UC Irvine
 UC Irvine Previously Published Works

Title

Schatten class composition operators on weighted Bergman spaces of bounded symmetric domains

Permalink

https://escholarship.org/uc/item/5z928917

Journal

Annali di Matematica Pura ed Applicata (1923-), 172(1)

ISSN

0373-3114

Authors

Li, Song-Ying
Russo, Bernard

Publication Date

1997-12-01

DOI

10.1007/bf01782619

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0

Peer reviewed

Schatten Class Composition Operators on Weighted Bergman Spaces of Bounded Symmetric Domains (${ }^{*}$).

Song-Ying Li - Bernard Russo

Summary. - We obtain trace ideal criteria for $0<p<\infty$ for holomorphic composition operators acting on the weighted Bergman spaces $A_{\alpha}^{2}(\Omega)$ of a bounded symmetric domain Ω in \mathbb{C}^{n}.

1. - Introduction.

In this paper we obtain trace ideal criteria for all possible values of p for composition operators acting on the weighted Bergman spaces $A_{\alpha}^{2}(\Omega)$ of a bounded symmetric domain Ω in \mathbb{C}^{n}. For the unweighted Bergman space of a bounded strongly pseudoconvex domains in \mathbb{C}^{n} with smooth boundary, this has been done recently by $\mathbb{S} . \mathrm{Y}$. Li [11].

For the unit dise in \mathbb{C}, D. LuEcking [13] initiated a systematic study of trace ideal criteria ($0<p<\infty$) for Toeplitz operators with measures as symbols on some standard Hilbert spaces of holomorphic functions. His condition is expressed in terms of a dyadic hyperbolic decomposition of the unit disc. By an appropriate choice of measure and weight, his result applies to composition operators on the Hardy space and the weighted Bergman spaces.

For values of $p \geqslant 1$, ZHU [21] extended Luecking's result to the weighted Bergman spaces of a bounded symmetric domain. Although this special case of our main result can be derived from Zhu's work, our methods are different, being based on ideas from [11] and [13], and out result covers all possible values of p.

In another direction, for the Hardy space H^{2} and the weighted Bergman (Hilbert) spaces of the unit disc, and for $0<p<\infty$, LUECKING and ZHU [14] characterized com-

[^0]position operators belonging to the Schatten class in terms of the Nevanlinna counting function, Shapiro's criteria for compactness [18] appearing as a limiting case.

Earlier work on holomorphic composition operators in one and several variables was concerned primarily with compactness. Compactness on the Hardy and Bergman spaces of the unit dise have been studied extensively in the past two decades ([19], [16], [18], [7]), and boundedness ([5], [20]) and compactness ([15], [16], [20]) have been studied in the context of the unit ball B_{n} in \mathbb{C}^{n}, as well as for bounded symmetric domains [21], [9], and strongly pseudoconvex domains [12].

We now introduce some notation and state our main result.
Let Ω be a bounded symmetric domain in \mathbb{C}^{n}. Let $L^{2}(\Omega)$ be the usual Lebesgue space over Ω with respect to the Lebesgue volume measure $d v$ of $\mathbb{R}^{2 n}$. Let $A^{2}(\Omega)$ be the holomorphic subspace of $L^{2}(\Omega)$ and let $P: L^{2}(\Omega) \rightarrow A^{2}(\Omega)$ be the Bergman projection with Bergman kernel $K(z, w)$. It is well-know that K can be written as $K(z, w)=h(z, \bar{w})^{-N}$ for some positive integer $N=N_{\Omega}$ and polynomial $h(z, w)=$ $=h_{\Omega}(z, w)$ in both z and w.

By [8], if we let $1 / 2 \geqslant \alpha_{\Omega}=N_{\Omega}^{-1}>0$ then $C_{a}=\int_{\Omega} K(z, z)^{a} d v(z)<\infty$ for all real numbers $\alpha<\alpha_{\Omega}$. Then we may define the weighted normalized measures $d v^{\alpha}$ on Ω as follows: $d v^{\alpha}(z)=C_{\alpha}^{-1} K(z, z)^{\alpha} d v(z)$. We consider the Lebesgue space $L^{2}\left(\Omega, d v^{a}\right)$ over Ω with respect to the normalized weighted measure $d v^{\alpha}$, and let $A_{a}^{2}(\Omega)$ be its holomorphic subspace. Let $P_{a}: L^{2}\left(\Omega, d v^{a}\right) \rightarrow A_{a}^{2}(\Omega)$ be the orthogonal projection with reproducing kernel denoted $K^{a}(z, w)$. It is known that $K^{\alpha}(z, w)=K(z, w)^{1-\alpha}$. For any holomorphic mapping $\varphi: \Omega \rightarrow \Omega$, we define the Berezin transform of φ to be the function B_{φ}^{a} defined by

$$
B_{\varphi}^{\alpha}(z)^{2}=\int_{\Omega} K^{\alpha}(z, z)^{-1}\left|K^{\alpha}(z, w)\right|^{2} d v_{\varphi}^{\alpha}(w)=K^{a}(z, z)^{-1} \int_{\Omega}\left|K^{\alpha}(z, \varphi(w))\right|^{2} d v^{\alpha}(w) .
$$

Here v_{φ}^{α}, or $d v_{\varphi}^{\alpha}$ is the pull-back measure defined as follows: for each Borel set $E \subset \Omega$, we let $v_{\varphi}^{\alpha}(E)=v^{\alpha}\left(\varphi^{-1}(E)\right)$.

Let $\beta(z, w)$ be the Bergman metric on Ω. For any $z \in \Omega$ and $r>0$ we let $E(z, r)=$ $=\{w \in \Omega: \beta(z, w)<r\}$. Then we let $b_{\varphi}^{\alpha}(z, r)=v_{\varphi}^{\alpha}(E(z, r))|E(z, r)|^{\alpha-1},|E|=\int_{E} d v$.

Let $\varphi: \Omega \rightarrow \Omega$ be a holomorphic mapping. The composition operator of φ is the operator $C_{\varphi} u(z)=u(\varphi(z))$ for any function u on Ω. Let $d \lambda(z)=C_{a} K^{\alpha}(z, z) d v^{\alpha}(z)=$ $=K(z, z) d v(z)$. We denote the Schatten p-class of compact operators on the Hilbert space H by $S_{p}(H), 0<p<\infty$. We propose to prove

Theorem 1.1. - Let Ω be a bounded symmetric domain in C^{n}. Let $\varphi: \Omega \rightarrow \Omega$ be a holomorphic mapping. Then for each $\alpha<\alpha_{\Omega}$,
(i) if $0<p<\infty$, then $C_{\varphi} \in S_{2 p}\left(A_{\alpha}^{2}(\Omega)\right)$ if and only if $b_{\varphi}^{\alpha}(z, r) \in L^{p}(\Omega, d \lambda)$ for all (or some) $0<r<\infty$;
(ii) if $2\left(1-\alpha_{\Omega}\right) /(1-\alpha)<p<\infty$, then $C_{\varphi} \in S_{p}\left(A_{\alpha}^{2}(\Omega)\right)$ if and only if $B_{\varphi}^{\alpha} \in L^{p}(\Omega, d \lambda)$.

Before going any further, let us make a remark on the number $2\left(1-\alpha_{\Omega}\right) /(1-\alpha)$ for the case $\Omega=B_{n}$, the unit ball in \mathbb{C}^{n}. Since $\alpha_{B_{n}}=1 /(n+1), 2\left(1-\alpha_{\Omega}\right) /(1-\alpha)=$ $=2 n /(n+1)(1-\alpha)$. In particular, when $\alpha=0$, we have $2\left(1-\alpha_{\Omega}\right) /(1-\alpha)=$ $=2 n /(n+1)$. Note also that if Ω is the polydisk, $\alpha_{\Omega}=1 / 2$.

We refer to [2],[4], and [21] for the following (asymptotic) properties of the Bergman kernel and metric in bounded symmetric domains. These properties will be used repeatedly in the estimates below in Sections 3 and 4.

- ([4, Proposition 2]). If φ_{a} denotes the unique automorphism of Ω satisfying $\varphi_{a}(a)=0$ and $\varphi_{a} \circ \varphi_{a}=\mathrm{Id}$, then for the complex Jacobian

$$
\left|\left(J_{c} \varphi_{a}\right)(z)\right|=\left|k_{a}(z)\right|,
$$

where $k_{a}(z)=K(z, a) / K(a, a)^{1 / 2}$, and $\left|J_{c} \varphi_{a}(0)\right|=K(a, a)^{-1 / 2}$.

- ([4, p. 927]). $K(0, w)=K(z, 0)=1$, and $K(z, w) \neq 0$ for all $z, w \in \Omega$.
- ([4, Lemma 6]). For $a, b \in \Omega$ with $\beta(a, b) \leqslant R$, and $r, s>0$, there is a constant C depending on R, r, and s such that

$$
0<C^{-1} \leqslant|E(a, r)||E(b, s)|^{-1} \leqslant C<\infty
$$

- ([4, Lemma 8]). For $r>0$ there is a constant C depending on r such that $\forall z \in E(a, r)$,

$$
\begin{equation*}
0<C^{-1} \leqslant|K(z, a)|^{2}|E(a, r)| K(a, a)^{-1} \leqslant C<\infty . \tag{1}
\end{equation*}
$$

- ([2, Lemmas 5 and 6]). For fixed $r>0$, there is a sequence $\left\{w_{j}\right\}$ in Ω such that

$$
\begin{equation*}
\bigcup_{j=1}^{\infty} E\left(w_{j}, r\right)=\Omega \tag{2}
\end{equation*}
$$

and
(i) There is a positive integer C_{0} such that, for any $z \in \Omega, z$ belongs to at most C_{0} of the sets $E\left(w_{j}, 2 r\right)$, where C_{0} is independent of r.
(ii) If m is any positive Borel measure on Ω and $F \geqslant 0$,

$$
\sum_{j=1}^{\infty} \int_{E\left(w_{j}, r\right)} F d m \leqslant C_{0} \int_{\Omega} F d m .
$$

- ([21, Lemma 5]). For $r>0$ there is a constant C depending on r such that for $p \in[1, \infty), a \in \Omega$ and f holomorphic,

$$
|f(a)|^{p} \leqslant C|E(a, r)|^{-1} \int_{E(a, r)}|f(z)|^{p} d v(z) .
$$

- ([21, Lemma 6]). For $r>0$ there is a constant C depending on r such that for
any positive Borel measure μ on Ω and $a \in \Omega$,

$$
\mu(E(a, r))^{q} \leqslant C|E(a, r)|^{-1} \int_{E(a, r)} \mu(E(z, r))^{q} d v(z) \quad(0<q \leqslant 1) .
$$

We note the following consequences of eq. (1):

$$
\begin{gather*}
K(z, z) \simeq|E(z, r)|^{-1} \tag{3}\\
K(z, w) \simeq K(z, z), \quad(w \in E(z, r)) \\
K(z, z) \simeq|E(a, r)|^{-1}, \quad(z \in E(a, r))
\end{gather*}
$$

2. - Preliminaries.

In this section, we shall prove some preliminary results we shall use later. First let us recall a lemma which can be found in many places, we refer to [1] and references therein.

Let $K_{z}^{\alpha}(w)=K^{\alpha}(w, z), k_{z}^{\alpha}(w)=K^{\alpha}(z, z)^{-1 / 2} K_{z}^{\alpha}(w)$. It is clear that k_{z}^{α} is a unit vector in $A_{\alpha}^{2}(\Omega)$. We denote the inner product in $L^{2}\left(\Omega, d v^{\alpha}\right)$ by $\langle\cdot, \cdot\rangle_{\alpha}$.

Lemma 2.1. - Let T be a positive, compact operator on $L^{2}\left(\Omega, d v^{\alpha}\right)$ with range containe in $A_{\alpha}^{2}(\Omega)$. Then

$$
\operatorname{trace} T=\int\left\langle T K_{z}^{a}, K_{z}^{\alpha}\right\rangle_{\alpha} d v^{\alpha}(z)=\int\left\langle T k_{z}^{a}, k_{z}^{a}\right\rangle_{\alpha} K^{\alpha}(z, z) d v(z)
$$

Moreover, for any $1 \leqslant p<\infty$,

$$
\int\left\langle T k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle_{\alpha}^{p} K^{\alpha}(z, z) d v^{\alpha}(z) \leqslant \int\left\langle T^{p} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle_{\alpha} K^{\alpha}(z, z) d v^{a}(z)=\operatorname{trace} T^{p} ;
$$

and, for any $0<p<1$,

$$
\int\left\langle T k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle_{\alpha}^{p} K^{\alpha}(z, z) d v^{\alpha}(z) \geqslant \int\left\langle T^{p} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle K^{a}(z, z) d v^{\alpha}(z)=\operatorname{trace} T^{p} .
$$

We next start proving some identities.
Lemma 2.2. - Let $\Omega, \varphi, C_{\varphi}, B_{\varphi}^{\alpha}$ be as defined above. Then

$$
B_{\varphi}^{\alpha}(z)^{2}=\left\langle C_{\varphi}^{*} C_{\varphi} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle_{\alpha},
$$

and for $0<p<\infty$,

$$
\int\left|B_{\varphi}^{\alpha}(z)\right|^{p} d \lambda(z)=\int\left\langle C_{\varphi}^{*} C_{\varphi} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle_{a}^{p / 2} d \lambda(z)
$$

Proof.
$\left\langle C_{\varphi}^{*} C_{\varphi} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle_{\alpha}=\left\langle C_{\varphi}\left(K_{z}^{\alpha}\right), C_{\varphi}\left(K_{z}^{\alpha}\right)\right\rangle_{\alpha} K^{\alpha}(z, z)^{-1}=$
$=\int K_{z}^{a} \circ \varphi(w) \overline{K_{z}^{\alpha} \circ \varphi(w)} d v^{\alpha}(w) K^{\alpha}(z, z)^{-1}=$
$=\int K_{z}^{\alpha}(w) \overline{K_{z}^{\alpha}(w)} d v_{\varphi}^{\alpha}(w) K^{\alpha}(z, z)^{-1}=\int\left|K^{\alpha}(z, w)\right|^{2} d v_{\varphi}^{\alpha}(w) K^{\alpha}(z, z)^{-1}=B_{\varphi}^{\alpha}(z)^{2}$.
As a consequence of Lemmas 2.1 and 2.2, we have
Corollary 2.3. - Let Ω be a bounded symmetric domain in \mathbb{C}^{n} and let $\varphi: \Omega \rightarrow \Omega$ be a holomorphic map. Then
(a) if $2 \leqslant p<\infty$ and $C_{\varphi} \in S_{p}\left(A_{\alpha}^{2}(\Omega)\right)$, then $B_{\varphi}^{\alpha} \in L^{p}(d \lambda)$;
(b) if $0<p \leqslant 2$ and $B_{\varphi}^{a} \in L^{p}(A, d \lambda)$, then $C_{\varphi} \in S_{p}\left(A_{\alpha}^{2}(\Omega)\right)$.

Proof. - If $p / 2 \geqslant 1$, then by Lemmas 2.1 and 2.2,

$$
\left\|C_{\varphi}\right\|_{S_{p}\left(A_{a}^{2}\right)}^{p}=\operatorname{trace}\left(\left(C_{\varphi}^{*} C_{\varphi}\right)^{p / 2}\right) \geqslant \int\left\langle C_{\varphi}^{*} C_{\varphi} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle_{\alpha} d \lambda(\lambda)=\int\left|B_{\varphi}^{\alpha}(z)\right|^{p} d \lambda(z)
$$

so (a) follows.
If $p / 2 \leqslant 1$, applying Lemmas 2.1 and 2.2 again, we have

$$
\int\left|B_{\varphi}^{a}(z)\right|^{p} d \lambda(z)=\int\left\langle C_{\varphi}^{*} C_{\varphi} k_{z}^{\alpha}, k_{z}^{\alpha}\right\rangle_{a}^{p / 2} d \lambda(z) \geqslant \operatorname{trace}\left(\left(C_{\varphi}^{*} C_{\varphi}\right)^{p / 2}\right)=\left\|C_{\varphi}\right\|_{S_{p}\left(A_{a}^{2}\right)}^{p}
$$

and (b) follows.
Next we shall connect the operator $C_{\varphi}^{*} C_{\varphi}$ to a Toeplitz operator associated to a symbol which is our pull-back measure v_{φ}^{α}. For any measure μ on Ω define the operator T_{μ} by the formula

$$
T_{\mu}(f)(x)=\int_{\Omega} f(w) K^{\alpha}(z, w) d \mu(w)
$$

for $f \in A_{a}^{2}(\Omega)$ and $z \in \Omega$.
Lemma 2.4. - Let Ω be a bounded symmetric domain in C^{n}. Let $\varphi: \Omega \rightarrow \Omega$ be a holomorphic map such that C_{φ} is bounded on $A_{\alpha}^{2}(\Omega)$. With the notation above, $C_{\varphi}^{*} C_{\varphi}=T_{v_{\varphi}^{d}}$.

Proof. - Let $f \in A_{\alpha}^{2}(\Omega)$. Then

$$
\begin{aligned}
C_{\varphi}^{*} C_{\varphi}(f)(z)= & \left\langle C_{\varphi}^{*} C_{\varphi}(f), K_{z}^{\alpha}\right\rangle_{\alpha}=\left\langle C_{\varphi}(f), C_{\varphi}\left(K_{z}^{\alpha}\right)\right\rangle_{\alpha}= \\
& =\int_{\Omega} f(\varphi(w)) \overline{K_{z}^{\alpha}(\varphi(w))} d v^{\alpha}(w)=\int_{\Omega} f(w) K^{\alpha}(z, w) d v_{\varphi}^{\alpha}(w)=T_{v_{\varphi}^{\alpha}}(f)(z) .
\end{aligned}
$$

Thus $C_{\varphi}^{*} C_{\varphi}(f)=T_{v^{\alpha}(\varphi)}(f)$ and the proof is complete.

Corollary 2.5. - Let $0<p<\infty$, let Ω be a bounded symmetric domain in \mathbb{C}^{n}, and let $\varphi: \Omega \rightarrow \Omega$ be a holomorphic map. Then $C_{\varphi} \in S_{p}\left(A_{\alpha}^{2}(\Omega)\right)$ if and only if $T_{v_{q}^{\alpha}} \in S_{p / 2}\left(A_{a}^{2}(\Omega)\right)$.

Combining Lemma 2.2, Corollaries 2.3 and 2.5, and [21, Theorem C], we obtain

Corollary 2.6. - Let Ω be a bounded symmetric domain in \mathbb{C}^{n}, let $\varphi: \Omega \rightarrow \Omega$ be a holomorphic map, and let $2 \leqslant p \leqslant \infty$. The following are equivalent:

- $C_{\varphi} \in S_{p}\left(A_{a}^{2}(\Omega)\right)$,
- $B_{\varphi}^{\alpha} \in L^{p}(\Omega, d \lambda)$,
- $b_{\varphi}^{\alpha} \in L^{p / 2}(\Omega, d \lambda)$.

3. - Equivalence of two conditions.

In this section we shall prove a part of our main theorem. For $p \geqslant 2$, the following theorem was proved by ZHU ([21]; see Corollary 2.6 above).

Theorem 3.1. - Let Ω be a bounded symmetric domain in \mathbb{C}^{n} and $\alpha<\alpha_{\Omega}$. Let $2\left(1-\alpha_{\Omega}\right) /(1-\alpha)<p<\infty$. Then $B_{\varphi}^{\alpha} \in L^{p}(\Omega, d \lambda)$ if and only if $b_{\varphi}^{\alpha} \in L^{p / 2}(\Omega, d \lambda)$.

Proof, - Suppose first that $B_{p}^{\alpha}(z) \in L^{p}(\Omega, d \lambda)$. We shall show that $b_{\varphi}^{\alpha}(z) \in L^{p / 2}(\Omega)$. By Lemma 2.2, we have

$$
\begin{aligned}
B_{\varphi}^{\alpha}(z)^{2} & =\int_{\Omega} K^{\alpha}(z, z)^{-1}\left|K^{a}(z, w)\right|^{2} d v_{\varphi}^{\alpha}(w) \geqslant \\
& \geqslant \int_{E(z, r)} K^{\alpha}(z, z)^{-1}\left|K^{a}(z, w)\right|^{2} d v_{\varphi}^{\alpha}(w) \geqslant C_{r}^{-1} K^{\alpha}(z, z) \int_{E(z, r)} d v_{\varphi}^{\alpha}(w)=\quad \text { by eq. (4) } \\
& =C_{r}^{-1} K^{\alpha}(z, z) v_{\varphi}^{\alpha}(E(z, r)) \geqslant C_{r}^{-1}|E(z, r)|^{-1+\alpha} v_{\varphi}^{\alpha}(E(z, r))= \\
& \text { by eq. (3) } \\
& =C_{r}^{-1} b_{\varphi}^{\alpha}(z) .
\end{aligned}
$$

Therefore $\left\|b_{\varphi}^{\alpha}\right\|_{L^{p / 2}(\Omega, d \lambda)} \leqslant C_{r}\left\|B_{\varphi}^{\alpha}\right\|_{L^{p}(\Omega, d \lambda)}^{2}$.
Next we shall prove the converse. To achieve this goal, we need the following Forelli-Rudin type inequality from [8]. The notation we use is not exactly the same as it is in [8]. For $\alpha<\alpha_{\Omega}$, we let

$$
I_{a, c}(z)=\int_{\Omega} K(w, w)^{a}|K(z, w)|^{1-\alpha+c} d v(w)
$$

Let r_{Ω} be the rank of Ω, and $K(z, w)=h(z, \bar{w})^{-N}$. It is known that if Ω is an irreducible bounded symmetric domain, then $N=a\left(r_{\Omega}-1\right)+b+2$ where a, b are nonnegative integers defined in [8]. Then [8, Theorem 4.1] implies the following proposition.

Proposition 3.2. - Let $\alpha<\alpha_{\Omega}$. Then
(i) If $c<-a(r-1) / 2 N$, then $I_{a, c}(z)$ is bounded.
(ii) If $c>a(r-a) / 2 N$ then $I_{a, c}(z) \approx K(z, z)^{c}, z \in \Omega$.

We now come back to the proof of Theorem 3.1. We may assume, by Corollary 2.6 that $p \leqslant 2$. Since $\left(1-\alpha_{\Omega}\right) /(1-\alpha)<p / 2 \leqslant 1$, we have $1-p(1-\alpha) / 2<\alpha_{\Omega}$ and therefore $\int_{\Omega} K(z, z)^{-p / 2(1-\alpha)+1} d v(z)<\infty$. Moreover, by Proposition 3.2,

$$
\begin{aligned}
& \int_{\Omega} K^{\alpha}(z, z)^{-p / 2}\left|K^{\alpha}(z, w)\right|^{p} K(z, z) d v(z)=\int_{\Omega} K(\bar{z}, z)^{1-p(1-\alpha) / 2}|K(z, w)|^{p(1-\alpha)} d v(z)= \\
&=\int_{\Omega} K(z, z)^{1-p(1-\alpha) / 2}|K(z, w)|^{1-(1-p(1-\alpha) / 2)+p(1-\alpha) / 2} d v(z)= \\
&=I_{(1-p(1-\alpha) / 2), p(1-\alpha) / 2}(w) \approx K(w, w)^{p(1-\alpha) / 2}
\end{aligned}
$$

since

$$
\begin{aligned}
& c=p(1-\alpha) / 2>\left[2\left(1-\alpha_{\Omega}\right) /(1-\alpha)\right](1-\alpha) / 2= \\
&=1-\alpha_{\Omega}=1-1 / N>1 / 2-(b+2) / 2 N=a\left(r_{\Omega}-1\right) / 2 N .
\end{aligned}
$$

Thus, choosing $\left\{z_{j}\right\}$ so that $\Omega=\bigcup_{i=1}^{\infty} E\left(z_{i}, r\right)$,

$$
\begin{aligned}
& \int_{\Omega} B_{\varphi}^{\alpha}(z)^{p} d \lambda(z) \leqslant \int_{\Omega}\left(\int_{\Omega} K^{\alpha}(z, z)^{-1}\left|K^{\alpha}(z, w)\right|^{2} d v_{\varphi}^{\alpha}(w)\right)^{p / 2} d \lambda(z) \leqslant \\
& \leqslant C \int_{\Omega}\left(\sum_{i=1}^{\infty} \int_{E\left(z_{i}, v\right)} K^{\alpha}(z, z)^{-1}\left|K^{\alpha}(z, w)\right|^{2} d v_{\varphi}^{\alpha}(w)\right)^{p / 2} d \lambda(z) \leqslant
\end{aligned}
$$

$$
\leqslant C \int_{\Omega} \sum_{i=1}^{\infty}\left(\int_{E\left(z_{i}, r\right)} K^{\alpha}(z, z)^{-1}\left|K^{\alpha}(z, w)\right|^{2} d v_{\varphi}^{\alpha}(w)\right)^{p / 2} d \lambda(z)=
$$

$$
=C \sum_{i=1}^{\infty} \int_{\Omega}\left(\int_{E\left(z_{i}, r\right)} K^{\alpha}(z, z)^{-1}\left|K^{\alpha}(z, w)\right|^{2} d v_{\varphi}^{\alpha}(w)\right)^{p / 2} d \lambda(z) \leqslant
$$

$$
\leqslant C \sum_{i=1}^{\infty} \int_{\Omega} K^{a}(z, z)^{-p / 2}\left|K^{a}\left(z, w_{i}\right)\right|^{p} v_{\varphi}^{a}\left(E\left(z_{i}, r\right)\right)^{p / 2} K(z, z) d v(z) \quad\left(w_{i} \in E\left(z_{i}, r\right) \text { depends on } z\right) \leqslant
$$

$$
\begin{aligned}
& \leqslant C \sum_{i=1}^{\infty} K^{\alpha}\left(w_{i}, w_{i}\right)^{-p / 2} K^{\alpha}\left(w_{i}, w_{i}\right)^{p} v_{\varphi}^{\alpha}\left(E\left(z_{i}, r\right)\right)^{p / 2}=C \sum_{i=1}^{\infty} K^{\alpha}\left(w_{i}, w_{i}\right)^{p / 2} v_{\varphi}^{\alpha}\left(E\left(z_{i} r\right)\right)^{p / 2} \leqslant \\
& \leqslant C \sum_{i=1}^{\infty} \int_{E\left(z_{i}, r\right)}\left[v_{\varphi}^{\alpha}(E(z, r)) K(z, z)^{1-\alpha}\right]^{p / 2} K(z, z) d v(z) \quad(\text { by subharmonicity }) \leqslant \\
& \leqslant C \sum_{i=1}^{\infty} \int_{E\left(z_{i}, r\right)}\left(b_{\varphi}^{\alpha}(z)\right)^{p / 2} d \lambda(z) \leqslant C_{0} C \int_{\Omega}\left(b_{\varphi}^{\alpha}(z)\right)^{p / 2} d \lambda(z)=C_{p, r}\left\|b_{\varphi}^{\alpha}\right\| \sum_{L^{p / 2}(\Omega, d)} .
\end{aligned}
$$

Therefore $\left\|B_{\varphi}^{\alpha}\right\|_{L^{p}(\Omega, d \lambda)} \leqslant C_{p, r}\left\|b_{\varphi}^{\alpha}\right\|_{L^{p r(~}(\Omega, d \lambda)}^{1 / 2}$, and combining the above two steps, the proof of Theorem 3.1 is complete.

Note that the first implication in the preceding proof may be obtained from Corollary 2.3 and Theorem 4.1 in the next section. Here we have given a direct proof.

4. - Proof of main theorem.

In this section, we shall complete the proof of our main theorem, that is, the case $0<p<2$. By Corollary 2.5 and Theorem 3.1, it suffices to prove the following theorem.

Theorem 4.1. - Let Ω be a bounded symmetric domain in \mathbb{C}^{n}. Let $\varphi: \Omega \rightarrow \Omega$ be a holomorphic mapping. Then for each $\alpha<\alpha_{\Omega}$, if $0<p \leqslant 2$, then $C_{\varphi} \in S_{2 p}\left(A_{\alpha}^{2}(\Omega)\right)$ if and only if $b_{\varphi}^{\alpha}(z, r) \in L^{p}(\Omega, d \lambda)$ for all (or some) $0<r<\infty$.

We shall break the proof of Theorem 4.1 into several lemmas.
Lemma 4.2. - Let Ω be a bounded symmetric domain in C^{n} and $\varphi: \Omega \rightarrow \Omega$ be a holomorphic mapping. If $0<p<1, \alpha<\alpha_{\Omega}$ and $b_{\varphi}^{\alpha} \in L^{p}\left(\Omega, d \lambda^{\alpha}\right)$, then $T=$ $=T_{v_{\varphi}^{\alpha}} \in S_{p}\left(A_{\alpha}^{2}(\Omega)\right)$.

Proof. - Since $0<p \leqslant 2$, it suffices to prove (cf. [13, Lemma 5]) there is an orthonormal basis $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ of $A_{\alpha}^{2}(\Omega)$ such that $\sum_{n, k}\left|\left\langle T \xi_{n}, \xi_{k}\right\rangle\right|^{p}<\infty$. Actually, we shall prove this for an operator $L^{*} T L$ on an abstract Hilbert space, and appropriate L; then it will follow that $T \in S_{p}\left(A_{a}^{2}(\Omega)\right)$.

Let $\left\{z_{k}\right\}_{k=1}^{\infty}$ be a sequence of points in Ω, and let

$$
b_{k}(z)=K^{\alpha}\left(z_{k}, z_{k}\right)^{-M-1 / 2} K^{\alpha}\left(z, z_{k}\right)^{1+M}
$$

where M is a positive number to be determined later.
We interrupt the proof to state a proposition which is a comsequence of the proof of Theorems 1 and 2 in [6], and explains the significance of $b_{k}(z)$.

Proposition 4.3. - There is a sequence of points $\left\{z_{k}\right\}_{k=1}^{\infty} \subset \Omega$ so that $f \in A_{a}^{2}(\Omega)$ if and only if there is a sequence of numbers $\left\{\lambda_{k}\right\}_{1}^{\infty} \in l^{2}$ such that

$$
f(z)=\sum_{k} \lambda_{k} b_{k}(z), \quad z \in \Omega
$$

and

$$
\|f\|_{A_{a}^{2}} \approx\left\|\left\{\lambda_{k}\right\}\right\|_{l^{2}}
$$

The authors wish to thank R. Rochberg for showing them how Proposition 4.3 can be proved using Proposition 3.2 and the following two hypotheses.
(H1) The operator $T_{a, M}$ defined as:

$$
T_{a, M} f(z)=\int_{\Omega}\left|K^{\alpha}(z, w)\right|^{1+M} K^{\alpha}(w, w)^{-M} f(w) d v^{\alpha}(w)
$$

is bounded on $L_{a}^{2}(\Omega)$.
(H2) $b_{k}(z) \simeq b_{k}\left(z_{i}\right)$ on $\left(E_{i}, r\right)$.
(H1) follows from Proposition 3.2 for sufficiently large M and Schur's lemma; and (H2) is true on any bounded symmetric domain by (4) (see [21]). We omit the details here.

In connection with Proposition 3.2, we should point out that whether the ForelliRudin type inequality holds or not when $-a\left(r_{\Omega}-1\right) / 2 N<c<a\left(r_{\Omega}-1\right) / 2 N$ is not completely known. Our definition of b_{k} with large M avoids this uncertainty. In a general bounded symmetric domain, the Bergman projection may not be bounded on L^{p} for all $1<p<\infty$ (for example, see [3]).

We now continue with the proof of Lemma 4.2 by calculating the following quantity:

$$
\begin{aligned}
& \sum_{n, k}\left|\left(T b_{n}, b_{k}\right)\right|^{p}=\sum_{n, k}\left|\left(T_{v_{\varphi}^{a}} b_{n}, b_{k}\right)\right|^{p} \leqslant \sum_{n, k}\left(\int_{\Omega}\left|b_{n}(z)\right|\left|b_{k}(z)\right| d v_{\varphi}^{a}(z)\right)^{p} \leqslant \\
& \leqslant C \sum_{n, k}\left(\sum_{i} \int_{E\left(z_{i}, r\right)}\left|b_{n}(z) b_{n}(z)\right| d v_{\varphi}^{\alpha}(z)\right)^{p} \leqslant C \sum_{n, k}\left(\sum_{i} v_{\varphi}^{\alpha}\left(E\left(z_{i}, r\right)\right)\left|b_{n}\left(z_{i}\right) b_{k}\left(z_{i}\right)\right|\right)^{p} \leqslant \\
& \leqslant C \sum_{n, k} \sum_{i}\left(v_{\varphi}^{\alpha}\left(E\left(z_{i}, r\right)\right) K\left(z_{i}, z_{i}\right)\right)^{p}\left(K\left(z_{i}, z_{i}\right)^{-1}\left|b_{n}\left(z_{i}\right) b_{k}\left(z_{i}\right)\right|\right)^{p}= \\
& \quad=C\left[\sum_{i}\left(v_{\varphi}^{\alpha}\left(E\left(z_{i}, r\right)\right) K^{\alpha}\left(z_{i}, z_{i}\right)\right)^{p}\right]\left[\sum_{n, k}\left(K^{\alpha}\left(z_{i}, z_{i}\right)^{-1}\left|b_{n}\left(z_{i}\right) b_{k}\left(z_{i}\right)\right|\right)^{p}\right]
\end{aligned}
$$

Since $\sum_{i}\left(v_{\varphi}^{\alpha}\left(E\left(z_{i}, r\right)\right) K^{\alpha}\left(z_{i}, z_{i}\right)\right)^{p} \leqslant C\left\|b_{\varphi}^{\alpha}\right\| \mathcal{L}^{p}(\Omega, d \lambda)$, we would like to prove

$$
\begin{aligned}
& \sum_{n, k}\left(K^{\alpha}\left(z_{i}, z_{i}\right)^{-1}\left|b_{n}\left(z_{i}\right) b_{k}\left(z_{i}\right)\right|\right)^{p} \leqslant C, \text { for all } i=1,2,3, \ldots . \text { However } \\
& \begin{aligned}
& \sum_{n, k}\left(K^{\alpha}\left(z_{i}, z_{i}\right)^{-1}\left|b_{n}\left(z_{i}\right) b_{k}\left(z_{i}\right)\right|\right)^{p}=K^{\alpha}\left(z_{i}, z_{i}\right)^{-p}\left(\sum_{k}\left|b_{k}\left(z_{i}\right)\right|^{p}\right)^{2}= \\
&=K^{\alpha}\left(z_{i}, z_{i}\right)^{-p}\left(\sum_{k} K^{a}\left(z_{k}, z_{k}\right)^{-p / 2-M p}\left|K^{\alpha}\left(z_{i}, z_{k}\right)\right|^{p(1+M)}\right)^{2} \leqslant \\
& \leqslant C K^{\alpha}\left(z_{i}, z_{i}\right)^{-p}\left(\int_{\Omega} K^{\alpha}(z, z)^{-p / 2-M p+1}\left|K^{\alpha}\left(z_{i}, z\right)\right|^{p(1+M)} d v^{\alpha}(z)\right)^{2} \leqslant \\
& \leqslant C K\left(z_{i}, z_{i}\right)^{-p}\left(K^{\alpha}\left(z_{i}, z_{i}\right)^{-p / 2-M p}\left|K^{\alpha}\left(z_{i}, z_{i}\right)\right|^{p(1+M)}\right)^{2}= \\
&\left.=C K\left(z_{i}, z_{i}\right)^{-p}\left(\left|K^{\alpha}\left(z_{i}, z_{i}\right)\right|^{p / 2}\right)\right)^{2}=C_{M}
\end{aligned}
\end{aligned}
$$

if we choose M such that $M p>1$. Thus we have shown that

$$
\sum_{n, k}\left|\left(T b_{n}, b_{k}\right)\right|^{p} \leqslant C\left\|b_{\varphi}^{\alpha}\right\|_{p}^{p}
$$

Now we let H be any Hilbert space with $\left\{e_{n}\right\}$ as its orthonormal basis. Let $L: H \rightarrow$ $\rightarrow A_{\alpha}^{2}(\Omega)$ be defined as follows: $L\left(\sum_{k=1}^{\infty} c_{k} e_{k}\right)=\sum_{k=1}^{\infty} c_{k} b_{k}(z)$. It is clear from Proposition 4.3 that $L: H \rightarrow A_{\alpha}^{2}(\Omega)$ is a bounded and onto linear map. Since L is onto, it has a bounded right inverse, that is, there is a bounded linear operator $R: A_{\alpha}^{2}(\Omega) \rightarrow H$ such that $L R=I: A_{\alpha}^{2}(\Omega) \rightarrow A_{\alpha}^{2}(\Omega)$. For our $T: A_{\alpha}^{2}(\Omega) \rightarrow A_{\alpha}^{2}(\Omega)$, we have $T=(L R)^{*} T L R=$ $=R^{*} L^{*} T L R: A_{\alpha}^{2}(\Omega) \rightarrow A_{\alpha}^{2}(\Omega)$. Since $L^{*} T L: H \rightarrow H$ is a bounded linear operator and

$$
\sum_{k, n}\left|\left\langle L^{*} T L\left(e_{k}\right), e_{n}\right\rangle\right|^{p}=\sum_{k, n}\left|\left\langle T L e_{k}, L\left(e_{n}\right)\right\rangle\right|^{p}=\sum_{k, n}\left|\left\langle T b_{k}, b_{n}\right\rangle\right|^{p} \leqslant C\left\|b_{\varphi}^{\alpha}\right\| \mathcal{L}^{p}(\Omega, d \lambda),
$$

it follows that $L^{*} T L \in S_{p}(H)$ and $\left\|L^{*} T L\right\|_{S_{p}\left(A_{\alpha}^{2}\right)} \leqslant C\left\|b_{q}^{\alpha}\right\|_{L^{p}(\Omega, d \lambda)}^{p_{2}}$. Since $R^{*}: H \rightarrow$ $\rightarrow A_{\alpha}^{2}(\Omega)$ and $L: H \rightarrow A_{\alpha}^{2}(\Omega)$ are bounded linear operators, we have $T=$ $=R^{*} L^{*} T L R \in S_{p}\left(A_{\alpha}^{2}\right)(\Omega)$ and $\|T\|_{S_{p}\left(A_{a}^{2}\right)} \leqslant\left\|R^{*}\right\|\|R\| C\left\|b_{\varphi}^{\alpha}\right\|_{L^{p}(\Omega, d \lambda)}^{p} \leqslant C\left\|b_{\varphi}^{\alpha}\right\|_{L^{p}(\Omega, d \lambda)}^{p}$. Therefore, the proof of Lemma 4.2 is complete.

The proof of Theorem 4.1 is now reduced to proving the following lemma. The idea of the proof is similar to one in [13].

Lemma 4.4. - Let Ω be a bounded symmetric domain in \mathbb{C}^{n}. Let $\alpha<\alpha_{\Omega}$ and let $0<p \leqslant 1$. If $\varphi: \Omega \rightarrow \Omega$ is a holomorphic map such that $T_{v_{\varphi}^{a}} \in S_{p}\left(A_{\alpha}^{2}(\Omega)\right)$, then $b_{\varphi}^{a} \in L^{p}(\Omega, d \lambda)$.

Proof. - Again let $\left\{z_{k}\right\}_{k=1}^{\infty}$ be a sequence satisfying the density and separation properties of Coifman and Rochberg, that is, $\beta\left(z_{j}, z_{l}\right)>r$ and $\Omega=\bigcup_{j=1}^{\infty} E\left(z_{j}, r\right)$.

For $R \gg r$, partition this sequence $\left\{z_{j}\right\}_{j=1}^{\infty}=\bigcup_{k=1}^{C_{R}}\left\{z_{j}^{(k)}\right\}_{j=1}^{\infty}$ so that

$$
\beta\left(z_{j}^{(k)}, z_{l}^{(k)}\right)>R, \quad j \neq l, \quad 1 \leqslant k \leqslant C_{R} .
$$

As before, define operators L and L_{k} from a Hilbert space H into A_{φ}^{a} by

$$
L\left(\sum_{1}^{\infty} c_{l} e_{l}\right)=\sum_{1}^{\infty} c_{l} b_{l}(z), \quad \text { and } \quad L_{k}\left(\sum_{1}^{\infty} c_{l} e_{l}\right)=\sum_{1}^{\infty} c_{l} b_{l}^{(k)}(z),
$$

where

$$
b_{l}^{(k)}(z)=K^{\alpha}\left(z_{l}^{(k)}, z_{l}^{(k)}\right)^{-M-1 / 2} K^{\alpha}\left(z, z_{l}^{(k)}\right)^{1+M} \text { and } b_{l}(z)=K^{\alpha}\left(z_{l}, z_{l}\right)^{-M-1 / 2} K^{\alpha}\left(z, z_{l}\right)^{1+M}
$$ for some positive number M to be chosen later.

Note that $\left\|L_{k}\right\| \leqslant\|L\|$, write $\Omega_{k}=\bigcup_{l=1}^{\infty} E\left(z_{l}^{(k)}, r\right)$, and let χ_{k} be the characteristic function of Ω_{k}.

Since we are assuming that $T_{d v_{\varphi}^{\alpha}} \in S_{p}\left(A_{\alpha}^{2}\right)$, we have $T_{\chi_{k} d v_{q}^{\alpha}} \in S_{p}\left(A_{a}^{2}\right)$ and $\left\|T_{\chi_{k} d v_{\varphi}^{\alpha}}\right\|_{s_{p}} \leqslant$ $\leqslant\left\|T_{d v v_{\varphi}}\right\|_{s_{p}}$. Thus

$$
L_{k}^{*} T_{\chi_{k} d v_{\varphi}^{o}} L_{k} \in S_{p}\left(A_{\alpha}^{2}\right) \quad \text { and } \quad\left\|L_{k}^{*} T_{\chi_{k} d v_{q}^{u}} L_{k}\right\|\left\|_{s_{p}} \leqslant\right\| L_{k}\left\|^{2}\right\| T_{d v_{\varphi}} \|_{s_{p}}
$$

Fix k and for notation's sake, let $w_{l}=z_{l}^{(k)}, a_{l}(z)=b_{l}^{(k)}(z)$, and $T_{k}=L_{k}^{*} T_{\chi_{k} d v_{q}^{q} \chi_{k}} L_{k}$. Write $T_{k}=D+E$ where $D=\sum_{l}\left\langle T_{k} a_{l}, a_{l}\right\rangle\left\langle\cdot, e_{l}\right\rangle e_{l}$ and $E=\sum_{n \neq l}\left\langle T_{k} a_{n}, a_{l}\right\rangle\left\langle\cdot, e_{n}\right\rangle e_{l}$. Then

$$
\|D\|_{S_{p}(H)}^{p} \leqslant\left\|T_{k}\right\|_{S_{p}(H)}^{p}+\|E\|_{S_{p}(H)}^{p} \leqslant\|L\|^{2 p}\left\|T_{v_{q}^{u}}\right\|_{S_{p}(H)}^{p}+\|E\|_{S_{p}(H)}^{p} .
$$

To complete the proof of Lemma 4.4 requires three claims:
CLAIM 1. $-\|D\|_{s_{p}}^{p} \geqslant C_{r}^{-1} \int_{\Omega_{k}}\left(b_{\varphi}^{\alpha}(z)\right)^{p} K(z, z) d v(z)$.
Claim 2. - For each $1 \leqslant k \leqslant C_{R}$, we have

$$
\sup _{i} \sum_{n \neq l}\left|a_{n}\left(w_{i}\right)\right|^{p}\left|a_{l}\left(w_{i}\right)\right|^{p} K\left(w_{i}, w_{i}\right)^{-p}<\varepsilon_{R}
$$

where $\varepsilon_{R} \rightarrow 0$ as $R \rightarrow \infty$. (Thus is stated as Lemma 4.5 below.)
CLAIM 3. - $\|E\|_{s_{p}}^{p} \leqslant C \varepsilon_{R} \int_{\Omega_{k}}\left(b_{\varphi}^{\alpha}(z)\right)^{p} K(z, z) d v(z)$.
Let us assume these three claims and proceed to finish the proof of Lemma 4.4. We have

$$
\int_{\Omega_{k}}\left(b_{\varphi}^{\alpha}\right)^{p} d \lambda \leqslant C\|D\|_{\delta_{p}}^{p} \leqslant C\left(\left\|T_{\chi_{k} d v_{\varphi}^{u}}\right\|_{S_{p}(H)}^{p}+\|E\|_{S_{p}(H)}^{p}\right) \leqslant C\left\|T_{d v_{\varphi}^{u}}\right\|_{S_{p}\left(A_{a}^{2}\right)}^{p}+\varepsilon_{R} C \int_{\Omega_{k}}\left(b_{\varphi}^{\alpha}\right)^{p} d \lambda .
$$

Therefore, for large enough R,

$$
\left(\int_{\Omega_{k}}\left(b_{\varphi}^{\alpha}\right)^{p} d \lambda\right)\left(1-\varepsilon_{R} C^{\prime}\right) \leqslant C\left\|T_{d v_{\varphi}^{\dot{q}}}\right\|_{S_{p}\left(A_{\alpha}^{2}\right)}^{p}
$$

and hence

$$
\int_{\Omega}\left(b_{\varphi}^{a}\right)^{p} d \lambda \leqslant \sum_{k=1}^{C_{R}} \int_{\Omega_{R}}\left(b_{\varphi}^{a}\right)^{p} d \lambda \leqslant C_{R} C\left\|T_{d v \varphi}\right\|_{S_{p}\left(A_{a}^{2}\right)}^{p},
$$

which completes the proof of Lemma 4.4.

4.1. Proof of Claim 1.

$$
\begin{aligned}
& \left\|D^{k}\right\|_{S_{p}(H)}^{p}=\sum_{l}\left\langle T_{k} a_{l}, a_{l}\right\rangle^{p}=\sum_{l}\left(\int_{\Omega_{k}}\left|a_{l}(z)\right|^{2} d v_{\varphi}^{a}(z)\right)^{p}= \\
& \quad=\sum_{l}\left(\int_{\Omega_{l}} K^{\alpha}\left(w_{l}, w_{l}\right)^{-2 M-1}\left|K^{a}\left(z, w_{l}\right)\right|^{2+2 M} d v_{\varphi}^{\alpha}(z)\right)^{p} \geqslant \\
& \leqslant C_{r}^{-1} \sum_{l}\left(\int_{E\left(w_{l}, r\right)} b_{\varphi}^{a}(z)\left|E\left(w_{l}, r\right)\right|^{-1} d v(z)\right)^{p} \geqslant \\
& \geqslant C_{r}^{-1} \sum_{l} \int_{E\left(w_{l}, r\right)}\left(b_{\varphi}^{a}(z)\right)^{p}\left|E\left(w_{l}, r\right)\right|^{-1} d v(z) \geqslant C_{r}^{-1} \sum_{l} \int_{E\left(w_{l}, r\right)}\left(b_{\varphi}^{\alpha}(z)\right)^{p} K(z, z) d v(z) \geqslant \\
& \geqslant C_{r}^{-1} \int_{U E\left(w_{l}, r\right)}\left(b_{\varphi}^{a}(z)\right)^{p} K(z, z) d v(z) \geqslant C_{r}^{-1} \int_{\Omega_{k}}\left(b_{\varphi}^{a}(z)\right)^{p} K(z, z) d v(z)
\end{aligned}
$$

where $\Omega_{k}=\underset{l}{U} E\left(w_{l}, r\right)$.

4.2. Proof of Claim 2.

Lemma 4.5. - For each $1 \leqslant k \leqslant C_{R}$, we have

$$
\sup _{i} \sum_{n \neq l}\left|a_{n}\left(w_{i}\right)\right|^{p}\left|a_{l}\left(w_{i}\right)\right|^{p} K\left(w_{i}, w_{i}\right)^{-p}<\varepsilon_{R}
$$

where $\varepsilon_{R} \rightarrow 0$ as $R \rightarrow \infty$.
Proof. - Recall that $K^{\alpha}\left(w_{n}, w_{n}\right) \simeq K^{\alpha}(w, w)$ for $w \in E\left(w_{n}, r\right)$ and that since
$\left|K^{\alpha}\left(w_{i}, w\right)\right|^{(1+M) p}$ is subharmonic, we have

$$
\left|K^{\alpha}\left(w_{i}, w_{n}\right)\right|^{(1+M) p} \leqslant\left|E\left(w_{n}, r\right)\right|^{-1} \int_{E\left(w_{n}, r\right)}\left|K^{\alpha}\left(w_{i}, w\right)\right|^{(1+M) p} d v(w) .
$$

Thus

$$
\begin{aligned}
&\left|a_{n}\left(w_{i}\right)\right|^{p} \leqslant K^{\alpha}\left(w_{n} w_{n}\right)^{-(M+1 / 2) p}\left|E\left(w_{n}, r\right)\right|^{-1} \int_{E\left(w_{n} r\right)}\left|K^{\alpha}\left(w_{i}, w\right)\right|^{(1+M) p} d v(w) \leqslant \\
& \leqslant C \int_{E\left(w_{n}, r\right)} K(w, w)^{-(M+1 / 2) p}\left|K^{\alpha}\left(w_{i}, w\right)\right|^{(M+1) p} K(w, w) d v(w)
\end{aligned}
$$

For $\gamma>0$, let $\Omega(\gamma)=\{(z, w) \in \Omega \times \Omega: \beta(z, w)>\gamma\}$. Then

$$
\begin{gathered}
\sum_{n \neq l}\left|a_{n}\left(w_{i}\right)\right|^{p}\left|a_{l}\left(w_{i}\right)\right|^{p} \leqslant C \sum_{n \neq l}\left[\int_{E\left(w_{l}, r\right)} K^{\alpha}(z, z)^{-M p-p / 2} K(z, z)\left|K^{\alpha}\left(w_{i}, z\right)\right|^{p+M p} d v(z) \times\right. \\
\left.\times \int_{E\left(w_{k}, r\right)} K^{\alpha}(w, w)^{-M p-p / 2} K(w, w)\left|K^{\alpha}\left(w_{i}, w\right)\right|^{p+M p} d v(w)\right] \leqslant \\
\leqslant C \sum_{n \neq b} \int_{E\left(w_{l}, r\right) \times E\left(w_{n}, r\right)} K^{\alpha}(z, z)^{-M p-p / 2} K(z, z)\left|K^{a}\left(w_{i}, z\right)\right|^{p+M p} \times \\
\times K^{a}(w, w)^{-M p-p / 2} K(w, w)\left|K^{\alpha}\left(w_{i} w\right)\right|^{p+M_{p}} d v(z) d v(w) \leqslant \\
\leqslant C \int_{\Omega(R / c)} K^{a}(z, z)^{-M p-p / 2} K(z, z)\left|K^{\alpha}\left(w_{i}, z\right)\right|^{p+M p} \times \\
\times K^{a}(w, w)^{-M p-p / 2} K(w, w)\left|K^{a}\left(w_{i}, w\right)\right|^{p+M p} d v \times d v(z, w)
\end{gathered}
$$

Now we shall make a change of variables as follows: let φ_{i} be the automorphism of Ω interchanging 0 and w_{i}. Then, since $\left|J_{c} \varphi_{i}(z)\right|^{2}=\left|k_{w_{i}}(z)\right|^{2}=\left|K\left(z, w_{i}\right)\right|^{2} / K\left(w_{i}, w_{i}\right)$,

$$
\begin{align*}
& \int_{\Omega} K^{\alpha}(z, z)^{-M p-p / 2} K(z, z)\left|K^{\alpha}\left(w_{i}, z\right)\right|^{p+p M} d v(z)= \tag{6}\\
&=\int_{\Omega} K^{\alpha}\left(\varphi_{i}(z), \varphi_{i}(z)\right)^{-M p-p / 2} K\left(\varphi_{i}(z), \varphi_{i}(z)\right) \times \\
& \times\left|K^{\alpha}\left(w_{i}, \varphi_{i}(z)\right)\right|^{p+p M}\left|K\left(z, w_{i}\right)\right|^{2} K\left(w_{i} w_{i}\right)^{-1} d v(z) .
\end{align*}
$$

Let us calculate each of the factors in the last integral, using the formula

$$
K(\varphi(z), \varphi(w)) J_{c} \varphi(z) \overline{J_{c} \varphi(w)}=K(z, w) .
$$

- $K^{\alpha}\left(\varphi_{i}(z), \varphi_{i}(z)\right)=\left(K(z, z)\left|J_{c} \varphi_{i}(z)\right|^{-2}\right)^{1-a} ;$
- $K\left(\varphi_{i}(z), \varphi_{i}(z)\right)=\left|J_{c} \varphi_{i}(z)\right|^{-2} K(z, z)=\left|K\left(z, w_{i}\right)\right|^{-2} K\left(w_{i} w_{i}\right) K(z, z)$;
- $K^{\alpha}\left(w_{i}, \varphi_{i}(z)\right)=K^{\alpha}\left(\varphi_{i}(0), \varphi_{i}(z)\right)=K^{\alpha}(0, z)\left[J_{c} \varphi_{i}(0) \overline{J_{c} \varphi_{i}(z)}\right]^{-1} ;$
- $\left|K^{\alpha}\left(w_{i}, \varphi_{i}(z)\right)\right|=\left[\left(\left|J_{c} \varphi_{i}(0)\right|\left|J_{c} \varphi_{i}(z)\right|\right)^{-1}\right]^{1-\alpha}=K^{a}\left(w_{i}, w_{i}\right)\left|K^{a}\left(z, w_{i}\right)\right|^{-1}$.

The integrand in question is thus equal to

$$
\begin{aligned}
\left\{K ^ { \alpha } (z , z) \left(\left|K^{\alpha}\left(z, w_{i}\right)\right|\right.\right. & \left.\left.K^{\alpha}\left(w_{i} w_{i}\right)^{-1 / 2}\right)^{-2}\right\}^{-M p-p / 2} \times \\
& \times\left\{\left(\left|K\left(z, w_{i}\right)\right| K\left(w_{i}, w_{i}\right)^{-1 / 2}\right)^{-2} K(z, z)\right\} \times \\
& \times\left\{\left|K^{\alpha}\left(z, w_{i}\right)\right|^{-p-M p} K^{a}\left(w_{i}, w_{i}\right)^{p+M p}\right\}\left\{\left|K\left(z, w_{i}\right)\right|^{2} K\left(w_{i} w_{i}\right)^{-1}\right\}
\end{aligned}
$$

and therefore eq. (6) becomes

$$
\begin{aligned}
& \int_{\Omega} K^{\alpha}(z, z)^{-M p-p / 2} K(z, z)\left|K^{\alpha}\left(w_{i}, z\right)\right|^{p+p M} d v(z)= \\
& \quad=K^{\alpha}\left(w_{i}, w_{i}\right)^{-M p-p / 2+p+M p} \int_{\Omega} K^{\alpha}(z, z)^{-M p-p / 2} K(z, z)\left|K^{a}\left(z, w_{i}\right)\right|^{2(M p+p / 2)-p-M p} d v(z) .
\end{aligned}
$$

Using the identical calculation in the variable w and noting that for any automor$\operatorname{phism} \varphi, \beta(z, w)=\beta(\varphi(z), \varphi(w))$, we now have

$$
\begin{aligned}
& \left.K\left(w_{i}, w_{i}\right)^{-p} \sum_{n \neq l}\left|a_{n}\left(w_{i}\right)^{p}\right| a_{l}\left(w_{i}\right)\right|^{p} \leqslant \\
& \quad \leqslant \int_{\Omega(R / c)} K^{a}(z, z)^{-M p-p / 2} K(z, z)\left|K^{\alpha}\left(w_{i} z\right)\right|^{M p} \times \\
& \quad \times K^{a}(w, w)^{-M p-p / 2} K(w, w)\left|K^{\alpha}\left(w_{i}, w\right)\right|^{M p} d v \times d v(z, w)=: I\left(R, w_{i}\right) \text { say } .
\end{aligned}
$$

Since $-M p-p / 2+M p=-p / 2<0$ and $M p$ is big enough, for any fixed w^{\prime}, the function

$$
K^{\alpha}(z, z)^{-M p-p / 2} K(z, z)\left|K^{\alpha}\left(w^{\prime}, z\right)\right|^{M p} \times K^{\alpha}(w, w)^{-M p-p / 2} K(w, w)\left|K^{\alpha}\left(w^{\prime}, w\right)\right|^{M p}
$$

is integrable on $\Omega \times \Omega$. In fact, by [8, Theorem 4.1], for big β, we have

$$
\int_{\Omega} K^{\alpha}(z, z)^{-\beta} K(z, z)\left|K^{\alpha}\left(w^{\prime}, z\right)\right|^{\beta+\varepsilon} d v(z) \simeq K\left(w^{\prime}, w^{\prime}\right)^{\varepsilon}
$$

The function $\left|K^{\alpha}(\cdot, w)\right|^{M p}$ is subharmonic and thus by the maximum principle there is a point w_{0} on the boundary of Ω such that $I\left(R, w_{i}\right) \leqslant I\left(R, w_{0}\right)$. Since $\Omega(R / c) \rightarrow$
$\rightarrow \emptyset$ as $R \rightarrow \infty$, it follows that $I\left(R, w_{i}\right) \rightarrow 0$ uniformly in i as $R \rightarrow \infty$, completing the proof of Lemma 4.5.

4.3. Proof of Claim 3.

$$
\begin{aligned}
& \|E\|_{S_{p}}^{p} \leqslant \sum_{n \neq l}\left|\left\langle T_{k} a_{n}, a_{l}\right\rangle\right|^{p} \leqslant \sum_{n \neq l}\left(\int_{\Omega_{k}}\left|a_{n}(z) a_{l}(z)\right| d v_{\varphi}^{\alpha}(z)\right)^{p} \leqslant \\
& \leqslant \sum_{i} v_{\varphi}^{\alpha}\left(E\left(w_{i}, r\right)\right)^{p} K^{\alpha}\left(w_{i}, w_{i}\right)^{p} \sum_{n \neq l}\left|a_{n}\left(w_{i}\right)\right|^{p}\left|a_{l}\left(w_{i}\right)\right|^{p} K\left(w_{i}, w_{i}\right)^{-p} \leqslant \\
& \leqslant \sum_{i}\left(b_{\varphi}^{\alpha}\left(w_{i}\right)\right)^{p} \sum_{n \neq l}\left|a_{n}\left(w_{i}\right)\right|^{p}\left|a_{l}\left(w_{i}\right)\right|^{p} K\left(w_{i}, w_{i}\right)^{-p} \leqslant \\
& \quad \leqslant \varepsilon_{R} \sum_{i}\left(b_{\varphi}^{\alpha}\left(w_{i}\right)\right)^{p} \leqslant \varepsilon_{R} C \int_{\Omega_{k}}\left(b_{\varphi}^{\alpha}(z)\right)^{p} K(z, z) d v(z) .
\end{aligned}
$$

Combining the all estimates, the proof of Theorem 4.1 is complete.

REFERENCES

[1] F. Beatrous - S.-Y. Li, Trace ideal criteria for operators of Hankel type, Ill. J. Math., 39 (1995), pp. 723-754.
[2] D. Békollé - C. A. Berger - L. A. Coburn - K. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal., 93 (1990), pp. 310-350.
[3] D. Békollé - A. Bonami, Estimates for the Bergman and Szegö projections in two symmetric domains of C^{n}, Colloq. Math., 68 (1995), pp. 81-100.
[4] C. A. Berger - L. A. Coburn - K. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz calculus, Amer. J. Math., 110 (1988), pp. 921-953.
[5] A. Cima - W. Wogen, Unbounded composition operators on $H^{2}\left(B_{n}\right)$, Proc. Amer. Math. Soc., 99 (1987), pp. 477-483.
[6] R, Coifman - R. Rochberg, Representation theorems for holomorphic and harmonic functions in L^{p}, Astérique, 77 (1980), pp. 11-66.
[7] C. C. Cowen, Composition operators on Hilbert spaces of analytic functions; A status report, in: Proc. Sympos. Pure Math. (W. B. Arveson - R. G. Douglas, Eds.), 51 (1990), pp. 131-145.
[8] J. Faraut - A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal., 88 (1990), pp. 64-89.
[9] P. Jafari, Composition operators in Bergman spaces on bounded symmetric domains, Contemp. Math., 137 (1992), pp. 277-290.
[10] S. G. Krantz, Function Theory of Several Complex Variables, Wadsworth \& Brooks, 2nd edition (1992).
[11] S.-Y. LI, Trace ideal criteria for composition operators on Bergman spaces, Amer. J. Math., 117 (1995), pp. 1299-1323.
[12] S.Y. Li - B. Russo, On compactness of composition operators in Hardy spaces of several variables, Proc. Amer. Math. Soc., 123 (1995), pp. 161-171.
[13] D. H. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal., 73 (1987), pp. 345-368.
[14] D. Luecking - K. Zhu, Composition operators belonging to the Scatten ideals, Amer. J. Math., 114 (1992), pp. 1127-1145.
[15] B. Maccluer, Spectra of compact composition operators on $H^{p}\left(B_{N}\right)$, Analysis, 4 (1984), pp. 87-103.
[16] B. Maccluer - J. H. Shapiro, Angular derivatives and compact composition operators on Hardy and Bergman spaces, Can. J. Math., 38 (1986), pp. 878-906.
[17] M. M. Peloso, Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains, Ill. J. Math., 38 (1994), pp. 223-249.
[18] J. H. Shapiro, The essential norm of a composition operator, Ann. Math., 125 (1987), pp. 375-404.
[19] J. H. Shapiro - P. D. Taylor, Compact nuclear and Hilbert-Schmidt composition operators on H^{2}, Indiana Univ. Math. J., 23 (1973), pp. 471-496.
[20] W. Wogen, Composition operators acting on spaces of holomorphic functions on domains in C ${ }^{n}$, in: Proc. Sympos. Pure Math. (W. B. Arveson - R. G. Douglas, Eds.), 51 (1990), pp. 361-366.
[21] K. ZHU, Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory, 20 (1988), pp. 329-357.
[22] K. ZHu, Operator Theory in Function Spaces, M. Dekker, New York (1990).

[^0]: (*) Entrata in Redazione l'1 marzo 1996.
 Indirizzo degli AA.: Song-Ying Li: Department of Mathematics, University of California, Irvine, CA 92697-3875, USA; B. RuSso: Department of Mathematics, University of California, Irvine, CA 92717, USA.

