perfect” placebo
treatment and a “perfect” placebo outcome are available. We also relax the “double placebo” setting to allow
for imperfect placebos.
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assumptions are violated if the placebo has a common cause with the treatment that is not

also a cause of the primary outcome or if the placebo plays a direct role in the treatment

assignment mechanism. Additionally, if we have a placebo treatment, this approach may not

apply. Our proposed approach, however, is applicable in these settings.

Additionally, Sofer et al. (2016) point out that placebo outcome approaches can be seen

as generalizations of the familiar difference in differences (DID) framework. DID uses a

pre-treatment verison of the outcome as a placebo outcome and relies heavily on a “parallel

trends” assumption that the baseline trend in the outcome is the same over time for the group

that gets treated and the group that does not. (Angrist and Pischke, 2008) Parallel trends

is, in fact, an assumption of no unobserved time-varying confounding; meaning that DID

approaches have not circumvented the problem of unobserved confounding. Sofer et al. (2016)

also show how the parallel trends assumption is equivalent to an equiconfounding assumption.

Recently, there have been several attempts to relax the parallel trends assumption within

the context of DID or to improve on the current practice of testing for parallel trends

in the pre-treatment period. For example, see Manski and Pepper (2018); Bilinski and

Hatfield (2018); Freyaldenhoven et al. (2019); Keele et al. (2019); Ryan et al. (2019); Ye

et al. (2020); Gibson and Zimmerman (2021); Rambachan and Roth (2021). While these

are all useful contributions, they may not be as easy to use as applied researchers might

hope and make assumptions that researchers might be interested in relaxing. Gibson and

Zimmerman (2021) points out that violations of parallel trends can be considered using

an application of the omitted variable bias framework from Cinelli and Hazlett (2020) in

a first difference regression. However, this approach is limited to the DID setting in which

the pre-treatment outcome is directly comparable to the post-treatment outcome. This

approach (and others like Rambachan and Roth (2021)) also do not allow for a relaxation of

the assumption that the treatment has no direct causal relationship with the pre-treatment

outcome. Additionally, this approach requires that researchers observe the pre-treatment

outcome and the post-treatment outcome for the same set of units; that is, it requires panel
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data. Tchetgen et al. (2023b) discusses an alternative to the parallel trends assumption which

is a particular form of equiconfounding. Finally, the DID approach in general requires data

on a pre-treatment version of the outcome, which may not always be available, making the

placebo paradigm an attractive generalization.

5.5.2 Conclusion

We have explored how the analysis of “omitted variable bias” in regression provides a simple

yet powerful way to leverage information from placebo treatments and outcomes for partial

identification of causal effects or approximations of them. We have seen that the framework we

developed allows for violations of assumptions made in traditional difference in differences, as

well as in standard negative control outcome (and exposure) settings. These can be viewed as

special cases of our approach. Additionally, our framework requires only a single placebo to be

observed and does not require assumptions of null effects, certain conditional independencies,

or unique solutions to integral equations as in Tchetgen et al. (2020, 2023a). Moreover,

our approach is applicable to various causal graphs. We obtain these gains by relying on

linear regression machinery but do not require any distributional assumptions. Relaxations of

this are explored in Appendix D.2. We also saw that the forthcoming placeboLM R package

facilitates easy application of the proposed framework.
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APPENDIX A

Appendix for Chapter 2

Here we provide technical details and prove the results found in the main text. First, we

briefly discuss why we work with potential outcomes. We then introduce a series of definitions.

These are followed by a series of lemmas. Then we state our main results in a set of theorems

that follow directly from the lemmas. We conclude with discussions of IPW estimation and

when conditioning on a collider creates an association.

A.1 Sample selection, the do-operator, and potential outcomes

Let us linger on the choice to use potential outcomes as opposed to the do-operator (Pearl,

1995, 2009) in our discussion. We discuss post-treatment selection, selection as a mediator,

selection as the child of a mediator, and all other major roles that selection can play in the

structure of causal models. In the case of non-post-treatment selection, potential outcomes

will typically have the same interpretation as the do-operator. In the case of selection as a

mediator and selection as a descendant of a mediator, the causal effects of interest are typically

defined using potential outcomes. (Robins and Greenland, 1992; Pearl, 2001; VanderWeele,

2011; VanderWeele and Vansteelandt, 2009; Richiardi et al., 2013) So here potential outcomes

notation is really the natural and traditional choice. In the case of post-treatment selection,

where selection is not a mediator or a descendant of a mediator, p(Yd|S = 1) is usually of

interest and not p(Y |do(D = d), S = 1) = p(Yd|Sd = 1).1 As Pearl (2015a) states, ”By the

1p(Y |do(D = d), S = 1) = p(Y,S=1|do(D=d))
p(S=1|do(D=d)) = p(Yd,Sd=1)

p(Sd=1) = p(Yd|Sd = 1). (Pearl, 2014) In this case, Sd is

the potential selection value when the treatment variable D takes the value that we are investigating in Yd.

124



counterfactual query Qc[= p(Yd|S = 1)] we mean: Take all units which are currently at level

[S = 1], and ask what their Y would be had they been exposed to treatment [D = d]. This

is different from Qdo = [p(Y |do(d), S = 1)], which means: Expose the whole population to

treatment [D = d], take all units which attained level [S = 1] (post exposure) and report

their Y ’s.” Further, Pearl (2015a) states ”Qdo is rarely posed as a research question of

interest, probably because it lacks immediate causal interpretation. It serves primarily as

an auxiliary mathematical object in the service of other research questions. ... I have not

seen Qdo presented as a target query on its own right.” For non-post-treatment selection,

p(Yd|S = 1) = p(Y |do(d), S = 1), since Sd = S. In our context, we will typically be interested

in quantities of the type of p(Yd|S = 1), which tell us the distribution of outcomes for units

that were selected in reality, had they been exposed to treatment D = d.

A.2 Definitions

Definition A.2.1 (SCM (adapted from Pearl (2009))). A structural causal model, M , has

the following parts

1. U is a set of background variables determined by exogenous factors;

2. V is a set {V1, V2, . . . , Vn} of variables determined by variables in the model;

3. F is a set {f1, f2, . . . , fn} of functions that map fi : Ui ∪ PAi → Vi, where Ui ⊂ U

and PAi ⊂ V \Vi and the entire set F forms a mapping from U to V . That is, each fi

assigns a value to Vi that depends on the values of a select set of variables in V ∪ U

(vi = fi(pai, ui)), and the entire set F has a unique solution F (u).

4. p(u) =
∏

p(uj) is a probability function defined over the domain of U .

Definition A.2.2 (Sub-Model (adapted from Pearl (2009))). Let M be a causal model, D

be a set of variables in V , and d a particular realization of D. A submodel Md of M is the

causal model Md, where F is replaced with Fd, which is formed by deleting the functions for

the variables in D and replacing them with constant functions D = d.
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Definition A.2.3 (Potential Outcome (adapted from Pearl (2009))). Let D and Y be two

subsets of variables in V . The counterfactual values of Y when D had been set to d, written

Yd, is the solution for Y of the set of equations Fd, given the realized values of the background

variables, U .

Definition A.2.4 (Causal Graph (adapted from Shpitser et al. (2010), also see Pearl (1988,

2009))). A SCM induces a causal graph in the following way. Each variable in the model

is represented by a node. A node corresponding to variable Vi has edges pointing to it from

every variable whose value is used to determine the value of Vi by the function fi. Exogenous

variables have no edges pointing to them. A causal graph is an I-map (see Definition A.2.11

below) for p(v).

Definition A.2.5 (Path). A path is a sequence of edges in G where each pair of adjacent

edges in the sequence share a node, and each such shared node can occur only once in the

path.

Definition A.2.6 (Causal Path). A causal path from D to Y is a path from D to Y on

which all edges are directed and point away from D and toward Y .

Definition A.2.7 (Proper Causal Path (Shpitser et al., 2010))). Let D, Y be sets of nodes.

A causal path from a node in D to a node in Y is called proper if it does not intersect D

except at the end point.

Definition A.2.8 (Non-Causal Path). A non-causal path is a path that is not a causal path.

Definition A.2.9 (Parents, Ancestors, and Descendants). Parents of node X are the nodes

in the graph from which an edge points directly to X. An ancestor of X is any node which

has a causal path to X. A descendant of X is any node which X has a causal path to.2

Definition A.2.10 (d-Separation and Blocking (adapted from Pearl (2009))). Two sets of

nodes, D, Y , in a graph G are said to be d-separated by a third set, Z, if every path from any

2We do not consider a node to be a descendant of itself.
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node D0 ∈ D to any node in Y0 ∈ Y is blocked. A path is blocked by Z if either [1] some W

is a collider on the path between D, Y and W ̸∈ Z and the descendants of W are not in Z or

[2] W is not a collider on the path but W ∈ Z.

Definition A.2.11 (I-map (adapted from Pearl (1988))). A causal graph G is said to be an

I-map of a dependency model M if every d-separation condition displayed in G corresponds

to a valid conditional independence relationship in M . That is, for every set of three nodes

X, Y , and Z, if Z d-separates X from Y in G, then X is independent of Y given Z.

Shpitser et al. (2010) discuss a graphical representation called latent projections of causal

graphs that contain both directed and bidirected edges. Latent projections allow us to exclude

latent variables in convenient ways. Specifically, they include a node for every observed

variable. However, two observable nodes A and B are connected by a directed edge only when

any and all intervening variables between A and B are latent. Also, A and B are connected

by a bidirected edge when there is a path from A to B that is not d-separated that starts

with an edge pointing into A and ends with an edge pointing into B and all the nodes on

this path are latent other than the end points. As Shpitser et al. (2010) point out, latent

projections retain all d-separation statements from the original graph. We will also allow

for such latent projections to be used to simplify graphs. For our purposes, we do not allow

sample selection to be treated as a latent variable and so it should always be included as a

separate node in the graph.

Definition A.2.12 (Twin-Network (adapted from Shpitser et al. (2010))). The twin network

graph, N , (Balke and Pearl, 1994b,a) displays counterfactual independence among two possible

worlds, the pre-intervention world which is represented by the original graph G, and the post-

intervention world, which is represented by the graph GD (a copy of G with the edges pointing

into D deleted and D replaced with D = d). The twin network is an I-map for the joint

counterfactual distribution p(v, vd), where V is the set of all observables, and Vd is the set of

all observable variables after the intervention do(D = d) was preformed. The observable nodes

127



in these two graphs share the U variables, to signify a common history of these worlds up to

the point of divergence due to do(D = d). We add the additional refinement from Shpitser

and Pearl (2007) where node copies of all non-descendants of D in G and GD are merged in

the twin network graph (since such nodes are the same random variable in both the pre and

post intervention worlds).

In our proofs, we will consider causal graphs and twin networks in which each bidirected

edge between nodes A and B is replaced with a node U∗
AB that is a common cause of the two

nodes that were connected with the bidirected edge and points to each of A and B. This

replacement does not change d-separations from the original graph. See Figure A.1 for a

simple example. Correa et al. (2018) make a similar alteration to the causal graphs they

consider.

Figure A.1: Twin network with no bidirected edges

D

Y

(a) DAG with bidirected edge

D

Y

U∗
DY

(b) DAG without bidirected edge

D

Y

U∗
DY

D = d

Yd

UD

UY

(c) Twin Network without bidirected edge

Definition A.2.13 (Colliders). A collider is a node in a causal graph into which two (or

more) arrow heads point. For nodes A,B,C, let C be a collider between A and B if it appears

in the following sub-path of the causal graph: A→ C ← B.

Definition 1 (Internal Selection Graph, G+
S ). Let G be the DAG induced by a SCM.
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1. Create GS by adding an appropriately connected binary selection node, S.

2. Draw a circle around S to clearly indicate that we must limit our analysis to S = 1.

3. Add to GS any node which is a parent of the treatment or a parent of a descendant of

the treatment. (US, the background factors contributing to selection, can be excluded.)

4. Add a dashed undirected edge between all variables between which S is a collider or an

ancestor of S is a collider. We will call these dashed, undirected edges bridges.

Call the resulting graph an internal selection graph, G+
S .

(This definition is similar to the “modified extended diagram” in Daniel et al. (2012).)

Definition A.2.14 (Extended Twin-Network). An extended twin network, N+
S , is a twin

network, NS, containing an appropriately connected pre-intervention binary selection node,

S, and any corresponding post-intervention versions of it, where we add bridges between all

variables between which the pre-intervention S is a collider or an ancestor of pre-intervention

S is a collider. (Note that pre and post-intervention versions of S are assumed to have been

added to both NS and N+
S ; we don’t use a subscript to indicate this here.) It is easy to see

that, like a twin network, an extended twin network displays counterfactual independence

among two possible worlds, the pre-intervention world which is represented by the original

graph G+
S , and the post-intervention world, which is represented by the graph (GS)D.

Extended twin networks are useful for the same reason that internal selection graphs are

useful. There can be purely statistical relationships between variables in the sample that are

not captured in regular twin networks. See Figure A.2. As we saw in the main text, bridges

do not create colliders, since they are graphical representations of conditioning on sample

selection when it is a collider. So bridges do not alter the underlying fully directed graph.

Since the addition of bridges does not create any colliders, d-separation and blocking retain

their definition in internal selection graphs and extended twin networks. See Lemmas 4 and

5 that show how d-separation (using the same definition) in internal selection graphs and

extended twin networks corresponds to d-separation in causal graphs and twin networks.
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As a result, we can then get independence statements by reasoning about internal selection

graphs and extended twin networks.

Figure A.2: Example of Extended Twin Network

D Y S

(a) DAG

D Y S

UD UY

(b) Internal Selection Graph

D Y S

UD UY US

D = d Yd Sd

(c) Twin Network

D Y S

UD UY US

D = d Yd Sd

(d) Extended Twin Network

Twin network graphs can become pretty complicated, even when the original causal graph

only contains three nodes.3 This is what makes graphical criteria like the one presented in

this paper attractive for simplifying the analysis that leads to ignorability statements. The

internal selection graph maintains only the necessary elements of the extended twin network

that allow us to use the internal selection criterion to see when conditional ignorability is

possible. We are not advocating that researchers actually work with extended twin networks

3Richardson and Robins (2013a,b) also introduce a graphical approach to visualizing how post-intervention
world variables relate to pre-intervention world variables called Single World Intervention Graphs (SWIGs).
SWIGs are often simpler than twin networks. However, they do not provide exactly the same picture
of both the pre-intervention world and the post-intervention world that twin networks do; for example,
pre-intervention world post-treatment variables do not appear in SWIGs, though they can be used to block
generalized non-causal paths between the treatment and potential outcome of interest. See Figure A.3.
Here, W can be conditioned on to block the open generalized non-causal path between D and Yd but the
pre-intervention world W does not appear in the SWIG, while it does appear in the twin network. The
pre-intervention selection node is also missing from the SWIG. Finally, the path D →W Z → Yd is also
missing from the SWIG; we do not want to have Wd touch any bridges since it is not actually a parent of
the pre-intervention selection node. As such, we use twin networks for our discussion. This example also
demonstrates why the criterion in Daniel et al. (2012) is less general than we might want, since those authors
do not allow any adjustment for post-treatment variables. We believe that internal selection graphs and
ISAC provide the simplest approach for practitioners to analyze sample selection and internal validity, by
only slightly extending the causal graphs that they are used to seeing.
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themselves. We discuss extended twin networks in our proofs only. We advocate using

internal selection graphs, which are usually much simpler than twin networks and extended

twin networks, and the internal selection adjustment criterion for determining ignorability.

Figure A.3: Twin Networks versus Single World Intervention Graphs (SWIGs)

In this example, W can be used to block generalized non-causal paths between D and Yd;
however, only the counterfactual world Wd appears in the ”extended SWIG.” The actual

world W and the counterfactual world Wd both appear in the twin network.
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Definition A.2.15 (Paths and Generalized Non-Causal Paths). We revise Definition A.2.5

to state that a path is a sequence of edges in G+
S or N+

S where each pair of adjacent edges in

the sequence share a node, and each such shared node can occur only once in the path, where

we allow the edges to be bridges, as well as directed edges. A generalized non-causal path is a

path that is not a causal path.
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Definition A.2.16 (Route (adapted from Shpitser et al. (2010))). A route from D to Y in

a graph, G+
S or N+

S , is a sequence of edges, where each pair of adjacent edges share a node,

the unshared node of the first edge is D, and the unshared node of the last edge is Y . (Shared

nodes can occur more than once.) A route is d-separated if the same triples are blocked as in

the definition of d-separation above. The difference between a route and a path is that paths

cannot contain duplicate nodes while routes can. Note that we allow edges to be bridges.

Definition A.2.17 (Direct Route (adapted from Shpitser et al. (2010))). Let π be a route

from D to Y in G+
S or N+

S . Label each node occurrence in the route π by the number of times

the node has already occurred earlier in π. A direct route π∗ is a sub-sequence obtained from

π inductively as follows:

• The first node in π∗ is the first node in π with the largest occurrence number.

• If the kth shared node in π∗ (and the mth node in π) is (Xi, r), and Xi ̸= Y , let the

k + 1th node in π∗ be (Xj, n), where Xj is the m+ 1th node in π, and n is the largest

occurrence number of Xj in π.

Definition 2 (Internal Selection Adjustment Criterion (ISAC)). A set of nodes Z in G+
S

satisfies the internal selection adjustment criterion relative to D (treatment) and Y (outcome)

if

1. No element of Z lies on or is a descendant of a node that lies on a causal path originating

from D and arriving at Y . Note that an element of Z could be a descendant of D itself,

if it is not on a causal path from D to Y . Note also that elements of Z should not be

on, or descendants of nodes on, causal paths even if S is also on the causal path.

2. Z blocks every generalized non-causal path between D and Y that does not pass

through S. Note that generalized non-causal paths passing through M , when S is a

descendant of mediator M , on which M is an ancestor of Y also do not need to be

blocked, assuming the previous condition is not violated. Further, M should not be a

member of Z from the previous condition.
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Definition 3 (Generalization Criterion (GC)). A set of nodes Z in G+
S satisfies the general-

ization criterion relative to D (treatment) and Y (outcome) if

• Z satisfies ISAC relative to D and Y and

• ZExt ⊂ Z blocks all causal and generalized non-causal paths between Y and S in G+
S

other than those that end in a causal path from D to Y .

This definition is a translation of Definition 8 from Correa et al. (2018).

A.3 Lemmas

Lemma 1 (adapted from Shpitser et al. (2010); Pearl (1988)). Let G be a causal graph. Then

any model M with a distribution P (u, v) inducing G, if A is d-separated from B by C in G,

then A is independent of B given C, which we write A ⊥⊥ B|C in P (u, v).

Lemma 2 (adapted from Shpitser et al. (2010)). For every route π in G+
S , the direct route

π∗ is a path. Moreover, if π is unblocked, then π∗ is unblocked.

A.3.1 Selection unrelated to mediators

Lemma 3. If Z satisfies ISAC in G+
S relative to D and Y and S is not a mediator or

descendant of a mediator between D and Y , then Z d-separates D and Yd in N+
S .

Proof. We very closely follow the structure of the proof of Theorem 4 of Shpitser et al. (2010).

We will show the contrapositive: assuming that we are conditioning on Z, an unblocked

path from D to Yd in N+
S implies that ISAC is violated in G+

S relative to D and Y . We will

proceed in the following manner:

1. Discuss the structure of π, an unblocked path from D to Yd in N+
S .

2. Discuss how sample selection relates to π.

3. Discuss a procedure for finding the path π∗ in G+
S that corresponds to π in N+

S .

4. Discuss possible cases for π∗ in G+
S and their relation to ISAC.
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[1. The structure of π.] We start by assuming that, assuming we are conditioning

on Z, there is an unblocked path from D to Yd in N+
S . We are going to call this π. We are

also able to assume, without loss of generality, that π intersects D only at the starting point

of π. What are we able to say about the structure of π across the two halves of N+
S , the

pre-intervention G+
S and the post-intervention (GS)D? We start by noticing that the elements

of Z can only appear on the pre-intervention G+
S side of N+

S . This is because we can only

condition on observed variables; we cannot condition on counterfactual variables, which are

not observed. This means that we cannot condition on D = d or any of the descendants

of D = d in the post-intervention (GS)D side of N+
S . As such, as soon as π finds it way

to the post-intervention side of N+
S , the remainder of π connecting to Yd can only contain

post-intervention variables, non of which are conditioned on. Moreover, this portion of π in

(GS)D can contain only edges pointing toward Yd. This clarifies that π must be made up

of first an unblocked path in the pre-intervention side, G+
S , that we will label π1. Next π

contains one edge that points from some node in G+
S to some node in (GS)D, which we label

π2. Recall that we are dealing with graphs in which all bidirected edges have been replaced.

We will also see in the next section that π2 cannot be a bridge. This means that the only type

of edge that could connect π1, which is entirely made up of pre-intervention nodes, to the

post-intervention side is a directed edge from the pre-intervention side to the post-intervention

side. An edge pointing the other direction would mean that some variables on π1 are actually

post-intervention, a contradiction. Finally, π contains the path we previously discussed,

namely, a causal path that contains only descendants of D = d in (GS)D that ends with Yd.

So π is composed of π1, π2, π3. Since N+
S is built from G+

S and (GS)D, π may contain two

node ”copies” that refer to the same node in G+
S .

[2. Sample selection and π.] How does sample selection relate to π? Sample selection

means we condition on S = 1. This is a pre-intervention variable. No post-intervention

variable can be an ancestor of the pre-intervention version of S, otherwise we would be

considering a post-intervention version of S. So all ancestors of the pre-intervention S are
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also pre-intervention variables. Therefore, all bridges in N+
S appear in the pre-intervention

side of the graph, G+
S , since we’ve assumed that we’ve replaced bidirected edges with U∗’s

with uni-directional edges that point to the nodes that the bidirected edge had pointed to.

Hence, any bridge on π will be in π1. Since we must condition on the pre-intervention S,

any path on which the pre-intervention S appears and is not a collider is blocked and so

cannot be π. Also, any path on which the pre-intervention S appears and is a collider (or for

which S is a descendant of a collider on the path) will correspond to a generalized non-causal

path that is identical to the original path except that the collider is not on the generalized

non-causal path and the parents of the collider are connected by a bridge on the generalized

non-causal path. If the generalized non-causal path is not blocked then the original path will

also not be blocked; if the generalized non-causal path is blocked then so is the original path.

Therefore, we can limit our analysis to such generalized non-causal paths. So we consider

π that do not contain the pre-interventional S, though π may contain bridges in π1. Since

we have assumed that sample selection is not a mediator or a descendant of a mediator,

post-intervention versions of S will not appear on π3 if they exist at all in N+
S .

[3. Finding the path π∗ in G+
S that corresponds to π in N+

S .] How can we find a

path in G+
S that corresponds to π? We follow a procedure laid out in Shpitser et al. (2010).

First, we create π′, a route in G+
S , in this way:

1. Start by replacing each instance of a post-intervention variable in π with copy of

the same node that appears on the pre-intervention side, G+
S . We carry along the

appropriate occurrence number for each of these replaced nodes.

2. Continue by replacing any instances in which the same variable appears twice in a row

with only one copy of that variable. Then reduce the occurrence number of this variable

by one and also do this for all the variables that follow.

The portions of π′ that were created from π1 and π3 (portions of π in N+
S ) will also be

unblocked since π1 and π3 are unblocked. What about the portion of π created from π2? This

will correspond to a set of three nodes where the center node is the one pointed to by π2,
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which we know is a directed edge pointing to some post-intervention node, from the above

discussion. The second edge in this triple must be pointing away from the middle node, since

all edges in π3 point toward Yd, and also must be part of a causal path from D to Y in G+
S

since the node came from the post-intervention side. But conditioning on nodes on causal

paths from D to Y constitutes a violation of ISAC, so we cannot condition on the center

node without violating ISAC. Therefore, this last portion of π′ is also unblocked, if it exists

(it may not if there are no edges in π3). For example, say that G+
S contains D → Y and

D → Z → Y and sample selection is not connect to any other node. Then suppose that π is

taken to be D → Z ← UZ → Zd → Yd. Here π1 is D → Z ← UZ , π2 is the edge between UZ

and Zd, and π3 is Zd → Yd. So π′ is D → Z ← UZ → Z → Y . The node triple in π′ that

does not correspond to π1 or π3 is UZ → Z → Y . This is blocked since we condition on Z.

However, conditioning on Z is a violation of ISAC since Z lies on a causal path from D to Y

in G+
S . All blocked versions of the node triple in π′ that does not correspond to π1 or π3 must

also violate ISAC for similar reasons. Since the middle node in this node triple is pointed to

by π2, the middle node must be a post-intervention node and so it must lie on a causal path

from D to Y in G+
S , and conditioning on it violates ISAC. Either the node triple is unblocked

or it isn’t. But, if it isn’t, then it could only have resulted from a violation of ISAC. So π′ is

an unblocked route. By Lemma 2, π∗, the direct route of π′ in G+
S , is an unblocked path in

G+
S .

[4. Possible cases for π∗ in G+
S and their relation to ISAC.]

So what are the types of π∗ we might see and how do these relate to ISAC?

• The easy case is when π∗ is a generalized non-causal path. Here we violate ISAC since

Z does not block every generalized non-causal path between D and Y that does not

pass through S. Note that any time π contains a bridge, π∗ will also contain a bridge

and π∗ will be a generalized non-causal path.

• The case where π∗ is a causal path is somewhat more involved. We again assume that π∗

is a proper causal path without loss of generality. The first edge in a π that would create
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a π∗ that is causal would have to be an edge pointing away from some element of D.

As we’ve discussed, π2 must have been directed in π and pointed to a post-intervention

node in (GS)D from a pre-intervention node in G+
S . The pre-intervention node could

not have been a descendant of D, otherwise it would be in the (GS)D part of N+
S .

– If there are no node copies that are in both π1 and π3 (meaning π1 has a pre-

intervention copy and π3 has a p-intervention copy of the same node), then π∗

cannot be a proper causal path from D to Y in G+
S . The only way it could be

would be for the pre-intervention node to be a descendant of D, a contradiction.

– If there are node copies that are in both π1 and π3, then the only way to reach the

pre-intervention node from D is via a collider unblocked by our conditioning on

some element of Z. This would mean that the second node in π (and the second

node in π∗) is an ancestor of Z, which violates ISAC.

Lemma 4. If Z d-separates D and Yd in N+
S , then {Z, S} d-separates D and Yd in NS.

Proof. We very closely follow the structure of the proof of Lemma 3 in the Web Appendix

for Daniel et al. (2012). We start by supposing that the statement that “If Z d-separates D

and Yd in N+
S , then {Z, S} d-separates D and Yd in NS.” is false. This means that, although

all paths from D to Yd in N+
S are blocked by Z, we can find a NS and a Z for which there

is a path, ξ, in NS from D to Yd that is not blocked by {Z, S}. The path ξ is also in N+
S

since N+
S is NS but with edges added. No edges are removed in extending NS to N+

S . If ξ is

blocked after conditioning on Z in N+
S but is unblocked after conditioning on {Z, S} in NS,

then either

• There must be a variable on the path ξ that is not in the set {Z, S} but the variable is

a in Z. In this way, this variable does not block ξ in NS but does block ξ in N+
S . But

since Z is in {Z, S}, this is a contradiction.

• There must be a collider on ξ that satisfies both of the following conditions. The
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collider is not in Z and does not have descendants in Z. The collider is in {Z, S} or

has descendants in {Z, S}. In this way, ξ is blocked in N+
S and ξ is not blocked in NS.

Clearly, the collider is S or an ancestor of S. But we can see that ξ is identical to a

generalized non-causal path, ξ′, in N+
S with the exception that the immediate parents

of the collider have a bridge between them on ξ′ and the collider does not appear on ξ′.

If ξ is unblocked in NS then ξ′ must be unblocked in N+
S . This is because none of the

variables along ξ is in {Z, S} possibly with the exception of the collider. If they were,

then ξ would be blocked. So ξ′ must be unblocked in N+
S , a contradiction.

Lemma 5. If Z d-separates D and Y in G+
S , then {Z, S} d-separates D and Y in GS.

Proof. The same argument as in Lemma 4 proves this result.

Lemma 6. If {Z, S} d-separates D and Yd in NS, then Yd ⊥⊥ D|Z, S = 1 for every model

inducing GS.

Proof. This follows from Lemma 1.

Lemma 7. If Yd ⊥⊥ D|Z, S = 1 for every model inducing GS, then p(Yd|S = 1) =∑
z p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1), for every model inducing GS.

Proof.

p(Yd|S = 1)

=
∑
z

p(Yd|Z = z, S = 1)p(Z = z|S = 1) by law of iterated expectations

=
∑
z

p(Yd|D = d, Z = z, S = 1)p(Z = z|S = 1) by Yd ⊥⊥ D|Z, S = 1

=
∑
z

p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1) by consistency
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A.3.2 Selection as a mediator

Lemma 8. If Z satisfies ISAC in G+
S relative to D and Y and S is a mediator between D

and Y (but S is not also a descendant of another mediator), then Z d-separates D and Yd,S=1

in N+
S .

Proof. We rely on the proof of Lemma 3, but with some caveats for the changes due to S

being a mediator between D and Y . See that proof for how the objects in this proof are

defined. We consider whether there are new types of open paths π that could connect D to

Yd,S=1 in N+
S and if they exist whether they violate ISAC.

[π that contain a copy of S.] In the extended twin network for Yd,S=1, any path along

which S appears on the post-intervention side of the graph ((GS)D,S) has been severed since

we intervene to set S = 1 in addition to setting D = d. Again π (the assumed unblocked

path from D to Yd,S=1 in N+
S ) is constructed from three parts: π1 (an unblocked path in

G+
S ), π3 (a causal path in (GS)D,S on which every node is a descendant of D and/or S),

and π2 (a single edge connecting π1 and π3 in N+
S ). This means that π must land in the

post-intervention side on a node that is downstream of S = 1 and/or of D = d. As in

Lemma 3, due to the construction of N+
S we can focus on the generalized non-causal paths

that circumvent the pre-interventional S in G+
S as candidates for π1, rather than any such

path that passes through the pre-intervention S. Any path on which the pre-intervention

S appears where it is not a collider is blocked. So π is not one of these. The paths on the

pre-intervention side on which S is a collider correspond to generalized non-causal paths on

which S is circumvented and that are blocked whenever the path on which S is a collider is

blocked. Due to our additional intervention on S = 1, conditioning on the pre-intervention S,

and the bridges that we’ve added, we can conclude that π will not contain either the pre- or

post-interventional copy of S.

[π that do not contain a copy of S.] Are there any other ways that S as a mediator

could add to the cases we need to consider not already covered in Lemma 3? Conditioning
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on pre-intervention S could open generalized non-causal paths in the pre-intervention side

that contain bridges. But if π contains a bridge, then π∗ will also contain a bridge and so it

will always be non-causal and hence violate ISAC. (Note that we do not allow elements of Z

to appear on causal paths or to be descendants of variables on causal paths, whether or not

S is on these paths.) Any remaining unblocked π would be of the types already covered by

Lemma 3 and the same logic from the proof of Lemma 3 will apply here.

Lemma 9. If Z d-separates D and Yd,S=1 in N+
S , then {Z, S} d-separates D and Yd,S=1 in

NS.

Proof. This proof is similar to that for Lemma 4.

Lemma 10. If {Z, S} d-separates D and Yd,S=1 in NS, then Yd,S=1 ⊥⊥ D|Z, S = 1 for every

model inducing GS.

Proof. This follows from Lemma 1.

Lemma 11. If Yd,S=1 ⊥⊥ D|Z, S = 1 for every model inducing GS, then p(YD=d,S=1|S = 1) =∑
z p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1), for every model inducing GS.

Proof.

p(Yd,S=1|S = 1)

=
∑
z

p(Yd,S=1|Z = z, S = 1)p(Z = z|S = 1) by law of iterated expectations

=
∑
z

p(Yd,S=1|D = d, Z = z, S = 1)p(Z = z|S = 1) by Yd,S=1 ⊥⊥ D|Z, S = 1

=
∑
z

p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1) by consistency
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Lemma 12. If S is a mediator between D and Y , then no set of observed variables, W ,

can d-separate D and Yd (or Yd,Sd′
) in N+

S , unless S is a deterministic function of observed

variables. And so no set of variables, W , (along with S) can d-separate D and Yd (or Yd,Sd′
)

in NS. Hence, the following do not hold for every model inducing GS: Yd ̸⊥⊥ D|W,S = 1 and

Yd,Sd′
̸⊥⊥ D|W,S = 1.

Proof. We consider the simplest case in the graphs below. Since we see that we cannot

d-separate D and Yd (or Yd,Sd′
) in N+

S in this simplest case, adding more edges and nodes

will not change this. The second statement follows from just looking at the twin network

contained in the extended twin network here. The last part of the lemma follows from Lemma

1.
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A.3.3 Selection as a descendant of a mediator

Lemma 13. If Z satisfies ISAC in G+
S relative to D and Y and S is a descendant of a

mediator, M , between D and Y (but S is not also a mediator itself), then Z d-separates D

and Yd,m in N+
S .

Proof. We rely on the proof of Lemma 3 and Lemma 8, but with some caveats for the changes

due to S being a descendant of a mediator between D and Y . See those proofs for how the

quantities in this proof are defined. Note that we are assuming that S is not itself a mediator

between D and Y . We consider whether there are new types of open paths π that could
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connect D to Yd,S=1 in N+
S and if they exist whether they violate ISAC.

[π that contain a copy of S or post-intervention M .] Since S is a descendant of

M , a mediator between D and Y in G+
S , but S is not itself a mediator, in the extended twin

network for Yd,m, N
+
S , any path on which S or M appear on the post-intervention side of the

graph ((GS)D,M) has been severed since we intervene to set M = m and D = d, in addition

to the fact that S is not a mediator itself. Again, π (the assumed unblocked path from D

to Yd,m in N+
S ) is constructed from three parts: π1 (an unblocked path in G+

S ), π3 (a causal

path in (GS)D,M on which every node is a descendant of D and/or M), and π2 (a single edge

connecting π1 and π3 in N+
S ). This means that π must land in the post-intervention side

on a node that is downstream of M = m and/or of D = d. Further, any path containing a

post-intervention version of S will not end with Yd,m since S is not a mediator itself. As in

Lemmas 3 and 8, due to the construction of N+
S we can focus on the generalized non-causal

paths that circumvent S in G+
S as candidates for π1, rather than any such path that passes

through S. So π will not contain either the pre- or post-interventional copy of S. It will also

not contain a post-interventional copy of M .

[π that contain pre-intervention M .] Let’s consider the cases in which π might have

M on the pre-intervention side. This means that any π in N+
S between D and Yd,m that

contains M must have M in π1.

• If M is on a non-causal π∗ then we have a violation of ISAC.

• As in Lemma 3, if M is on a causal π∗ then we will also find a violation of ISAC.

π2, again, must have been directed and pointed from a pre-intervention node to a

post-intervention node and the pre-intervention node could not have been a descendant

of M , otherwise it would be in the ((GS)D,M) part of N+
S . M would be on π1 and the

first edge out of M must be an edge pointing away from M , since M only appears on

π1 and π∗ is causal. If there are no node copies that are in both π1 and π3 (meaning

π1 has a pre-intervention copy and π3 has a post-intervention copy of the same node),

then π∗ cannot be a proper causal path from D to Y in G+
S . The only way it could
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be would be for the pre-intervention node to be a descendant of M , a contradiction.

If there are node copies that are in both π1 and π3, then the only way to reach the

pre-intervention node from M is via a collider unblocked by our conditioning on some

element of Z. This would mean that the second node after M in π (and the second

node after M in π∗) is an ancestor of Z, which violates ISAC.

So any π on which M appears corresponds to a π∗ that violates ISAC.

Due to the above discussion, any generalized non-causal path on which M is an ancestor of

Y in G+
S does not need to be blocked by Z. This is because such paths cannot correspond to

paths from D to Yd,m in N+
S unless we condition on a Z that violates the fist condition of ISAC.

This is because these paths point to the pre-interventional Y and the post-interventional

version of these paths is severed by our intervention setting M = m.

Any remaining unblocked π would be of the types already covered by Lemmas 3 and 8 and

the same logic from the proofs of Lemmas 3 and 8 will apply here. Note that conditioning on

M (that is including it in Z) or variables that are on the same causal path that M is on are

prohibited by ISAC.

Lemma 14. If Z d-separates D and Yd,m in N+
S , then {Z, S} d-separates D and Yd,m in NS.

Proof. This proof is similar to that for Lemma 4.

Lemma 15. If {Z, S} d-separates D and Yd,m in NS, then Yd,m ⊥⊥ D|Z, S = 1 for every

model inducing GS.

Proof. This follows from Lemma 1.

Lemma 16. If Z satisfies ISAC in G+
S relative to D and Y and S is a descendant of a

mediator, M , between D and Y (but S is not also a mediator itself), then {Z,D} d-separates

M and Yd,m in N+
S .
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Proof. We will again show the contrapositive: assuming we are conditioning on Z and D,

we show that any unblocked path from M to Yd,m in N+
S , ϕ, means there is an unblocked

path from D to Yd,m in N+
S (where we only condition on Z), π, which implies that ISAC is

violated in G+
S relative to D and Y based on Lemma 13.

We can connect any ϕ that starts with an arrow into M (i.e., M ← . . . Yd,m or M ↔

. . . Yd,m) to D → · · · → W → · · · → M to create π since M in this case is a collider and

we condition on S, a descendant of M ; and we cannot condition on any node like W on

D → · · · → W → · · · → M since W would also be on causal paths from D to Y , since M

is a mediator, which would be a violation of ISAC. Note that this also holds when M is a

direct descendant of D: D →M can be connected to ϕ and since M is a collider between D

and some variable on ϕ, there is an open π. We can similarly connect any ϕ that starts with

a bridge touching M (i.e., M . . . Yd,m) can be connected to D → · · · → W → · · · → M

to create π since bridges do not create colliders. Any path with an arrow pointing out of

M (i.e., M → . . . ) can only end at Yd,m after traversing a bridge or a collider that has

been conditioned on, since M is a pre-intervention node but Yd,m is a descendant of the

intervention M = m not of M . In both of these cases, this path can also be connected with

D → · · · → W → · · · →M to create π. The key is that ϕ is an open path from M to Yd,m

and so it can be linked to the causal path from D to M (which cannot be blocked without

violating ISAC). Any such unblocked path π from D to Yd,m in N+
S (where we only condition

on Z) violates ISAC following Lemma 13.

Conditioning on D blocks any open paths between D and Yd,m that could be connected to

the causal path from D to M to create an open path between M and Yd,m. Could conditioning

on D create an open ϕ from M to Yd,m without there also being an open π between D and

Yd,m? This could only happen if conditioning on D opened a previously closed path, otherwise,

no additional paths are opened by conditioning on D (in addition to Z) and we’re in the

situation above where any ϕ between M and Yd,m can be used to create a π between D and

Yd,m. Conditioning on D (in addition to Z) would only open paths between M and Yd,m if
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D is a collider on such paths. This would mean that there would have to be an open path

between D and M that ends with an arrow into D as well as an open path between D and

Yd,m that ends with an arrow into D. But any open path between D and Yd,m that ends with

an arrow into D is an open π that, as we’ve seen, would violate ISAC. Note that conditioning

on M (that is including it in Z) or variables that are on the same causal path that M is on

are prohibited by ISAC.

Lemma 17. If {Z,D} d-separates M and Yd,m in N+
S , then {Z,D, S} d-separates M and

Yd,m in NS.

Proof. This proof is similar to that for Lemma 4.

Lemma 18. If {Z,D, S} d-separates M and Yd,m in NS, then Yd,m ⊥⊥ M |D,Z, S = 1 for

every model inducing GS.

Proof. This follows from Lemma 1.

Lemma 19. If Yd,m ⊥⊥ D|Z, S = 1 and Yd,m ⊥⊥M |D,Z, S = 1 for every model inducing GS,

then p(Yd,m|S = 1) =
∑

z p(Y |D = d,M = m,Z = z, S = 1)p(Z = z|S = 1), for every model

inducing GS.

Proof.

p(Yd,m|S = 1)

=
∑
z

p(Yd,m|Z = z, S = 1)p(Z = z|S = 1) by law of iterated expectations

=
∑
z

p(Yd,m|D = d, Z = z, S = 1)p(Z = z|S = 1) by Yd,m ⊥⊥ D|Z, S = 1

=
∑
z

p(Yd,m|D = d,M = m,Z = z, S = 1)p(Z = z|S = 1) by Yd,m ⊥⊥M |D,Z, S = 1

=
∑
z

p(Y |D = d,M = m,Z = z, S = 1)p(Z = z|S = 1) by consistency
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Lemma 20. If S is a descendant of a mediator, M , between D and Y , then no set of

observed variables, W , can d-separate D and Yd (or Yd,Md′
) in N+

S , unless S is a deterministic

function of observed variables. And so no set of variables, W , (along with S) can d-separate

D and Yd (or Yd,Md′
) in NS. Hence, the following do not hold for every model inducing GS:

Yd ̸⊥⊥ D|W,S = 1 and Yd,Sd′
̸⊥⊥ D|W,S = 1.

Proof. We consider the simplest case in the graphs below. Since we see that we cannot

d-separate D and Yd (or Yd,Md′
) in N+

S in this simplest case, adding more edges and nodes

will not change this. The second statement follows from just looking at the twin network

contained in the extended twin network here. The last part of the lemma follows from Lemma

1.
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A.3.4 Generalization

Lemma 21. If a set of nodes Z in G+
S satisfies GC relative to D (treatment) and Y (outcome)

and S is not a mediator or descendant of a mediator between D and Y , then ZExt d-separates

S and Yd in N+
S .

Proof. We take a similar approach as in the proof of Lemma 3. We will show the contrapositive:

assuming that we are conditioning on Z, which includes ZExt, an unblocked path from S to
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Yd in N+
S implies that GC is violated in G+

S relative to D and Y .

• We define π like in Lemma 3: We start by assuming that, assuming we are conditioning

on Z, there is an unblocked path, π, from S to Yd in N+
S . Like in Lemma 3, we can

consider π that do not contain the pre-interventional S, though π may contain bridges

in π1. Since we have assumed that sample selection is not a mediator or a descendant

of a mediator, post-intervention versions of S will not appear on π3 if they exist at all

in N+
S .

• As in in Lemma 3, we can create a π′ that is an unblocked route in G+
S and π∗, the

direct route of π′ in G+
S , is an unblocked path in G+

S .

• Now, let’s consider the types of paths that π∗ could be.

– π∗ that do not end in a causal path from D to Y violate of GC.

– For π∗ that do end in a causal paths from D to Y , we want to show that these

would imply contradictions for π or violate GC.

∗ How can we have D on π∗? This could only result from the pre-intervention

side copy of D appearing on π, since no edges point into D = d, no bridges

can connect to D = d, and π must land downstream of D = d on the

post-intervention side.

∗ So how can the pre-intervention side copy of D appear on π? This could only

result from a non-causal or causal path from S to D, where both are on the

pre-intervention side. So this non-causal or causal path from S to D is entirely

on the pre-intervention side and, therefore, is part of π1.

∗ Then the question becomes: how can we get a causal path from D to Y in π∗,

when D is pre-intervention and Yd is post-intervention on π? From here we

can follow the logic in the section bullet of part 4. of the proof of Lemma 3,

which shows us that this either results in a contradiction or violates GC since

it violates ISAC.
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Lemma 22. If ZExt d-separates S and Yd in N+
S , then ZExt d-separates S and Yd in NS.

Proof. We start by supposing that the statement ”If ZExt d-separates S and Yd in N+
S , then

ZExt d-separates S and Yd in NS.” is false. This means that although all paths from S to Yd

in N+
S are blocked by ZExt, we can find a NS and a ZExt for which there is a path, ξ, in NS

from S to Yd that is not blocked by ZExt. Without loss of generality, we assume that ξ only

intersects S at the endpoint. N+
S is identical to NS except for N+

S contains bridges created

as a result of conditioning on S. Bridges are added to NS between all variables between

which S is a collider or an ancestor of S is a collider resulting in N+
S . If ξ is unblocked in NS,

then ξ traverses no bridges, since bridges do not appear in NS. The path ξ is also in N+
S

and is unblocked since N+
S is NS but with edges added and we are conditioning on the same

set of nodes, ZExt, in both. No edges are removed in extending NS to N+
S . In this way, N+

S

”contains” all of NS. But an unblocked path between S and Yd in N+
S is a contradiction.

Lemma 23. If ZExt d-separates S and Yd in NS, then Yd ⊥⊥ S|ZExt for every model inducing

GS.

Proof. This follows from Lemma 1.

Lemma 24. If ZExt ⊂ Z and ZInt = Z − ZExt, Yd ⊥⊥ S|ZExt, and Yd ⊥⊥ D|Z, S = 1 for every

model inducing GS, then, for every model inducing GS,

p(Yd|S = 1)

=
∑
z

p(Yd|Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt|S = 1)

=
∑
z

p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt|S = 1)

and p(Yd)

=
∑
z

p(Yd|Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt)

=
∑
z

p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt).
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Proof.

p(Yd|S = 1)

=
∑
z

p(Yd|Z = z, S = 1)p(Z = z|S = 1)

=
∑
z

p(Yd|D = d, Z = z, S = 1)p(Z = z|S = 1) by Yd ⊥⊥ D|Z, S = 1

=
∑
z

p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1) by consistency

=
∑
z

p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt|S = 1)

p(Yd)

=
∑
zExt

p(Yd|ZExt = zExt)p(ZExt = zExt)

=
∑
zExt

p(Yd|ZExt = zExt, S = 1)p(ZExt = zExt) by Yd ⊥⊥ S|ZExt

=
∑
zExt

[∑
zInt

p(Yd, ZInt = zInt|ZExt = zExt, S = 1)

]
p(ZExt = zExt)

=
∑
zExt

[∑
zInt

p(Yd|ZInt = zInt, ZExt = zExt, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)

]
p(ZExt = zExt)

=
∑
z

p(Yd|Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt)

=
∑
z

p(Yd|D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt)

by Yd ⊥⊥ D|Z, S = 1

=
∑
z

p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt) by consistency
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A.4 Theorems

Theorem 6. If a set of nodes Z in internal selection graph G+
S satisfies ISAC relative to D

(treatment) and Y (outcome) and S is not a mediator or descendant of a mediator between

D and Y , then, for every model inducing GS, Yd ⊥⊥ D|Z, S = 1 and we can then identify

p(Yd|S = 1) =
∑

z p(Y |d, z, S = 1)p(z|S = 1), all of which is estimable from the selected

sample alone.

Proof. Lemmas 3, 4, 6, and 7 prove the result.

Theorem 7. If a set of nodes Z in internal selection graph G+
S satisfies ISAC relative to

D (treatment) and Y (outcome) and S is a mediator between D and Y (but S is not also a

descendant of another mediator), then, for every model inducing GS, Yd,S=1 ⊥⊥ D|Z, S = 1

and we can then identify p(Yd,S=1|S = 1) =
∑

z p(Y |d, z, S = 1)p(z|S = 1), all of which is

estimable from the selected sample alone. Further note that, for any set of observables, W ,

Yd ̸⊥⊥ D|W,S = 1 and Yd,Sd′
̸⊥⊥ D|W,S = 1, unless S is a deterministic function of observed

variables.

Proof. Lemmas 8, 9, 10, 11, and 12 prove the result.

Theorem 8. If a set of nodes Z in internal selection graph G+
S satisfies ISAC to D (treatment)

and Y (outcome), where S is a descendant of an observed mediator, M , between D and Y

(but S is not also a mediator itself), then, for every model inducing GS, Yd,m ⊥⊥ D|Z, S = 1

and Yd,m ⊥⊥M |D,Z, S = 1, where M = m is a value observed in the sample. We can then

identify, for every model inducing GS, p(Yd,m|S = 1) =
∑

z p(Y |d,m, z, S = 1)p(z|S = 1),

all of which is estimable from the selected sample alone. Further note that, for any set of

observables, W , Yd ̸⊥⊥ D|W,S = 1 and Yd,Md′
̸⊥⊥ D|W,S = 1, unless S is a deterministic

function of observed variables.

Proof. Lemmas 13, 14, 15, 16, 17, 18, 19, and 20 prove the result.
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If S is both a mediator and a descendant of a mediator (M) between D and Y , then we

might consider potential outcomes of the form Yd,m,S=1 (intervening to set D = d, M = m,

and S = 1) and something like these theorems should hold. We do not demonstrate this for

brevity. The following result concerning generalization translates the results in Correa et al.

(2018) to use potential outcomes.

Theorem 9. If a set of nodes Z in G+
S satisfies GC relative to D (treatment) and Y (outcome)

and S is not a mediator or descendant of a mediator between D and Y , then Yd ⊥⊥ D|Z, S = 1

and Yd ⊥⊥ S|ZExt. We can identify p(Yd) =
∑

z p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt =

zExt, S = 1)p(ZExt = zExt), where ZInt = Z − ZExt.

Proof. Theorem 6 and Lemmas 21, 22, 23, and 24 prove the result.

A.5 IPW estimation

Following related discussions in Hernán and Robins (2006); VanderWeele (2009); Correa et al.

(2018); Hernán and Robins (2020) and elsewhere, we present IPW estimators for E[Yd|S = 1],

E[Yd,S=1|S = 1], and E[Yd,m|S = 1]. These are familiar results but tailored to our internal

validity for the selected sample focus.

If Yd ⊥⊥ D|Z, S = 1 (following an application of ISAC) and we have SUTVA, consistency,

and positivity, then we can show that, by the law of large numbers, the IPW estimator

µ̂d =
1

n

n∑
i=1

Yi × 1Di=d

p̂(Di = d|Zi = z, S = 1)

is consistent for E[Yd|S = 1] when the propensity score model p̂(Di = d|Zi = z, S = 1) is

correctly specified:
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E[Yd|S = 1] =
∑
y

y × p(Yd = y|S = 1)

=
∑
y

∑
z

y × p(Y = y|D = d, Z = z, S = 1)p(Z = z|S = 1) by Lemma 7

=
∑
y

∑
z

y × p(Y = y,D = d|Z = z, S = 1)

p(D = d|Z = z, S = 1)
p(Z = z|S = 1)

=
∑
y

∑
z

y × p(Y = y,D = d, Z = z|S = 1)

p(D = d|Z = z, S = 1)

=
∑
y

∑
z

∑
d

y × 1D=d ×
p(Y = y,D = d, Z = z|S = 1)

p(D = d|Z = z, S = 1)

= E
[

Y × 1D=d

p(D = d|Z = z, S = 1)
|S = 1

]
= E[µ̂d|S = 1]

If Yd,S=1 ⊥⊥ D|Z, S = 1 and we have SUTVA, consistency, and positivity, then we can show

that, by the law of large numbers, the IPW estimator µ̂d is consistent for E[Yd,S=1|S = 1]

when the propensity score model p̂(D = d|Z = z, S = 1) is correctly specified:

E[Yd,S=1|S = 1] =
∑
y

y × p(Yd,S=1 = y|S = 1)

=
∑
y

∑
z

y × p(Y = y|D = d, Z = z, S = 1)p(Z = z|S = 1) by Lemma 11

=
∑
y

∑
z

y × p(Y = y,D = d|Z = z, S = 1)

p(D = d|Z = z, S = 1)
p(Z = z|S = 1)

=
∑
y

∑
z

y × p(Y = y,D = d, Z = z|S = 1)

p(D = d|Z = z, S = 1)

=
∑
y

∑
z

∑
d

y × 1D=d ×
p(Y = y,D = d, Z = z|S = 1)

p(D = d|Z = z, S = 1)

= E
[

Y × 1D=d

p(D = d|Z = z, S = 1)
|S = 1

]
= E[µ̂d|S = 1]
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If Yd,m ⊥⊥ D|Z, S = 1 and Yd,m ⊥⊥ M |D,Z, S = 1 and we have SUTVA, consistency, and

positivity, then we can show that, by the law of large numbers, the IPW estimator

µ̂d,m =
1

n

n∑
i=1

Yi × 1Mi=m × 1Di=d

p̂(Mi = m|Di = d, Zi = z, S = 1)p̂(Di = d|Zi = z, S = 1)

is consistent for E[Yd,m|S = 1] when the propensity score model p̂(Di = d|Zi = z, S = 1) and

the mediator model p̂(Mi = m|Di = d, Zi = z, S = 1) are correctly specified:

E[Yd,m|S = 1]

=
∑
y

y × p(Yd,m = y|S = 1)

=
∑
y

∑
z

y × p(Y = y|D = d,M = m,Z = z, S = 1)p(Z = z|S = 1) by Lemma 19

=
∑
y

∑
z

y × p(Y = y,M = m|D = d, Z = z, S = 1)

p(M = m|D = d, Z = z, S = 1)
p(Z = z|S = 1)

=
∑
y

∑
z

y × p(Y = y,M = m|D = d, Z = z, S = 1)

p(M = m|D = d, Z = z, S = 1)

p(D = d|Z = z, S = 1)

p(D = d|Z = z, S = 1)
p(Z = z|S = 1)

=
∑
y

∑
z

y × p(Y = y,M = m,D = d|Z = z, S = 1)

p(M = m|D = d, Z = z, S = 1)p(D = d|Z = z, S = 1)
p(Z = z|S = 1)

=
∑
y

∑
z

y × p(Y = y,M = m,D = d, Z = z|S = 1)

p(M = m|D = d, Z = z, S = 1)p(D = d|Z = z, S = 1)

=
∑
y

∑
z

∑
m

∑
d

y × 1M=m × 1D=d ×
p(Y = y,M = m,D = d, Z = z|S = 1)

p(M = m|D = d, Z = z, S = 1)p(D = d|Z = z, S = 1)

= E
[

Y × 1M=m × 1D=d

p(M = m|D = d, Z = z, S = 1)p(D = d|Z = z, S = 1)
|S = 1

]
= E[µ̂d,m|S = 1]

A.6 Conditioning on a collider

Shahar and Shahar (2017) discuss the conditions under which an association is created

between the parents of a collider when the collider is conditioned on for discrete variables.
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They show that, “[i]f [D] and [U ] are marginally independent causes of [S], then [D] and

[U ] are dependent conditional on [S = 1] if and only if [D] and [U ] modify each other’s

effects on [S = 1].” These authors define effects on the collider as well as effect modification

in terms of probability ratios. Section A.7 of Appendix A further shows that non-zero

interaction information is a requirement for dependency to be created between two marginally

independent parents of a collider, when the collider is conditioned on. Also relevant to

the discussion in the present paper, Shahar and Shahar (2017) show that for marginally

independent causes D,U of a binary collider S, if the effects of D and U on S are not null,

then D,U modify each other’s effects in at least one stratum of S and are dependent in at

least one stratum of S.

Using our working example, let us consider what would be required for the parents of

the sample selection node to remain independent after stratifying to S = 1. Simplifying

the example inspired by Knox et al. (2020), we consider how the effect of police perception

of majority vs minority race (D ∈ {majority,minority}) on police making a stop or not

(S ∈ {0, 1}) might be modified by an unobserved factor that represents police officer stress

levels (U ∈ {high, low}). Following Shahar and Shahar (2017), we consider the probability

ratios in (A.1):

p(S = 1|D = majority, U = high)

p(S = 1|D = minority, U = high)
?
=

p(S = 1|D = majority, U = low)

p(S = 1|D = minority, U = low)
(A.1)

The left hand side of (A.1) is the effect of police perception of race on police making a stop

when police officers are under high stress. The right hand side of (A.1) is the effect of police

perception of race on police making a stop when police officers are under low stress. Police

officer stress not modifying the effect of police perception of race on police making a stop

would mean that the left and right hand sides of (A.1) are equal. Under what circumstances

would this occur?

The simplest scenario would be when people perceived to be from the majority racial
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group are never stopped. That is, the numerators on both sides of (A.1) are zero: p(S =

1|D = majority, U = high) = 0 and p(S = 1|D = majority, U = low) = 0. This would make

both probability ratios zero, meaning no effect moderation. This is clearly an absurd scenario.

The other case would be when the two probability ratios perfectly balance, meaning that

there is no effect moderation. This is also not likely; police officer stress levels likely do

modify the effect of perceptions of race on making a stop in some way. But if one of these

scenarios holds, following Shahar and Shahar (2017)’s result quoted above it can be shown

that p(D = majority|U = high, S = 1) = p(D = majority|S = 1). We demonstrate this in

full below. That is, police perception of race is independent of police stress levels, despite

stratifying to S = 1, if one the the two (unrealistic) scenarios holds. Further, if one the

the two scenarios holds and so long as p(S = 1|D = minority, U = high) ̸= p(S = 1|D =

minority, U = low) (i.e., there is an effect from police officer stress), then we would see that

the two sides of (A.2) are not equal, meaning there is effect moderation and hence police

perception of race is dependent on police stress levels, stratifying to S = 0.

p(S = 0|D = majority, U = high)

p(S = 0|D = minority, U = high)
?
=

p(S = 0|D = majority, U = low)

p(S = 0|D = minority, U = low)
(A.2)

Practitioners would only know that they’re in the setting in which stratifying to S = 1

does not create association between the parents of S if they have detailed knowledge of the

selection mechanism, like the unrealistic scenarios above. In such a situation, even if the

parents of the sample selection node are dependent due to selection, the practitioner could

use inverse probability of selection weighting to estimate unbiased effects. (Thompson and

Arah, 2014) But we emphasize that such knowledge is hard to come by and the assumptions

required to fall into such a setting will often be absurd.

We follow Shahar and Shahar (2017) to show that p(D = majority|U = high, S = 1) =

p(D = majority|S = 1). In the derivation below, we abbreviate “majority” as “ma” and

“minority” as “mi.” We rely on the fact that there is no effect moderation to show this. First
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note that we can write

p(S = 1|D = ma, U = high)

p(S = 1|D = mi, U = high)
=

p(S = 1|D = ma, U = high)p(U = high|D = ma)

p(S = 1|D = mi, U = high)p(U = high|D = mi)

=
p(S = 1, U = high|D = ma)

p(S = 1, U = high|D = mi)

Next we show that we can write

p(S = 1|D = ma, U = high)

p(S = 1|D = mi, U = high)

=
p(S = 1|D = ma, U = high)

p(S = 1|D = mi, U = high)

p(S = 1, U = high|D = mi)

p(S = 1|D = mi)

+
p(S = 1|D = ma, U = low)

p(S = 1|D = mi, U = low)

p(S = 1, U = low|D = mi)

p(S = 1|D = mi)

=
p(S = 1, U = high|D = ma)

p(S = 1, U = high|D = mi)

p(S = 1, U = high|D = mi)

p(S = 1|D = mi)

+
p(S = 1, U = low|D = ma)

p(S = 1, U = low|D = mi)

p(S = 1, U = low|D = mi)

p(S = 1|D = mi)

=
p(S = 1, U = high|D = ma)

p(S = 1|D = mi)
+

p(S = 1, U = low|D = ma)

p(S = 1|D = mi)
=

p(S = 1|D = ma)

p(S = 1|D = mi)
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Finally, we show that

p(D = majority|U = high, S = 1)

=
p(S = 1|D = ma, U = high)p(D = ma|U = high)

p(S = 1|U = high)

=
p(S = 1|D = ma, U = high)p(D = ma|U = high)p(S = 1|D = ma, U = high)p(D = ma|U = high)+

p(S = 1|D = mi, U = high)p(D = mi|U = high)


=

p(S = 1|D = ma, U = high)p(D = ma)

p(S = 1|D = ma, U = high)p(D = ma) + p(S = 1|D = mi, U = high)p(D = mi)

= p(D = ma)

p(S=1|D=ma,U=high)
p(S=1|D=ma,U=high)

p(D = ma)+

p(S=1|D=ma,U=high)
p(S=1|D=mi,U=high)

p(D = mi)

−1

= p(D = ma)

[
p(S = 1|D = ma)

p(S = 1|D = ma)
p(D = ma) +

p(S = 1|D = ma)

p(S = 1|D = mi)
p(D = mi)

]−1

from above

=
p(S = 1|D = ma)p(D = ma)

p(S = 1|D = ma)p(D = ma) + p(S = 1|D = mi)p(D = mi)

=
p(S = 1|D = ma)p(D = ma)

p(S = 1)

= p(D = majority|S = 1)

A.7 Colliders and interaction information

We draw on discussion of interaction information and colliders from Ghassami and Kiyavash

(2017) (also see McGill (1954)) to show that zero interaction information for marginally

independent random variables implies continued independence conditional on a collider.

Section A.6 of Appendix A further discusses collider stratification in the context of our

working example. Suppose we have two random variables X1, X2 and variable S that is

a collider between X1, X2: X1 → S ← X2. Interaction information is a generalization of

mutual information to the case when there are multiple variables. See Cover and Thomas

(2006) for an introduction to mutual information. We can write interaction information as
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(Ghassami and Kiyavash, 2017)

MI(S;X1;X2) = MI(X1;X2)−MI(X1;X2|S)

= MI(S;X1)−MI(S;X1|X2)

= MI(S;X2)−MI(S;X2|X1)

Using the first expression for interaction information above, we see that MI(X1;X2|S) =

MI(X1;X2) − MI(S;X1;X2). It is trivial to see that, MI(S;X1;X2) = 0 means that

MI(X1;X2|S) = MI(X1;X2). Meaning that zero interaction information implies that there

is no change in mutual information between X1, X2 when we condition on the collider be-

tween them. For marginally independent X1, X2, MI(X1;X2|S) = −MI(S;X1;X2) and so

if MI(S;X1;X2) = 0 =⇒ MI(X1;X2|S) = 0. Meaning that zero interaction information

implies that conditional on the collider, X1, X2 remain independent.

Another view of interaction information is possible by writing

MI(S; [X1, X2]) = MI(S;X2) + MI(S;X1|X2)

=⇒ MI(S; [X1, X2])−MI(X1;S)−MI(X2;S)

= MI(S;X2) + MI(S;X1|X2)−MI(S;X1)−MI(S;X2)

= −(MI(S;X1)−MI(S;X1|X2))

= −MI(S;X1;X2)

=⇒ MI(S;X1;X2) = MI(X1;S) + MI(X2;S)−MI(S; [X1, X2])

where MI(S; [X1, X2]) = MI(S;X2) + MI(S;X1|X2) captures the information that X1, X2

jointly share with S. Interaction information would be zero when MI(X1;S) + MI(X2;S)

equals MI(S; [X1, X2]). That is, when the information that X1, X2 jointly share with S

is exactly equal to the the mutual information between X1 and S added to the mutual

information between X2 and S. This would arise when the information shared between X1

and S does not overlap with the information shared between X2 and S.
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We include this discussion only to show that conditioning on a collider does

not necessarily lead to mutual information (and therefore dependence) between

marginally independent parents of the collider or a change in the mutual infor-

mation between marginally dependent parents of the collider. We’ve shown that

it does not precisely when interaction information is zero.

A few additional notes on interaction information. IfX1 andX2 are marginally independent

causes of S, one might be tempted to think of interaction information as arising through

the “interaction” between X1 and X2 in determining S, since no shared information existed

marginally. However, interaction information can be difficult to interpret and what is meant

by this “interaction” is not necessarily what we might expect. See a Krippendorff (2009) for

a discussion of these difficulties, including that interaction information can be negative.

The “interaction” is not necessarily something like an interaction term in a linear model. It

is easy to show that for Gaussian random variables X1 ∼ N (0, 1), X2 ∼ N (0, 1), ϵ ∼ N (0, 1),

and S = X1 +X2 + ϵ, where there is no interaction term X1 ×X2 in the data generating

process for S, there is still non-zero interaction information between X1, X2, S. This arises

from the simple fact that mutual information for Gaussians has the following relationship with

R2’s: MI(A;B) = −1
2
log(1−R2

A,B). (Cover and Thomas, 2006) From above, we know that

MI(S;X1;X2) = MI(X1;S) + MI(X2;S)−MI(S; [X1, X2]). From the relationship between

mutual information and R2, we have that MI(X1;S) = −1
2
log(1−R2

X1,S
) = −1

2
log(1− 1

3
) ≈

0.203 and similarly, MI(X2;S) ≈ 0.203. However MI(S; [X1, X2]) = −1
2
log(1−R2

S,X1+X2
) =

−1
2
log(1− 2

3
) ≈ 0.55 ̸= 0.406 ≈ MI(X1;S)+MI(X2;S). So we see that interaction information

is non-zero, this in turn means conditional mutual information is non-zero, i.e. MI(X1;X2|S) ̸=

0. The partial R2, R2
X1,X2|S =

(
RX1,X2

−RX1,S
RX2,S√

1−R2
X1,S

√
1−R2

X2,S

)2

=
R2

X1,S
R2

X2,S

(1−R2
X1,S

)(1−R2
X2,S

)
=

( 1
3
)2

(1− 1
3
)2

= 1
4
, is

also not zero.

We note two additional interesting cases. First, even if MI(X1;S) and R2
X1,S

are zero,

we can have non-zero interaction information, conditional mutual information and partial

R2 if the zeroes are due to perfect balancing of the path coefficients (e.g., X1 ∼ N (0, 1),
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ξ ∼ N (0, 1), ϵ ∼ N (0, 1), X2 = X1 + ξ and S = −X1 + X2 + ϵ). Second, even when

R2
X1,X2|S and MI(X1;X2|S) are zero, we can have non-zero interaction information. The

zero R2
X1,X2|S could be due to perfect balancing between non-zero RX1,X2 and RS,X1 , and

RS,X2 , which coincides with zero MI(X1;X2|S) due to perfect balancing between non-zero

mutual information MI(X1;X2) and interaction information MI(S;X1;X2). For example, if

the data generating process is X1 ∼ N (0, 1), ξ ∼ N (0, 1), ϵ ∼ N (0, 1), X2 = γX1 + ξ and

S =
√
γX1 +

√
γX2 + ϵ. In this example the marginal dependency between X1 and X2 is

eliminated when we condition on S.

A.8 Exercises

Here we consider additional substantive examples that highlight different ways internal

validity can relate to sample selection.

A.8.1 Exercise: Height and Free Throw Percentage in the NBA

Consider an oddity of the sporting world: taller players tend to have lower free throw

percentages in the NBA. (McMahan, 2017; Helin, 2011) Looking at NBA player-season

free-throw percentages from 1950 - 2017 versus player height in Figure A.4, we see a negative

relationship with a correlation of -0.25.4 Indeed, a simple linear regression produces a slope

estimate of a decrease of 0.3 percentage points in free throw percentage for each additional

centimeter of height; see Table A.1. This estimate is meant only as a statistical summary not

a causal effect, indeed the relationship appears to be non-linear.

But what might the underlying causal relationships look like? Does being taller cause

you to make fewer free throws? Likely not. Perhaps there is a slightly positive direct effect

of height on shooting, since taller people are just closer to the basket. Additionally, taller

4These data come from https://www.basketball-reference.com/ and https://www.kaggle.com/

datasets/drgilermo/nba-players-stats.
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Figure A.4: Free Throws and Height

Table A.1: Free Throws and Height

Estimated Effect SE CI Low CI High DF
-0.0033 8.34e-05 -0.0034 -0.0031 22995

players typically play positions that put them closer to the basket than the free throw line.

Therefore, taller players might not practice shooting from the free throw distance as much as

shorter players do. Finally, there may be a form of sample selection bias sometimes called

ascertainment bias. (Elwert and Winship, 2014; Schneider, 2020) It is likely that shooting

ability has a positive influence on making it into the NBA. Simultaneously, it is likely that

height has a positive influence on making it into the NBA. Thus, making it into the NBA is

a collider between height and shooting ability. Limiting our analysis to players that made

it into the NBA means we have implicitly conditioned on this collider. This can create a

spurious negative relationship between height and shooting percentage.
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Figure A.5: DAG and internal selection graph for height (D) and free throw percentage (Y ),
where M might represent a mediator like players’ position and S represent an indicator for
players in the NBA
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(b) Internal Selection Graph

The internal selection graph for this setting might be captured by something like Figure

A.5. Generalized non-causal paths between height and shooting percentage are created as a

result of selecting the NBA sample. However, in this example, it actually might be reasonable

to think that a negative effect of height on shooting percentage mediated by position is the

driver behind the observed negative relationship. Though, as the internal selection graph

makes clear, even the mediator has purely statistical relationships with the treatment and

outcome due to sample selection. Paths like D Uy → Y and D Y threaten the internal

validity of an analysis of mediation.

A.8.2 Exercise: Zhou and Fishbach (2016)

Consider two online survey experiments from Zhou and Fishbach (2016). The authors aim

to show that online experiments are often subject to high levels of attrition that can create

biases. The two specific experiments we discuss here were actually designed to induce bias

resulting from attrition. These experiments provide intuitive illustrations of how sample

selection can bias treatment effect estimates, even for randomized experiments, and have the

internal selection graph in Figure A.6.
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Figure A.6: Zhou and Fishbach (2016) Exercise Graphs
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A.8.2.1 “Can doing more feel like less?”

Zhou and Fishbach (2016) “predicted that an experiment that assigns participants to recall

many versus few happy events would result in a biased sample consisting of mainly happy

people in the many-events condition, because happy events come to mind easily for these

people, whereas the less-happy people in this condition would have to quit this difficult

task. As a result of this experimental attrition, recalling many happy events could feel easier

than recalling fewer happy events.” The authors conducted an experiment of this form

using Amazon Mechanical Turk. D is the randomly assigned treatment which consisted of

being assigned to recall either 4 or 12 happy events from the last year. Y is a measure of

how difficult the treatment task was to complete on a 7 point scale (1 = not difficult; 7 =

extremely difficult). Z is a latent variable that captures each participant’s ambient happiness.

S is attrition from the study. The authors describe the attrition statistics as follows: “A

total of 196 MTurk workers consented to take part in this experiment... Ninety-four of

these participants dropped out of the survey once they learned what their first task (i.e.,

the experimental manipulation) entailed.... The dropout rate in the many condition, 69%

(69/100), is significantly higher than in the few condition, 26% (25/96)...” The participants

that dropped out did not complete the recollection task or rate the difficulty of the task.

The mean difficulty of recall rating for the group asked to recall 12 happy events was 2.74.

The mean difficulty of recall rating for the group asked to recall 4 happy events was 3.97.

This is despite the fact that, “[a]ll else being equal, recalling 12 happy events from the past
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year requires more effort than recalling four such events.” Clearly the naive treatment effect

estimate is biased even for the sample of individuals that did not drop out.

The authors discuss that sample selection introduces a confound as the task is easier for

happier people. This would unbalance the treatment groups. The graphical tools we have

developed make this mechanism completely clear. Which treatment group you are randomly

assigned to influences your decision whether to drop out or not, since one treatment is more

demanding than the other and some individuals might not want to put in the extra effort.

How happy you are generally influences both your decision to drop out or not, since being

happier makes the task less demanding, and your rating of how difficult the task was, for the

same reason. Since we are forced to condition on the selection node, a collider between the

treatment assignment and happiness, a spurious relationship is created between the random

treatment assignment and difficulty, which biases the estimate of the causal effect. This can

easily be seen from the internal selection graph. ISAC is violated since we cannot block the

path D Z → Y , given that ambient happiness is unobserved.

A.8.2.2 “Can imagining applying eyeliner help one lose weight?”

Zhou and Fishbach (2016) “predicted that an experiment that assigns participants to imagine

applying eyeliner (vs. applying aftershave cream) would end up with a sample that is

disproportionally female. As a result, participants assigned to imagine applying eyeliner

would report weighing less than those assigned to imagine applying aftershave.” Obviously,

there should be no direct causal effect of which question you are asked on weight. The

authors again conduct an experiment of this sort using Amazon Mechanical Turk. D is

the randomly assigned treatment which consisted of either being assigned to describe how

applying versus not applying eyeliner would make one feel differently or being assigned to

describe how applying versus not applying aftershave cream would make one feel differently.

Y is the outcome and is the participants’ self-reported weight in pounds. Z is an indicator

variable that captures each participants gender. S is attrition from the study. The authors
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describe the attrition statistics as follows: “A total of 144 MTurk workers consented to take

part in this experiment... Forty-one of these participants dropped out of the survey once they

learned what their first task (i.e., the experimental manipulation) entailed.... The dropout

rates were comparable across the two conditions: 32.4% (24/74) in the eyeliner condition

and 24.3% (17/70) in the aftershave cream condition ...” The participants that dropped out

did not complete the treatment task or rate the difficulty. The mean weight for the group

asked to discuss eyeliner was 159 pounds. The mean weight for the group asked to discuss

aftershave cream was 182 pounds. This is despite the fact that, discussing these products

has no effect on weight. Clearly the naive treatment effect estimate is biased even for the

sample of individuals that did not drop out. The authors observed that the eyeliner group

did indeed have more females than the aftershave group.

Table A.2: Zhou and Fishbach (2016) Exercise - Average Weight by Treatment

Treatment Average Weight N
Eyeliner 159.02 49
Aftershave 182.08 53

The authors discuss that sample selection introduces a confound as “imagining applying

eyeliner would be difficult or even aversive for average adult males, inducing them to quit.”

This would unbalance the treatment groups. The graphical tools we have developed make

this mechanism clear. Which treatment group you are randomly assigned to influences your

decision whether to drop out or not, since one treatment is more demanding than the other

depending on your gender. So your gender and the your treatment assignment both influence

your decision to drop out or not. Gender also influences weight on average, given that

“females generally weigh less than males.” Since we are forced to condition on the selection

node, a collider between the treatment assignment and gender, a spurious relationship is

created between the random treatment assignment and weight, biasing the effect estimates.

This can easily be seen from the internal selection graph. ISAC is violated since we cannot
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block the path D Z → Y , when gender is unobserved.

If gender is observed, and our causal graph is accurate, then we would be able to satisfy

ISAC. Since the authors did observe participant gender, they could have adjusted for gender

to get unbiased treatment effect estimates. We take this step here. Taking simple averages of

weight by treatment and gender, we see that there is actually a difference in average weight

between females who received the two treatments; something similar is true for males, but

less so. In reality, additional variables capturing each individual’s conformity to gender norms

and personal preferences with respect to these products also may also be common causes of

attrition and weight. So adjusting for gender may not be enough to completely identify the

causal effect.

Table A.3: Zhou and Fishbach (2016) Exercise - Average Weight by Treatment and Gender

Treatment Gender Average Weight N
Eyeliner Male 182.34 29
Aftershave Male 191.76 37
Eyeliner Female 125.20 20
Aftershave Female 159.69 16

We might wonder whether some other variables that might predict weight would help

reduce some of the variability in weights that could be leading differences in weight, whether

these differences are due purely to sampling error or to some systematic causal relationship

driving the differences, like gender does. We consider adjusting for (in a simple linear model)

individuals’ birth year, English as first language, race, education, income, total duration of

survey, and location information. All of these are pre-treatment variables and we do not

believe adjusting for any of these variables will induce or amplify bias. It is possible that

some are also related to attrition, like gender is. We believe adjusting for these will improve

precision and reduce bias.5 We fit a linear model with these covariates that does not adjust

5We assert this and the conclusions in this paragraph to keep our demonstration simple. Additional
consideration might reveal more about how adjusting for these variables alters causal effect estimates.
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for gender and one that does. We find that, while the model without gender still shows a

positive effect on weight for individuals who discussed aftershave. The model that adjusts for

gender cannot distinguish the treatment effect from zero.

Table A.4: Zhou and Fishbach (2016) Exercise - Linear Model Treatment Effect Estimates

Estimated Effect SE CI Low CI High
Not Adjusting for Gender 20.344 9.798 0.88 39.80
Adjusting for Gender 13.937 8.705 -3.35 31.23

A.8.3 Exercise: Discrimination in Various Forms

Similar mechanisms and analysis from our working example of racial bias in policing also apply

for a range of fairness and discrimination questions. The examples described by Figure A.7

are based on examples discussed in Mitchell et al. (2021). In the lending example, researchers

might be attempting to understand how immigrant status relates to loan repayment or

simply predicting repayment. Often the data used in such an investigation would only

include individuals who actually received loans, as they have the potential to repay. In the

pre-trial release example, we might want to understand how perceptions of race relate to

appearance at an appointed court date or simply predicting appearance. Again, the data in

such investigations are typically be limited to individuals who were actually released, as they

are able to appear or not. In these examples, we again see purely statistical relationships

between the protected or sensitive group statuses and outcomes that can bias the results of

the investigation.
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Figure A.7: Discrimination in Lending: D indicates immigrant status, S indicates receiving
a loan, Y indicates repayment, and U represents unobserved factors. Discrimination in
Pre-Trial Release: D indicates perception of race, S indicates pre-trial release, Y indicates
appearance for court date, and U represents unobserved factors.
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UYUD

168



APPENDIX B

Appendix for Chapter 3

B.1 Traditional OVB and its reparameterization

Cinelli and Hazlett (2020) reparameterize omitted variable bias in terms of partial R2’s in

the hopes of making sensitivity analysis more straight forward and the sensitivity parameters

more interpretable. Traditional OVB analysis uses the Frisch–Waugh–Lovell theorem as

follows.

β̂Y∼D|X,S=1 =
Ĉov(D⊥X , Y ⊥X |S = 1)

V̂ar(D⊥X |S = 1)

=
Ĉov(D⊥X , β̂Y∼D|W,X,S=1D

⊥X + β̂Y∼W |D,X,S=1W
⊥X |S = 1)

V̂ar(D⊥X |S = 1)

= β̂Y∼D|W,X,S=1 + β̂Y∼W |D,X,S=1
Ĉov(D⊥X ,W⊥X |S = 1)

V̂ar(D⊥X |S = 1)

= β̂Y∼D|W,X,S=1 + β̂Y∼W |D,X,S=1β̂W∼D|X,S=1

Cinelli and Hazlett (2020) then take the following additional steps to rewrite bias.
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=⇒ b̂ias = β̂Y∼D|X,S=1 − β̂Y∼D|W,X,S=1 = β̂Y∼W |D,X,S=1β̂W∼D|X,S=1

= Ĉor(Y ⊥D,X ,W⊥D,X |S = 1)
ŜD(Y ⊥D,X |S = 1)

ŜD(W⊥D,X |S = 1)
×

Ĉor(W⊥X , D⊥X |S = 1)
ŜD(W⊥X |S = 1)

ŜD(D⊥X |S = 1)

=
ŜD(Y ⊥D,X |S = 1)

ŜD(D⊥X |S = 1)

ŜD(W⊥X |S = 1)

ŜD(W⊥D,X |S = 1)
×

Ĉor(Y ⊥D,X ,W⊥D,X |S = 1)Ĉor(W⊥X , D⊥X |S = 1)

=
ŜD(Y ⊥D,X |S = 1)

ŜD(D⊥X |S = 1)

Ĉor(Y ⊥D,X ,W⊥D,X |S = 1)Ĉor(W⊥X , D⊥X |S = 1)√
1− Ĉor(W⊥X , D⊥X |S = 1)2

We can then see that the magnitude of bias can be written in terms of partial R2’s and

summary information that is typical in standard OLS output.

=⇒ |b̂ias| = ŜD(Y ⊥D,X |S = 1)

ŜD(D⊥X |S = 1)

√√√√R2
Y∼W |D,X,S=1R

2
W∼D|X,S=1

1−R2
W∼D|X,S=1

= se(β̂Y∼D|X,S=1)

√√√√dfS=1

R2
Y∼W |D,X,S=1R

2
W∼D|X,S=1

1−R2
W∼D|X,S=1

where se(β̂Y∼D|X,S=1) =
ŜD(Y ⊥D,X |S=1)√
dfS=1ŜD(D⊥X |S=1)

is the standard error from the regression using

the selected sample and dfS=1 are that regression’s degrees of freedom.

B.2 R2
D∼W |X,S=1 for binary random variables

Nguyen et al. (2019) provide the expression in Equation B.1 for Cov(W,D|S = 1) for binary
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variables W,D, S in their Lemma 1.

Cov(W,D|S = 1) =
1

P (S = 1)2

P (W = 1, D = 1, S = 1)P (W = 0, D = 0, S = 1)−

P (W = 1, D = 0, S = 1)P (W = 0, D = 1, S = 1)


(B.1)

To simplify things, we assume that data are generated according to the the simple collider

graph: D → S ← W . Nguyen et al. (2019) show that in this setting, we can write

Cov(W,D|S = 1) as in Equation B.2, where PW=w = P (W = w), PD=d = P (D = d),

PS=1 = P (S = 1), and PS=1|wd = P (S = 1|W = w,D = d).

Cov(W,D|S = 1) =
PW=1PD=1PW=0PD=0

P 2
S=1

[PS=1|11PS=1|00 − PS=1|10PS=1|01] (B.2)
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We can then express Cor(W,D|S = 1) as follows.

Cor(W,D|S = 1) =
Cov(W,D|S = 1)√

Var(W |S = 1)Var(D|S = 1)

= [PS=1|11PS=1|00 − PS=1|10PS=1|01]×
PW=1PD=1PW=0PD=0

P 2
S=1

√
Var(W |S = 1)Var(D|S = 1)

= [PS=1|11PS=1|00 − PS=1|10PS=1|01]×√
P 2
W=1P

2
D=1P

2
W=0P

2
D=0

P 4
S=1P (W = 1|S = 1)P (W = 0|S = 1)P (D = 1|S = 1)P (D = 0|S = 1)

= [PS=1|11PS=1|00 − PS=1|10PS=1|01]×√
P 2
W=1P

2
D=1P

2
W=0P

2
D=0

P (W = 1, S = 1)P (W = 0, S = 1)P (D = 1, S = 1)P (D = 0, S = 1)

= [PS=1|11PS=1|00 − PS=1|10PS=1|01]×√
PW=1PD=1PW=0PD=0

P (S = 1|W = 1)P (S = 1|W = 0)P (S = 1|D = 1)P (S = 1|D = 0)

= [PS=1|11PS=1|00 − PS=1|10PS=1|01]×√√√√√√√
PW=1PD=1PW=0PD=0[PS=1|11PD=1 + PS=1|10PD=0][PS=1|01PD=1 + PS=1|00PD=0]×

[PS=1|11PW=1 + PS=1|01PW=0][PS=1|10PW=1 + PS=1|00PW=0]


So we see that R2

WD|S=1 can be written in terms of six probabilities (PS=1|11, PS=1|00, PS=1|10,

PS=1|01, PW=1, PD=1) as shown in Equation B.3, since PW=0 = 1−PW=1 and PD=0 = 1−PD=1.

R2
W∼D|S=1 = [PS=1|11PS=1|00 − PS=1|10PS=1|01]

2×
PW=1PD=1PW=0PD=0[PS=1|11PD=1 + PS=1|10PD=0][PS=1|01PD=1 + PS=1|00PD=0]×

[PS=1|11PW=1 + PS=1|01PW=0][PS=1|10PW=1 + PS=1|00PW=0]

 (B.3)

The relationship between W and D in the selected sample (S = 1) can be expressed in

172



terms of the relationships between S and W,D, in the full population, where we also need

P (D = 1), P (W = 1). In this setting, P (S = 1) is actually not needed directly, since it

cancelled out. All of these quantities should be easy for researchers to reason about, since

they capture structural (i.e., causal) relationships between the variables.

B.3 R2
D∼W |X,S=1 for truncated multivariate normal random variables

To provide some intuition into how we might try to think about R2
D∼W |X,S=1, we consider the

simple case where W,D, S have the causal structure shown in Figure 3.2 and W,D, S0 have a

multivariate normal joint distribution and S = 1[S0 ≥ C] for some C ∈ R. Here X = {∅}. S0

is a hypothesized latent variable that captures how W and D relate to S. The bidirected edge

captures that W,D could have some relationship other than that created by conditioning on

S. Within the stratum S = 1, we have a truncated multivariate normal joint distribution.

The post-selection covariance matrix The pre-selection covariance matrix for S0, D,W

can be written as Σ =


σ2
S0

σS0D σS0W

σS0D σ2
D σWD

σS0W σWD σ2
W

 =

Σ11 Σ12

Σ21 Σ22

, where Σ11 = σ2
S0
, Σ12 = Σ⊤

21 =

[
σS0D σS0W

]
, and Σ22 =

 σ2
D σWD

σWD σ2
W

. Since we’re interested in how the relationships

between the variables change due to selection, we’re interested in the covariance matrix after

truncation, which can be written in terms of the pre-selection covariances:

Σ∗ =

 K11 K11Σ
−1
11 Σ12

Σ21Σ
−1
11 K11 Σ22 − Σ21(Σ

−1
11 − Σ−1

11 K11Σ
−1
11 )Σ12

 =

Σ∗
11 Σ∗

12

Σ∗
21 Σ∗

22

 ,

where K11 = σ2
S0

[
1 + Cϕ(C)

1−Φ(C)
−
(

ϕ(C)
1−Φ(C)

)2]
= σ2

S0
[1 + Cγ − γ2], letting γ = ϕ(C)

1−Φ(C)
, which

is the inverse Mills ratio. (Kotz et al., 2000; Manjunath and Wilhelm, 2021) S = 1[S0 ≥
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C] ⇐⇒ P (S = 1) = P (S0 ≥ C) = P (S0 ≤ −C) = Φ(−C) ⇐⇒ C = −Φ−1(P (S = 1))

(here we assume S0 ∼ N (0, 1), which can be done without loss of generality; see below). ϕ(·),

Φ(·), and Φ−1(·) are the pdf, cdf, and quantile function of the standard normal distribution.

Now, we’re interested in Σ∗
22, which contains σ∗

DW , the covariance between D and W after

truncation.

Σ∗
22 = Σ22 − Σ21(Σ

−1
11 − Σ−1

11 K11Σ
−1
11 )Σ12

= Σ22 − Σ21

(
1

σ2
S0

−
σ2
S0
[1 + Cγ − γ2]

σ4
S0

)
Σ12

= Σ22 −
δ

σ2
S0

Σ21Σ12, where δ =
[
1 + Cγ − γ2

]
=

 σ2
D σWD

σWD σ2
W

− δ

σ2
S0

σS0D

σS0W

[σS0D σS0W

]

=

 σ2
D σWD

σWD σ2
W

− δ

σ2
S0

 σ2
S0D

σS0DσS0W

σS0DσS0W σ2
S0W


=⇒ σ∗

ab = σab −
σS0aσS0b

σ2
S0

δ, ∀a, b ∈ {D,W}

=⇒ σ∗
DW = σDW −

σS0DσS0W

σ2
S0

δ

We can assume S0 ∼ N (0, 1) WOLOG Suppose that S0 = aD+ bW +US0 = X⊤ξ+US0 ,

where US0 ∼ N (µ, σ), X =
[
D W

]
, and ξ =

[
a b

]
. Since D,W,US0 are all normal

random variables, so is S0. Let S ′
0 = S0−E[S0]

SD[S0]
= a

SD[S0]
D + b

SD[S0]
W + 1

SD[S0]
US0 −

E[S0]
SD[S0]

=

X⊤ξ′ + 1
SD[S0]

US0 −
E[S0]
SD[S0]

, where ξ′ =
[

a
SD[S0]

b
SD[S0]

]
. Since we standardized S0 to get S ′

0, we

know that S ′
0 ∼ N (0, 1). We also know that S ′

0 is still a linear function of D, W , and US0 .

It’s also easy to see how this can be extended so that X and ξ include other variables and

174



path coefficients. Finally, we can see that

S = 1[S0 ≥ C] = 1

[
S0 − E[S0]

SD[S0]
≥ C− E[S0]

SD[S0]

]
= 1[S ′

0 ≥ C′]

⇐⇒ P (S = 1) = P (S ′
0 ≥ C′) = Φ(−C′) ⇐⇒ C′ = −Φ−1(P (S = 1))

So we can adjust the path coefficients we’re considering and use S ′
0 rather than S0 and just

think of S0 ∼ N (0, 1). As we saw above, we can then just consider the entire relationship

between S and other variables, rather than the relationships with S0, since we can assume

S0 ∼ N (0, 1).

Expression for R2
WD|S=1 We can derive an expression similar to the partial correlation

formula for truncated correlation and hence R2. We can see that this is almost identical to the

partial correlation formula, but for the δ’s. This clarifies the difference between conditioning

and truncation for normal random variables.

ρWD|S=1 = ρWD|S0≥C = ρ∗WD =
σ∗
WD

σ∗
Dσ

∗
W

=
σWD −

σS0D
σS0W

σ2
S0

δ√
σ2
D −

σ2
S0D

σ2
S0

δ

√
σ2
W −

σ2
S0W

σ2
S0

δ

=
ρWDσDσW −

ρS0D
σS0

σDρS0W
σS0

σW

σ2
S0

δ√
σ2
D −

(ρS0D
σS0

σD)2

σ2
S0

δ

√
σ2
W −

(ρS0W
σS0

σW )2

σ2
S0

δ

=
σDσW (ρWD − ρS0DρS0W δ)

σDσW

√
1− ρ2S0D

δ
√

1− ρ2S0W
δ

=
ρWD − ρS0DρS0W δ√
1− ρ2S0D

δ
√

1− ρ2S0W
δ

ρWD|S0 =
ρWD − ρS0DρS0W√
1− ρ2S0D

√
1− ρ2S0W

We see that the relationship between W and D in the selected (truncated) sample can be

expressed in terms of the relationships between S0,W and S0, D as well as between W and

D, in the full population. We also need P (S = 1), the probability of selection or the cut

point C, since δ = f(P (S = 1)). If ρWD = 0, then R2
W∼D|S=1 =

R2
S0∼DR2

S0∼W δ√
1−R2

S0∼Dδ
√

1−R2
S0∼W δ

.
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Expression in terms of relationships with S, not S0 We now explore how we can

express R2
WD|S=1 in terms of the relationships between S,W and S,D, rather than between

S0,W and S0, D. This is useful, since here S0 is a hypothesized latent variable, not a

substantive variable. We can express ρS0W and ρS0D in terms of ρSW and ρSD. To see

this, we borrow two results from Ding and Miratrix (2015). Assume (X1, X2) follows a

bivariate normal with mean (µ1, µ2) and variance

 σ2
1 σ12 = ρ12σ1σ2

σ12 = ρ12σ1σ2 σ2
2

. Then

for Z1 ∼ N (0, 1), Z2 ∼ N (0, 1), and independent from X1, X2 we can write

X1 = µ1 + σ1Z1 =⇒ Z1 =
X1 − µ1

σ1

X2 = µ2 + σ2

[
ρ12Z1 +

√
1− ρ212Z2

]
= µ2 + σ2ρ12Z1 + σ2

√
1− ρ212Z2

= µ2 + σ2ρ12

[
X1 − µ1

σ1

]
+ σ2

√
1− ρ212Z2

= µ2 − ρ12
σ2

σ1

µ1 + ρ12
σ2

σ1

X1 + σ2

√
1− ρ212Z2

=⇒ E[X2|X1 ≥ α] = E[µ2 − ρ12
σ2

σ1

µ1 + ρ12
σ2

σ1

X1 + σ2

√
1− ρ212Z2|X1 ≥ α]

= µ2 − ρ12
σ2

σ1

µ1 + ρ12
σ2

σ1

E[X1|X1 ≥ α]

E[X2|X1 < α] = E[µ2 − ρ12
σ2

σ1

µ1 + ρ12
σ2

σ1

X1 + σ2

√
1− ρ212Z2|X1 < α]

= µ2 − ρ12
σ2

σ1

µ1 + ρ12
σ2

σ1

E[X1|X1 < α]

=⇒ E[X2|X1 ≥ α]− E[X2|X1 < α]

= ρ12
σ2

σ1

(E[X1|X1 ≥ α]− E[X1|X1 < α]) = ρ12
σ2

σ1

(
f1(α)

F1(−α)
− −f1(α)

F1(α)

)
= ρ12

σ2

σ1

f1(α)

(
1

F1(−α)
+

1

F1(α)

)
= ρ12

σ2

σ1

f1(α)

(
F1(α) + F1(−α)
F1(α)F1(−α)

)
= ρ12

σ2

σ1

f1(α)

F1(α)F1(−α)
=

σ12

σ2
1

f1(α)

F1(α)F1(−α)
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If the marginal distribution of X1 is N (0, 1) then this becomes E[X2|X1 ≥ α]− E[X2|X1 <

α] = σ12
ϕ(α)

Φ(α)Φ(−α)
. (Ding and Miratrix, 2015) Therefore, we have

E[W |S = 1]− E[W |S = 0] = E[W |S0 ≥ C]− E[W |S0 < C] = σS0W
ϕ(C)

Φ(C)Φ(−C)

E[D|S = 1]− E[D|S = 0] = E[D|S0 ≥ C]− E[D|S0 < C] = σS0D
ϕ(C)

Φ(C)Φ(−C)

For random variables X,B where B ∼ Bernoulli(p), Cov(X,B) = σxb can be written as

p(1− p) [E(X|B = 1)− E(X|B = 0)]. (Ding and Miratrix, 2015) So we see that

σSD = P (S = 1)(1− P (S = 1)) [E(D|S = 1)− E(D|S = 0)]

= Φ(C)Φ(−C) [E(D|S = 1)− E(D|S = 0)]

= Φ(C)Φ(−C)σDL
ϕ(C)

Φ(C)Φ(−C)
= σS0Dϕ(C)

⇐⇒ σS0D =
σSD

ϕ(C)

⇐⇒ ρS0D =
σSD

σDσS0ϕ(C)

σS

σS

= ρDS
σS

σS0ϕ(C)

= ρDS

√
P (S = 1)(1− P (S = 1))

σS0ϕ(C)
= ρDS

√
Φ(C)Φ(−C)
σS0ϕ(C)

= ρDS

√
Φ(C)Φ(−C)

ϕ(C)
.

The last equality uses S0 ∼ N (0, 1) We can do the same thing for ρWL. So we have that

ρS0D = ρSDξ and ρS0W = ρSW ξ, where ξ =

√
Φ(C)Φ(−C)

ϕ(C)
can be written as a function of

P (S = 1). We can then write

ρWD|S=1 =
ρWD − ρSDρSW θ√
1− ρ2SDθ

√
1− ρ2SW θ

,

where θ = ξ2δ can be written as functions of P (S = 1) or C. First, recall that ξ =√
Φ(C)Φ(−C)

ϕ(C)
, δ = [1 + Cγ − γ2], and γ = ϕ(C)

1−Φ(C)
. So we can write θ in terms of C as follows or

in terms of P (S = 1) by plugging in C = −Φ−1(P (S = 1)).
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θ = ξ2δ =

(√
Φ(C)Φ(−C)

ϕ(C)

)2 [
1 + C

ϕ(C)

1− Φ(C)
−
(

ϕ(C)

1− Φ(C)

)2
]

=
Φ(C)(1− Φ(C))

ϕ(C)2
+

CΦ(C)

ϕ(C)
− Φ(C)

1− Φ(C)

If ρWD = 0, then R2
W∼D|S=1 =

R2
S∼DR2

S∼W ξ2δ√
1−R2

S∼Dξ2δ
√

1−R2
S∼W ξ2δ

. We now see that the relationship

between W and D in the selected (truncated) sample can be expressed in terms of the

relationships between S,W and S,D as well as between W and D, in the full population,

where we also need P (S = 1), the probability of selection. All of these quantities should

be easy for researchers to have knowledge about and to reason about, since they capture

structural (i.e., causal) relationships between the variables.

B.4 “Constant selection effects”

Suppose we would like to assume something like constant treatment effects but for R2

between D and W after sample selection (e.g., something like R2
W∼D|S=1 equals R2

W∼D|S=0)

as a way of simplifying our analysis of R2
W∼D|S=1. What assumptions might make sense?

What expression would this provide for R2
W∼D|S=1? First, we expand Cor(W,D|S) into

an expression of Cor(W,D|S = 1) and Cor(W,D|S = 0). Note that this is not a convex

combination. That is the coefficients on Cor(W,D|S = 1) and Cor(W,D|S = 0) do not sum

to 1.
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Cor(W,D|S)

=
Cov(W,D|S)

SD(W |S)SD(D|S)

=
p(S = 1)Cov(W,D|S = 1) + p(S = 0)Cov(W,D|S = 0)

SD(W |S)SD(D|S)

=
p(S = 1)Cov(W,D|S = 1)

SD(W |S)SD(D|S)
+

p(S = 0)Cov(W,D|S = 0)

SD(W |S)SD(D|S)

=
p(S = 1)SD(W |S = 1)SD(D|S = 1)

SD(W |S)SD(D|S)
Cor(W,D|S = 1)+

p(S = 0)SD(W |S = 0)SD(D|S = 0)

SD(W |S)SD(D|S)
Cor(W,D|S = 0)

=
√
(A)(B)Cor(W,D|S = 1) +

√
(1− A)(1−B)Cor(W,D|S = 0)

where

A =
p(S = 1)Var(W |S = 1)

Var(W |S)
=

p(S = 1)Var(W |S = 1)

p(S = 1)Var(W |S = 1) + p(S = 0)Var(W |S = 0)
∈ [0, 1]

B =
p(S = 1)Var(D|S = 1)

Var(D|S)
=

p(S = 1)Var(D|S = 1)

p(S = 1)Var(D|S = 1) + p(S = 0)Var(D|S = 0)
∈ [0, 1]

If we assume that

• Cor(W,D|S = 1) = Cor(W,D|S = 0); this makes

Cor(W,D|S) =
[√

(A)(B) +
√

(1− A)(1−B)
]
Cor(W,D|S = 1)

• Var(W |S = 1) = Var(W |S = 0); this makes A = p(S = 1)

• Var(D|S = 1) = Var(D|S = 0); this makes B = p(S = 1)

These three together make Cor(W,D|S) = [p(S = 1) + (1− p(S = 1))] Cor(W,D|S = 1) =

Cor(W,D|S = 1) =⇒ R2
W∼D|S=1 = R2

W∼D|S. We can then leverage the partial correlation

formula to arrive at

R2
W∼D|S=1 = R2

W∼D|S =

(
RW∼D −RS∼WRS∼D√
1−R2

S∼W

√
1−R2

S∼D

)2

179



B.5 An often uninformative bound

In this section, we consider an bound on R2
WD|S=1 that follows an approach similar to the

last section but where we do not make the assumptions from that section. From above, we

have that

Cor(W,D|S) =
√
(A)(B)Cor(W,D|S = 1) +

√
(1− A)(1−B)Cor(W,D|S = 0)

So we see that

R2
W∼D|S = Cor2(W,D|S)

=
[√

(A)(B)Cor(W,D|S = 1) +
√
(1− A)(1−B)Cor(W,D|S = 0)

]2
= (A)(B)R2

W∼D|S=1︸ ︷︷ ︸
≥0

+

(1− A)(1−B)R2
W∼D|S=0︸ ︷︷ ︸

≥0

+

2
√

A(1− A)B(1−B)RW∼D|S=1RW∼D|S=0

180



=⇒ R2
W∼D|S=1

≤ min

(
1

AB

[
R2

W∼D|S − 2
√

A(1− A)B(1−B)RW∼D|S=1RW∼D|S=0

]
, 1

)
We see that RW∼D|S=1RW∼D|S=0 is minimized when RW∼D|S=1RW∼D|S=0 = −1.

≤ min

(
1

AB

[
R2

W∼D|S + 2
√

A(1− A)B(1−B)
]
, 1

)
Note that 2

√
A(1− A)B(1−B) is maximized at

1

2
when A = B =

1

2
.

= min

 1

AB

( R∼WD −RS∼WRS∼D√
1−R2

S∼W

√
1−R2

S∼D

)2

+ 2
√

A(1− A)B(1−B)

 , 1


We can show that

Var(W |S) = Var(W )− Cov2(W,S)

Var(S)
= Var(W )

(
1− Cov2(W,S)

Var(W )Var(S)

)
= Var(W )

(
1− Cor2(W,S)

)
= Var(W )

(
1−R2

SW

)
Var(D|S) = Var(D)− Cov2(D,S)

Var(S)
= Var(D)

(
1− Cov2(D,S)

Var(D)Var(S)

)
= Var(D)

(
1− Cor2(D,S)

)
= Var(D)

(
1−R2

SD

)
This means that

A =
p(S = 1)Var(W |S = 1)

Var(W |S)
=

p(S = 1)

1−R2
SW

Var(W |S = 1)

Var(W )
=

p(S = 1)

1−R2
SW

ΘW

B =
p(S = 1)Var(D|S = 1)

Var(D|S)
=

p(S = 1)

1−R2
SD

Var(D|S = 1)

Var(D)
=

p(S = 1)

1−R2
SD

ΘD

So we get a bound on R2
W∼D|S=1:

R2
W∼D|S=1 ≤ min

(
1

AB

[
(RW∼D −RS∼WRS∼D)

2

(1−R2
S∼W )(1−R2

S∼D)
+ 2
√

A(1− A)B(1−B)

]
, 1

)
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where A = p(S=1)

1−R2
S∼W

ΘW , B = p(S=1)

1−R2
S∼D

ΘD, ΘW = Var(W |S=1)
Var(W )

, and ΘD = Var(D|S=1)
Var(D)

.

The relationship between W and D in the selected sample can be expressed in terms of

the relationships between S,W and S,D as well as between W and D, in the full population,

where we also need P (S = 1), ΘW , and ΘD. There are at least two problems with this

bound. First, ΘW and ΘD may not be easy to reason about or to have prior knowledge about.

Second, the bound is very often equal to 1. In fact, the bound very often equals 1 when

P (S = 1) is at all far from 1. So this is not a very useful bound.

B.6 Normalized Scaled Mutual Information Bound

Connecting R2
D∼W |S=1 and η2D∼W |S=1 We start by noting that R2

D∼W |S=1 ≤ η2D∼W |S=1.

This is easy to see since η2D∼W |S=1 = R2
D∼E[D|W,S=1]|S=1 = sup

f

[
Cor2(D, f(W )|S = 1)

]
. (Dok-

sum and Samarov, 1995; Chernozhukov et al., 2022) η2D∼W |S=1 measures portion of the

variation in D that can be explained by E[D|W,S = 1], the conditional expectation function

(CEF).1

Correlation and mutual information for Gaussians In order to connect R2
D∼W |X,S=1

and η2D∼W |X,S=1 with mutual information, we draw inspiration from the relationship between

R2 and mutual information for random variables with Gaussian distributions. For random

variables, W and D, with a bivariate Gaussian joint distribution, there is an exact relationship

between R2 (i.e., squared correlation coefficient) and mutual information (MI); see Equation

B.4. (Ihara, 1993; Cover and Thomas, 2006) Can we use something like this transformation to

create a useful normalized version of mutual information for non-Gaussian random variables?

1The law of total variance tells us that Var(D|S = 1) = Var(E[D|W,S = 1]|S = 1) + E[Var(D|W,S =
1)|S = 1]. (Aronow and Miller, 2019)
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MI(W ;D) = −1

2
log(1−R2

W∼D) ⇐⇒ R2
W∼D = 1− exp(−2×MI(W ;D)) (B.4)

A variation on the L-measure We follow the approach to normalizing mutual information

laid out in Lu (2011) in transforming mutual information onto the range [0,1]. This is a varia-

tion on the transformation that holds for random variables with Gaussian joint distributions

we saw in Equation B.4. Many authors have considered this type of transformation of mutual

information as a way to obtain something like a non-parametric correlation based on mutual

information. See Linfoot (1957); Kent (1983); Joe (1989); Kojadinovic (2005); Speed (2011);

Kinney and Atwal (2014); Asoodeh et al. (2015); Smith (2015); Shevlyakov and Vasilevskiy

(2017); Laarne et al. (2021). Lu (2011) introduces the L-measure. We define the squared

L-measure in Equation B.5.

L2(X, Y )
∆
= 1− exp (−2× IF×MI(X;Y )) , (B.5)

where IF =
(

1
1−(MI(X;Y )/A)

)
and A = supU,V ∈AX,Y

MI(U ;V ).2

IF is a mutual information “inflation factor.” We need to increase mutual information so

that it goes to infinity when X, Y have a strict dependence for all types of variables, not just

continuous variables. (Lu, 2011) shows that

• A = min[H(X), H(Y )], when X, Y are both discrete. This implies that

IF =
(

1
1−(MI(X;Y )/min[H(X),H(Y )])

)
≥ 1

since MI(X;Y )
min[H(X),H(Y )]

∈ [0, 1]. MI(X;Y ) ≤ min[H(X), H(Y )] since H(X), H(Y ) are

the information content of X, Y . The idea is to inflate mutual information so that

2Lu (2011) defines AX,Y , U , and V in the following way: For two arbitrary random variables X and Y ,
with alphabet X and Y, respectively, let AX,Y be the set of all bivariate random vectors (U, V ) on X × Y
with the same marginal distributions as X and Y . Let MI(U ;V ) represent the mutual information between
the random variables U and V .
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IF×MI(X;Y ) → +∞ as X, Y become more dependent. The relationship is a strict

dependence when MI(X;Y ) = min[H(X), H(Y )]. So A gives us the right level of

inflation.

• A = H(Y ), when Y is discrete and X is continuous. This implies that IF =(
1

1−(MI(X;Y )/H(Y ))

)
≥ 1. Similar ideas apply here as in the last bullet.

• A = 1, whenX, Y are both continuous which implies that IF = 1, since MI(X;Y ) = +∞

for continuous variables with a strict dependence. Here no inflation is necessary.

This makes the squared L-measure is a good normalization of mutual information in that it

ensures that “it is defined for any pair of random variables, it is symmetric, its value lies

between 0 and 1, it equals 0 if and only if the random variables are independent, it equals 1

if there is a strict dependence between the random variables, it is invariant under marginal

one-to-one transformations of the random variables, and if the random variables are Gaussian

distributed, it equals” their R2. (Lu, 2011)

For our purposes, a first question is: “does something like Equation B.6 hold?” That

is, when does R2
D∼E[D|W,S=1]|S=1 equal 1− exp (−2× IF×MI(D;E[D|W,S = 1]|S = 1))? We

know that this would hold when D and E[D|W,S = 1] have a Gaussian joint distribu-

tion within S = 1. For arbitrarily distributed variables, the relationship between D and

E[D|W,S = 1] is linear. So we would expect R2
D∼E[D|W,S=1]|S=1 and

1− exp (−2× IF×MI(D;E[D|W,S = 1]|S = 1))

to provide similar portraits of the dependency between D and E[D|W,S = 1].

η2D∼W |S=1 = R2
D∼E[D|W,S=1]|S=1

?
≈ 1− exp (−2× IF×MI(D;E[D|W,S = 1]|S = 1)) (B.6)
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η2D∼W |S=1 = R2
D∼E[D|W,S=1]|S=1 = 1− exp (−2×Ω× IF×MI(D;E[D|W,S = 1]|S = 1))

(B.7)

The question becomes whether we can alter the squared L-measure for MI(D;E[D|W,S =

1]|S = 1) to exactly recover η2D∼W |S=1. We do this by introducing an additional mutual

information scaling factor Ω
∆
=

− 1
2
log(1−R2

D∼E[D|W,S=1]|S=1
)

IF×MI(D;E[D|W,S=1]|S=1)
≥ 0. See Equation B.7. This

additional scaling factor, Ω, removes any discrepancy between the way that R2
D∼E[D|W,S=1]|S=1

and the squared L-measure measure dependence between D,E[D|W,S = 1] on the scale

[0,1]. Next, the data processing inequality tells us that MI(D;E[D|W,S = 1]|S = 1) ≤

MI(W ;D|S = 1), since E[D|W,S = 1] is a function ofW .3 (Cover and Thomas, 2006) It is also

easy to see that L2
Ω(a)

∆
= 1−exp (−2×Ω× IF× a) ∈ [0, 1] is a monotonic increasing function

of a ∈ [0,+∞),4 which means that L2
Ω(MI(D;E[D|W,S = 1]|S = 1)) ≤ L2

Ω(MI(W ;D|S = 1)).

Thus, we have the relationship in Equation B.8.

R2
D∼W |S=1 ≤ η2D∼W |S=1 = R2

D∼E[D|W,S=1]|S=1

= L2
Ω(MI(D;E[D|W,S = 1]|S = 1)) ≤ L2

Ω(MI(W ;D|S = 1))
(B.8)

What can we say about Ω? Including Ω in L2
Ω(MI(D;E[D|W,S = 1]|S = 1)) essentially

cancels out IF ×MI(D;E[D|W,S = 1]|S = 1) and undoes the L-measure transformation

to simply return R2
D∼E[D|W,S=1]|S=1. This is not a problem, since our goal is simply to

find a normalization of mutual information quantities that allows us to write the bound

η2D∼W |S=1 = R2
D∼E[D|W,S=1]|S=1 ≤ L2

Ω(MI(W ;D|S = 1)). As we discuss in the next paragraph,

we will reason about quantities like L2
Ω(MI) directly. We do not need to directly reason about

or interpret either the raw mutual information quantities, IF, or Ω. Moreover, due to the

3When the relationship between W and D is highly non-linear, MI(W ;D|S = 1) may be much larger than
MI(D;E[D|W,S = 1]|S = 1).

4IF in L2
Ω(a) is based on MI(D;E[D|W,S = 1]|S = 1).
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construction of Ω, it should take values less than or equal to 1; meaning we could instead use

the L-measure as a bound. This is because the transformation of R2
D∼E[D|W,S=1]|S=1 in the

numerator ofΩ is the transform that turns R2’s into mutual information for Gaussian variables.

So it is an approximation to the mutual information betweenD and E[D|W,S = 1], but limited

to their linear relationship. If the relationship between D and E[D|W,S = 1] is fully captured

by R2
D∼E[D|W,S=1]|S=1, then Ω should be very close to 1. If there is some other way that D

and E[D|W,S = 1] relate, then Ω will be less than 1, since MI(D;E[D|W,S = 1]|S = 1)

captures the full relationship and IF appropriately scales mutual information for arbitrary

random variables. Therefore, we might choose to consider the L-measure without scaling by

Ω either as an approximation or as a bound. Simulated examples support this discussion.

See Figures 3.3 and 3.4.

Normalized scaled mutual information Our approach is to scale and normalize the

mutual information using L2
Ω(·). Scaling mutual information plays an important role in

relating η2D∼W |S=1 and MI(D;W |S = 1). We will refer to any mutual information quantity

scaled by Ω × IF as scaled mutual information (SMI). Any mutual information quantity

that is both scaled and then normalized using L2
Ω(·) will be referred to as normalized scaled

mutual information (NSMI). NSMI values are much easier to interpret than raw mutual

information values. NSMI is a useful measure of dependence between random variables in

that it satisfies the properties discussed in Rényi (1959), Smith (2015), Lu (2011), and others

as the properties possessed by “an appropriate measure of dependence.”56

5Mutual information satisfies properties 1, 2, 4, and 6. Squared Pearson correlation (i.e., R2) satisfies
properties 1, 2, 3, 5, and 7.

6The transformation ℓ2(MI(X;Y )) = 1− exp (−2×MI(X;Y )) ensures that properties 2, 3, 6, and 7 are
satisfied; it is the transformation that turns mutual information into an R2 for Gaussian distributed variables.
The transformation L2(MI(X;Y )) = 1− exp (−2× IF×MI(X;Y )) is the square of Lu (2011)’s L-measure,
where IF is chosen to ensure that properties 1 and 5 are satisfied, while also maintaining properties 2, 3,

6, and 7. The transformation NSMI(X;Y )
∆
= L2

Ω(MI(X;Y )) = 1 − exp (−2×Ω× IF×MI(X;Y )) is our
normalized and scaled measure of mutual information, where Ω ≥ 0 is also chosen to ensure that property 8
is satisfied, while also maintaining properties 1 through 7. Lu (2011) demonstrates that properties 1 through
7 hold for the L-measure. Given this, it is trivial to see that they also hold for NSMI.
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1. NSMI is defined for arbitrary pairs of random variables.

2. NSMI is symmetric.

3. NSMI takes values between 0 and 1.

4. NSMI equals 0 if and only if the variables are independent.

5. NSMI equals 1 if and only if the variables a strict dependence (functional relationship).

6. NSMI is invariant to marginal, one-to-one transformations of the variables.

7. If the variables are Gaussian distributed, then NSMI equals their R2.7

8. NSMI(D;E[D|W,S = 1]|S = 1) = R2
D∼E[D|W,S=1]|S=1 = η2D∼W |S=1.

All but the last of these are discussed in Rényi (1959), Smith (2015), and Lu (2011). The

last property results from how we’ve defined NSMI. “Furthermore, MI is invariant under

monotonic transformations of variables. This means that the MI correlation coefficient of a

non-linear model (X, Y ) matches the Pearson correlation of the linearized model (f(X), g(Y )).

General conditions for f and g are described in” Ihara (1993). (Laarne et al., 2021) This

statement focuses on continuous variables and the setting where the linearized model is

created using monotonic transformations. Ω will equal 1 for a linearized model. So NSMI can

be interpreted as the squared Pearson correlation (i.e., R2) of the linearized model. Figure

B.2 shows the normalization curve; the normalization of SMI is precisely the normalization

that turns mutual information into R2 for Gaussian variables. Using this terminology, we see

that Equation B.8 implies Equation B.9.

R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ NSMI(W ;D|S = 1) (B.9)

7It is worth noting that, although we might be more comfortable thinking about correlations and R2’s,
they are not necessarily capturing what we expect. “Mutual Information is a nonlinear function of ρ which
in fact makes it additive. Intuitively, in the Gaussian case, ρ should never be interpreted linearly: a ρ of
1
2 carries ≈ 4.5 times the information of a ρ = 1

4 , and a ρ of 3
4 12.8 times!” (Taleb, 2019) “One needs to

translate ρ into information. See how ρ = 0.5 is much closer to [ρ =]0 than to a ρ = 1. There are considerable
differences between .9 and .99.” (Taleb, 2019) See Figure B.1 for a series of plots that illustrate how changes
in correlation and R2 compare to changes in mutual information for standard Gaussian random variables.
See Figure B.2 for a plot of the relationship between mutual information and R2 for Gaussian variables, this
is also the normalization curve we use.
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Figure B.1: Correlation is non-linear. Scatter plots of standard Gaussian random variables
with different correlations. Correlation of 0.5 is much more similar to correlation of 0 than to
correlation of 1.

Interpreting NSMI For discrete random variables, X and Y , entropy and conditional

entropy, H(X) and H(X|Y ), are both positive. Recall that entropy can be thought of

as a measure of the uncertainty or surprise in a random variable’s outcomes. Further,

MI(X;Y ) = H(X)−H(X|Y ). It is easy to see that Equation B.10 holds.
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Figure B.2: Normalization of Scaled Mutual Information

NSMI(X;Y ) = 1− exp (−2×Ω× IF×MI(X;Y ))

= 1− exp (−2×Ω× IF× [H(X)−H(X|Y )])

= 1− exp ([−2×Ω× IF×H(X)]− [−2×Ω× IF×H(X|Y )])

= 1− exp (−2×Ω× IF×H(X))

exp (−2×Ω× IF×H(X|Y ))

= 1− 1− [1− exp (−2×Ω× IF×H(X))]

1− [1− exp (−2×Ω× IF×H(X|Y ))]

= 1− 1− NSH(X)

1− NSH(X|Y )
= 1− C(X)

C(X|Y )
=

C(X|Y )− C(X)

C(X|Y )

where NSH(X)
∆
= 1− exp (−2×Ω× IF×H(X))

and C(X)
∆
= 1− NSH(X) = exp (−2×Ω× IF×H(X))

(B.10)

NSH(X) is a normalized and scaled version of entropy that uses the same normalization

189



and scaling as NSMI. This means that NSH(X) takes values between zero and one and is a

measure of the uncertainty in the outcomes of X, since it is a monotonic transformation of

entropy. How might we think about the 1− NSH(X) and 1− NSH(X|Y ) terms that appear

in the expression for NSMI(X;Y ) in Equation B.10? 1− NSH(X) close to zero means that

there is a large amount of uncertainty in the outcomes of X. 1−NSH(X) close to one means

that there is very little uncertainty in the outcomes of X. As expected, 1−NSH(X) captures

something very similar to NSH(X), but with the meaning of large and small values reversed.

We might, therefore, call C(X)
∆
= 1− NSH(X) a measure of lack of surprise or certainty.

Thus, NSMI(X;Y ) = C(X|Y )−C(X)
C(X|Y )

, can be thought of as a measure of the proportion of

the certainty in the outcomes of X, after we learn the value of Y , that is gained as a result

of learning the value of Y . (As opposed to the proportion of the certainty in the outcomes of

X, after we learn the value of Y , that existed before we learned the value of Y , which equals

C(X)
C(X|Y )

. Note that NSMI(X;Y ) + C(X)
C(X|Y )

= 1.)

Note that NSMI(X;Y ) is not a measure of the proportion of the uncertainty in X that

is reduced by learning Y , which would be captured by NSH(X)−NSH(X|Y )
NSH(X)

. But these two are

closely related. Indeed, we can write NSMI(X;Y ) = C(X|Y )−C(X)
C(X|Y )

= NSH(X)−NSH(X|Y )
1−NSH(X|Y )

. We see

that the two share a numerator. It is only the denominator that differs. Both measure the

change in information we have about X but take this as a proportion of different quantities.

Note that this intuition applies to both NSMI and the L-measure.

Mutual information bounds Equation B.9 seems nice. But have we solved our original

problem of finding a bound on R2
D∼W |S=1 and η2D∼W |S=1 in terms of structural descriptions of

the relationships between the variables in the population? No we haven’t. MI(W ;D|S = 1)

and NSMI(W ;D|S = 1) both contain the spurious association between W and D created by

sample selection. We now aim to find structural descriptions of the relationships between the

variables in the population that can bound MI(W ;D|S = 1). These can then be normalized

to provide bounds on R2
D∼W |S=1 and η2D∼W |S=1. We start by considering MI(D;W |S). Using
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properties of mutual information (Cover and Thomas, 2006), we can show Equation B.11.

MI(D;W |S) = MI(D;W ) + MI(S;D|W )−MI(S;D)

= MI(D;W ) + [MI(S; [D,W ])−MI(S;W )]−MI(S;D)

= MI(D;W ) + MI(S; [D,W ])−MI(S;D)−MI(S;W )

(B.11)

MI(S; [D,W ]) = MI(S;W ) + MI(S;D|W ) is the mutual information between S and

[D,W ] jointly. We now consider bounds on MI(D;W |S = 1). When S is binary, two positive

terms (one for S = 1 and one for S = 0) are being summed to create MI(D;W |S). See

Equation B.12.

MI(D;W |S) =
∫
S
DKL

(
P(D,W )|S∥PD|S ⊗ PW |S

)
dPS

=
∑

s∈{0,1}

p(S = s)
∑
d

∫
w

p(d, w|S = s) log

[
p(d, w|S = s)

p(d|S = s)p(w|S = s)

]
dd dw

=
∑

s∈{0,1}

p(S = s)DKL

(
P(D,W )|S=s∥PD|S=s ⊗ PW |S=s

)
= p(S = 1)×DKL

(
P(D,W )|S=1∥PD|S=1 ⊗ PW |S=1

)
+ p(S = 0)×DKL

(
P(D,W )|S=0∥PD|S=0 ⊗ PW |S=0

)
= p(S = 1)MI(D;W |S = 1) + p(S = 0)MI(D;W |S = 0)

(B.12)

From Equations B.11 and B.12, we have that
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MI(D;W |S = 1) ≤ MI(D;W |S)
p(S = 1)

=
MI(D;W ) + MI(S; [D,W ])−MI(D;S)−MI(W ;S)

p(S = 1)

=
MI(D;W ) + MI(S;D|W )−MI(D;S)

p(S = 1)

≤ MI(D;W ) + MI(S; [D,W ])

p(S = 1)

(B.13)

This gives us the simple results in Theorem 1.

Theorem 1. For random variables D,W, S, conditioning on S alters the relationship be-

tween D and W according to the expression MI(D;W |S) = MI(D;W ) + MI(S; [D,W ]) −

MI(S;D) − MI(S;W ). Therefore, the change in dependence due to conditioning on S

can be characterized using mutual information according to MI(D;W |S) − MI(D;W ) =

MI(S; [D,W ])−MI(S;D)−MI(S;W ). The dependence is not changed when MI(S; [D,W ]) =

MI(S;D) +MI(S;W ). When S is binary, it is also possible to write MI(D;W |S) = p(S =

1)MI(D;W |S = 1)+p(S = 0)MI(D;W |S = 0), meaning that MI(D;W |S = 1) ≤ MI(D;W |S)
p(S=1)

=

MI(D;W )+MI(S;[D,W ])−MI(D;S)−MI(W ;S)
p(S=1)

.

So we see that we have a bound on MI(D;W |S = 1). Every component of these bounds

is something that we might have external knowledge or intuition on. From Theorem 1, we

have a few relationships we can consider as bounds on MI(D;W |S = 1). Others are also

likely possible.

1. MI(D;W |S = 1) ≤ MI(D;W )+MI(S;[D;W ])−MI(D;S)−MI(W ;S)
p(S=1)

2. MI(D;W |S = 1) ≤ MI(D;W )+MI(D;S|W )−MI(D;S)
p(S=1)

3. MI(D;W |S = 1) ≤ MI(D;W )+MI(W ;S|D)−MI(W ;S)
p(S=1)

4. MI(D;W |S = 1) ≤ MI(D;W )+MI(D;S|W )
p(S=1)

5. MI(D;W |S = 1) ≤ MI(D;W )+MI(W ;S|D)
p(S=1)
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6. MI(D;W |S = 1) ≤ MI(D;W )+MI(S;[D;W ])
p(S=1)

It is important to note that these vary in the tightness of the bound. The first three

bounds are all equivalent. But the last three are not as tight, since these involve the exclusion

of at least one term that is subtracted from the numerator of the first three bounds. If W

and D are marginally independent, then the term MI(D;W ) will be zero in all the bounds.

Interpretable bounds on R2
D∼W |S=1 and η2D∼W |S=1 We now combine Equation B.9

with Equation B.13 to get interpretable bounds on R2
D∼W |S=1 and η2D∼W |S=1. We start by

considering only one such bound. But others are possible.

R2
D∼W |S=1

≤ η2D∼W |S=1 = R2
D∼E[D|W,S=1]|S=1

= 1− exp (−2×Ω× IF×MI(D;E[D|W,S = 1]|S = 1))

since Ω =
−1

2
log(1−R2

D∼E[D|W,S=1]|S=1)

IF×MI(D;E[D|W,S = 1]|S = 1)

≤ 1− exp (−2×Ω× IF×MI(W ;D|S = 1)) = NSMI(W ;D|S = 1)

by the data processing inequality

≤ 1− exp

(
−2×Ω× IF× MI(D;W ) + MI(S; [D,W ])

p(S = 1)

)
by Eqn. B.13

= 1− exp (−2×Ω× IF×MI(D;W )− 2×Ω× IF×MI(S; [D,W ]))
1

p(S=1)

= 1− (exp(−2×Ω× IF×MI(D;W )) exp(−2×Ω× IF×MI(S; [D,W ])))
1

p(S=1)

= 1− ([1− 1 + exp(−2×Ω× IF×MI(D;W ))]×

[1− 1 + exp(−2×Ω× IF×MI(S;D,W ]))])
1

p(S=1)

= 1− ([1− (1− exp(−2×Ω× IF×MI(D;W )))]×

[1− (1− exp(−2×Ω× IF×MI(S; [D,W ])))])
1

p(S=1)

= 1− ( [1− NSMI(D;W )][1− NSMI(S; [D,W ])] )
1

p(S=1)

(B.14)
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Therefore, our first interpretable bound is captured by Equation B.15.

R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ( [1− NSMI(D;W )][1− NSMI(S; [D,W ])] )

1
p(S=1) (B.15)

This bound is an expression of normalized scaled mutual information for the marginal

mutual information between D and W , for the mutual information between S and [D,W ]

together, and the probability of selection, P (S = 1). As we saw in the case of binary

random variables and truncated normal random variables, we have an expression in terms of

structural (i.e., causal) relationships between the variables in the full population. In Figure

B.3, we show how the bound in Equation B.15 changes for different values of NSMI(S; [D,W ])

and p(S = 1). For this, we assume that that W,D are marginally independent and so

NSMI(D;W ) = 0 and the bound becomes B
∆
= 1− (1− NSMI(S; [D,W ]))

1
p(S=1) . As p(S =

1)→ 1, B → NSMI(S; [D,W ]). As p(S = 1)→ 0, B → 1. As NSMI(S; [D,W ])→ 1, B → 1.

As NSMI(S; [D,W ])→ 0, B → 0. These dynamics are easy to see in the expression for the

bound itself. They reflect the bounds on MI(W ;D|S = 1) that we then scale and normalize.

It is worth noting that this bound is not always informative (i.e., smaller than 1); small

probabilities of selection can lead to high bounds, regardless of the value for NSMI(S; [D,W ]).

This reflects that, when the selection probability is small, NSMI(S; [D,W ]) carries much less

information about the stratum S = 1 than it does the stratum S = 0.

Following a similar approach as we did in obtaining the bound in Equation B.15, we

arrive at Theorem 2.

Theorem 2. For random variables D,W , and S, where S is binary, the R2
D∼W |S=1 and

η2D∼W |S=1 resulting after stratification to S = 1 can be bounded in the following ways:

1. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(S;[D,W ])]

[1−NSMI(S;D)][1−NSMI(S;W )]

) 1
p(S=1)

2. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(D;S|W )]

[1−NSMI(S;D)]

) 1
p(S=1)
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Figure B.3: Bounds (from Equation B.15) on R2
D∼W |S=1 and η2D∼W |S=1 given values for

NSMI(S; [D,W ]) and p(S = 1) and assuming NSMI(D;W ) = 0

3. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(W ;S|D)]

[1−NSMI(S;W )]

) 1
p(S=1)

4. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1− NSMI(D;W )][1− NSMI(D;S|W )])

1
p(S=1)

5. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1− NSMI(D;W )][1− NSMI(W ;S|D)])

1
p(S=1)

6. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1− NSMI(D;W )][1− NSMI(S; [D,W ])])

1
p(S=1)

Bounds 1 through 3 in Theorem 2 are tighter than bounds 4 through 6, but require

additional sensitivity parameters as well as some knowledge about how mutual information

works. That is, since some of the NSMI quantities are related in the bounds in Theorem

2, users need to take care to reason about coherent combinations of the NSMI quantities.

In particular, the bounds all take the form 1 − (τ)
1

p(S=1) but with different τ ; τ must take

a value between 0 and 1. This reflects the fact that 1 − (1 − NSMI(W ;D|S))
1

p(S=1) equals

bounds 1 through 3 and NSMI(W ;D|S) takes values between 0 and 1. This, in turn, reflects

that MI(D;W |S) = MI(D;W )+MI(S; [D,W ])−MI(S;D)−MI(S;W ) ≥ 0. For this reason,
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we encourage users unfamiliar with mutual information to use bounds 4 through 6, where the

condition that τ ∈ [0, 1] will always be satisfied given NSMI values between 0 and 1. If W

and D are assumed to be marginally independent, then NSMI(D;W ) = 0 and this term can

be removed from the bounds. Which bound is most useful depends on the relationships that

practitioners feel comfortable reasoning about in terms of NSMI’s.

Incorporating Covariates It is also fairly straightforward to incorporate covariates, X.

We now turn to bounding R2
D∼W |X,S=1 and η2D∼W |X,S=1. The approach is very similar to the

above. Equation B.16 follows from the usual expressions of R2
D∼W |X,S=1 and η2D∼W |X,S=1 and

the fact that R2
D∼W,X|S=1 ≤ η2D∼W,X|S=1.

8

R2
D∼W |X,S=1 =

R2
D∼W,X|S=1 −R2

D∼X|S=1

1−R2
D∼X|S=1

≤
η2D∼W,X|S=1 −R2

D∼X|S=1

1−R2
D∼X|S=1

η2D∼W |X,S=1 =
η2D∼W,X|S=1 − η2D∼X|S=1

1− η2D∼X|S=1

(B.16)

We can estimate R2
D∼X|S=1 and η2D∼X|S=1 in Equation B.16 from the selected sample, since

neither involves W . Since both portions of Equation B.16 are expressions of things we can

estimate from the data and η2D∼W,X|S=1, we now turn to bounding η2D∼W,X|S=1 in Equation

B.17. Note that, as in the above discussion, Ω should take values less than or equal to 1. So

we could chose to omit it and simply reason about the L-measure as a bound. See the above

discussion.

η2D∼W,X|S=1 = 1− exp(−2×Ω× IF×MI(D; [W,X]|S = 1))

where Ω =
−1

2
log(1− η2D∼W,X|S=1)

IF×MI(D; [W,X]|S = 1)

(B.17)

8We are not able to directly link R2
D∼W |X,S=1 and η2D∼W |X,S=1 as we did the versions that did not include

X. If X has a very non-linear relationship with D and/or W , then it is not clear how R2
D∼W |X,S=1 and

η2D∼W |X,S=1 relate. In this discussion, we simply bound them separately.
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From Equation B.17, we have two options for how to proceed. First, we could use Theorem

1 with W replaced with [W,X] to arrive at Equation B.18.

MI(D; [W,X]|S = 1) ≤ MI(D; [W,X]|S)
p(S = 1)

=
MI(D; [W,X]) + MI(S; [D,W,X])−MI(D;S)−MI([W,X];S)

p(S = 1)
(B.18)

Using Equations B.17 and B.18 we arrive at Equation B.19.

η2D∼W,X|S=1

= 1− exp(−2×Ω× IF×MI(D; [W,X]|S = 1))

≤ 1− exp

(
−2×Ω× IF×

[
MI(D; [W,X]) + MI(S; [D,W,X])−MI(D;S)−MI([W,X];S)

p(S = 1)

])
= 1− exp (−2×Ω× IF× [MI(D; [W,X]) + MI(S; [D,W,X])−MI(D;S)−MI([W,X];S)])

1
p(S=1)

= 1−
[
exp(−2×Ω× IF×MI(D; [W,X])) exp(−2×Ω× IF×MI(S; [D,W,X]))

exp(−2×Ω× IF×MI(D;S)) exp(−2×Ω× IF×MI([W,X];S))

] 1
p(S=1)

= 1−
[
[1−NSMI(D; [W,X])][1−NSMI(S; [D,W,X])]

[1−NSMI(D;S)][1−NSMI([W,X];S)]

] 1
p(S=1)

(B.19)

Second, we could use Theorem 1 with everything conditioned on X and the fact that

MI(D;W |X,S) = p(S = 1)MI(D;W |X,S = 1) + p(S = 0)MI(D;W |X,S = 0) to arrive at

the second equation in Equation B.20. The first equation in Equation B.20 just comes from

the definition of MI(D; [W,X]|S = 1).

MI(D; [W,X]|S = 1) = MI(D;X|S = 1) +MI(D;W |X,S = 1) and

MI(D;W |X,S = 1) ≤ MI(D;W |X,S)

p(S = 1)

=
MI(D;W |X) + MI(S; [D,W ]|X)−MI(D;S|X)−MI(W ;S|X)

p(S = 1)
(B.20)
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Using Equations B.17 and B.20 we arrive at Equation B.21.

η2D∼W,X|S=1

= 1− exp(−2×Ω× IF×MI(D; [W,X]|S = 1))

= 1− exp (−2×Ω× IF× [MI(D;X|S = 1) +MI(D;W |X,S = 1)])

≤ 1− exp(−2×Ω× IF×[
MI(D;X|S = 1) +

MI(D;W |X) +MI(S; [D,W ]|X)−MI(D;S|X)−MI(W ;S|X)

p(S = 1)

]
)

= 1− exp (−2×Ω× IF×MI(D;X|S = 1))

× exp

(
−2×Ω× IF× MI(D;W |X) +MI(S; [D,W ]|X)−MI(D;S|X)−MI(W ;S|X)

p(S = 1)

)
= 1− exp (−2×Ω× IF×MI(D;X|S = 1))

× exp (−2×Ω× IF× [MI(D;W |X) +MI(S; [D,W ]|X)−MI(D;S|X)−MI(W ;S|X)])
1

p(S=1)

= 1− exp (−2×Ω× IF×MI(D;X|S = 1))

×
[
exp(−2×Ω× IF×MI(D;W |X)) exp(−2×Ω× IF×MI(S; [D,W ]|X))

exp(−2×Ω× IF×MI(D;S|X)) exp(−2×Ω× IF×MI(W ;S|X))

] 1
p(S=1)

= 1− [1−NSMI(D;X|S = 1)]

[
[1−NSMI(D;W |X)][1−NSMI(S; [D,W ]|X)]

[1−NSMI(D;S|X)][1−NSMI(W ;S|X)]

] 1
p(S=1)

(B.21)

Equations B.16, B.19, and B.21 combine to provide the following bounds on R2
D∼W |X,S=1

and η2D∼W |X,S=1. As before, which bound is most useful depends on what the researcher is

most comfortable reasoning about.

Theorem 3. For random variables D,W, S,X, where S is binary, the R2
D∼W |X,S=1 and

η2D∼W |X,S=1 resulting after stratification to S = 1 can be bounded in the following ways, where

λ =
[
[1−NSMI(D;[W,X])][1−NSMI(S;[D,W,X])]

[1−NSMI(D;S)][1−NSMI([W,X];S)]

]
and Λ =

[
[1−NSMI(D;W |X)][1−NSMI(S;[D,W ]|X)]

[1−NSMI(D;S|X)][1−NSMI(W ;S|X)]

]
.

1. R2
D∼W |X,S=1 ≤

1
1−R2

D∼X|S=1

×
(
1− λ

1
p(S=1) −R2

D∼X|S=1

)
2. R2

D∼W |X,S=1 ≤
1

1−R2
D∼X|S=1

×
(
1− [1− NSMI(D;X|S = 1)]Λ

1
p(S=1) −R2

D∼X|S=1

)
3. η2D∼W |X,S=1 ≤

1
1−η2

D∼X|S=1

×
(
1− λ

1
p(S=1) − η2D∼X|S=1

)
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4. η2D∼W |X,S=1 ≤
1

1−η2
D∼X|S=1

×
(
1− [1− NSMI(D;X|S = 1)]Λ

1
p(S=1) − η2D∼X|S=1

)
where R2

D∼X|S=1 or η2D∼X|S=1 is estimated from the data. We can approximate or inform

the choice of NSMI(D;X|S = 1) using the estimated R2
D∼X|S=1, η

2
D∼X|S=1, or the related

L-measure.9 These bounds are all analogous to bound 1 in Theorem 2. Analogs to bounds 2 -

6 in Theorem 2 could also be formed.

9We cannot directly estimate NSMI(D;X|S = 1), since we cannot estimate Ω. See Appendix B Section
B.6 for discussion of Ω.
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APPENDIX C

Appendix for Chapter 4

Here we provide technical details and prove the results found in the main text. First, we

introduce a series of definitions. These are followed by a series of lemmas. Finally we state

our main results in a set of theorems that follow directly from the lemmas.

C.1 Definitions

We adopt all the definitions from Appendix A, with the exception that we define internal

selection graphs to focus on instruments and we define the relevance and ignorability criteria.

Definition 6 (Internal Selection Graph, G+
S ). Let G be the DAG induced by a SCM.

1. Create GS by adding an appropriately connected binary selection node, S.

2. Draw a circle around S to clearly indicate that we must limit our analysis to S = 1.

3. Add to GS any node which is a parent of the treatment or a parent of a descendant

of the treatment. Add to GS any node which is a parent of the potential instrument

or a parent of a descendant of the potential instrument. (US, the background factors

contributing to selection, can be excluded.)

4. Add a dashed undirected edge between all variables between which S is a collider or an

ancestor of S is a collider. We will call these dashed, undirected edges bridges.

Call the resulting graph an internal selection graph, G+
S . (These graphs are similar to those

discussed in Daniel et al. (2012) and Chapter 2.)

Definition 7 (Relevance Criterion). A set of nodes X and a possible instrument IV in G+
S
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satisfy the relevance criterion relative to D (treatment), and Y (outcome) if there is at least

one (causal or generalized non-causal) path between IV and D that does not pass through S

and is not blocked by X.

Definition 8 (Ignorability Criterion). A set of nodes X and a possible instrument IV in G+
S

satisfy the ignorability criterion relative to D (treatment), and Y (outcome) if

1. No element of {X,S} is a descendant of D and D is not in {X,S}.

2. X blocks every (causal and generalized non-causal) path between IV and Y except

(a) those that pass through S and

(b) those ending with a causal path from D to Y (e.g., paths between IV and Y that

pass through D but where D or one of its descendants touches a bridge or paths

on which D is an ancestor of IV must be blocked by X).

C.2 Lemmas

Lemma 25 (adapted from Shpitser et al. (2010); Pearl (1988)). Let G be a causal graph.

Then any model M with a distribution P (u, v) inducing G, if A is d-separated from B by C

in G, then A is independent of B given C, which we write A ⊥⊥ B|C in P (u, v).

Lemma 26 (adapted from Shpitser et al. (2010)). For every route π in G+
S , the direct route

π∗ is a path. Moreover, if π is unblocked, then π∗ is unblocked.

Lemma 27. If X and a possible instrument IV in G+
S satisfy the relevance criterion relative

to D (treatment) and Y (outcome), then X does not d-separate D and IV in G+
S .

Proof. D and IV are d-separated in G+
S if and only if there are no unblocked paths connecting

them. Consider an internal selection graph G+
S in which there are no paths between IV and

D other than those that run through S or that are blocked by X. In such a graph, any path

between IV and D that runs through S on which S is not a collider is blocked as a result of

our having to condition on S and any path running through S on which S is a collider (or
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a descendant of a collider) corresponds to a path that is identical with the exception that

the edges forming the collider are replaced with a bridge connecting the immediate parents

of the collider. Any path like this that could connect D to IV must then be blocked by X

by our construction. And by construction, all other paths that might connect D to IV are

also blocked by X. In such a graph we can clearly see that IV and D are d-separated and

we violate the relevance criterion. If we take the same graph and add one or more paths

between IV and D that do not run through S and are not blocked by X, then IV and D

are not d-separated and we also satisfy the relevance criterion.

Lemma 28. If X does not d-separate D and IV in G+
S , then {X,S} does not d-separate D

and IV in GS.

Proof. If X does not d-separate D and IV in G+
S , then there is a path that connects D to IV

on which S does not appear that is not blocked by X. This is because any path that passes

through S is either blocked, when S is not a collider, or, when S is a collider or a descendant

of a collider, corresponds to a path that is identical except that that the edges forming the

collider are replaced with a bridge connecting the immediate parents of the collider. Such

paths cannot be blocked by X since X does not d-separate D and IV in G+
S . Given a path

that connects D to IV on which S does not appear and that is not blocked by X, we can

find the corresponding path in GS (which may include S as a collider or a descendant of a

collider). This path will then also not be blocked when we condition on {X,S} since S can

only be either a collider or a descendant of a collider on this path in GS and we know that X

does not block it. Therefore, there is a path between D and IV in GS that is not blocked by

{X,S} and so {X,S} does not d-separate D and IV in GS.

Lemma 29. If {X,S} does not d-separate D and IV in GS, then D ̸⊥⊥ IV |X,S = 1 for

every model inducing GS.

Proof. This follows from Lemma 25 and the definitions of I-map and twin networks.
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Lemma 30. If X and a possible instrument IV in G+
S satisfy the ignorability criterion in

G+
S relative to D (treatment) and Y (outcome), then X d-separates IV and Yd in N+

S .

Proof. We very closely follow the structure of the proof of Theorem 4 of Shpitser et al. (2010).

We will show the contrapositive: assuming that we are conditioning on X, an unblocked

path from IV to Yd in N+
S implies that the ignorability criterion is violated in G+

S . We will

proceed in the following manner:

1. Discuss the structure of π, an unblocked path from IV to Yd in N+
S .

2. Discuss how sample selection relates to π.

3. Discuss a procedure for finding the path π∗ in G+
S that corresponds to π in N+

S .

4. Discuss possible cases for π∗ in G+
S and their relation to the ignorability criterion.

[1. The structure of π.] We start by assuming that, assuming we are conditioning

on X, there is an unblocked path from IV to Yd in N+
S . We are going to call this π. We

are also able to assume, without loss of generality, that π intersects IV only at the starting

point of π. What are we able to say about the structure of π across the two halves of N+
S ,

the pre-intervention G+
S and the post-intervention (GS)D? We start by noticing that the

elements of Z can only appear on the pre-intervention G+
S side of N+

S . This is because we can

only condition on observed variables; we cannot condition on counterfactual variables, which

are not observed. This means that we cannot condition on D = d or any of the descendants

of D = d in the post-intervention (GS)D side of N+
S . As such, as soon as π finds it way

to the post-intervention side of N+
S , the remainder of π connecting to Yd can only contain

post-intervention variables, non of which are conditioned on. Moreover, this portion of π in

(GS)D can contain only edges pointing toward Yd. This clarifies that π must be made up of

first an unblocked path in the pre-intervention side, G+
S , that we will label π1. Next π contains

one edge that points from some node in G+
S to some node in (GS)D, which we label π2. Recall

that we are dealing with graphs in which all bidirected edges have been replaced (see the

Appendix A). We will also see in the next section that π2 cannot be a bridge. This means that
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the only type of edge that could connect π1, which is entirely made up of pre-intervention

nodes, to the post-intervention side is a directed edge from the pre-intervention side to

the post-intervention side. An edge pointing the other direction would mean that some

variables on π1 are actually post-intervention, a contradiction. Finally, π contains the path

we previously discussed, namely, a causal path that contains only descendants of D = d in

(GS)D that ends with Yd. So π is composed of π1, π2, π3. Since N+
S is built from G+

S and

(GS)D, π may contain two node ”copies” that refer to the same node in G+
S .

[2. Sample selection and π.] How does sample selection relate to π? Sample selection

means we condition on S = 1. This is a pre-intervention variable. No post-intervention

variable can be an ancestor of the pre-intervention version of S, otherwise we would be

considering a post-intervention version of S. So all ancestors of the pre-intervention S are

also pre-intervention variables. Therefore, all bridges in N+
S appear in the pre-intervention

side of the graph, G+
S , since we’ve assumed that we’ve replaced bidirected edges with U∗’s

with uni-directional edges that point to the nodes that the bidirected edge had pointed to.

Hence, any bridge on π will be in π1. Since we must condition on the pre-intervention S,

any path on which the pre-intervention S appears and is not a collider is blocked and so

cannot be π. Also, any path on which the pre-intervention S appears and is a collider (or for

which S is a descendant of a collider on the path) will correspond to a generalized non-causal

path that is identical to the original path except that the collider is not on the generalized

non-causal path and the parents of the collider are connected by a bridge on the generalized

non-causal path. If the generalized non-causal path is not blocked then the original path will

also not be blocked; if the generalized non-causal path is blocked then so is the original path.

Therefore, we can limit our analysis to such generalized non-causal paths. So we consider

π that do not contain the pre-interventional S, though π may contain bridges in π1. Since

we have assumed that sample selection is not a mediator or a descendant of a mediator,

post-intervention versions of S will not appear on π3 if they exist at all in N+
S .

[3. Finding the path π∗ in G+
S that corresponds to π in N+

S .] How can we find a
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path in G+
S that corresponds to π? We follow a procedure laid out in Shpitser et al. (2010).

First, we create π′, a route in G+
S , in this way:

1. Start by replacing each instance of a post-intervention variable in π with copy of

the same node that appears on the pre-intervention side, G+
S . We carry along the

appropriate occurrence number for each of these replaced nodes.

2. Continue by replacing any instances in which the same variable appears twice in a row

with only one copy of that variable. Then reduce the occurrence number of this variable

by one and also do this for all the variables that follow.

The portions of π′ that were created from π1 and π3 (portions of π in N+
S ) will also be

unblocked since π1 and π3 are unblocked. What about the portion of π created from π2? This

will correspond to a set of three nodes where the center node is the one pointed to by π2,

which we know is a directed edge pointing to some post-intervention node, from the above

discussion. The second edge in this triple must be pointing away from the middle node, since

all edges in π3 point toward Yd, and also must be part of a causal path from D to Y in G+
S

since the node came from the post-intervention side. But conditioning on nodes on causal

paths from D to Y constitutes a violation of the ignorability criterion, so we cannot condition

on the center node without violating the ignorability criterion. Therefore, this last portion of

π′ is also unblocked, if it exists (it may not if there are no edges in π3). For example, say that

G+
S contains D → Y and D → Z → Y and sample selection is not connect to any other node.

Then suppose that π is taken to be D → X ← UX → Xd → Yd. Here π1 is D → X ← UX , π2

is the edge between UX and Xd, and π3 is Xd → Yd. So π′ is D → X ← UX → X → Y . The

node triple in π′ that does not correspond to π1 or π3 is UX → X → Y . This is blocked since

we condition on X. However, conditioning on X is a violation of the ignorability criterion

since X lies on a causal path from D to Y in G+
S . All blocked versions of the node triple in

π′ that does not correspond to π1 or π3 must also violate the ignorability criterion for similar

reasons. Since the middle node in this node triple is pointed to by π2, the middle node must

be a post-intervention node and so it must lie on a causal path from D to Y in G+
S , and
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conditioning on it violates the ignorability criterion. Either the node triple is unblocked or

it isn’t. But, if it isn’t, then it could only have resulted from a violation of the ignorability

criterion. So π′ is an unblocked route. By Lemma 26, π∗, the direct route of π′ in G+
S , is an

unblocked path in G+
S .

[4. Possible cases for π∗ in G+
S and their relation to the ignorability criterion.]

So what are the types of π∗ we might see and how do these relate to the ignorability

criterion?

• If π∗ does not end with a causal path from D to Y , then we immediately violate the

criterion since such paths must be blocked by X.

• If π∗ does end with a causal path from D to Y , then we must consider how such a π∗

could have arisen from π. Since no edges can point into the post-intervention copy of

D, the copy of D that we see on π∗ must have resulted from the pre-intervention copy

of D being on π1. If π
∗ ends with a causal path from D to Y , then we assume without

loss of generality that it is a proper causal path from D to Y . Since π∗ ends with a

causal path from D to Y , the first edge in π between D and Y must be a directed edge

pointing away from an element in D. As we’ve discussed, π2 must have been directed

in π and pointed to a post-intervention node in (GS)D from a pre-intervention node in

G+
S . The pre-intervention node could not have been a descendant of D, otherwise it

would be in the (GS)D part of N+
S .

– If there are no node copies that are in both π1 and π3 (meaning π1 has a pre-

intervention copy and π3 has a p-intervention copy of the same node), then π∗

cannot contain a proper causal path from D to Y in G+
S . The only way it could

would be for the pre-intervention node to be a descendant of D, a contradiction.

– If there are node copies that are in both π1 and π3, then the only way to reach the

pre-intervention node from D is via a collider unblocked by our conditioning on

some element of X. This would mean that the second node in π (and the second

node in π∗) is an ancestor of X, which violates the criterion.
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Lemma 31. If X d-separates IV and Yd in N+
S , then {X,S} d-separates IV and Yd in NS.

Proof. This proof take the form of the proof for similar results in Appendix A.

Lemma 32. If {X,S} d-separates IV and Yd in NS, then Yd ⊥⊥ IV |X,S = 1 for every

model inducing Gs.

Proof. This follows from Lemma 25 and the definitions of I-map and twin networks.

C.3 Theorems

Theorem 4. If a set of nodes X and a possible instrument IV in internal selection graph

G+
S satisfy the relevance criterion relative to D (treatment), and Y (outcome), then D ̸⊥⊥

IV |X,S = 1.

Proof. Lemmas 27, 28, and 29 prove the result.

Theorem 5. If a set of nodes X and a possible instrument IV in internal selection graph

G+
S satisfy the ignorability criterion relative to D (treatment), and Y (outcome), then Yd ⊥⊥

IV |X,S = 1.

Proof. Lemmas 30, 31, and 32 prove the result.

C.4 Violations of exclusion restriction and the definition of instru-

ments

In this section we shed some light on the usefulness of the specific definition of instruments

that we use. Suppose that we have the causal graph in Figure C.1(a). If we consider the

definition of an instrument in which the exclusion restriction is seperated from ignorability
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(i.e., Yd,iv = Yd,iv′ = Yd and Yiv,d ⊥⊥ IV ), then we have a violation of exclusion but not

ignorability in this graph. (Hernán and Robins, 2006; Hernán and Robins, 2020) If we

consider the definition of an instrument in which these are combined in to a single ignorability

condition (Yd ⊥⊥ IV or Yd ⊥⊥ IV |X), then we have a violation of ignorability.

We might consider conditioning on M to fix the problems. When we condition on M , we

see that exclusion is not achieved (Yd,iv ≠ Yd) and further we have Yiv,d ̸⊥⊥ IV |M . However,

when we condition on M , we get Yd ⊥⊥ IV |M . These can be seen in Figure C.1(b,c). We’re

not actually interested in Yd,iv in its own right. There is nothing that requires that conditional

ignorability statements for Yd follow those for Yd,iv. This is just such an example where they

don’t follow. Indeed, conditioning on M can actually fix problems for ignorability with Yd

but creates problems for ignorability with Yd,iv.

So we see that while it might be intuitive to consider exclusion separately from ignorability,

writing the instrument definition in this way actually imposes some unnecessary limitations on

the type of conditional instruments that might work. Below, our graphical criterion allows the

user to think intuitively in terms of separately ruling out causal paths and non-causal paths

between IV and Y , but does not impose unnecessary restrictions as a result of writing the

instrument definition in a certain way. This is a key distinction since much of the literature

on instruments discusses these conditions seperately.

As we show above, we can say the following for the unconditional statements: Yd =

Yiv,d, Yd,iv ⊥⊥ IV ⇐⇒ Yd ⊥⊥ IV , but this does not hold for the conditional versions of

these. In particular, Yd ⊥⊥ IV |M ≠⇒ Yd = Yiv,d, Yd,iv ⊥⊥ IV |M . Though Yd = Yiv,d, Yd,iv ⊥⊥

IV |M =⇒ Yd ⊥⊥ IV |M .

208



Figure C.1: A Violation of the Exclusion Restriction
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APPENDIX D

Appendix for Chapter 5

D.1 Double placebo with multiple unobserved confounders

Let us assume we have the causal graph in Figure 5.4(b). We now want to assume that there

are multiple unobserved confounders captured by the vector of variables Z. We do not assume

that the same linear combination of the components of Z will de-confound all the relationships

we care about. Z(Y.DPX) = ZβY∼Z|D,P,X is the linear combination that de-confounds the

Y,D and the Y, P relationship. Z(N.DPX) = ZβN∼Z|D,P,X is the linear combination that

de-confounds the N,D and the N,P relationship. Consider the following OVB expressions,

where we use the relevant linear combination for each relationship.

βY∼D|P,X − βY∼D|P,Z(Y.DPX),X = βY∼Z(Y.DPX)|D,P,XβZ(Y.DPX)∼D|P,X (D.1a)

βY∼P |D,X − βY∼P |D,Z(Y.DPX),X = βY∼Z(Y.DPX)|D,P,XβZ(Y.DPX)∼P |D,X (D.1b)

βN∼D|P,X − βN∼D|P,Z(N.DPX),X = βN∼Z(N.DPX)|D,P,XβZ(N.DPX)∼D|P,X (D.1c)

βN∼P |D,X − βN∼P |D,Z(N.DPX),X = βN∼Z(N.DPX)|D,P,XβZ(N.DPX)∼P |D,X (D.1d)

We can re-write the middle two of these as follows.
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βY∼Z(Y.DPX)|D,P,X =
βY∼P |D,X − βY∼P |D,Z(Y.DPX),X

βZ(Y.DPX)∼P |D,X

(D.2a)

βZ(N.DPX)∼D|P,X =
βN∼D|P,X − βN∼D|P,Z(N.DPX),X

βN∼Z(N.DPX)|D,P,X

(D.2b)

Now we note that there are mA, and mB that satisfy the following.

βZ(Y.DPX)∼D|P,X = mA × βZ(N.DPX)∼D|P,X (D.3a)

βZ(Y.DPX)∼P |D,X = mB × βZ(N.DPX)∼P |D,X (D.3b)

Then we can get the following expression for βY∼D|P,Z(Y.DPX),X .

βY∼D|P,X − βY∼D|P,Z(Y.DPX),X

= βY∼Z(Y.DPX)|D,P,XβZ(Y.DPX)∼D|P,X

= mA × βY∼Z(Y.DPX)|D,P,XβZ(N.DPX)∼D|P,X

= mA ×

[
βY∼P |D,X − βY∼P |D,Z(Y.DPX),X

βZ(Y.DPX)∼P |D,X

][
βN∼D|P,X − βN∼D|P,Z(N.DPX),X

βN∼Z(N.DPX)|D,P,X

]

=
mA

mB

×
(βY∼P |D,X − βY∼P |D,Z(Y.DPX),X)(βN∼D|P,X − βN∼D|P,Z(N.DPX),X)

[βN∼P |D,X − βN∼P |D,Z(N.DPX),X ]

∴ βY∼D|P,Z(Y.DPX),X

= βY∼D|P,X −
mA

mB

×
(βY∼P |D,X − βY∼P |D,Z(Y.DPX),X)(βN∼D|P,X − βN∼D|P,Z(N.DPX),X)

(βN∼P |D,X − βN∼P |D,Z(N.DPX),X)

(D.4)
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Now,
mA

mB

=
βZ(Y.DPX)∼D|P,X

βZ(N.DPX)∼D|P,X

βZ(Y.DPX)∼P |D,X

βZ(N.DPX)∼P |D,X

=
RZ(Y.DPX)∼D|P,XRZ(N.DPX)∼P |D,X

RZ(N.DPX)∼D|P,XRZ(Y.DPX)∼P |D,X

×
SD(Z⊥P,X

(Y.DPX))

SD(Z⊥P,X
(N.DPX))

SD(Z⊥D,X
(N.DPX))

SD(Z⊥D,X
(Y.DPX))

=
RZ(Y.DPX)∼D|P,XRZ(N.DPX)∼P |D,X

RZ(N.DPX)∼D|P,XRZ(Y.DPX)∼P |D,X

×

SD(Z⊥P,X
(Y.DPX))

SD(Z⊥D,P,X
(Y.DPX))

SD(Z⊥D,P,X
(N.DPX))

SD(Z⊥P,X
(N.DPX))

SD(Z⊥D,X
(N.DPX))

SD(Z⊥D,P,X
(N.DPX))

SD(Z⊥D,P,X
(Y.DPX))

SD(Z⊥D,X
(Y.DPX))

=
RZ(Y.DPX)∼D|P,XRZ(N.DPX)∼P |D,X

RZ(N.DPX)∼D|P,XRZ(Y.DPX)∼P |D,X

×

√
1−R2

Z(N.DPX)∼D|P,X

√
1−R2

Z(Y.DPX)∼P |D,X√
1−R2

Z(Y.DPX)∼D|P,X

√
1−R2

Z(N.DPX)∼P |D,X

=
fZ(Y.DPX)∼D|P,XfZ(N.DPX)∼P |D,X

fZ(N.DPX)∼D|P,XfZ(Y.DPX)∼P |D,X

∴
mA

mB

=
RY∼Z(Y.DPX)|D,P,XfZ(Y.DPX)∼D|P,X

RY∼Z(Y.DPX)|D,P,XfZ(Y.DPX)∼P |D,X

×
RN∼Z(N.DPX)|D,P,XfZ(N.DPX)∼P |D,X

RN∼Z(N.DPX)|D,P,XfZ(N.DPX)∼D|P,X

∆
= k(YD / YP) × k(NP / ND)

(D.5)

Thus, finally, we arrive at the expression for βY∼D|P,Z(Y.DPX),X below.

βY∼D|P,Z(Y.DPX),X = βY∼D|P,X − k(YD / YP) × k(NP / ND)×
(βY∼P |D,X − βY∼P |D,Z(Y.DPX),X)(βN∼D|P,X − βN∼D|P,Z(N.DPX),X)

(βN∼P |D,X − βN∼P |D,Z(N.DPX),X)

(D.6)

Some observations:

• When Z(Y.DPX) = Z(N.DPX) or bothRZ(Y.DPX)∼D|P,X = RZ(N.DPX)∼D|P,X andRZ(Y.DPX)∼P |D,X =

RZ(N.DPX)∼P |D,X , then k(YD / YP) × k(NP / ND) = 1.

• k(YD / YP) captures the scaled ratio of the level of confounding of the Y,D relationship

(conditional on P ) to the level of confounding of the Y, P relationship (conditional on

D), after re-scaling one of these biases, or the ratio of bias factors.

• k(NP / ND) captures the scaled ratio of the level of confounding of the N,P relationship
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(conditional on D) to the level of confounding of the N,D relationship (conditional on

P ), after re-scaling one of these biases, or the ratio of bias factors.

• βY∼P |D,Z(Y.DPX),X measures the causal of P on Y (conditional on D).

• βN∼D|P,Z(N.DPX),X measures the causal of D on N (conditional on P ).

• βN∼P |D,Z(N.DPX),X measures the causal of P on N (conditional on D).

• We could also use k(YD / ND) × k(NP / YP) =

RY∼Z(Y.DPX)|D,P,XfZ(Y.DPX)∼D|P,X

RN∼Z(N.DPX)|D,P,XfZ(N.DPX)∼D|P,X
×

RN∼Z(N.DPX)|D,P,XfZ(N.DPX)∼P |D,X

RY∼Z(Y.DPX)|D,P,XfZ(Y.DPX)∼P |D,X

and have similar interpretation.

D.2 Partially linear and non-parametric framework

If investigators are interested in partially linear of fully non-parametric approaches to

estimating treatment effects, we can use the omitted variables frameworks from Chernozhukov

et al. (2022) to arrive at partial identification frameworks similar to those presented in the

main text for settings in which placebo outcomes are available. We do not demonstrate the

partially linear or non-parametric case for placebo treatments, but in principle this is also

possible.

D.2.1 Partially linear framework

An investigator may be interested in estimating a partially linear model. Y is the outcome;

N is a placebo outcome; D is the treatment; X is a vector of observed covariates; Z is a

vector of unobserved covariates. We consider the following short and long partially linear
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models.

Y = θl,YD + fl(X,Z) + ϵl (D.7a)

Y = θs,YD + fs(X) + ϵs (D.7b)

N = θl,ND + gl(X,Z) + ξl (D.8a)

N = θs,ND + gs(X) + ξs (D.8b)

There is some m such that bias(YD.X) = m × bias(ND.X), where bias(YD.X)
∆
= θs,Y − θl,Y

and bias(ND.X)
∆
= θs,N − θl,N . This implies that Equation D.9 holds. Using Equation D.9 for

partial identification will run into the issue that m
∆
=

bias(YD.X)

bias(ND.X)
may be difficult to interpret

when Y and N have differing scales. Can we do better?

θl,Y = θs,Y −m× (θs,N − θl,N) (D.9)

Chernozhukov et al. (2022) show that omitted variable bias in partially linear setting can

be written in the following way.

|θs,Y − θl,Y |2 = |bias(YD.X)|2 = ρ2Y × S2
Y × η2Y∼Z|D,X ×

η2D∼Z|X

1− η2D∼Z|X
(D.10a)

|θs,N − θl,N |2 = |bias(ND.X)|2 = ρ2N × S2
N × η2N∼Z|D,X ×

η2D∼Z|X

1− η2D∼Z|X
(D.10b)

BF(YD.X)
∆
= η2Y∼Z|D,X

η2
D∼Z|X

1−η2
D∼Z|X

and BF(ND.X)
∆
= η2N∼Z|D,X

η2
D∼Z|X

1−η2
D∼Z|X

are “bias factors” that

are scaled versions of the maximum level of unobserved confounding from Z. S2
Y and S2

N

are identified and therefore estimable from the observed data. η2Y∼Z|D,X and η2D∼Z|X are
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Pearson’s correlation ratios (or the non-parametric R2s).1 η2Y∼Z|D,X is the proportion of

residual variation in Y explained by Z. η2D∼Z|X is the proportion of residual variation in D

explained by Z. ρ2Y and ρ2N are referred to as “degree of adversity” in Chernozhukov et al.

(2022) and reduce the actual level of bias from the maximum possible. We can now see that

we can re-express m as in Equation D.11.

|m|2 =
|bias(YD.X)|2

|bias(ND.X)|2
=

ρ2Y × S2
Y × η2Y∼Z|D,X ×

η2
D∼Z|X

1−η2
D∼Z|X

ρ2N × S2
N × η2N∼Z|D,X ×

η2
D∼Z|X

1−η2
D∼Z|X

=
ρ2Y
ρ2N
×

η2Y∼Z|D,X ×
η2
D∼Z|X

1−η2
D∼Z|X

η2N∼Z|D,X ×
η2
D∼Z|X

1−η2
D∼Z|X

× S2
Y

S2
N

= γ × k × S2
Y

S2
N

(D.11)

γ
∆
=

ρ2Y
ρ2N

and k
∆
=

η2
Y ∼Z|D,X

×
η2
D∼Z|X

1−η2
D∼Z|X

η2
N∼Z|D,X

×
η2
D∼Z|X

1−η2
D∼Z|X

=
η2
Y ∼Z|D,X

η2
N∼Z|D,X

. Which means that we can write Equation

D.12. We could use Equation D.12 for partial identification by reasoning about plausible

ranges of values for k, γ, and θl,N , while estimating the remaining terms from observed

data. k represents the relative level of confounding where differences in scale have been

accounted for. θl,N is the effect of D on N . γ is the relative level of adversity. k and θl,N

should be easy to reason about using external knowledge. It is possible that γ would be more

difficult to consider. We leave this discussion here for now, however. A reasonable simplifying

assumption may be that γ is close to 1. See Chernozhukov et al. (2022) for further discussion

of η2s, S2
Y , S

2
N , ρ

2
Y , and ρ2N .

θl,Y = θs,Y − sign(m)×
√

γ × k × (θs,N − θl,N)×

√
S2
Y

S2
N

(D.12)

1η2D∼Z|X = Var(E[D|Z,X])−Var(E[D|X])
Var(D)−Var(E[D|X]) =

η2
D∼Z,X−η2

D∼X

1−η2
D∼X

. η2Y∼Z|D,X can be similarly interpreted.
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D.2.2 Non-parametric framework

An investigator may also be interested in estimating a linear functional of the conditional

expectation function of the outcome in a fully non-parametric setting, like θl,Y = E[Y1−Y0] =

E[fY (1,X,Z) − fY (0,X,Z)] for a binary treatment D, where Yd = fY (d,X,Z, UY ) is the

equation for Y in the structural causal model under intervention to set D = d. Again,

the investigator is only able to estimate θs,Y = E[f ∗
Y (1,X)− f ∗

Y (0,X)], where f ∗
Y (D,X)

∆
=

E[Y |D,X] = E[fY (D,X,Z)|D,X]. We define θl,N and θs,N similarly for a placebo outcome.

We could again consider an approach like Equation D.13. But again m
∆
=

bias(YD.X)

bias(ND.X)
may be

difficult to interpret when Y and N have differing scales.

θl,Y = θs,Y −m× (θs,N − θl,N) (D.13)

Chernozhukov et al. (2022) also show that omitted variable bias in fully non-parametric

setting can be written as an expression in terms of η2Y∼Z|D,X and a second term that, in

the case of targeting θl,Y = E[Y1 − Y0] with a binary treatment D, is the “average gain in

the conditional precision with which we predict D by using Z in addition to X,” which is

somewhat similar to η2D∼Z|X . Specifically, we have the following.

|θs,Y − θl,Y |2 = |bias(YD.X)|2 = ρ2Y × S2
Y × η2Y∼Z|D,X ×

1−R2
α∼αs

R2
α∼αs

(D.14a)

|θs,N − θl,N |2 = |bias(YD.X)|2 = ρ2N × S2
N × η2N∼Z|D,X ×

1−R2
α∼αs

R2
α∼αs

(D.14b)

BF(YD.X)
∆
= η2Y∼Z|D,X

1−R2
α∼αs

R2
α∼αs

and BF(ND.X)
∆
= η2N∼Z|D,X

1−R2
α∼αs

R2
α∼αs

are “bias factors” that

are scaled versions of the maximum level of unobserved confounding from Z. S2
Y and S2

N

are identified and therefore estimable from the data. See Chernozhukov et al. (2022) for

discussion of S2
Y , S

2
N , and R2

α∼αs
. Proceeding as in the last section, we can arrive at Equation
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D.15. Here again k =
η2
Y ∼Z|D,X

η2
N∼Z|D,X

.

θl,Y = θs,Y − sign(m)×
√

γ × k × (θs,N − θl,N)×

√
S2
Y

S2
N

(D.15)

D.3 Re-expression of bias factors

βY∼D|X − βY∼D|Z,X = RY∼Z|D,XfD∼Z|X
SD(Y ⊥D,X)

SD(D⊥X)

=⇒ RY∼Z|D,XfD∼Z|X = (βY∼D|X − βY∼D|Z,X)
SD(D⊥X)

SD(Y ⊥D,X)

= RY∼D|X
SD(Y ⊥X)

SD(D⊥X)

SD(D⊥X)

SD(Y ⊥D,X)

−RY∼D|Z,X
SD(Y ⊥X,Z)

SD(D⊥X,Z)

SD(D⊥X)

SD(Y ⊥D,X)

SD(Y ⊥D,X,Z)

SD(Y ⊥D,X,Z)

= fY∼D|X − fY∼D|Z,X
SD(Y ⊥D,X,Z)

SD(D⊥X,Z)

SD(D⊥X)

SD(Y ⊥D,X)

= fY∼D|X − fY∼D|Z,X

√√√√1−R2
Y∼Z|D,X

1−R2
D∼Z|X

=⇒ 1 =
fY∼D|X

RY∼Z|D,XfD∼Z|X
−

fY∼D|Z,X

fY∼Z|D,XRD∼Z|X
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