
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Modeling and Design of All-Solid-State Batteries: From Materials to Interfaces

Permalink
https://escholarship.org/uc/item/5z91w5g8

Author
Tang, Hanmei

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5z91w5g8
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Modeling and Design of All-Solid-State Batteries: From Materials to Interfaces

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Materials Science and Engineering

by

Hanmei Tang

Committee in charge:

Professor Shyue Ping Ong, Chair
Professor Zheng Chen
Professor Ying Shirley Meng
Professor Francesco Paesani
Professor Kesong Yang

2019



Copyright

Hanmei Tang, 2019

All rights reserved.



The dissertation of Hanmei Tang is approved, and it is ac-

ceptable in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2019

iii



DEDICATION

To all members of my family and friends.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background of Research . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Review of Computational Studies on Interfaces . . . . . . . . . . . 3
1.3 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Project 1: Workflow and analysis package development . . . 5
1.3.2 Project 2: Optimization of bulk materials . . . . . . . . . . 5
1.3.3 Project 3: Computational investigation of solid-solid interfaces 6
1.3.4 Chapter Index . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Computational Materials Science Workflows . . . . . . . . . . . . . 8

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Atomate Nudged Elastic Band (NEB) Workflow . . . . . . 10
2.1.3 ab initio molecular dynamics (AIMD) Workflow . . . . . . 11

2.2 Models for Solid-Solid Interfaces . . . . . . . . . . . . . . . . . . . 13
2.2.1 Approach 1: Fast diffusion of alkali-ion . . . . . . . . . . . 13
2.2.2 Approach 2: Multi-species equilibrium . . . . . . . . . . . 14
2.2.3 Approach 3: Explicit interface simulation . . . . . . . . . . 15
2.2.4 Interface construction . . . . . . . . . . . . . . . . . . . . . 16

2.3 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 Understanding the Electrochemical Mechanisms Induced by Gradient Mg2+

Distribution of Na-Rich Na3+xV2–xMgx(PO4)3/C for Sodium Ion Batteries 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . 21

v



3.2.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Computational Methods . . . . . . . . . . . . . . . . . . . 22
3.2.4 Electrochemical Tests . . . . . . . . . . . . . . . . . . . . 24

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 Probing Solid-Solid Interfacial Reactions in All-Solid-State Sodium-Ion
Batteries with First-Principles Calculations . . . . . . . . . . . . . . . . 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Materials Selection . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 DFT Calculation Parameters . . . . . . . . . . . . . . . . . 40

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Electrochemical (Grand Canonical) Stability . . . . . . . . 42
4.3.2 Chemical (Equilibrium) Stability . . . . . . . . . . . . . . . 44
4.3.3 AIMD Simulations of Explicit Interfacial Models . . . . . . 48
4.3.4 Buffer/Cathode, SE and Anode Interfaces . . . . . . . . . . 52

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Prediction of Interfacial Reaction Products . . . . . . . . . 53
4.4.2 Choice of Buffer Layers . . . . . . . . . . . . . . . . . . . 55

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 5 Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long Life High
Energy All-Solid-State Batteries . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 DFT Parameters . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 NCA Enumeration . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Chemical Stability at Selected Interfaces . . . . . . . . . . . 60
5.2.4 Electrochemical Stability of Selected Compounds . . . . . . 61
5.2.5 Interface Construction . . . . . . . . . . . . . . . . . . . . 62
5.2.6 Geometry Analysis . . . . . . . . . . . . . . . . . . . . . . 62
5.2.7 Material Synthesis . . . . . . . . . . . . . . . . . . . . . . 62
5.2.8 Chemical Reaction between NCA and LPSCl . . . . . . . . 63
5.2.9 Electrochemical Characterization . . . . . . . . . . . . . . 64
5.2.10 Chemical Characterizations . . . . . . . . . . . . . . . . . 65

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 Electrochemical Performance of Li-In-LPSCl-NCA Cell . . 66
5.3.2 Chemical Reactions between LPSCl and NCA . . . . . . . 68
5.3.3 First Principles Calculations . . . . . . . . . . . . . . . . . 71
5.3.4 New Interfacial Product oLPSCl . . . . . . . . . . . . . . . 73

vi



5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vii



LIST OF FIGURES

Figure 1.1: Schematic illustration of a rechargeable all-solid-state alkali-ion battery . . 2

Figure 2.1: Workflow diagram for Nudged Elastic Band (NEB) workflow . . . . . . . 11
Figure 2.2: Pressure and volume variation of NaCoO2/Na3PS4 interface as a function of

time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.3: Hierarchy of models for solid-solid interface reactions. . . . . . . . . . . . 13
Figure 2.4: Schematic diagram of interfaces in SSNaBs . . . . . . . . . . . . . . . . . 16

Figure 3.1: XRD patterns of Na3+xV2-xMgx(PO4)3/C . . . . . . . . . . . . . . . . . . 25
Figure 3.2: XRD Rietveld refinement results . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 3.3: Electrochemical performance of Na3+xV2-xMgx(PO4)3/C . . . . . . . . . . 26
Figure 3.4: Crystal structure of Na3V2(PO4)3 by first-principles calculation . . . . . . 28
Figure 3.5: Chemical stability (Ehull) of substitutional divalent dopants in Na3V2(PO4)3 30
Figure 3.6: Na/V ratio for Mg2+-doped Na3V2(PO4)3/C when doped at different sites

and Na/V ratio for the ICP results . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3.7: Nyquist plots of Na3V2(PO4)3/C and Na3.05V1.95Mg0.05(PO4)3/C . . . . . 33
Figure 3.8: Schematic illustration of sodium ion diffusion channel in undoped and Mg2+-

doped Na3V2(PO4)3/C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.1: Electrochemical (grand canonical) stability . . . . . . . . . . . . . . . . . 42
Figure 4.2: Reaction energies and volume changes for electrode-SE pairs . . . . . . . 44
Figure 4.3: Reaction energies between potential buffer layer materials (binary oxides)

and various active materials in SSNaBs. . . . . . . . . . . . . . . . . . . . 47
Figure 4.4: Evolution of the P-P and S-S RDFs of the Na3PS4/Na interface . . . . . . . 49
Figure 4.5: Evolution of the Na-Na, S-O, Co-S and P-O RDFs of the cathode/SE interfaces 50
Figure 4.6: Interfaces in NaCoO2/Na3PS4/Na SSNaB with Al2O3 buffer layer . . . . . 52

Figure 5.1: Schematic of interfacial study . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 5.2: Comparisons between bare and LNO coated NCA . . . . . . . . . . . . . 68
Figure 5.3: Chemical reaction characterization between LPSCl and NCA . . . . . . . . 70
Figure 5.4: Computational modeling of LPSCl/NCA interface . . . . . . . . . . . . . 73
Figure 5.5: New interfacial product oLPSCl . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 5.6: Characterization of electrochemical decomposition products of LPSCl . . . 76
Figure 5.7: Characterization of electrochemical decomposition products of LPSCl . . . 77
Figure 5.8: Properties of possible coating materials at the NCA/LPSCl interface . . . . 79

viii



LIST OF TABLES

Table 3.1: Structural Parameters of Na3V2(PO4)3/C and Na3.05V1.95Mg0.05(PO4)3/C de-
termined from XRD Rietveld Refinement . . . . . . . . . . . . . . . . . . . 26

Table 3.2: Mechanisms of Mg2+-Doped Na3V2(PO4)3 . . . . . . . . . . . . . . . . . . 28
Table 3.3: Ehull and Ef for Different Doping Sites of Mg2+ in Na3V2(PO4)3 . . . . . . 29
Table 3.4: Volume of Na3+xV2-xMgx(PO4)3 from First-Principles Calculations . . . . . 32

Table 4.1: List of cathodes, solid electrolytes, anodes and buffer layer materials studied
using thermodynamic approaches . . . . . . . . . . . . . . . . . . . . . . . 40

Table 4.2: Selected structures for interface constructions . . . . . . . . . . . . . . . . 40

ix



ACKNOWLEDGEMENTS

I would like to express my special appreciation and thanks to my advisor Professor Dr.

Shyue Ping Ong, for your support, guidance, and patience throughout my graduate studies. you

have been a tremendous mentor for me. I wish to thank the members of my dissertation committee:

professor Zheng Chen, professor Ying Shirley Meng, professor Francesco Paesani, and professor

Kesong Yang for offering their time and kind supports.

I gratefully acknowledge the funding received from the Ofiice of Naval Research (ONR)

Young Investigator Program (YIP) under the Award N00014-16-1-2621, the National Science

Foundation (NSF) SI2-SSI Program under Award No. 1550423, the U.S. Department of Energy

under Award No. DE-SC0012118, and the EBI-Shell program under contract number PT78832. I

would also like to acknowledge our group members and postdoc alumni, especially the wonderful

diffusion subgroup. Thank you for all the fun moments, active discussions, and generous help.

A special thank you for the support I received through the collaborative work with Dr. Abhik

Banerjee, Dr. Han Nguyen, and Erik Wu, as well as Ryan Stephens and Guy Verbist from Shell

Oil Company.

Chapter 2, in part, is a reprint of the material “Atomate: A high-level interface to generate,

execute, andanalyze computational materials science workflows” as it appears in Computational

Materials Science, Kiran Mathew, Joseph H Montoya, Alireza Faghaninia, Shyam Dwarakanath,

Muratahan Aykol, Hanmei Tang, Iek-heng Chu, Tess Smidt, Brandon Bocklund, Matthew Horton,

John Dagdelen, Brandon Wood, Zi-Kui Liu, Jeffrey Neaton, Shyue Ping Ong, Kristin Persson,

and Anubhav Jain, 2017 Nov 1;139:140-52, and a reprint of the material “Probing solid–solid

interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations” as it

appears in Chemistry of Materials, Hanmei Tang, Zhi Deng, Zhuonan Lin, Zhenbin Wang, Iek-

Heng Chu, Chi Chen, Zhuoying Zhu, Chen Zheng, and Shyue Ping Ong, 2017 Dec 28;30(1):163-

73. The dissertation author contributed to the NEB workflow section and author of the first paper,

and was the primary investigator and author of the second paper.

x



Chapter 3, in full, is a reprint of the material “Understanding the Electrochemical Mecha-

nisms Induced by Gradient Mg2+ Distribution of Na-Rich Na3+xV2-xMgx(PO4)3/C for Sodium

Ion Batteries” as it appears in Chemistry of Materials, Hui Li, Hanmei Tang, Chuze Ma, Ying Bai,

Judith Alvarado, Balachandran Radhakrishnan, Shyue Ping Ong, Feng Wu, Ying Shirley Meng,

and Chuan Wu, 2018 Apr 3;30(8):2498-505. All simulations and corresponding data analysis

were performed by the dissertation author.

Chapter 4, in full, is a reprint of the material “Probing solid–solid interfacial reactions in

all-solid-state sodium-ion batteries with first-principles calculations” as it appears in Chemistry

of Materials, Hanmei Tang, Zhi Deng, Zhuonan Lin, Zhenbin Wang, Iek-Heng Chu, Chi Chen,

Zhuoying Zhu, Chen Zheng, Shyue Ping Ong, 2017 Dec 28;30(1):163-73. The dissertation author

was the primary investigator and author of this paper.

Chapter 5, in full, is a reprint of the material “Revealing Nanoscale Solid-Solid Interfacial

Phenomena for Long-Life and High-Energy All-Solid-State Batteries” as it appears in ACS

applied materials & interfaces, Abhik Banerjee, Hanmei Tang, Xuefeng Wang, Ju-hsiang Cheng,

Han Nguyen, Minghao Zhang, Darren Tan, Thomas Wynn, Erik Wu, Jean-Marie Doux, Tianpin

Wu, Lu Ma, George E Sterbinsky, Macwin Dsouza, Shyue Ping Ong, and Ying Shirley Meng,

2019 Oct 23. The dissertation author was the primary investigator and author of this paper.

xi



VITA

2014 B. S. in Processing Engineering, Northeastern University, China

2015 M. S. in Materials Science and Engineering, University of California, San
Diego, USA

2019 Ph. D. in Materials Science and Engineering, University of California, San
Diego, USA

PUBLICATIONS

Tang H, Deng Z, Lin Z, Wang Z, Chu IH, Chen C, Zhu Z, Zheng C, Ong SP, “Probing solid–solid
interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations”,
Chemistry of Materials, 2017 Dec 28;30(1):163-73.

Banerjee A, Tang H, Wang X, Cheng JH, Nguyen H, Zhang M, Tan D, Wynn T, Wu E, Doux JM,
Wu T, “Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy
All-Solid-State Batteries”, ACS applied materials & interfaces, 2019 Oct 23.

Chen C, Deng Z, Tran R, Tang H, Chu IH, Ong SP, “Accurate force field for molybdenum by
machine learning large materials data”, Physical Review Materials, 2017 Sep 15;1(4):043603.

Mathew K, Montoya JH, Faghaninia A, Dwarakanath S, Aykol M, Tang H, Chu IH, Smidt T,
Bocklund B, Horton M, Dagdelen J., “Atomate: A high-level interface to generate, execute, and
analyze computational materials science workflows.”, Computational Materials Science, 2017
Nov 1;139:140-52.

Li H, Tang H, Ma C, Bai Y, Alvarado J, Radhakrishnan B, Ong SP, Wu F, Meng YS, Wu C,
“Understanding the Electrochemical Mechanisms Induced by Gradient Mg2+ Distribution of
Na-Rich Na3+xV2-xMgx(PO4)3/C for Sodium Ion Batteries”, Chemistry of Materials, 2018 Apr
3;30(8):2498-505.

Shi Y, Tang H, Jiang S, Kayser LV, Li M, Liu F, Ji F, Lipomi DJ, Ong SP, Chen Z, “Understanding
the electrochemical properties of naphthalene diimide: implication for stable and high-rate
lithium-ion battery electrodes”, Chemistry of Materials, 2018 Apr 27;30(10):3508-17.

Zheng C, Mathew K, Chen C, Chen Y, Tang H, Dozier A, Kas JJ, Vila FD, Rehr JJ, Piper LF,
Persson KA, “Automated generation and ensemble-learned matching of X-ray absorption spectra”,
npj Computational Materials, 2018 Mar 20;4(1):12.

Zhou J, Shen L, Costa MD, Persson KA, Ong SP, Huck P, Lu Y, Ma X, Chen Y, Tang H, Feng YP,
“2DMatPedia, an open computational database of two-dimensional materials from top-down and
bottom-up approaches”, Scientific data, 2019 Jun 12;6(1):86.

xii



ABSTRACT OF THE DISSERTATION

Modeling and Design of All-Solid-State Batteries: From Materials to Interfaces

by

Hanmei Tang

Doctor of Philosophy in Materials Science and Engineering

University of California San Diego, 2019

Professor Shyue Ping Ong, Chair

All-solid-state batteries show its great potential for being the next-generation source of

clean energy barely with safety issues. While current research progress suggests the bottleneck of

commercialization of all-solid-state batteries is the high resistivity at the electrode/SE interfaces.

The aim of this thesis is to demonstrate how computational efforts can help understand and tackle

the interface issues.

The content comprises the following three projects: the methodology development (Chap-

ter 2), the optimization of bulk materials (Chapter 3), and combined experimental and theoretical

investigation into reactive interfaces (Chapter 4 & 5).

In the first project, we aimed to develop and improve the computational workflow in

xiii



material science research, especially those related to the interfaces. In the first part of this

project, the Nudged Elastic Band (NEB) workflow has been developed with high automation and

flexibility; and in the second part, an extension to a traditional molecular dynamics workflow

specifically for tracking interface reactions has been implemented.

The intrinsic properties of bulk materials are important to the interfacial properties and,

thus, the performance of the full-cell battery. In the second project, we illustrated a computational

aided design of bulk material, the Mg-doped Na3V2(PO4)3 cathode Na3+xV2-xMgx(PO4)3/C.

The third project includes chapters 4 & 5, which are interfacial investigations on Na-ion

and Li-ion, respectively. In chapter 4, we have demonstrated how thermodynamic approximations

based on assumptions of fast alkali diffusion and multi-species equilibrium can be used to

effectively screen combinations of Na-ion electrodes, solid electrolytes and buffer oxides for

electrochemical and chemical compatibility. In addition to the thermodynamic approximation, ab

initio molecular dynamics simulations of the NaCoO2/Na3PS4 interface model predict that the

formation of SO 2 –
4 -containing compounds and Na3P are kinetically favored over the formation

of PO 3 –
4 -containing compounds, which has been validated through XPS recently. Chapter 5

investigate the source of reactivity between the sulfide solid electrolyte Li6PS5Cl (LPSCl) and the

high-voltage cathode LiNi0.85Co0.1Al0.05O2 (NCA). And both experimental and computational

results demonstrated improved stability between NCA and LPSCl after incorporation of the

LiNbO3 coating.
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Chapter 1

Introduction

1.1 Background of Research

A battery is a device converting storing the electrical energy in the form of chemical

energy, and this electrochemical process is reversible in a rechargeable battery (or a secondary

battery). A typical SSAB consists of a positive and a negative insertion electrode, and the mobile

ion-conducting electrolyte in between. A schematic diagram of a rechargeable alkali-ion battery

is shown in Figure 1.1 during its discharge process or the discharge electrochemical reaction.

In the discharge process, mobile ions move from the anode (electropositive electrode) side to

intercalate into the cathode (electronegative electrode) side through the solid electrolyte. At the

same time the electrons (e– ) move from anode to cathode through an external wire. And the

alkali ions A+ move to the opposite direction during the charging process.
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Figure 1.1: Schematic illustration of a rechargeable all-solid-state alkali-ion (A+, yellow circles)
battery during a discharge electrochemical reaction. During discharge process, mobile ions
move from the anode side to intercalate into the cathode side through the solid electrolyte. In
the same time the electrons (e– ) move from anode to cathode through an external wire.

Energy storage devices are critical in many aspects of modern society, such as portable

devices, electric vehicles, and the utility grid. [1] The demands for rechargeable batteries that

have high energy density, long cycle lives without safety issues are rapidly growing. Moreover,

developing better electrochemical systems are critical to the environment we live in. Switching

from fuels to electricity is one of the critical changes that have to be made to meet the require-

ments of global decarbonization. [2] These have been motivating a wide range of research and

development efforts over the past decades.

The history of the battery can be traced back to 1800 when Volta’s cell was invented.

Until very recently in 1967, sodium β-alumina was found to have high ionic conductivity, which

2



eventually opened up the possibility to build rechargeable all-solid-state batteries using a solid

electrolyte (SE). [3] An all-solid-state alkali-ion battery (SSAB) is considered as a safer, more

energy-dense alternative to the conventional organic-liquid-electrolyte-based batteries. [4] At the

same time, SSABs potentially provide significant gains in system-level energy densities through

device optimization (e.g., stacking) or enabling new chemistries (e.g., high-voltage cathodes and

alkali metal anodes). [5, 6].

1.2 Review of Computational Studies on Interfaces

In the past decades, research has been a focus on improving the intrinsic conductivity

of electrode and electrolyte materials. However, the performance of current SSABs still falls

far short of expectations due to a lack of electrode/SE combinations that yield high energy

density and high cycling stability. For example, the thiophosphate-type superionic conductors

have emerged as some of the most promising SE materials in terms of high ionic conductivity,

their compatibility with electrodes in terms of electrochemical and chemical stability are still a

significant impediment to their practical application. [7] The high instability and resistivity at the

the interfaces can be a result of the incompatible electrode and SE, the poor mechanical contact,

or a high internal strain.

Density functional theory (DFT) simulations have been proven as a powerful tool to model

and even design bulk material with desired properties (e.g. lower activation energy for superionic

conductors), reveal the interfacial reactions, as well as help understand the underlying mechanism

of experimental observations. [8, 9, 10, 11]

Computational approaches have been widely applied in studying bulk components of SS-

ABs, contributing significant insights into understanding the nature of solid-state ion conduction

property and diffusion mechanism. The most commonly-used computational tools are molecular

dynamics (MD) and Nudged Elastic Band (NEB) calculations. For example, ab initio molecular
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dynamics (AIMD) was used in the computation-assisted discovery of the fast conducting Na ion

electrolyte Na10SnP2S12, which predicted a migration barrier (0.317 eV) close to the experiment

result (0.354 eV). [12] Using first principles calculations, Chu et al. revealed that Cl– doping

with the concomitant introduction of Na vacancies will result in enhanced ionic conductivity of >

1 mS/cm at 300 K in the t-Na3PS4 superionic conductor, and this prediction has been successfully

verified by experiments in a full TiS2/Cl-Na3PS4/Na cell. [13]

Modeling and simulations for interfaces are much more complex than those in bulk

materials. In general, computational approaches can be roughly categorized into thermodynamic

and kinetic methods. Thermodynamic approaches provide fast estimations of the compatibility of

a given electrode/SE interface. Ong, Mo, and Ceder [14, 15] first proposed the grand potential

approximation to predict SE phase equilibria at the high and low voltage limits in the Li10GeP2S12

(LGPS) family of SEs. The predicted electrochemical decomposed products have been validated

through XPS. [16] A number of electrode/SE combinations have been evaluated with regard to the

chemical and electrochemical stability in later works, [10, 9, 17, 11] and the intrinsic instability

of interfaces and the potential benefit of the interphase layer have been revealed.

Kinetic methods are more powerful tools to visualize the interface evolution, however;

they are very rarely applied in computational studies on interfaces in SSABs. Tian et al. reported

a combined experimental and theoretical study of the thiophosphate-type electrolyte and layered

cathodes. [18] A more comprehensive study in interfacial reactions of sodium-ion batteries are

illustrated in the more recent work by the author. [11]

1.3 Project Overview

A tightly integrated combination of first principles calculations and experiments can

guide and accelerate the design and optimization of electrode/SE combinations for Li and Na-ion

all-solid-state batteries. In this dissertation, four first-authored and collaborative projects are put

4



together to demonstrate computational effort to tackle interface issues in SSABs.

1.3.1 Project 1: Workflow and analysis package development

DFT simulation is proven to be an accurate and reliable approach in material science.

These calculations are, however, very costly in time and computing resources. When it comes

to high-throughput screenings, the large amount of data to be managed could cause problems.

Atomate is a package developed to meet this requirement. The highly repetitive tasks can be

well-managed by workflow, which automate DFT calculations and post-analyses.

Diffusion properties such as activation energy and conductivity are key to solid-state

ionic conductors. The most commonly used approaches are AIMD and NEB. In this project,

we developed an automatic NEB workflow accepting flexible inputs. We also implemented a

post-analysis module for the traditional AIMD workflow, which accepts simulation in both NVT

and NPT ensembles and a series of visualization tools.

1.3.2 Project 2: Optimization of bulk materials

In the second project, we aimed to improve the conductivity of the well-known sodium

cathode material Na3V2(PO4)3 by high-throughput all available divalent dopants, which are Ni,

Mg, Cu, Cr, Zn, Pd, Ag, Ca, Sr and Ba. The stability of the doped compositions with regard

to the doping concentration is analyzed. The results indicate doping with Mg2+ and Ni2+ are

energetically-preferred in Na3V2(PO4)3 at V sites and additional Na are introduced to keep charge

neutral. Experiments also verified the improved conductivity in Na3+xV2-xMg0.05(PO4)3 at 0.05

doping concentration.
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1.3.3 Project 3: Computational investigation of solid-solid interfaces

In the third project, we present two stand along works on Na-ion and Li-ion battery,

respectively.

The first project is a hierarchical computational approaches to model heterogeneous

interfaces in SSABs. In studying interfaces, there are thermodynamic and kinetic approximations

that can applied together to get a more accurate description of the compositions change at the

reactive interfaces. We evaluated well-known electrode/SE(buffer) combinations using multiple

criteria, and we have identified the source of reactivity at oxide cathode and thiophosphate SE is

the formation of PO 3 –
4 . Additionally, we also identified a few promising buffer materials, Sc2O3,

SiO2, TiO2, ZrO2 and HfO2.

The second project is a combined experimental and computational work on Li-ion battery

at NCA/LPSCl interface. Thermodynamic and kinetic approaches have identified the source of

reactivity at this interface is the formation of Li3PO4, MxSy and LiCl. This conclusion is consis-

tent in experimental observation, prediction using thermodynamic approaches. Formation of the

elemental S have been identified from AIMD trajectories, which agrees with the electrochemical

product found experimentally. This is also reported the first time that AIMD is able to simulate

the electrochemical reaction.

1.3.4 Chapter Index

The dissertation is divided into the following chapters. A brief description for each

subsequent chapter is listed as below:

• Chapter 2 is the methodology in studying interfaces, including the automation of computa-

tional workflow and analysis package development.

• Chapter 3 contains a case study of computational aided design and optimization of the

superionic conductor by comparing diffusion properties among different divalent-doped
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Na3V2(PO4)3.

• Chapter 4 is a hierarchical study of interfaces in all-solid-state sodium ion batteries.

• Chapter 5 is a combined experimental and computational investigation for the reactive

interface NCA/LPSCl.
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Chapter 2

Methodology

2.1 Computational Materials Science Workflows

2.1.1 Overview

Computational materials science methods are continually growing in predictive power

due to advances in theory, computing, and software development. Today, there exists several

examples of new functional materials such as batteries, [19, 20] thermoelectrics, [21, 22] and

catalysts, [23, 24] that have been designed primarily through such methods [6] and the use of

computations has in some cases proven to save significant R&D costs and time. As computational

methods become applicable to a greater span of problems, the audience that could potentially

benefit from their use grows. However, computational softwares such as density functional

theory calculation codes typically require careful and manual setup of many parameters. The

interface for performing calculations is typically highly tuned for performing a few very detailed

studies. However, emerging applications efforts towards high-throughput screening for functional

materials and building libraries of materials properties may involve thousands or even millions of

calculations, for which it would be impossible to manually generate input files or fix various error

messages that occur during such calculations. In addition, learning to correctly conduct multiple
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different types of analyses is difficult: calculation procedures are typically not well documented

or even standardized, and certain types of calculations involve multiple, labor-intensive steps

prone to errors. These difficulties can lead to inefficient and in some cases incorrect usage of

these tools, hampering user productivity and data integrity. Thus, there have previously been

multiple efforts to build abstraction layers intended to facilitate the use of computational methods.

Such efforts include commercial offerings such as Medea, Materials Studio, and GoVasp (now

part of Medea) and academic codes such as AiiDA, MAST, qmpy/OQMD, ASE, AFLOW, the

Harvard Clean Energy Project, iochem-bd, Quixote, and our own previous efforts (MPWorks and

an earlier Java/SQL-based framework). The common goals of these frameworks are multi-fold.

First, they enhance productivity by freeing researchers to focus their attention on scientific aspects

of the problem rather than the minutia of calculation execution. Second, they create a set of

easily replicable and testable community standards for simulations. Finally, they enable new

applications such as high-throughput computing by automating many tasks that are typically

performed manually.

Atomate is a redesign of our previous Java/SQL based high-throughput infrastructure

[25] as well as our second-generation Python/Mongo MPWorks effort, which powered the

Materials Project [26] database of over 1 million individual calculations. Atomate aims to

improve the extensibility, usability, and composability of workflows over our previous efforts.

One major distinguishing feature of atomate versus many similar efforts is that it is built on top

of multiple powerful open-source tools including pymatgen (software to generate/manipulate

structures, create input files and post process output files) [27], custodian (software to recover

from calculation errors), and FireWorks (a workflow library) [28]. It also makes use of external

libraries such as Phonopy for specialized calculations. This design allows almost all the source

code of atomate itself to be dedicated to high-level specifications of calculation procedure. In

addition, atomate contains tools both for executing calculations as well as managing the results

within a well-structured database so that one can not only perform calculations but efficiently
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analyze their outputs.

2.1.2 Atomate Nudged Elastic Band (NEB) Workflow

Understanding the diffusion process and mechanism is crucial for superionic conductors.

Climbing-image nudged elastic band (CI-NEB) approach has been widely employed to study

the kinetics of materials such as the migration barriers of the mobile ions. [29] Compared to the

traditional NEB approach [30], CI-NEB can accurately determine the transition state along the

migration path (and hence the associated migration barrier) with less computational effort. A

standard CI-NEB calculation consists of five major steps (see the NEB workflow Figure 2.1):

1. initial relaxation of the parent structure that does not contain any impurities/defects.

2. construction of the initial and final structures of the migration path (also known as end-point

structures) from the parent structure.

3. relaxation of the two end-point structures.

4. construction of the initial guess of the intermediate structures (also known as the image

structures) along the migration path.

5. CI-NEB calculation that yields the minimum-energy migration path between the two

end-point structures, in which the transition state is also identified.

In atomate, we implement a CI-NEB workflow that can be launched through three different

methods (see Figure 2.1). As a first method, the user can provide a parent structure along with a

pair of atomic indices that define the migration path under the single vacancy diffusion mechanism.

Alternatively, the user can provide two end-point structures under different diffusion mechanisms.

Note that the construction of the image structures is required in both scenarios. This can be

achieved by using either the traditional linear interpolation of the atomic coordinates between
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the end-point structures or the image dependent pair potential (IDPP) approach [31]. The former

is implemented in pymatgen itself whereas the latter is implemented in pymatgen-diffusion, an

add-on to the pymatgen package [27, 32]. The IDPP approach has been shown to substantially

improve the convergence speed of CI-NEB calculations and is thus set as the default approach

for initial path construction. In the third scenario, the user provides a complete migration path

comprising both end-point and image structures. To further accelerate the convergence speed of

CI-NEB, the default workflow performs two rounds of CI-NEB calculations, wherein looser input

parameters are used in the first round and tighter input parameters are used in the second round of

calculations. All the preset settings in the CI-NEB workflow have been tested and tend to improve

the overall efficiency in CI-NEB calculations, although the user can tune these parameters as

needed for their study.

Figure 2.1: Workflow diagram for Nudged Elastic Band (NEB) workflow: NEB workflows
proceed via optimization of an initial parent structure and two end points. From these, an
intermediate reaction path is estimated and a CI-NEB calculation conducted. The CI-NEB
workflow also features automatic restart functionality since NEB calculations often exceed
allowed walltimes on supercomputing resources. CI-NEBs may also be calculating using two
images, rather than a single parent structure with specified sites.

2.1.3 ab initio molecular dynamics (AIMD) Workflow

In addition to NEB calculations, ab initio molecular dynamics (AIMD) is another fre-

quently used simulation to get diffusion properties. Dr. Ong group has developed an in-house

software platform for the automated ab initio molecular dynamics workflow, a standard database
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with a user-friendly interface. [32]

As an extension of the AIMD workflow, a post-analysis of the trajectories using the

radial distribution functions (RDFs) has been used to detect the changes in bonding during the

simulation. It is useful, especially in revealing the chemical process occurring at the solid-solid

heterogeneous interface. This post-analysis has been coded into Pymatgen-diffusion package.

Another useful extension has been made to the original AIMD workflow is the N pT -NVT

scheme, which further makes the simulation more realistic and reliable. The initial N pT section

greatly release the artifical strain, and thus eliminate those unreasonable reaction at the interface.

For example in the simulation for hetorogeneous interface in the all-solid-state batteries, the

simulations in the N pT ensemble at 300 K were first carried out until the volume of the cell

is converged to within 2%. This step is necessary to minimize the interfacial stress caused by

the lattice misfit, and typically occurs within ˜4 ps of simulation time. For large systems with

a few hundred of atoms, e.g. the solid-electrolyte/electrode interfaces studied in this work, the

accessible time scales are even shorter. Figure 2.2 below plots the pressure and volume variation

of the NaCoO2/Na3PS4 interface simulation as a function of time. It clearly shows that both

pressure and volume converge within the first 2-4 picoseconds.
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Figure S9: Pressure and volume variation of NaCoO2/Na3PS4 interface as a function of time.
Both pressure and volume converge within the first 2-4 picoseconds in the simulation.
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Figure 2.2: Pressure and volume variation of NaCoO2/Na3PS4 interface as a function of time.
Both pressure and volume converge within the first 2-4 picoseconds in the simulation.
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2.2 Models for Solid-Solid Interfaces

Here, we will outline the general principles behind the various first principles approaches

to predict solid-solid interface equilibria/reactivity. Figure 2.3 provides an overview of the three

models that will be discussed in this section, arranged in the order of complexity. The bottom two

models are based on thermodynamic approximations, and they have been used in previous works

on Li SEs, [15, 14, 10, 17, 9, 33, 34] while the model on the top of the pyramid is an explicit

interfacial model simulated at finite temperatures. We will discuss these models in the context of

SSNaBs, though the models are similarly applicable to SSLiBs.

(c) Explicit interface simulation

(b) Limit of multi-species equilibrium

(a) Limit of fast Na diffusion Ease of scaling

Ability to capture reaction 
mechanisms

Figure 2.3: Hierarchy of models for solid-solid interface reactions. (a) Fast diffusion of
alkali-ion (grand potential phase diagram); (b) multi-species equilibrium e.g., slow diffusion
or extremely long time scale (reaction prediction using pseudo-binary phase diagram); (c)
ab initio molecular dynamics (AIMD), accounting for different multi-species mobilities and
interactions at finite temperatures. The thermodynamic models at the bottom of the pyramid are
computationally less costly but make various assumptions on species mobilities. The AIMD
approach captures kinetics at finite temperatures, but the high computational cost limits such
simulations to small model systems and short simulation time scales.

2.2.1 Approach 1: Fast diffusion of alkali-ion

Under the assumption that Na is the main mobile specie, the SE material can be treated as

an open system to Na described by chemical potential µNa. The SE is subjected to a maximum

range of electrochemical potential when the battery is fully charged, where the desodiated cathode

is effectively a Na sink at low µNa and the sodiated anode is effectively a Na source at high
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µNa. The electrochemical window of a SE is essentially the µNa or voltage range in which the

composition of SE is stable against either Na extraction or insertion, which can be estimated using

the DFT grand potential phase diagram at various µNa.[35] The Na grand potential is given by

φ(c,µNa) = E(c)−µNaN(c), (2.1)

where E(c) is the total energy from density functional theory (DFT) calculations, and

N(c) is the number of Na atoms of that particular phase with composition c. µNa is related to the

voltage V with respect to the Na metal anode by

V =−
µNa−µ0

Na
e

, (2.2)

where µ0
Na is the Na chemical potential of Na metal, and e is the electron charge.

In essence, one can view this as an estimate of the electrochemical (grand canonical)

stability of the SE with respect to voltage. Henceforth, we will simply refer to this estimate as

the electrochemical stability for brevity.

2.2.2 Approach 2: Multi-species equilibrium

In this approach, the assumption is that the two materials at a heterogeneous interface

react to form the most favorable products under full thermodynamic equilibrium.[33, 17, 9, 34]

The most favorable reaction is determined by constructing the pseudo-binary phase diagram

between the two materials, a and b (e.g., between the NaCoO2 cathode and the Na3PS4 SE), and

finding reaction ratio resulting in the most negative reaction energy:

∆E(ca,cb) = min
x∈[0,1]

1
N
{Eeq[xca +(1− x)cb]− xE[ca]− (1− x)E[cb]}, (2.3)
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where ca, cb are the compositions of phases a and b, respectively, x is the ratio of ca, and E[ca],

E[cb] are the DFT total energy of phases a and b, respectively. Eeq(c) is the energy of phase

equilibria at composition c. N is a normalization factor, which is equal to the total number of

atoms involved in the reaction. ∆E(ca,cb) may then be regarded as an estimate of the chemical

(equilibrium) stability of the two materials with each other. Henceforth, we will simply refer to

this estimate as the chemical stability for brevity. The more negative the ∆E(ca,cb), the greater

the thermodynamic driving force for the two materials to react at a heterogeneous interface.

In addition, we can also estimate the volume change ∆V as a result of the reaction at

a heterogeneous interface by comparing the volumes to products of the reaction to that of the

reactants in the reaction. The final DFT relaxed volumes of each reactant/product are used in

this estimate. A negative ∆V means that the volume of the products is smaller than those of

the reactants, which may cause the formation of voids and loss of contact at the interface. On

the other hand, a positive ∆V means that the volume of the products is larger than those of the

reactants, which may cause the build-up of stresses and cracks at the interface.

2.2.3 Approach 3: Explicit interface simulation

In the third approach, finite temperature ab initio molecular dynamics (AIMD) simulations

are carried out on explicit models constructed for solid-solid interfaces in a SSNaB, as shown in

Figure 2.4.
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2.2.4 Interface construction

C/B B/SE B/SE B/A

C/SE SE/ACathode Anode

Buffer Layers

Solid
Electrolyte

Figure 2.4: Schematic diagram of interfaces in SSNaBs without buffer layers (upper) and with
buffer layers (lower). Letters in the figure denote the cathode (C), the solid electrolyte (SE), the
anode (A) and the buffer layer (B).

The interface models were constructed using slabs of electrode, buffer layer or SE material.

The orientation of the cathode slab was chosen such that it is a low-energy surface appearing

in the calculated Wulff shape [36] that also presents facile channels for Na diffusion. A similar

criterion was used in previous work. [37] The spacing between two materials was initially set at

2.5 Å. To achieve a good compromise between the number of atoms in the model and the misfit

strain at the interface, we used the algorithm proposed by Stradi et al. [38] to identify the optimal

supercell combination based on the following criteria:

• Lattice misfit parameter m < 6%.

m =
|pi− ps|

pi
×100% (2.4)
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where pi and ps are perimeters of the unit cell ab-plane of the interface and the slab.

• Mean absolute strain ε̄ < 10 %.

ε̄ =
|εxx|+ |εxy|+ |εyy|

3
(2.5)

where εxx, εxy and εyy are components of plane strain caused by matching one slab with

another.

Changes in bonding were tracked over the course of AIMD simulations of at least 22 ps

(with transition metal) and 160 ps (without transition metal) by comparing the radial distribution

functions (RDFs) of various species at the interface with those of all known reference crystalline

compounds within the chemical system of interest. For instance, in the case of Na3PS4/Na

interface, the interfacial RDFs are compared with those of all known compounds in the Na-P-S

chemical space, i.e., all Na, P, S, NaxPy, NaxSy, PxSy and NaxPySz phases in the Materials Project

(MP) database[26, 39] with an energy above hull (Ehull) of less than 20 meV/atom. The Ehull

is a measure of the stability of a reference material, and here, we limit the reference collection

to relatively stable phases. We will discuss our systematic process of elimination to identify

matching reference compounds, e.g., by noting the absence or presence of well-defined bond

lengths such as those for PO 3 –
4 , SO 3 –

4 , PS 3 –
4 tetrahedra, in the Results section. It should

also be noted that we did not explicitly set any interfacial reactions are driven by the inherent

concentration/chemical potential gradients across the interface, and the voltage is not explicitly

set in the AIMD simulations.
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Chapter 3

Understanding the Electrochemical

Mechanisms Induced by Gradient Mg2+

Distribution of Na-Rich

Na3+xV2–xMgx(PO4)3/C for Sodium Ion

Batteries

3.1 Introduction

Because of the low cost and abundance of sodium element in the Earth’s crust, sodium ion

batteries (SIBs) are now attracting more attention for grid-scale energy storage applications. [40,

41, 42, 43] In addition, because of the lower half-reaction potential of SIBs than that of lithium ion

batteries (LIBs), [44] SIBs can be used in electrolyte systems with lower decomposition potential

such as water-based electrolytes, which makes it inexpensive compared to LIBs. Recently,

SIBs have been investigated extensively including cathodes, anodes, and electrolytes. However,
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practical applications of SIBs are limited because of the larger ionic radius of the sodium ion

compared to that of the lithium ion (1.02 Åfor Na+ vs 0.76 Åfor Li+) and higher equivalent weight

of Na than that of Li. [45, 46] Thus, it is necessary to find more suitable electrode materials with

good structural stability and electrochemical performance to enable more SIB applications.

Because of the highly covalent three-dimensional framework that generates large in-

terstitial space where sodium ions may easily diffuse during the charging/discharging process,

[47, 48, 49, 50, 51] NASICON-structured compounds are considered as prospective cathode

material for sodium ion batteries [52, 53, 54] and hybrid ion batteries. [55] Among various

sodium super ion conductor (NASICON)-structured compounds, Na3V2(PO4)3 shows superior

performances. It is worth mentioning that Na3V2(PO4)3 possesses a rhombohedral R3̄c symmetry

which benefits sodium ion diffusion. Moreover, Na3V2(PO4)3 displays a high voltage plateau

(3.4 V) that is relatively higher than that of most other Na ion battery (NIB) cathode materials.

[56] The high specific energy density (∼400 Wh/kg) and high thermal stability of Na3V2(PO4)3

are suitable for large-scale energy storage.[57, 58]

Although Na3V2(PO4)3 has many advantages, low electrical conductivity (similar to

Li3V2(PO4)3 and LiFePO4) significantly limits its electrochemical performance. [59, 60, 61]

Until now, coating various carbon materials, reducing the particle size, and doping metal ions

have been adopted to improve the electrochemical performance and cation doping is an effective

and simple way to modify Na3V2(PO4)3. Mg2+, [62] Fe3+, [63] Cr3+, [64] Al3+, [65] Mn2+,

[66, 67] K+, [49] and Ni2+ [68] have been doped into Na3V2(PO4)3. The results show that all

doped samples display enhanced electrochemical performance. However, most of the papers were

committed to improving the electrochemical performance, while the mechanistic understanding

on the effects of cation doping of Na3V2(PO4)3 is still ambiguous and not comprehensive.

In this work, we first use density functional theory (DFT) method to determine the most

preferred doping mechanism for Mg. Then we implemented a screening process to identify

all possible divalent dopants under this mechanism. We find the following: (1) Mg2+ tends to
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substitute on the V site and extra sodium ions are introduced to keep the charge neutral; (2) Ni2+-

and Mg2+-doped structures are of the highest chemical stability, which corresponds with our initial

guess; and (3) the cost-effective Mg ion was chosen to be doped into Na3V2(PO4)3. To further

determine the optimal doping concentration of Mg2+, where computational screening is hindered

by the max atom number of the unit cell, a series of Mg2+-doped Na-rich Na3+xV2–xMgx(PO4)3/C

(x = 0, 0.05, and 0.1) were synthesized by the sol–gel method. The effects of Mg2+ doped on

the crystal structure, Mg2+ doping site, and the distribution of Mg2+ within the particles for the

electrochemical performance will be discussed further in detail.

3.2 Methods

3.2.1 Sample Preparation

All Na3+xV2–xMgx(PO4)3/C (x = 0, 0.05, and 0.1) samples were synthesized by the

sol–gel method. Stoichiometric amounts of NaOH, NH4VO3, NH4H2PO4, Mg(CH3COO)2, and

citric acid were used as raw materials. First, NH4VO3 was dissolved in deionized water and

stirred at 80 ◦C. Citric acid solution, NaOH solution, Mg(CH3COO)2 solution, and NH4H2PO4

solution were added into the above NH4VO3 solution while stirring everything at 80 ◦C. After

several hours, all the water evaporated and the solution subsequently turned into a gel. The gel was

calcinated at 800 ◦C in the flowing argon atmosphere for 8 h to obtain Na3+xV2–xMgx(PO4)3/C

with the respected composition (x = 0, 0.05, and 0.1). All chemicals were used directly without

any further purification.

3.2.2 Characterization

X-ray diffraction (XRD) measurements on all the materials were performed using Cu Kα

radiation to identify the crystalline phase. Rietveld refinement was performed using FullProf
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software. Na-ion conductivity was measured with electrochemical impedance spectroscopy using

an impedance analyzer Solartron 1255B) in the frequency range of 100 kHz to 10 mHz at 25, 50,

and 60 ◦C. Inductively coupled plasma (ICP) analysis was performed using a PerkinElmer 3700

optical emission plasma spectrometer.

The structure of the Na-rich Na3.05V1.95Mg0.05(PO4)3/C sample was investigated by using

a FEI Tecnai G2 F20 transmission electron microscope equipped with selected area electrode

diffraction patterns and the scanning transmission electron microscope (STEM) operated at 200

kV.

3.2.3 Computational Methods

Density Functional Theory Calculations

All density functional theory (DFT) calculations were performed using Vienna Ab initio

Simulation Package [69] within the projector augmented wave method. [70] The Perdew-Burke-

Ernzerhof generalized gradient approximation [71] with Hubbards correction (GGA+U) was used

for the exchange-correlation functional. For all DFT energy calculations, a plane-wave cutoff of

520 eV and a k-point density of at least 1000/(number of atoms in unit cell) and spin-polarized

condition were used for all cases. All structure manipulations and postanalysis were carried out

using Python Materials Genomics (Pymatgen) package. [27]

Structure Generation

The initial disordered structure was obtained from Inorganic Crystal Structure Database

(ICSD) [72] (Na3.803V2.5(PO4)3: ICSD no. 248140). The lowest energy structure was identified

by computing the ground-state energy of all symmetrically distinct atomic configurations [32]

enumerated using the algorithm of Hart and Forcade. [73]

For doped chemistries, all symmetrically distinct ordering of Na3+xV2-xMx(PO4)3 and
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Na3V2–xMx(PO4)3 were enumerated using the aforementioned algorithm for x = 0.0625, 0.125,

0.25, and 0.5.

Divalent Dopants Selections

Some divalent ions are not suitable for dopants; thus, they are excluded: (1) Radioactive

elements: Tc and Pm and from Bi to the end of the periodic table. (2) Nobel metals: Rh, Ir, Pt,

and Au. (3) Elements with toxicity: Cd and Hg. (4) Elements where the divalent state is not

available: alkali metals, noble gases, etc. As a result, Ni, Mg, Cu, Cr, Zn, Pd, Ag, Ca, Sr, and Ba

are selected as potential dopants.

Phase Stability and Dopant Formation Energy

The phase stability of a given compound NaxVyPzOuMv (M is the dopant species) was

estimated using the energy above the convex hull (Ehull) [35] in the corresponding Na–V–P–O–M

phase diagram. Precomputed data used in phase diagram construction can be obtained from the

Materials Project (MP) [26] database using the Materials Project API. [39] The Ehull value of

stable phases is 0 meV/atom. The higher the Ehull is, the less stable the compound is predicted to

be. In this work, an Ehull value of 20 meV/atom is chosen as the cutoff value beyond which the

chemistry is considered to be unstable to be synthesized.

The neutral dopant formation energy was calculated using the formalism reported by Wei

et al., [74] which indicates the dopability of the dopant into the host material. Specifically, the

dopant formation energy is calculated using the formalism:

Ef[M] = Etot[M]−Etot[bulk]−∑
i

niµi, (3.1)

where Etot[M] and tot[bulk] are the total energies of the structure with and without the

neutral dopant M, respectively. ni is the number of species i that is being added (ni > 0) or

removed (ni < 0). µi is the atomic chemical potential of species i that varies based on different
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experimental conditions. Then the lower bound of the dopant formation energy was calculated,

which is equal to the difference of decomposition energies between the doped and host materials.

3.2.4 Electrochemical Tests

Electrochemical measurements of Na3+xV2–xMgx(PO4)3/C (x = 0, 0.05, and 0.1) samples

were carried out using CR2016 coin cells. Na metal was used as the counter electrode. The

electrodes were made by mixing the active material, carbon black, and poly(vinylidene fluoride)

in an 8:1:1 ratio. Then the electrodes were dried at 100 ◦C for 10 h. Afterward, 10 mm diameter

circular disk electrodes were cut to form the electrode. The mass loading of the active material on

the electrode was about 4.0 mg cm−2. The cells were cycled in 1 M NaPF6 in PC while using

glass fiber (Whatman GF/F) as the separator. Galvanostatic experiments were carried out using

an Arbin BT2000 battery testing system. The voltage range was maintained between 2.5 and 4.0

V. Before the galvanostatic charging/discharging tests, the batteries underwent an aging process

for over 2 h to make sure Na3+xV2–xMgx(PO4)3/C (x = 0, 0.05, and 0.1) was fully soaked by the

electrolyte.

3.3 Results and Discussion

All synthesized samples Na3+xV2-xMgx(PO4)3/C (x = 0, 0.05, and 0.1) were found to crys-

tallize in the NASICON structure (R3̄c space group, rhombohedral unit with 2 Na in 18e position

and 1 Na in 6b position). The XRD patterns are shown in Figure 3.1 and the Rietveld analysis of

the sample with x = 0 and 0.05 are reproduced in Figure 3.2. The refinement was done by the

FullProf program. [62, 68] Figure 3.2 shows that the calculated pattern matches well with the

observed pattern. The structural parameters of Na3V2(PO4)3/C and Na3.05V1.95Mg0.05(PO4)3/C

phases as determined from the Rietveld refinement are illustrated in Table 3.1. The reasonably

small R factors show that a single phase was obtained and no impurity phases were detected at
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the resolution of our X-ray diffractometer.

Figure 3.1: XRD patterns of Na3+xV2-xMgx(PO4)3/C (x = 0, 0.05, and 0.1)

Figure 3.2: XRD Rietveld refinement results of (a) Na3V2(PO4)3/C and (b)
Na3.05V1.95Mg0.05(PO4)3/C.

To confirm that Mg2+ doping can improve the Na3V2(PO4)3 performance, electrochem-

ical measurements of Na3+xV2–xMgx(PO4)3/C (x = 0, 0.05, and 0.1) samples were carried out,

as shown in Figure 3.3. The cycle performance at 1 and 10 C are displayed in parts (a) and

(b), respectively, of Figure 3.3. It is clear that Mg2+-doped samples present superior cycle
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Table 3.1: Structural Parameters of Na3V2(PO4)3/C (pristine) and Na3.05V1.95Mg0.05(PO4)3/C
(doped) determined from XRD Rietveld Refinement

a (Å) c (Å) V (Å3) Rp (%) Rwp (%) Rb (%) Na1 Na2 V Mg

pristine 8.72 21.83 1438.00 4.69 6.26 9.29 0.98 2.06 1.95 0.05
doped 8.72 21.80 1436.37 5.34 6.91 6.47 1.00 2.00 2.08 0.00

performance at both 1 and 10 C. When cycled at 1 C, all the samples deliver similar initial

specific capacity; however, after 180 cycles the capacity of Na3.05V1.95Mg0.05(PO4)3/C is almost

10 mAh ·g–1 higher than that of Na3V2(PO4)3/C. When cycled at 10 C, the difference in electro-

chemical performance between undoped sample and Mg2+-doped sample are more evident. For

Na3.05V1.95Mg0.05(PO4)3/C, the initial capacity is 96.7 mAh ·g–1, and it has a capacity retention

of 88.9% after 180 cycles. However, the undoped Na3V2(PO4)3/C can deliver only 88.8 and 63

mAh ·g–1 at the first cycle and after 180 cycles, respectively.

Figure 3.3: Electrochemical performance of Na3+xV2-xMgx(PO4)3/C (x = 0, 0.05, and 0.1): (a)
cycle performance at 1 C, (b) cycle performance at 10 C, and (c) rate performance.
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The rate performance is shown in Figure 3.3c. It is obvious that the rate ability of Mg2+-

doped Na3V2(PO4)3/C is better than that of the undoped sample. Na3.05V1.95Mg0.05(PO4)3/C

delivers 95.5 and 92.1 mAh ·g–1 at 15 and 20 C, respectively, whereas Na3V2(PO4)3/C delivers

only 64.7 and 50.6 mAh ·g–1 at the same rates. The above results demonstrate that doping can

improve the electrochemical performance. In addition, it is found that the higher the rate, the

greater the difference in the electrochemical performance between the Mg2+-doped sample and

the undoped sample.

The reason for the enhanced electrochemical performance of the doped samples is ex-

plored. According to previous reports, [75, 76] there are Na site and V site for Na3V2(PO4)3 to

substitute. There are also two Na sites for Na3V2(PO4)3 and the crystal structure is displayed in

Figure S1 of the Supporting Information. Na(1) site has sixfold coordination situated between

two adjacent V2(PO4)3 units along the z axis. Na(2) site has eightfold coordination located at

the same z value as the phosphorus atoms between two PO4 tetrahedra. For each formula, there

are three positions for Na(2) and one position for Na(1). The sodium ions at the Na(2) site

are electrochemically active when Na3V2(PO4)3 is used as cathode of SIBs. For Na3V2(PO4)3,

two of the three sodium ions are in the Na(2) site and the remaining sodium ions are located in

the Na(1) site. Because of the different valences among Mg2+, V3+, and Na+, the molar ratio

of V3+ and Na+ is changed to keep the charge balance when Mg2+ migrates to a different site.

Because of the complexity of the crystal structure and the valence of the elements, identifying

the doping site is vital to understand how the dopant influences the electrochemical properties.

Three mechanisms of Mg2+-doped Na3V2(PO4)3 are studied and illustrated in Table 3.2. The

detailed crystal structure corresponding to the different mechanisms is shown in Figure 3.4. In

Figure 3.4a, one Na+ in the Na(2) site disappears when a Mg2+ replaces one Na+ because of the

lower valence of Na+ compared to that of Mg2+. As a result, the electrochemically active Na

decreases as Mg2+ increases and moves to the Na site. In mechanism 2, charge compensation is

achieved by a V3+ becoming V4+, which reduces the available redox couples for storage. Finally,

27



in mechanism 3, an additional Na+ is introduced to the Na(2) site (Figure 3.4 c) when Mg2+ is

doped into the V site and V3+ does not change the valence; hence, more electrochemical Na+ is

inserted into the crystal. To determine which mechanism happens in this work, several methods

are used and discussed below.

Figure 3.4: Crystal structure of Na3V2(PO4)3 by first-principles calculation: (a) when Mg2+

goes to the Na site, (b) when Mg2+ goes to the V site and V3+ changes the valence to keep
charge balance, and (c) when Mg2+ goes to the V site and more Na+ are introduced to keep the
charge balance.

Table 3.2: Mechanisms of Mg2+-Doped Na3V2(PO4)3.

Mechanism 1 Mechanism 2 Mechanism 3

doping site Na site V site (V valence changes) V site (Na is introduced)
compound Na3-2xV2Mgx(PO4)3 Na3V2–xMgx(PO4)3 Na3+xV2-xMgx(PO4)3

Li et al. [77] proposed an effective way to explore the preferred doping site in polyanion

materials. Their formula is shown as follow:

DM1(2) = |(XM−XM1(2))/XM1(2)|+ |(rM− rM1(2))/rM1(2)| (3.2)

where XM and XM1(2) are electronegativity values of the dopant and the substituted ion

and rM and rM1(2) are the ionic radius of the dopant and the substituted ion. If DM1 < DM2, the

dopant tends to go to the M1 site, while if DM1 > DM2, the dopant prefers to occupy the M2 site.

According to the above formula, the values for Mg2+-doped Na3V2(PO4)3/C are DV = 0.3228
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and DNa = 0.521. Mg2+ goes to the V site for Mg2+-doped Na3V2(PO4)3/C since DNa is greater

than DV.

The doping site was studied by first-principles calculations. Table 3.3 shows the phase

stability represented by Ehull with respect to the different Mg2+ doping mechanism. Mechanism 3

is most probable as shown in Table 3.3. Mg2+ is inclined to go to the V site, which is consistent

with the above empirical formula. It can be concluded that more Na+ is introduced to the crystal

structure to keep the charge balance.

Table 3.3: Ehull (meV/atom) and Ef (meV/f.u.) for Different Doping Sites of Mg2+ in
Na3V2(PO4)3

Na3-2xV2Mgx(PO4)3 Na3V2–xMgx(PO4)3 Na3+xV2-xMgx(PO4)3

Ehull Ef Ehull Ef Ehull Ef

x = 0.0625 0 0 1.92 613.86 0 0
x = 0.125 1.51 239.59 3.14 502.36 0.47 75.46
x = 0.25 4.63 365.89 4.45 356.17 0.21 16.66
x = 0.5 10.74 418.93 4.77 190.61 0 0

On the basis of the above results, first-principles calculations were carried out only

under mechanism 3 to find potential doping species and the preferred doping concentration

among divalent ions [Ni2+, Mg2+, Cu2+, Cr2+, Zn2+, Pd2+, Ag2+, Ca2+, Sr2+, and Ba2+]. The

chemical stability and doping concentration (x = 0.0625, 0.125, 0.25, and 0.5) relationship for

both mechanisms are shown in Figure 3.5, which indicates that the phase stability decreases as

dopant concentrates. However, Mg2+-doped chemistries remain relatively stable within the tested

dopant concentrations. This observed stability may be due to the similar ionic radius of Mg2+ (86

pm) and V3+ (78 pm), which alleviates the structural distortion from doping.
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Figure 3.5: Chemical stability (Ehull) of substitutional divalent dopants in Na3V2(PO4)3. To
maintain charge balance after substitution on V sites, extra sodium ions are introduced.

All the theoretical results above show that Mg2+ prefers to go to the V site and the doping

site was proved by an experimental method. Because of the different valence numbers between

Mg2+, V3+, and Na+, the molar ratio of V and Na is changed to keep the charge balance when

Mg2+ goes to the different sites as discussed above. The comparison of the Na/V ratio trend

for different doping sites is displayed in Figure 3.6. It is found that the Na/V trend from ICP is

consistent with the Na/V ratio of theoretical value (Mg2+ is doped on V site). The experimental

results demonstrate that Mg2+ goes to the V site and more Na+ is introduced to Na3V2(PO4)3

crystal structure to keep the charge balance. Hence, Mg2+-doped Na3V2(PO4)3/C shows better

electrochemical performance because inserting excess Na+ is electrochemically active during the

charging/discharging process.
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Figure 3.6: Na/V ratio for Mg2+-doped Na3V2(PO4)3/C when doped at different sites and Na/V
ratio for the ICP results.

To explain the reason for the enhanced electrochemical performance at high rates for Mg2+-

doped Na3V2(PO4)3/C, the crystal structure and kinetic properties were investigated in detail.

The unit cell volumes of Na3+xV2-xMgx(PO4)3 from first-principles calculation are provided in

Table 3.4. When x increases from 0 to 0.0625, the volume increases from 1438.74 to 1499.52,

that is, by 4%. However, the XRD refinement results show a volume increase from 1436.374 to

1438.004 when x increases from 0 to 0.05, which is only about 0.1% of the volume change. It is

worth noting that the model from calculation is built based on the uniform distribution of Mg2+.

From the noticeable difference of volume changes between first-principles calculation and XRD

Rietveld refinement, it can be inferred that Mg2+ is not evenly distributed in the bulk.

To verify this assumption, the internal resistance of sodium half cell assembled with

Na3V2(PO4)3/C and Na3.05V1.95Mg0.05(PO4)3/C were evaluated. The Nyquist plots are shown in

Figure 3.7. In the Nyquist plots, each impedance spectrum consists of a depressed semicircle at
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Table 3.4: Volume of Na3+xV2-xMgx(PO4)3 from First-Principles Calculations

Sample x = 0 x = 0.0625 x = 0.125 x = 0.25

V 1438.74 1499.52 1502.19 1504.62

high frequency and a slope line in the low-frequency range. The high-frequency region of the

semicircle is attributed to interfacial resistance between the electrode and the electrolyte (ion mi-

gration through the surface layer and the charge-transfer reaction through the electrode–electrolyte

interphase), while the slope line is due to Warburg impedance, which originates from the diffusion

of sodium ions into the bulk of the electrode material. [78, 79, 80] In Figure 3.7a, the semicircle

is hardly changed at different temperatures in Na3V2(PO4)3/C; however, when Mg2+ is doped

into Na3V2(PO4)3, the interfacial resistance decreases as the temperature increases, shown in

Figure 3.7b. It can be concluded that Mg2+ doping has a significant impact on the interface of

Na3V2(PO4)3/C. Furthermore, the sodium ion diffusion coefficient (DNa+) in the bulk of the

particles was calculated according to the plots in the low-frequency region and the results are

displayed. For the undoped and Mg2+-doped samples, the diffusion coefficient of sodium ion

at different temperatures is very similar, which means that Mg2+ doping has little influence on

the diffusion coefficient of sodium ions in the bulk of the particle. Combined with the results

of crystal volume change, interfacial resistance changes, and ion diffusion in the bulk, Mg2+ is

mainly distributed on the surface of particles as illustrated in Figure 3.8.
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Figure 3.7: Nyquist plots of (a) Na3V2(PO4)3/C and (b) Na3.05V1.95Mg0.05(PO4)3/C at 298 K
(black), 323 K (red), and 333 K (blue).
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Figure 3.8: Schematic illustration of sodium ion diffusion channel in undoped and Mg2+-doped
Na3V2(PO4)3/C.

It is well-known that cation doping improves the electrochemical performance mainly

because of the structural stability and enhanced ionic and electronic conductivity induced by

the doped ion. [60, 80, 81] However, the enhanced electrochemical performance is also related

to the doped ion distribution. Nonuniform distribution of Mg2+ may lead to stratification of
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Na3V2(PO4)3 particles. As shown in Figure 3.8, most of the Mg2+ are distributed on the particle

surface layer and less Mg2+ are disseminated in the bulk of Na3V2(PO4)3 particle. This is further

demonstrated in the Supporting Information. According to previous reports, cation doping can

enlarge the Na ion diffusion pathway. [68] Hence, nonuniform distribution of Mg2+ doping brings

out faster Na+ diffusion on the surface than that in the bulk of the particle. At the same time, shown

in the SEM image of Na3V2(PO4)3/C, the microscale particle size hinders the electrochemical

performance with the long ionic diffusion distance. [82] When batteries are cycled at high rates, it

is hard for Na+ to go into the bulk of Na3V2(PO4)3/C particle because of the short time for such

a long ionic diffusion distance. As a result, the electrochemical reaction occurs mainly on the

surface of the particle. The surface property of active material is vital for electrochemical reaction

since effective charge carriers must successfully diffuse to the surface and undergo interfacial

charge transfer. [83] Therefore, the modified surface property for Mg2+-doped samples leads to

the superior electrochemical performance compared to that of the undoped sample.

3.4 Conclusion

In summary, a series of Na-rich Na3+xV2–xMgx(PO4)3/C (x = 0, 0.05, and 0.1) cath-

ode materials were synthesized by the sol–gel method. All doped samples display improved

electrochemical performance, especially at high rates. To probe how Mg2+ doping affects the elec-

trochemical performance of Na3V2(PO4)3/C, the doping site was explored by empirical formula,

first-principles calculation, and ICP. The results indicate that Mg2+ prefers to go to the V site and

extra Na+ is introduced to Na3V2(PO4)3/C crystal to keep the charge balance. Because the extra

Na+ is located in the Na(2) site, it not only increases the electrochemically active Na+ content but

also stabilizes the crystal structure. In addition, the distribution of Mg2+ in the Na3V2(PO4)3/C

particle also influences the electrochemical performance. Combined with the results of the crystal

volume shifts, interfacial resistance changes, and ion diffusion in the bulk, it can be concluded
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that Mg2+ distributes on the surface of Na3V2(PO4)3/C particle. This will facilitate the surface

reaction during charging/discharging, leading to excellent rate performance of the material.
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Chapter 4

Probing Solid-Solid Interfacial Reactions

in All-Solid-State Sodium-Ion Batteries

with First-Principles Calculations

4.1 Introduction

All-solid-state rechargeable alkali-ion batteries (SSABs) have garnered significant interest

in recent years.[84] By replacing flammable organic solvent electrolytes with non-flammable

solid electrolytes, SSABs promises to be a safer energy storage architecture, while at the same

time, potentially provide significant gains in system-level energy densities through device opti-

mization (e.g., stacking) or enabling new chemistries (e.g., high-voltage cathodes and alkali metal

anodes).[5, 85]

Despite ground-breaking discoveries of novel solid electrolyte (SE) chemistries exhibiting

superionic alkali conductivities,[86, 87, 88, 89, 90, 91] a major challenge that remains is the

unsatisfactory rate performance and cycling stability of SSABs due to the high resistance and

poor stability of electrode/SE interface. For example, though the Li9.54Si1.74P1.44S11.7Cl0.3 based
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on the Li10GeP2S12 (LGPS) structure first reported by Kato et. al. [92] has one of the highest

Li+ conductivities (25 mS/cm), its extremely poor electrochemical stability and interfacial side

reactions render it far less practical than Li9.6P3S12, a material reported in the same work with a

significantly lower conductivity (1.2 mS/cm) but much better interfacial stability. For Na-ion

chemistry, most reported room-temperature solid-state Na batteries reported thus far suffer from

limited capacity or significant capacity degradation during cycling. [91, 93, 94, 95, 13, 96, 97]

It is therefore not surprising that researchers have escalated their efforts at understanding

and addressing these interfacial issues in SSABs. On the experimental front, X-ray photoelectron

spectroscopy (XPS) has emerged as a common approach to probe and identify the species present

at the buried electrode/SE interface.[16, 98, 18] The application of buffer layers such as Al2O3

has been demonstrated to be an effective approach in improving the wetting of the electrode/SE

interface (especially for Li metal anodes),[99] as well as a protective barrier to electrode/SE

reactions (especially for sulfide SEs).[100, 101, 102] Also, first principles calculations have

emerged as an important complementary tool to precisely probe interfacial reactions[103, 104]

and the electrochemical stability of SEs. Ong, Mo and Ceder[14, 15] first developed the first

principles Li grand potential approximation to predict the SE phase equilibria at the high and low

voltage limits in the LGPS family of SEs. This approximation has been shown to be remarkably

effective, as evidenced by subsequent experimental confirmation of the predicted reaction phases

via XPS measurements.[16] Later, these approaches were further extended to extensive studies

of most well-known Li and Na SEs [10, 17, 9, 33, 34, 13]. More recently, Tian et al. reported a

combined experimental and theoretical study of the compatibility of the Na3PS4 and Na3PSe4

SEs with layered transition metal oxide (NaTmO2, Tm = Cr, Mn, Fe, Co, Ni) cathodes.[18]

In this work, we will attempt to address two crucial gaps in previous works. First,

previous works have primarily focused on thermodynamic approximations to interfacial phase

equilibria; kinetic effects are only accounted for to a limited extent,[18] if at all. Second, a

comprehensive assessment of Na-ion electrode/SE interactions have not been performed, and
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in general, there is a lack of guidance on effective materials selection strategies for cathode/SE,

anode/SE, and buffer layers for all-solid-state Na-ion batteries (SSNaBs). In the subsequent

sections, we will first outline the various approximation methodologies for predicting interfacial

phase equilibria, including explicit kinetic interface model analysis using ab initio molecular

dynamics (AIMD) combined with radial distribution function analysis. This is followed by a

comprehensive study of the reactions between the common cathode, anode and SE chemistries

currently under consideration for SSNaBs, along with recommended materials selection strategies.

Furthermore, we will also attempt to provide a rough estimate of the chemo-mechanical effect of

these reactions, a factor not considered in previous works.

4.2 Methods

4.2.1 Materials Selection

The relatively low computational cost of the thermodynamic approaches 1 and 2 above

permit a high-throughput analysis of a large number of material combinations forming the

interface, especially if pre-computed energies and volumes from MP database are used where

available. As such, we have performed a comprehensive analysis covering most well-known

SE, cathode and anode materials across a broad range of chemistries currently of interest in the

Na-ion battery community, as tabulated in Table 4.1.

More details regarding selected structures for thermodynamic interfacial reactivity assess-

ments can be found in Supporting Information.

Given the high computational expense of AIMD simulations of interfacial systems, ap-

proach 3 was applied only for one model battery system: layered O3-NaCoO2 cathode, Na3PS4

SE and Na metal anode, with Al2O3 as the model buffer layer. For the NaCoO2 cathode, both

the half-discharged and fully-discharged cathode materials were modeled to assess the effect of
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Table 4.1: List of cathodes, solid electrolytes, anodes and buffer layer materials studied using
thermodynamic approaches 1 and 2.

Category Materials

Solid electrolytes
NASICON Na3Zr2Si2PO12, Na3PS4,
Na3AsS4, Na3SbS4, Na3PSe4

Cathodes

Layered NaMO2 (M = Cr, Mn, Fe, Co, Ni),
Layered TiS2,
NaFePO4, Na2FePO4F,
Na3V2(PO4)3, Na3V2(PO4)2F3, Na2Fe2(SO4)3

Anodes Na metal, Na2Ti3O7

Buffer layers

ZnO, CdO,
Al2O3, Sc2O3, Y2O3, La2O3,
SiO2, TiO2, ZrO2, HfO2,
Nb2O5, Ta2O5

state of charge on the interfacial reactivity. All structures used to construct interfaces are relaxed

structures from MP database, and details are tabulated in Table 4.2.

Table 4.2: Selected structures for interface constructions.

Cathode Solid electrolyte Anode Buffer layer
Formula NaCoO2 Na3PS4 Na Al2O3
MP id mp-18921 mp-985584 mp-127 mp-1143
Space group R3̄m I4̄3m Im3̄m R3̄c
Slab orientation (101̄0) (001) (001) (0001)

4.2.2 DFT Calculation Parameters

All calculations were carried out using the Vienna Ab initio Simulation Package (VASP)[69]

within the projector augmented wave approach[70] using the Perdew-Burke-Ernzerhof generalized-

gradient approximation (GGA) functional.[71]

For total energy calculations, a mixing scheme combining GGA calculations with or with-

out Hubbard (+U) correction was applied to treat electron insulators and conductors properly.[105]

All parameters, such as plane wave energy cutoff of 520 eV and k-points density of at least
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1000/(number of atoms), were chosen in a consistent manner with those used in MP as imple-

mented in Python Materials Genomics (pymatgen)[27] package. All calculations were spin-

polarized starting from a high-spin ferromagnetic configuration, except for Co which is initialized

with low spin.

For AIMD simulations, non-spin-polarized were performed using a minimal Γ point

k-point grid and a time step of 2 fs. The use of non-spin-polarized calculations is a necessary

approximation to ensure the AIMD simulations can be performed at a reasonable cost, and we do

not expect the key results (reaction mechanisms and products at the interface) to be significantly

affected by this approximation. Simulations in the N pT ensemble at 300 K were first carried

out until the volume of the cell is converged to within 2%. This step is necessary to minimize

the interfacial stress caused by the lattice misfit, and typically occurs within ˜4 ps of simulation

time. The pressure of N pT simulations was kept at 1 atm with the Langevin thermostat [106],

and a larger plane-wave energy cutoff of 400 eV (without oxygen) or 600 eV (with oxygen)

was used to avoid the undesired Pulay stress error. This is followed by NVT simulations at 300

K using a smaller energy cutoff of 280 eV (without oxygen) or 400 eV (with oxygen) and the

Nose-Hoover thermostat. All calculations were carried out using an automated in-house AIMD

workflow software.[32]
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4.3 Results

4.3.1 Electrochemical (Grand Canonical) Stability
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Figure 4.1: (top) Electrochemical stability of studied solid electrolytes. (middle) Predicted
phase equilibria at different voltage (µNa) ranges for one example solid electrolyte - Na3PS4.
(bottom) Na uptake per formula unit of Na3PS4 versus voltage.

Figure 4.1 shows the predicted electrochemical window of various SEs calculated using

the grand potential phase diagram approach. We find that none of the commonly studied Na

SEs are stable against Na uptake at a voltage close to Na metal. Generally, the NASICON

Na3Zr2Si2PO12 oxide SE has better cathodic as well as anodic stability compared to the sulfide
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SEs, which in turn have better cathodic and anodic stability compared to the selenide (Na3PSe4).

Figure 4.1 also shows the predicted phase equilibria and Na uptake versus voltage for

the Na3PS4 SE. The predicted products at the Na metal anode voltage are Na3P and Na2S, in

good agreement with XPS measurements of Na3PS4 after Na metal deposition.[98] We also

note that Na3AsS4 and Na3SbS4 show significantly narrower electrochemical windows than

Na3PS4. This is due to the fact that As and Sb are redox-active elements. Interestingly and

somewhat counterintuitively, both the immediate cathodic and anodic decomposition of Na3AsS4

and Na3SbS4 occur with the reduction of As/Sb from the 5+ to the 3+ oxidation state, with the

formation of Na2S with Na uptake (reduction at low voltage) and S with Na extraction (oxidation

at high voltage). Details of the reaction products are provided in Supporting Information.

It should be noted that the predicted products for Na3PS4 and Na3PSe4 differ slightly from

those in earlier work by Tian et al. [18] because this study uses only data available in the Materials

Project without including predicted phases. Nevertheless, the main qualitative conclusion is the

same, which is that both Na3PS4 and Na3PSe4 have limited electrochemical windows, which are

much narrower than those from cyclic voltammetry (CV) measurements.[107]
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4.3.2 Chemical (Equilibrium) Stability
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Figure 4.2: Reaction energies (left) and volume changes (right) for electrode-SE pairs. The
reactions are calculated for the discharged cathode.
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Figure 4.2 shows the calculated reaction energies (left) and volume changes (right)

between various discharged electrode-SE pairs using approach 2. We may make the following

key observations:

1. Highly unstable cathode/SE combinations arise when a non-polyanion cathode (such as

the layered NaMO2 oxides) are paired with Na3PS4 or Na3PSe4 due to the displacement

reaction of the S2 – and Se2 – by O2 – to form the highly stable PO4 compounds, e.g.,

NaCrO2 + Na3PS(Se)4 −→ Na3PO4 + NaCrS(Se)2. This observation is consistent with

those made previously [9] and [18]. The volume changes depend on the transition metal

species, with NaCoO2, NaNiO2 and NaMnO2 exhibiting relatively large positive volume

changes.

2. Substitution of P by As and Sb tends to improve the chemical stability of the layered

NaMO2/SE interface. Though the DFT phase diagrams still predict the occurrence of

exchange reactions, these tend to be incomplete in the case of As and Sb, i.e., not all As and

Sb are consumed in forming AsxOy or SbxOy polyanions, respectively, which may account

for the lower reaction energy compared to P.

3. The PO4-containing polyanion cathodes – NaFePO4, NaFePO4F, Na3V2(PO4)3, and

Na3V2(PO4)2F3 – show significantly better chemical stability with all sulfide and selenide

SEs. However, the two Fe-containing cathodes, NaFePO4 and NaFePO4F, are predicted to

exhibit relatively larger negative volume changes upon reactions with sulfide and selenide

SEs, while the two V-containing cathodes, Na3V2(PO4)3 and Na3V2(PO4)2F3, show com-

paratively smaller volume changes (|∆V |< 2.5%) The main reason is the reaction products

for the Fe-based cathodes lack low-density chalcogenides (e.g., Na2S and VS2). The SO4-

containing Na2Fe2(SO4)3 has a chemical stability in between that of the PO4-containing

and non-polyanion oxide cathodes.

4. Unsurprisingly, the NASICON Na3Zr2Si2PO12 shows the best chemical compatibility with
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all oxide cathodes among the SEs.

5. The NaTiS2 shows good compatibility with all sulfide and selenide SEs. Somewhat

surprisingly, the chemical stability of the NASICON/NaTiS2 interface is predicted to be

worse than that of the NASICON/PO4-containing cathode interface. A NASICON/PO4-

containing cathode interface has either no reaction (e.g., NaFePO4 and Na2FePO4F), or

non-redox reaction with negligible driving force (e.g., Na3V2(PO4)3 and Na3V2(PO4)2F3),

while NASICON/NaTiS2 interface undergoes a redox reaction with larger driving force.

6. Finally, highly reactive Na metal anode is predicted to be chemically unstable with all SEs,

with large negative volume changes. Na2Ti3O7 shows much better chemical-mechanical

compatibility, with especially low reaction energies and small volume changes with the

Na3AsS4 and Na3SbS4 SEs.

We have performed a similar analysis using a few selected cathodes in the charged state

(as opposed to discharged). Generally, charged cathodes are more oxidizing than discharged

cathodes, resulting in more negative reaction energies and larger volume changes. Nevertheless,

we find that the overall trends in chemical stability across cathode-SE chemistry pairs remain

fairly consistent with that of the discharged cathodes.
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Evaluation of potential buffer layer materials
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Figure 4.3: Reaction energies between potential buffer layer materials (binary oxides) and
various active materials in SSNaBs.
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Binary oxides are commonly used as buffer layer materials to protect the electrode/SE

interface in alkali-ion batteries.[108, 109] A good buffer layer material should exhibit limited

reactivity with both materials at the heterogeneous interface. Figure 4.3 shows the calculated

reaction energies of potential buffer layer materials and active materials in SSNaBs. We find

that Al2O3, a commonly-used buffer layer material,[110] show extremely low reactivity with

most SEs and cathodes, and slight reactivity with Na metal. Interestingly, HfO2 is predicted to be

another particularly promising buffer layer material, showing even lower reactivity across nearly

all SEs and electrodes compared to Al2O3. Indeed, there have been a few attempts to use HfO2

as protective materials for anodes in alkali-ion batteries.[111, 112] ZrO2 is another promising

candidate as well, though it is predicted to have somewhat higher reactivity with Na3PSe4. For the

interface between polyanionic cathodes and SEs, SiO2 is another inexpensive and stable option.

For the Na metal anode/SE interface, only HfO2, Sc2O3 and ZrO2 are predicted to have

low reactivity with Na metal while maintaining low reactivity with the sulfide and selenide SEs.

4.3.3 AIMD Simulations of Explicit Interfacial Models

Due to computational expense, AIMD simulations were carried out on explicit interfacial

models for one model system only: layered O3-NaCoO2 cathode, Na3PS4 (cubic) SE and Na

metal anode, with or without Al2O3 as a buffer layer. For the NaCoO2 cathode, both the charged

Na0.5CoO2 and fully-discharged NaCoO2 cathode materials were modeled to assess the effect

of state of charge on the interfacial reactivity. It should be noted that layered oxides such as

NaCoO2 are typically charged only to half theoretical capacity during operation to avoid the

collapse of the layered structure; hence, we have used Na0.5CoO2 as the model for the charged

cathode. A total of five interfacial models were studied (see Figure 2.4). We will outline the RDF

analysis approach in greater detail using the comparatively simpler Na3PS4/Na interfacial system

to illustrate the key principles, while only key results will be discussed for the other interfacial

systems.

48



Na3PS4/Na (SE/anode) interface

Figure 4.4: Evolution of the (a) P-P and (b) S-S RDFs of the Na3PS4/Na interface with respect
to AIMD simulation time plotted as a heat map, with higher brightness indicating a higher value
of g(r), and dashed lines are used to indicate the RDF of phases that are eliminated due to the
absence of certain peaks during the AIMD simulations. White arrows and text indicate formation
of interfacial reaction phases. The RDF of reference materials are provided above the heat map.
Note that t-Na3PS4 and c-Na3PS4 refer to the tetragonal and cubic phases respectively.

Figure 4.4 shows the evolution of the Na3PS4/Na interface model with respect to the

simulation time. From Figure 4.4(a), we may observe that there is a negligible density of P-P

bonds below 4.2Å throughout the entire simulation, which eliminates P, PxSy, NaP, NaP5 and

Na3P11 as potential phases present. From Figure 4.4(b), we similarly observe that there is a

negligible density of S-S bonds below 2.9Å, which further eliminates S, NaS2 and Na2S5 as

potential phases present at the interface. Through this process of elimination, we conclude that the
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potential phases present at the interface are Na3PS4, Na3P and Na2S. We note that the RDFs in

Figure 4.4(a) and 4.4(b) show no presence of peaks corresponding to Na3P (minr(P−P)∼ 5.0Å)

and Na2S (minr(S−S)∼ 4.6Å), respectively, at the start of the simulation (t = 0), but these peaks

become progressively stronger over the course of the simulation. We may therefore conclude

that the dominant reaction products at the Na3PS4/Na interface are Na2S and Na3P, which is

consistent with the predicted interfacial reaction by thermodynamic approaches and previous

experimental studies.[98].

NaCoO2/Na3PS4 (cathode/SE) interface

Figure 4.5: Evolution of the (a) Na-Na, (b) S-O, (c) Co-S and (d) P-O RDFs of the cath-
ode/SE interfaces with respect to AIMD simulation time. The middle and bottom heat maps
are NaCoO2/Na3PS4 and Na0.5CoO2/Na3PS4 interfaces respectively. Note that the references
labeled with an asterisk are belong to the charged Na0.5CoO2/Na3PS4 interface only, and that
only some references for the Na-Na and P-O pairs are shown for clarity.

Figure 4.5 shows comparisons between the evolution of interface models with the dis-

charged NaCoO2 and charged Na0.5CoO2 cathode with respect to the simulation time. Unsurpris-
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ingly, we observe that the discharged cathode is much less reactive with the Na3PS4 SE than the

more oxidizing charged cathode. For instance, strong Na-Na peaks corresponding to NaCoO2

persist throughout the entire length of the simulation (Figure 4.5(a)). We will henceforth focus

our discussion on the charged Na0.5CoO2/Na3PS4 interface.

From Figure 4.5(b), we find that well-defined S-O peaks corresponding to the formation of

SO 2 –
4 groups (rS−O ∼ 1.5 Å) become progressively stronger in the Na0.5CoO2/Na3PS4 interface

after 1 ps. We also observe in Figure 4.5(c) that clear Co-S peaks (∼ 2.2 Å) corresponding to

CoxSy compounds. Finally, based on the P-containing RDFs (Co-P, Na-P, P-S, P-O, P-P), we may

conclude that Na3P is the only other phase present at the interface. Indeed, no P-O signatures

corresponding to PO 3 –
4 groups (rP−O∼ 1.5 Å) are observed (Figure 4.5(d)). This result disagrees

with the predicted reaction products for the NaCoO2/Na3PS4 and CoO2/Na3PS4 interfaces from

the thermodynamic approximations, which include Na3PO4 and/or NaCoPO4.

From the above findings, we may infer that the initial interface reaction favors the

formation of SO 2 –
4 and CoxSy by the reaction between S from Na3PS4 and the O and Co

from Na0.5CoO2, respectively. This is accompanied by the reduction of P in Na3PS4 to form

Na3P. We will discuss the possible reasons for the discrepancy between the AIMD results and

thermodynamic approximations in the Discussion section.
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4.3.4 Buffer/Cathode, SE and Anode Interfaces

Figure 4.6: (a) Schematic diagram of interfaces in NaCoO2/Na3PS4/Na SSNaB with Al2O3
buffer layer. Evolution of the Na-O in (b) the B/A interface, (c) B/SE interface and (d) the C/B
interfaces with respect to AIMD simulation time. Note in (d), the middle and bottom heat maps
are discharged NaCoO2/Al2O3 and charged Na0.5CoO2/Al2O3 interfaces respectively and only
some references are shown for clarity.

From Figure 4.6 as well as Figures S7-9 in Supporting Information, we find that generally,

the Al2O3 interfaces with the Na anode, Na3PS4 SE and NaCoO2 cathode are relatively stable,

with little change in the RDFs of most bonds. This is consistent with the thermodynamic

predictions showing relatively low/zero driving force for the reaction between Al2O3 and the

electrodes and Na3PS4.
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4.4 Discussion

4.4.1 Prediction of Interfacial Reaction Products

Comparing the three approaches to predicting interfacial reactions presented in this work,

we may conclude that there is a reasonable agreement between the predicted reaction products

and driving forces, especially at the SE/anode interface. To take the Na3PS4/Na interface as

an example, all approaches predict Na3P and Na2S among the interfacial reaction products, in

line with experimental findings. [98] Both the multi-species chemical reactivity (Approach

2) and explicit interface modeling (Approach 3) approaches predict low reactivities between

the commonly used Al2O3 buffer material and the cathode, SE and anode, again, in line with

experimental findings.[98, 100, 101, 102]

However, there are significant differences in the predictions of the interfacial reaction

products at the more complex cathode/SE interfaces, where multiple species with different

mobilities generally participate in the reaction. Here, approach 1 (electrochemical reactivity),

where ultra-fast alkali diffusion is assumed, is a rather blunt approximation and predicts the same

interfacial products regardless of cathode chemistry.

Approach 2 (chemical reactivity), which assumes multi-species equilibrium, provides a

more realistic picture in the limit of full thermodynamic equilibrium. This limit applies at high

temperatures (e.g., synthesis conditions) or long time-frames. In general, this approach predicts

that mixing of non-polyanion cathodes (e.g., NaCoO2) and polyanion (e.g., PS 3 –
4 ) SEs tend to

lead to large interfacial reaction energies due to the exchange of polyanion cation, e.g., to form

PO 3 –
4 ). This is consistent with previous theoretical and experimental studies. [18]

Finally, approach 3 (kinetic interface model) provides the most realistic picture of interfa-

cial reactivity, albeit at relatively small cell sizes and short time scales. For the NaCoO2 cathode

and Na3PS4 SE, the AIMD simulations predict that the initial reaction between the two materials,

especially in the case of the charged cathode, comprises SO 2 –
4 compounds and Na3P, with no
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evidence of PO 3 –
4 formation. We note that the P in Na3PS4 are enclosed within PS 3 –

4 tetrahedra.

Our hypothesis therefore is that the initial interface reaction takes place via the oxidation of the

more accessible S2 – on the outside of these tetrahedra by the highly oxidizing cathode to form

SO 2 –
4 , with the concomitant reduction of P to form Na3P. In other words, the formation of

the relatively stable SO 2 –
4 groups is kinetically preferred over the thermodynamically preferred

PO 3 –
4 groups. Once the tightly-bound SO 2 –

4 units are formed, we do not observe any further

reaction to form PO 3 –
4 . We acknowledge that a possible reason could be that the time scale of

our AIMD simulations are too short to observe PO 3 –
4 formation. We have performed additional

AIMD simulations of the more reactive charged Na0.5CoO2/Na3PS4 interface at an elevated

temperature of 600K; no PO 3 –
4 was observed over 20 ps of simulation time. It should be noted

that the voltage in the interface model is not the equilibrium voltage, and hence, the rates of

reaction may differ from the true reaction rates in an actual battery cell, especially if long range

electron transfer are involved.[113] Indeed, the predicted phases are relatively consistent across

both the charged and discharged cathodes, with the main difference being the observed reaction

rates. We hope that these predictions can be verified by future experiments, e.g., via XPS

characterization of the interface.

It should be noted that all three approaches have limitations, and the best results are

obtained by considering the predictions from all three approaches. The chemical and electrochem-

ical activity predictions are computationally relatively inexpensive, but makes certain simplifying

assumptions above the mobilities of the various species. The explicit interface model is more

realistic, but its high computational expense limits the length and time scale of the simulations.

Further, the RDF analysis to ascertain the reaction products in the interface simulation becomes

combinatorially more complex as the number of species, and hence more candidate RDFs to be

analyzed, increases. Nevertheless, we have outlined an elimination approach in which a vast

number of candidates can be excluded on the basis of a few bond choices. We believe this is a

useful approach that can be extended to other heterogeneous interfaces beyond energy storage.
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4.4.2 Choice of Buffer Layers

Another major finding from our work is the identification of buffer layers for various

cathode/SE and anode/SE combinations. Despite the imperfect accuracy in predicting exact

reaction products/mechanisms (as discussed above), Figure 4.3 still provides useful guidance

on materials selection strategies. We chose to focus on binaries oxides in this work because

oxides are common and easy to handle, and thin films of binary oxides can be fabricated with

well-controlled thicknesses using modern deposition methods such as atomic layer deposition.

Most binary oxides are also chemically stable electronic insulators.[112]

The main observation from Figure 4.3 is that buffer layer selection should be tailored

according to electrode and SE chemistry. Sc2O3, SiO2, TiO2, ZrO2 and HfO2 all have similar or

even better chemical stability against thiophosphate SEs and TM oxide cathodes compared to

the commonly used Al2O3. On the Na anode/SE interface, the most promising coating materials

are Sc2O3, ZrO2 and HfO2. It should be noted that a key limitation of this analysis is that the

diffusion of Na through the buffer layer has not been taken into account. Any buffer material

must exhibit reasonable Na diffusivity to ensure that rate capability is not adversely affected, even

after accounting for the short diffusion length scales in the buffer layer (typically ∼ 10-370 nm

[7, 16] thick).

4.5 Conclusion

To conclude, the reactions at the interfaces between common electrodes, solid electrolytes

and buffer oxides were studied using a range of thermodynamic and kinetic interfacial models

in this work. In the limit of full thermodynamic equilibrium, we find that exchange reactions,

especially between simple oxides and thiophosphate groups to form PO 3 –
4 , are the main reason

for large driving forces for cathode/SE interfacial reactions. Similarly, high reactivity with

large volume changes are predicted at the Na anode/SE interface, while the Na2Ti3O7 anode
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is predicted to be much more stable against a broad range of SEs. We have also identified

several promising binary oxide buffer materials with similar or better chemical stability with

most electrodes and solid electrolytes than the commonly used Al2O3. In particular, HfO2 is a

promising candidate that deserves further experimental consideration. Finally, we find that an

explicit AIMD simulation of the NaCoO2/Na3PS4 interface predicts that the formation SO 2 –
4 -

containing compounds and Na3P are kinetically favored over the PO 3 –
4 -containing compounds.

These insights into interfacial reactions provide useful guidelines for designing stable electrode/SE

and buffer/SE interfaces, a crucial bottleneck in the development of all-solid-state sodium-ion

batteries.
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Chapter 5

Revealing Nanoscale Solid-Solid Interfacial

Phenomena for Long Life High Energy

All-Solid-State Batteries

5.1 Introduction

All-solid-state batteries (ASSBs) have attracted much attention in recent years, owing

to their many advantages over liquid counterparts. These include enhanced safety, absence of

electrolyte leakage, and improved energy densities from enabling the use of metallic lithium

anode.[114] While various oxide and sulfide solid-state electrolytes (SSEs) with high Li+ con-

ductivities have been reported over the years, [115] sulfide-based superionic conductors are

considered more practical as they have higher ionic conductivities, facile room-temperature syn-

thesis, and favorable mechanical properties that allow intimate contact with electrodes. [116, 117]

However, the electrochemical performance of these sulfide superionic conductors are still not

comparable with the conventional liquid electrolytes, mainly as a result of severe interfacial

problems between electrodes and sulfide SSEs. [118, 102, 7] Moreover, the narrow electrochemi-
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cal stability windows of sulfide SSEs induce decomposition during charging, forming a highly

resistive solid electrolyte interphase (SEI). [7, 119, 120] Although such phenomena have been

commonly reported in the literature using routine electrochemical tools, [121, 100, 122, 101]

these methods alone cannot provide detailed spatial and chemical information at the interface

as well as the identity of its products. As such the coupled effects of interfacial reactions, elec-

trochemical decomposition and its resulting interface passivation are still not fully investigated.

Understanding the consequences of the decomposition process and its progression over extended

cycling is essential toward designing stable interfaces to enable practical ASSBs.

To understand these effects, the various reactions are first decoupled by controlling the

electrochemical state of each material according to the schematic illustrated in Figure 5.1. First-

principles calculations are used to identify thermodynamically favored decomposition products

along with atomic-scale visualization of interfacial reactions, followed by experimental tools

such as X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), cryogenic electron

microscopy, X-ray photoelectron spectroscopy (XPS), and Raman to determine their presence and

spatial distributions. The results show that LiNi0.85Co0.1Al0.05O2 (NCA) is intrinsically unstable

with Li6PS5Cl (LPSCl), and this instability is further aggravated at the higher charge states. We

demonstrate that such unwanted reactions can be avoided by using a 5 nm thick LiNbO3 (LNO)

coating at the cathode. We also show that electrochemical oxidation of LPSCl occurs at the first

charge, forming a stable self-passivating layer that enables long cyclability of the ASSB.
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Figure 5.1: Schematic of interfacial study in this work. The chemical reactions at
LiNi0.85Co0.1Al0.05O2 (NCA) - Li6PS5Cl (LPSCl) interface, and electrochemical decompo-
sition of LPSCl were segregated and their reaction products explored with both experimental
tools and computation.

5.2 Methods

All density functional theory (DFT) calculations in this work were performed using

Vienna ab initio simulation package (VASP) [69] within the projector augmented wave approach

[70] using the Perdew-Burke-Ernzerhof (PBE) generalized-gradient (GGA) functional [71]. All

analyses are performed using the Python Materials Genomics (Pymatgen) package [27] and

Pymatgen-diffusion package. [32] The Size of diffusion channel Rc is the free radius determined

using Zeo++, an open source topological analysis package.

5.2.1 DFT Parameters

Geometry optimization

For structure relaxations and total energy calculations, GGA with Hubbard (+U) correction

was applied. All calculation parameters, such as the plane wave energy cutoff of 520 eV and

k-point density of at least 1000/(number of atom) were selected to keep consistent with the

settings of Materials Project (MP). [105, 39]
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AIMD

Non-spin-polarized AIMD calculations were performed using Gamma-point grid and a

time step of 2 fs up to 50 ps. A NpT-NVT scheme was applied to minimize the interfacial stress

caused by lattice mismatch, which is similar to previous work by the authors. [11]

5.2.2 NCA Enumeration

To handle the large number of orderings of the highly-disordered NCA, an enumeration

of all symmetrically distinct LiNi0.89Co0.11O2 (NCO) structures were carried out first using the

disordered LiCo0.1Ni0.9O2 (ICSD ID: 174452) obtained from ICSD database ( Inorganic Crystal

Structure Database. Retrieved from http://icsd.fiz-karlsruhe.de). Then the NCO configuration with

the lowest energy was used to generate symmetrically distinct NCA orderings by substituting Co or

Ni sites to Al atoms. Finally, the NCA structure with the lowest energy (LiNi0.85Co0.11Al0.04O2)

was selected to construct phase diagram.

The energy above hull (Ehull) is a descriptor to evaluate the phase stability of a given

compound at 0 K. [35] An Ehull of 0 meV/atom indicates the compound is stable phase and a

more positive value corresponding to a less stable phase. For example, to evaluate the phase

stability of NCO, one needs to first construct the phase diagram in Li-Ni-Co-O chemical space

and determine the energy above hull for the most stable NCO configuration. Using this method,

we have verified the NCO and NCA are all stable phases with an Ehull value of 0 meV/atom.

5.2.3 Chemical Stability at Selected Interfaces

Chemical equilibriums of interfaced formed by discharged NCA cathode, LPSCl elec-

trolyte and LNO coating are predicted using multispecies assumption illustrated in previous work.

[9, 11] A series of reactions with different reactant ratios can be determined by constructing

the pseudobinary phase diagram between the two reactants (e.g. NCA and LPSCl). The more
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negative value indicates a more reactive interface. For example, the reaction energy between two

phases a and b can be determined using the following equation:

∆Erxn(ca,cb) = min
x∈[0,1]

1
N
{Eeq[xca +(1− x)cb]− xE[ca]− (1− x)E[cb]}, (5.1)

where ca, cb are the compositions of phases a and b and x is the proportion of ca in the

mixed reactants. Eeq[xca +(1− x)cb] refers to the total energy of the mixed composition xca +

(1− x)cb; E[ca] and E[cb] indicate the DFT total energy of composition ca and cb, respectively.

N is the total number of atoms involved in the reaction, which normalize the unit of energy into

eV/atom.

Another term related with the heterogeneous reaction is the volume change, ∆V . This

is determined by comparing the total volume of the products to that of the reactants. The fully

relaxed volume from DFT calculations of both reactants and products are used. A negative value

indicates the total volume decrease after reaction, which may cause voids and thus less intimate

contact at interface. A positive value of ∆V indicates an increased volume after reaction, which

may cause additional strain and other mechanical failure at interface.

5.2.4 Electrochemical Stability of Selected Compounds

The electrochemical stability windows of the selected compositions are calculated using

grand potential approach assuming the fast diffusion of Li. [34, 14] The interface is treated as an

open system to Li and can be described using the chemical potential of Li or the voltage applied.

This gives an voltage range (electrochemical stability window) for a given compound that within

this rage the compound would not decompose due to the Li insertion or extraction.
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5.2.5 Interface Construction

Considering the low concentration of Al in NCA, in ab initio molecular dynamics (AIMD)

simulations were performed for the approximate interface NCO/LPSCl at half-discharged state.

The initial structure of Li6PS5Cl (MP id, mp-985592) was obtained from MP database. The

coherent interface model was constructed by matching Li0.5Ni0.89Co0.11O2 and LPSCl with a

mean absolute strain of 1.75% using the algorithm proposed by Stradi et al. [38]

ε̄ =
|εxx|+ |εxy|+ |εyy|

3
(5.2)

where, εxx, εxy and εyy are components of plane strain caused by matching two slabs.

5.2.6 Geometry Analysis

Changing of the bonds are tracked using radial distribution functions (RDFs) of various

species at the interface. Then RDFs of interface throughout the AIMD simulations are compared

with known crystalline compounds in Li-Co-Ni-P-S-Cl chemical system extracted from MP

database with an Ehull value less than 20 meV/atom. In consider of the limited time scale of

AIMD simulation, the P-P and Cl-Cl pairs were not used in matching RDFs due to the low

concentration (< 0.05) of P and Cl atoms as well as their commonly long bond lengths (> 3Å).

As a result, the RDF spectra matching were performed for the rest 13 pairs, which is similar to

previous work by the authors. [11]

5.2.7 Material Synthesis

All material synthesis, cell fabrication and testing were performed inside the glove box

(MBraun MB 200B, H2O < 0.5 ppm, O2 < 1.0 ppm) due to high air-sensitivity of precursors and

solid electrolytes. LiNi0.85Co0.1Al0.05O2 (NCA) was purchased from TODA Chemical.
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Li6PS5Cl was synthesized by ball milling the mixture of stoichiometric amount Li2S

(99.9%, Aldrich), P2S5 (99.8%, Aldrich) and LiCl (99%, Aldrich). Ball milling was carried out

at 600 rpm for 18 hours using a planetary ball mill apparatus (Retsch, PM400) and an air-tight

zirconia pot (50 ml) with 11 ZrO2 balls of 10 mm size. Li0.5In alloy was prepared by mixing

stoichiometric amount of lithium powder (FMC) and indium powder (Alfa Asear 99.6%) for 5

mins in the vortex mixer.

Solution method was employed to coat LiNbO3 (LNO) on the NCA particle. To be specific,

lithium ethoxide (Aldrich 99.8%) and niobium ethoxide (Aldrich 99%) were first dissolved in dry

ethanol (Aldrich 99.8%). NCA powder was added into the solution and the solution was stirred

for one hour. The dry powder was collected by evaporating the ethanol using rotator vapor and

followed by the heat-treatment at 450◦C for one hour to get the LNO coated NCA. The coated

powder was dried overnight at 100◦C under vacuum before transferring to the inside of the glove

box for storage and fabrication of solid state battery. LPSCl/activated carbon composite (7:3

wt%) was made by ball mill method at 300 rpm for 30 mins using 5 mm ZrO2 balls under Ar

atmosphere.

5.2.8 Chemical Reaction between NCA and LPSCl

Both pristine and charged (bare and LNO-coated) NCA were hand mixed with LPSCl

for at least 15 mins (to exaggerate the chemical reaction) using mortar pestle. The ratio of NCA

and LPSCl was 11:16 (w/w). The charged samples were harvested by disassembling the coin

cells inside the glove box, which were charged to 4.3 V at C/100. The pellets were made of 200

mg materials under 360 MPa pressure and used as electrode without any conductive additive

and binder. The liquid electrolyte is 1 M LiPF6 in ethylene carbonate (EC)/Dimethyl carbonate

(DMC) (50:50 v/v).

To remove the unreacted LPSCl, the LPSCl-NCA mixture was washed by the dry ethanol

solution to dissolve the LPSCl. In order to highlight these reaction products, the unreacted LPSCl
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was removed by washing the NCA/LPSCl mixture with ethanol; in ethanol, LPSCl is soluble,

LiCl and Li3PO4 are sparingly soluble, and Ni3S4 is insoluble. After washing, the XRD peaks of

the LPSCl disappear while those new peaks are retained; LiCl, Ni3S4, and Li3PO4 were clearly

identified.

5.2.9 Electrochemical Characterization

LPSCl pellet was prepared by cold press with 360 MPa pressure. The conductivity of

LPSCl was measured in the Ti/LPSCl/Ti cells. The composite electrode was prepared with 10 mg

of NCA, 16 mg of LPSCl and 1mg of carbon as conductive additive. All components were hand

grinded with an agate mortar to make a homogeneous mixture. Solid electrolyte was pressed

with 360 MPa pressure to make the pellet. 10 mg of the composite cathode was pressed on

top of with same pressure. Finally, 70 mg of Li0.5In alloy was pressed with 144 MPa pressure

on other side of the pellet. All the procedures were performed in a polyaryletheretherketone

(PEEK) mould (diameter = 13 mm) with two Ti metal rods as current collectors. Fabrication of

solid state Lithium metal battery was made with 50 micron meter thickness Li metal foil with

applied pressure of 20 MPa. Galvanostatic charge discharge measurement was performed at

different current densities and 180 mA/g is equivalent to 1C. All the cells were operated within

the potential range between 2.5 and 4.3 V vs. Li/Li+.

R2032 coin cell was used for the NCA/Li cell with liquid electrolyte. Composite slurry

was made by mixing NCA powder, super P and poly(vinylidene fluoride) (PVDF) binder using

N-Methylpyrrolidone as solvent. The weight ratio of the NCA, super P and PVDF were 85:10:5.

The slurry was casted on Al foil and dried at 100 0C under vacuum. Li metal was used as counter

and reference electrode. 1 M LiPF6 in ethylene carbonate and Dimethyl carbonate (50:50 v/v)

was used as electrolyte.

Electrochemical impedance spectroscopy (EIS) was performed using Solartron 1260

impedance analyzer. Conductivity measurement of LPSCl (Ti/LPSCl/Ti) was done with an
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applied AC potential of 50mV over a frequency range of 1MHz to 1Hz. Impedance measurement

of the solid-state cells were performed after charging at 3.675 V (vs. Li0.5In/Li+) and kept with

constant voltage of 3.675 vs. reference electrode. The AC perturbation signal was 10 mV, and the

frequency range was from 10-2 to 106 Hz in the EIS.

5.2.10 Chemical Characterizations

Boron rich capillary tube (Charles Supper) was used to load few milligrams of sample for

X-ray diffraction measurement. The sample was loaded inside the glove box and caped with clay

before to bring outside where it was flame sealed using a butane torch. Bruker Kappa goniometer

equipped with a Bruker Vantec 500 detector was used for measuring the sample. The diffraction

data was collected using Cu Kα radiation at 45 kV and 50 mA.

Raman (Renishaw inVia/Bruker Innova) spectra were measured using illumination of a

Modu-Laser 50 mW Ar+ ion laser with wavelength of 514 nm. Samples for Raman measurement

were made inside the glove where it was kept on top of glass slides and sealed with Kapton (to

avoid the air contamination) tape before to bring it outside.

The XPS samples were prepared inside the glove box and carried outside with a sealed

metal canister where it was transferred into the nitrogen filled glove box, attached with XPS

chamber. Solid state cells were disassembled after different charge discharge cycle and isolate

the cathode composites to prepare the XPS sample. X-ray photoelectron spectroscopy (XPS)

was measured with a Kratos Axis Ultra spectrometer with a focused 500 mm Rowland circle

monochromator Al Kα radiation at 15 KeV. Avantage software was used for data calibration,

fitting and analyzing the chemical species at the cathode electrolyte interface. All spectra were

calibrated with reference of carbon 1s peak (284.8 eV) and fitted with Shirley type background.

XAS measurements at S K-edge were performed at the Advanced Photon Source on the

bending-magnet beamline 9-BM-B with electron energy of 7 GeV and average current of 100

mA. The radiation was monochromatized by a Si (111) double-crystal monochromatic. At the S
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K-edge, spectra were collected in fluorescence mode using a four-element vortex detector. For

energy calibration, a sodium thiosulfate sample was measured. The peak position by Gaussian

fitting was adjusted to 2469.2 eV. In situ batteries were operated by a Maccor battery tester with a

current density of 0.1 mA/g. Data reduction and analysis were processed by Athena software.

(S)TEM: TEM was recorded on a field emission gun JEOL-2800 at 200 kV with Gatan

OneView Camera (full 4 K × 4 K resolution). STEM/EDX was performed on primary particles

using a JEOL JEM-2800 at annular dark field (ADF) mode. All ADF images and were acquired

at 200 kV and with a beam size of ∼ 5 Å. To minimize possible electron beam irradiation effects,

ADF images were acquired from areas without pre-beam irradiation.

5.3 Results

5.3.1 Electrochemical Performance of Li-In-LPSCl-NCA Cell

LPSCl was synthesized via mechanical ball milling, achieving pure phase as determined by

XRD and a high ionic conductivity of 1.03 mS · cm−1 as measured by electrochemical impedance

spectroscopy (EIS). The ASSBs were fabricated with NCA-LPSCl-C cathode composite in the

weight ratio of 11:16:1 respectively. LPSCl was used as the electrolyte, and Li0.5In (0.62 V vs.

Li/Li+) alloy as the anode. The assembled cell was cycled at room temperature at a rate of 0.1C.

Figure 5.2 (a) depicts the voltage profiles of the ASSBs with and without LNO coating on the

cathode. The cell using uncoated bare NCA delivers a low capacity of 71 mAh ·g−1, while the cell

using LNO coated NCA delivers a high capacity of 147 mAh ·g−1, close to that of a conventional

liquid cell. The LNO coated NCA shows much better rate performance then the uncoated one.

The low capacity of bare NCA was likely caused by parasitic reactions at the electrode/electrolyte

interface, which increases the interfacial resistance reflected by large cell polarizations in the

voltage curves. The presence of 2 wt% LNO on the surface of NCA helps to mitigate this

interfacial resistance growth, evident from dramatic reductions of the low-frequency semicircle in
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Figure 5.2 (b). The coating was characterized with scanning transmission electron microscopy

(STEM) and XPS. The STEM mapping (Figure 5.2 (c)) shows a conformal amorphous LNO

coating layer on the NCA cathode and its average thickness was determined to be 5 nm. Strong

signals from Nb was found in the XPS spectra (Figure 5.2 (d)), with the peak position of 3d5/2 at

207.55 eV, indicative of its +5 oxidation. The cell performance and impedance measurements

validated the effectiveness of LNO coating to improve the electrochemical performance of high

voltage NCA cathode. However, to investigate the fundamental reasons for these improvements,

the chemical and electrochemical reaction components at the interface were separated, and their

reaction products probed with both bulk and surface-sensitive characterization tools. Additionally,

computational calculations were used to support these findings, which will be discussed in later

sections.
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Figure 5.2: Comparisons between bare and LNO coated NCA. (a) Voltage profile of the first
cycle and (b) overpotential curves after the first charge cycle, inset compares their corresponding
impedance growths. (c) STEM image and (d) XPS binding energies of Nb 3d regions. The
inset images in (c) compares elemental distribution of Nb (green) and Co (violet), measured via
energy-dispersive X-ray spectroscopy (EDX).

5.3.2 Chemical Reactions between LPSCl and NCA

The spontaneous chemical reactions between NCA and LPSCl were examined by phys-

ically mixing LPSCl with bare NCA or LNO-NCA (Figure 5.2 (b)) at both the pristine and

charged state respectively (Figure 5.3). Charged NCA was harvested from a cell using liquid

electrolyte charged to 4.3V (Figure 5.3a). From XRD analysis of pristine NCA and LPSCl,

new diffraction peaks were observed upon mixing of both powders. Presence of these peaks are

indicative of new phases formed from chemical reactions between the electrode and electrolyte.
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Such chemical reaction become more severe when the charged NCA was used (to 4.3 V vs.

Li/Li+), with intense peaks from new phases forming as seen in Figure 5.3 (c). This is expected as

the charged NCA is more reactive than pristine NCA due to its higher oxidation state. These new

peaks can be assigned to LiCl, Ni3S4, and Li3PO4 along with the formation of additional other

unknown phases (Figure 5.3 (c)). By contrast, no new peaks were found in the XRD pattern of

the LNO-NCA/LPSCl mixture, indicating that the LNO coating is able to suppress the chemical

reactions that occur between bare NCA and LPSCl. To corroborate these observations, XPS was

conducted to confirm the three major interfacial products formed at the interface.

Binding energies measured in the Ni 2p3/2 region of bare NCA showed a red shift from

857.3 eV to 853.7 eV after mixing with LPSCl, suggesting the reduction of Ni to form Ni3S4 or

NiS2. [123] Additionally, both S and P regions show partial oxidation, reflected as new peaks

at higher binding energies. The new peak in the S 2p region corresponds to Ni3S4 or NiS2

and phosphorus polysulfide (P2Sx), while those in the P 2p region originate from the P2Sx and

formed P-O bonds. [124, 125] These observations agree with computational phase equilibria at

the NCA/LPSCl interface, which will be discussed later. Formation of such compounds results in

the formation of a highly resistive interfacial layer that impedes Li+ transport. However, these

can be avoided when LNO coating is used. From the XRD patterns, none of the previously

mentioned byproducts are found in the mixtures of charged LNO-NCA and LPSCl (Figure 5.3

(c)). This demonstrates the coating’s ability to prevent parasitic reactions between the cathode

and electrolyte at both the pristine and charged states.

Raman spectroscopy was also performed to examine the short-range structural changes at

the cathode/electrolyte interface. As shown in Figure 3d, LPSCl exhibits t1g symmetric stretching

mode (PS 3 –
4 ) centered at 425 cm−1 while NCA shows vibrational modes at wavenumbers 470,

550 and 1100 cm−1 which relate to vibrational modes between transition metals and oxygen

[126]. When LPSCl was mixed with either pristine or charged NCA, no visible new peaks are

seen. Low concentrations of interfacial products buried under unreacted NCA and LPSCl likely
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drowned the signals from the interfacial products. To enhance signals from these products, excess

LPSCl in the mixture was washed away with ethanol, revealing two new peaks at 284 and 940

cm−1, attributed to Ni3S4 and Li3PO4 respectively. [127, 128] These findings are consistent with

the XRD results. However, these were once again not observed in the charged LNO-NCA/LPSCl

mixture, further confirming the effectiveness of LNO coating to prevent electrode/electrolyte

interfacial reactions.

Figure 5.3: Chemical reaction characterization between LPSCl and NCA. (a) Potential curve of
NCA charged to 4.3 V in a liquid cell. Similar profiles are seen for LNO-NCA. (b) Schematic of
sample mixture preparation used for (c) XRD and (d) Raman spectra of each mixture at different
states of charge.
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5.3.3 First Principles Calculations

Figure 5.4a shows the density functional theory (DFT)-computed reaction diagrams

between NCA and LPSCl and LNO and LPSCl at various mixing compositions. The highly

exothermic (negative) reaction energies for NCA and LPSCl means that NCA and LPSCl are

chemically unstable with each other. Upon contact, among the major products formed include

LiCl, Li3PO4, and Ni3S4/NiS2, especially closer to the LPSCl (reactions 1-3 labeled in Figure

5.4a). These predictions agree with our characterization study (using XRD, XPS, Raman, and

TEM) discussed in the previous section. While additional products such as Li2S and Li2SO4 are

expected, they could not be detected experimentally, possibly due to further exchange reactions

with LPSCl to form Li3PO4 or LiCl. Conversely, the LNO coating is predicted to have an order

of magnitude less exothermic reaction energy with LPSCl (Figures 5.4a) leading to greater

improvements in interfacial stability and reduced formation of the undesirable products.

Using a 50% state of charge provides a realistic visualization of interfacial phenomena

during the bulk of cell cycling duration compared to a pristine or fully charged state. The explicit

model of the half-charged interface is shown in Figure 5.4c. The dynamic changes at 50% state of

charge were simulated through ab initio molecular dynamics (AIMD) at 300 K, and the variation

of the structure was tracked using radial distribution function g(r) (RDF), which is similar to

previous work by the author. [11] The lower part in Figure 5.4b shows the evolution of P-O pair

during the first 50 ps at the half-charged NCA/LPSCl interface; the upper part plots P-O RDF of

the known crystalline compounds in Li-Co-Ni-P-S-Cl chemical system extracted from Materials

Project (MP) database [105, 39] and the interface model before simulation is also provided as

a reference structure labeled as “before MD”. At the very beginning of the simulation, no P-O

bonds can be found matching those in [PO4]3 – tetrahedra (∼ 1.5 Å) and its initial formation is at

∼ 2 ps. This oxidation process of PS4 is consistent with the thermodynamic prediction of forming

Li3PO4 at equilibrium as well as experimental characterizations.

As a summary, Figure 5.4c shows all of the new bonds found after AIMD simulation
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as well as the model before AIMD. In addition to the formation of characteristic P-O bonds

discussed previously, M-S (M = Co, Ni) and Li-Cl bonds formed within the first 2 ps, which is

also consistent with both the thermodynamically predicted reaction products and experimental

observations of Li3PO4, MxSy (M = Co, Ni), and LiCl formation at interface after reaction.

Elemental S was also found and it might come from LPSCl electrochemical decomposition,

which agrees with the electrochemical product found experimentally and will be discussed in

a later section. From our best understanding, this is reported for the first time that AIMD can

simulate electrochemical reaction.
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Figure 5.4: (a) Pseudo-binary phase diagram between LPSCl electrolyte and discharged NCA
cathode at different mixing ratios, the red line indicates the case with LNO coating. (b)
Visualization of the formation of characteristic PO bonds in PO4 polyhedra at the half-charged
NCA/LPSCl interface using RDF. (c) Atomic structure of the half-charged NCA/LPSCl interface
at 0 and 50 ps, which summarized the key observations in AIMD simulation.

5.3.4 New Interfacial Product oLPSCl

Although DFT calculations are a powerful tool to identify potential reaction products

from material databases, unknown materials may still be present at the interface. This was found

in the case of NCA/LPSCl, where a slight blue shift of the LPSCl Raman peak (PS 3 –
4 ) was

detected when it is mixed with bare NCA at both pristine and charged states (Figure 5.5 (a)).
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Such a shift was previously reported in the structure of the Li10GeP2S12 after partial substitution

of sulfur with oxygen. [129] Note in AIMD simulation, the partially oxidized PS4 tetrahedra

might be a feature of oLPSCl. Thus, we hypothesized that the peak shift arises as a consequence

of PS 3 –
4 -polyhedra in LPSCl’s reaction with oxygen within NCA (Figure 5.5 (b)). To verify this,

pristine LPSCl was oxidized via exposure to dry oxygen, and the resultant sample denoted as

oLPSCl. Subsequent Raman analysis revealed similar peak shifts between those found in the

electrode/electrolyte mixture, and that of oLPSCl (Figure 5.5 (a)). Further examination of oLPSCl

with XRD showed that majority of its peaks matched the charged bare NCA/LPSCl mixture,

along with the products Ni3S4, LiCl and Li3PO4 (Figure 5.5 (b)). Therefore, both Raman and

XRD suggest that oxygen within NCA does participate in chemical reactions with LPSCl to form

oLPSCl. The ionic conductivity of oLPSCl was also measured and found to be 10×106 S/cm,

three orders lower than that of LPSCl (Figure 5.5 (d)). This newly formed highly insulate product

contributes additional interfacial impedance on top of the existing phases identified (oLPSCl,

Ni3S4, LiCl and Li3PO4). However, the use of LNO coating was able to prevent the above

reaction; where no blue shift was detected when LPSCl was mixed with LNO-NCA. Further

interfacial reaction was confirmed with cryo-STEM where without LNO coating, part of Ni, Co,

P, S and Cl is prone to aggregate on the surface of the NCA particle.
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Figure 5.5: New interfacial product oLPSCl. (a) Raman spectra of the oLPSCl, mixtures of the
LPSCl/bare and LNO-NCA at both charged and discharged state, (b) Illustration of O doped
LPSCl to form oLPSCl, (c) XRD of the oLPSCl compared with the mixture of bare NCA/LPSCl
and charged NCA, (d) EIS comparison between LPSCl and oLPSCl.

Although LNO coating was shown to eliminate chemical reactions between NCA and

LPSCl, the solid state cell still shows higher polarization and lower Coulombic efficiency when

compared to its liquid based counterpart (Figure 5.6 (a)). Moreover, the initial charge plateau starts

at 3.3 V compared to 3.6 V in the liquid based cell. This are features of LPSCl electrochemical

decomposition at the onset of charging due to its narrow electrochemical stability window. To

quantify the redox activity of LPSCl, a cell comprising of only LPSCl and conductive carbon

(70:30 wt%) at the cathode was used. Upon charging to 4.3 V, LPSCl was oxidized and found

to deliver a large capacity of ∼ 250 mAh ·g−1 (Figure 5.6 (b)), corresponding to 50% of its

theoretical capacity (499 mAh ·g−1). The onset of this charge plateau is similar to that seen in
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the above ASSBs, confirming the initial electrolyte decomposition in a typical cell. However, it

is observed that LPSCl oxidation only occurs at the first charge cycle. No reversible capacity

was found when the cell is discharged to 2.3 V. As such, it can be inferred that the decomposed

species formed during the first charge terminates any subsequent electrochemical decomposition

of LPSCl. This demonstrates the self-passivating nature of LPSCl. XRD and in-situ XAS was

performed to determine the decomposed products of LPSCl (Figures 5.6 (c-d)). The XRD pattern

shows that S and LiCl are formed while some unreacted LPSCl remains. In the S K-edge XANES

spectra, the pre-edge shift to higher energies and enhancement of the elemental S peak at 2470

eV [130], suggests the continuous oxidation of S2 – in LPSCl to elemental S during charging.

Figure 5.6: Characterization of electrochemical decomposition products of LPSCl. (a) Voltage
profile of LNO-NCA with solid-state electrolyte and liquid electrolyte at the first cycle, (b)
voltage profile of LPSCl-conductive carbon composite (70:30 wt%), (c) XRD and (d) XAS of
bare and charged LPSCl.
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The self-passivating nature of LPSCl was further explored with XPS. As shown in Figures

5.7 (a-b), new peaks are found in both the S 2p and P 2p regions after the 1st charge. These

are assigned to Li2Sx and P2Sx species from the oxidative decomposition of LPSCl. [131] As

expected, intensities of these peaks do not change significantly after the 3rd and 50th cycle,

indicating that little additional decomposition occurs after the 1st charge. As a result, the initial

charge plateau previous observed between 2.3-3.6 V at the 1st cycle vanishes at the 2nd cycle

(Figure 5.7 (c)). This self-terminative electrolyte decomposition was subsequently found to enable

excellent cycling stability of the ASSB, with a capacity retention of (93%) at 100 cycles (Figure

5.7 (d)).

Figure 5.7: XPS spectra of S (a) and P 2p (b) of LPSCl at various cycles, the charging profile
(c) of LPSCl and NCA-LPSCl ASSBs at the 1st, 2nd and 10th cycle; cycling stability of (d)
ASSBs for LNO-coated and bare NCA at rate of C/3.5.
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5.4 Discussion

The electrochemical performance of ASSBs is mainly governed by the properties of the

interface between the electrode and electrolyte. Solid electrolytes with higher ionic conductivities

but lower interface stability will ultimately yield low Coulombic efficiencies and poor cyclic

performance, making it an unfavorable tradeoff when electrolyte material factors are considered.

Constructing a stable interface with a low charge-transfer resistance is essential for long-term

operation of any sulfide-based ASSB. As such, protective coating materials such as LNO used

in this study are vital to prevent undesirable side reactions at the interface. Building upon this

fact, the properties of other potential coating materials were screened by the DFT calculations to

offer alternative options in the interfacial design (Figure 5.8). Factors considered include reaction

energies with NCA (∆ENCA
rxn ) and with LPSCl SE (∆ESE

rxn) in eV/atom, volume change after reacting

with NCA (∆VNCA) and SE (∆VSE), diffusion channel radius (Rc) in Åas an indicator of ionic

diffusivity, band gap (Eg) in eV, and energy above hull (Ehull) in eV/atom. [132, 32] Evaluations

of ∆Erxn, ∆V , Rc, and Ehull are illustrated in Methods section; Eg values were directly extracted

from MP database. A good coating candidate should be chemically and electrochemically stable

with both cathode (e.g., NCA) and electrolyte (e.g., LPSCl) and possess the ability to conduct Li+.

Based on these criteria, Li4Ti5Ox12, LiAlO2, Li2SiO3, and Li2La2Ti3O10 were determined to be

promising alternatives with high oxidative stability and negligible (electro)chemical reactions

with high-voltage cathodes and sulfide electrolytes. Poor coating materials include Li2PNO2 and

Li7La3Zr2O12 which both exhibit limited oxidative stabilities at 2.9 V.
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Figure 5.8: Properties of possible coating materials at the NCA/LPSCl interface. Left: Proper-
ties related to interfacial reactivity. From left to right, are reaction energies with pristine NCA
(∆ENCA

rxn ) and with LPSCl SE (∆ESE
rxn) in eV/atom, percentages of volume change after reacting

with NCA (∆VNCA) and SE (∆VSE), diffusion channel radius (Rc) in Å, band gap (Eg) in eV, and
energy above hull (Ehull) in eV/atom. Right: The electrochemical windows of selected coatings;
the LPSCl electrochemical window, and NCA voltage range are labeled as blue and red ribbons
for reference.

While protective coating layers prevent reactions between the cathode and electrolyte,

they cannot prevent intrinsic electrochemical decomposition of the electrolyte itself. Because

of the narrow electrochemical stability windows of sulfides, such decompositions are inevitable.

Despite the formation of insulative SEI components such as LiCl, S, and P2Sx, it forms a stable

passivation layer that prevents further decomposition of the electrolyte. This effectively widens

the operating potential of LPSCl and allows for extended cyclability of the ASSB. [10]

5.5 Conclusion

This work sheds light on the underlying causes of interfacial instability between NCA

and LPSCl. Contributions from both chemical reactions between NCA and LPSCl and the

electrochemical decomposition of LPSCl were separated and characterized, respectively. XRD,

XAS, XPS, Raman, and cryo-TEM were used to identify the interfacial products of Ni3S4, LiCl,

Li3PO4, and oLPSCl from the spontaneous chemical reaction between NCA and LPSCl. These

findings were also supported by DFT calculations and AIMD simulations. Subsequently, the
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effectiveness of a coating material LNO to prevent these chemical reactions was demonstrated.

The electrochemical decomposition of LPSCl was studied and determined to only occur in

the first cycle. Its decomposition products were found to form a self-passivating interface,

allowing excellent long-term cycling stability of the ASSBs. These findings elucidate the reaction

mechanism at both the NCA/LPSCl interface and LPSCl decomposition, which has not been fully

understood till date. The knowledge gained here highlights the importance of protective coating

layers and the passivating nature of sulfide solid electrolytes and can be extended to new coating

material selection philosophy for other high-voltage cathodes used in sulfide-based ASSBs.
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