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Abstract—We combine tools from homotopy continuation
solvers with the methods of analytic combinatorics in several
variables to give the first practical algorithm and implementation
for the asymptotics of multivariate rational generating functions
not relying on a non-algorithmically checkable ‘combinatorial’
non-negativity assumption. Our homotopy implementation ter-
minates on examples from the literature in three variables, and
we additionally describe heuristic methods that terminate and
correctly predict asymptotic behaviour in reasonable time on ex-
amples in even higher dimension. Our results are implemented in
Julia, through the use of the HomotopyContinuation.jl package,
and we provide a selection of examples and benchmarks.

Index Terms—asymptotics, analytic combinatorics in several
variables, homotopy, polynomial system

Let (fn)n∈N = f0, f1, . . . be a complex-valued sequence
with generating function F (z) =

∑
n≥0 fnz

n. Although F
is a priori only a formal power series, in a wide variety of
applications (in fact, whenever fn has at most exponential
growth) it represents an analytic function in a neighbourhood
of the origin. The field of analytic combinatorics creates
effective techniques to determine the asymptotic behaviour of
fn through a study of the analytic behaviour of F (z). Most
classical methods in analytic combinatorics take as input an
algebraic or differential equation satisfied by F (z) and, when
successful, return the leading terms in an asymptotic expansion
of fn (see [10] or [17, Chapter 2]).

More recently, a theory of analytic combinatorics in several
variables (ACSV) [17], [22] has been developed to translate the
analytic behaviour of a d-variate generating function

F (z) =
∑
i∈Nd

fiz
i :=

∑
i∈Nd

fi1,...,idz
i1
1 · · · zidd

into asymptotic information about its coefficient sequence
(fi)i∈Nd . In this paper we focus on the case of a power
series expansion of a multivariate rational function F (z) =
G(z)/H(z) and attempt to determine asymptotics of the
r-diagonal sequence (fnr)n∈N for a fixed direction vector
r ∈ Zd

>0. The most common situation to arise in practice
is the main diagonal, when r = 1.

KL and SM acknowledge the support of the AMS Math Research Commu-
nity Combinatorial Applications of Computational Geometry and Algebraic
Topology, which was funded by the National Science Foundation under Grant
Number DMS 1641020. SM and JS’s work partially supported by NSERC
Discovery Grant RGPIN-2021-02382.

Remark 0.1: If r has some zero coordinates then we can
reduce to the above situation by setting some of the variables
equal to zero and working in a lower dimension. For instance,
the (0, r2, r3)-diagonal of any series F (x, y, z) is the (r2, r3)-
diagonal of F (0, y, z). Furthermore, our asymptotic statements
continue to hold for directions r ∈ Q>0 if they are interpreted
to be valid only when nr ∈ Nd. In fact, the methods of
ACSV show that asymptotics of the r-diagonal usually vary
smoothly with r, allowing one to give a natural interpretation
of asymptotics in irrational directions and derive central limit
theorems [17, Section 5.3.3].

Remark 0.2: Because the methods of ACSV hold in any
dimension, our requirement that F (z) be rational is less
restrictive than it may seem. For instance, the r-diagonal of
an algebraic function in d variables can be represented [17,
Section 3.2.2] as the diagonal of a rational function in 2d
variables (and a ‘skew-diagonal’ of a rational function in d+1
variables). The theoretical results discussed here also hold for
meromorphic functions, when F (z) is (locally) the ratio of
analytic functions, however our restriction to rational functions
allows us to stay in the realm of algebraic quantities and
polynomial systems, which we use for our explicit algorithms.

There are many factors making ACSV more complicated
than its univariate counterpart. Although a univariate rational
function has a finite number of singularities, meaning one can
determine the ‘asymptotic contribution’ of each and simply
sum those with the fastest growth, any (non-polynomial)
rational function in at least two variables must have an
infinite number of singularities. In addition to obscuring which
singularities contribute to asymptotics, this also means that
the singular set can have non-trivial geometry, for instance by
self-intersecting. The difficulties that arise mean that unlike the
univariate case, which relies on standard complex-analytic re-
sults going back hundreds of years, the most advanced ACSV
results rely on advanced techniques from areas of mathematics
as diverse as complex analysis in several variables, the study
of singular integrals, algebraic geometry, differential geometry,
and topology.

The starting point of an ACSV analysis expresses the r-
diagonal of F (z) as a d-dimensional complex integral. In
the simplest cases, asymptotic behaviour is determined by
the behaviour of F near two types of points: critical points,



defined by an explicit polynomial system, and minimal points,
which are singularities that are coordinate-wise closest to the
origin. Critical points satisfy a square polynomial system,
and generically form a finite set that can be manipulated
in a computer algebra system. In contrast, there are always
an infinite number of minimal points, which are defined by
inequalities involving the moduli of coordinates and are thus
trickier and more expensive to manipulate in computations.

A. Previous Work and Our Contributions

From the beginning of its modern period in work of
Pemantle and Wilson [21], the goal of ACSV has always
been to develop methods explicit enough to be implemented
in a computer algebra system. The ‘surgery’ approach of [21],
which applies to generating functions with smooth singular
sets that form manifolds, essentially computes a residue in
one variable to obtain a (d − 1)-dimensional integral that
is approximated using the saddle-point method. Although
this surgery method does not require much theory beyond
univariate analytic combinatorics, it requires strong conditions
on the locations of minimal points that can be computa-
tionally expensive to verify. Later techniques, using cones
of hyperbolicity [3] and multivariate residue and homology
computations [2], rely on more advanced theory but simplify
the assumptions that need to be verified for the results to
hold. In the simplest cases, which hold for the majority of
examples encountered in combinatorial applications, it suffices
to determine which of the critical points are minimal and
then add explicit asymptotic contributions corresponding to the
(finite number of) minimal critical points. The most expensive
step in such an analysis is almost always checking minimality.

The first systematic algorithmic study of ACSV methods
was conducted by Melczer and Salvy [18], who encoded
critical points using a symbolic-numeric data structure known
as a Kronecker or rational univariate representation and then
reduced checking minimality to rigorously approximating the
roots of certain univariate polynomials to sufficiently high
accuracy. Those authors created a preliminary implementation
of their work, which does not certify numeric computations
to provide rigorous proofs and requires combinatorial rational
functions, in the Maple computer algebra system. A rational
function F (z) is combinatorial if all of its power series coeffi-
cients are non-negative: although this condition is satisfied for
any multivariate generating function, in many combinatorial
examples only one diagonal of F enumerates a combinatorial
class and the non-diagonal entries have negative coefficients.
It is an open problem, even in the univariate case, whether it is
decidable to detect when a rational function is combinatorial
(see [20] for some open problems in this area). Although
Melczer and Salvy [18] detail a method that, in principle,
yields an algorithm for asymptotics that does not require
combinatorality, in practice an implementation in Maple would
not halt in reasonable time beyond low degree examples in two
or three variables.

Instead of continuing with the Kronecker representation
approach of Melczer and Salvy, in this paper we exploit ho-

motopy continuation methods to certify minimality of critical
points, and ultimately determine asymptotics of r-diagonals of
rational functions. Using the HOMOTOPYCONTINUATION.JL
Julia package [7] for polynomial system solving, we provide
the first implementation of ACSV methods under assumptions
that often hold in practice. Our implementation is efficient
enough to work even without the assumption of combina-
torality, although when the user knows a priori that their
input rational function is combinatorial then the computation
is greatly reduced. In addition, we describe two heuristic
methods to classify minimal critical points using numerical
approximations that are extremely efficient, and are the only
implemented algorithms we currently know of that can aid in
the search for minimal points in more than three variables.

Example 0.3: The main diagonal of the power series expan-
sion of

F (x, y, z) =
1

1− (1 + z)(x+ y − xy)

is related to a result of Apéry [1] on the irrationality measure of
ζ(2). After importing our package we define the denominator
polynomial in Julia using� �
@polyvar x y z
H = 1-(1+z)*(x+y-x*y)� �

If we know that this power series expansion is combinatorial,
then we can get the (truncated for clarity) minimal critical
point� �
min_cp = find_min_crits_comb(H)� �� �
Out: 1-element Vector{Vector{ComplexF64}}:

[0.38 + e-39im,0.38 + e-38im,0.61 - e-38im]� �
and print out the leading asymptotic term of the diagonal with� �
leading_asymptotics(1,H,min_cp)� �� �
Out: "(0.09+6.2e-39im)^(-n)n^(-1)(0.47-5.7e-40im)"� �

It is not obvious from the definition that F is combinato-
rial. If we don’t know our function is combinatorial then
we can determine minimality by running find_min_crits(H),
which returns the same point but requires approximately 15
minutes of computation. If we want to heuristically check
for minimal critical points, but don’t know that F is com-
binatorial and don’t want to wait for the full algorithm, we
can run the algorithms find_min_crits(H; approx_crit=true)

or find_min_crits(H; monodromy=true), described below, which
also find the correct point and finish in seconds.

Remark 0.4: Because we use numeric methods, asymptotic
behaviour is returned with numeric approximations of con-
stants. If the user wants to determine the algebraic quantities
involved exactly, we recommend solving for the critical points
(a relatively cheap operation) symbolically using another com-
puter algebra system like Sage or Maple and then using the
results of this package to filter out the minimal ones (the most
expensive operation).

The rest of this paper proceeds as follows. Section I gives
a quick recap of the methods of ACSV and the high-level



problems that need to be decided to find asymptotics, with
a description of numerical algebraic geometry methods for
polynomial system solving given in Section II. Section III uses
this background material to detail our ACSVHOMOTOPY.JL
Julia package, while Section IV illustrates the package on a
wide variety of combinatorial examples, including benchmarks
between different algorithms. Although our algorithms always
terminate, due to the nature of homotopy continuation methods
they may not always provide a rigorous proof of asymptotics –
Section V discusses this issue and describes situations in which
the algorithms do give rigorous proofs. Finally, Section VI
concludes with some extensions that we believe should be
addressed next.

I. SMOOTH ACSV

From now on, F (z) = G(z)/H(z) denotes a ratio of d-
variate coprime polynomials G,H ∈ Z[z] with power series
expansion F (z) =

∑
i∈Nd fiz

i converging around the origin,
and r ∈ Zd

>0 is a fixed direction vector.
Definition 1.1 (minimal critical points): A point w ∈ Cd

∗ is
a (simple) smooth critical point of F if (∇H)(w) ̸= 0 and{

H(w) = 0
rkz1Hz1(w)− r1zkHzk(w) = 0 (2 ≤ k ≤ d).

(1)

We call w ∈ Cd
∗ a minimal point if H(w) = 0 and there does

not exist y ∈ Cd such that H(y) = 0 and |yj | < |wj | for all
j = 1, . . . , d.

Remark 1.2: If (∇H)(w) = 0 then (1) is trivially satisfied.
If the gradient vanishes because H has a higher-order pole (for
instance, if H = P 2 for some polynomial P ) then our analysis
of minimal critical points can be performed on the square-free
part of H (the product of its irreducible factors) to obtain an
asymptotic expansion of fnr with minor modifications. On the
other hand, if the gradient vanishes because the zero set of H
self-intersects then more advanced techniques are required [17,
Part III].

We will be able to determine asymptotics in the presence
of smooth minimal critical points, assuming a nondegeneracy
condition on the zero set of H .

Definition 1.3 (phase Hessian matrix): If w is a smooth
critical point then the phase Hessian matrix H at w is the
(d− 1)× (d− 1) matrix defined by

Hi,j =

ViVj + Ui,j − VjUi,d − ViUj,d + ViVjUd,d : i ̸= j

Vi + V 2
i + Ui,i − 2ViUi,d + V 2

i Ud,d : i = j

where

Ui,j =
wiwjHzizj (w)

wdHzd(w)
and Vi =

ri
rd

.

Theorem 1.4 (Melczer [17, Theorem 5.1]): Suppose that the
system of polynomial equations (1) admits a finite number of
solutions, exactly one of which, w ∈ Cd

∗, is minimal. Suppose
further that Hzd(w) ̸= 0, that the phase Hessian matrix H at
w has non-zero determinant, and that G(w) ̸= 0. Then, as
n → ∞,

fnr = w−nrn(1−d)/2 (2πrd)
(1−d)/2√

det(H)

−G(w)

wd Hzd(w)

(
1 +O

(
1

n

))
.

When the zero set of H contains a finite number of points
with the same coordinate-wise modulus as w, all of which
satisfy the same conditions as w, then an asymptotic expansion
of fnr is obtained by summing the right hand side of this
expansion at each point.

Remark 1.5: The condition that G(w) ̸= 0 means that
the leading asymptotic term in Theorem 1.4 doesn’t vanish.
When G(w) = 0 asymptotics can usually still be determined
by computing higher-order terms using (increasingly compli-
cated) explicit formulas.

A. Minimality Tests

The hardest work in applying Theorem 1.4 is computing
the critical points, defined implicitly by (1), and determining
which, if any, are minimal.

(Combinatorial Case) Recall that a function is called com-
binatorial if its power series expansion contains only a finite
number of negative coefficients. When F is combinatorial
there is a simple test for minimal critical points.

Lemma 1.6 (Melczer and Salvy [18]): Suppose F has only
a finite number of negative power series coefficients fi. If
y ∈ Cd

∗ is a minimal critical point then so is (|y1|, . . . , |yd|).
Furthermore, w ∈ Rd

>0 is a minimal critical point if and only
if the system

H(z) = H(tz1, . . . , tzd) = 0

z1Hz1(z)− r1λ = · · · = zdHzd(z)− rdλ = 0
(2)

has a solution (z, λ, t) ∈ Rd+2 with z = w and t = 1 and no
solution with z = w and 0 < t < 1.

In the combinatorial case we firstly use Lemma 1.6 to char-
acterize the minimal critical points with positive coordinates
by studying the solutions to (2). From them, find the solutions
to (1) with the same coordinate-wise modulus. The following
algorithm summarizes this approach.

Algorithm 1 Minimal Critical Points in the Combinatorial
Case

1) Determine the set S of zeros of the polynomial system
(2) in the variables z, λ, t. If S is not finite, FAIL.

2) Find ζ ∈ Rd
>0 such that there exists (ζ, λ, t) ∈ S and

for all such triples, t ̸∈ (0, 1). If the number of such ζ’s
is not exactly 1 or if there are such points with λ = 0,
FAIL.

3) Identify ζ among the set C of zeros to (1).
4) Return {z ∈ Cd | ∃(z, λ) ∈ C, |z1| = |ζ1|, · · · , |zd| =

|ζd|}.

(General Case) If F is not combinatorial, or if we don’t
know a priori that F is combinatorial, then it is no longer
sufficient to consider only the critical points with positive
real coordinates to check minimality. In order to express the
moduli of coordinates as algebraic equations, we write H(x+



iy) = HR(x,y) + iHI(x,y) for real variables x,y ∈ Rd

and polynomials HR, HI ∈ R[x,y]. Translating the smooth
critical point equations (1) into these new coordinates gives
that z = a+ ib with a,b ∈ Rd is critical if and only if

HR(a,b) = HI(a,b) = 0 (3)

ajH
R
xj
(a,b) + bjH

R
yj
(a,b)− rjλR = 0 (4)

ajH
I
xj
(a,b) + bjH

I
yj
(a,b)− rjλI = 0 (5)

for some λR, λI ∈ R, where 1 ≤ j ≤ d in each equation. To
test minimality of these critical points we add the equations

HR(x,y) = HI(x,y) = 0 (6)

x2
j + y2j − t(a2j + b2j ) = 0 (7)

for 1 ≤ j ≤ d, and verify there is no real solution to (3)-(7)
with 0 < t < 1. Generically (3)-(7) have a finite set of real
solutions, corresponding to the generically finite number of
critical points of F , but because this system contains 3d +
4 equations in 4d + 3 variables it will never have a (non-
zero) finite number of solutions over the complex numbers.
By considering critical values of the projection map onto the
t coordinate, Melczer and Salvy [18] proved that minimality
can be tested by adding the additional equations

(ν1yj − ν2xj)H
R
xj
(x,y)− (ν1xj + ν2yj)H

R
yj
(x,y) = 0

for 1 ≤ j ≤ d. When ν1 ̸= 0 then we can scale by ν1 and
introduce the equations

(yj − νxj)H
R
xj
(x,y)− (xj + νyj)H

R
yj
(x,y) = 0 (8)

to (3)-(7), resulting in a square system with 4d+ 4 variables
and equations. The case when ν1 = 0 is dealt with separately
by adding the equations

−xjH
R
xj
(x,y)− yjH

R
yj
(x,y) = 0 (8′)

for 1 ≤ j ≤ d. We determine the minimal critical points by
finding p+ iq such that equations (3)-(5) have a real solution
with (a,b) = (p,q) but neither (3)-(8) nor (3)-(8’) have a
real solution with (a,b) = (p,q) and 0 < t < 1. This process
provides the following algorithm.

Algorithm 2 Minimal Critical Points in the Non-
Combinatorial Case

1) Determine the set S of zeros of the polynomial system
(3)-(8) in the variables a,b,x,y, λR, λI , ν, t. If S is not
finite, FAIL.

2) Construct a set U of minimal critical points a + ib ∈
Cd such that there exists (a,b,x,y, λR, λI , ν, t) ∈ S ∩
R4d+4 and for all such tuples, t ̸∈ (0, 1). If either U is
empty or one of its elements has λI = λR = 0, or if
the elements of U do not all belong to the same torus,
FAIL.

3) Identify the elements of U within the set C of zeros to
(1) and return them.

4) Do the same for the polynomial system (3)-(8’) in the
variables a,b,x,y, λR, λI , t.

Unfortunately, to moving 4d+ 4 variables makes verifying
minimality much less practical than the combinatorial case.
In essence, Lemma 1.6 states that to prove minimality in
the combinatorial case it is sufficient to consider specific line
segments in Rd, while to prove minimality in the general case
one must consider a much larger set of points in Cd whose
coordinate-wise moduli lie on specific line segments in Rd.

Remark 1.7: Melczer and Salvy [18] incorrectly state that
ν1 and ν2 must both be non-zero: at least one is non-zero
at the solutions of interest, but the other may vanish. This is
why we introduce (8’). Melczer and Salvy [18] also require an
extra condition that a certain Jacobian matrix is non-singular,
however this is mainly required for their complexity analysis.
If this condition fails then the system (3)-(8) can have extra
solutions that are irrelevant to detecting minimality, but the
presence of such solutions does not affect correctness of the
minimality test.

II. NUMERICAL ALGEBRAIC GEOMETRY

Having reduced the ACSV analysis to questions about poly-
nomial systems, we now recall some methods in computational
algebraic geometry for the study of such systems. Although
the theory of Gröbner bases is, by now, the basis of much work
in this area, more recently numerical algebraic geometry has
emerged as a practical alternative. In this section, we discuss
several topics in numerical algebraic geometry that will be
used for our techniques.

A. Homotopy Continuation

Homotopy continuation is one method to find numerical
approximations of solutions to an n × n square system F =
(f1, . . . , fn) of polynomial equations with n variables. From
the system F we construct an n × n polynomial system G
whose solutions are known a priori. The system G is called a
start system and the system F is called the target system:
connecting F and G using a homotopy H(x, t) such that
H(x, 0) = G and H(x, 1) = F , we obtain solutions of
F by tracking homotopy paths from t = 0 to t = 1. To
track the homotopy paths, a numerical ordinary differential
equation solving technique called the Davidenko equation
and Newton iteration are used. These tracking techniques
are typically referred to as predictor-corrector methods. For
details, see [24, Chapter 2]. Homotopy continuation is imple-
mented in BERTINI [4], HOMOTOPYCONTINUATION.JL [7],
and NAG4M2 [16].

B. Polyhedral Homotopy Continuation

The complexity of solving a polynomial system using
homotopy continuation is determined by the number of homo-
topy paths to track. It is thus important to track a number of
paths that are at least as large as the number of solutions of the
system (so that all solutions can be found) but is not too much
larger (to save computation). For polytopes Q1, . . . , Qn the
Euclidean volume Vol(a1Q1 + · · ·+ anQn) of the Minkowski
sum a1Q1 + · · ·+ anQn is a homogeneous polynomial in the



n variables a1, . . . , an, whose coefficient of a1a2 · · · an is the
mixed volume MVol(Q1, . . . , Qn) of Q1, . . . , Qn.

Theorem 2.1 (Bernstein’s theorem [5, Theorem A]): Let
F be a system of polynomials f1, . . . , fn in C[x1, . . . , xn].
The number of isolated solutions of F over Cn

∗ is at most
MVol(Qf1 , . . . , Qfn), where Qfi is the Newton polytope
of fi. Furthermore, for polynomials f1, . . . , fn with generic
coefficients, the number of solutions for F over the torus is
exactly MVol(Qf1 , . . . , Qfn).

The polyhedral homotopy continuation method established
by Huber and Sturmfels [13] is one common way to construct
a start system whose solutions form a set with the size of the
mixed volume of a system. Consider a polynomial

f(x) =
∑
a∈A

cax
a ∈ C[x1, . . . , xn]

where A is a collection of integer lattice points. Multiplying
each monomial xa of f by some term tw(a) for a lifting
function w : A → Z, we obtain the lifted polynomial

f(x, t) =
∑
a∈A

cax
atw(a).

Suppose that a target system F consists of polynomials
f1, . . . , fn supported on Af1 , . . . , Afn , respectively. Lifting
all polynomials f1, . . . , fn in F gives a lifted system F(x, t)
satisfying F(x, 1) = F . The solutions of F can be expressed
by Puiseux series x(t) = (x1(t), . . . , xn(t)) where

xi(t) = tαiyi + higher order terms

for some αi ∈ Q and nonzero constant yi, and substituting
x(t) back into our polynomials gives

f j(x(t), t) =
∑

a∈Afj

cay
at⟨a,α⟩+w(a) + higher order terms.

For a suitable choice of w, the constants y and exponents a
can be computed at each branch of F , ultimately describing
a start system G = F(x, 0) with the right number of solu-
tions. The polyhedral homotopy continuation is implemented
in HOM4PS2 [15], HOMOTOPYCONTINUATION.JL [7], and
PHCPACK [26].

C. Monodromy

As seen in Section I, we typically have some solutions
of a polynomial system representing critical points and want
to determine additional solutions to rule out those that are
non-minimal. This ‘bootstrapping’ can be accomplished by
monodromy.

For m,n ∈ N, consider the complex linear space of n× n
square systems Fp = (f1

p , . . . , f
n
p ) depending on some coef-

ficient parameters p ∈ Cm, where the monomial support for
each polynomial f i

p is fixed. If we consider an affine linear map
φ : p 7→ Fp for p ∈ Cm then we can write φ(Cm) = B, where
B is a parametrized linear variety of systems, and we define
the solution variety V = {(Fp, x) ∈ B × Cn | Fp(x) = 0}
and projection map π : V → B.

Assume that the fiber π−1(Fp) only has finitely many points
for a generic choice of p. The set D of systems in B with non-
generic fiber is called the branch locus of π. Each element
in the fundamental group π1(B \ D) of loops in B \ D
modulo homotopy equivalence induces a permutation on the
fiber π−1(Fp), which is called a monodromy action. To find all
solutions of a system Fp ∈ π(V ) with generic p, one can first
find a seed solution (p0, x0) ∈ V and numerically compute
the monodromy action to find all solutions of Fp. When the
solution variety V is irreducible then the monodromy action
is transitive. This method for finding solutions of polynomial
systems is studied and implemented in [7], [9].

D. Certification

By construction, numerical methods return approximations,
so some kind of certification is necessary for rigorous results.
Specifically, a user needs a certificate that an approximation
obtained by the homotopy method is properly approximating
a solution of a system. A numerical approximation is called
certified if it can be refined to an actual solution of the
system to an arbitrary precision by applying iterative operators
(such as Newton iteration). Software providing such certi-
fication includes ALPHACERTIFIED [12], the function CER-
TIFY implemented in HOMOTOPYCONTINUATION.JL [6] and
NUMERICALCERTIFICATION [14]. In our implementation, we
use the function CERTIFY in HOMOTOPYCONTINUATION.JL
exploiting the Krawczyk’s method via interval arithmetic [19,
Chapter 8].

III. THE ACSVHOMOTOPY PACKAGE

We now combine the theory of ACSV presented in Section I
with the techniques described in Section II to create effective
and practical algorithms for the asymptotics of multivariate ra-
tional functions. Our algorithms are implemented in the JULIA
package ACSVHOMOTOPY.JL, using the HOMOTOPYCON-
TINUATION.JL package for our homotopy and monodromy
computations.

The package is available at

github.com/ACSVMath/ACSVHomotopy

and our example worksheet can be viewed at

github.com/ACSVMath/ACSVHomotopy/blob/main/ExampleWorksheet.ipynb

A. Combinatorial Case

For the combinatorial case we first compute the distinct
solutions to (1) using a polyhedral homotopy with certification
by Krawczyk’s method. We then solve and certify (2) with the
added equation (1 − t)µ − 1 = 0 to eliminate all solutions
with t = 1 (there are never any solutions with t = 0 as this
would imply H(0) = 0, contradicting F having a power series
expansion). Since we no longer have solutions where t = 1, by
refining the solutions to sufficient precision we can determine
the solutions with positive real coordinates where 0 < t < 1,
match the projection onto the z variables of each to a distinct
solution of (1), and thus rule out all non-minimal critical points



with positive coordinates. We then find all critical points with
the same coordinate-wise moduli and return that set.

Example 3.1: As a simple example, we can find the minimal
critical point� �
@polyvar x y
find_min_crits_comb(1-x-y)� �� �
Out:1-element Vector{Vector{ComplexF64}}:

[0.5 + 0.0im, 0.5 + 0.0im]� �
controlling asymptotics for the central binomial coefficient(
2n
n

)
which forms the main diagonal sequence of

F (x, y) =
1

1− x− y
.

Similarly, we can compute the approximations� �
@polyvar x y z
find_min_crits_comb(1-z*(xˆ2*y+y+x*yˆ2+x))� �� �
Out:2-element Vector{Vector{ComplexF64}}:

[1.0 + e-35im, 1.0 - e-35im, 0.25 - e-37im]
[-1.0 - e-36im, -1.0 + e-36im, -0.25 - e-36im]� �

for the two minimal critical points ±(1, 1, 1/4) determining
asymptotics for the main diagonal of

F (x, y, z) =
(1 + x)(1 + y)

1− zxy(x+ 1/x+ y + 1/y)
.

This diagonal enumerates walks on the cardinal directions
{N,S,E,W} = {(±1, 0), (0,±1)} that start at the origin and
stay in N2.

As in the work of Melczer and Salvy, the most expensive
operation occurs when trying to group roots with the same
coordinate-wise modulus as a known minimal critical point
(step (4) in Algorithm 1). When using a symbolic-numeric
method it is possible to compute minimal polynomials for
the values of the coordinates and use this to identify points
with the same coordinate-modulus by computing numerically
to O(hδ3d) bits of precision, where h is a bound on the
bitsize of the coefficients of the denominator H and δ is
the degree of H (see [18, Corollary 54]). Combining past
bounds in the literature [8], [23] allows us to identify an
explicit precision such that if two solutions have coordinate-
wise moduli agreeing to this precision then their coordinate-
wise moduli are exactly equal. Our bound is also of O(hδ3d)
bits, however the constant in front is worse than that when
using minimal polynomials. After a minimal critical point is
identified, our code continually refines precision using Newton
iteration until any points with the same coordinate-wise moduli
are found. In practice, any points with different coordinate-
wise moduli are identified at precision much lower than the
worst case bound, but we must compute up to the bound
when there are points with the same coordinate-wise moduli.
Unfortunately, the extreme precision involved with a large
number of variables means that we cannot always rigorously
check to the required accuracy, and the code returns a warning
to the user with its output when this occurs.

B. General Case

In general we must consider the extended systems (3)-(8)
and (3)-(8’), which essentially doubles the number of variables
under consideration. Mirroring the combinatorial case, we can
solve (3)-(8) and (3)-(8’) using a polyhedral homotopy, certify
the results using Krawczyk’s method, and refine to a sufficient
precision to determine when 0 < t < 1 to rule out non-
minimal points.

Remark 3.2: The system (3)-(8’) is over determined, with
4d + 4 equations and 4d + 3 variables. In order to use
HOMOTOPYCONTINUATION.JL we drop one of the equations
in (8’) to obtain a square system: this can introduce additional
solutions which are irrelevant to determining minimality, but
does not affect the correctness of our test for minimality.

Example 3.3: Straub and Zudilin [25], following Gillis,
Reznick, and Zeilberger [11], study families of rational func-
tions connected to special function theory. For instance, in
three dimensions they study the constants c for which

Fc(x, y, z) =
1

1− (x+ y + z) + cxyz

has non-negative power series coefficients on its main diagonal
(which turns out to imply non-negativity of all power series
coefficients). Running the code (for c = 5)� �
@polyvar x y z
find_min_crits(1 - (x+y+z) + 5*x*y*z)� �� �
Out:2-element Vector{Vector{ComplexF64}}:

[0.45 - 0.12im, 0.45 - 0.12im, 0.45 - 0.12im]
[0.45 + 0.12im, 0.45 + 0.12im, 0.45 + 0.12im]� �

gives the minimal critical points controlling asymptotics of
the main diagonal. Since this is a complex conjugate pair, the
resulting asymptotic expansion implies that Fc has an infinite
number of negative coefficients on its main diagonal when
c = 5 (in fact, it has an infinite number of negative coefficients
whenever c > 4).

C. Faster Heuristics

As seen in the examples of Section IV, the high number
of variables in the extended system even in low dimensional
examples means it does not terminate within reasonable time
for polynomials with four or more variables. In order to speed
up our solvers, we can numerically approximate the distinct
solutions to the small system (3)-(5) and then substitute each of
these solutions as parameters into the extended equations (6)-
(8) and (6)-(8’). In the implementation, it is done by running
the function find_min_crits with the flag approx_crit = true.

Remark 3.4: This approach approximates the solutions to
the extended system (3)-(8) if the solutions vary smoothly
with a and b, which happens whenever the Jacobian of (6)-
(8) with respect to a and b is full rank at all values of a
and b solving (3)-(5). Unfortunately, verifying this condition
is usually about as costly as solving the extended system, so
we do not do this in our computations and refer to this method
only as an efficient heuristic that correctly identifies minimal
critical points in a large variety of cases.



Example 3.5: To stress-test our algorithms we generate a
random polynomial p(x, y, z) with six terms in four variables
having coefficients in {1, . . . , 100} and then set H(x, y, z) =
1− p(x, y, z). Running� �
@polyvar x y z
H=1-(72*xˆ3*z+97*y*zˆ3+53*x*zˆ2+47*x*y+39*zˆ2+71*x)
find_min_crits(H; approx_crit = true)� �� �
Out:1-element Vector{Vector{ComplexF64}}:

[0.001+5.5e-40im, 6.2-7.5e-37im, 0.06+0.0im]� �
returns the unique minimal critical point in about three
minutes. This example does not terminate without the
approx_crit = true flag.

It is also possible to use the approximations to the critical
points as a start system to solve (6)-(8) using the monodromy
method. More precisely, for any (a,b) solving (3)-(5) we set
(x,y) = (a,b) and t = 1 in (6)-(8) and then compute a
corresponding start value of ν by computing the left kernel
of the Jacobian matrix of (6)-(7) with respect to variables
x,y and t. From a given parameter value (a,b) and the
initial solution (x,y, ν, t), we collect real solutions from the
monodromy method and check if t ∈ (0, 1): if it is then we
remove the parameter value (a,b) as it is non-minimal. In-
terestingly, it appears that monodromy cannot detect solutions
where ν = 0 when starting with a non-zero value of ν, and
vice-versa, suggesting that solution variety is the union of
components corresponding to these cases. We thus repeat this
process separately for the cases where ν = 0 and when (8’)
replaces (8). Finally, we return the values of (a,b) that are
not disregarded.

Example 3.6: Melczer and Salvy [18] introduce the rational
function

F (x, y) =
1

(1− x− y)(20− x− 40y)− 1

because it has two critical points with positive coordinates,
one of which is smaller in the first coordinate and the other
of which is smaller in the second coordinate (so it is not clear
which, if any, should be minimal). Running� �
@polyvar x y
H = (1-x-y)*(20-x-40*y)-1
find_min_crits(H; monodromy=true)� �� �
Out:1-element Vector{Vector{ComplexF64}}:

[0.54 - 9.18e-41im, 0.31 + 1.83e-40im]� �
returns the correct minimal critical point.

We believe that further study of the geometric properties of
the extended system (6)-(8) could help make this monodromy
approach a powerful tool for ACSV analysis.

IV. EXAMPLES AND BENCHMARKS

Tables I and II list benchmarks of our implementation
against a selection of combinatorial and algebraic examples,
executed on a Macbook pro, 2 GHz Quad-Core Intel Core
i5, 16 GB RAM. The package supports arbitrary r-diagonal
sequences, but examples in this section were done with r = 1.

Example Comb. Maple Comb.
1− x− y 0.0052 0.143

Two positive CPs 0.029 0.292
square-root 0.01 0.06
Apéry ζ(2) 0.025 0.06
Apéry ζ(3) 0.7 0.3
random poly 0.9 840

2D Walk 0.03 0.06
3D Walk 0.08 2.7

1− x− y2 − w3 − z4 0.06 509

TABLE I
TIME, IN SECONDS, OF RUNNING OUR JULIA IMPLEMENTATIONS IN THE

COMBINATORIAL CASE, COMPARED TO THE KRONECKER
REPRESENTATION APPROACH OF MELCZER AND SALVY. THE TIME TO

COMPILE JULIA FUNCTIONS IS NOT INCLUDED.

Example HSolve HSolve Approx Monodromy
1− x− y 0.04 0.02 2.3

Two positive CPs 4.1 0.33 2.84
Apéry ζ(2) 670 3.8 8.5
square-root 29.5 0.72 14.9

random poly INC 189.4 583.1
2D Walk INC 15.3 31.9

GRZ 236 3.6 3.8

TABLE II
TIME, IN SECONDS, OF RUNNING OUR JULIA IMPLEMENTATIONS THAT DO

NOT ASSUME COMBINATORALITY. THE FIRST COLUMN IS THE TIME TO
SOLVE THE EXTENDED CRITICAL POINT SYSTEMS, THE SECOND COLUMN

IS THE TIME TO SOLVE THE SMALLER SYSTEMS AFTER SOLVING THE
CRITICAL POINT SYSTEM SEPARATELY, AND THE FINAL COLUMN IS THE

TIME TO RUN THE MONODROMY METHOD. INC INDICATES THE CODE DID
NOT COMPLETE AFTER RUNNING FOR AN HOUR.

See our supplementary notebook for the full details on the
rational functions involved.

Remark 4.1: The HOMOTOPYCONTINUATION.JL package
converts input polynomials into compiled straight-line pro-
grams for fast evaluation. In order to better see the differences
between examples as they grow in degree and dimension,
we have removed compilation time from our benchmarks
(compilation time takes the majority of the runtime for small
examples but is a small part of larger examples). This results in
several seconds on small examples, and up to tens of seconds
on larger examples, that are not included in the reported
timings. In particular, the (non-certified) package of Melczer
and Salvy beats our package in the combinatorial case on most
examples in Table I when compilation time is added (except
for the two high degree examples where the Maple package
takes much longer).

V. RIGOR OF RESULTS

Because we certify our solutions, we never attempt to
approximate a point that is not actually a solution of the
polynomial systems under consideration. However, by the way
they are designed, it is possible for homotopy computations
to miss solutions, which could result in a point being deemed
minimal when it is not. There are some exceptions: when the
number of solutions found matches the upper bound on the
number of solutions given by the mixed volume, for instance,
then we can be sure we have found all solutions. Tables III
and IV show a comparison between the mixed volumes of



Example Mixed volume # Solutions found
1− x− y 1 1

1− xy − xy2 − 2x2y 9 9
1− x− y2 − w3 − z4 96 96

TABLE III
MIXED VOLUME FOR THE SYSTEM (2) AND THE ACTUAL NUMBER OF

SOLUTIONS FOUND FOR SEVERAL COMBINATORIAL EXAMPLES

Example (3)-(8) # Sols (3)-(8’) # Sols
1− x− y 4 1 2 0

1− xy − xy2 − 2x2y 3276 99 1638 126
1− (x+ y + z) + 81

8
xyz 13068 162 4356 216

1− x− y2 − w3 − z4 FAIL N/A 442368 442368

TABLE IV
MIXED VOLUMES FOR THE SYSTEMS (3)-(8) AND (3)-(8’) AND THE

NUMBER OF SOLUTIONS FOUND FOR SEVERAL EXAMPLES. FAIL MEANS
THAT THE CODE DID NOT COMPUTE THE MIXED VOLUME DUE TO AN OUT

OF MEMORY ERROR.

several systems studied here, compared to the actual number
of solutions found. It can be observed that we often reach the
upper bound in the combinatorial case, but this usually does
not happen in the non-combinatorial case.

We can also conclude we know minimality rigorously when
there is another way to determine that a minimal critical point
must exist, and all but one point is ruled out by our algorithms.
For instance, in the combinatorial case it can be shown that any
polynomial whose support contains the terms 1, z1, z2, . . . , zd
must have at least one minimal critical point with positive
coordinates.

Finally, as already mentioned, in the combinatorial case the
precision required to certify all minimal critical points with
the same coordinate-wise modulus may not be practical. Our
algorithm returns a warning with its output when it cannot
verify equality between moduli to the precision required for
rigorous certification.

VI. CONCLUSION

Despite the high computational cost associated to many
of computations required to determine asymptotics using the
methods of ACSV, the continued development of efficient
computer algebra packages in Julia and other languages has
made it feasible to automate the analysis beyond the simplest
cases. There are many natural extensions still to be made,
perhaps chiefly among them extending to the non-smooth case
by incorporating algorithms for the Whitney stratification of
algebraic varieties. Other interesting avenues for exploration
include the development of better start systems for homotopy
computations, to better match the number of critical points,
and a theoretical study of the solution variety and its ir-
reducible components for the monodromy approach (which
could help the monodromy approach be competitive with or
even surpass the polyhedral homotopy approach).
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