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The past decade has seen the creation and maturation of a number of new 

technologies designed to study life on a genome-wide scale. However, the sheer volume 

of data generated by these methods surpasses the analytical and critical abilities of a 

single researcher. For this reason, it is necessary to create new computational methods to 
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assist in the analysis of these new sources of data. 

Both yeast-two hybrid and co-immunoprecipitation followed by mass 

spectrometry allow the determination of binding interactions between proteins. 

Functional (genetic) interactions are determined via SGA (Synthetic Genetic Array) and 

E-MAP (Epistasis Mini-array Profile). In Chapters 2 and 3, we develop algorithms to 

integrate these two types of interactions together for the purpose of biological pathway 

discovery. Moreover, our approaches create maps of genetic interactions that provide a 

picture of the global organization of pathways and complexes within the cell.  

Expression arrays are a genome-wide quantitative assay for mRNA levels within 

the cell. Using fluorescent dyes, two different biological samples can be directly 

compared on a single array slide. In Chapter 4, we identify a gene-specific dye bias in 

this type of expression array data. We improve upon a maximum likelihood method in 

order to remove the effect of this bias. Using novel control experiments, we show that 

this enhanced analysis yields results that more reproducible.  

Complementary to expression profiling, deletion fitness profiling quantifies the 

relative fitness defect of every deletion strain in Saccharomyces cerevisiae under a 

particular stress. In Chapters 5 and 6, we discuss how to use the type of pathway 

information uncovered in Chapters 2 and 3 to improve the analysis of both expression 

and deletion fitness profiling datasets. We apply these methods to the study of two 

different cellular stresses in Saccharomyces cerevisiae, arsenic exposure and adaptation 

to oxidative stress.  



1 

  
Chapter 1. Introduction 

The study of biology arose from the wealth of diversity in the natural world. Why 

is man different than other animals? Why is one man sick while another is healthy? Our 

understanding of these questions took a great leap forward with the elucidation of the 

central dogma of biology. Every living organism has a genetic code, a central repository 

of information encoded in its DNA with four nucleotide bases. Using this genetic code as 

a template, a strand of messenger RNA is transcribed. Compared to DNA, messenger 

RNA is much less stable. Fortunately, it need only survive the trip to the ribosome.  The 

information contained within the messenger RNA instructs the ribosome how to construct 

a corresponding protein. The nature of these proteins as well as how they interact with 

each other defines the phenotype of an organism.  While additional variations upon the 

central dogma have been discovered, it is still incredibly important.  A central question in 

modern biology is therefore to determine how the process of the central dogma results in 

a particular phenotype. 

In the study of the central dogma, biologists have devised a number of methods to 

interrogate the process at every stage. Sanger sequencing can be used to identify the 

sequence of a particular gene1. A Northern blot reveals the quantity (expression) of an 

mRNA transcript within a cell2.  Interactions between two different proteins can be 

detected with the yeast-two hybrid assay3. Even today, the application of these techniques 

greatly increases our understanding of the function of the living cell. However, a 

limitation to these technologies became readily apparent. With over 6,000 genes present 

in even a relatively simple organism such as Saccharomyces cerevisiae4, performing 
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these screens on a genome-wide scale is infeasible. Thus, these screens must be 

conducted in a relatively targeted fashion, making it difficult to identify novel patterns of 

expression or interaction.  

In order to combat this limitation, new technologies were introduced to 

investigate the components of the central dogma on a genome-wide scale. Often, nano-

technology and robotics were used to augment an existing technique so that it could be 

performed rapidly in parallel.  For example, the expression microarray is similar to a 

Northern blot. In a Northern blot, a labeled nucleotide is used to probe for a sequence of 

interest in an RNA sample that has been separated on a gel and transferred to a 

membrane2. In the miniaturized expression array analog, probes for multiple different 

sequences are spotted onto a glass slide. The diameter of each spot is typically less than 

100 uM in diameter, allowing for tens of thousands of spots on a single slide. The RNA 

sample is then labeled with a fluorescent dye. The binding of labeled transcripts to the 

probe sequences can be visualized with a confocal scanning microscope5. Similarly, 

robotic technology can dramatically increase the throughput of the yeast two-hybrid 

screen.  A two-hybrid screen requires generating a cross of two yeast strains. In one strain 

(the prey), a protein is linked to a transcription activation domain, while in the other 

strain (the bait), a (possibly) different protein is chained to a DNA binding domain. If the 

two proteins interact, these two domains are brought together, allowing transcription of 

the marker gene downstream of the bound promoter3.  Even in a relatively small genome 

such as Saccharomyces cerevisiae, testing for all possible protein interactions requires the 

generation of a huge number of crosses (over 36,000,000). The generation of these 

crossed strains can be greatly accelerated with a replica pinning robot6. 
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These technologies represent a huge promise of new biological discoveries. 

However, they also lead to an additional set of complications. First, when a technique is 

miniaturized or performed by robot, it may no longer be as reliable as when it is 

performed by the hands of a skilled biologist.  Early yeast two-hybrid studies are 

estimated to have an accuracy of between 1%-10% at a coverage of just 1%7. However, 

even if a massive increase in throughput does not add additional noise into an assay, there 

is still the problem of “multiple hypothesis testing.”  

The problem of multiple hypothesis testing is related to the statistical analysis of 

experimental data. The analyses of most experiments are designed to differentiate 

between two possible hypotheses, the null hypothesis (the observed data is no different 

than one would expect to observe at random) and the alternate hypothesis (the observed 

data supports a predicted result). The p-value, which represents the probability of 

obtaining a given result under the null hypothesis, it typically used to make this 

distinction. By convention, the p-value threshold is typically set to 0.05, meaning there is 

only a 5% chance of generating the observed data under the null hypothesis.  However, in 

a genome-wide screen, this practice can lead to complications. Imagine 100 experiments 

in which the null hypothesis is actually true in every case. Setting a p-value threshold of 

0.05 would result in an incorrect rejection of the null hypothesis 5% of the time, creating 

a large number of false positives.  In a single targeted experiment, there is usually a 

reason to investigate a particular interaction or gene, leading to a relatively high 

proportion of cases where the null hypothesis is actually false. By extending our search to 

the entire genome, we examine many more cases where the null hypothesis is true, 

greatly increasing the false positive rate.  
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The simplest way to address this problem is with a greater number of replicates. 

With a greater number of replicates, it is generally possible to set a more stringent p-

value threshold, reducing the problem of false positives. Unfortunately, performing more 

replicates is time consuming and expensive, especially in the case of genome-wide 

studies.  

Conversely, improved statistical analysis of the data may also allow for a more 

stringent p-value threshold. The determination of a p-value implicitly depends on the 

error model of the underlying process. In a genome-wide screen, we are presented with a 

wealth of data that can be used to accurately determine an appropriate error model for our 

data. In Chapter 2, we describe this process for a microarray expression study. Through 

analysis of control experiments, we identify the presence of a systematic bias in the data. 

We find that the relative efficiency for labeling with the Cy3 and Cy5 dyes varies on a 

gene-by-gene basis, an effect termed gene-specific dye bias. By incorporating the effect 

of this gene-specific dye bias into our error model, we are able to identify more 

differentially expressed genes. Furthermore, the sets of differentially expressed genes are 

more reproducible over repeated experiments using different labeling methods. Despite 

the potential for increased reliability, we must face the reality that in a genome-wide 

screen, a single measurement is often unreliable. 

Interpretation of genome-wide data can be greatly improved by an understanding 

of how genes and proteins are organized in the cell. In order to accomplish a large task, 

such as response to disease or stress, proteins rarely act alone. Instead, groups of proteins 

often work together in pathways to accomplish the same goal. While an experimental 

measurement corresponding to a single gene may be unreliable; an aggregate measure 
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over an entire pathway is more robust to both experimental noise and missing data. 

Furthermore, since there are fewer pathways than there are genes, the problem of 

multiple hypothesis testing is reduced. Unfortunately, the exact constituents of the 

pathways present in the cell are often partially or fully unknown. Thus, methods for the 

identification of the constituents of cellular pathways can greatly aid in the interpretation 

of genome-wide data.  

In Chapter 2, we describe a method for identifying protein complexes/pathways 

from a combined dataset of physical and genetic interactions. The set of physical 

interactions includes regulatory (DNA-binding), metabolic (shared substrate), and 

protein-protein binding interactions. The genetic interaction dataset contains both 

synthetic sick and synthetic lethal interactions derived using SGA (synthetic genetic 

array) technology8. In a synthetic lethal or sick interaction, a double deletion mutant is 

found to be inviable or sick, while both corresponding single deletion mutants are 

healthy. Such an interaction represents a functional link between the two genes. We 

propose two models of genetic interactions, within-pathway and between-pathway 

interaction. In within-pathway interaction, both physical and genetic interactions occur 

among the proteins of a single pathway. In between-pathway interactions, physical 

interactions still occur primarily between members of the same complex, but genetic 

interactions occur between members of a two different pathways. We search for 

individual pathways or pairs of pathways corresponding to the within- and between-

pathway genetic explanation. We find that both models can be used to detect pathways 

from the combined dataset; however, between-pathway interactions are the predominant 

mode of genetic interaction.  
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In Chapter 3, we expand upon the previous work of Chapter 2 to address certain 

limitations present in the approach. Following our original work, new technologies were 

created for the identification of genetic interactions. In the previous SGA approach, 

genetic interactions between two genes are represented as a binary value. However, in the 

new technology of E-MAP, genetic interaction is quantitative9. Each tested gene pair is 

assigned a real value, corresponding to the aggravating (negative) or alleviating (positive) 

extent of the genetic interaction. In Chapter 3, we describe how our previous algorithm 

can be updated to take advantage of this quantitative information. Furthermore, the 

previous algorithm was limited in that it would search for individual pathways or pairs of 

pathways, corresponding to the within- and between-pathway searches, respectively.  

Multiple pathways may be identified that are very similar to each other. In comparison, 

the global search algorithm we describe in Chapter 3 simultaneously identifies a mutually 

exclusive set of pathways. In addition, our previous work conducted separate within- and 

between-pathway searches.  In Chapter 3, we combine both searches to identify 

previously unknown complexes based on the strength of both types of explanations. 

 Chapters 2 and 3 illustrate how we can identify potential pathways from a diverse 

set of interaction data. However, it is also necessary to identify the context in which the 

cell is utilizing those pathways. The final chapters of this dissertation describe how we 

can identify active pathways from a combined dataset of expression and deletion-fitness 

profiling data. Building on the approach of Ideket et al.10, Chapter 5 describes the 

identification of active pathways in the arsenic-stress response. In previous work, Ideker 

et al. identified pathways involved in galactose utilization by integrating microarray 

expression studies with an interaction network. Any connected component in a restricted 
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network of interactions between genes with a suspected role in the galactose response 

was considered a potential pathway. The overall expression of each potential pathway 

was measured with a modified average of normalized expression values. However, in the 

expanded interaction network we employ in Chapter 5, the approach of Ideker et al. fails 

to identify activated subnetworks. We believe this is because the definition of a pathway 

is too liberal, leading to the spurious identification of many uninformative results. To 

combat this problem, we utilize a neighborhood scoring strategy, in which the set of 

possible pathways is restricted to the complete set of neighbors of any connected group of 

genes. While this restricts the possible space of pathways, it is still able to capture many 

of the true pathways present in the interaction data. For example, it allows us to identify a 

transcription factor and all of its targets or a densely connected set of proteins that form a 

protein complex. Specifically, we identify the activation of the stress response 

transcription factors Yap1, Msn2/4, and Hsf1 among others. The identification of the 

RPN4 transcription factor and the proteasomal protein complex implicates the process of 

protein degradation in the arsenic response. 

However, using this approach with a combination of deletion fitness data and a 

network of metabolic interactions fails to identify any significant results. Instead, we 

modify our approach to only consider linear pathways through the metabolic network, 

representing chains of metabolic interactions. Using this approach we identify pathways 

of metablic reactions responsible for serine, threonine and glutamate metabolism. Further 

results indicate a role for the shikimate pathway, which is essential for the production of 

p-aminobenzoic acid (PABA) among other metabolic end products. 

In Chapter 6, we apply similar approaches in the analysis of adaptation to 
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hydrogen peroxide. Adaptation describes a process by which a mild dose of oxidant is 

able to confer protection against a later acute dose11. Oxidative stress is an important 

factor in a variety of human diseases, including aging, neural degeneration, and 

cardiovascular disease12-14. The study of adaptation may reveal how the influence of 

oxidative stress on these disease processes can be mitigated. Since adaptation to an 

oxidant requires active transcription11, we primarily apply network analysis methods to 

the transcriptional network. By examining sets of transcription factor targets, we identify 

transcription factors with a large number of differentially expressed targets. In integrating 

the expression values with deletion fitness profiling data, we find that those transcription 

factors with differentially expressed targets also tend to correspond to sensitive deletion 

strains. Furthermore, the activities of these transcription factors are confirmed with 

expression profiling of transcription factor deletion strains. 

 



9 

Chapter 2. Systematic interpretation of genetic interactions using protein 

networks 

Abstract 

Genetic interaction, in which two mutations have a combined effect not exhibited 

by either mutation alone, is a powerful and widespread tool for establishing functional 

linkages between genes. In the yeast Saccharomyces cerevisiae, ongoing screens have 

generated >4,800 genetic interactions.  We demonstrate that by combining these data 

with information on protein-protein, protein-DNA, or metabolic networks, it is possible 

to uncover physical mechanisms behind many of the observed genetic effects. Using a 

probabilistic model, we find that 1,922 genetic interactions are significantly associated 

with either between- or within-pathway explanations encoded in the physical networks, 

covering ~40% of known genetic interactions. These models predict new functions for 

343 proteins and suggest that between-pathway explanations are better than within-

pathway explanations at interpreting genetic interactions identified in systematic screens.  

This study provides a roadmap for how genetic and physical interactions can be 

integrated to reveal pathway organization and function. 
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Introduction 

A major challenge of biotechnology and genetics is to interpret observed genetic 

interactions in a physical cellular context15-17.  Genetic interactions consist of several 

major varieties: synthetic-lethal interactions, in which mutations in two nonessential 

genes are lethal when combined; suppressor interactions, in which one mutation is lethal 

but combination with a second restores cell viability; and an array of other effects such as 

enhancement and epistasis.  Genetic interactions have been used extensively to shed light 

on pathway organization in model organisms15-18.  In humans, genetic interactions are 

critical in linkage analysis of complex diseases19 and in discovery of new 

pharmaceuticals20.  Although genetic interactions are classically identified by mutant 

screens21, recent studies have applied systematic “reverse” methods such as Synthetic 

Genetic Arrays (SGA)22 or Synthetic Lethal Analysis by Microarrays (SLAM)23 to 

catalog ~4,000 synthetic-lethal and synthetic-sick interactions in Saccharomyces 

cerevisiae. 

Due to the high-throughput nature of SGA, discovery of new genetic interactions 

is largely automated.  However, interpreting the functional significance of each result 

remains a relatively slow process.  The problem is compounded by the large number of 

genetic interactions measured when screening one gene versus all others (~34 on 

average8) as well as possible false positives if the interactions are not confirmed by tetrad 

or random spore analysis.  Thus, without further methods to aid in characterizing 

synthetic lethals, large-scale interpretation is a daunting prospect. 

A promising solution may be to integrate synthetic lethals with other types of 

high-throughput interactions.  For instance, direct physical interactions among proteins 
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are being mapped by systematic two-hybrid24-28 or immunoprecipitation studies29, 30, 

while physical interactions between transcription factors and promoter sites are 

determined using chromatin-immunoprecipitation in conjunction with DNA 

microarrays31, 32.  These interactions comprise a physical network which correlates with 

the network of genetic interactions and provides potential clues as to the mechanisms 

behind particular synthetic-lethal effects.  Previous studies have demonstrated this 

correlated structure in yeast, by showing that two proteins in the same region of the 

genetic network are likely to also physically interact8, 22; that genes with similar patterns 

of genetic interactions often occur with the same protein complex8; and that a protein 

with many interactions in the physical network typically has many interactions in the 

genetic network also33.  

These studies suggest that it may be possible to interpret observed synthetic-lethal 

relationships explicitly using physical interactions.  In this regard, previous authors16, 34 

have noted that synthetic-lethal genetic interactions are typically associated with one of 

three types of physical interpretations:  

1) Between-pathway interpretations. The genetic interaction bridges genes operating 

in two pathways with redundant or complementary functions. Deletion of either 

gene is expected to abrogate the function of one but not both pathways. 

2) Within-pathway interpretations. The genetic interaction occurs between protein 

subunits within a single pathway.  A single gene is dispensable for the function of 

the overall pathway, but the additive effects of several gene deletions are lethal. 

3) Indirect effects. The synthetic lethal phenotype is not mediated by a localized 

mechanism in the physical network.  Indirect effects can occur because a deletion 
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phenotype represents not just the absence of one particular gene, but also the 

response of the cell to its absence, involving many diverse pathways34. 

Here, we demonstrate a computational framework for assembling genetic and 

physical interactions into models corresponding to the between- versus within-pathway 

interpretations.  Regions of the physical network which correspond to each type of model 

are identified using a probabilistic scoring scheme.  These models predict new protein 

functions and suggest that genetic interactions are more likely to bridge redundant or 

complementary processes than to combine additively within the same process. 

Results 

Construction of genetic and physical networks.   

We assembled a genetic interaction network from two primary data sources 

(Figure 2.1).  The first was generated by SGA, a large-scale screen8 crossing 132 yeast 

gene deletion strains versus each of the ~4,700 available deletion strains35 and resulting 

in 2,012 observed synthetic-lethal interactions and 2,113 synthetic-sick interactions.  The 

second data source consisted of an additional 687 synthetic-lethal interactions culled 

from the literature and catalogued at the Munich Information Center for Protein 

Sequences (MIPS)36.  The combined genetic network synthesizing these data consisted of 

1,434 proteins (genes) linked by 4,812 synthetic-lethal interactions. 
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We also assembled a physical network of 5,993 yeast proteins connected by 

physical interactions of three types: 15,429 protein-protein interactions (the two proteins 

a and b display physical binding); 5,869 protein-DNA regulatory interactions (a binds 

upstream of the gene encoding b), and 6,306 shared-reaction metabolic relationships (a 

and b are enzymes that operate on at least one metabolite in common). The protein-

protein interactions were downloaded from the DIP database37 as of July 2004 and 

predominantly included data from large-scale experiments25, 28-30.  The protein-DNA 

interactions were obtained from a large-scale chromatin-IP study of 106 transcription 

factors32 (interactions with P = 0.001).  Enzymatic reactions linked by common 

metabolites were obtained from KEGG38, excluding metabolite cofactors such as ATP or 

 
Figure 2.1. Method overview. 

A combined physical and genetic network is searched to identify between- or within-pathway 
models of genetic interactions. The between-pathway model implies two groups of proteins (pathways) 
with many physical connections within each pathway (solid blue links) and genetic interactions spanning 
between pathways (dotted red links). The within-pathway model implies many physical and genetic 
interactions within the same group of proteins. In the search, 360 and 91 network models were identified 
that correspond to between- or within-pathway searches, respectively. 
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H2O (listed in Supplemental Table 2.1).  The combined physical network covered 94.4% 

of all proteins in the genetic network.  Both networks are provided at 

http://www.cellcircuits.org/Kelley2005/ in Cytoscape39 (SIF) format.  

Between-pathway interpretations for genetic interactions.   

Preliminary statistical analyses confirm a limited relationship between genetic and 

physical interactions (see Supplemental Figure 4.1 and Tong et al.8, 22), but demonstrate a 

need for structured models to efficiently separate signal from noise.  Towards this goal, 

we implemented a probabilistic modeling procedure to capture the between-pathway 

interpretation of genetic interactions.  As described in Methods, this procedure involved a 

search for pairs of physical pathways that were densely connected by genetic interactions, 

in which a “pathway” was loosely defined as any densely-connected set of proteins in the 

physical network (this definition generically covers many network structures, including 

protein complexes).  Pairs of pathways (constituting a single network model; see Figure 

2.1) were assigned a score proportional to the density of physical interactions falling 

within each pathway and the density of genetic interactions bridging between pathways.  

This search generated 360 significant models covering 401 pathways and incorporating a 

total of 1,573 genetic interactions (196 MIPS, 687 SGA synthetic lethal, 690 SGA 

synthetic sick) and 1,931 physical interactions (1,248 protein binding, 77 regulatory, 606 

shared reaction).  Significance of these models was assessed by comparison to random 

genetic and physical networks.  Detailed information for all models is provided at 

http://www.cellcircuits.org/Kelley2005/.
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Figure 2.2.  Between-pathway explanations for genetic interactions. 

(a) Several high-scoring models are shown (M,N,T; Q,V; O,U,Y). Blue solid and red dotted links 
indicate physical and genetic interactions, respectively. (b) Bird's-eye view of all between-pathway models 
obtained from a search on a reduced network composed of SGA and DIP interactions. Each node [A]−[Z] 
represents a physical pathway; groups of genetic interactions between pathways are condensed into a single 
link called a 'bundle.' Node colors indicate significant Gene Ontology annotations. Solid gray lines connect 
pathways that share one or more proteins; such pathways may represent different components of a larger 
mechanism. 
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Pooling diverse genetic and physical interaction data sets widens the search but 

also has the potential to decrease the coverage of network models, because not all data 

sets may be equally predictive and high-scoring network models are more likely to arise 

at random in large networks.  To investigate the effect of data pooling, we repeated the 

search on a reduced network including large-scale synthetic-lethal (SGA) and protein-

binding (DIP) interactions only.  This reduced search identified 20 models containing a 

total of 137 synthetic-lethal and 120 protein-binding interactions (Figure 2.2). In 

comparison to the complete search, fewer protein-binding and SGA synthetic-lethal 

interactions were incorporated into models, demonstrating the synergy obtained by data 

pooling (although models generated by the restricted search performed somewhat better 

in validation).  Supplemental Table 2.2 analyzes the impact of removing each physical 

and genetic data set from the modeling procedure.  

Within-pathway interpretations.   

We next searched the physical and genetic networks for within-pathway 

explanations. As described in Methods, this procedure assigned a high score to single sets 

of proteins that were densely connected by both physical and genetic interactions (see 

Fig. 1).  This search yielded 91 significant models.  In all, these contained 272 MIPS, 225 

SGA synthetic lethal, and 169 SGA synthetic-sick interactions associated with 318 

protein binding, 37 regulatory, and 36 shared-reaction interactions.  Four representative 

within-pathway models are shown in Figure 2.3. 
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Figure 2.3. Within-pathway explanations for genetic interactions. 

A total of 91 pathways were identified, of which four examples are displayed. Color is used to 
indicate the data set from which each interaction was drawn. 

 



 

 

18 

Functional enrichment of models.   

As initial validation of the between- and within-pathway models, we found that 

both types were significantly enriched for particular functional annotations recorded in 

the Gene Ontology database40.  Two-hundred and fifty-one out of 401 pathways in 

between-pathway models were enriched for proteins with a common Molecular Function, 

Biological Process, or Cellular Component annotation using the hypergeometric test (P = 

0.05; Bonferroni-corrected for multiple testing)41.  Similarly, 52 of the 91 within-pathway 

models were enriched for Gene Ontology annotations. Moreover, these functional 

enrichments were higher than expected based on the physical interaction network as a 

whole (see Supplemental Table 2.3).  

Prediction of new protein functions.   

Having established that proteins in many of the between- and within-pathway 

models were enriched for specific annotations, we used this concept to predict new 

protein functions.  Specifically, for physical pathways in which a majority of proteins 

were already assigned a common significant. For between-pathway models, this approach 

predicted 745 Molecular Function, Biological Process, or Cellular Component 

annotations among 282 proteins.  In comparison, the within-pathway models predicted 

285 annotations involving 127 proteins, bringing the total to 973 annotations for 343 

proteins accounting for repeated predictions.  A list of novel functional predictions is 

provided at http://www.cellcircuits.org/Kelley2005.  Less than a quarter of these 

predictions were attainable using a similar approach based on the physical network only 

(Supplemental Table 2.4). 
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Accuracy of these predictions was estimated using cross-validation42.  Using a 

standard five-way procedure, the set of yeast proteins was partitioned such that 

annotations were hidden for one-fifth of the proteins and annotations for the remaining 

four-fifths of proteins were used to predict the hidden information.  Each prediction for a 

protein in the “hidden set” was scored as a success or failure depending on whether it 

recovered a hidden annotation.  Using this approach, the success rate was estimated to be 

63% for between-pathway models, 69% for within-pathway models. 

Prediction of new genetic interactions.   

 

 
Figure 2.4. Genetic interaction prediction schemes. 

Two different schemes are proposed for predicting genetic interactions, depending on the 
underlying network model. Observed genetic interactions are shown in red, while the corresponding 
predicted genetic interactions are shown in gray. (a) Under the between-pathway model, two incomplete 
bipartite motifs are shown which predict a genetic interaction between genes b and b'. (b) Under the within-
pathway model, common genetic neighbors are used to predict a genetic interaction between genes d and d'. 
Note that these diagrams contain additional incomplete motifs which have been omitted for clarity: the 
motifs in a can be rearranged to predict genetic interactions (a to c') and (c to a'); the motifs in b can be 
rearranged to predict (e to f). 
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Finally, we investigated whether the network models could predict the existence 

of new genetic interactions.  According to the between-pathway model, proteins in a first 

pathway genetically interact with many of the same partners in a second pathway.  This 

leads to the occurrence of “complete bipartite motifs” in the genetic interaction network, 

defined as four-protein subnetworks in which the first two proteins are connected to the 

second two proteins by all four possible genetic interactions (Figure 2.4a; see Milo et al.43 

for an introduction to network motifs). When an incomplete motif (IM) is observed, for 

which only three of the four genetic interactions are present, the motif implies that the 

remaining interaction is true. Physical network information is incorporated by requiring 

that valid IMs fall within (i.e., are subgraphs of) a between-pathway model.  

We applied the technique of five-way cross-validation to estimate the accuracy of 

genetic interaction prediction versus the minimum number of required IMs (Figure 2.5).  

In each of five cross-validation trials, approximately one-fifth of the genetic interaction 

data were withheld, including both positive and negative interactions measured for each 

genetic “bait” in SGA.  These positive and negative interactions were subsequently used 

to test prediction accuracy.  For instance, at a prediction threshold of eight or more IMs, 

the between-pathway models predicted 43 new genetic interactions with 87% estimated 

accuracy (Figure 2.5). To assess the contribution of the physical models in the prediction 

process, we also predicted “naïve” genetic interactions by relaxing the requirement that 

IMs fall in a between-pathway model.  The estimated accuracy fell to 5% for these naïve 

predictions, evaluated at the same threshold of eight IMs. 
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For the within-pathway models, genetic interactions were implied between 

proteins that had genetic interactions with one or more common neighbors (Figure 2.4b).  

The physical network was incorporated by restricting the proteins and neighbors to fall 

into a single within-pathway model.  The number of common neighbors was used as a 

measure of confidence in the implied genetic interaction, and cross validation was used to 

estimate the prediction accuracy as a function of this number. The maximal prediction 

accuracy was 38%, achieved at a prediction threshold of three or more common 

 
Figure 2.5. Success rate of genetic interaction prediction versus the stringency of prediction 

Success rate is measured through cross-validation as (predicted positives)/(predicted positives and 
negatives). Stringency is defined by the minimum number of incomplete bipartite motifs required for 
prediction. Blue diamonds mark the success rate for predictions in which incomplete motifs must occur in a 
between-pathway model. The success rate is dramatically higher than for naive predictions (magenta) 
which predict interactions in the same manner, but are not constrained by the physical network. Even for 
much more stringent prediction criteria, the success rate of naive predictions fails to exceed that of the 
between-pathway predictions (inset).. 
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neighbors (Supplemental Figure 2.3).  The corresponding success rate for naïve 

predictions, made without constraining the proteins to occur in within-pathway models, 

was 15%.  Thus, both types of models enhance the accuracy of prediction of genetic 

interactions, but between-pathway models appear to be better predictors than within-

pathway models. 

Discussion 

Given a systematic approach for associating genetic interactions with physical 

interpretations, it is of interest to ask which type of interpretation is most common.  

Focusing on large-scale SGA measurements, roughly three and a half times as many 

genetic interactions are associated with between- as opposed to within-pathway models 

(1,377 vs. 394 SGA interactions).  These figures can be viewed as an a priori expectation 

that a newly-determined SGA interaction will fall between vs. within pathways, 

suggesting that SGA interactions typically span between multiple physical network 

regions instead of occurring within a single complex or pathway.  One reason for the 

preference towards between-pathway models may be that SGA interactions are mainly 

targeted to non-essential genes (due to their use of complete gene deletions as opposed to, 

e.g., point mutations made by classical techniques).  

Using physical models, it is possible to characterize approximately 40% of the 

genetic interactions as occurring between or within pathways.  Whether the remaining 

interactions belong to between-pathway models, within-pathway models, or are best 

characterized as “indirect” (Table 1) cannot be reliably determined at this stage.  For 

example, consider the case of two related pathways, each with only one protein required 
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for pathway function.  In this case, only the required proteins would be connected by a 

(single) genetic interaction across the pathways, making it difficult for the between-

pathway model to achieve statistical significance.  

Further examination of the between-pathway models reveals that many of the 

genetically-linked pathways have clear interdependent functional relationships.  For 

example, pathway M shown in Figure 2a contains members of the prefoldin complex, 

which have synthetic-lethal interactions with members of pathways N and T forming 

parts of the dynactin complex and kinetochore, respectively.  The prefoldin complex 

promotes folding of α and β tubulin into functional microtubules44.  These are important 

for the function of dynactin, an adaptor complex involved in translocating the spindle and 

other molecular cargos along microtubules45, as well as the kinetochore, which anchors 

chromosomes to spindle microtubules during metaphase46.  Apparently, deletion of 

proteins in the prefoldin complex reduces microtubule stability which leads to synthetic-

lethal interactions with pathways that are directly dependent on microtubule function. 

These pathways also predict a new function for the uncharacterized protein 

Yll049w (pathway N). This protein binds Jnm1, a dynactin protein which is required for 

spindle partitioning in anaphase45.  In addition, it has synthetic-lethal interactions with 

members of the prefoldin complex in a manner similar to dynactin genes.  Together, these 

relationships suggest that Yll049w is associated with dynactin during spindle 

partitioning.  However, because Jnm1 has 12 physical interactions overall, and Yll049w 

has a total of 14 interactions in the genetic network, this prediction would have been 

difficult to make without an integrated approach. 

Pathways O, U, and Y provide another example of synergistic pathways linked by 
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genetic interactions (Fig. 2a).  Pathways U and Y mediate retrograde transport of proteins 

to the Golgi apparatus47, 48.  Pathway O (Bre1, Lge1) is involved in histone ubiquitination 

and cell size control, where cell size is influenced by the histone ubiquitination activity 

via an unknown process49.  The abundant genetic interactions between pathways O and U 

indicate a possible role for retrograde transport in histone ubiquitination, or reciprocally, 

for histone ubiquitination in retrograde transport.  Moreover, the uncharacterized protein 

Yel043w is physically associated with Bre1 and Lge1 and also has the same pattern of 

genetic interactions, suggesting that the three proteins may function together. 

In summary, we have presented a methodology for integrating large-scale genetic 

and physical networks to capture the physical context behind observed genetic 

interactions.  Approximately 40% of yeast synthetic-lethal genetic interactions can be 

incorporated into high-level physical pathway models and are approximately three and a 

half times as likely to span pairs of pathways than to occur within pathways.  Further 

studies will be needed to address other types of genetic effects to extend this approach 

from yeast to the growing number of other organisms for which protein networks are now 

available.  As systematic approaches generate ever larger databases of interactions across 

a variety of species, integrative modeling approaches such as the one proposed here will 

be indispensable for selecting and organizing the information into predictive models.  

Methods 

Scoring within-pathway explanations.   

The within-pathway model implies dense interactions within a single group of 

proteins in both the physical and genetic networks.  We adopt a previously described log-
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odds score50 to assess the likelihood that a group of proteins is more densely connected 

than would be expected at random: 

 

  
where V is a set of proteins and E a set of interactions among those proteins 

(genetic or physical).  IE(a,b) is an indicator function which equals 1 if and only if the 

interaction (a,b) occurs in E and otherwise 0.  For Modeldense, interactions are expected to 

occur with high probability (β) for every pair of proteins in V.  In this work, β is set to 

0.9 (Supplemental Figure 2.2 shows how the results depend on choice of β).  For 

Modelrandom, the probability of observing each interaction (ra,b) is determined by 

estimating the fraction of all networks with identical degree distribution which also 

contain that interaction.  Comparable random networks are generated by “crossing” 

pairs of edges in a process similar to that described by Milo et al.43  In this 

randomization, only edges of the same type are allowed to be crossed.  In addition, for 

undirected types, either interacting node is allowed to serve as the “source” in crossing 

the edges.  Such randomization generates a family of random networks which resemble 

the original network and corrects for the presence of highly-connected proteins in the 

network, which score highly under both models.  The interaction density is evaluated 

independently for the physical and genetic networks, yielding an overall score for the 

within-pathway model. 
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Scoring between-pathway explanations.   

The between-pathway model implies dense genetic interactions connecting two 

separate, non-overlapping groups of proteins, where each group is densely connected by 

physical interactions. The density of physical interactions is scored independently within 

two sets of proteins V1 and V2 using the above function S.  A related log-odds score is 

used to evaluate the probability that the genetic interactions Egenetic bridging between 

these sets are denser than random: 

 

The final scoring function for the between-pathway model is then: 

 

Search and Significance.   

Sets of proteins that are well explained by either the within-pathway or between-

pathway models are identified using a greedy network search procedure.  The search is as 

previously described by Sharan et al.50 except that it is seeded from each pair of 

genetically-interacting proteins. Pathways that share more than 50% of genetic 

interactions with a higher-scoring result are discarded.  To determine the significance 

threshold, identical searches are performed over 100 random trials in which both the 

genetic and physical networks are randomized as described above.  Models that score 

higher than the maximal-scoring models in 95% of random trials are reported as 
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significant.  
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Supplemental Figures 

 

 
Supplemental Figure 2.1. Direct overlaps between genetic and physical interactions, while 
statistically significant, are limited in systematic data and probably biased. 

As a preliminary assessment of whether synthetic-lethal genetic interactions could be explained by 
physical interactions, we investigated whether proteins connected by genetic interactions were also at close 
proximity in the physical network. As shown in Figure S1 [a], genetic interactions were co-incident with a 
total of 189 physical interactions (154 protein binding, 9 regulatory, 26 metabolic). These counts were 
significant in comparison to randomized genetic networks (yielding 19.2 +/- 6.9 overlapping physical 
interactions; mean +/- stdev). In the figure, results are tabulated separately for two types of genetic 
interactions (MIPS, SGA) and three types of physical network (protein-protein binding, protein-DNA 
regulatory, and shared-reaction metabolic).  

However, further investigation suggested that much of this overlap might be due to bias in 
determination of the physical or genetic network. First, 93% (176/189) of the coincident genetic 
interactions were derived from small-scale studies curated by MIPS. This percentages was highly enriched 
(p¡4x10ˆ-65) compared to the relatively small percentage (26%) of genetic data measured in small-scale 
studies overall. Similarly, 87% (164/189) of the coincident physical interactions were identified in small-
scale studies (as recorded by the DIP database).  

Thus, the coincident physical interactions are biased towards small-scale studies, probably because 
physical interactions are sometimes tested explicitly as a follow-up to observing a genetic interaction. 
Direct correspondence between systematic genetic and physical interactions is much weaker (e.g., between 
SGA and protein-binding interactions in DIP)  

Such conclusions hold even after extending the analysis from direct interactions to longer paths. 
As shown in Figure S1 [b], for each pair of synthetic-lethal proteins we recorded the length of the shortest 
path connecting these proteins in the protein-protein network. The False Discovery Rate of genetic/physical 
overlap is shown for genetic interactions connected by direct (length 1) or longer paths of protein-protein 
interactions (lengths 2-6). False Discovery Rate (FDR) is the expected percentage of these relationships 
that are spurious based on randomized networks (described further in the Methods). Genetic interactions in 
MIPS match a greater number of short paths than would be expected at random, while the number 
explained by physical paths of length > 3 (SGA: all lengths) is essentially no different than for random 
networks.  

Thus, the number of synthetic-lethal pairs connected by paths of up to three protein-protein 
interactions was larger than expected. However, this trend was too weak to be used in identifying the 
physical cause of any partical synthetic-lethal interaction: Even limiting consideration to paths of length 
two, nearly a third of the paths were likely due to random chance. 
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Supplemental Figure 2.2. Influence of beta on result set. 

This figure compares the set of proteins included in significant network models for different 
values of beta versus a beta of 0.9. The similarity of the two result sets is summarized by the jaccard 
(intersection/union). From these results, we see that the between-pathway models are more sensitive to 
changes in the value of beta. However, even for a very small value of beta, the results are still largely 
overlapping. We chose a beta of 0.9 (which tends to create a smaller result set) to enhance the stringency of 
our results. 
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Supplemental Figure 2.3. Estimate prediction accuracy for naive and pathway-based within-pathway 
genetic predictions. 

This graph displays the estimated accuracy of pathway-based and naive within-pathway genetic 
predictions. Within-pathway predictions were made by predicting genetic interactions between genes with 
common genetic interaction neighbors. The physical network was incorporated in the pathway-based 
predictions by restricting the proteins and neighbors to fall into a single within-pathway model. The 
number of common neighbors is therefore used as a measure of confidence in the implied genetic 
interactions. The maximum prediction accuracy obtained for within-pathway based predictions is ≈ 38% 
using a prediction threshold of three common neighbors. The inset displays the estimated prediction 
accuracy over an expanded range for just the naive predictions. 
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Supplemental Tables 

 
 

Supplemental Table 2.1. Compounds excluded from the physical interaction network. 
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Supplemental Table 2.3. Functional Enrichment. 

For each protein in a between-pathway model, we computed the average GO similarity of this 
protein versus two different sets of interacting neighbors: (1) all of its neighbors in the protein-protein 
interaction network; and (2) the specific subset of these neighbors arising in the same model. Out of 712 
proteins in between-pathway models, 563 (79%; p<0.01) had a higher average similarity with the 
interacting proteins in their model than with all neighbors in the network as a whole. In within-pathway 
models, 233 of 298 proteins (78%; p<0.01) showed similar functional enrichment. These trends apply 
whether the network neighborhood is defined to include only proteins with direct interactions (as reported 
above) or also those reachable at ”distance 2” through an intermediate protein (yielding 91% and 97% for 
between- and within-pathways models). Here, functional similarity between two proteins a and b was 
defined as inversely proportional to the number of proteins covered by the most specific GO term covering 
a and b. 

 

Supplemental Table 2.2. Results from reduced searches. 

This table displays the results from a number of searches run in reduced networks. The column 
labeled ”Interaction Set” identifies the specific reduced network, where Interaction Type(-) indicates that 
type of interaction was removed to create the reduced network. ”Average GI Predictions (Cross 
Validation)” refers to the expected number of genetic predictons made using this reduced network in cross-
validation.”GI Prediction Accuracy” refers to the accuracy of these predictions. In cases where the cross-
validation was unable to generate predictions of the required stringency, this result in not available (n/a). In 
addition, GO prediction accuracy was also assessed. This result is displayed in the final column. With 
respect to the set of physical interactions, protein-protein interactions are crucial for model performance. 
For reduced searches in the genetic network, both synthetic sick and synthetic lethal interactions enhance 
model performance. Note that the ”PP+SL” models perform particularly well in both genetic and GO 
prediction.  
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Supplemental Table 2.4. Basis of annotation predictions. 

Using the between-pathway models, 745 annotations were predicted with an estimated accuracy 
of 63%. Conversely, 285 annotations were predicted using the within-pathway models with an estimated 
accuracy of 69%. Are these functional predictions based mainly on physical interactions, or do they 
require the genetic network also? To address this question, we looked for dense subnetworks of 
interactions in the physical network separately (analogous to the within-pathway search but scoring only 
one interaction type - see Methods). Of the above 745 between-pathway annotations, 194 were also 
predicted from significant physical pathways alone. In the case of the within-pathway search, there are 
only 29 such predictions. The remaining predictions rely, at least in part, on genetic evidence for support. 
Considering these remaining predictions only, cross-validation accuracy was 50% and 59% for between- 
vs. within-pathway models. In this table, the ”Model” column delineates which type of model was used to 
generate the prediction. The ”Search” column tells whether the annotations were predicted only from the 
combined physical/genetic search. The ”Count” and ”Accuracy” columns give these values for the various 
sets of annotations.  

 



 

 

34 

Acknowledgements 

We thank Jonathan Wang, Owen Ozier, and Gopal Ramachandran for preliminary 

investigations and Vineet Bafna, Ben Raphael, and Vikas Bansal for insightful 

commentary.  Craig Mak, Silpa Suthram, and Taylor Sittler provided helpful reviews of 

the text.  Funding was provided by the National Institute of General Medical Sciences 

(GM070743-01) and the National Science Foundation (NSF 0425926). 

Chapter 2, in full, is a reprint of the following work, 

Kelley R, Ideker T. Systematic interpretation of genetic interactions 
using protein networks. Nature Biotechnology 2005; 23(5):561-6. 

The dissertation author was the sole first author on this paper, responsible for 

designing, implementing, and running computational algorithms. 



35 

Chapter 3. Functional maps of protein complexes from quantitative genetic 

interaction data 

Abstract 

Recently, a number of advanced screening technologies have allowed for the 

comprehensive quantification of aggravating and alleviating genetic interactions among 

gene pairs. In parallel, TAP-MS studies (Tandem Affinity Purification followed by Mass 

Spectroscopy) have been successful at identifying physical protein interactions which can 

indicate proteins participating in the same molecular complex. Here, we propose a 

method for the joint learning of protein complexes and their functional relationships by 

integration of quantitative genetic interactions and TAP-MS data. Using three 

independent benchmark datasets, we demonstrate that this method is >50% more accurate 

at identifying functionally related protein pairs than previous approaches.  Application to 

genes involved in yeast chromosome organization identifies a functional map of 91 

multimeric complexes, a number of which are novel or have been substantially expanded 

by addition of new subunits. Interestingly, we find that complexes that are enriched for 

aggravating genetic interactions (i.e., synthetic lethality) are more likely to contain 

essential genes, linking each of these interactions to an underlying mechanism.  These 

results demonstrate the importance of both large-scale genetic and physical interaction 

data in mapping pathway architecture and function.   
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Introduction 

Genetic interactions are logical relationships between genes that occur when 

mutating two or more genes in combination produces an unexpected phenotype15, 51, 52.  

Recently, rapid screening of genetic interactions has become feasible using Synthetic 

Genetic Arrays (SGA) or diploid Synthetic Lethality Analysis by Microarray (dSLAM)22, 

23.  SGA pairs a gene deletion of interest against a deletion to every other gene in the 

genome (in turn).  The growth / no growth phenotype measured over all pairings defines 

a genetic interaction profile for that gene, with no growth indicating a synthetic-lethal 

genetic interaction.  Alternatively, all combinations of double deletions can be analyzed 

among a functionally-related group of genes9, 53, 54.  A recent variant of SGA termed E-

MAP54 has made it possible to measure continuous rates of growth with varying degrees 

of epistasis (based on imaging of colony sizes).  “Aggravating” interactions are indicated 

if the growth rate of the double gene deletion is slower than expected, while for 

“alleviating” interactions the opposite is true55, 56. 

One popular method to analyze genetic interaction data has been to hierarchically 

cluster genes using the distance between their genetic interaction profiles.  Clusters of 

genes with similar profiles are manually searched to identify the known pathways and 

complexes they contain as well as any genetic interactions between these complexes.  

This approach has been applied to several large-scale genetic interaction screens in yeast 

including genes involved in the secretory pathway9 and chromosome organization53.  

Segré et al.57 extended basic hierarchical clustering with the concept of 

“monochromaticity”, in which genes were merged into the same cluster based on 

minimizing the number of interactions with other clusters that do not share the same 
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classification (aggravating or alleviating). 

Another set of methods has sought to interpret genetic relationships using 

physical protein-protein interactions58.  Among these, Kelley and Ideker59 used physical 

interactions to identify both “within-module” and “between-module” explanations for 

genetic interactions.  In both cases, modules were detected as clusters of proteins that 

physically interact with each other more often than expected by chance.  The “within-

module” model predicts that these clusters directly overlap with clusters of genetic 

interactions.  The “between-module” model predicts that genetic interactions run between 

two physical clusters that are functionally related.  This approach was improved by 

Ulitsky et al.60 using a relaxed definition of physical modules.  In related work, Zhang et 

al.61 screened known complexes annotated by the Munich Information Center for Protein 

Sequences (MIPS)  to identify pairs of complexes with dense genetic interactions 

between them. 

One concern with the above approaches, and the works by Kelley and Ulitsky in 

particular, is that they make assumptions about the density of interactions within and 

between modules which have not been justified biologically.  Ideally, such parameters 

should be learned directly from the data.  Second, between-module relationships are 

identified by separate, independent searches of the network seeded from each genetic 

interaction.  This “local” search strategy can lead to a set of modules that are highly 

overlapping or even completely redundant with one another.  Finally, genetic interactions 

are assumed to be binary growth / no growth events while E-MAP technology has now 

made it possible to measure continuous values of genetic interaction with varying degrees 

of epistasis.  Here, we present a new approach for integrating quantitative genetic and 
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physical interaction data which addresses several of these shortcomings.  Interactions are 

analyzed to infer a set of modules and a set of inter-module links, in which a module 

represents a protein complex with a coherent cellular function, and inter-module links 

capture functional relationships between modules which can vary quantitatively in 

strength and sign.  Our approach is supervised, in that the appropriate pattern of physical 

and genetic interactions is not predetermined but learned from examples of known 

complexes.  Rather than identify each module in independent searches, all modules are 

identified simultaneously within a single unified map of modules and inter-module 

functional relationships.  We show that this method outperforms a number of alternative 

approaches and that, when applied to analyze a recent EMAP study of yeast chromosome 

function, it identifies numerous new protein complexes and protein functional 

relationships.  

Results 

Characterization of Genetic and Physical Networks. 

We first sought to quantitatively confirm whether, and to what degree, physical 

and genetic interactions could indicate common membership in a protein complex.  To 

provide genetic data for analysis, we obtained the previously-published results from a 

large E-MAP of yeast chromosomal biology53.  This study consisted of genetic 

interactions measured among 743 genes (including 74 essential genes), yielding 

quantitative values for 182,669 gene pairs (66% of all possible pair-wise measurements).  

Each gene pair was assigned an S-score, where positive scores indicate protein pairs for 

which the double mutant grows better than expected (i.e., an alleviating interaction) and 
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negative scores indicate pairs for which the double mutant grows worse than expected 

(i.e., a synthetic sick/lethal or aggravating interaction) where the expectation is that the 

double-deletion of unrelated proteins will have a growth rate equivalent to the 

multiplicative product of the two individual growth rates62.  In all, 14,237 gene pairs 

(8%) showed strong genetic interactions with |S| > 2.5.  Physical interactions were taken 

from a recent computational integration of two large datasets measured by co-

immunoprecipitation followed by mass spectrometry63.  This study assigned to each 

pairwise interaction a Purification Enrichment (PE) score, with larger values representing 

a greater likelihood of true binding. 

 

 
Figure 3.1. Combining physical and genetic interactions to define protein complexes. 

Correspondence of the physical interaction score (A) and the genetic interaction score (B) with the 
known small-scale, manually annotated protein complexes in MIPS. To compute the enrichment over 
random (y-axis), one first computes the fraction f of interactions at each score x that fall inside a MIPS 
small-scale complex (bin size of 1.5). The enrichment is the ratio f/r, where r is the fraction of random 
protein pairs within MIPS complexes. (C) Proteins are grouped into physically interacting sets called 
modules (gray ovals; m1–m6). Pairs of modules may be linked to indicate a functional relationship (dotted 
lines; b1–b6). The assignment of proteins to modules along with the list of inter-module links comprises the 
state of the system. 
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Figure 3.1a confirms that protein pairs with higher PE-scores are more likely to 

operate in a known small-scale protein complex recorded in the MIPS database64 (versus 

protein pairs chosen at random).  This result is expected considering that PE-scores were 

trained based on these complexes63.  Figure 3.1b shows that protein pairs with both 

positive and negative S-scores are more likely to operate within a known complex.  

Positive (alleviating) interactions are well-known to occur between subunits of a 

complex53. Negative (aggravating) interactions are to a lesser degree so, although the 

mechanism has not been as clear as for the alleviating case65.  By comparing the 

magnitudes of enrichment between Figure 3.1a and b, it is apparent that extreme S-scores 

are at least as indicative of co-complex membership as strong PE-scores, if not more so 

(~100-fold enrichment versus ~50-fold enrichment, respectively).  Together, these 

exploratory findings suggest that the physical and genetic information can indeed provide 

a basis for the identification of protein pairs involved in the same complex. 

Functional maps of protein complexes involved in yeast chromosomal biology. 

To capture these trends, we formulated an approach to classify a protein pair as 

operating either within the same module or between functionally-related modules given 

its genetic and physical interaction scores.  This approach seeks to categorize interactions 

supported by both strong genetic and physical evidence as operating within a module 

(i.e., complex).  Interactions with a strong genetic but weak physical signal are better 

characterized as operating between two functionally-related modules.  Given within-

module and between-module likelihoods for individual interactions, an agglomerative 

clustering procedure seeks to merge these interactions into increasingly larger modules 
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and to identify pairs of modules interconnected by bundles of many strong genetic 

interactions (Figure 3.1c).  Full details are provided in the 

Methods.

 

Applying this method, we identified 91 distinct modules with an average size of 

4.1 proteins per module.  Figure 3.2 gives an overview of a subset of the identified 

modules and inter-module links.  Complete results are catalogued at 

http://www.cellcircuits.org/Bandyopadhyay2008/html/.  Overall, these results suggest ten 

novel complexes not recorded in either the small-scale or high-throughput MIPS 

compendium, covering 23 proteins in total.  The results also identify 84 new subunits of 

 
Figure 3.2. Global map of protein complexes involved in yeast chromosome biology. 

Each node represents a predicted multimeric protein complex, while each link represents a 
significantly alleviating or aggravating bundle of genetic interactions between complexes, indicative of an 
inter-complex functional relationship. Node colors indicate enrichment for alleviating or aggravating 
genetic interactions among members of the same complex. Node sizes are proportional to the number of 
proteins in the complex. When known, nodes are labeled with the common name of the complex. For 
complexes that are newly identified by our study and thus unnamed, the constituent proteins are listed. For 
clarity, the co-chaperone prefoldin complex (PFD1, PAC10, YKE2, GIM3, GIM4, GIM5, BUD27) and the 
25 links associated with it have been removed. 
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known complexes (Supplemental Materials).  Through permutation testing, 19 versus 9 

of the identified modules could be categorized as enriched for alleviating or aggravating 

genetic interactions, respectively.  A total of 313 significant genetic relationships were 

identified between modules, 94 versus 219 of which were enriched for alleviating or 

aggravating interactions. 

Comparison to related approaches. 

The method of choice for interpreting quantitative genetic interactions has been 

hierarchical clustering (HCL) of genes based on pair-wise distances between their genetic 

interaction profiles9, 53.  We compared the clusters obtained using HCL to the modules 

obtained with our present approach (Bandyopadhyay et al.) using three gold-standard 

metrics: gene co-expression (Figure 3.3a), co-functional annotation (Figure 3.3b), or 

membership in the same previously-identified complex (Figure 3.3c).  To ensure a fair 

comparison between the two approaches, HCL and Bandyopadhyay et al.  were evaluated 

across a range of coverages (number of gold-standard gene pairs recovered by the 

predicted clusters/modules; see Methods).  For all three benchmarks, our performance 

was substantially higher than that of the HCL-based approach at most levels of coverage 

(and at a level of coverage corresponding to the 91 modules reported above; dotted 

vertical line in Figure 3.3). 
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Figure 3.3. Performance of complex identification. 

The proposed approach is compared to several competing methods of discovering protein 
complexes within genetic interaction networks: HCL implements hierarchical clustering with a distance 
measure computed from the genetic interaction profiles only (S-scores), while HCL-PE extends HCL by 
merging clusters only if there is a physical interaction between them (PE-score>1). For the modules defined 
by each method, accuracy versus coverage is plotted over a range of values for tuning the module size (see 
Methods). Accuracy is estimated as the fraction of protein pairs in a predicted module that are in a gold-
standard set; coverage is estimated as the number of gold-standard pairs that fall in the same predicted 
module. Gold-standard sets are defined by protein pairs that are either (A) co-expressed, (B) functionally-
related, or (C) assigned to the same complex in high-throughput data sets (as annotated in MIPS). The 
performance at the chosen parameter setting (α = 1.6) is indicated by the dotted vertical line. The 
performance of the method of Kelley et al. is reported for the same level of coverage as the present 
approach (asterisk). Since it operates on binary interaction data, we converted quantitative genetic and 
physical interaction scores to binary values based on a threshold of |S|>2.5 and PE>1. 
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We considered that one reason why HCL performed less favorably might be that 

it was not given access to the same information (i.e., the physical network).  This is 

especially true for the metric based on previously-identified complexes, in which 

complexes were annotated based on the same high-throughput protein interactions used 

here.  To investigate this possibility, we extended HCL to incorporate physical 

interactions in a straightforward fashion, by merging only those clusters which share a 

physical interaction between them (HCL-PE). Although this approach outperformed 

hierarchical clustering without physical interactions, it was outperformed by the present 

approach by at least 50% across the three metrics.  Finally, our method also shows 

improvement over the previous approach of Kelley and Ideker59 for integrating genetic 

and physical interactions (Figure 3.3).  

Aggravating complexes tend to be essential. 

Nineteen versus nine of the learned modules had significant enrichment for 

alleviating versus aggravating genetic interactions, respectively.  Identification of 

“alleviating” modules is expected, since subunits of a complex operate together and the 

phenotypic effect of removing any pair of proteins in a complex should be no worse than 

removing any single protein individually.  The presence of aggravating interactions 

within modules was more intriguing.  One way in which aggravating interactions could 

occur among the subunits of a complex is if its function is essential, i.e., the loss of the 

complex’s function causes a lethal phenotype.  In these cases, some protein subunits 

should be encoded by essential genes, while other subunits might be redundant and thus 

essential in pairwise combinations65.  
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To test the hypothesis that essential genes are more likely in aggravating modules, 

we analyzed both MIPS small-scale complexes and our learned modules for the presence 

of essential genes (Figure 3.4).  We found that 80% of aggravating MIPS complexes 

contained an essential gene, compared to only 20% of alleviating MIPS complexes (a 

four-fold increase).  Similarly, of the aggravating modules determined by our approach, 

55% contained an essential gene compared to only 21% of alleviating modules (a 2.6-fold 

increase).  These results are not correlated with module size, as the median size of 

aggravating learned modules is less than the median size of alleviating learned modules.  

 
Figure 3.4. Aggravating complexes are more likely to contain essential genes. 

The percentage of complexes that contain at least one essential gene is shown, for various groups 
of complexes defined within small-scale complexes in MIPS (left three bars) or complexes identified in this 
study (right three bars). In MIPS, approximately 80% of “aggravating” complexes (see text) contain an 
essential gene, versus 20% for “alleviating” complexes. The trend is similar for the complexes reported in 
this study, with 55% versus 22% of aggravating versus alleviating complexes containing an essential gene. 
The list of all essential genes was taken from (http://www-
sequence.stanford.edu/group/yeast_deletion_project/deletions3.html). 
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They suggest that, regardless of the technique for identifying complexes, those containing 

essential genes tend to be composed of primarily aggravating genetic interactions.  

Mechanistically, this might occur through a variety of means, including proteins with 

separate but functionally-redundant roles in maintaining complex integrity, or subunit 

substitution by paralogous proteins.  

Discussion 

Figure 3.5 presents detailed diagrams of example functional relationships 

elucidated by our module mapping method.  Figure 3.5a shows the alleviating 

relationship between the RTT109-VPS75 histone acetyltransferase complex53, 66, 67 and 

Elongator, a complex that is associated with RNA Polymerase II and is involved in 

transcriptional elongation68.  Since several subunits both of Elongator and 

RTT109/VPS75 have been shown to be involved in histone acetylation levels67, 69, these 

two complexes may operate together to effectively clear histones from actively 

transcribed regions.  To identify further mechanisms of their cooperation, future studies 

may search for specific residues of histone H3 whose acetylation levels are modulated by 

both complexes.  This example highlights the utility of an integrated approach, since 

although RTT109 and VPS75 are known to form a complex their genetic interaction 

profiles are not congruent (correlation of profiles of -0.1) and had been missed by 

hierarchical clustering.  Figure 3.5b highlights non-essential components (LRP1 and 

RRP6) of the exosome, which contributes to the quality-control system that retains and 

degrades aberrant mRNAs in the nucleus70.  These components have alleviating 

interactions with a complex composed of Lsm proteins involved in mRNA decay. 
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Figure 3.5c centers on BRE1/LGE1, subunits of the Rad6 Histone Ubiquitination 

Complex (RAD6-C; the Rad6 protein itself was not covered by the original E-MAP 

screen)49, 71.  RAD6-C is functionally connected with two other complexes, SWR-C and 

COMPASS.  SWR-C functions to regulate gene expression through the incorporation of 

transcriptionally-active histone variant H2AZ72-74, while COMPASS is involved in 

 
Figure 3.5. Pathway models identify novel functional associations among cellular machinery. 

Each panel represents complexes and between-complex links taken from Figure 2. Physical 
interactions with PE>1 are shown and strong genetic interactions (|S|>2.5) are shown with increased 
thicknesses corresponding to stronger genetic interactions. (A) Histone acetyltransferase complex RTT109 
– VPS75 showing strong alleviating interactions with the Elongator transcription elongation factor 
complex. (B) Between-complex model highlighting alleviating interactions between the LRP1 – RRP6 
nuclear exosome complex and an mRNA degradation complex. (C) Complexes associated with the RAD6-
C histone ubiquitination complex (BRE1/LGE1). 
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mediating transcriptional elongation and silencing at telomeres through methylation of 

histone H375.  Interactions between RAD6-C and SWR are aggravating, suggesting 

synergy or redundancy towards an essential cellular function.  Interactions between 

RAD6-C and COMPASS are alleviating, suggesting they operate in a potentially serial 

fashion.  Consistent with this analysis, it has been shown that histone H2B ubiquitination 

by RAD6-C is a prerequisite for histone H3 methylation by COMPASS76, 77.   

Several trends emerge from the performance analysis in Figure 3.3.  First, genetic 

interaction data alone can yield substantial information about molecular pathways.  

Functionally similar proteins often have similar profiles of genetic interaction, a feature 

we have previously exploited to identify functional interactions between complexes as 

well as to identify new members of complexes based on a combination of weak physical 

and genetic data59.  On the other hand, the ability to detect complexes can be greatly 

improved by adding information about protein physical interactions.  Even the 

straightforward HCL-PE method was able to greatly improve the accuracy and coverage 

according to most metrics, while the greatest performance was achieved by the improved 

probabilistic framework we have presented in this study.  This framework has led to the 

inclusion of YKL023W as a potential new member of the SKI complex and YGR071C in 

a complex with VID22/TBF1 (Figure 3.2), for a total of 84 novel protein subunit 

assignments to complexes (Supplemental Data).  Both of these examples have both 

physical and genetic support and would have been missed by an approach based on either 

type of interaction alone. 

Future work may seek to incorporate yet additional types of linkages such as 

protein-DNA interactions31, 78, kinase-substrate phosphorylations79, or other genetic 
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perturbation data such as eQTLs80.  There are also opportunities to refine the modeling 

framework further.  Here, a gold-standard set of complexes was used to explicitly learn 

the relationship between physical interactions, genetic interactions, and module 

membership.  This supervised approach could be extended to also learn which features 

best indicate the inter-module functional relationships, perhaps through curation of a 

gold-standard set of interacting complexes.  

Methods 

Problem definition. 

We analyze the interaction data to infer a set of protein modules and a set of inter-

module links (Figure 3.1c).  A protein module is defined as a set of proteins that are 

connected through protein-protein interactions and are likely to represent a protein 

complex with a coherent cellular function.  Inter-module links capture functional 

relationships between modules and may be of two types, aggravating or alleviating.  The 

complete state of the system is described by a set M of modules, each module defining a 

set of proteins, and a set N of pairs of modules that are functionally linked.   

Scoring module co-membership. 

For each pair of proteins (a,b) we compute a log ratio W of the likelihood that a 

and b fall within the same module versus the likelihood that they are unrelated (i.e., occur 

in the background).  The function uses two sources of information that are indicative of 

protein complex co-membership: the strength of protein-protein physical interaction (PE) 

and the strength of genetic interaction (S): 
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For a given data type (PE or S) the log likelihood ratio (LLR) is defined as: 

 

The probability Pwithin is determined using logistic regression training on 217 

complexes curated from small-scale studies in MIPS64.  Pbackground is the probability of 

randomly observing the observed value (PE or S) for the pair (a,b) in the background of 

all gene pairs.  As shown in Figure 3.1 and 1b, it is clear that higher values of PE are 

predictive of MIPS complex membership.  As both positive and negative values of S are 

predictive, LLRS(a,b) is trained on the absolute value of S.  A third predictor based on the 

correlation of genetic interaction profiles was also evaluated but did not result in any gain 

in performance (Supplemental Figure 3.1). 

Scoring inter-module links. 

A similar function B() is formulated to assess the likelihood that two proteins fall 

between modules that are functionally linked.  The function inputs the same two sources 

of information on protein-protein and genetic interactions (PE and S).  Unfortunately, 

there is no curated set of functionally-related complexes that can be used as positive 

training examples for regression.  Instead, B() is derived from the within-module LLRs, 

assuming that between-module interactions have a similar pattern of genetic interactions 

but lack physical interactions: 

 

This function captures both aggravating and alleviating genetic interactions 

between two functionally-related modules.  It also ensures such modules are physically 
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separate—if not, they would be better considered as a single module. 

Global optimization of module memberships and links. 

Given the above functions W() and B(), we compute the likelihood of the 

complete system (i.e., given a particular choice M of modules and N of inter-module 

links): 

 

The first term accumulates the within-module scores among gene pairs assigned 

to the same module. The second term accumulates the inter-module scores for gene pairs 

spanning any two modules.  Gene pairs spanning unlinked modules do not contribute to 

L.  The final term is a tunable reward which scales with module size.  Larger values of α 

result in fewer, larger complexes.  The final module map shown in Figure 3.2 was 

generated using α=1.6, based on its good coverage and performance across all three 

metrics in Figure 3.3. 

Module search. 

Assignment of gene to modules and of inter-module links is performed using a 

simple variant of UPGMA hierarchical clustering81: (a) Initially, each gene is assigned to 

a separate module; (b) Each pair of modules (m1, m2) is evaluated for merging into a 

single module m = m1 ∪ m2; the pair-wise merging that results in the largest increase in L 

is chosen; (c) Repeat step b until no module merge operation increases L. 

At each iteration of step b, L is optimized over all possible ways of assigning 

inter-module links (i.e., module pairs are linked whenever the second term in Eqn. 4 is 
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positive).  Because each inter-module link is scored independently, additions or deletions 

of links from the system need only be evaluated for modules that are under evaluation for 

merging.   

Subsequent to the above procedure, each between-module link is evaluated to 

assess its significance and whether it represents predominantly aggravating or alleviating 

genetic interactions.  A two-tailed p-value is computed by indexing the sum of S-scores 

for gene pairs falling across the two modules against a distribution of 106 sums of equal 

numbers of S-scores drawn from random gene pairs.  To account for multiple testing, we 

use the distribution of between-module p-values to compute a local false discovery rate 

(FDR)82.  All reported between-module links have an inferred FDR of <10% with the 

global map in Figure 3.2 constrained to links with an FDR of <1%.  Module maps in 

Figure 3.2 and Figure 3.5 are visualized using the Cytoscape package39, 83. 

To label modules as “aggravating” or “alleviating” (Figure 3.2), the sum of S-

scores for gene pairs assigned to the same module is compared to a distribution of sums 

of equal numbers of randomly drawn S-scores.  Modules with a two-tailed p-value < 0.05 

are labeled as either alleviating (right tail) or aggravating (left tail). 

Validation using co-expression, co-function, or co-complex annotations. 

Co-expressed gene pairs were defined using gene expression datasets culled from 

the Stanford Microarray Database covering ~790 conditions84.  The validation set was 

taken as the top 5% (13,014) of pairs ranked by Pearson correlation coefficient.  The co-

function set was based on yeast Gene Ontology annotations from November 2005 which 

predates the publication of large scale TAP-MS studies that were used to generate the PE-
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score.  This set was taken as the top 5% (13,052) most functionally similar gene pairs 

covered in the E-MAP. Functional similarity was determined by comparison to the 

background probability of picking two genes with the same shared functional annotation 

from the entire yeast genome (via a hypergeometric test).  Similar analysis using current 

Gene Ontology annotation was also performed (Supplemental Figure 3.2).  The co-

complex validation set was defined as gene pairs from 846 MIPS complexes annotated 

using high-throughput approaches (with interactions also appearing in small-scale studies 

removed) for a total of 2,885 gold-standard pairs. 

The size and number of final modules was varied by altering the α parameter (see 

above).  To assess performance at low coverage we ran the method with no reward 

contribution (remove the third term in eq. 4 by setting α = −∞) and plotted the 

performance of the algorithm at each merge step, which ultimately connects with the 

performance of the method as α is increased.  For HCL and HCL-PE methods, the size 

and number of modules were varied by changing the level at which the hierarchy was cut.   
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Supplemental Figures 

 

 
Supplemental Figure 3.1. Addition of congruence as a predictor of pathway membership. 

A variant of this algorithm which includes congruence (measured as the pearson correlation of 
genetic interaction profiles) was included as a third predictor (beyond pairwise physical and genetic 
interaction scores). The results indicate that, especially in determining co-complex membership, the 
addition of congruence does not help to find functionally related modules. A possible rationale for this 
result is that by scoring between-complex interactions explicitly, the method is already rewarding for 
similarity of genetic interaction profiles so that the addition of the third congruence predictor results in 
overfitting and no additional gain in performance. 
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Supplemental Figure 3.2. A current version of the Gene Ontology shows similar performance. 

The figure is the same as Figure 3B using the current version of the Gene Ontology (March 2007). 
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Chapter 4. Correcting for gene-specific dye bias in DNA microarrays using the 

method of maximum likelihood 

Abstract 

In two-color microarray experiments, well known differences exist in the labeling 

and hybridization efficiency of Cy3 and Cy5 dyes.  Previous reports have revealed that 

these differences can vary on a gene-by-gene basis, an effect termed gene-specific dye 

bias.  If uncorrected, this bias can influence the determination of differentially expressed 

genes. We show that the magnitude of the bias scales multiplicatively with signal 

intensity and is dependent on which nucleotide has been conjugated to the fluorescent 

dye.  A method is proposed to account for gene-specific dye bias within a maximum 

likelihood error modeling framework.  Using two different labeling schemes, we show 

that correcting for gene-specific dye bias results in the superior identification of 

differentially expressed genes within this framework. Improvement is also possible in 

related ANOVA approaches. A software implementation of this procedure is freely 

available at http://cellcircuits.org/VERA. 
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Introduction  

Two color microarray experiments are an instrumental tool in modern biology5.  

In a typical experiment, RNA is extracted from two samples (populations of cells); 

labeled with Cy3 or Cy5 fluorescent dyes, respectively; hybridized to an array of DNA 

probes; and imaged with a confocal scanning device.  Due to differences in dye 

chemistry, the measured intensity distributions for each dye are not directly comparable.  

Several normalizations are commonly applied to address this issue.  First, each intensity 

distribution is median centered85, 86. Second, the LOESS procedure is used to normalize 

the intensity dependent bias of each dye87.  In LOESS, the bias at each intensity is 

estimated from a window of data points with similar intensity values.  This estimate is 

then used to correct the measured values at that intensity.  In order to obtain meaningful 

results from two-color microarrays, it is important that both of these biases are corrected. 

Recently, an additional source of systematic error in two-color microarray 

experiments has been identified88-90.  Although still dye-dependent, unlike the 

aforementioned sources of error its magnitude varies according to each individual 

measured transcript.  Accordingly, this bias has been termed Gene-Specific Dye Bias 

(henceforth abbreviated GSDB), and even data that have been median-centered and 

LOESS-corrected will display a consistent bias in either the Cy3 or Cy5 direction for a 

given probe.  This effect has been observed on a variety of platforms and labeling 

systems, including PCR-spotted and short oligonucleotide arrays used in conjunction 

with either direct or indirect labeling methods88.  In addition to this work with two-color 

arrays, sequence specific effects have been reported within single color array systems 

such as Affymetrix GeneChips91, 92.  These effects can confound the discovery of 
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differentially expressed genes (false negatives) or, depending on the experimental design, 

lead to their erroneous identification (false positives)89. 

In a proper experimental design, the dyes used to label a given sample are 

balanced.  That is, every microarray experiment is duplicated by one that reverses the 

Cy3 vs. Cy5 labeling orientation of the samples (i.e., such that Cy5 labels the first sample 

and Cy3 labels the second).  Dye balancing mitigates gene-specific dye bias because the 

direction of bias alternates from replicate to replicate such that the average effect is zero.  

However, although the mean bias is zero the variance across replicate measurements is 

now greatly increased by the presence of gene-specific dye bias.  Increased variance, in 

turn, decreases the sensitivity in identifying differentially expressed genes. 

Recognizing the limitations of dye balancing experiments, the problem of GSDB 

has been addressed using a variety of sophisticated experimental and bioinformatic 

techniques. Rosenzweig et al.90 proposed to handle GSDB with a modified experimental 

design utilizing the addition of control microarrays.  They found that employing their 

strategy with 10 replicate microarrays could yield comparable technical accuracy to a 16 

replicate experiment performed with a traditional balanced design. Using an analysis of 

variance (ANOVA) model, Martin-Magniette et al.93 developed a test statistic (the label 

bias index) to measure the extent of GSDB across a microarray and discussed possible 

ramifications on the design of indirect comparison experiments.  In a related approach, 

Dobbin et al.88 characterized GSDB as well as other sources of systematic error such as 

cell-line specific bias.  Correcting for GSDB within an ANOVA framework, they found 

significant differential expression for approximately 18% more genes than if such 

correction was not applied.  Without a gold standard set of differentially expressed genes, 
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however, it is unclear whether this represents an increase in the number of true or false 

positives. 

One limitation of ANOVA is that the general linear framework does not capture 

all of the complex errors that could possibly influence a microarray experiment. 

Therefore, in parallel to ANOVA, several groups have proposed more advanced 

microarray error models, e.g., that capture both additive and multiplicative errors 

influencing each measured dye intensity94-96. A maximum-likelihood approach is then 

used to optimize model parameters and to score differentially-expressed genes.  On the 

one hand, these models have the potential to more closely reflect the true error structure.  

On the other, it is unclear whether the additional complexity is warranted, and none of 

these models have been updated to account for the presence of GSDB.   

Here, we present our efforts to both characterize gene-specific dye bias and to 

extend a maximum-likelihood error modeling approach to correct for its influence.  By 

conducting the identical gene expression experiment using two different labeling 

systems, we demonstrate that correcting for the presence of GSDB results in the 

improved detection of differentially-expressed genes. 

Methods 

Error model 

The proposed error model expands upon previous work to determine differentially 

expressed genes through the incorporation of both multiplicative and additive error (the 

VERA error model)95.  To extend this model to capture GSDB, it is conceptually possible 

to model this bias as either a multiplicative or additive error term. Equations (4.1)-(4.4) 
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display a concise representation of the error model as originally proposed, with additional 

terms to capture GSDB as multiplicative error. 

 

€ 

xij = µxi
(1+ εxij + I(Cy5)βi) + δxij  (4.1) 

 

€ 

yij = µyi
(1+ εyij + I(Cy5)βi) + δyij  (4.2) 

 

€ 

εx ~ N(0,σε x
),εy ~ N(0,σε y

),Corr(εx,εy ) = ρε  (4.3) 

 

€ 

δx ~ N(0,σδ x
),δy ~ N(0,σδ y

) (4.4) 

 
Alternatively, to model bias as additive error, equations (4.1) and (4.4) are 

replaced with (4.5) and (4.6), respectively. 

 

€ 

xij = µxi
(1+ εxij ) + I(Cy5)β i + δxij  (4.5) 

 

€ 

yij = µyi
(1+ εyij ) + I(Cy5)β i + δyij  (4.6) 

 
Here, (xij, yij) are the observed dye intensities for gene i in replicate j.  The 

variable µ is the true underlying intensity for each dye, while ε and δ represent 

multiplicative and additive error terms, respectively.  Each of these error terms is 

normally distributed with mean zero and distinct standard deviation s.  The multiplicative 

errors εx and εy may be highly correlated (with coefficient ρε).  It is possible to also 

include a correlation term for the additive errors; however, in practice, this correlation is 

near zero.  Extending beyond previous work, the model is given the additional gene-

specific bias term β.  This correction is only applied if the values are taken from Cy5 

intensity data, as enforced by the indicator function I(Cy5).  The symmetric model, in 

which the correction is applied to the Cy3 channel only, would perform identically with 

the exception that the learned bias terms would be negated. 
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To fit the model to gene expression data, for each gene a total of three parameters 

(µx, µy, β) must be learned, in addition to the five global error parameters (σεx, σεy, ρε, σδx, 

σδy) shared over all genes.  Maximum likelihood estimates of all parameters are derived 

via an iterative procedure implemented in the MATLAB programming language95.  

Briefly, after selection of initial values for all parameters, the global error parameters are 

optimized to maximize the likelihood function utilizing a conjugate gradient approach97.  

These new global error estimates are then held constant during a similar estimation of the 

gene-specific parameters (µx, µy, β).  These two optimizations continue to alternate in an 

iterative fashion until estimates for all parameters have converged. Through simulation, it 

is apparent that the parameters estimated in this fashion are subject to bias due to small-

sample size (i.e., small numbers of replicates).  Appropriate corrections are applied to 

remove this bias, as described in Supplemental Figs. 4.1 and 4.2. 

Following parameter estimation, a generalized likelihood ratio test is used to 

assess the extent of differential expression for each gene.  According to this test statistic, 

the likelihood of the expression data for a gene under the optimal model parameters 

(numerator of the likelihood ratio) is compared to the likelihood of the same data under 

an alternative model with the constraint µx = µy (the “null” hypothesis of no differential 

expression; denominator of the likelihood ratio). 

Assessing Dye Bias 

The VERA error model incorporating bias as an additive term was applied to the 

set of control data. For each gene, a single bias term β was learned.  To determine the 

relationship between overall intensity and the magnitude of bias, the “lowess” function in 
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R (with default parameters) was used to calculate a smoothed estimate of the absolute 

value of bias as a function of the average value of µx and µy. 

 
ANOVA analysis 

Within an ANOVA framework, different methods can be used to estimate 

differential expression based on how the residual error for each gene is determined.  The 

R/maanova package defines four such measures: F1, F2, F3, and Fs98.  F1 is the usual F 

statistic, which determines the residual error independently for each gene, while the 

remaining measures represent different ways of pooling the residual error over multiple 

genes99.  F3 models a single residual averaged over all genes, while F2 sets the residual 

for each gene as an average of its F1 and F3 estimates.  The Fs statistic is similar to the 

F2, but uses the heterogeneity of the error estimates to inform the exact weighting of the 

average.  As a fifth measure, the R/VarMixt package (Delmar, et al., 2005) was used to 

model residual error as a mixture of different sub-populations of genes, as employed by 

Martin-Magniette et al.93 in their earlier assessment of GSDB (see Introduction).  In each 

of these five cases, a fixed ANOVA model was employed using the factors Array, Dye, 

and Sample.  In the case of the non-dye-bias-corrected analysis, Dye was not used as a 

factor.  

Sample Growth and Treatment 

In total, twelve microarray experiments were performed, four control (comparing 

untreated vs. untreated) and eight treatment (comparing untreated vs. mild hydrogen 

peroxide treatment). In each control microarray experiment, a single colony of BY4741 
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(ATCC, Manassas, Virginia, USA) was used to inoculate 10 mL of YPD media. 

Following overnight growth at 30o C, this culture was then resuspended in 100 mL media 

at an OD600 of 0.1 and placed in an orbital shaker at 30o C.  Following growth to OD600 

= 0.6, the culture was split into two 50 mL portions and allowed to continue growth to 

OD600 = 1.0. Cells were then harvested by centrifugation at 3,000 rpm for 5 minutes. 

Pellets were immediately frozen in liquid nitrogen and stored at -80° C.  Handling of the 

mild hydrogen peroxide treatment samples was similar, except that one member of each 

aliquoted pair was treated with 0.1 mM hydrogen peroxide 1 hour prior to collection. 

RNA extraction, labeling, and hybridization  

RNA from each sample was isolated via phenol extraction followed by mRNA 

purification (Poly(A)Purist, Ambion, Catalog # 1916).  Purified mRNA from the control 

experiments was labeled with dUTP incorporating either Cy3 or Cy5 dye (CyScribe First-

Strand cDNA labeling kit, Amersham Biosciences). The eight hydrogen peroxide 

treatment pairs were broken into two equal-sized groups of four pairs each.  In one group, 

dUTP-labeled dye was used to label the transcripts, while in the other group, dCTP-

labeled dye was substituted. Within each group, Cy3 and Cy5 labelings were assigned to 

create a balanced design. Complementary labelings (Cy3 vs. Cy5) were hybridized to an 

Agilent oligonucleotide expression array (Catalog # G4140B).  

Data acquisition and analysis 

Arrays were scanned using a GenePix 4000A and quantified with the GenePix 6.0 

software package.  Prior to further analysis, the data from each array were subjected to 

background and quantile normalization100. 
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Comparing replicates 

Each error model (VERA and the five ANOVA variants) was used to rank genes 

according to their significance of differential expression, for both the dUTP-labeled and 

dCTP-labeled sets of replicate microarray experiments (hydrogen-peroxide treated versus 

untreated). For a given rank cutoff, a superior GSDB correction method should result in 

higher overlap between the sets of differentially expressed genes identified by the two 

labeling methods. To ensure that this overlap is due to the enhanced identification of true 

positives and not shared false positives, a “baseline overlap” value was also calculated 

between ordered lists derived from the dCTP-labeled treatment series and the control 

series. Since there are no truly differentially expressed genes in the control series, any 

overlap in this comparison represents shared false positives or random overlap events.  

The actual overlap was reported after subtracting this baseline value. 

To assign significance values of differential expression to the control series, two 

of the four arrays must be arbitrarily assigned as the “forward” labeling.  Since there are 

three equally valid such assignments, the baseline overlap was determined in all three 

configurations and the average was used.  

Results 

Characterizing gene-specific dye bias 

We first performed a series of microarray controls to confirm and further 

characterize the extent of gene-specific dye bias.  Two samples of mRNA extracted from 

yeast undergoing exponential growth in identical conditions, were directly labeled with 

either Cy3 or Cy5 dyes conjugated to dUTP.  These labeled samples were co-hybridized 
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to an Agilent v2 Yeast Oligo Microarray, and ln(Cy3/Cy5) ratios were determined for 

each gene following median and quantile normalization.  Additional cultures, mRNA 

extractions, and hybridizations were analyzed to generate a total of four separate 

microarray replicates. 

 

Since mRNA for each labeling was extracted from identical conditions, the true 

log ratio for all genes is zero.  When examining multiple replicates, the observed log ratio 

deviates from zero due to various sources of error, such as uncontrollable biological 

variation between replicates and noise in the experimental analysis.  If there is no gene-

specific bias, the value of this deviation will vary around zero and will not be 

reproducible across replicates.  However, as shown in Figure 4.1, this is strikingly not the 

 
Figure 4.1. Gene-specific dye bias in oligonucleotide arrays. 

Gene-specific dye bias is present and highly reproducible in an oligonucleotide expression 
microarray system. The scatter plot of panel A details a comparison of log ratio values from two separate 
control experiments. The inset in the upper left quantifies all six pair-wise correlations among the four 
replicate control experiments. As a different perspective on the same information, panel B presents the four 
replicateCy3 versus Cy5 intensity values for several genes (numbers 1–8) with apparent large gene-specific 
dye bias. 
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case.  When comparing two control experiments, the correlation over all log ratio values 

is at least 0.85, illustrating the presence of clear gene-specific bias.  Since the only 

difference between the numerator and denominator of the log ratio is the dye used for 

labeling, this gene-specific effect must be dye bias.  For the most affected genes, the bias 

effect alone can cause the ratio to deviate by more than two-fold.  Such a deviation can 

easily influence determination of differential expression. 

 

 
Figure 4.2. Bias strength is related to labeled nucleotide. 

The upper left panel shows that strongest correlation between gene-specific dye bias in a dUTP-
labeled control experiment and nucleotide content is with the frequency of adenine. 
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To further investigate the source of bias, we computed the correlation between the 

dye bias of each gene and the frequency of each nucleotide (A,C,G,T) in the sequence 

representing the gene on the microarray (Figure 4.2).  Gene-specific dye bias was 

measured as the average natural log ratio (Cy3/Cy5) over the four replicate control 

hybridizations.  The most significant correlation was found with adenine content (Figure 

4.1A).  Since the cDNA was labeled with Cy3 or Cy5 dyes conjugated to dUTP (the 

complement of adenine), the bias is thus proportional to the number of incorporated dye 

molecules.  This result is then consistent with the less efficient incorporation of Cy5 dye 

by the polymerase.  

Formulating an error model 

It is possible to model bias as either a multiplicative or additive error term (see 

Methods). If the values of µx and µy vary substantially, the effect of an additive bias term 

will be different than a multiplicative one (i.e., only a multiplicative bias term will scale 

with the magnitude of µ). However, this distinction is irrelevant if the true intensity 

values for each dye (µx and µy) are equal.  While this is generally not true, it is the case 

for the control experiments presented previously.  Therefore, control data can be used to 

decide if it is more appropriate to model bias as a multiplicative or additive error term. 

Using an additive error model, we learned bias values for each gene in the control data.  

Figure 4.3 shows the relation between the absolute magnitude of this bias and the mean 

signal intensity.  Across different genes, there is a clear multiplicative relationship 

between the magnitude of bias and the mean signal intensity. An equivalent result was 

determined when a multiplicative error model was applied instead. Since bias terms tend 
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to increase multiplicatively with mean intensity, it is likely more appropriate to model 

bias as a multiplicative error term. 

 

Benchmarking model performance 

We next set out to determine whether the VERA model was able to correct for the 

presence of gene-specific dye bias in experimental data.  The original set of control 

expression profiles was analyzed with both the corrected (multiplicative bias) and 

uncorrected (no bias) models.  Figure 4.4 displays the distribution of ln(µx/µy) values 

from each analysis. In the case of the corrected VERA method, the spread of log ratio 

values is much tighter around the origin. Quantitatively, the variance of the uncorrected 

log ratios is 5.2*10-3, compared to 3.4*10-3 for the corrected algorithm.  Thus, following 

bias correction the observed ratios tend to be closer to the true expected value of zero. 

 
Figure 4.3. Gene-specific dye bias is multiplicative in nature. 

The VERA error modeling procedure is applied to control data and used to determine the values of 
the parameters µx, µy and β for each gene. Here, the smoothed estimate of the absolute value of β is plotted 
as a function of the mean value of µx and µy. The data used to generate this smoothed line is also displayed 
as individual points. 
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To further validate our approach and to benchmark it against other methods that 

have been proposed for correcting dye bias, we performed two additional sets of 

experiments.  In each experimental set, we profiled the response of yeast to mild 

oxidative stress (0.1 mM hydrogen peroxide vs. nominal conditions) over four replicate 

microarrays.  The only difference between sets was that in one case, dUTP was used in 

the labeling process, while in the other dCTP was used.  Since the frequency of the 

labeled nucleotide within a sequence is related to its gene-specific bias, the two labeling 

schemes create different gene-specific dye biases while preserving the same true changes 

 
Figure 4.4. Application of dye-bias correction reduces variance in a control experiment. 

The solid curve represents the probability distribution of log ratio values determined following 
application of the corrected VERA method to control data. Conversely, application of the uncorrected 
VERA approach to the same data results in a distribution of log ratio values with larger variance (dashed 
line). 
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in gene expression.  A method which correctly accounts for and eliminates the effect of 

gene-specific dye bias should maximize the agreement between these two data sets. 

 

Figure 4.5 compares the ability of different methods to recover differentially-

expressed genes in the dUTP-labeled set that were identified in the dCTP-labeled set also.  

Previous methods to correct for GSDB model the effect as an ANOVA factor.  To 

implement this approach, we relied upon the MAANOVA and VarMixt packages98, 101.  

Since the true number of differentially expressed genes is unknown, this comparison was 

performed over a range of thresholds for calling differentially expressed genes102.  At 

 
Figure 4.5. The dCTP- versus dUTP-labeled expression data is compared for different analysis 
methods. 

Since the true number of differentially expressed genes is unknown, the calculation is performed 
over a range of values (x axis). The y axis shows the number of genes assumed to be significant in both 
labeling approaches after correcting for any bias in the method. 
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nearly all possible points in this range, the bias corrected VERA approach displayed the 

best performance. This was followed by the corrected ANOVA statistic and the 

uncorrected VERA approach.  ANOVA results are reported for the Fs statistic; as it 

previously showed the best performance over a wide range of simulated data99. At a rank 

threshold of 300, the overlaps for all methods are significantly enriched over random 

(hypergeometric p-value = 5.4*10-9 for uncorrected Fs statistic).  The improvement of 

performance of the corrected VERA algorithm over the uncorrected one is also 

significant at the same rank threshold (binomial p-value = 3.5*10-5).  Comparison to 

alternative versions of the F-statistic (F1, F2, F3, and VarMixt) are available in 

Supplemental Figure 4.3.  

When the choice of labeled nucleotide is changed from dUTP to dCTP, one would 

expect the correlations between dye bias and nucleotide content to be altered as well.  

Indeed, in the dCTP labeling experiments, we observed the strongest dye bias correlation 

was with guanine frequency (correlation = 0.39) rather than adenine frequency as 

observed earlier for dUTP.  This reinforces the finding that the choice of labeled 

nucleotide has a strong impact on gene-specific dye bias.  

Discussion 

The performance of VERA improved significantly when corrected for GSDB.  

For the ANOVA F2, Fs, and VarMixt statistics, dye-bias correction also improved 

performance (Figure 4.5 and Supplemental Figure 4.3), while little to no improvement 

was observed for the F1 and F3 statistics.  For the F1 statistic, it is likely that the lack of 

shared error estimates across genes in combination with the small sample size made 
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accurate error estimation difficult, even with dye-bias correction. For the F3 statistic, the 

estimate of error is identical for all genes by definition. Therefore, since the dye-bias 

correction in the ANOVA framework affects only the relative determination of gene-

specific residual error, the F3 rankings of differential expression must be identical with 

and without correction.  VERA’s greater agreement between dCTP- and dUTP-labeled 

experiments (compared to ANOVA) is likely due to its more complex error model, which 

accounts for both additive and multiplicative errors.  The ANOVA models account for 

multiplicative error only (which becomes additive after log transformation of the 

intensity values).  On the other hand, ANOVA provides a flexible framework which can 

be easily extended to handle additional factors influencing an experiment (e.g., cell-line, 

treatment, dye, array). 

While error models such as these can mitigate the effect of gene-specific dye bias, 

it would always be preferable to remove or reduce such bias if possible.  Having 

identified nucleotide content as one contributing factor, this information might be useful 

in the future design of arrays.  For example, probes might be chosen so as to minimize 

variation in adenine nucleotide content.  An alternative might be to use a mix of labeled 

nucleotides during first strand cDNA synthesis. 

In the exploratory phase of this work, we used the average ratio values determined 

from control experiments as an estimate of gene-specific dye bias.  Only later was this 

bias modeled explicitly in the context of a probabilistic framework incorporating other 

errors.  However, this raises an important question.  Is an error modeling process required 

at all?  Alternatively, one could simply estimate bias values from replicated controls and 

directly apply these estimates to future experimental results.  One problem with this 
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simpler approach is that not all genes are highly expressed under control conditions.  The 

signals associated with low intensity genes would still be dominated by error, especially 

when these genes become highly expressed in some other (non-control) condition.  In 

addition, Rosenzweig et al.90 noted that the gene-specific dye bias can be somewhat 

variable between experiments.  Therefore, the values learned in a control experiment may 

be inapplicable, whereas the maximum-likelihood model is custom-fit to each 

experimental data set. 

In a properly balanced microarray experiment, the influence of gene-specific dye 

bias on the production of false-positive measurements is mitigated, if not eliminated.  As 

Dobbin et al.88 noted, the predominant effect is the generation of more false negatives.  In 

addition, gene-specific effects can alter the ordering of significant genes, which many 

statistical methods rely upon.  How important is it then to correct for gene-specific dye 

bias?  This is a question that cannot be addressed in a universal manner.  As shown by 

our experiments with different labeled nucleotides, the magnitude of gene-specific dye 

bias is apparently platform specific, and its impact depends critically on this magnitude in 

relation to the magnitude of the expression changes occurring in the biological system.  

Certainly, if the reliable identification of subtle differential expression changes is desired, 

then correcting for this systematic bias is crucial. 

In summary, we have presented a method for correcting gene-specific dye bias 

with a maximum likelihood model and test for differential expression.  This method can 

effectively learn the parameters of the systematic bias without the need for additional 

control microarray experiments.  An implementation of this algorithm is freely available 

at http://cellcircuits.org/VERA/.
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Supplemental Figures 

 

 
Supplemental Figure 4.1 

As is often true of maximum-likelihood procedures, parameter estimation is biased due to small 
sample size effects. Specifically, the correlation of multiplicative error is overestimated. Using simulated 
data, the relationship between true and learned correlation is plotted for several different combinations of 
variance parameters (as indicated in the individual plot titles).  For all plots, data are simulated for four 
array replicates. Relative to changes in the sample size (Supplementary Figure S2), the relationship 
between estimated and true correlation is largely invariant for different selections of variance parameters.  

 



 

 

76 

 
Supplemental Figure 4.2 

The relationship between estimated and true correlation is dependent only on the number of array 
replicates. Using simulated data, we determined this relationship for various number of array replicates. 
From these results, we can see that the relationship is well-approximated by the equation (1), where n is the 
number of replicate arrays.  Solid lines represent the empirically determined relationship, while the 
approximation of equation (1) is shown with a dashed line. 
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Supplemental Figure 4.3 

The dCTP- versus dUTP-labeled expression data are compared for different analysis methods.  
Since the true number of differentially expressed genes is unknown, the calculation is performed over a 
range of values (x-axis). The y-axis shows the number of genes which pass the rank threshold in both 
labeling approaches after correcting for any bias in the method. For the ANOVA comparison, the test 
statistic used to determine differential expression is indicated in the upper right hand corner 
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Chapter 5. Integrating phenotypic and expression profiles to map arsenic-

response networks 

Abstract 

Background 

Arsenic is a nonmutagenic carcinogen affecting millions of people. The cellular 

impact of this metalloid in Saccharomyces cerevisiae was determined by profiling global 

gene expression and sensitivity phenotypes. These data were then mapped to a metabolic 

network composed of all known biochemical reactions in yeast, as well as the yeast 

network of 20,985 protein-protein/protein-DNA interactions. 

Results 

While the expression data unveiled no significant nodes in the metabolic network, 

the regulatory network revealed several important nodes as centers of arsenic-induced 

activity. The highest-scoring proteins included Fhl1, Msn2, Msn4, Yap1, Cad1 (Yap2), 

Pre1, Hsf1 and Met31. Contrary to the gene-expression analyses, the phenotypic-

profiling data mapped to the metabolic network. The two significant metabolic networks 

unveiled were shikimate, and serine, threonine and glutamate biosynthesis. We also 

carried out transcriptional profiling of specific deletion strains, confirming that the 

transcription factors Yap1, Arr1 (Yap8), and Rpn4 strongly mediate the cell's adaptation 

to arsenic-induced stress but that Cad1 has negligible impact. 

Conclusions 

By integrating phenotypic and transcriptional profiling and mapping the data onto 
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the metabolic and regulatory networks, we have shown that arsenic is likely to channel 

sulfur into glutathione for detoxification, leads to indirect oxidative stress by depleting 

glutathione pools, and alters protein turnover via arsenation of sulfhydryl groups on 

proteins. Furthermore, we show that phenotypically sensitive pathways are upstream of 

differentially expressed ones, indicating that transcriptional and phenotypic profiling 

implicate distinct, but related, pathways. 
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Background 

Global technologies in the budding yeast Saccharomyces cerevisiae have changed 

the face of biological study from the investigation of individual genes and proteins to a 

systems-biology approach involving integration of global gene expression with protein-

protein and protein-DNA information103. These data, when combined with phenotypic 

profiling of the deletion mutant library of nonessential genes, allow an unparalleled 

assessment of the responses of yeast to environmental stressors104-106. In this study, we 

used these two genomic approaches to study the response of yeast to arsenic, a toxicant 

present worldwide, affecting millions of people107. 

Arsenic, a ubiquitous environmental pollutant found in drinking water, is a 

metalloid and human carcinogen affecting the skin and other internal organs108. It is also 

implicated in vascular disorders, neuropathy, diabetes and as a teratogen109. Furthermore, 

arsenic compounds are also used in the treatment of acute promyelocytic leukemia110-112. 

Consequently, the potential for future secondary tumors resulting from such therapy 

necessitates an understanding of the mechanisms of arsenic-mediated toxicity and 

carcinogenicity. However, even though a number of arsenic-related genes and processes 

related to defective DNA repair, increased cell proliferation and oxidative stress have 

been described, the exact mechanisms of arsenic-related disease remain elusive112-121. 

This is, in part, due to the lack of an acceptable animal model that faithfully recapitulates 

human disease115. 

A number of proteins involved in metalloid detoxification have been described in 

different organisms, including Saccharomyces cerevisiae. Bobrowicz et al.122 found that 

Arr1 (also known as Yap8 and which is a member of the YAP family that shares a 
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conserved bZIP DNA-binding domain) confers resistance to arsenic by directly or 

indirectly regulating the expression of the plasma membrane pump Arr3 (also known as 

Acr3), another mechanism for arsenite detoxification of yeast in addition to the 

transporter gene, YCF1123. Arr3 is 37% identical to a Bacillus subtilis putative arsenic-

resistance protein and encodes a small (46 kilodalton (kDa)) efflux transporter that 

extrudes arsenite from the cytosol124, 125. Ycf1, on the other hand, is an ATP-binding 

cassette protein that mediates uptake of glutathione-conjugates of AsIII into the 

vacuole123, 124. Until recently, very little was known about arsenic-specific transcriptional 

regulation of detoxification genes. Wysocki et al.126found that Yap1 and Arr1 (called 

Yap8 in their paper) are not only required for arsenic resistance, but that Arr1 enhances 

the expression of Arr2 and Arr3 while Yap1 stimulates an antioxidant response to the 

metalloid. Menezes et al.127, on the other hand, found that arsenite-induced expression of 

Arr2 and Arr3, as well as Ycf1, is likely to be regulated by both Arr1 (called Yap 8 in 

their paper) and Yap1. 

Although Arr1 and Yap1 seem specifically suited for arsenic tolerance, the other 

seven YAP-family proteins are still worthy of investigation in light of the fact that each 

one regulates a specific set of genes involved in multidrug resistance with overlaps in 

downstream targets. One such interesting protein is Cad1 (Yap2). Although Yap1 and 

Cad1 are nearly identical in their DNA-binding domains, Yap1 controls a set of genes 

(including Ycf1) involved in detoxifying the effects of reactive oxygen species, whereas 

Cad1 controls genes that are over-represented for the function of stabilizing proteins in an 

oxidant environment128. However, Cad1 also has a role in cadmium resistance. As arsenic 

has metal properties, it is conceivable that Cad1 might play a greater part in arsenic 
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tolerance and perhaps more so than the oxidative-stress response gene, YAP1. 

Understanding the role of AP-1-like proteins (such as YAP family members) in 

metalloid tolerance was one of the goals in this study within the realm of the larger 

objective - using an integrative experimental and computational approach to combine 

gene expression and phenotypic profiles (multiplexed competitive growth assay) with 

existing high-throughput molecular interaction networks for yeast. As a consequence we 

uncovered the pathways that influence the recovery and detoxification of eukaryotic cells 

after exposure to arsenic. Networks were analyzed to identify particular network regions 

that showed significant changes in gene expression or systematic phenotype. For each 

data type, independent searches were performed against two networks: the network of 

yeast protein-protein and protein-DNA interactions, corresponding to signaling and 

regulatory effects (the regulatory network); and the network of all known biochemical 

reactions in yeast (the metabolic network). For the gene-expression analysis, we found 

several significant regions in the regulatory network, suggesting that Yap1 and Cad1 

have an important role. However, no significant regions in the metabolic network were 

found. In order to test the functional significance of Yap1 and Cad1, we used targeted 

gene deletions of these and other genes, to test a specific model of transcriptional control 

of arsenic responses. 

In contrast to the gene-expression data, the phenotypic profile analysis revealed 

no significant regions in the regulatory network, but two significant metabolic networks. 

Furthermore, we found that phenotypically sensitive pathways are upstream of 

differentially expressed ones, indicating that metabolic pathway associations can be 

discerned between phenotypic and transcriptional profiling. This is the first study to show 
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a relationship between transcriptional and phenotypic profiles in the response to an 

environmental stress. 

Results and discussion 

Transcript profiling reveals that arsenic affects glutathione, methionine, sulfur, 

selenoamino-acid metabolism, cell communication and heat-shock response 

Before gene-expression analysis of arsenic responses in S. cerevisiae, we 

performed a series of dose-response studies. We found that treatment of wild type cells 

with 100 µM and 1 mM AsIII had a negligible effect on growth, but that these cells still 

exhibited a pronounced transcriptional response (see Supplemental Figure 5.1 and 

Supplemental Figure 5.2). Microarray analysis of biological replicates (four chips per 

replicate experiment) of the high-dose treated cells (1 mM AsIII) clustered extremely 

well together when using Treeview (see Materials and methods, and Supplemental Figure 

5.2). The lower dose time-course (100 µM AsIII) showed the beginning of gene-

expression changes at 30 minutes, with the robust changes occurring at 2 hours, or one 

cell division (see Supplemental Figure 5.2). The 2 hour, 100 µM dose clustered together 

with the 30 minute, 1 mM biological replicates and was in fact so similar to them that an 

experiment of one set of four chips for the 2 hour lower dose was deemed sufficient. 

Furthermore, when combining the three datasets (2 hour, 100 µM AsIII and each 30 

minute, 1 mM AsIII replicate data) and using a 95% confidence interval (see Materials 

and methods) we found 271 genes that were not only statistically significant in at least 

75% of the total data (9 out of 12 chips), but also that the direction and level of 

expression of these genes were similar between the datasets. The lower dose time-course 



 

 

85 

also included a 4 hour treatment, or two cell divisions. This experiment demonstrated the 

greatest degree of variability, indicating either a cycling effect or the cell's return to 

homeostasis, which was further exemplified by a decrease in the transcriptional response 

(see Supplemental Figure 5.2). 

Genes were categorized by Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway and Simplified Gene Ontology (biological process, cellular component and 

molecular function) (Table 5.1). In total, 829 genes out of 6,240 had significantly altered 

expression (see Materials and methods) in at least one experimental condition. The 

categories significantly enriched for differentially expressed genes in the KEGG 

pathways were glutathione, methionine, sulfur and selenoamino-acid metabolism, and in 

the Simplified Gene Ontology (biological process), cell communication and heat-shock 

response (Table 5.1). 

Network mapping of transcript profiling data finds a stress-response network 

involving transcriptional activation and protein degradation 

We used the Cytoscape network visualization and modeling environment together 

with the ActiveModules network search plug-in to carry out a comprehensive search of 

the regulatory and metabolic networks112, 129. The former consists of the complete yeast-

interaction network of 20,985 interactions, in which 5,453 proteins are connected into 

circuits of protein-protein or protein-DNA interactions130, 131. For each protein in this 

network, we defined a network neighborhood containing the protein and all its directly 

interacting partners. In the metabolic network, based on a reconstruction by Forster et 

al.132 with 2,210 metabolic reactions and 584 metabolites, nodes represent individual 
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reactions and edges represent metabolites. A shared metabolite links two reactions. We 

searched for sequences of related reactions governed by sensitive proteins (enzymes) in 

the phenotypic profiling data. To aid visualization, these sequences of reactions were 

combined to create metabolic pathways. We then identified the neighborhoods associated 

with significant changes in expression using the ActiveModules plug-in. This process 

resulted in the identification of seven significant neighborhoods in the regulatory 

network, centered on nodes Fhl1, Pre1, Yap1, Cad1, Hsf1, Msn2 and Msn4 (Figure 5.1). 

Together these neighborhoods narrow the significant data to 20% of the genes with the 

most significant changes in expression across one or more arsenic conditions (see 

Materials and methods and Supplemental Figure 5.2). We did not find the emergence of 

any significant neighborhoods in the metabolic network.  

The highest-scoring regulatory network neighborhood was defined by the 

transcription factor Fhl1 (Figure 5.1a). Its expression did not change significantly, but it 

was the highest-scoring node as judged by the significant expression changes observed 

for its surrounding neighborhood. Fhl1 controls a group of proteins important for 

nucleotide and RNA synthesis, as well as the synthesis and assembly of ribosomal 

proteins133 which, from our data, are downregulated by arsenic exposure. Downregulation 

of ribosomal proteins in response to environmental stress has been reported previously134, 

135, but to our knowledge this is the first association of Fhl1 as a key control element in 

this process. It seems likely that the repression of de novo protein synthesis in response to 

arsenic allows energy to be diverted to the increased expression of genes involved in 

stress responses and protection of the cell. 
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Figure 5.1. Arsenic-induced signaling and regulatory mechanisms involve transcriptional activators 
and the proteasome. 

(a-d) Significant network neighborhoods (p < 0.005) uncovered by the ActiveModules algorithm, 
with the search performed at depth 1 (all nodes in the network are the nearest neighbors of one central 
node): (a) FHL1 center; (b) PRE1 center and proteasome complex; (c) YAP1 and CAD1 centers; (d) HSF1 
center. (e) An additional network centered on MET31 with functional relevance to the arsenic response, 
which, however, did not reach significance in this analysis, p < 0.11. (f) An overview of the network 
relationships between major arsenic-responsive transcription factors. Shades of red, induced; shades of 
green, repressed; blue boxed outline, significant expression; orange arrows, protein-DNA interaction; blue 
dashed lines, protein-protein interactions. The 2 h, 100 µM AsIII condition was used for the visual 
mappings. Many of the genes mapped to the network neighborhoods and displayed in this figure are boxed 
for the sake of clarity and space, but are mostly significantly differentially expressed. 
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One such pathway may involve sulfur metabolism, which leads to glutathione 

synthesis. In fact, included in Figure 5.1 is Met31 (Figure 5.1e), a transcriptional 

regulator of methionine metabolism, which interacts with Met4, an important activator of 

the sulfur-assimilation pathway that is probably involved in the glutathione-requiring 

detoxification process. While the differential expression of this neighborhood was not 

strictly significant according to ActiveModules (see Materials and methods), it has high 

biological relevance in light of the statistically significant alteration in expression 

categorized using KEGG pathways (Table 5.1). 

Another high-scoring neighborhood comprises part of the proteasome protein 

complex (Figure 5.1b). The components of the proteasome are likely to be upregulated to 

meet the increased demand for protein degradation brought about by the binding of AsIII 

to the sulfhydryl groups on proteins and/or glutathione that subsequently interfere with 

numerous enzyme systems such as cellular respiration109, 115. In this paper, we will 

propose that this occurs through indirect oxidative stress as a result of the depletion of 

glutathione. 

The role of transcription factors Yap1 and Cad1 and the metalloid stress response 

Many of the central proteins in the significant neighborhoods uncovered by 

ActiveModules were transcription factors (Figure 5.1a,c-f). Although some of these 

proteins were not differentially expressed themselves, they were still high-scoring nodes 

because of the highly significant expression of their targets. This is also important to keep 

in mind as we discuss later which genes might be sensitive to arsenic, but not necessarily 

differentially expressed, and why many genes that are differentially expressed do not 
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display sensitive phenotypes when deleted.  

Transcription factors Msn2, Yap1, Msn4, Cad1 and Hsf1 were the central proteins 

for many of the significant neighborhoods found (Figure 5.1c,d,f). Together with several 

genes previously implicated in oxidative-stress responses, these neighborhoods compose 

a stress-response network126, 128, 136-140. Of particular interest are Yap1 and Cad1, because 

of the high number of shared downstream targets (Figure 5.1c,f).  

When overexpressed, Yap1 confers resistance to several toxic agents, and Yap1 

mutants are hypersensitive to oxidants134, 141-145. Conversely, Cad1 responds strongly to 

cadmium, but not to hydrogen peroxide (H2O2)128, 138. Following arsenic exposure, Yap1 

is induced at least fourfold, with many of its downstream targets showing high levels of 

induction. Several of its targets are among the most highly upregulated genes (as high as 

178-fold for OYE3 (encoding a NADPH dehydrogenase)). Moreover, Yap1 regulates 

GSH1, which encodes γ-glutamylcysteine synthetase (an enzyme involved in the 

biosynthesis of antioxidant glutathione), TRX2 (the antioxidant thioredoxin), GLR1 

(glutathione reductase) and drug-efflux pumps ATR1 and FLR1138, 146-151. It should be 

noted that GSH1 and ATR1 are examples of several genes also targeted by Cad1. All of 

these specified Yap1 targets are induced after arsenic exposure, recapitulating the 

toxicant's role as a likely oxidant. During the course of this work, Wysocki et al.126 also 

implicated Yap1 in arsenic tolerance. 
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As Cad1 and Yap1 share many downstream targets, the genes defined by these 

transcription factors are very similar. To determine which transcription factor is playing 

the most active role in the high level of differential expression for this group (see Figure 

5.1c,f), we tested the roles of both activators by treatment of yap1Δ and cad1Δ deletion 

 
Figure 5.2. Yap1 but not Cad1 is important for mediating the cell's adaptation to arsenic. 

(a) Self-organized heat map (dendograms were removed and boxes 1-3 indicate specific clusters) 
of 6,172 genes selected from the various indicated conditions. AsIII-treated parent wild type strain with 
normalized data values that are greater or less than those in condition(s) knocked-out Yap1, Cad1, Rpn4, or 
Arr1 treated with AsIII, by a factor of twofold. All knockouts tested revealed altered profiles compared to 
the wild type, except for cad1Δ. (b) yap1Δ (condition 2) loses induced expression of stress response genes 
found in box 1, such as SIR4, ISU2, MSN1, ATR1, CYT2, MDH1, AAD6, AAD4, TRR1, FLR1, GLR1 
and GRE2. (c) rpn4Δ (condition 4) loses induced expression of ubiquitinating and proteasomal genes found 
in box 3 - UBP6, PRE8, PRE4, PRE7 and PRE1. (d) arr1Δ (condition 5) loses repressed expression of 
sulfur amino-acid metabolism gene SAM3 and glutamate biosynthesis gene CIT2, among others (box 2). 
arr1Δ also loses induced expression of serine biosynthesis gene SER3, sulfur amino-acid metabolism gene 
SAM4, cell-cycle regulator ZPR1, spindle-checkpoint subunit MAD2, ribonucleotide reductase RNR1and 
RNA polymerase I transcription factor RRN9, to name a few (box 3). Red, induced; green, repressed.  



 

 

91 

strains with 100 µM AsIII for 2 hours. Surprisingly, we did not find that Cad1 was 

involved in regulation in response to arsenic-mediated stress. The yap1Δ strain was not 

only sensitive to AsIII by phenotypic profiling but also defective in the induction of 

several downstream enzymes with antioxidant properties (Figure 5.2a,b). Conversely, the 

cad1Δ strain displayed an almost identical profile to wild type, eliminating it as a strong 

factor in the arsenic response (Figure 5.2a,b). 

 

The proteasome responds to arsenic, and Rpn4 mediates a transcriptional role 

Treatment of yeast with as little as 100 µM AsIII for 2 hours resulted in the 

induction of at least 14 ubiquitin-related and proteasome gene products (Figure 5.1b and 

Figure 5.3). The eukaryotic proteasome consists of a 20S protease core and a 19S 

regulator complex, which includes six AAA-ATPases known as regulatory particle triple-

 
Figure 5.3. The ubiquitin (Ub) and proteasome system responds to arsenic-mediated toxicity. 

S. cerevisiae ubiquitin and proteasome pathways show differential expression in a number of key 
genes, including that for the proteasomal activator RPN4. Induction is denoted by red boxes with fold-
change ranges representing the 2 h, 100 µM AsIII and 0.5 h, 1 mM AsIII experiments, respectively. 
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A proteins (RPT1-6p)152, 153. Proteins are targeted for degradation by the proteasome via 

the covalent attachment of ubiquitin to a lysine side chain on the target protein (Figure 

5.3). Conjugating enzymes then function together with ubiquitin-ligase enzymes to 

adhere to the target protein, and are tailored to carry out specific protein degradation in 

DNA repair, growth control, cell-cycle regulation, receptor function and stress response, 

to name a few154, 155. The apparent importance of Yap1 in response to possible oxidative 

damage by arsenic indicated a potential role for Rpn4 (induced eightfold, Figure 5.3). 

This is a 19S proteasome cap subunit, which also acts as a transcriptional activator of the 

ubiquitin-proteasome pathway and a variety of base-excision and nucleotide-excision 

DNA repair genes130, 135, 156. 

Rpn4 is required for tolerance to cytotoxic compounds and may regulate 

multidrug resistance via the proteasome157. Moreover, Owsianik et al.157 identified an 

YRE (Yap-response element) site present in the RPN4 promoter. This YRE was found to 

be functional and important for the transactivation of RPN4 by Yap1 in response to 

oxidative compounds, such as H2O2. However, we also located the Rpn4-binding 

sequence, TTTTGCCACC, 47 bases distant from the open reading frame (ORF) of 

YAP1, indicating that Yap1 not only activates Rpn4, but that Rpn4 may in fact activate 

Yap1158. In support of this hypothesis we found that relative to wild type, the level of 

Yap1 induction was lower in the rpn4Δ strain under arsenic stress conditions, whereas 

Rpn4 was equally induced in the yap1Δ strain (Supplemental Figure 5.3). 

With respect to wild type, the profile of rpn4Δ after treatment with arsenic was 

the most dramatically altered, save for arr1Δ (Figure 5.2). These data suggest that arsenic 

modification of sulfhydryl groups on proteins leads to protein inactivation and therefore 



 

 

93 

degradation via the 26S proteasome. Another scenario is that the proteasome, and/or its 

proteases, is sensitive to arsenic-related events, leading to dysfunctional protein turnover 

and an increased requirement for 26S proteasome subunits. A similar idea was proposed 

for the direct methylating agent, methylmethane sulfonate135. 

ARR1 transcriptional responses 

Arr1 is structurally related to Yap1 and Cad1122, 126. However, little is known 

about how Arr1 may be involved in oxidative stress and/or multidrug resistance. 

Furthermore, Arr1 is not well represented by the interactions present in the yeast 

regulatory network. However, studies by Bobrowicz et al.122, 159 show that the 

transcriptional activation of Arr3 requires the presence of the Arr1 gene product. 

Moreover, a report by Bouganim et al.160 supports our finding that Yap1 also is important 

for arsenic resistance. They show that overproduction of Yap1 blocks the ability of Arr1 

to fully activate Arr3 expression at high doses of arsenite, suggesting that Yap1 can 

compete for binding to the promoter of the Arr1 target gene, ARR3. While this paper was 

being written, Tamas and co-workers126 showed that Arr1 transcriptionally controls Arr2 

and Arr3 expression from a plasmid containing their promoters fused to the lacZ gene 

and measuring β-galactosidase activities. This was done by growing the cells for 20 hours 

with a low dose of metalloid and spiking the concentration to 1 mM AsIII for the last 2 

hours of incubation. These experiments showed that ARR1 deletion resulted in complete 

loss of Arr3-lacZ induction, whereas YAP1 deletion did not significantly affect 

induction. Similar results were obtained for the Arr2-lacZ induction assay and the authors 

concluded that Yap1 has a role in metalloid-dependent activation of oxidative stress 
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response genes, whereas the main function of Arr1 seems linked to the control of Arr2 

and Arr3. Interestingly, this study was shortly followed by another from Menezes et al.127 

which found contrasting results when looking at mRNA and Northern-blot analysis. In 

this study, the induction of Arr2 and Arr3, after treatment with 2 mM AsIII for up to 90 

minutes, did not occur in either the ARR1-deleted strain or the YAP1-deleted strain. 

These authors conclude that the requirement for both YAP1 and ARR1 is vital to yeast in 

the function of regulating and inducing genes important for arsenic detoxification. 

Finally, transcription profiling experiments presented here show that the arsenic transport 

proteins Arr2 and Arr3 are still expressed (2.9-fold induction for Arr2 and 1.8-fold for 

Arr3, respectively) in the ARR1 mutant, but show defective induction in the yap1Δ strain 

treated in parallel (Supplemental Figure 5.3). These results indicate that Yap1 may 

control Arr2 and Arr3 when yeast is subjected to 100 µM AsIII for 2 hours. 

Our results and those of Menezes et al.127, in contrast to the results of Tamas and 

colleagues126, might be explained by the following. Our and Menezes et al.'s studies 

looked at genes in the normal chromosome context rather than genes ectopically 

expressed from a plasmid; in addition, in our study, we treated the yeast with 100 µM 

AsIII while Wysocki et al.126 started with a low dose, but spiked the concentration to 1 

mM AsIII in the last 2 hours of incubation. However, Menezes et al.127 used an even 

higher dose (2 mM AsIII for a time-course ending at 90 minutes) and obtained more 

similar results to ours, with the exception that their Northern-blot analysis, which can 

sometimes miss relatively small changes, indicated an apparent lack of induction of 

ARR2 or ARR3 in either the ARR1- or YAP1-deleted strains. Taken together, these data 

indicate that both ARR1 and YAP1 are important genes involved in the process of 
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arsenite detoxification in the yeast cell, but because of the different strains and treatment 

protocols used between these three studies, further experiments are warranted to resolve 

the differences. 

Other interesting results from our transcription profiling of the arr1Δ and parent 

strains after arsenic treatment (Figure 5.2a,d), included large differences in expression as 

a whole and in particular the inability of arr1Δ to induce serine biosynthesis-related genes 

such as SER3, and sulfur and methionine amino-acid metabolism genes including SAM4. 

Conversely, arr1Δ failed to repress SAM3, as well as CIT2, a glutamate biosynthesis 

gene, when compared to the parent profile. 

These observations indicate that Arr1 may regulate sulfur-assimilation enzymes 

that are necessary for arsenic detoxification. This is particularly interesting considering 

that the ActiveModules algorithm identified the node Met31 (Figure 5.1e), the 

transcriptional regulator of methionine metabolism which interacts with Met4, an 

important activator of the sulfur-assimilation pathway that is likely to be involved in the 

glutathione-requiring detoxification process. Sulfur metabolism was also a functional 

category in the Simplified Gene Ontology found to be significantly enriched by the 

hypergeometric statistical test (see Materials and methods) (Table 5.1). Furthermore, 

phenotypic profiling results discussed later show the importance of serine and glutamate 

metabolism in the sensitivity response to arsenic. Lastly, it is important to note that arr1Δ 

also displays loss of expression of a number of ubiquitin-proteasome-related gene 

products, sharing similar expression patterns with rpn4Δ and suggesting that it may have 

a role in protein degradation as well. 
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Arsenic treatment stimulates cysteine and glutathione biosynthesis and leads to 

indirect oxidative stress 

Our arsenic-treatment experiments revealed the strong induction of over 20 

enzymes in the KEGG sulfur amino acid and glutathione biosynthesis pathways (Table 

5.1). This is consistent with the hypothesis that glutathione acts as a first line of defense 

against arsenic by sequestering and forming complexes with the toxic metalloid123. 

Dormer et al.161 showed that GSH1 induction by cadmium is dependent on the 

presence of Met4, Met31, Met32 and Cbf1 in the transcriptional complex of MET genes. 

Met4 and Met32 are also differentially expressed in response to arsenic and interact with 

Met31, which defines a network neighborhood as shown in Figure 5.1e. The biological 

impact of the sulfur-related stress response was further exemplified by comparisons of 

our arsenic profiles to H2O2 profiles (400 µM H2O2) from Causton et al.162 (Table 5.2). 

Although we found many expected similarities between arsenic and H2O2 gene-

expression profiles in regard to oxidative-stress response genes, sulfur and methionine 

metabolism genes, in response to H2O2, were either repressed or did not change (Table 

5.2). Furthermore, a study by Fauchon et al.163 showed that yeast cells treated for 1 hour 

with 1 mM of the metal Cd2+, responded by converting most of the sulfur assimilated by 

the cells into glutathione, thus reducing the availability of sulfur for protein synthesis. 

Our arsenic profile showed a similar response to the sulfur-assimilation profile seen with 

Cd2+ (Table 5.2). As a consequence, arsenic may be conferring indirect rather than direct 

oxidative stress mediated by the depletion of glutathione, thus inhibiting the breakdown 

of increasing amounts of H2O2 by glutathione peroxidase (GPX2, up 13-fold) (Figure 

5.4)123, 164. 
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Phenotypic profiling defines arsenic-sensitive strains and maps to the metabolic 

network 

To identify genes and pathways that confer sensitivity to arsenic, we identified 

deletion mutants with increased sensitivity to growth inhibition using a deletion mutant 

library of nonessential genes (4,650 homozygous diploid strains)35, 165. Each strain 

contains two unique 20-bp sequences (UPTAG and DOWNTAG) enabling their growth 

to be analyzed en masse and the fitness contribution of each gene to be quantitatively 

assayed by hybridization to high-density oligonucleotide arrays. The top 50 sensitive 

deletion strains included: THR4, SER1, SER2, CPA2, CPA1, HOM2, HOM3, HOM6, 

 
Figure 5.4. Gene-expression profiling links sulfur assimilation, methionine and glutathione pathways. 

Selected genes in these pathways are represented as red for induced (2 h, 100 µM AsIII and 0.5 h, 
1 mM AsIII, respectively) and green for repressed. Genes in white boxes are not differentially expressed. 
The pathways in the blue ovals are upstream of methionine, cysteine and glutathione, and are sensitive to 
arsenic. The downstream pathways employ numerous redundant enzymes that are differentially expressed, 
but are not sensitive. LT, late time-point, 4 h, 100 µM AsIII experiment; h, human; y, yeast. 
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ARG1, YAP1, CDC26, ARR3, CIN2, ARO1, ARO2 and ARO7. 

Only 10% of the top 50 sensitive mutant strains were significantly differentially 

expressed in the transcript profile. This lack of direct correlation between gene 

expression and fitness data is consistent with data from our own and other laboratories104, 

105, 165. At least three factors may contribute to this discrepancy. First, some highly 

expressed genes when deleted are nonviable (around 1,000 genes) and are therefore 

unable to be scored for fitness. Some examples of highly expressed, yet nonviable, genes 

under arsenic stress are ERO1 (7- to 10-fold induced), HCA4 (5- to 9-fold induced), and 

DCP1 (9- to 22-fold induced). Second, there are redundant pathways mediated by 

multiple genes, such that deletion of one does not lead to sensitivity. OYE2, OYE3, and a 

large number of reductases fall into this category. Finally, gene products that do not 

change significantly, mediate important biological responses and thus when deleted could 

sensitize the cell to a specific stressor. ARO1, ARO2, THR4 and HOM2 are examples of 

genes that are not differentially expressed but are very sensitive to arsenic. 

Like the gene-expression data, the phenotypic data was subjected to searches 

performed against the regulatory network of yeast protein-protein and protein-DNA 

interactions as well as the metabolic network of all known biochemical reactions in yeast. 

Unlike the transcription profile, the phenotypic data analysis revealed no significant 

regions in the regulatory network, but did map to two statistically significant metabolic 

networks. The first significant pathway was amino acid synthesis/degradation with the 

terminal products being L-threonine and L-homoserine, beginning with precursors such 

as L-arginine, fumarate and oxaloacetate (Figure 5.5a). 
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Figure 5.5. LinearActivePaths analysis finds that virtually all genes in active metabolic networks 
confer sensitivity to arsenic when deleted. 

(a) Serine, threonine, glutamate amino-acid synthetic pathways; (b) the shikimate pathway. The 
paths that compose these networks all have individual p-values of < 0.05. The coloration for these figures is 
based on red for any gene ranked in the top 50 significant genes, yellow for 51-100, and green for >101. 
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These products function in serine, threonine and glutamate metabolism. The second 

network indicated the importance of the shikimate pathway, which is essential for the 

production of aromatic compounds in plants, bacteria and fungi (Figure 5.5b). The 

shikimate pathway operates in the cytosol of yeast and utilizes phosphoenol pyruvate and 

erythrose 4-phosphate to produce chorismate through seven catalytic steps. It is a 

pathway with multiple branches, with chorismate representing the main branch point, and 

various branches giving rise to many end products. Interestingly, chorismate is also used 

for the production of ubiquinone, p-aminobenzoic acid (PABA) and folates, which are 

donors to homocysteine166-168. 

Relationship between gene-expression and phenotypic profiles 

Combining transcript profiling and phenotypic profiling provides deeper insights 

into the biology of arsenic responses. Until now there has been a lack of correlation 

between the differential expression of genes and sensitivity of deletion mutants104, 106, 165 

and this was the case in the present study. However, by mapping each dataset to the 

regulatory and metabolic networks, we have uncovered the likely reason for this lack of 

congruence. Our data show that many of the most sensitive genes are involved in serine 

and threonine metabolism, glutamate, aspartate and arginine metabolism, or shikimate 

metabolism, which are pathways upstream of the differentially expressed sulfur, 

methionine and homocysteine metabolic pathways, respectively. These downstream 

pathways are important for the conversion to glutathione, necessary for the cell's defense 

from arsenic (Figure 5.4, Figure 5.5a, Figure 5.6 and Table 5.1). This overlap of sensitive 

upstream pathways and differentially expressed downstream pathways provides the link 
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between transcriptional and phenotypic profiling data (Figure 5.4 and Figure 5.6). 

 

Thus, we believe our work shows that the deletion of an individual gene can lead 

to a change in sensitivity to an agent only if the protein product of that gene is important 

for some process (for example, amino-acid synthesis or a transcription factor required for 

the increased expression of genes needed to protect against the agent). On the other hand, 

expression profiling shows the end product of the cell's response to arsenic. Therefore, an 

 
Figure 5.6.  Global model of the arsenic response: combining phenotypic data with gene-expression 
profiles reveals synergistic pathways leading to yeast detoxification mechanisms. 

Serine, threonine, aspartate and arginine, as well as shikimate metabolisms, in light blue, represent 
pathways that are judged as sensitive by phenotypic profiling. Yap1, colored light blue and red, is an 
example of a transcription factor that is both sensitive and confers induced gene expression. Deletion 
analysis confirms its role in arsenic-mediated control of the stress response. Red and green represent 
pathways or genes that are differentially expressed but not sensitive by phenotypic profiling. This 
schematic diagram demonstrates how the deletion of an individual gene leads to a change in sensitivity if 
the protein product of that gene is important in a biological process for adaptation to arsenic. On the other 
hand, expression profiling shows the end product of the cell's response to arsenic. Many of these 
downstream targets share redundant functions and are not vulnerable in the phenotypic profiling. The 
expression changes lead to the cell's response to indirect oxidative stress and mechanisms for 
detoxification. The arrows A, B, C and D represent the multiple branchpoints between redundant pathways. 
Note that the transport protein, Arr3, which extrudes AsIII out of the cell, is both sensitive and highly 
differentially expressed. 
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agent such as arsenic might cause a transcription factor (Yap1, for example) to increase 

the expression of as many as 50 genes, 20 of which might help to protect against the 

agent. However, deletion of any of the 50 would not be expected to have an effect on the 

response to arsenic. The effect of gene deletion would be on the transcription factor itself 

(whose expression might not be affected by the agent). Thus, in the case of arsenic 

exposure, we conclude that phenotypic profiling interrogates genes upstream of the genes 

that ultimately protect against arsenic toxicity and that the downstream targets that 

demonstrate differential expression probably share redundant functions and are not 

vulnerable in the phenotypic profiling (Figure 5.6). 

Conclusions 

Systems biology represents an important set of methods for understanding stress 

responses to environmental toxicants, such as arsenic. In this study we have catalogued 

the centers of activity associated with arsenic exposure in yeast, identifying the key 

neighborhoods of activity in the regulatory and metabolic networks using the 

visualization tools and algorithms in Cytoscape. The transcriptional profile mapped to the 

regulatory network, revealing several important nodes (Fhl1, Msn2, Msn4, Yap1, Cad1, 

Pre1, Hsf1 and Met31) as centers of arsenic-induced activity. From these results we can 

conclude that arsenic detoxification in yeast focuses around: nucleotide and RNA 

synthesis; methionine metabolism and sulfur assimilation; protein degradation; and 

transcriptional regulation by proteins that form a stress-response network. In summary, 

protein synthesis in response to arsenic allows energy to be diverted toward the genes 

channeling sulfur into glutathione, which then leads to indirect oxidative stress by 
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depleting glutathione pools and alters protein turnover. These processes require 

regulation by transcription factors, the understanding of which we refined by analysis of 

specific knockout strains. Our experiments, in fact, confirmed that the transcription 

factors Yap1, Arr1 and Rpn4 strongly mediate the cell's adaptation to arsenic-induced 

stress but that Cad1 has negligible impact. Finally, contrary to the gene-expression 

analyses, the phenotypic profiling data mapped to the metabolic network. The two 

significant metabolic networks unveiled were shikimate and serine, threonine and 

glutamate biosynthesis. Our goal was to integrate the computational identification of 

these important pathways found via transcript and phenotypic profiling by regulatory and 

metabolic network mapping. In doing so, we have shown that genes that confer 

sensitivity to arsenic are in pathways that are upstream of the genes that are 

transcriptionally controlled by arsenic and share redundant functions. 

Materials and methods 

Strains, media and growth conditions 

S. cerevisiae strain BY4741 (MATa, his3Δ, leu2Δ0, met15Δ0, uraΔ0) was used 

and grown in synthetic complete medium at 30°C. Cells were grown to a density of 1 × 

107 cells per ml. Cultures were split into two; NaAsO2 (100 µM and 1 mM in two 

biological repeats) was added to one culture, and both were incubated at 30°C for 0.5, 2 

or 4 h. Cells were pelleted and washed in distilled water before RNA extraction. Deletion 

strains (yap1Δ, cad1Δ, arr1Δ and rpn4Δ) of the same background were obtained from 

Research Genetics, confirmed and treated the same way, for 2 h and 100 µM NaAsO2. 

RNA extraction 



 

 

104 

For the cDNA hybridization experiments, total RNA was isolated using an acid-

phenol method. Pellets were resuspended in 4 ml lysis buffer (10 mM Tris-HCL pH 7.5, 

10 mM EDTA, 0.5% SDS). Four milliliters of acid (water-saturated, low pH) phenol was 

added followed by vortexing. The lysing cell solutions were incubated at 65°C for 1 h 

with occasional vigorous vortexing and then placed on ice for 10 min before centrifuging 

at 4°C for 10 min. The aqueous layers were re-extracted with phenol (room temperature, 

no incubation) and extracted once with chloroform. Sodium acetate was then added to 0.3 

M with 2 volumes of absolute ethanol, placed at -20°C for 30 min, and then spun. Pellets 

were washed two or three times with 70% ethanol followed by Qiagen Poly(A)+ RNA 

purification with the Oligotex oligo (dT) selection step. Total RNA for the specific 

knockout strains and parent experiment was isolated by enzymatic reaction, following the 

RNeasy yeast protocol (Qiagen). 

Microarray hybridizations and analyses 

A cDNA yeast chip, developed in-house at National Institute of Environmental 

Health Sciences (NIEHS), was used for gene-expression profiling experiments. A 

complete listing of the ORFs on this chip is available at 

http://dir.niehs.nih.gov/microarray/chips.htm. cDNA microarray chips were prepared as 

previously described169, 170. The cDNA was spotted as described171. Each poly(A) RNA 

sample (2 µg) was labeled with Cy3- or Cy5-conjugated dUTP (Amersham) by a reverse 

transcription reaction using the reverse transcriptase SuperScript (Invitrogen), and the 

primer oligo(dT) (Amersham). The hybridizations and analysis were performed as 

described Hewitt et al.172 except that genes having normalized ratio intensity values 
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outside of a 95% confidence interval were considered significantly differentially 

expressed. Lists of differentially expressed genes were deposited into the NIEHS MAPS 

database173. Genes that were differentially expressed in at least three of the four replicate 

experiments were compiled and subsequently clustered using the Cluster/Treeview 

software174. GeneSpring (Silicon Genetics) and Cytoscape39 were used to further analyze 

and visualize the data. 

The knockout experiments were conducted on an Agilent yeast oligo array 

platform. Samples of 10 µg total RNA were labeled using the Agilent fluorescent direct 

label kit protocol and hybridizations were performed for 16 h in a rotating hybridization 

oven using the Agilent 60-mer oligo microarray-processing protocol. Slides were washed 

as indicated and scanned with an Agilent scanner. Data was gathered using the Agilent 

feature extraction software, using defaults for all parameters, save the ratio terms. To 

account for the use of the direct label protocol, error terms were changed to: Cy5 

multiplicative error = 0.15; Cy3 multiplicative error = 0.25; Cy5 additive error = 20; Cy3 

additive error = 20. 

GEML files and images were exported from the Agilent feature extraction 

software and deposited into Rosetta Resolver (version 3.2, build 3.2.2.0.33) (Rosetta 

Biosoftware). Two arrays for each sample pair, including a fluor reversal, were combined 

into ratio experiments in Rosetta Resolver. Intensity plots were generated for each ratio 

experiment and genes were considered 'signature genes' if the p-value was less than 

0.001. p-values were calculated using the Rosetta Resolver error model with Agilent error 

terms. The signature genes were analyzed with GeneSpring.  
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Ontology enrichment 

Genes have previously been categorized into various ontologies and pathways. If 

a particular pathway is enriched for genes that are significantly expressed in response to a 

process, we conclude that the pathway is likely to be involved in this process. In total, 

829 genes out of 6,240 had a significant alteration in expression in at least one 

experimental condition. Along with the size of each functional category, a statistical 

measure for the significance of the enrichment was calculated by using a hypergeometric 

test. The level of significance for this test was determined using the Bonferroni 

correction, where the α value was set at 0.05 and the number of tests conducted for 

KEGG pathway and Simplified Gene Ontology (biological process) were 27 and 11, 

respectively. 

Network searches 

The ActiveModules algorithm was used to identify neighborhoods in the 

regulatory network corresponding to significant levels of differential expression. In this 

search, if a protein has many neighbors, it is likely that at random a few will show 

significant changes in expression and these could be selected as a significant sub-

network. Neighborhood scoring is a method we used to correct for this bias. In this 

scheme, a significant sub-network must contain either all or none of the neighbors of 

each protein. The significance then represents an aggregate over all neighbors of a 

protein. This prevents the biased selection of a few top-scoring proteins out of a large 

neighborhood in the search for significant sub-networks. For an in-depth description of 

this algorithm see Ideker et al.103. 
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In defining the network used in the metabolic analysis, edges corresponding to 

metabolites linking more than 175 reactions were eliminated. This excludes metabolic 

cofactors such as ATP, NADH and H2O from the search. Scores for each ORF were 

generated by mapping the fitness significance value to a Z-score. To assign scores to the 

individual reactions, Förster's mapping from ORF to reaction was used to generate a list 

of ORFs for each reaction. The Z-scores of these ORFs were then aggregated into a 

single score for that reaction using the following equation: 

 

We used a dynamic programming algorithm adapted from Kelley et al.175 to 

identify high-scoring paths in this network. Briefly, the highest-scoring path of length (n) 

ending at each node is determined by combining the scores of the individual node and the 

highest-scoring path of length (n - 1) ending at a neighbor node using the following 

formula: 

 

Since a node with many neighbors is more likely to belong to a high-scoring path 

by random chance, the score of the neighboring path is corrected against the extreme-

value statistic with the number of observations equal to the number of neighbors. 

The significances of the top-scoring networks were determined by comparison to 

a distribution of the top-scoring networks from random data (reaction scores randomized 

with respect to the nodes of the network). After running the path finding/scoring 

algorithm, the score of the single highest-scoring path was added to the null distribution. 
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This process was repeated for 10,000 interactions. This null distribution was then used to 

determine an empirical p-value, which represents the null hypothesis that there is no 

significant correlation between the topology of the metabolic network and the assignment 

of significance values to nodes in that network. 

Specific deletion experiment filter on fold-change comparisons 

The intensity plots were generated from each experiment in Rosetta Resolver. A 

gene was considered a signature gene if the p-value was less than 0.001 and if the fold-

change value was greater than or equal to twofold. Signature genes were then broadcasted 

on the intensity plot and exported as text files. Lists were imported into GeneSpring. The 

'Filter on Fold Change' function was used to compare the parent control vs. parent AsIII 

experiment with each deletion (AsIII) experiment. The gene list selected for each filter on 

fold change analysis was a combination of the parent signature gene list and the signature 

gene list of the AsIII-treated deletion being analyzed at the time. For example, if the 

comparison was being done between parent (AsIII-treated) and Yap1 (AsIII-treated), the 

list used in the analysis was the combination of the parent signature genes and the Yap1 

signature genes. The filter on fold change function reports genes that were selected from 

the one condition (parent) that had normalized data values that were greater or less than 

those in the other condition (deletion under investigation) by a factor of twofold. Each 

resulting gene list was saved. All the resulting gene lists were combined and an annotated 

gene list was exported for use in Eisen's Cluster/Treeview package (described earlier). 

The format of the exported data was the natural log. The gene tree generated for the paper 

was generated in GeneSpring. Each filter on fold change was saved as an annotated gene 
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list. 

Generation of specific deletion experiment 'minus' lists 

Signature gene lists were generated in Rosetta Resolver from intensity plots as 

described above. Each signature gene list was saved as a 'Bioset' in Resolver. The parent 

Bioset was compared to each deletion Bioset using the 'Minus' function. This function 

finds those members in Bioset group 1 (parent) that do not exist in Bioset group 2 

(deletion). Each of the resulting lists was saved as a new Bioset. The new 'minus' Bioset 

was broadcasted on its corresponding intensity plot and exported as a text file. This was 

repeated for each experiment with fine-tuning of the data using GeneSpring. 

Phenotypic profiling 

Homozygous diploid deletion strains and pooling of the strains were done as 

described35. Aliquots were grown until logarithmic phase, diluted to OD600 0.05-0.1, 

split into tubes and treated with arsenic for 1-2 h at 1 mM, 2 mM and 5 mM 

concentrations. Similar responses were observed at each concentration, so the results 

were pooled. These cultures and a mock-treated sample were maintained in logarithmic 

phase growth by periodic dilution for 16-18 h. UPTAG and DOWNTAG sequences were 

separately amplified from genomic DNA of the drug and mock-treated samples by PCR 

using biotin-labeled primers as described previously35. The amplification products were 

combined and hybridized to Tags3 arrays (Affymetrix). Procedures for PCR 

amplification, hybridization and scanning were done as described35, and according to the 

manufacturer's recommendation when applicable. The images were quantified by using 

the Affymetrix Microarray Suite software. UPTAG and DOWNTAG values were 



 

 

110 

separately normalized, ratioed (treated sample signal/control) and filtered for intensities 

above background176. 
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Tables 

 

Table 5.1. Pathways enriched for genes significantly expressed in response to arsenic. 

Transcript profiling reveals that arsenic affects glutathione, methionine, sulfur, selenoamino-acid 
metabolism, cell communication and heat-shock response. Genes were categorized by KEGG pathway and 
Simplified Gene Ontology. In total, 829 genes out of 6,240 had a significant alteration in expression in at 
least one experimental condition. Along with the size of each functional category, a statistical measure for 
the significance of the enrichment was calculated by using a hypergeometric test. The level of significance 
for this test (True-shown in bold, False) was determined using the Bonferroni correction, where the α value 
is set at 0.05 and 27 and 11 tests were done for KEGG pathway and Simplified Gene Ontology, 
respectively. 
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Table 5.2. Genes affiliated to sulfur metabolism. 

Arsenic treatment stimulates a sulfur response in yeast. Gene expression data comparisons 
between arsenic, cadmium, and H2O2-treated Saccharomyces cerevisiae reveal arsenic and cadmium 
mediated sulfur responses, but none with hydrogen peroxide. AsIII column, 2 h, 100 µM and 0.5 h, 1 mM 
(combined biological replicates), unless noted; cadmium column, 1 h, 1 mM; H2O2 column, 10, 20, 40, 60, 
120 min, 400 µM [62]. Numbers in ordinary typeface denote induction; (-) and italicized numbers denote 
repression; NC, no change. 
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Supplemental Figures 

 

 
Supplemental Figure 5.1. The dose-response curve of S. cerevisiae strain, BY4741. 

Treatment with 1 mM, 2 mM and 5 mM AsIII resulted in a negligible effect on growth (after 18 h) 
and survival (1 h treatment followed by plating and colony formation counting), but still exhibited a 
pronounced transcriptional response 
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Supplemental Figure 5.2. A self-organized tree of arsenite treated yeast experiments and a table 
depicting the numbers of significant genes. 

All genes found to be significant by MAPS analysis (see Materials and methods) were compiled 
across the four arrays, averaged and subsequently clustered with Cluster/Treeview software. The 
dendogram highlighted in pink depicts the zoomed in region shown to the right of the entire tree. Genes in 
red are induced and genes in green are repressed. A table depicts the numbers of genes changing in each 
experiment at both the 95% and 99% confidence intervals (see Materials and methods). 
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Supplemental Figure 5.3. Under arsenite-treated conditions, Yap1 might regulate Arr2 and Arr3, 
and does not regulate Rpn4. 

Yap1 is likely to regulate Arr2 and Arr3 after 2 h 100 µM AsIII but it does not regulate Rpn4 
under arsenic-induced stress. The self-organized heat map labeling and conditions in this figure are the 
same as for Figure 5.2. (a) The Yap1 knockout strain fails completely to induce Arr2 (0.834 average fold-
change) whereas the Arr1 knock-out induces Arr2 (2.90 average fold-change). (b) The Arr1 knockout 
induction is more elevated compared to the Yap1 knock-out (1.8 and 1.1 average fold-change, 
respectively). (c) Yap1 is induced 2.7 fold in the Rpn4 knock-out. (d) The wild type parent strain shows an 
averaged induction of 4.7 fold. (e) Rpn4 is induced 3.7 fold in the Yap1 knock-out compared to 4.1 fold 
induction in the wild type parent strain. In the presence of arsenic, Yap1 does not appear to regulate Rpn4. 
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Supplemental Figure 5.4. Self-organized clustering of deletion strains with AsIII treatment and 
parent strain vs. deletion strains without arsenic. 

Self-organized clustering of specific deletion and parent strain experiments (yap1Δ vs. yap1Δ 2 h 
100 µM AsIII, cad1Δ vs. cad1Δ 2 h 100 µM AsIII, rpn4Δ vs. rpn4Δ 2 h 100 µM AsIII, arr1Δ vs. arr1Δ 2 h 
100 µM AsIII, parent vs. parent with 2 h 100 µM AsIII, as well as the parent strain vs. each deletion strain 
without arsenic). 
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Chapter 6. Genome-wide fitness and expression profiling implicate Mga2 in 

adaptation to hydrogen peroxide 

Abstract 

Caloric restriction extends lifespan, an effect once thought to involve attenuation 

of reactive oxygen species (ROS) generated by aerobic metabolism. However, recent 

evidence suggests that caloric restriction may in fact raise ROS levels, which in turn 

provides protection from acute doses of oxidant through a process called adaptation. To 

shed light on the molecular mechanisms of adaptation, we designed a series of genome-

wide deletion fitness and mRNA expression screens to identify genes involved in 

adaptation to hydrogen peroxide. These were integrated with databases of known 

transcriptional interactions to build a genome-scale model of adaptation to oxidative 

stress.  This model supports Yap1 and Skn7 as central transcriptional regulators of both 

the adaptive and acute oxidative responses.  It also underscores the importance of the 

transcription factors Mga2 and Rox1 exclusively in adaptation, which is striking because 

these factors have been thought to control the response to hypoxic, not oxidative, 

conditions.  Expression profiling of mga1Δ and rox1Δ knockouts confirms that these 

factors most strongly regulate targets in ergosterol, fatty-acid, and zinc metabolic 

pathways.  Direct quantitation of ergosterol shows that its basal concentration indeed 

depends on Mga2 and Rox1, but that these factors are not required for the decrease in 

ergosterol observed during adaptation.  
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Introduction 

Oxidative stress is caused by a number of reactive oxygen species (ROS) 

generated as a result of aerobic metabolism or chemical exposure. These compounds 

damage a variety of cellular products, including DNA, proteins, and lipid membranes, 

and are associated with a number of human pathologies.  For example, in cardiovascular 

disease, oxidation of low-density lipoprotein signals an inflammatory response177.  The 

sensitivity of neurons to oxidative stress implicates ROS in neurodegenerative diseases, 

such as Parkinson’s and Alzheimer’s12-14.  

A continuing source of controversy is the role of oxidative stress in aging. Caloric 

restriction has been shown to extend lifespan in a number of species178.  Initially, it was 

hypothesized that the effect on lifespan occurs primarily because caloric restriction 

reduces the level of aerobic respiration, a major source of ROS179.  Newer evidence is 

challenging this hypothesis, since caloric restriction paradoxically increases 

respiration180. Increased respiration, in turn, can generate mild levels of ROS which 

protect against high doses of oxidant181. This process is known as adaptation or 

hormesis11 and is widely conserved among eukaryotes181-184. One hypothesis is that 

adaptation to oxidative stress is the basis for the lifespan-extending effect of caloric 

restriction185, 186. Thus, further efforts to understand the process of adaptation may have 

broad implications on models of aging and disease.    

In one model of adaptation, the cell increases the activity of the enzymes and 

pathways required to rid the cells of ROS, leaving it better equipped to process acute 

dosages of oxidant when they arise. Under this model, genes involved in the adaptive 

response are expected to be a subset of those that become active in the acute response187.  
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Many such candidates have been identified, including a variety of biosynthetic enzymes 

which produce small molecular compounds or proteins with reduction potential, such as 

glutathione (GSH), thioredoxin, NADPH, and trehalose188-192. Different enzymes 

facilitate this process for different ROS, including catalases and peroxidases (which deal 

with peroxide radicals)193, 194 and superoxide dismutases (which deal with superoxide 

radicals)195, 196.  Additional proteins serve to repair the damage caused by oxidative stress. 

Heat shock proteins act as chaperones within the cell, allowing damaged proteins to fold 

properly or preparing them for disposal197. DNA repair genes are also vital, as oxidative 

stress can damage both nucleotides and the phosphodiester DNA backbone198.  Several 

studies have implicated classical oxidative stress proteins and pathways in adaptation, 

including the transcription factor Yap1139 and glutathione synthesis199-201. 

In contrast to this model, a second body of evidence suggests that adaptation may 

be governed by novel pathways not directly involved in the response to acute oxidation.  

In a study of adaptation to the oxidant linoleic acid, Alic et al. found that adaptation can 

occur without induction of oxidative or general stress response genes following 

pretreatment202.  Instead, various metabolic processes were activated and protein 

synthesis was inhibited.  Moreover, machinery with a central role in the acute response, 

such as the mitochondria11, 203or the Msn2/4 environmental stress response factors, are 

not required for adaptation139, 204. 

Nonetheless, expression studies of acute oxidative damage have helped to identify 

a set of genes involved in the common environmental stress response (ESR) and 

implicated the Msn2/4 transcription factors in control of this gene set134, 162, 205.  In fitness 

studies of yeast deletion strains, Thorpe et al. identified a set of genes required for the 
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response to hydrogen peroxide, mainly dealing with the proper functioning of the 

mitochondria.  However, to-date these genome-scale approaches have focused on the 

acute, rather than the adaptive, response.  The one study to date that has screened for 

adaptive genes focused on a set of 268 genes selected based on previous literature206. 

Here, we use the rich functional genomics toolbox of yeast to identify pathways 

involved in adaptation to oxidants.  To accomplish this goal, we use barcode arrays to 

screen the Saccharomyces cerevisiae gene deletion collection207 for genes required in the 

acute and adaptive responses, and we couple these data with genome-wide mRNA 

expression profiles to build a system-wide model of adaptation.  

Results & Discussion 

A genetic screen to identify genes functioning in adaptation 

As shown in Figure 6.1A, we elicited adaptation using a protocol consisting of a 

mild pretreatment of hydrogen peroxide (0.1 mM H2O2 for 45 min) followed by a later 

high dose (0.4 mM H2O2 for 1 hr).  For purposes of comparison, we also conducted an 

acute protocol which exposed cells to the high dose only (0.4 mM H2O2 for 1 hr).  

Consistent with previous findings11, we observed that yeast cells undergoing the 

adaptation protocol exhibited a smaller reduction in growth rate compared to cells 

exposed to the acute treatment protocol (Figure 6.1B). 
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Given these protocols, we designed a series of yeast genome-wide phenotyping 

experiments using the publicly available pool of 4,831 viable single-gene deletion 

strains35. Each strain in the pool incorporates a pair of unique oligonucleotide barcode 

 
Figure 6.1. Study Design. 

A. Yeast cells were collected following each of four hydrogen peroxide treatment conditions 
(pretreated, adapted, acute, and untreated, labeled 1-4).  Competitive growth experiments were performed 
between gene deletion pools grown in adapted versus acute conditions (to identify genes required 
specifically for adaptation) and between pools grown in acute versus untreated conditions (to identify genes 
required for the acute response). Gene expression profiling was performed in either adapted or acute 
conditions versus untreated cells. B. Pretreatment with mild hydrogen peroxide (green) leads to improved 
growth compared to no pretreatment (red) following a high dose of hydrogen peroxide. C. For an 
individual gene deletion, the acute sensitivity is defined as the difference between the acute and untreated 
growth rates. The adapted sensitivity is the fraction of that difference that is recovered by mild pretreatment 
with hydrogen peroxide. 
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tags, which allow the relative growth rates of all strains to be tracked in competitive 

growth experiments by hybridization of pooled genomic DNA to a barcode microarray.  

In a first experiment, two identical pools of deletion mutants were treated with the 

adapted or acute protocol, respectively, and directly compared on a barcode array (with 

multiple biological replicates; see Methods).  In a second experiment, a pool subjected to 

the acute treatment was compared against an untreated pool. 

These experiments were used to identify genes required for adaptation or for the 

acute response, as shown in Figure 6.1C. Fitness in the acute response was defined as the 

difference in growth rate between the acute and untreated conditions (determined from 

the log ratio of intensities measured in the direct comparison of the acute and untreated 

pools, see Methods).  Adaptive fitness was defined as the difference in growth rate 

between the acute and adapted conditions, normalized by the magnitude of the acute 

effect (Figure 6.1C).   

Adaptive sensitive deletions are not enriched for the response to oxidative stress 

A total of 156 versus 108 genes were found to be required for the adaptive versus 

the acute responses (p<0.005) (Figure 6.2A).  These sets overlapped by 88 genes, 

including YAP1 and SKN7, genes encoding transcription factors with known involvement 

in the response to oxidative stress.  YAP1 and SKN7 were previously identified as 

adaptive-sensitive in the restricted screen conducted by Ng et al.206. Given the large 

degree of overlap, it was not surprising that both the adaptive and acute gene sets were 

also enriched for similar functional categories, such as the mitochondrial ribosome and 

aerobic respiration (Figure 6.2C).  The identification of these functions is puzzling in 
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light of an earlier finding that yeast with defective mitochondria (rho- mutants) adapt to 

oxidative stress11, 203. 

 

 
Figure 6.2. Fitness and Expression Profiling Overview. 

A. Numbers and overlap of gene deletions that are sensitive in the adaptive (green) and acute (red) 
treatment protocols. B. Numbers and overlap of differentially expressed genes identified in each of the 
three expression treatment protocols. C. Hierarchical clustering of the differentially expressed or sensitive 
genes from each screen. Clusters are annotated at right with over-represented functional groups. 
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In these studies, a milder high dose was required to demonstrate adaptation; 

therefore, the observed deficiency in adaptation of mitochondrial mutants in our screen 

may be due to increased sensitivity to the high dose. Surprisingly, neither set was 

enriched for genes involved in the response to oxidative stress (GO Biological Process 

0006979) which may be due to the ability of this response to compensate for the loss of 

single gene activities, confirming earlier observations regarding the acute response by 

Thorpe et al. (Supplemental Table 6.1)208. Despite the strong overlap of these two sets of 

sensitive genes, a number of gene deletions were sensitive only in the adaptive screen, 

including the transcription factor mga2Δ. 

Unique sets of genes are expressed during the adaptive response  

Next, we performed mRNA expression profiling on each of the three treatment 

protocols (pretreated, adapted, acute, see Figure 6.1A) in comparison to untreated 

conditions.  These profiles were analyzed to identify two types of adaptive response 

genes: early versus late.  Early adaptive genes were defined as those that were 

differentially expressed after the 45 min. pretreatment relative to untreated conditions 

(169 genes at p<10-5, see Methods).  Late adaptive genes were defined as those that were 

differentially expressed after the 1 hr. high dose following pretreatment (391 genes).  In 

comparison, a much larger set of 1,893 genes was differentially expressed in response to 

the high dose in the absence of pretreatment.  Thus, the numbers of differentially 

expressed genes increases with the severity of treatment (pretreatment, adapted, acute). 

The sizes of these gene sets roughly correlated with the reduction in growth rate 

associated with each treatment. 
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The overlap of the acute expression response with either the early or late adapted 

responses was significant (p=0.02 versus p=7×10-36 by hypergeometric test, respectively); 

nonetheless the overlap with the early response was much less than with the late adapted 

response (38% versus 60%, see Figure 6.2B). In addition, 26 genes that would be 

expected to be increasing in expression based on the acute expression data were 

decreasing in expression during adaptation, such as genes involved in the response to 

oxidative stress (GO Biological Process 0006979) (Figure 6.2C). Other sets of genes 

were expressed uniquely during early and late adaptation, including ergosterol 

metabolism, fatty acid synthesis, and zinc homeostasis (GO Biological Processes 

0008204, 0006631, 0055069, respectively) (Figure 6.2C). Unlike the fitness profiling, 

oxidative stress genes were strongly implicated in the acute expression response (as also 

found by others; Supplemental Table 6.2 and Supplemental Table 6.3).  

Centrality of transcription factors Mga2, Rox1, and Yap1 during pretreatment 

To map the transcriptional program underlying adaptation, we computed the 

activity of each yeast transcription factor based on the significance of differential 

expression among its set of known targets (Figure 6.3).  Lists of targets for each factor 

were drawn from YeastRACT, a database of literature-curated regulatory interactions209 

(Methods).  Application of this method to the acute treatment protocol identified Msn2/4, 

Yap1, and Skn7 as key factors, all of which had been previously associated with the acute 

response to oxidative stress.  All of these factors were also moderately active during 

pretreatment and become more so after transitioning to the high dose (Figure 6.3). Other 

factors exhibiting this behavior include Adr1, Hsf1, and Pdr1/3. 
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On the other hand, Mga2 and Rox1 exhibited highly significant activity during 

pretreatment, but not during the acute response (Figure 6.3). These factors had previously 

been associated with the hypoxic, not oxidative, stress response210, 211.  Thus, our analysis 

 
Figure 6.3. Dynamics of transcription factor target expression in mild and acute conditions. 

For each transcription factor, we compute a score based on a hypergeometric test representing the 
significance of increased expression (relative to untreated) of known targets (see Methods) following either 
pretreatment (0.1 mM H2O2, x-axis) or acute treatment (0.4 mM H2O2, y-axis).  For a limited set of 
transcription factors with the most significant activity following acute treatment or pretreatment, the 
activity following adaptive treatment (0.1 mM followed by 0.4 mM H2O2) is also displayed on the x-axis 
with an open circle. The size of each point corresponds to the number of known targets of that transcription 
factor. The dotted lines indicate a threshold for significance determined by a randomization procedure (see 
Methods). Although there is significant overlap in the set of expressed genes following mild and acute 
treatment, examination of specific transcription factors reveals those with unique behavior in each 
condition. Transcription factors identified in the deletion fitness analysis of the acute and adaptive 
treatments are indicated with “#” and “+” symbols, respectively. 
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appears to classify transcription factors into two categories: early response factors 

activated by mild doses of oxidant during pretreatment only (Rox1, Mga2), and late 

damage response factors whose level of activation responds in proportion to treatment 

dose (Msn2/4, Yap1, Skn7).   

A model of adaptation to oxidative stress 

When considered together and in light of the previous literature, our results 

suggest the model of adaptation shown in Figure 6.4.  When the cell is exposed to a high 

dose of hydrogen peroxide, Yap1 and Skn7 up-regulate the expression of genes involved 

in redox homeostasis, preventing cellular damage by increasing the degradation of ROS. 

This is the likely mechanism of the observed requirement for both Yap1 and Skn7 in the 

acute response. In addition, Yap1 and Skn7 are also activated during the pretreatment and 

are required for adaptation (Figure 6.3). In response to mild pretreatment with hydrogen 

peroxide, Mga2 and Rox1 activate targets involved in ergosterol metabolism, fatty acid 

biosynthesis, and zinc homeostasis.  Previous literature suggests possible roles for each of 

these processes in oxidative adaptation.  Ergosterol is a cholesterol-like component of the 

plasma membrane with diverse effects on its function212.   Branco et al. observed that 

adaptation is associated with an increase in membrane rigidity, an effect which is 

abrogated in the ergosterol-deficient erg3∆ and erg6∆ strains213. We hypothesize that an 

increase in ergosterol biosynthesis may inhibit diffusion of H2O2 across the plasma 

membrane by reducing membrane permeability. Zinc homeostasis genes may play a 

similar role, as these genes also influence ergosterol metabolism214. Conversely, 

Tafforeau et al. observed a decrease of both squalene synthase (Erg9) activity and 
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Figure 6.4. Model of the adaptive response. 

Results and hypotheses regarding transcriptional regulators and functional categories identified in 
this study are summarized.  The influence of hydrogen peroxide is determined by its concentration within 
the cell. In addition to treatment dose, several cellular processes affect the level of H2O2. In order to enter 
the cell, hydrogen peroxide must first diffuse across the plasma membrane. Inside the cell, peroxide levels 
are reduced by degradation into oxygen and water. Squares denote the expression of genes or gene sets 
(rectangles) following each of the three treatment protocols (pretreatment, adapted, and acute).  Conversely, 
circles denote the sensitivity of the corresponding gene deletion for a particular protein or protein set (oval) 
in the adapted and acute treatment protocol. Arrows between different objects indicate either an activating 
(triangular arrowhead) or inhibitory (flat arrowhead) influence. The figure number(s) which provides 
support for each link are shown in brackets. A red “X” denotes a hypothesis which is later refuted by 
experimental observation.  
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ergosterol content during adaptation in S. pombe, highlighting the complex relationship 

between ergosterol and membrane permeability215. Although the activity of fatty acid 

synthetic enzymes could influence the stability and permeability of the plasma 

membrane216, these enzymes also influence the composition of membranes throughout 

the cell.  Thus, an additional possibility is that these enzymes influence the activity of 

enzymes in the mitochondrial membrane217. Mutations in OLE1 are known to influence 

mitochondrial morphology and inheritance, ostensibly through altering the properties of 

the mitochondrial membrane218. 

Deletion studies confirm the activation of genes by Mga2 and Rox1 

The involvement of Mga2 in early adaptation is supported by its requirement for 

adaptive growth in the deletion profiling experiments (Figure 6.2) and the striking 

behavior of its targets in the expression profiling experiments (Figure 6.3).  To further 

confirm the activity of Mga2, pretreatment with hydrogen peroxide was repeated in an 

mga2∆ background and gene expression was profiled versus wildtype cells using 

quadruplicate whole-genome microarrays.  In this experiment, the number of up-

regulated Mga2 targets was significantly decreased (Figure 6.5A, p=0.012 by Fisher’s 

Exact Test), supporting its role in the transcriptional program leading to adaptation.  

Moreover, the MGA2 gene is itself up-regulated following pretreatment and the transition 

to the high dose (p=1.4×10-3 and 5.3×10-5, respectively). 

Rox1 (Repressor of Hypoxic Genes) is a repressor under transcriptional control of 

Hap1219.  The decrease in expression of the ROX1 gene following both the pretreatment 

and adapted treatment protocols (p= 3.6×10-11 and 1.4×10-7, respectively) suggests that 
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this repressor is deactivated in the process of adaptation. To confirm this observation we 

profiled a rox1∆ strain and found that the number of Rox1 targets with increased 

expression following pretreatment falls significantly (p=0.046 by Fisher’s Exact Test) 

indicating reduced activation of the genes that it is known to repress (Figure 6.5B). 

 

The mechanism by which Mga2 and Rox1 can be activated by mild pretreatment 

with oxidants is unknown, but several lines of evidence suggest that the mechanism is 

 

 

Figure 6.5. Expression analysis of deletion mutants validates the activation of key transcription 
factors in response to H2O2 pretreatment. 

Panels A-D detail the behavior of the transcription factors Mga2, Rox1, Yap1, and Msn2/4 and 
their target sets, respectively. Each column represents the expression or fitness values in sorted order for a 
specific set of genes.  
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shared with the hypoxic response. Rox1 is expressed in a heme-dependent manner220.  

While falling heme levels typically signal hypoxic conditions221, hydrogen peroxide may 

also reduce heme levels via degradation222. Dirmeier et al. found that ROS levels 

transiently increase following exposure to anoxic conditions, suggesting that this could 

signal the expression of hypoxic genes223. They did not believe the activation of hypoxic 

genes could be replicated with exogenously supplied ROS, based on the H2O2 expression 

profiling data of Causton et al.162. We contradict this earlier hypothesis with the 

observation of increased expression of hypoxic genes as a result of treatment with H2O2. 

The apparent discrepancy may be a result of the higher dose of H2O2 used by Causton et 

al162. 

Yap1 is required for expression changes in response to mild pretreatment 

To validate the observed requirement of Yap1 during adaptation, we profiled the 

expression response of a yap1∆ strain versus wildtype cells under the pretreatment 

protocol.  This experiment revealed widespread changes in patterns of expression (Figure 

6.5). For all sets of transcription factor targets examined in Figure 6.5 (including not only 

the direct targets of Yap1 but also the targets of Mga2, Rox1, and Msn2/4), their 

expression responses in the yap1∆ strain most closely resembled their expression 

responses in the wild type following acute treatment. One explanation for this result is 

that Yap1 acts during pretreatment to promote H2O2 degradation and prevent oxidative 

damage, which otherwise interferes with the adaptive response of many downstream 

factors (Figure 6.4). 
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Mga2 and Rox1 do not mediate the role of ergosterol in adaptation 

To elucidate the role of ergosterol biosynthesis in adaptation, we profiled 

ergosterol concentration in both untreated and adaptive conditions in wt, mga2∆, and 

rox1∆ strains (see Methods).  Relative to wild type, the basal concentration of ergosterol 

was lower in the mga2∆ strain and higher in the rox1∆ strain (Figure 6.6). This finding 

agrees with the regulatory roles of Mga2 and Rox1 as an activator and repressor of 

ergosterol biosynthesis genes, respectively. In each strain, ergosterol content decreased 

significantly following mild pretreatment with hydrogen peroxide (p=0.014, 0.005, and 

0.031 for wild type, mga2Δ, rox1Δ strains, respectively using a paired t-test). This 

supports the earlier work of Tafforeau et al.215 but is surprising given the increased 

expression of ergosterol biosynthetic genes relative to untreated conditions.  Nonetheless, 

 
Figure 6.6. Dynamics of ergosterol following mild treatment with hydrogen peroxide. 

Following an n-heptane extraction (see Methods), the presence of ergosterol is detected at 281 nm. 
The ergosterol concentration (relative to the number of cells [OD600 value] in the original culture) is 
reported for wild type, mga2Δ, and rox1Δ strains with and without mild hydrogen peroxide pretreatment.  
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the change in ergosterol content between pretreated and untreated conditions was 

persistent across all strains, suggesting that this change is not due to the regulatory 

activity of either Mga2 or Rox1.   Therefore, we conclude that transcriptional regulation 

of ergosterol biosynthesis by Mga2 and Rox1 is not a primary mechanism of adaptation.  

This conclusion is further supported by the observation that deletion of either MGA2 or 

ROX1 attenuates the expression response of ergosterol synthesis genes to mild 

pretreatment; however, only the mga2∆ strain exhibits defects in adaptation (as 

confirmed in Figure 6.7).  

Mga2 may influence adaptation via regulation of fatty acid synthesis 

One of the most highly expressed genes following mild pretreatment with 

hydrogen peroxide was OLE1, a gene involved in fatty acid biosynthesis. We found that 

the high expression of OLE1 was maintained in a rox1∆ background but was greatly 

reduced in a mga2∆ strain (p=8.3*10-3), suggesting that the key role of Mga2 in oxidative 

adaptation might be its regulation of fatty acid synthesis.  

Previous work by Matias et al. noted repression of Fatty Acid Synthetase (FAS1) 

during adaptation and an inverse correlation between Fas activity and resistance to 

H2O2
216. In comparison, we observed increased expression of OLE1, ELO1, FAS1, and 

FAS2 during mild pretreatment, demonstrating that adaptation occurs in the presence of 

increased FAS1 expression. In the study of Matias et al., 0.15 mM H2O2 was used to 

stimulate adaptation compared to 0.10 mM for this study. At higher concentrations (0.4 

mM), we also observed a decrease in FAS1 expression, suggesting that a difference in 

dosage can explain the discrepancy. 
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In conclusion, we have completed the first genome-wide scan for genes required 

for the adaptive response to oxidative stress.  By integrating these data with results from 

expression profiling, we have identified pathways with novel involvement in the response 

to oxidative stress, including the hypoxic response factors Mga2 and Rox1. The 

activation of Rox1 and Mga2 under adaptive conditions provides additional information 

about the sensing mechanism of the hypoxic response, given that we have demonstrated 

 
Figure 6.7. Sensitivity of mutant strains in adaptation to hydrogen peroxide. 

Adaptive fitness was measured for each of seven deletion or DAmP strains over replicate cultures 
starting from single-cell colonies (Methods). Smaller values indicate a strain defective in adaptation. The 
adaptation defects measured with the barcode array (Fig. 2A,C) are confirmed for yap1, skn7, mga2, and 
rox1 deletion strains. Wild type (wt) adaptive fitness is provided as a control, with horizontal lines 
indicating the wt mean (solid line) ± 2 standard deviations (dotted).  
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this response can be initiated by exogenous oxidative stress. Future studies can 

interrogate the manner in which the homologs of these genes are necessary for adaptation 

in higher organisms and explore their role in disease-related oxidative stress.  

Methods 

Determination of treatment protocols 

The high dose of 0.4 mM H2O2 was selected to be comparable to other previous 

expression studies of acute hydrogen peroxide exposure (0.4 mM, 0.24 mM, 0.32 mM, 

for Causton, Shapira, Gasch, respectively)134, 162, 205. This dose resulted in a reduction of 

growth rate by approximately two thirds as measured by OD600. The pretreatment dose 

was selected as the largest dose that did not result in impaired growth or viability. This 

criteria and the length of pretreatment (45 minutes) were selected in accordance with 

previous studies of adaptation to oxidative stress11, 204, 224. 

Sample growth and treatment for mRNA profiling  

We profiled the response to three hydrogen peroxide treatment protocols 

(pretreatment, adapted, and acute) over a series of microarray experiments. Each series 

consisted of four biological replicates. For each replicate in the acute treatment protocol, 

a single colony of BY4741 (ATCC, Manassas, Virginia, USA) was used to inoculate 10 

ml of YPD media.  Following overnight growth at 30˚ C, this culture was resuspended in 

100 ml of YPD media at an OD600 of 0.1 and placed in an orbital shaker at 30˚ C. At 

OD600 = 0.6 cells were split into two 50 mL portions. In the acute treatment protocol 

growth continued for 45 minutes, at which point a high dose of hydrogen peroxide (final 

concentration in media: 0.4 mM H2O2) was administered to one member of the pair (with 
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the other receiving a sham treatment of 100 mM phosphate buffer).  Treatment continued 

for 1 hour at which point cells were harvested by centrifugation at 3000 rpm for 5 min. 

Pellets were immediately frozen in liquid nitrogen and stored at -80˚ C.  The pretreatment 

protocol was identical except for the final concentration of hydrogen peroxide (0.1 mM).  

For the adapted treatment, a pretreatment dose of hydrogen peroxide (0.1 mM) and 

corresponding sham treatment were administered directly after splitting the culture, but 

otherwise the treatment was identical to the acute protocol. 

Strain construction 

All single deletions were obtained from the complete yeast deletion collection in 

the BY4741 background (ATCC, #2013888) and verified by PCR (http://www-

sequence.stanford.edu/group/yeast_deletion_project/single_tube_protocol.html).  

mRNA expression analysis 

RNA from each sample was isolated via phenol extraction followed by mRNA 

purification [Poly(A)Purist, Ambion, Catalog # 1916]. Purified mRNA from the control 

experiments was labeled with dUTP incorporating either Cy3 or Cy5 dye (CyScribe First-

Strand cDNA labeling kit, Amersham Biosciences).  Cy3 and Cy5 labelings were 

alternated between replicates to create a balanced design. Complementary labelings (Cy3 

versus Cy5) were hybridized to Agilent expression arrays (Catalog # G4140B).  

Arrays were scanned using a GenePix 4000A or PerkinElmer Scanarray Lite 

microarray scanner and quantified with the GenePix 6.0 software package. Data from 

each array were subjected to background and quantile normalization100. The VERA 

software package was used with dye bias correction225 to assign a significance value λ of 
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differential expression to each gene.  In a negative control experiment (quadruplicate 

untreated vs. untreated arrays), the distribution of significance values λ over all genes was 

fit parametrically as 1.7 * χ2
1, where χ2

1 is the chi square distribution with one degree of 

freedom. This null distribution was used for assignment of p-values. 

Sample growth and treatment for haploid deletion fitness profiling experiments 

A pool of the 4,831 viable haploid deletion strains was created from individual 

collections kept in glycerol stock and divided into 1 mL aliquots stored at -80˚ C.  Two 

separate types of treatment protocols (acute and adapted) were studied consisting of four 

and six replicate arrays, respectively.  For each replicate, a single aliquot of pooled 

deletion strains was diluted in 15 mL YPD media and grown in a rotating wheel at 30˚ C 

to OD600 = 0.6. The sample was then split into two 6.5 mL portions. In the adapted 

treatment protocol, one member of the paired samples was immediately treated with a 

mild dose of oxidant (final concentration in media: 0.1 mM) and the other received a 

sham treatment. After 45 minutes of continued growth at 30˚ C, a high dose was 

administered (final concentration in media: 0.4 mM) to both samples. After 1 hour of 

treatment, the cells were harvested by centrifugation at 3000 rpm for 5 min and 

resuspended in 50 mL of YPD media. After 5 hours of growth, the cells were once again 

harvested by centrifugation and the pellets were immediately frozen in liquid nitrogen 

and stored at 80˚ C. The acute treatment protocol was identical, except that no sample 

was treated with a mild pretreatment dose and only one member of the sample pair was 

treated with the high dose. 

Deletion Fitness Analysis  
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Genomic DNA was extracted from cell pellets using a glass bead preparation226. 

Subsequent DNA labeling, hybridization, and microarray design followed the protocol of 

Yuan et al.227. Briefly, asymmetric PCR was used to amplify unique tag sequences in the 

genomic DNA of the deletion strains. In each PCR reaction, 1 µg of gDNA was used for 

labeling. Arrays were scanned and quantified in the same manner as the arrays prepared 

for the expression profiling experiments.   

The hoptag package (implemented in R) was used to analyze the intensity data 

from the scanned arrays. Briefly, median and loess correction were performed on the 

intensity distributions227, after which each deletion strain was assigned an UPTAG ratio 

and a DNTAG ratio for each array. The logs of these ratios were averaged to derive one 

measurement per gene per array.  Across multiple arrays measuring the same treatment 

protocol comparison (acute vs. untreated or acute vs. adapted), the distribution of log 

ratio values was quantile normalized100.To determine acute and adaptive fitness values, 

we assumed that the signal intensity for a given gene deletion strain is: 

 

where Ii,treatment is the observed signal intensity for gene deletion strain i subject to 

the designated treatment protocol, [Ci] is the initial concentration of deletion strain i, 

Ri,treatment is the specified growth rate, and t is time. Ntreatment is a constant factor applied to 

all intensities from the same treatment representing the shared effect of normalization 

procedures.  For each gene deletion strain i, the log ratio of the acute and untreated signal 

intensities is therefore: 
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Note that the acute fitness measure Racute-Runtreated is not directly equivalent to this 

log ratio. However, since the parameters t, Nacute, and Nuntreated are shared over all gene 

deletions i, their ordering is the same. Since each intensity distribution was normalized to 

share the same median, the distribution of log ratios was centered on zero. In order to 

indentify genes which deviate significantly from this expected value, we performed a one 

sample t-test testing the difference of the mean against zero. This test was regularized to 

share the estimate of variance among all genes. 

Similarly, the log ratio obtained from the direct comparison of the acute and 

adapted samples was centered on zero and related to the magnitude of the difference, 

Radapted-Racute. Furthermore, due to median normalization of the intensity distributions, the 

scales of both log ratio distributions were approximately equal. Thus, for most genes 

without a defect in adaptive fitness, the difference Radapted-Racute was strongly correlated to 

the acute fitness measure, Racute-Runtreated.  A gene with a large difference between the 

values Racute-Runtreated and Radapted-Racute indicates a deviation from the average adaptive 

fitness measure. A two-sample regularized t-test comparing the log ratios determined 

from each direct comparison was used to identify such cases. 

Validation of Sensitive Targets 

To verify that the identified sensitive genes are meaningful, the sensitivity of 

specific gene deletions was verified in small-scale experiments.  In these, a colony of a 
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specific deletion strain of interest was incubated in YPD overnight. Following dilution to 

OD600 0.1 in 30 mL YPD media, the culture was grown to OD600 0.6 and split into three 

aliquots. Each aliquot was treated according to one treatment protocol (untreated, 

adapted, or acute). Following one hour of recovery, the optical density of each culture 

was measured. Optical density values were used to calculate the adaptive fitness measure 

in the following manner: 

 

An unpaired t-test was used to determine the significance of the difference from 

results obtained when applying the same procedure to wild type (BY4741) colonies.  

Determination of Ergosterol Concentration 

The determination of ergosterol was adapted from Arthington-Skaggs et al.228. 

Following overnight incubation, a culture was grown in YPD to OD600 0.6 and split into 

two aliquots of 50 mL. One of the aliquots was treated with 0.1 mM H2O2 for 1 hour, 

after which the OD600 of each aliquot was measured.  Each aliquot was pelleted and 

washed once with water. The cleaned pellet was incubated for 1 hour at 85 C with 3 mL 

25% alcoholic KOH. After cooling for 15 minutes, 1 mL water and 3 mL n-heptane were 

added and the mixture was vortexed for 3 minutes. The n-heptane layer was extracted and 

the presence of ergosterol was detected via absorbance at OD281. Ergosterol concentration 
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was reported as the ratio of OD600 / OD281.   

Enrichment Analysis of Gene Sets 

We investigated the significance of enrichment for functional classes among both 

differentially expressed and sensitive genes.  Functional classes were defined in one of 

two ways: (1) classes of genes with common annotation in the Gene Ontology (GO) 

hierarchy229) or (2) classes of genes targeted by the same transcription factor as recorded 

in the YEASTRACT online database209.  To prevent the identification of redundant or 

overly general gene ontology categories, we limited the GO analysis to those categories 

that contained between 5 and 100 genes. Similarly, the YeastRACT database contained 

several transcription factors with an excessive number of annotated targets (Yap1 alone 

was annotated with over 1,500).  To reduce the incidence of false positives, those studies 

which contributed over 100 targets for a given factor were discarded (on a per factor 

basis). While this may eliminate some true interactions, the goal is to generate a smaller 

set of high-confidence interactions which may be used to accurately assess the activity of 

given transcription factor. A hypergeometric test was used to assess the enrichment of 

each gene set in the lists of differentially expressed or sensitive genes.  

Since the true number of differentially expressed or sensitive genes was unknown 

and poorly defined, we varied the cutoff for significance between 100 and 500 genes. The 

minimal p-value for each gene set was returned, and the activity/sensitivity of each gene 

set was reported as the negative log of this minimal p-value. Since the corresponding p-

value was no longer strictly accurate as a consequence of multiple hypothesis testing, 

significance was assessed by repeated randomization trials in which the order of genes 
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was shuffled. Every gene set was tested and the maximum significance value was 

retained in each trial. Only those gene sets which exceeded the 95th quantile in this set 

were determined to be significant.  
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Supplemental Tables 

 

Supplemental Table 6.1. Sensitive gene ontology categories following acute hydrogen peroxide stress. 

For our study and the study of Thorpe et al., we determined those gene ontology categories which 
were enriched for sensitive gene deletions. Here we report all categories which exceed the threshold for 
significance.  
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Supplemental Table 6.2. Up-regulated transcription factor target sets following acute hydrogen 
peroxide stress. 

For our and previous comparable studies (Gasch 2000, Causton 2001, Shapira 2004), the set of 
known targets for each transcription factor was ranked based on enrichment for genes with increased 
expression in response to acute hydrogen peroxide stress. Here, we report the top nine sets of transcription 
factor targets. To facilitate comparison, frequently occurring items are high-lighted in a consistent manner. 
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Supplemental Table 6.3. Up- and down-regulated gene ontology categories following acute hydrogen 
peroxide stress. 

For our and previous comparable studies (Gasch 2000, Causton 2001, Shapira 2004), a pruned set 
of functional categories was ranked based on enrichment for genes with increased and decreased 
expression in response to acute hydrogen peroxide stress.  In each case, we report the top five categories. 
To facilitate comparison, frequently occurring categories are high-lighted in a consistent manner. 
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Chapter 7. Conclusions 

In this work, we investigated several strategies for improving the analysis of high-

throughput biological data sources. First, by improving our statistical analysis methods, 

we can mitigate the problem of “multiple hypothesis testing.”  In addition, we showed 

how high-throughput physical and genetic interaction screens can be used to uncover 

pathways of genes.  This type of pathway information can be used to enhance the analysis 

of gene expression and deletion fitness profiling data collected in studies of various 

cellular stress responses. As technology continues to advance, additional analytical 

breakthroughs will need to be made to keep pace.  

Genome-wide expression levels are now routinely assayed with the use of 

expression microarrays. However, new technologies on the horizon promise to alter the 

way in which we determine this information. In RNA-Seq, high-throughput sequencing 

technologies are used to rapidly sequence all of the RNA in a particular biological 

sample. Although the sequencing reads are relatively short (~50 bp), this is typically 

more than enough information to map a sequence to a location in the genome. Exact 

sequence counts can be used to precisely determine relative abundance levels of 

transcripts across different biological samples230. In Saccharomyces cerevisiae the 

benefits of this approach are modest, as there are relatively few genes and little sequence 

modification of those genes4. However, in large genomes with high prevalence of 

multiple splicing events, RNA-Seq has a large advantage over expression arrays in that it 

is difficult to design a probe to query every possible splicing event. However, statistical 

analysis of RNA-Seq data is still a developing field. By definition, gene-specific dye bias 
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should not occur, as there is no differential dye labeling. However, we saw that 

underlying sequence-specific effects were the cause of this bias.  One further avenue for 

RNA-Seq analysis is to investigate how sequence-specific effects might likewise affect 

those results.  

In Chapters 2 and 3, we investigated the definition of pathway information from 

combined sources of protein binding and genetic interactions. In Chapter 2, the set of 

physical interactions contained metabolic, regulatory, as well as binding interactions. 

However, in the latter work, only the physical binding interactions were utilized. In order 

to address the problem of integrating additional physical interaction types into the 

algorithm of Chapter 3, a simple approach would be to perform regressions on additional 

types of interaction data, incorporating this additional evidence into the within-pathway 

score. In fact, this is quite similar to Bayesian approaches that already exist231, 232.  

However, this raises an important question: is it necessary to treat genetic 

interactions as a special case in our pathway determination algorithm? Alternatively, the 

same regression could be performed on genetic interactions, incorporating the resulting 

score into the within-pathway score, ignoring the entire between-pathway component. 

Pathways could then be defined with a simple hierarchical clustering of this combined 

network. However, some benefits of the current approach (such as a global map of the 

genetic interactions between complexes) would be lost. This highlights a compromise in 

the more general algorithm; we lose the ability to use specific information about 

particular data types. We saw an example of this in Chapter 5, where we were able to 

combine a specific type of pathway definition with metabolic interactions to identify 

genes involved in the arsenic response.  
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Moreover, it seems that genetic interactions themselves represent a fundamentally 

different type of interaction than physical interactions. Even though this is the case, it 

may not be necessary to treat genetic interactions as a special class in our prediction 

algorithm. Rather, we can evaluate the ability of other interaction types to predict the 

same kind of information that is present in a genetic interaction. Thus, for each type of 

interaction, we would run two regressions, one for the within-pathway score and one for 

the between-pathway score. One of the challenges in proceeding with such an approach is 

identifying a suitable “gold standard” of between-pathway genetic interaction pairs. 

 In Chapter 5, we searched for activated pathways in physical networks. One 

limitation is that each type of interaction network was searched separately. In order to 

utilize the information in each of these networks simultaneously, we can apply the same 

Bayesian methods mentioned previously to generate a combined network.  However, as 

currently implemented, our analysis methods cannot be applied to such a network. The 

main problem is that these methods are designed to work with binary interaction 

networks, while a Bayesian network contains quantitative log-likelihood ratios (LLRs). 

While we could simply set a threshold on the LLR values to create a binary network, this 

would discard useful information. To utilize such a network, one possible approach is to 

first generate a hierarchical clustering of the interaction network. Any merge point of this 

hierarchical clustering defines a potential pathway in the network, which may be assessed 

for enrichment of differentially expressed or sensitive genes. In our analysis from 

Chapter 5, we learned that the definition of a pathway is important. If it is too liberal, the 

true signal is drowned out by spurious results, while if the definition is too strict, it will 

not be able to capture the true underlying pathways present in the network. This approach 
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has the potential to strike a balance between these two restrictions. In this hierarchical 

method, a major unresolved issue is the identification of a suitable network-clustering 

algorithm. Average-link hierarchical clustering is simple and efficient, but the density of 

the resultant clusters is often suboptimal. 

In Chapter 6, we focused on the identification of activated transcriptional 

networks. The general strategy was to identify specific activated transcription factors by 

looking for enrichment of differentially expressed genes in transcription factor targets 

gene sets. However, individual transcription factors rarely work alone. In reality, a 

specific regulon of genes is often under control of multiple transcription factors233. By 

identifying the constituents of these regulons, we may be able to more accurately identify 

the activated transcription factors. Unfortunately, this is a difficult task, as high-

throughput transcription factor target data contains many false positives.  One feature of 

these regulons is that they should be co-expressed across a large number of conditions. 

Thus, it should be possible to mine for these gene sets in the growing library of 

expression profiles present in a standard expression databases234. Although the 

transcription factors controlling these regulons will be unknown, databases of known 

transcription factor targets may be sufficient for annotating such information.  

Chapters 5 and 6 are both concerned with the analysis of deletion fitness profiling 

information. Such a dataset can be misleading. Even if a particular gene plays a role in 

the response, the corresponding deletion strain may not appear sensitive if another gene is 

able to compensate for the loss of function. One way to address this problem is to look at 

paired deletion strains subjected to a specific stress, that is, condition-specific genetic 

interactions. However, additional computational methods are needed to analyze such 
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experiments. Given the error rates in determination of subtle genetic interactions, special 

care needs to be taken to ensure that the identified interactions truly represent a 

condition-specific occurrence. 

We have shown that using high-throughput interaction screen to learn pathway 

information confers clear advantages in the analysis of high-throughput genetic assays. 

Continuing to work on these types of analyses should provide further gains in the future.  

Fortunately, these advances tend to rely on incorporating data that is already publicly 

available.  Thus, with little additional cost, it is possible to generate more knowledge out 

of expensive experimental data. The final challenge for bioinformaticians is to make sure 

that these tools are widely distributed and accessible, maximizing the utilization of both 

their work, and the public databases upon which they rely. 
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