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Abstract

In contrast to their more rigid counterparts, soft robots have the ability to

gently grip and maneuver objects with open-loop kinematic control. Guided

by several recent designs and implementations of soft robot hands, the present

paper analyzes a rod-based model for the fingers in the hand of a soft robot.

We show precisely how gripping is achieved and how the performance can be

affected by varying the system’s parameters. The designs we are interested in

feature pneumatic control of the soft robot and we model this actuation as a

varying intrinsic curvature profile of the rod. Our work provides a framework

for the theoretical analysis of the soft robot and the resulting analysis can

also be used to develop some design guidelines.
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1. Introduction

Soft robots contain little or no rigid material and have been designed

to perform a wide variety of robotic tasks, from bio-inspired crawling (Shep-

herd et al., 2011) and peristalsis (Seok et al., 2013) to pick-and-place gripping

(Suzumori, 1996; Brown et al., 2010; Ilievski et al., 2011; Song and Sitti, 2014;

Mosadegh et al., 2014; Deimel and Brock, 2014). Their unique promise for en-

abling inherently safe and adaptive contact with both solid and soft surfaces

has made these emerging systems attractive for wearable and field robotics

(Trivedi et al., 2008; Majidi, 2013; Kim et al., 2013; Laschi and Cianchetti,

2014). This is especially true of soft gripping mechanisms, which use a single

end effector or multiple fingers and are dramatically more compliant than

conventional robot grippers. For some designs, such as the four-fingered

gripper (Suzumori, 1996) and six-pointed star gripper (Ilievski et al., 2011)

shown in Figure 1(a)&(b), gripping is achieved with pneumatic actuation. In

contrast, the octopus-like soft robot shown in Figure 1(c) uses an artificial

tentacle that is actuated with motor-driven cables and shape memory alloy

(Laschi et al., 2012). Soft robot gripping has also been demonstrated with

bio-hybrid actuators composed of ventricular cardiomyocyte cells harvested

on a thin film of silicone elastomer, as shown in Figure 1(d) (Feinberg et al.,

2007).

Compared to piecewise rigid gripping elements, the fingers or end effector

of a soft gripper have low flexural rigidity and will bend during grasping

tasks. This is most pronounced in grippers that conform to an object and

make contact along a finite length, as is demonstrated in Figures 1(b)&(c). In

the case of angular objects (i.e., with straight edges), such “shape matching”
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is enhanced by adding a conformal sleeve to the actuator, which restricts

bending to predefined joints (Galloway et al., 2013). Nonetheless, even in

the case of soft grippers that only make point contact with an object, such as

those in Figures 1(a)&(d), bending can have a dramatic influence on control,

contact force, and load bearing capability. As with conforming grippers,

point-contact grippers have intrinsic flexural compliance that eliminates the

need for fine kinematic control of the relative position of the end effector

during unilateral contact with a fragile object. This compliance reduces the

dependency on force-feedback control and prevents damage to the object in

cases where the gripper overshoots.

The wealth of designs and implementations often renders it difficult to

gain a perspective on how sufficient pressure is induced in the contact area

between the soft hand finger and the workpiece. In order to examine this

issue, we will develop and analyze a rod-based, flexible model for three dif-

ferent grips. Referring to Figure 2, we consider a pair of fingers attached to

a palm. The pair of rods modeling the figures are assumed to have a con-

trollable intrinsic curvature κg = κ0(s). In particular, we seek to examine

the influence of profiles κ0(s) on the gripping effectiveness. For simplicity,

we assume the two rods share the same intrinsic curvature profile and are

synchronized. Thus, by symmetry, it is sufficient to analyze a single rod. As

shall be seen from our analysis, by appropriately varying κ0, it is possible

to change the normal force (or the pinching force) at the contact point of

the payload with the finger and successfully induce a state of static Coulomb

friction between the payload and the finger. Our modeling and analysis work

builds on the earlier papers Majidi et al. (2012, 2013a); Zhou et al. (2015)
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While we do not discuss the precise mechanism by which the intrinsic

curvature is changed, there has been an increased interest in the develop-

ment of mechanisms for changing κ0 in components of soft robots. The

interested reader is referred to Galloway et al. (2013); Shepherd et al. (2013);

Suzumori et al. (2007); Takashima et al. (2011); Wakimoto et al. (2009) for

examples of these mechanisms. Also, in order to make the theoretical model

more tractable for analysis, we only examine gripping mechanisms that in-

volve point contact with an object. As previously addressed for soft robot

locomotion in our earlier work (Majidi et al., 2013b), having an unknown

length of contact ℓc between a flexible gripping element and object results in

a free-boundary problem and introduces the need for an additional natural

boundary condition. Moreover, point-contact may have practical advantages

for pick-and-place due to lower stiction. This is especially true for grasp-

ing sticky objects or at small length scales where attractive forces (such as

electrostatic, van der Waals, and capillary) become relatively significant. In

these cases, conforming grippers that engage in finite contact may require

greater detachment force to peel their soft fingers from the object.

The paper is organized as follows: In the next section, Section 2, models

for the systems shown in Figures 1 and 2 are established using rod theory.

In particular, the governing equations for the configurations shown in Fig-

ure 2 are established. In Section 3, numerical integrations of the governing

equations are analyzed, and, with the help of a variational principle, the

stability of the equilibrium configurations are discussed in Section 4. Our

analyses demonstrate how varying the intrinsic curvature can control the

gripping force and shape of the soft robot’s hands in a manner that enables
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manipulation of the workpiece. We conclude the paper with a discussion on

different intrinsic curvature profiles in Section 5 and a set of design recom-

mendations for optimal performance of soft robot gripping devices featuring

varying intrinsic curvature rods.

2. A Simple Model For A Soft Robot Hand

To establish a feasible model for the gripping schemes shown in Figure

2, we model the finger as an inextensible, perfectly flexible elastic rod. The

rod theory we use is known as Euler’s theory for the elastica. Referring

to Figure 3, the centerline of the rod is parameterized by an arc length

coordinate s ∈ [0, ℓ] and the position of a point on the centerline is denoted

by r(s). The rod is assumed to be uniform of length ℓ with a flexural rigidity

EI, mass per unit length ρ, and an externally controlled intrinsic curvature

profile κg = κ0(s). As discussed in Majidi et al. (2013b), the pneumatic

actuation system in some soft robots induce changes to EI and ρ but we do

not consider these effects here.1

2.1. Background

The position of an arbitrary material point located at s = s∗ on the

centerline of the rod has the representation

r (s = s∗) = X (s = s∗)E1 + Y (s = s∗)E2, (1)

1Incorporating changes to EI and ρ into the model would follow the lines of similar

developments in models for growing plant stems that are discussed in Faruk Senan et al.

(2008) and O’Reilly and Tresierras (2011).
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where the Cartesian coordinates X and Y are defined by

X (s = s∗) = X (s = 0) +

∫ s∗

0

cos(θ(ξ))dξ ,

Y (s = s∗) = Y (s = 0) +

∫ s∗

0

sin(θ(ξ))dξ , (2)

where ξ is a dummy variable. In (2), the angle θ is defined as the angle that

the unit tangent vector r′ makes with the horizontal E1 direction:

r′ = cos(θ(s))E1 + sin(θ(s))E2, (3)

where the prime denotes the partial derivative with respect to s. We shall

assume that r is continuous (i.e., there are no breaks in the rod). It follows

that θ and r′ will also be continuous (i.e., there are no kinks in the rod).

The jump in an arbitrary function X = X (s, θ(s), θ′(s)) at the point

s = ζ is represented using a compact notation:

[[X ]]ζ = X (ζ+)−X (ζ−), (4)

where

X (ζ−) = lim
sրζ

X (s, θ(s), θ′(s)) ,

X (ζ+) = lim
sցζ

X (s, θ(s), θ′(s)) . (5)

Jumps in fields will be associated with points of application of forces at

discrete points along the rod in the sequel.

The bending moment M in the rod is prescribed by a classic constitutive

equation:

M = EI(θ′ − κ0)E3, (6)
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where κ0 is a signed intrinsic curvature. In addition to a gravitational force

−ρgE2 per unit length and terminal loadings acting at the ends of the rod,

we need to allow for the possibility of a singular force Fγ at s = γ. In the

problem at hand, this force models the contact of the workpiece with the

rod for the grip shown in Figure 2(c). The governing equations for the rod

can be obtained from balances of linear and angular momenta in a standard

fashion:

n′ − ρgE2 = 0,

d

ds
(EI(θ′ − κ0)) + n2 cos(θ)− n1 sin(θ) = 0,

[[n]]γ + Fγ = 0. (7)

In the second of these balances, the contact force n has the representation

n = n1E1 + n2E2.

Henceforth, we develop models for three distinct configurations of the

rod. In the first configuration, which is shown in Figure 2(a), the end of

the rod at s = ℓ is in point contact with the workpiece and a normal force

together with a dry friction force is present at this interface. We refer to this

configuration as Grip I. A closely related grip, Grip II, is shown in Figure

2(b). In this configuration, the gripper is below the workpiece and again

makes point contact at the tips of the two fingers. The third configuration of

interest, which we refer to as Grip III, arises when the singular contact point

is at s = γ (cf. Figure 2(c)). Examples of these configurations can be seen in

Figures 4 and 5. We now turn towards establishing the governing equations

for the models for Grip I and Grip II.
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2.2. Governing Equations For Grips I and II

In Grip I, the workpiece is assumed to be held stationary with the help

of static friction. We define the end point of the rod that connects to the

palm or the other soft finger to be s = 0 and the tip of the rod that touches

the workpiece to be s = ℓ. At the tip of the rod, a normal force NE1 and a

friction force FfE2 are assumed to act. The normal force NE1 ensures that

the unilateral constraint
∫ ℓ

0

cos(θ(s))ds =
b

2
(8)

is enforced. Here, b = 2 ((X(ℓ)−X(0)) is a constant width associated with

the workpiece. It is easy to see that the friction force FfE2 balances half the

weight 2mg of workpiece, namely,

−Ff = mg. (9)

The normal and friction forces need to satisfy the static friction criterion:

|Ff | ≤ µsN, (10)

where µs is a coefficient of static friction.

We recall that the total energy of the rod consists of the sum of the

strain energy, gravitational potential energy and the potential energy of the

terminal load Fℓ = NE1 + FfE2:

V =

∫ ℓ

0

{

EI

2
(θ′ − κ0)

2 + ρgY (s)− Fℓ · r
′

}

ds. (11)

The integral can be simplified using a standard change in the order of inte-

gration (see Farjoun and Neu (2005)):
∫ ℓ

0

ρgY (s)ds =

∫ ℓ

0

ρg(ℓ− s) sin (θ(s)) ds, (12)
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where Y (0) = 0. As we are assuming that both ends of the rod are fixed, (7)

or, equivalently, the first variation of V , can be used to derive the boundary-

value problem for the deformed shape θ = θ∗ of the rod:

EI(θ′′ − κ′
0) − ρg(ℓ− s) cos(θ) + Ff cos(θ)

−N sin(θ) = 0, s ∈ (0, ℓ). (13)

In addition, the sought-after solution θ = θ∗ needs to satisfy the boundary

conditions

θ(0) = 0, θ′(ℓ) = κ0(ℓ),

∫ ℓ

0

cos(θ(s))ds =
b

2
, (14)

and the static friction criterion (10).

The corresponding developments for Grip II follow in a straightforward

manner and, in the interests of brevity, are not explicitly discussed here.

2.3. Governing Equations For Grip III

In Grip III, the corner of the work piece is assumed to be in point contact

with the rod from at s = γ. In an effort to facilitate the discussion, we define

two new unit vectors:

e1 = cos(θ(γ))E1 + sin(θ(γ))E2,

e2 = − sin(θ(γ))E1 + cos(θ(γ))E2. (15)

Here, e1 is tangent to the centerline of the rod at s = γ while e2 = E3 × e1

is normal to the centerline of the rod at s = γ. With the help of e1 and e2,

the normal force n and its corresponding friction force ff acting as s = γ are

related to the force components N1 and N2 as follows:

Fγ = fe1 + ne2 = N1E1 +N2E2. (16)
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We emphasize that the static friction criterion at s = γ is

|f | ≤ µsn. (17)

To examine the effects of Fγ on the equilibrium configuration of the rod,

we apply (7) to the segment s ∈ (γ, ℓ) and conclude that

n(γ+) = −ρg (ℓ− γ)E2,

n(γ−) = N1E1 +N2E2 − ρg (ℓ− γ)E2. (18)

Using the second of these results, it is straightforward to establish an expres-

sion for the potential energy V of the rod:

V =

∫ γ

0

{

EI

2
(θ′ − κ0)

2 + ρgY (s)− n(γ−) · r′
}

ds

+

∫ ℓ

γ

{

EI

2
(θ′ − κ0)

2 + ρgY (s)

}

ds, (19)

where

Y (s) =

∫ s

0

sin(θ(ξ))dξ. (20)

In establishing (19) we emphasize that we are ignoring inertia effects.

As with Grips I and II, either a first variation of V can be performed or

(7) can be used to establish the boundary-value problem which is used to

determine the deformed shape θ∗ of the rod:

EI(θ′′ − κ′
0) − ρg(ℓ− s) cos(θ) = 0, s ∈ (0, γ),

EI(θ′′ − κ′
0) − ρg(ℓ− s) cos(θ) +N2 cos(θ)

−N1 sin(θ) = 0, s ∈ (γ, ℓ). (21)
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Here, the solution θ = θ∗ satisfies the conditions

θ(0) = 0, θ′(ℓ) = κ0(ℓ),

∫ γ

0

cos(θ(s))ds =
b

2
,

[[θ]]γ = 0, [[θ′]]γ = 0, (22)

in addition to the static friction criterion (17). In our formulation of the

governing equations, we have tacitly assumed that the tip of the rod will not

touch the workpiece. Thus,

hγ < h. (23)

3. The Gripping Mechanism

3.1. Intrinsic Curvature Profile and Dimensionless Parameters

In our work, gripping is controlled by varying the intrinsic curvature pro-

file and the choice of this profile is critical. For the purposes of discussion,

we start with the simplest possible intrinsic curvature profile: that of a con-

stant intrinsic curvature profile. The behavior of a clamped-free rod loaded

by its own weight and endowed with the constant intrinsic curvature profile

κg = κ0 is shown in Figure 6. This figure is used to show that the intrinsic

curvature profile does not generate physically unrealistic self-intersections of

the rod as κ0 is varied.

For the numerical simulations to be carried out in the sequel, it is conve-

nient to define a dimensionless flexural rigidity D, mass M , intrinsic curva-

ture parameter, and arc-length parameter:

D =
EI

ρgℓ3
, M =

m

ρℓ
, κ̄0 = ℓκ0, s̄ =

s

ℓ
. (24)

We also use the weight ρgℓ of the rod to non-dimensionalize the friction and

normal forces.
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3.2. Grip I

We start by considering the tip of the rod in point contact with the

workpiece as shown in Figure 4 which is the most common gripping mode

either for a robot or a human being. A key to successful gripping is to produce

a pinching force N1 at the contact point so the weight of the workpiece can

be supported without the static friction criterion being violated. To see how

this can be achieved by varying κ̄0, we solve the boundary value problem

given by (13) and (14) to determine the deformed shape of the rod and the

dimensionless normal N1

ρgℓ
and the correspond maximum static friction µsN1

ρgℓ

forces.

As can be seen from Figure 7(a), as −κ̄0 increases, eventually a point is

reached where the weight −2mgE2 of the workpiece can be balanced by the

static friction. One thing to notice is that the relationship between height of

the rod tip h of the finger and the magnitude |κ̄0| of the intrinsic curvature

in the feasible region is almost linear in Figure 7(c). This property may

facilitate control of the gripping mechanism.

Beyond the ability of the soft hand to grip the workpiece with the palm

pointing down (as shown in Figure 2(a) and discussed in Figure 7), it is

also of interest to see whether the soft hand can hold an object with the

palm pointing upwards. As can be seen from Figure 8, as −κ̄0 increases, the

weight of the workpiece can be supported by the static friction force at the

contact point of the rod and the workpiece. One feature worth mentioning is

that, for the same value of |κ̄0|, the normal force N1 with the palm pointing

up is higher than that with the palm pointing down. The difference can

be attributed to the self weight of the rod: with the palm pointing up, the
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rod’s weight can increase the curvature which produces an increased normal

force N1. The stability of the equilibrium configurations, which is usually a

challenge for an inverted rod, will shortly be discussed in Section 4.

3.3. Grip III

Grip III, where the work piece is cradled by the fingers, requires a more

delicate analysis than either Grip I or Grip II. Referring to Figure 9, we find

for the soft hand to hold an object, the magnitude of the intrinsic curvature

must be within a given range. If −κ̄0 is too small, then the shear force n2

will be small which leads to a violation of the static friction criterion (17).

However, if −κ̄0 is too large, then the force n1 will be quite large which also

leads to the violation of (17). As shown in Figure 9(c), a large −κ̄0 can

induce a curled-up tip and could result in the violation of (23).

4. Stability Analysis

The equilibrium configurations of the rod discussed in Section 3 feature

large deformations and it is prudent to examine if the configurations are

stable (i.e., there are no buckling instabilities). The presence of the isoperi-

metric constraint is accommodated by discretizing the system and performing

an appropriate eigenvalue analysis.

4.1. Stability Analysis for Grips I and II

As illustrated by Figure 10, the rod is divided into a set of K segments

of length ds, the system can be parameterized by K +1 variables θ0, . . . , θK .
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The total potential energy (11) is approximated by its discrete counterpart:

Vdis =
EI

2

K
∑

i=1

(

θi − θi−1

ds
− κ0

)2

ds

+ρg(ℓ− s0) sin(θ0)
ds

2
+

K−1
∑

i=1

ρg(ℓ− si) sin(θi)ds+ ρg(ℓ− sK) sin(θK)
ds

2

−Ff sin(θ0)
ds

2
− Ff

K−1
∑

i=1

sin(θi)d− Ff sin(θK)
ds

2

−N cos(θ0)
ds

2
−N

K−1
∑

i=1

cos(θi)ds−N cos(θK)
ds

2
. (25)

The isoperimetric constraint is also discretized and we need to consider

boundary conditions on θi:

cos(θ0)
ds

2
+

K−1
∑

i=1

cos(θi)ds+ cos(θK)
ds

2
=

b

2
,

θ0 = 0,
θK+1 − θK−1

2ds
= κ0(ℓ) (26)

The two equations (26)2,3 can be directly imposed on (25) to reduce the

dimension of the discretized system:

Vdis =
EI

2

K
∑

i=1

(

θi − θi−1

ds
− κ0

)2

ds

+
K−1
∑

i=1

ρg(ℓ− si) sin(θi)ds+ ρg(ℓ− sK) sin(θK)
ds

2

−Ff

K−1
∑

i=1

sin(θi)ds− Ff sin(θK)
ds

2

−N
ds

2
−N

K−1
∑

i=1

cos(θi)ds−N cos(θK)
ds

2
(27)
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subject to the constraint function c (from (26)1):

c =
ds

2
+

K−1
∑

i=1

cos(θi)ds+ cos(θK)
ds

2
−

b

2
. (28)

We observe that the pair of functions Vdis and c depend on the states θ1, . . . , θK .

We next seek minimizers of Vdis which satisfy the discretized constraint

(28). The extremizer, which can be found in a standard manner using the

method of Lagrange multipliers, is denoted by (θ∗1, . . . , θ
∗
K). To examine the

stability of the equilibrium state, it is convenient to define three (K ×K)

matrices:

F = ∇2Vdis (θ
∗
1, . . . , θ

∗
K) ,

H = ∇2c (θ∗1, . . . , θ
∗
K) ,

L = F+ χH. (29)

Here, the Lagrange multiplier χ corresponds to contributions from the normal

force χE1 = NE1 at the tip s = ℓ of the rod. It is well known that for an

equilibrium to be stable, the potential energy has to be locally minimized. To

check whether the equilibrium (θ∗1, . . . , θ
∗
K) locally minimizes Eqn. (27), we

use the classic method discussed in Luenberger and Ye (2008) of checking the

eigenvalues of L corresponding to the eigenvectors of L that lie in the (K-1)-

dimensional tangent subspace M that is orthogonal to the (K-dimensional)

gradient vector ∇c ∈ R
K defined by the discretized constraint (28). That is,

M = {u ∈ R
K : ∇c (θ∗1, . . . , θ

∗
K) · u = 0}. (30)

We denote an orthogonal basis for M by the set of K-dimensional vectors

{u1, . . . , uK−1}. This basis can be used to define a projection operator E
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where Ez ∈ M for all z ∈ R
K :

E = [u1, . . . , uK−1] . (31)

With the help of E, the stability of the equilibrium can be established by

showing that the smallest eigenvalue of E
T
LE is strictly positive. As in-

dicated by the results shown in Figure 11(a), the quasistatic equilibrium

configurations for Grips I and II satisfy the stability criterion.

4.2. Stability Analysis for Grip III

For the case of Grip III, we define the discretized point which contact the

object is I. Thus the discretized potential energy function reduces to

Vdis =
EI

2

K
∑

i=1

(

θi − θi−1

ds
− κ0

)2

ds

+ρg(ℓ− s0) sin(θ0)
ds

2
+

K−1
∑

i=1

ρg(ℓ− si) sin(θi)ds+ ρg(ℓ− sK) sin(θn)
ds

2

−N1 cos(θ0)
ds

2
−N1

I−1
∑

i=1

cos(θi)ds−N1 cos(θI)
ds

2

−N2 sin(θ0)
ds

2
−N2

I−1
∑

i=1

sin(θi)ds−N2 sin(θI)
ds

2
. (32)

Subject to the constraint function c:

c =
ds

2
+

I−1
∑

i=1

cos(θi)ds + cos(θI)
ds

2
−

b

2
(33)

We now follow the same procedure as we did for Grips I and II, but with a

minor change in the objective function Vdis and constraint function c. Our

numerical results can be seen in Figure 11(b) and we conclude that the

equilibrium configuration for Grip III satisfies the stability criterion.
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5. The Role of the Intrinsic Curvature Profile

The constant intrinsic curvature profile κ0 analyzed in the previous sec-

tions can be considered as too simplistic. Indeed, recent attention that has

been paid to the mechanism of varying κ0 throughout the soft robot (see,

e.g., Galloway et al. (2013); Shepherd et al. (2013); Suzumori et al. (2007);

Takashima et al. (2011); Wakimoto et al. (2009)), typically produce an intrin-

sic curvature profile which is non-uniform. It is clearly of interest to examine

how robust the conclusions drawn in Sections 3 and 4 are to changes in the

intrinsic curvature profile. To examine this issue, we consider the following

intrinsic curvature profile:

κ̄0(s̄) = pκ̄max(4s̄(1− s̄))α, (34)

with p = −1 when the soft hand is pointing downwards, p = 1 when the soft

hand is pointing upwards. The intrinsic curvature profile is such that κ̄max

is the maximum intrinsic curvature in the rod and α regulates the degree of

intrinsic curvature concentration as shown in Figure 12.

For all three gripping configurations, the representative results shown in

Figures 13-15 illustrate that a concentrated intrinsic curvature profile will

not increase the soft hand’s gripping ability compared to the uniform case.

In addition, the stability properties are not drastically different from the

uniform intrinsic curvature profile considered earlier. These results are reas-

suring because in practice the actually profile is likely to be a combination of

the constant intrinsic curvature and concentrated intrinsic curvature profiles.
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6. Conclusions

In closing this paper, it is interesting to compare the loading capabilities

of the three gripping configurations. To this end, we consider a uniform

intrinsic curvature profile and first consider the minimum amount of static

friction needed to lift a fixed mass M . The results are shown in Figure 16(a).

As expected, Grip III is superior in that it can transport the load with a

smaller intrinsic curvature profile. We also note that for a particular value of

κ̄0, no static friction is needed. In this case, the slope of the rod at the contact

point with the workpiece and the E2 component of the normal force ne2 are

such that ne2 ·E2 = mg. As m decreases, the critical value of κ̄0 where this

situation occurs decreases. For the second set of numerical experiments, we

fix the available µs and examine the largest load that can be carried. As

shown in Figure 16(b), Grip III has superior load bearing capabilities and

shows a larger sensitivity to changes in κ̄0.

Based on the numerical simulations and analysis of the simple models for

Grips I, II, and III, the following conclusions on gripping can be drawn for

the single-point gripping schemes:

1. In the gripping schemes, controlling the magnitude of the intrinsic cur-

vature is sufficient to control the pinching force.

2. Concentration of intrinsic curvature does not significantly improve the

effectiveness of the gripping.

3. Grip III, as expected, has superior load bearing capabilities.

While the design and operation of soft robot gripping devices also includes

actuator technology, materials, and geometric dimensions required to deliver

18



an effective gripping, it is hoped that the analyses presented in this paper

can help to develop and enable design guidelines.
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Figure 1: Examples of soft robot hands. (a) Four-fingered pnueumatic gripper from Suzu-

mori (1996), six-pointed pneumatic star gripper from Ilievski et al. (2011), (c) octopus-like

soft robot tentacle from Laschi and Cianchetti (2014), and (d) bio-hybrid pinching gripper

from Feinberg et al. (2007).
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Figure 2: Illustration of three typical gripping modes of a workpiece with the width b. In

Grips I & II which are shown in (a) and (b), respectively, the workpiece is lifted with the

help of static friction forces at the tip of the finger. In Grip III, which is shown in (c),

the workpiece is lifted by the normal (pinching) force together with static friction forces at

the contact point of the finger with the workpiece.
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Figure 3: Schematic representation of an elastica of length ℓ showing the position r of a

point on the centerline. The rod is subject to a terminal force F0 and terminal moment

M0 at s = 0, a terminal force Fℓ and terminal moment Mℓ at the end s = ℓ, and a force

Fγ at the point s = γ.
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Figure 4: Schematic of the model for Grip I. In this model, the workpiece is assumed

to be held stationary by static friction at the point contact at the tip of the rod s = ℓ:

Fℓ = NE1 + FfE2.

28



E1

E2

N2E2O

N1E1
fe1

ne2

h

b
2

hγ

g

Figure 5: Schematic of the model for Grip III. Here, point contact of the workpiece and

the rod occurs at the point s = γ. The workpiece is assumed to be held stationary by a

normal force ne2 along with a static friction force fe1. For the case shown, N2 < 0 and

f < 0.
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Figure 6: Features of the constant intrinsic curvature profile of a clamped-free rod as the

constant κ0 is varied. (a) The corresponding deformed shape of a rod with a constant

intrinsic curvature profile. (b) The corresponding deformed shape of a heavy rod with

a constant intrinsic curvature profile and a vertical gravity loading. The dimensionless

flexural rigidity D of the rod is D = EI
ρgℓ3

= 1.
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Figure 7: Grip I of the soft hand. (a) The deformed shape of the soft hand as κ̄0 varies

with the pair of feasible configurations labelled f . (b) The corresponding dimensionless

friction
|Ff |
ρgℓ

required and the maximum friction µsN
ρgℓ

that can be provided. (c) The height

h of the tip of the rod. The shaded regions in (b) and (c) indicates the feasible regions for

Grip I. For the results shown, b
ℓ
= 0.6, D = EI

ρgℓ3
= 1, µs = 1, M = 5 and −κ̄0 increases

from 0 to 6.
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Figure 8: Grip II of the soft hand. (a) The deformed shape of the soft hand as κ̄0 varies

with the pair of feasible configurations labelled with f . (b) The corresponding dimensionless

friction
|Ff |
ρgℓ

required and the maximum friction µsN
ρgℓ

that can be provided. (c) The height

h of the tip of the rod. The shaded regions in (b) and (c) indicates the feasible regions for

Grip II. For the results shown, b
ℓ
= 0.6, D = EI

ρgℓ3
= 1, µs = 1, M = 5, and κ̄0 increases

from 0 to 6.
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Figure 9: Grip III of the soft hand holding a given workpiece. (a) The deformed shape

of the soft hand as κ̄0 varies with the pair of feasible configurations labelled f . (b) The

corresponding dimensionless friction force n1

ρgℓ
needed and the maximum friction force µsn2

ρgℓ

that can be provided. (c) The heights h and hγ . The shaded regions in (b) and (c) are

the feasible regions for Grip III. For the results shown, γ
ℓ
= 0.8, b

ℓ
= 0.6, D = EI

ρgℓ3
= 1,

µs = 1, M = 5, and −κ̄0 increases from 0 to 10.
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Figure 10: Schematic of the discretization scheme for the rod.
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Figure 11: (a) Verification of the stability of the equilibrium configuration shown in Fig-

ures 7 and 8 by examining the minimum eigenvalue λmin of L in an appropriate tangent

subspace. (b) Verification of the stability of the equilibrium configuration shown in Figure

9 (i.e., Grip III); For the results shown, b
ℓ
= 0.6, D = EI

ρgℓ3
= 1, M = 5, and µs = 1.
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Figure 12: Features of the curvature profile given by (34) as the parameter α is varied. (a)

The dimensionless intrinsic curvature throughout the deformed rod. (b) The corresponding

deformed shape of a heavy rod with an intrinsic curvature profile (34). For the results

shown, κ̄max = 6, p = −1, and D = EI
ρgℓ3

= 1.
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Figure 13: Grip I of the soft hand where the workpiece faces downwards. (a) The deformed

shape of the soft hand as α varies. (b) The corresponding maximum dimensionless friction

force µsN
ρgℓ

that can be provided, (i.e., the loading bearing capacity). (c) Verification of the

stability of the equilibrium configuration obtained by examining the minimum eigenvalue

λmin of L in an appropriate tangent subspace. For the results shown, b
ℓ
= 0.6, D = EI

ρgℓ3
=

1, µs = 1, κ̄max = 6, M = 5, and α increases from 1 to 3.
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Figure 14: Grip II of the soft hand where the workpiece points upwards. (a) The deformed

shape of the soft hand as α varies. (b) The corresponding maximum dimensionless friction

force µsN
ρgℓ

that can be provided, (i.e., the loading bearing capacity). (c) Verification of the

stability of the equilibrium configuration obtained by examining the minimum eigenvalue

λmin of L in an appropriate tangent subspace. For the results shown, b
ℓ
= 0.6, D = EI

ρgℓ3
=

1, µs = 1, κ̄max = 6, M = 5, and α increases from 1 to 3.

37



X
ℓ

Y
ℓ

0.1

−0.9

10

5
0.60

0

0.5

N2

ρgℓ

α

(a) (b) (c)

11 33 αα

workpiece
λmin

Figure 15: Grip III of the soft hand holding a given workpiece. (a) The deformed shape

of the soft hand as α varies. (b) The corresponding maximum force N2

ρgℓ
that can be pro-

vided (i.e., the load bearing capacity). (c) Verification of the stability of the equilibrium

configuration obtained by examining the minimum eigenvalue λmin of L in an appropriate

tangent subspace For the results shown, b
ℓ
= 0.6, D = EI

ρgℓ3
= 1, µs = 1, κ̄max = 6, M = 5,

and α increases from 1 to 3.
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Figure 16: (a) Given a workpiece with M = 5, the least µs required to successfully grip an

object. (b) Given a static friction coefficient µs = 1, the maximum workpiece weight M

that can be accommodated. For the results shown, b
ℓ
= 0.6 and D = EI

ρgℓ3
= 1 .
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