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ABSTRACT OF THE DISSERTATION 

 

Electrical Transport of Topological Insulator-Bi2Se3 and Thermoelectric Properties of 
Graphene 

 

by 

Peng Wei 

Doctor of Philosophy, Graduate Program in Physics 
University of California, Riverside, June 2011 

Dr. Jing Shi, Chairperson 
 

 This thesis summarizes our work in the past four years in the field of transport 

studies of the topological insulator materials and thermoelectric properties of graphene. 

The first half of the thesis is focused on the transport properties of topological insulator 

material-Bi2Se3. In our research, we systematically tune the position of the chemical 

potential in p-type Ca-doped Bi2Se3 thin devices first by eliminating excess holes with 

controlled post-fabrication electron beam irradiation that results in an insulating bulk 

state. In spite of the fact that the energetic electron beam creates defects to localize the 

bulk carriers and inevitably to cause additional scattering, we find a tenfold increase in 

carrier mobility associated with the extended states in the band gap. In addition, the 

resistance undergoes a fivefold increase and passes the maximum as the chemical 

potential is further tuned by electrostatic gating. A cusp-like low-field magnetoresistance 

feature also emerges which is indicative of strong spin-orbit interaction. The observed 

gate-tunable high-mobility is a signature of massless Dirac fermions in the band gap of 

Bi2Se3. 



 vii

 The second half of this thesis is focused on graphene. Our work first reported the 

thermoelectric study of graphene and demonstrated the anomalous thermoelectric 

transport of massless Dirac fermions. As a direct consequence of the linear dispersion of 

massless particles, we find that the Seebeck coefficient Sxx diverges with 1 / || 2Dn , 

where n2D is the carrier density. We observe a very large Nernst signal Sxy (~ 50 µV/K at 

8 T) at the Dirac point, and an oscillatory dependence of both Sxx and Sxy on n2D at low 

temperatures. Our results underscore the anomalous thermoelectric transport in graphene, 

which may be used as a highly sensitive probe for impurity bands near the Dirac point. 
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Chapter 1 Introductions to topological insulators and graphene 

 The discovery and study of the novel materials or novel state of materials have been the central 

focus of condensed matter physics. The researches on these novel materials have not only deepened 

people’s understanding in fundamental physics of matter but also brought the advances in technologies, 

which propel the advances of our world. For example, the discoveries of the quantum Hall state and 

superconducting state had demonstrated people with dramatically exotic properties of matter, among 

which quantum mechanics plays an important role even on the macroscopic scale. Furthermore, in the 

application of microelectronics, faster and smaller personal computers, energy efficient electronic 

devices and orders of magnitude increase in the capacity of information storage are all products of the 

research of materials science. 

 Graphene and topological insulators are two novel types of materials discovered between 2004 

and 2006.1-6 They possess novel properties, which originates from their unique crystal structures and 

symmetries and have attracted the interest of many researchers since then. Both of them carry massless 

Dirac fermions that have to be described by the relativistic Dirac equation, which results in electrical 

transport properties completely different from that in conventional semiconductors where Schrodinger 

equation is applied.7,8 Furthermore, different from graphene, the Dirac fermions of a topological 

insulator exist only on its boundary and are protected by the time reversal symmetry while its interior is 

insulating. The most interesting part of a topological insulator is the edge state or boundary state. It 

belongs to a new class of matter and has its properties only determined by the topology of the 

material.8,9  With this type of edge states, the high-mobility dissipationless electrical transport can be 

achieved and is robust to impurity scattering.7 The similar state exists in the quantum Hall effect, but its 
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applications are restricted due to the requirement of a strong magnetic field. However, the topological 

insulator state exists without any external magnetic field and is time reversal invariant, which makes it 

a superior material for both fundamental researches and actual applications. 

1.1 Topological insulator 

 The quantum Hall effect, discovered in 1980, reveals a new state of matter where in 

two-dimensions the conduction of a current is only carried by the one-dimensional channels located at 

the edge of that material, while the inner bulk material behaves insulating. Each channel contributes a 

conductance of exactly he /2  (h is the Planck constant) and total conductance of the material is 

determined by the total number of the edge channels.10 Furthermore, the flow of electrons is only 

allowed in single direction at each edge while the opposite flow of the electrons is located in the 

opposite edges (Fig 1.1 (a)). This type of channel separation naturally prevents the backscattering of 

the electrons during their transport and results in very high mobility. However, the prerequisite of a 

quantum Hall state is the presence of a large external magnetic field, which cannot be simply achieved 

in electronics especially in nano-electronic. 

 In 2005 and 2006, theorists predicted the existence of the quantum spin Hall (QSH) state with the 

time reversal symmetry maintained due to its intrinsic spin-orbit coupling.1,3 It first demonstrates that 

the quantum Hall state does exist in a time reversal invariant form and does not require an external 

magnetic field. As demonstrated in Fig 1.1 (b), at each sample edge, the channels with opposite current 

flow consist of electrons with opposite spin directions and the spin of the electrons is directly locked to 

its momentum, thus maintains its time reversal symmetry. At the one dimensional edge of the quantum 

spin Hall state, the electrons can only move forward or backward. Due to the time reversal symmetry, 
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if the conducting electron is scattered by a non-magnetic impurity, there are two time reversal 

symmetric paths for the scattering. However because the electron spin is locked to its momentum, the 

two paths carry opposite directions of spin. Hence, they exactly cancel each other and will result in a 

restriction of backscattering.9 As a result of this, the edge state of a topological insulator is immune of 

non-magnetic impurity scattering and possesses strong potential for its applications. 

(a)                                          (b) 

               

Fig 1.1 (a) The edge states in the quantum Hall (QH) effect. A magnetic field is present and time 

reversal symmetry is broken. (b) The edge states in the quantum spin Hall effect (QSH). Time reversal 

symmetry is preserved 

 

 In 2007, experimentalists first demonstrated the quantum spin Hall insulator state in HgTe 

quantum well structure.11 They found an edge conductance of he /2 2  (indicating two edge channels) 

independent of the geometry of the sample as shown in Fig 1.1, as well as a dramatic destruction of the 

edge conductance upon applying an external magnetic field. Further theoretical work in 2008 

generalized the theory of the quantum spin Hall insulator such as HgTe by the topological filed theory 

and defined a new class of material called topological insulator.8 

 Besides the two-dimensional (2D) topological insulator HgTe, three-dimensional (3D) topological 

insulator materials are also predicted to exist.12,13 Fig 1.2 demonstrates the calculated band structure of 
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3D topological insulator materials Bi2Se3 and Bi2Te3. Both of them have a surface band with a linear 

dispersion in the gap of the bulk energy band structure and a single Dirac cone.13 The single Dirac cone 

consists of one Kramer’s pair, which is protected by time reversal symmetry and is crucial for the 

robustness of the surface states. Furthermore, for intrinsic Bi2Se3 crystal, the Fermi level is situated 

right across the Dirac cone in the gap of the bulk energy band (Fig 1.2), which serves a good candidate 

for the study of transport properties of topological insulators. 

 

Fig 1.2 The calculated bulk and surface energy band structures of Bi2Se3 and Bi2Te3. The red area 

denotes the conduction band and valence band of the bulk material. The blue region is the band gap. 

The two crossed red lines indicate the topological surface states, which are situated inside the gap of 

the bulk energy band. The color scales on the right of the graphs denote the local density of states. 

(Zhang, H. J. Nat Phys 5, 438-442) 

 

 Similar to HgTe material, electrons on the surface Dirac cone of Bi2Se3 also have their momentum 

locked to their spin. The momentum of surface electrons is a two-dimensional vector, thus the spin of 

the electrons form a helical structure as demonstrated in Fig 1.3(b). When the surface electron is 

scattered by non-magnetic impurities, similar backscattering restriction applies here. Because the 

momentum can take any value within the two-dimensional plane, there are possibilities that the 
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electrons are scattered side way (Fig 1.3(a)). However, the overall backscattering is still suppressed, 

which will result in a high mobility electrical transport. 

(a)                                         (b) 

 

Fig 1.3 (a) The suppression of backscattering for the surface states of a 3D topological insulator. The 

red dotted line indicates the probabilities at each direction after the electrons are scattered. (b) The 

Dirac cone structure of the surface states of 3D TI with spin-momentum locking. 

 

 Up to now, 3D topological insulator materials have been confirmed by many surface sensitive 

experiments, for example ARPES (Angle Resolved Photoemission Spectroscopy) and STM (Scanning 

Tunneling Microscopy).14-17 The suppressed backscattering on the surface of a 3D topological insulator 

has also been confirmed by STM studies.16,17 However, the transport study of topological insulator 

materials has largely been hindered by the high bulk carrier density that short-circuits the non-trivial 

surface channel. Much attention has been focused on reducing the unwanted bulk charge carriers in 

order to utilize the extraordinary properties of topological surface states in novel electronics.18-25 

impurity 

e 

distribution of 

the probability 

k
v

spin-momentum locking 
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 In this thesis, we demonstrate a systematic study and control of the bulk carrier density in Bi2Se3 

thin flake devices. By tuning the position of the chemical potential in p-type Ca-doped Bi2Se3 thin flake 

devices we achieved an insulating bulk state and a dramatic increase of the field effect mobility. The 

magneto transport studies also reveal interesting behaviors of the devices. These experiments become 

possible only after the development of a set of proper lithography techniques that prevent the damage 

to the Bi2Se3 devices due to the instability of the Se atoms inside the material. The details about these 

experiments will be discussed in Chapter 2 and Chapter3. 

1.2 Graphene 

 Although the unusual band structure of graphene had been predicted as early as in 1946,26 the 

actual graphene material was first isolated only after 2004.4,5 Graphene can be easily obtained by 

exfoliating bulk graphite materials with scotch tape onto SiO2 substrates in the form of graphene flakes 

with a size of tens of microns. The graphene flakes are then identified and fabricated into electronic 

devices through the methods of modern nano-technologies. 

 The unique properties of graphene come from its unique lattice structures.7 As demonstrated in 

Fig 1.4(a), the graphene material consists of a plane of carbon atoms packed in a honeycomb lattice. 

One s-orbital and two p-orbitals of the carbon atom undergo sp2 hybridization, which form three 

identical orbitals sitting in the plane of the graphene. The other pz-orbital is perpendicular to the 

graphene plane (Fig 1.4(b)). The three in-plane orbitals form the σ bonds, which results in the 

honeycomb lattice structure. The perpendicular pz-orbital forms π bond and contributes to the 

electronic structure of graphene. 
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 Each unit cell of graphene has two distinctly different atomic sites we label as atom “A” and “B”. 

By solving the tight-binding model, the energy band of graphene can be written as: 

)()(3)( kftkftkE
vvv

′−+±=±                     (Eq 1.1) 

with              )
2
3cos()

2
3cos(4)3cos(2)( akakakkf xyy +=

v
. 

The “+” and “-” sign here denotes the electron and hole energy bands. The quantity “a” is the lattice 

constant of graphene. t and t' denote the nearest neighbor hopping and the next nearest neighbor 

hopping energies. If only the nearest neighbor hopping is considered, the energy bands of electron and 

hole are symmetric. Fig 1.5 demonstrates the energy band of graphene. We can clearly see that the 

energy band with linear dispersion appears at six Brillouin zone corners, which can be expressed as 

||)( kvkE F

v
h

v
=  with the Fermi velocity vF ~ 1×106 m/s.7 

(a)                                               (b) 

 

Fig 1.4 (a) The honeycomb lattice of graphene. Each unit cell of graphene consists of two different 

atomic sites “A” and “B”. The red vectors are the primitive vector of the unit cell. (b) The sp2 

hybridization of electron orbitals of carbon in graphene. 
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Fig 1.5 The energy band structure of graphene. In the Brillouin zone, there are two energy bands 

corresponding to π and π∗ orbitals. The linear dispersion is demonstrated at the Brillouin zone conner. 

(Castro Neto et al.,Rev Mod Phys 81, 109-162) 

 

 If we consider only the nearest neighbor hopping (t'= 0 in Eq 1.1), the Hamiltonian of graphene 

can be written exactly in the form as in the relativistic Dirac equation with zero effective mass and 

electron-hole symmetry.7 This gives rise to many interesting properties, for example the half integer 

quantum Hall effect and the Klein tunneling etc.5,6,27,28 The relativistic nature of graphene ensures it to 

carry electrical transport at very high mobility, making it a good candidate for fast electronics. While 

the unusual band structure of graphene gives rise to many interesting phenomena in electrical transport 

properties that have been under extensive experimental investigations. In solids, both charge and heat 

flows are simultaneously generated when an electrochemical potential or a temperature gradient is 

present, leading to additional effects. Fundamentally related to the electrical conductivity, other 

transport coefficients such as thermal conductivity and thermoelectric coefficients are also determined 

by the band structure and scattering mechanisms. In Chapter 4 and Chapter 5 of this thesis, we will 

demonstrate our thermoelectric study of the Dirac fermions in graphene, especially under the quantum 
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Hall regime, where the anomalous properties of the thermoelectric transport of the Dirac fermions are 

demonstrated. 
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Chapter 2 Fabrication techniques of Bi2Se3 devices and experimental setup 

 A major issue of the application of topological insulator materials in electrical transport is the 

control of the Fermi level.18-25,29 The electron or hole carriers near the Fermi level determine the 

electrical transport properties of a material. In order to utilize the novel properties of topological 

surface carriers, the Fermi level has to be controlled to only cross the surface energy band, i.e. to stay 

inside the gap of the energy band of the bulk material. Among all the topological insulator materials, 

Bi2Se3 hosts the largest band gap (300 meV) and a single surface Dirac cone inside it.13 Nano-scale 

Bi2Se3 material, such as thin flakes, also has an enhanced surface to volume ratio compared to its bulk 

counterpart, which results in a lower bulk carrier density. The 2D carrier density of a Bi2Se3 thin flake 

is scaled as 1/thickness. Hence, methods of thinning down the bulk Bi2Se3 materials are performed and 

will be demonstrated in this chapter. Furthermore, the decrease of the bulk carrier density in the 

nano-device also enables the tuning of both the surface and the bulk Fermi level with an electrostatic 

gate, which provides the advantage of electronically controlled transport of the topological surface 

states.24,25,30,31 

2.1 Bi2Se3 thin flake preparation 

2.1.1  Crystal structure of Bi2Se3 

 Bi2Se3 is a binary compound with rhombohedral structure. Fig 2.1 shows the unit cell of the 

crystal. Eight Se atoms forms a structure that resembles a cube stretched along its diagonal direction 

(111), while another two Se atoms and two Bi atoms are evenly distributed along that direction. If we 

look from the (111) direction, the crystal structure of Bi2Se3 can be set equivalent to a hexagonal lattice. 

The Se layer and Bi layer are stacked in sequence onto the hexagon sites. From Fig 2.1, we can see that 
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the stacking sequence is repeated by the block Se-Bi-Se-Bi-Se so called a quintuple layer. The adjacent 

quintuple layers have two Se atoms as neighbors, which are bonded by Van der Waals force. Inside the 

Se-Bi-Se-Bi-Se block, the bonding is covalent. The strength of the Van der Waals force is much 

weaker than the covalence bonding force. Hence, Bi2Se3 is much easier to be cleaved between the 

quintuple layers and form a thin piece by repeated cleaving. If proper techniques are taken, it can even 

be thinned down to one quintuple layer, which is about 1nm in its thickness.30,31 With this unique 

structure, peeling-off process is superior to form thin flake Bi2Se3 crystal in order to reduce the bulk to 

surface carrier ratio and obtain electrostatic gate control. 
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Fig. 2.1 Crystal structure of Bi2Se3. (a) The unit cell of Bi2Se3. (b) The crystal structure along the 

c-axis direction. The clear Se-Bi-Se-Bi-Se quintuple layer can be seen. (c) The packing sequence from 

the top view in (b). 

 

2.1.2  Bi2Se3 crystal and thin flake preparation 

 Single crystal Bi2Se3 is synthesized by the solid-state reaction method. A multistep heating 

process is performed to form the final crystal as described in the paper Z. Wang Appl. Phys. Lett. (2010) 

32. The resulting compound can be easily cleaved from the crystal chunk of as shown in Fig 2.2. The 

thickness of the cleaved piece is in the range of 10 to 100 µm. The resistivity and Hall coefficient of 

the cleaved piece are measured via Van der Pauw method. Fig 2.3 shows typical measurement 

(a) (b)

(c) 
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geometry. Thin gold wires are attached to the sample with indium dot. The clover-leaf shape of the thin 

piece is designed to minimize the irregularity of the shape of the indium dot contact to the transport 

measurements. The measurements demonstrate that the pure Bi2Se3 crystal piece is always metallic 

with n-doping. However, theoretically, all the conduction bands of a Bi2Se3 crystal should be empty 

and all the valence bands should be filled up.13 Hence, the Fermi level should stay exactly in the band 

gap. The n-doping observed from the experiment is not intrinsic. Previous researches attributed the 

n-doping to Se vacancies.29,33,34 The negatively charged Se vacancy defects pin the Fermi level of the 

material inside the bulk conduction band.  

                

Fig 2.2 Bulk crystal of Bi2Se3. The method of preparing the crystal is discussed in the paper Z. Wang 

Appl. Phys. Lett. (2010) 32 

 

                                

Fig 2.3 The cloverleaf geometry of a Bi2Se3 flake for the vdP measurement. 

 

1 mm
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 To push the Fermi level down into the band gap, Ca-doping is utilized. The purpose of the 

Ca-doping is to use Ca atoms to substitute the Bi atoms, which creates holes. It forms a compound with 

the form of CaxBi2-xSe3.29 Systematically doping of Ca effectively brings the Fermi level into the band 

gap resulting in an insulating material.32. Fig 2.4 demonstrates the typical insulating behavior of the 

temperature dependence of the resistance as Ca atoms are doped into the material. 

                      

Fig 2.4 The temperature dependence of the Ca doped Bi2Se3 as a function of doping level. This data 

is from the paper: Z. Wang Appl. Phys. Lett. (2010) 32 

 

 Further thinning down is performed on the compensated CaxBi2-xSe3 compound. In our material, 

the compensated doping condition happens at 1.2% Ca doping level, where the carrier density changes 

sign. The layered structure of Bi2Se3 as introduced in section 2.1.1 is very similar to the layered 

structure of graphite. The binding force between the adjacent quintuple layers is Van der Waals force. 

The process of peeling-off graphene from graphite is already well known and has been widely used.4 

Similar exfoliation procedures are taken to further thin down the cleaved CaxBi2-xSe3 piece. The 

CaxBi2-xSe3 piece is first sandwiched between two scotch tapes. Then the two scotch tapes are detached 

to exfoliate the crystal into thinner pieces. This process is repeated until very faint region of the crystal 
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is left on the tape. The tape is then attached onto SiO2 wafer surface and pressed with tweezers. After 

about 10~20 mins, the tape is carefully detached from the SiO2 wafer. The scotch tape should be 

detached starting from one side of the wafer and slowly to the other side. In the end, the thin flakes of 

CaxBi2-xSe3 compound with the size of ~10 µm are left on top of the SiO2 wafer and can be located 

through an optical microscope. The condition of the wafer surface is important to whether thin flakes 

can be exfoliated. The detailed recipe of the wafer cleaning that we use is listed below: 

(1.) The Si/SiO2 wafer is soaked inside acetone at temperature 60 degree C for about half an hour. 

This process is taken to remove the organic layer covered on top of SiO2. 

(2.) The wafer is then rinsed with acetone (20 sec), IPA (20 sec) and DI water (20 sec). Clean 

nitrogen gas is used to dry the wafer. 

(3.) The wafer is then soaked in side 29% ~ 36% H2O2 solutions for about 20 min and rinsed with 

DI water in the end. The oxidation provided by H2O2 further cleans the wafer surface. The 

sticking between the SiO2 and the Bi2Se3 flake are proven to be better after this process. RIE 

cleaning can also be taken; however, it may induce extra charges and damages to the wafer 

surface. 

 Another type of tape is also used to minimize the tape residue on wafer surface. The order 

information is Clear Low Tack Roll, part# 19161 from Semiconductor Equipment Corporation. This 

recipe is first invented by Xinfei Liu in our group and is widely used in our group now. The same 

procedure can also be utilized to exfoliate Bi2Se3 on top of SrTiO3 (STO) insulating surface. 
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2.1.3  Thin flake location and identification 

 Thin flakes of Bi2Se3 are located under an optical microscope. Similar to the identification of 

graphene flakes, the color contrast examine method is used here to tell the thicknesses. However, 

different from graphene, under the microscope it is hard to tell the color contrast of bare Bi2Se3 flakes 

with different thicknesses on top of SiO2 wafer as shown in Fig 2.5. 

 

Fig 2.5 The optical microscope image of bare Bi2Se3 flakes on 300nm SiO2. The optical color 

contrast is low and is hard to tell the difference between thick flakes and thin flakes. 

 

 In order to enhance the color contrast, after exfoliation of the thin flakes, we coat a layer of 

PMMA on top of the wafer surface without baking. PMMA (polymethyl methacrylate) is a polymeric 

material commonly used as the masking material in electron beam lithography processes. In our 

method, the wafer is coated with 950 PMMA A-4 under 4000 rpm for 45 sec, which will result in a 

polymer thickness of around 200 nm (Fig 2.6). 

30 µm 
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Fig 2.6 The thickness of PMMA electron beam resist as a function of the coating speed. (from 

MICRO CHEM PMMA data sheet) 

 

 After the PMMA coating, the wafer surface is then examined under the microscope. As a result of 

the coating, the color contrast of the flakes becomes sharper. As shown in Fig 2.7, the flake color 

becomes red. The thinner the flake, the darker its color looks. Over the view of the microscope, we can 

see clearly a variation of the color on different flakes. The reason of the color contrast can be simply 

explained in the following way. As show in Fig 2.7(b), the light source of the microscope shines light 

on to the surface of the wafer. Because the surface is covered with PMMA, the light needs to penetrate 

through it in order to be reflected by the thin flake surface. The thickness of the PMMA layer is 200 nm 

comparable to the typical thickness of the thin flakes, which is between 10 to 100 nm (Fig 2.8). The 

thinner the flake, the longer the light needs to travel inside the PMMA in order to be reflected back to 

the object lens of the microscope, hence the lower intensity of the light. This method provides a 

convenient way in telling the thickness differences of the thin Bi2Se3 flakes. 
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Fig 2.7 (a) The optical microscope image of Bi2Se3 flakes covered by 200 nm thick PMMA on 300 

nm SiO2. The color contrast between thick and thin flakes is more obvious. (b) The schematic 

demonstration of the light absorbed through the PMMA layer. 

 

 The color contrast is then confirmed by the atomic force microscopy (AFM) measurements. Fig 

2.8 shows an AFM scan over a region of the flakes in the optical image of Fig 2.7. The upper-left 

image is the optical image. Within the boxed region, thicknesses of two flakes I and II are measured 

with AFM. Their thicknesses are ~ 30 nm and ~ 20 nm. The dark flake has a lower thickness. With this 

technique examined by AFM measurements, we are able to quickly select flakes of different 

thicknesses before fabricating devices from them. It largely shortens the processing time of the 

nano-fabrication process.  

wafer 
PMMA

Optical microscope

30 µm 

(a) (b)
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Fig 2.8 The color contrast of the Bi2Se3 flakes is confirmed by the AFM measurements. The 

upper-left is the optical image and the right top is the AFM image of the same region of flakes. 

 

2.2 Device fabrications of Bi2Se3 thin flake 

 In this section, three device fabrication techniques are introduced. The purpose is to minimize the 

damage to the Bi2Se3 thin flakes. 

2.2.1  Strong degradation of Bi2Se3 material under ambient condition 

 With all the beautiful properties of Bi2Se3 predicted, however, in experiments people find that the 

surface of this material is unstable even in an ultra-high vacuum. ARPES measurements show that 

30 µm
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upon cleavage of the Bi2Se3 crystal, the Fermi level is evolving with time. Fig 2.9 shows a typical 

ARPES measurement by D. Hsieh et al. from Princeton group in ultra-high vacuum.35 Clearly we can 

see that 15 min after cleavage the Fermi level still stays inside the bulk energy band gap. However, it 

keeps rising until it reaches to the bottom of the conduction band after about 18 hours. The reason of 

this is attributed to the forming of the Se vacancies on the cleaved surface of the material, which shifts 

the Fermi level and results an n-doping to the material.  

 

Fig 2.9 The ARPES data of the changing of the Fermi level in Bi2Se3 film in ultrahigh vacuum. This 

data is from the supplementary information in the paper Hsieh, D. et al. Nature 460, 1101-1159. 

 

 The transport studies revealed the same effect. Fig 2.10 shows the systematic results of the 

environmental effects to the transport properties of Bi2Se3 by J. G. Analytis et al. from Stanford 

group.20,21 In Fig 2.10(a), a short exposure (1~2 hours) of the material to atmospheric environment 

sharply removes the surface quantum oscillations features from the data of the original sample. In Fig 

2.10(b), the sample is exposed under humid environment at 50 degree C for an extended time. From the 
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temperature dependence of the resistivity data, a clear decrease of the insulating behavior can be seen. 

The degradation becomes stronger as the exposure extends longer. All these evidences demonstrate that 

special care needs to be taken in order to protect the Bi2Se3 material during the transport studies. 

 

Fig 2.10 The strong degradation of Bi2Se3 sample under atmospheric exposure (a) and under moisture 

condition (b). This data is from the supplementary information in the paper Analytis, J. G. et al. Nat 

Phys 6, 960-964. 

 

2.2.2  LOR protected device fabrication process 

 The fabrication of Bi2Se3 thin flake devices can take the standard electron beam lithography 

process similar to graphene as mentioned in a lot of references.23-25 I will not go through the detailed 

process of the standard lithography here. However, during that process, the flake is exposed to 

atmospheric environment whenever a lift-off is performed and the final device is also exposed to air 

during transport measurements (Fig 2.11). 

(a) (b)
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Fig 2.11 Schematic side view of a conventional Bi2Se3 device after nano-fabrication. 

 

 I demonstrate another special lithography process here (Fig 2.12), which always provides 

protection to the Bi2Se3 thin flake after it is exfoliated. A critical part is the proper utilization of the 

Lift-Off Resist (LOR). LOR resists are based on the PMGI (polymethylglutarimide) material. After the 

exfoliation of Bi2Se3 thin flake, the whole wafer is spin-coated with LOR and PMMA. Then the 

device pattern is written by the electron beam lithography (EBL). The energetic electron beam only 

changes the properties of the PMMA within the pattern region. After writing, the top PMMA pattern is 

dissolved in MIBK + IPA (1:3) solution for 65 sec. With the pattern of the PMMA as a mask, the 

device is soaked into MF-319 solution for 2~3 sec to dissolve the LOR. So the pattern is then 

transferred down to the LOR layer. A Ti/Au (10/120 nm) metal layer is then deposited on top of the 

wafer. It fills the pattern slot also. The PMMA dissolves in acetone, however, the LOR doesn’t. In the 

lift-off step, acetone is used to remove the PMMA layer as well as the metal layer on top. In the end, 

the device is fabricated with a LOR layer covering the Bi2Se3 thin flake. Note that the Bi2Se3 thin flake 

is covered with LOR right after it is exfoliated. It provides a shield over the flake to protect it from the 

degradation to the atmospheric environment. In Fig 2.13, a typical optical microscope image of the 

device has been shown, which is fabricated with this method. 

wafer 

Metal contacts 

Bi2Se3 thin flake
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Fig 2.12 Demonstration of the nano-fabrication processes of the LOR protected Bi2Se3 device. 

 

 

                  

Fig 2.13 Optical image of one of the LOR protected Bi2Se3 device. The device is covered by a LOR 

resist and the image of the flake is not as clear as the one for bare Bi2Se3 device. 
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2.2.3  Low energy electron beam lithography 

 Although method 2.2.2 provides a convenient way to protect Bi2Se3 thin flakes from the 

atmosphere, it is not the only source of degradation to the flake. In our experiment, we also found that 

the electron beam irradiation also affects the device. High energy or large beam current electron beam 

irradiations strongly destroy the device mobility. The detailed discussion will be provided in chapter 3. 

 In conventional EBL writing process, the electron beam energy is in the range of 20 ~ 30 keV. 

The purpose of the electron beam is to locally irradiate a positive resist so that only the exposed region 

of the resist is washed away in the later dissolving process. However, the energetic electron beam has 

the ability to interact with the irradiated material. The higher the electron beam energy the larger the 

beam-specimen interaction will be. Fig 2.14 shows the qualitative dependence of the beam-specimen 

interaction volume v.s. beam energy. 

                  

Fig 2.14 Schematic view of the penetration depth of the electron beam in the SEM with respect to the 

beam energy. 

 

 Furthermore, the electron beam with energy of 20 or 30keV can easily penetrate through the 

lithography resist and reach the Bi2Se3 thin flake underneath.36 Fig 2.15 shows the theoretical 
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calculation of the penetration capability of electron beams with different energies through a 200 nm 

PMMA and a 300 nm PMMA. 5 keV is already enough to penetrate through 300 nm PMMA layer. 

        

Fig 2.15 Calculation of the penetration depth of the electron beam in SEM with respect to the beam 

energy. This data is from the paper Peterson, P. A. et. al., J Vac Sci Technol B (1992).36 

 

 I demonstrate here a special lithography technique in order to prevent the electron beam 

irradiation to the thin flake. This method uses bi-layer lithography resist LOR-3B + PMMA (thickness: 

300 nm+200 nm). The electron beam energy used for writing is only 4 keV. The idea of this method is 

to control the electron beam to only interact with the top PMMA layer rather than penetrating through 

both LOR and PMMA layers. The LOR layer does not require electron beam exposure and the pattern 

can be transferred onto it with the top PMMA layer acting as a mask, which is similar to the process 

shown in Fig 2.12. 

 Fig 2.16 shows the comparison between conventional EBL and low energy EBL. The recipe is 

tested in the following way. Different electron beam energies (2keV, 3keV and 4keV) are used to write 

test patterns onto the LOR+PMMA bi-layer resist. After that, PMMA is developed to form a mask. 

Then MF-319 solution is used to etch the LOR through the mask. If the LOR can not be etched, it 

means that the PMMA is not fully penetrated by the electron beam. Then larger beam dosage is used to 
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test again. If sufficiently large beam dosage is used and it still can not penetrate through the PMMA, a 

higher acceleration voltage is used to repeat the test. In our recipe, we use a 4 keV electron beam with a 

70 µC/cm2 for the writing of thin lines (~ 0.8 to 2.0 µm) and 150 µC/cm2 for the writing of thick lines 

( > 2.0 µm). 

 

Fig 2.16 Demonstration of the nano-fabrication processes of the low energy electron beam 

lithography. 

 

 Fig 2.17 shows an optical image of a typical device fabricated using low energy electron beam 

lithography. The Bi2Se3 flake is also covered by LOR layer after the exfoliation as mentioned in section 
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2.2.2. With this method, we can protect the device both from the affect of atmospheric environment 

and from electron beam irradiation. 

                            

Fig 2.17 Optical image of the Bi2Se3 device made by low energy electron beam lithography. The 

Bi2Se3 flake is also covered by the LOR resist here. 

 

2.2.4  Lithography free fabrication techniques 

  Although the two methods introduced in section 2.2.2 and 2.2.3 protect the Bi2Se3 thin flake to 

some extent, the resulting devices still behave strong n-type doping compared to its original bulk 

material. Very clear evidence is from temperature dependence of the resistivity. As it is shown in Fig 

2.18, even though the thin flake is exfoliated from insulating bulk material, the nano-device still 

behaves metallic. The field effect mobility of these devices is also very small (around or less than 1000 

cm2/Vs). 

 

 

 

 

 

 

7 µm 
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Fig 2.18 (a) Temperature dependence data of the bulk Bi2Se3 material the same as in Fig 2.4. (b) The 

temperature dependence of the device made from the compensated material as in (a), however, its 

shows a metallic behavior. A SEM image of one typical device is in the inset. 

 

 Some other sources must still exist that affect the Bi2Se3 device. Comparing the methods in 

section 2.2.2 and 2.2.3 with the conventional EBL processes, the common process that is still not 

improved is the spin coating and baking of the lithography resist. The lithography resist is one kind of 

solvent. After the spin coating, hotplate baking is used to remove the solvent. The baking temperature 

is as high as 170 ºC. From the discussions in the second part of section 2.2.1, the degradation of the 

Bi2Se3 material becomes extremely strong under the warm humid environment.20,21 Hence, an effective 

method is needed to overcome the damage from this process. 

 Here we introduce our lithography free fabrication method. As shown in Fig 2.19, the 

measurement electrodes are pre-patterned on a blank wafer. The Bi2Se3 thin flakes are then exfoliated 

onto the electrodes. The exfoliation is achieved with similar scotch tap method as mentioned in section 

2.1.2. A rough alignment is performed under an optical microscope to aim the flake region on the tape 

toward the electrode region on the wafer. However, extra care needs to be taken to press the tape firmly 
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to the surface of the electrodes and to peel-off slowly in order to achieve good contact. The design of 

the electrodes is also important. First, it needs to provide basic measurement capabilities, for example, 

four-terminal resistance or van der Pauw measurements. Then, the pattern needs to be dense enough so 

that there is a higher chance for the randomly exfoliated Bi2Se3 thin flakes to sit on top of the 

electrodes.  

 

Fig 2.19 Schematic pictures of the lithography free device fabrication method. 

 

 Fig 2.20 shows one demonstration device for four terminal resistance measurements. The typical 

contact resistance is on the order of 1 kΩ. This type of device can be taken for transport measurement 

immediately after exfoliated and does not go through any lithography process that degrades its 

properties. Our transport measurements on this type of device show a preserved insulating behavior 

similar to its original bulk material, which indicates the minimized degradation. Detailed measurement 

results will be demonstrated in Chapter 3. 

wafer wafer 

pre-patterned electrodes Bi2Se3 thin flake 
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Fig 2.20 One typical nano-device made through the lithography-free method. The top image is an 

optical image and the bottom image is a SEM image. 

 

2.3 Experimental setup 

2.3.1  Device mounting 

 After device fabrication, the device-containing chip is directly held onto a chip carrier with silver 

paste. The 20-pin chip carrier is purchased from SPECTRUM SEMICONDUCTOR MATERIAL, Inc. 

(part number: CSB02039). The dimensions of the chip carrier are displayed in Fig 2.21 with the unit in 

inches. The substrate has two layers. The top layer is 300 nm SiO2 and bottom layer is 500 µm highly 

doped silicon (0.001~0.005 Ω·cm). The surface of the chip carrier is coated with a gold conducting 

layer and is directly connected to pin “DB” while electrically insulating to all other pins. Because the 

device-containing chip is glued on to the chip carrier with conductive silver paste, the pin “DB” is 

connected directly to the back gate of the device. During the mounting, all the pins of the chip carrier 

are kept inserted in conductive foam to make sure every pin is properly grounded until the device is 

4 µm
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going to be loaded into the transport measurement system. Then wire bonder is used to connect the 

electrodes of the device to the pins on the socket. 

 

Fig 2.21 Dimensions of the chip carrier for the device mounting. This design image is from the 

manual of the 20-pin socket from SPECTRUM SEMICONDUCTOR MATERIAL, Inc. 

 

2.3.2  Electrical transport measurements 

 The transport measurements are performed in an OXFORD VTI (variable temperature inert) 

system covering a temperature range from 1.5 up to 300 K. A standard SR830 lock-in amplifier is used 

for the resistance and Hall resistance measurements. Because the lock-in amplifier has a voltage output 

which can be used as a source, we anchor it with a large constant resistor R0 to hold the current of the 

(a) top view: 

(a) side view: 
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measurement circuit as a constant. The value of the resistance R0 needs to be much larger that the 

device resistance (Fig 2.22). We use a 15 MOhm resistance as the anchor resistor while the device 

resistance is at the level of several kOhm. The lock-in frequency we use is 1.2727 kHz with a time 

constant of 30 ms. 

 

Fig 2.22 Typical circuit diagram of the lock-in measurements of the device resistance. 

 

 For the samples with larger and thicker flake size, we utilize the Van der Pauw (vdP) 

measurement geometry.37 The sample flake can be cut into a rectangular shape or into a clover-leaf 

shape as shown in Fig 2.3. In vdP measurements, it states that for a sample with uniform thickness but 

an irregular shape as in Fig 2.23, the sample resistivity can be determined by measuring the resistances 

as 
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following equation: 
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                (Eq 2.1) 

Here d is the thickness of the sample film and ρ is the resistivity. This equation can be solved 

numerically through Mathematica software. Although vdP method doesn’t depend on the shape of the 
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samples, in real cases it is still better to cut the sample as regular as possible to get rid of the problem 

related to the uniformity ness of the sample. 

 

Fig 2.23 The arbitrary geometry of the sample film for the vdP analysis. Four contacts leads are made 

at the edge of the sample at the points “P”, “O”, “N” and “M”. 

 

 For the Hall measurements in vdP geometry, the voltage leads of “P” and “N” do not have to be 

perpendicular to the flow of the current, because the voltage between “P” and “N” is identical to the 

voltage path from “P” to “ N’ ” and from “ N’ ” to “N”. The path of P-N’ is perpendicular to the 

current flow. The voltage between N’ and N will be canceled before and after applying the magnetic 

field. This is only true when we don’t consider the magnetoresistance of the sample. If 

magnetoresistance exists, the voltage between N’ and N before and after applying the magnetic field 

will not cancel each other. However, this can be solved by applying negative direction of the magnetic. 

Upon applying negative direction of the magnetic field, the voltage between P and N’ will changes sign, 

while the voltage between N’ and N stays constant. Hence subtracting these two signal will give twice 

of the Hall voltage in vdP geometry. 



 34

 

Fig 2.24 The geometry of the sample film in the vdP measurement of the Hall resistance. vdP method 

states that the transverse leads do not need to be perpendicular to the flow of the current, which makes 

vdP method still valid in the measurement of the Hall resistance. 
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Chapter 3 Electrical transport properties of the high mobility states in Bi2Se3 

band gap 

 One of the promising properties of the surface states of a topological insulator is its 

spin-momentum locking. As a consequence of this, an extra energy is required to reverse the 

momentum of the electron, because it also requires spin flipping. Hence, on the surface of a 3D 

topological insulator with non-magnetic impurities, the momentum scattering is suppressed.16,17 The 

suppression of the momentum scattering will lead to high mobility electrical transport. This property is 

quite similar to the condition in the Quantum Hall state; however, no external magnetic field is 

necessary in the case of a topological insulator. In our research on the electrical transport of topological 

insulators, we aim to demonstrate this enhanced mobility for the topological surface states. 

3.1 Control the Fermi level in Bi2Se3 thin flakes 

3.1.1  Issues of the Fermi level modulation 

 Two major issues exist in the Fermi level modulation of the Bi2Se3 thin flakes.  

 The first issue is the atmospheric doping and degradation induced Fermi level change after the 

exfoliation of the thin flakes as mentioned in section 2.2.1. The consequence of this makes it very hard 

to control the Fermi level in thin flakes even though the doping of the bulk material is properly 

controlled. The effect of degradation becomes much stronger in smaller and thinner nano-devices. 

 In our studies, more than a hundred nano-devices have been made through nano-fabrication 

processes. These devices are always n-type metallic even the original materials is at the compensation 

point (Fig 2.18). To reach p-type device, very large p-doping material is necessary. Fig 3.1 shows two 

typical devices exfoliated from p-type bulk material. The bulk material is Ca0.02Bi1.98Se3, which has a 
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Ca doping level of 2%. As indicated in the paper Z. Wang Appl. Phys. Lett. (2010) 32, 2.0% Ca is the 

highest doping among all our materials. The bulk material we used to make the devices in Fig 3.1 has a 

p-type carrier density of about 3.62×1018 cm-3. However, after exfoliation and device fabrication, 

Device (I) has a p-type carrier density of about 1.42×1019 cm-3, while Device (II) has a n-type carrier 

density of about 8.25×1018 cm-3. The decrease and even the sign change of the Hall coefficient in 

nano-device strongly indicates that the nano-fabrication processes increase the Fermi level of the thin 

flake material. From the device images we can see that Device (I) is a very large (~10 µm size) and 

thicker (70 nm) piece and Device (II) is extremely small (~1 µm size) and relatively thinner 

(approximately ~ 20 nm). The results indicate a stronger degradation in smaller samples. Furthermore, 

as shown in Fig 3.1, the gate modulation of the resistivity is very small and the field effect mobility is 

only about 400 cm2/Vs, which indicates the trivial carriers dominate the electrical transport. 
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Fig 3.1 Devices made from the p-type Bi2Se3 material with 2.0% Ca doping. The device in (a) has a 

size of 10 µm and thickness of 70 nm. The device in (b) has a size of 2 µm and an estimated thickness 

around 20 nm. The results in (c) and (d) demonstrate that both of the devices have their Hall 

coefficients changed after the lithography compared to the value in the bulk material and Device II 

even becomes n-type. 

 

  The second issue is the surface band bending, which has a similar effect to the electrostatic gate 

modulation of the Fermi level.35,38 In Fig 3.2, a schematic band structure of Bi2Se3 is demonstrated. The 

surface of Bi2Se3 material is exposed to a vacuum or atmosphere. It tends to be n-doped due to the 

formation of Se vacancies and results an increase of the surface chemical potential with respect to the 
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inner bulk. The electrons will then diffuse from Bi2Se3 surface toward the bulk to align the overall 

Fermi level. In the end, positively charged Se vacancies sites are left, which forms local electric field 

near the surface and bends the energy band downward. The bending of the bulk energy band will form 

2D electron gas states near the surface as well as shift the relative surface Fermi level. Hence, even 

though the bulk material has its Fermi level staying inside the band gap, the surface energy band could 

still be n-doped and could be covered by surface 2DEG states.38 In Bi2Se3 nano-devices, this band 

bending can be overcome by utilizing both top and bottom electrostatic gating. 

       

Fig 3.2 Formation of the surface quantum well states for n-type Bi2Se3 due to the existence of Se 

vacancies on the sample surface. 

 

 However, in order to achieve surface dominated transport, the overall Fermi level has to be 

controlled inside the bulk band gap, which will be represented by an insulating behavior of the 

temperature dependence of the resistance in the nano-devices. 
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3.1.2  Achieve insulating devices and p-type devices 

 With the lithography-free method presented in section 2.2.4, the degradation to the nano-devices 

can be minimized and the Fermi level of the thin flake devices can be maintained similar to its original 

bulk material. The devices can be taken for measurements right after the exfoliation. Contrary to the 

results shown in Fig 2.18, which always gives metallic devices from the compensated material, Fig 3.3 

shows the resistivity vs. temperature for two typical devices made by the lithography-free method from 

1.2% Ca doped compensated CaxBi2-xSe3 material. Comparing to the data shown in Fig 2.18, the 

nano-fabricated device has a resistivity of about 1mΩ·cm at low temperatures, however the 

lithography-free devices have a resistivity about one order larger. More over, the device resistance 

increases as temperature decreases, which indicates an insulating behavior and cannot be observed in 

all devices made by nano-fabrication methods. The p-type devices can also be obtained with this 

method by exfoliating thin flakes from p-type bulk materials. 

 

 

 

 

 

 

 

 

 



 40

         

0 100 200 300
5

6

7

8

9

10

11

12

T (K)

ρ 
(m

Ω
•c

m
)  Device #1

 Device #2

exfoliated from 1.2% Ca doped CaxBi2-xSe3

material at the compensation point

 

Fig 3.3 The temperature dependence of the devices made by lithography-free method from the 

compensated material. Both of the devices show insulating behavior. 

 

 The two devices in Fig 3.3 are exfoliated from the same bulk material; however, their temperature 

dependences are different. This probably comes from the non-uniformity of the bulk material near the 

compensation doping level. The temperature dependence does not resemble a simple activated behavior, 

which also indicates some degree of non-uniformity. The existence of the non-uniformity results 

certain randomness on the position of the Fermi level among exfoliated thin flakes. To achieve a 

systematic continuous control of the Fermi level, other methods are necessary, which should be able to 

induce a large change of the carrier density directly to the nano-devices. Furthermore, as discussed in 

chapter 1, the Dirac point of Ca doped Bi2Se3 is closer to the valence band top rather than to the 

conduction band minimum. Starting from p-type device will be more convenient to access the 

information of the Dirac point. In the following section, I will demonstrate the effect of the electron 
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beam irradiation on the electron density in nano-devices. Together with the p-type device and electron 

beam irradiation, we are able to systematically sweep the Fermi level from valence band up across the 

Dirac point. 

3.1.3  The effect of the electron beam irradiation 

 In our transport studies of Bi2Se3 nano-devices, we found a strong effect of electron beam 

irradiation, which will increase the electron density. Fig. 3.4 demonstrates a typical device made by 

lithography-free method. The unique character of this device is that it is on top of a gapped cross bar. 

This character provides a possibility of performing Hall measurements. 

 The temperature dependence of the pristine device resistance (Fig 3.4 (a)) behaves insulating, 

while the Hall resistance is non-linear and dominated by electron carriers. As the temperature drops, 

the resistance increases by more than two-fold and the resistivity at low temperature (1.5 K) is about 

11.2 mΩ·cm. The pristine device is then exposed to high density electron beam irradiation, which has 

a total dosage of about 0.56 C/cm2 (equals to about 3.52×1018 electrons/cm2), and cooled down to low 

temperature quickly after the irradiation. After the exposure, the divergent behavior of the temperature 

dependence of the resistance becomes much weaker (red curve in Fig 3.4 (a)) and the resistivity at 1.5 

K drops to about 6.6 mΩ·cm. From the Hall resistance measurements (Fig 3.4 (b)), we can see that 

before exposure the electron density is about 4.1×1013 cm-2 at 1.5 K, but after exposure it becomes 1.3

×1014 cm-2. This strongly supports that the electron beam irradiation increases the electron density in 

thin flake devices. 

 The Hall mobility of the device is also estimated. It is about 403 cm2/Vs before the exposure, and 

changes to about 214 cm2/Vs after the electron beam irradiation. Although the temperature dependence 
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of the resistance shows an insulating behavior, it is not a simply activated behavior with a single barrier. 

Combining the fact that the Hall resistance is non-linear and is dominated by electron carriers, multiple 

conducting channels should exist together inside the system and the Fermi level position should be 

similar to the position in Fig 3.2. Hence, rather than dominated by high mobility surface states, the 

mobility of the pristine device is still low. The effect of the electron beam irradiation increases the 

Fermi level up closer to the bulk conduction band and, as a result, lowers the Hall mobility of the 

device. To utilize the effect of the electron beam irradiation and extract the topological surface states in 

transport, we need p-type starting device. 

 

Fig 3.4 Effect of large dose electron beam irradiation for a pristine lithography-free device. After the 

irradiation, the temperature dependence becomes more metallic and the electron density increases. 

 

3.1.4  Fermi level modulation using electrostatic gating 

 Another method of tuning Fermi level in thin flake device is the electrostatic gating. Extra 

electrons can be added or extracted from Bi2Se3 thin flakes utilizing the geometry of a parallel 

capacitor. This geometry has been widely used in graphene devices. Fig 3.5 demonstrates the geometry. 
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The Bi2Se3 thin flake is considered as one of the capacitor plates. The doped silicon wafer is considered 

as the other plate. The SiO2 layer is the dielectric layer inside the capacitor. In the measurement, the 

Bi2Se3 thin flake is set to ground and the gate voltage is applied through the doped silicon wafer. 

            

Fig 3.5 The geometry of the back gating of a conventional Bi2Se3 device. 

 

 The added charge can be calculated with Eq. 3.1, which reflects the carrier density change inside 

the device. Here ε0 and ε are the vacuum permittivity and the dielectric constant of the insulating layer 

(ε = 3.9 for SiO2). The thickness of the layer is d ~ 300 nm. Fig 3.6 demonstrates the electrostatic 

gating data of a typical device. The carrier density is measured from Hall resistance. The plot of the 

carrier density vs. gate voltage shows a straight line with a slope of 7.43×1010 cm-2/V, which is close 

to the value calculated from 300 nm SiO2. In our measurements we found that normally a gate voltage 

sweep from -60 to +60 V is safe for the nano-devices. Larger gate voltage sweeping is relatively 

dangerous and will burn the device sometime. With a gate voltage sweeping of about 100 V, the carrier 

density can be tuned by ~ 1×1013 cm-2, which is relatively small and is suitable to fine tune the Fermi 

level. 
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Fig 3.6 The gate tuning of the carrier density in a conventional Bi2Se3 device. The carrier density is 

determined from the Hall measurement. 

 

 Different from graphene, which is a single atomic layer, the Bi2Se3 device always has a certain 

thickness of several tens of nanometers. The charge induced by the electrostatic gate tends to 

accumulate within a very thin layer near the interface between Bi2Se3 and SiO2. Hence, this method is 

most effective to tune the density of Bi2Se3 surface that is adjacent to the SiO2 layer. The details of the 

gate tuning will be further discussed in section 3.3. 

3.2 Temperature dependence of the device resistivity and the position of the Fermi level 

 Another superior advantage of p-type device can be seen by comparing Fig 3.2 with Fig 3.7. As 

mentioned in section 3.1.1, because of the formation of Se vacancies on the surface of Bi2Se3, the bulk 

energy bands bend downward in the depletion layer near the surface. The conduction band bottom near 

the surface is partially filled up (as demonstrated in Fig 3.2) and forms trivial 2D electron gas states, 

which participate in electrical transport and mask the properties of topological surface states. The 

existence of the 2D electron gas makes the device transport complicated, even though the Fermi level is 
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placed inside the bulk band gap. However, if the Fermi level is placed close or into the bulk valence 

band, such 2D states can not be formed. As demonstrated in Fig 3.7, because of the downward bending 

of the energy bend, the bulk valence band inside the depletion layer is fully filled up and does not 

contribute to electrical transport. Only the hole states inside the crystal and the gapless topological 

surface states contribute to the transport. Based on this initial p-type condition, if we can shift the 

Fermi level up out of the bulk valence band, then the only channels contributing to the transport will be 

topological surface channels and the temperature dependence of the device resistance will change from 

metallic type into insulating type. 

            

Fig 3.7 The demonstration that the quantum well states won’t be able to form on the surface of the 

p-type Bi2Se3 device, which shows the advantage of the p-type material. 

 

3.2.1  Experimental data 

 The p-type devices can be obtained from 1.4% Ca doped Bi2Se3 bulk material with lithography 

free method as mentioned in section 3.1.2. The device is then exposed under electron beam irradiation 

with controlled dosage. Fig 3.8 demonstrates a typical device, which is scanned by the electron beam. 
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The thickness of the device is around 200 nm. The temperature dependence of the device resistivity is 

shown in Fig 3.9 for different electron beam irradiation conditions as represented by the dosage listed 

in Table 3.1. 

                       

 Fig 3.8 The demonstration of the electron beam treatment to the pristine lithography-free device. 

 

 In its pristine state or D0 (Fig 3.9 (a)), the device clearly behaves metallic as indicated by a 

monotonic decrease of the resistivity as the temperature is lowered, with a residual 2D resistivity or 

sheet resistance of ~ 110 Ω/□ at 1.5 K, confirming that its chemical potential is located inside Bulk 

Valence Band (BVB). Upon receiving electron irradiation, a resistivity upturn appears at low 

temperatures, indicating an activated behavior. The higher the electron dose, the larger the increase in 

resistivity and consequently the onset of the resistance upturn is at a higher temperature. At sufficiently 

low temperatures, the activated behavior is taken over by saturation. The saturation resistivity value 

increases by nearly an order of magnitude, from 110 to 860 Ω/□, as the electron beam dosage 

progressively increases. Above some intermediate temperature ~150 K, the device returns to the 

metallic behavior, recovering the same temperature dependence as in the pristine state. This can be 

attributed to the dominance of the BVB carriers in the degenerate state. The temperature dependence is 
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completely reversible and the metallic behavior at high temperature is exactly repeated, suggesting that 

the electron beam irradiation only shifts the position of the chemical potential but does not destroy the 

properties of the device.  

 

Fig 3.9 (a) Temperature dependence of the device sheet resistance under different electron beam 

exposure conditions with a +60 V in gate voltage. The low-temperature residual resistance starts to rise 

as the device receives a higher dosage of electron beam irradiation. The inset shows the dependence of 

the zero-temperature sheet resistance as a function of electron beam dosage. The zero-temperature 

sheet resistance is obtained from fitting the curves in Fig 3.10 with the model described in the text. (b) 

Illustration of the chemical potential position for different electron beam exposures. The highest 

chemical potential is ~8 meV above BVB. 

 

3.2.2  The model of the temperature dependence 

 We then model the conductivity by 0)()( σσσ += TT B , where σB(T) represents the 

contribution from the thermally excited bulk carriers, which can be expressed in terms of the bulk 
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carrier mobility µB(Τ) and the hole density nh(T), i.e. )()()( TnTeT hBB µσ = . The total hole density 

nh in BVB can be obtained by integrating over all unoccupied states, 

εεε
ε

dfDn
v

hh )](1[)( −= ∫
∞−

with TkBe
f /)(1

1)( µεε −+
= , and µ being the chemical potential. Here 

we assume a 3D density-of-states Dh(ε) for bulk carriers with an effective mass mh*, and then we have 

TkBh
h

BveTkmn /)(2/3
2

*

)
2

(2 µε

π
−=

h
. Based on the fact that the resistivity curves overlap with each other in 

the degenerate state, we assume that the bulk mobility µΒ(T) is not sensitive to electron dosage. In the 

pristine state D0, the chemical potential is always located inside BVB. Just as in degenerate 

semiconductors or metals, its resistivity )(T
0Dρ or conductivity )(T

0Dσ  derives primarily from 

µB(T), i.e. )( ~ )( TT BD μσ
0

, which is assumed to be independent of electron dosage. Then the total 

conductivity is expressed as 0
/)(

2/3

)(
)(

0

σ
ρ

σ εµ += −− Tk

D

Bve
T

TAT , which fits very well to our 

low-temperature data with three fitting parameters: A, σ0 and (µ-εv) (Fig 3.10 (a)). In the inset of Fig 

3.10 (a), the activation energy (µ-εV), which is the slope of the straight lines in the 

])log[( 2/3
0 0

−− TDρσσ  vs. 1/T plot, increases as the electron dosage increases. At the largest dose, 

µ is shifted by the maximum amount to ~8.2 meV above the BVB edge, well into the band gap.  
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Fig 3.10 (a) Device conductivity as a function of temperature for different electron doses. Solid lines 

are the fits as described in the text. The inset shows the linear dependence of 

])log[( 2/3
0 0

−− TDρσσ  on 1/T, a thermally activated behavior. (b) Zero-temperature conductivity 

vs. chemical potential measured form the BVB edge. The blue dotted line is the quadratic fit described 

in the text. 
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Table 3.1 Electron dose (electron counts per unit area) and electron energy vs. resulting chemical 

potential position under different exposures. 

 

 σ0 is the conductivity at T=0, which decreases as a function of the electron dosage as displayed in 

the inset of Fig 3.9. σ0 stems from the extended states within the gap. Fig 3.10 (b) shows how σ0 varies 

with (µ-εV), the position of the chemical potential measured from the BVB edge. In general, σ0 is 

described by the mobility µg and the density of these carriers n(µ) in the gap, i.e. )()(0 µµµσ ne g= . 

If the conductivity is solely contributed by the gapless Dirac fermions, it should go to its minimum as 

the chemical potential inches towards the Dirac point. Let us assume that µg does not sensitively 

depend on the carrier density (shown in Fig 3.11), and the gapless surface states follow a linear 

dispersion relation. Then we have ( ) ( ) ( )[ ]22
0 vvDD εµεεµεσ −−−=−∝ , here εD being the 

 
Electron Beam Dose

( x1014 cm-2) 

Electron Energy

(keV) 

µ - εv

(meV)

D0 - - < 0 

D1 0.58 4.0 < 0 

D2 1.14 4.0 < 0 

D3 1.72 6.0 0.89 

D4 3.35 8.0 3.93 

D5 4.17 10.0 4.59 

D6 5.11 9.0 5.67 

D7 5.97 12.0 8.20 
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energy of the Dirac point and parameter (εD- εv) being the Dirac point position measured from the BVB 

edge. We fit this µ-dependence to the data in Fig 3.10 (b) and find that the Dirac point is located at 

~6.7 meV above the BVB edge where the minimum conductivity is located. In the range from 4 to 8 

meV, the conductivity stays finite, which is probably caused by another parallel conduction channel 

which will be discussed in section 3.3. 

3.2.3  Discussions 

 Although the exact role of the electron beam is not completely known, the excess electrons 

introduced by the electron beam irradiation may act as defects that localize the free holes that are 

abundant in the initial p-type material, resulting in an up-shift of the chemical potential. With more 

electron beam irradiation, the chemical potential leaves the BVB and enters the band gap (Fig 3.9 (b)). 

Thus, the free holes in BVB can only be thermally activated; as a result, the chemical potential sinks 

towards BVB at high temperatures. Below 10 K where the thermally activated carriers are 

exponentially suppressed, however, a finite resistivity or a residual conductivity σ0 exists, which can 

only originate from the extended states in the bulk band gap. 

 

 

 

 

 

 

 



 52

3.3 Gate dependence of the device resistivity and the field-effect mobility 

3.3.1  Experimental data 

 

Fig 3.11 (a) Gate dependence of the sheet resistance for different electron irradiation conditions 

measured at 1.5 K. As the dosage increases, the resistance modulation becomes larger. (b) Gate 

dependence of the resistance for D7 at 1.5 K. The linear fit yields a field effect mobility of ~9000 

cm2/Vs. The inset magnifies the gate voltage range between 30 and 140 V. A clear conductivity 

minimum can be seen, which corresponds to ~28.5 times of the quantum conductance (e2/h). 

 

 At 1.5 K, the thermally activated carriers are exponentially suppressed; therefore, only the 

extended states in the gap are responsible for the finite resistivity ρ2D. The Vg-dependence of ρ2D is 

shown for all electron beam doses, i.e. from D0 to D7 in Fig 3.11 (a). Clearly, the pristine state D0 has 

negligible Vg-dependence, which is expected because the gate modulation of the carrier density is 

relatively small in the degenerate state. Upon electron beam irradiation, as the chemical potential 

moves towards and then enters the band gap, ρ2D starts to rise as Vg sweeps from -60 to +60 V. This 
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occurs since large Vg tends to deplete the holes, which results in a more rapid rise of the chemical 

potential. With more electron beam irradiation, the gate response becomes stronger. The largest 

resistance modulation occurs in D7, i.e. from 165 Ω/□ (-60 V) to 910 Ω/□ (+80 V).  Fig 3.11 (b) 

inset shows a zoom-in plot with a clear minimum of ~
h
e2

5.28  for state D7. This minimum 

conductivity is still much greater than
h
e2

, the order of the minimum conductivity expected for 2D 

Dirac fermions.5,7 The excess conductivity could originate from either electron and hole density 

fluctuations due to charged impurities near the Dirac point of the surface states as often seen in 

graphene, or the 3D impurity band in the gap as discussed by other groups.19,39 

3.3.2  High mobility states inside the band gap 

 To quantify the gate tunability, we calculate the field effect mobility µg from the slope of 

conductivity vs. Vg using g
g

gDgD V
e

C
ene µµσ == 22 . Here we first assume that the electrostatic 

gating only induces a surface Dirac fermion density modulation. Cg is the capacitance per unit area. In 

our device geometry, the flake is supported by 50 nm-thick gold electrodes on a 300 nm thick SiO2 

dielectric layer, which yields an effective Cg ~70 aF/µm2. Then the slope of the conductivity in Fig 

3.11 gives rise to µg ~9000 cm2/Vs. Fig 3.12 displays the effective mobility µg as a function of ρ2D 

evaluated from several conductivity curves with different irradiation doses, which represents how 

mobility varies as the chemical potential rises. This result is rather surprising. In the pristine state, the 

mobility is as low as 800 cm2/Vs, which can be viewed as the mobility of the bulk carriers in 

CaxBi2-xSe3. As the electron beam pierces through the device, it induces defects to localize the bulk 

carriers, and we would expect the mobility to degrade. On the contrary, the field-effect mobility 
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increases by more than a factor of 10. Note that the charge modulation due to gating does not only 

affect the Dirac fermion state density but also that of the other aforementioned parallel channel. Hence, 

the charge modulation of the gapless surface states is apparently overestimated, which leads to an 

underestimation of the field effect mobility. Nevertheless, this mobility value represents a lower bound 

for the gapless surface states. As the conductivity decreases further at higher gate voltages, it 

approaches a plateau near the minimum, and the field-effect mobility is expected to drop to zero. 

 

Fig 3.12 Field effect mobility as a function of the sheet resistance calculated in several different states 

of the device at 1.5 K. 

 

3.3.3  Discussions 

 To better understand the effect of the electron beam irradiation, we compare the consequence 

between the electron beam exposure and an applied gate voltage. Fig 3.13(a) displays the temperature 

dependence of the resistivity in the most resistive state D7 for two gate voltages: +60 and 0 V. 

Compared with +60 V, the activated behavior is evidently weaker at 0 V, which brings the resistivity 
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curve close to that of state D4 at +60 V (Fig 3.9 (a)). Clearly, the gain of additional holes due to the 

lowering of Vg from +60 to 0 V just offsets the loss of holes removed by the electron beam irradiation 

from D4 to D7. The mutual equivalence of these two processes reveals that the electron beam irradiation 

merely shifts the chemical potential without causing any irreversible effects. 

 We also found that the effect of the EBI can be negated by exposing it in air at room temperature. 

Fig 3.13(b) displays the temperature dependence of the device resistivity at Vg=0 V. After the device is 

processed with EBI, its temperature dependence becomes insulating (orange curve in Fig 3.13(b)). The 

insulating behavior can be maintained if the device is kept at low temperatures inside the transport 

measurement chamber. We then take the device out of the chamber and leave it in air at room 

temperature for a long period (~ 48 hours). It becomes metallic again (green curve in Fig 3.13(b)). 

However, the air exposure does not cause any permanent change to the device. If we perform EBI 

again and quickly start the measurement, we find that the insulating state is restored (blue curve in Fig 

3.13(b)). Hence, we believe that the low-intensity EBI (~1014 electrons/cm2) simply affects the position 

of the Fermi level and the effect is reversible. 
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Fig 3.13 (a) Effect of gate voltage on the temperature dependence of the device resistance of D7. A 

lower positive gate voltage negates the effect of a high dosage electron beam exposure. (b) The effect 

of atmospheric exposure after EBI. This data is from the same device whose results are shown in Fig 

3.9 (a). 
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3.4 Electrical transport under magnetic fields 

3.4.1  Experimental Data 

 We have also systematically performed magnetoresistance (MR) measurements in the most 

resistive state D7 as we gradually shift the chemical potential away from BVB with electrostatic gating. 

Fig 3.14 shows the evolution of MR as a function of Vg at 1.5 K. At -60 V, σ2D is ~6.1 mS. As seen in 

Fig 3.10 (b), this is the case when the chemical potential touches the BVB edge, i.e. (µ- εv)~ 0.3 meV, 

and the bulk band holes dominate the transport. At +60 V, σ2D is ~1.1 mS, corresponding to a (µ- εv) 

value of ~8 meV, which is close to the Dirac point. Besides some minor features, the most distinct 

characteristic is the evolution of the overall MR behavior. In the high field region (> 4 T), the slope of 

MR steadily decreases as the chemical potential is moved into the band gap and turns negative. This 

feature can be better seen in Fig 3.15, where a MR ratio is calculated with respect to the zero field 

resistance. At -60 V, the maximum MR ratio is ~60%, the largest to begin with. It decreases as the 

chemical potential enters the band gap. At ~+30 V, the maximum MR region in the 2D plot marks the 

sign change of the MR slope. 
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Fig 3.14 Magnetic field dependence of the sheet resistance at different gate voltages at 1.5 K. 
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Fig 3.15 2D plot of calculated MR ratio vs. magnetic field and gate voltage. A negative MR slope 

region can be clearly seen. 
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3.4.2  Possible origins of the low field cusp and the modulations through electrostatic gate 

 Another distinct feature is the low-field behavior shown in Fig 3.16, which singles out the two 

extreme cases. At +60 V, which corresponds to the highest chemical potential position in the gap, the 

low-field MR develops a clear cusp which can be fitted well with the weak-anti-localization (WAL) 

model,40 i.e. )]
42

1(
4

[ln
2

)0()( 222

2

φφπ
ασσσ

BelBel
eB hh

h
+Ψ−=−=∆  with α ~ 0.5, here lΦ 

being the de-coherence length and Ψ being the digamma function. The fit gives lΦ ~324 nm. lΦ drops to 

~170 nm at Vg=40 V. As the de-coherence length approaches the mean-free-path, the magnitude of the 

low-field cusp dramatically decreases. This is consistent with the WAL phenomenon in the symplectic 

limit, i.e. due to the strong spin-orbit coupling in two-dimensional electron systems. Similar expression 

was derived for two-dimensional electron systems and graphene in the context of strong spin-orbit 

scattering. For gapless surface states of 3D TI, the spin-orbit interaction is inherently strong; therefore, 

the WAL effect naturally arises as the chemical potential rises above the BVB edge and well-defined 

two-dimensional surface states gradually develop.23,41,42 In contrast, the cusp feature is absent in the 

other case when the transport is dominated by 3D band carriers. 

 The high-field negative MR could arise from two possible origins: the weak-localization (WL) 

effect and a Zeeman gap opening near the Dirac point. In the latter scenario, the states near the Dirac 

point are pushed downward to lower the chemical potential and consequently to cause the resistance to 

decrease. More experimental evidence is needed to elucidate the physical origin of this negative MR. 
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Fig 3.16 Two extreme cases showing the contrast of the low-field MR feature. The blue line for Vg= 

+60 V is a fit with the weak-anti-localization model in the symplectic regime. The fitting yields a 

de-coherence length of ~324 nm. 

 

3.4.3  Signature of the gate tunable Shubnikov de Hass oscillations 

 Besides the overall features of the MR data, there are also small modulations on the MR raw data 

that are symmetric to the magnetic field. For example, red curve in Fig 3.16, symmetric features appear 

at +1.1 T and -1.1 T, although there is a background shift on the y-axis. To analyze these, we first take 

a moving average to the raw data. In Fig 3.17, the MR data at Vg = +60 V (red curve in Fig 3.16) is 

shown. The raw data is shown in black, from which we can already see many small modulations. The 

orange curve shows the data after the moving average within adjacent 8 points. In the raw data, the 

points are measured in an interval of 0.02 T. Then, the window for the 8 points moving average is 

0.16T, which is much smaller than the width of the modulations. The overall MR background should 

be even to the magnetic field. The asymmetric in our MR data is attributed to the mixing of Hall 
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contribution, which is odd to the magnetic field. To remove the contribution of the Hall contribution, 

we symmetrize the MR data as 
2

)()( 22 BB DD −+ ρρ
. Based on this data, we fit the MR curve with 

the 4th order polynomial fitting (Fig 3.18). Then by removing the fitted background curve from the 

original data, we can single out the field dependence of the small modulations. 
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Fig 3.17 The 8-point moving average of the MR data at Vg = +60 V (red curve in Fig 3.16). 
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Fig 3.18 Magnetoresistance data in positive magnetic fields and a smooth fourth-order polynomial fit. 

 

 We call the difference between the fitted background curve and the original data as D2ρ∆ . Fig 

3.19 plots D2ρ∆  v.s. 1/B. We can see clear oscillations which are evenly spaced as plotted against 1/B. 

For the Landau Level analysis, we have
eB

Sn F
h

=+ )(2 γπ , where γ is the Berry phase, n is the 

Landau Level indices and 2
FF kS π=  is the cross-section Fermi surface area. We then can calculate 

the filling factor as
B
B

eB
hn

h
eBkn FDF ===+=

2
)2/(

)2(
2 2

2

2

π
πγν . Here we include the Berry phase 

inside the filling factor ν.  At filling ν = 2, it should be a dip, but it shows a peak on the data. This 

could be caused by another set of SdH oscillations. There are apparently two sets of oscillations in Fig 

3.19: slow and fast ones in 1/B. The Fourier transform of the slow set is shown in the inset and the peak 

gives the SdH oscillation frequency BF in 1/B of ~10.3 T. This BF corresponds to a carrier density of 

~4.99x1011 cm-2. There are not enough data points for the fast oscillations to obtain the frequency or the 
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carrier density. At this gate voltage (+60 V), the resistance is near its maximum; therefore, the carrier 

density obtained from BF is close to its minimum. 
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Fig 3.19 After the background removal, the SdH oscillations become much clearer. At high fields, 

another fast SdH oscillation set exists, which overlaps with the ν=2 feature in the slow SdH set. The 

inset shows the FFT spectrum of the low-field oscillations. 

 

 We also did the similar analysis to the data at other gate voltages. Fig 3.20 is the MR data before 

the removal of the background and is plotted against the magnetic field B. In order to clearly compare 

them, each data is added by an arbitrary y-axis offset, which won’t affect the magnetic field position of 

the small modulations. After labeling them with the filling factors, a clearly trend of the Landau Level 

shift can be seen, especially for the ν = 6 filling. 



 64

1.5 3.0 4.5 6.0 7.5 9.0

  Vg = 60 V
  Vg = 40 V
  Vg =   0 V
  Vg = -40 V

ρ 2D
- o

ff
se

t (
Ω

)

B (T)

20 Ω

ν=3

ν=4

ν=5
ν=6

ν=2

ν=3
ν=4

ν=5
ν=6

ν=6

ν=5

ν=4

ν=3

 

Fig 3.20 The shift of the oscillation features on the raw MR data at different gate voltages. There is an 

y-axis offset applied to each curve in order to compare them in the same scale. Although the 

oscillations are small, the filling factors can be correctly labeled and the ν=6 filling shows a clear shift. 

 

 We assume that this density is the density of the bottom surface, which can be easily modulated 

by the back gate. Then the fast SdH oscillations probably correspond to the top surface, which should 

not be very sensitive to the gate voltage. Our estimation of the Thomas-Fermi screening length also 

supports this in section 3.4.4. In Fig 3.21, the filling factor ν v.s. 1/B is plotted for three gate voltages. 

We see a clear gate voltage dependence of the carrier density, indicating a gate modulation of the 

surface Dirac fermion density. 
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Fig 3.21 A plot of the filling factor ν v.s. 1/B for three different gate voltages. 

 

 From the SdH analysis of the bottom surface, we obtained the following carrier density. At +60 V, 

BF = 10.319 T, nSdH = 4.99x1011 cm-2; at +40 V, BF = 12.661 T, nSdH = 6.12 x 1011 cm-2; at 0 V, BF = 

16.726 T, nSdH = 8.09 x 1011 cm-2. Therefore, from +60 to +40 V, the carrier density change calculated 

from the SdH data is ∆nSdH = 1.13 x 1011 cm-2; from +40 to 0V, this change is ∆nSdH = 1.97 x 1011 cm-2. 

The latter is 1.74 times as large as the former (roughly ~ 2). On the other hand, the total carrier density 

change in the capacitor due to the gate voltage change is ~4.37 x 1010 cm-2V-1. For a 20 V gate voltage 

change, ∆nGate = 8.74 x 1011 cm-2. For a 40 V gate voltage change, then ∆nGate = 1.75 x 1012 cm-2. Hence, 

from +60 to +40 V, the ratio ∆nSdH/∆nGate is ~12.9%. From +40 to 0V, ∆nSdH /∆nGate is about 11.3%. 

 Clearly, only a small fraction of the Dirac fermion surface carriers are affected by the gate voltage 

sweeps. From those data and the field-effect mobility we obtained from the gate dependence, we can 

estimate the mobility of the surface Dirac fermions that are responsible for the SdH oscillations. From 
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+60 to +40 V, dσ/dVg gives a field-effect mobility of 1112 cm2/Vs. Therefore, the surface state 

mobility is 8620 cm2/Vs. From +40 to 0V, dσ/dVg gives a field-effect mobility of 3776 cm2/Vs, which 

corresponds to a surface mobility of 33415 cm2/Vs. These mobility values are much greater than that of 

3D carriers from the bulk. This indicates that the field-effect mobility represents a lower-bound for the 

Dirac fermion surface states. 

3.4.4  Thomas-Fermi screening length 

 We believe that the fast SdH oscillations are due to the top surface which is ~ 200 nm away from 

the bottom surface in the device shown in Fig 3.8. Unlike in thin film devices, here the gate voltage 

should leave the top surface carrier density relatively untouched, since the Thomas-Fermi screening 

length is much shorter than the sample thickness d. Here is how we estimate the screening length λTF. 

 First, we have TFTF k/1=λ  and 
µεε ∂

∂
=

nekTF
0

2
2 . In the band gap, the screening carriers are 

from the bulk impurities. We can obtain the Fermi energy change as a function of the carrier density 

from our experimental data. For example, for state D7, the Fermi level (µ-εV) is ~ 0 meV when the gate 

voltage is at -58.06 V, which corresponds to the conductivity of ~ 6 mS; (µ-εV) is ~ 2.99 meV when the 

gate voltage is at -5.96 V for the conductivity of ~2.6 mS. We again assume that most of the gate 

modulated carriers affect the bulk impurity states. The total gate modulated carrier density change is 

then ∆n2D= ∆Vg*Cg/e. The device thickness is d=200 nm. The 3D carrier density can be calculated as 

∆n3D=∆n2D/d. For ∆µ = 2.99 meV in the Fermi energy change, the carrier density change is ~ ∆n3D 

=1.14 x 1017 cm-3. The dielectric constant ε is taken to be 9. Then, the Thomas-Fermi screening length 

is λTF = 3.6 nm, which is much smaller than the sample thickness. Therefore, we believe that the top 

surface carrier density is not significantly affected by the gate voltage. 
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Chapter 4 Techniques for the thermoelectric transport measurement in 

nano-devices 

4.1 Introductions to thermoelectric effects 

 In the transport studies of the materials, we always provide a “driving field” that causes the 

carriers to mobilize. As a response to the “driving field”, a current flow of carriers inside the material is 

formed. The basic two types of current flows are charge current j
v

and heat current qj
v

. With 

thermodynamic relations, the flow of the energy or energy current εj
v

can then be expressed as 

nq jjj
vvv

⋅+= µε , where µ is the chemical potential and njej
vv

⋅−= . The mobile carriers interact 

with the material and the responses normally tell us the properties of the material. In electrical transport, 

an external electric field E
v

 is applied. The charged carriers will drift under this electric field and at 

the same time they are scattered due to the interaction with the ions of the material (phonon scattering) 

or impurities of the material. Hence, the electric transport normally tells us the scattering properties. 

Besides this, a spatial chemical potential gradient µ∇
v

 or temperature gradient T∇
v

 can also drive 

the carriers and cause the carriers to diffuse. In general, a heat current qj
v

 and a charge current j
v

 

inside a material can be expressed in terms of the driving fields E
v

, e/µ∇
v

 and T∇
v

 through 

macroscopic equations as: 

⎩
⎨
⎧

∇−+=
∇−+=

)(
)(

2221

1211

TLLj
TLLj

q vvv

vvv

ε
ε

, where 
e

E µε ∇
+=
v

vv
          (Eq. 4.1) 

 The processes described by these equations are reversible. The coefficients L11, L12, L21 and L22 

are related to each other through Onsager relations and they determine the thermoelectric coefficients 

in thermoelectric effects. The coefficients L11, L12, L21 and L22 can be directly derived from Boltzmann 

transport equations, which describe the material properties and will be discussed in secession 4.1.4. 
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4.1.1  Seebeck effect 

 In Seebeck effect, a constant temperature gradient is built up along the sample as the “driving 

field”. As shown in Fig 4.1, a temperature gradient T∇
v

 is applied onto a rectangular sample with 

p-type carrier. Due to this temperature gradient, the carriers inside the material will diffuse toward the 

low temperature side of the sample and will accumulate there (open circuit measurement), which 

increases the chemical potential of the carriers and build up an opposite field eµ∇
v

. In the steady 

state, these two processes equalize and a voltage difference appears across the sample due to chemical 

potential difference. This voltage V∆ is so called thermo-voltage and the thermopower is then defined 

as TVS ∆∆−= / . 

 

Fig 4.1 The schematic graph of the Seebeck effect in a p-type sample. 

 

 

Fig 4.2 The standard geometry for the measurement of the thermo-voltage. 
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 In actual measurements (Fig 4.2), we always need to use one material (material “A”) as voltage 

leads to measure the thermopower of the other material (material “B”). A common setup for the 

measurement is demonstrated in Fig 4.2. Two materials with different Seebeck coefficient SA and SB 

are connected together at different temperatures T1 and T2. The voltage meter is connected to material 

“A” at a temperature point T0. In the steady condition, there is no net charge current flow inside the 

materials. As mentioned in Fig 4.1, for material “A”, a thermo-voltage between temperature T0 and T1 

is ∆VA
1

 = SA(T0-T1) and the thermo-voltage between T2 and T0 is ∆VA
2

 = SA(T2-T0). Same for material 

“B”, the thermo-voltage between T1 and T2 is ∆VB = SB(T1-T2). If material “A” and “B” have different 

Seebeck coefficient, there will be a net voltage on the voltage meter as ∆V = ∆VA
1 + ∆VA

2 + ∆VB = 

(SA-SB)(T2-T1). Therefore, by knowing the Seebeck coefficients of one material the Seebeck coefficient 

of the other material can be measured. Also, if the Seebeck coefficient of the measurement leads 

(material “A”) is much smaller than that of the sample (material “B”), for example SA << SB, then the 

Seebeck coefficient of the sample can be estimated as SB = ∆V/(T1 – T2). 

4.1.2  Peltier effect: 

 

 

Fig 4.3 The geometry for the measurement of the Peltier effect. 
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 A reversed process of the Seebeck effect is the Peltier effect, in which a charge current induces 

the flow of a heat current. During this process, the temperature of the material is held at constant T0, so 

the flow of the charge carriers is isothermal. The isothermal charge current flow will be accompanied 

by a heat flow and the relation between them is described by the Peltier coefficient Π as: jj q vv
⋅Π= . 

This equation implies that the Peltier coefficient represents the heat per charge of the charge carrier 

transfers. 

 To separate the heat current from the charge current in Peltier effect, a typical set up is 

demonstrated in Fig 4.3. Material “A” and “B” are connected at two points. They are both held at 

temperature T0. A charge current j
v

 is passed through the loop, while keeping the temperature of the 

whole loop constant. The flow of j
v

 causes the heat flow inside material “A” and “B” separately as: 

jj A
q

A

vv
⋅Π=  and jj B

q
B

vv
⋅Π= . Because of the difference between the two Peltier coefficients ΠΑ 

and ΠΒ, a net flow of the heat current generated by this set up is jjjj BA
q

B
q

A
q vvvv

⋅Π−Π=−= )( . 

4.1.3  Nernst effect 

 The Seebeck effect is related to the longitudinal voltage built up along the direction of the 

temperature gradient T∇
v

, while the Nernst effect is related to the transverse voltage built up 

perpendicular to the direction of the temperature gradient T∇
v

under the presence of an external 

magnetic field. The basic mechanism of Nernst effect is similar to the Hall effect, whereas the flow of 

the carrier is induced only by temperature gradient T∇
v

. 

 Fig 4.4 demonstrates a typical setup for the measurement of the Nernst signal. Similar to the 

condition in Fig 4.1, upon applying a magnetic field a transverse voltage will be built up. Two 

diffusion processes with opposite directions exist inside the sample. One process is due to the 
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temperature gradient. The other process is due to the chemical potential difference. Because the carriers 

diffuse toward opposite directions, they bend oppositely under magnetic field. In the stable state, the 

Nernst voltage is the net transverse voltage between these two processes. 

 

Fig 4.4 The schematic graph for the Nernst effect. 

 

4.1.4  Boltzmann transport equation and thermoelectric coefficients 

 With Boltzmann transport equation, the evolution of a system is described by the non-equilibrium 

distribution function ),,( tkrgn

vv
. Here n means the nth energy band. If the semi-classical trajectory is 

followed, then rv and k
v

will depend on time and can be determined through semi-classical equation of 

motion. Hence, we only consider the time dependence of the distribution function. Together with the 

scattering time approximation, the distribution function can be written as: 

)(),()()( 00 tg
td

dttPtdtgtg
t

′
′

′′−= ∫ ∞−
                  (Eq 4.2) 

Here )(0 tg is the distribution function at the equilibrium state and ),( ttP ′ tells the possibility that a 

carrier survives from the scattering during time t’ to t, which will contribute the distribution function at 

time t. Combining this equation with the semi-classical equations of motion and relaxation time 

approximation, the explicit form of the distribution function g can be derived. The charge current 
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density can be written as )()(
4 3 kgkvkdej

vvv
v

v
∫−=

π
and the heat current can be written 

as )()(])([
4 3 kgkvkkdej q

vvvv
v

v
µε

π
−−= ∫ .  Then the charge current density and heat current density 

can be expressed as: 
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 One important prerequisite for these equations to hold is that the system has to be under the 

degenerate limit, where the Fermi energy is much larger than the energy kBT. In this regime, we can see 

that the Seebeck coefficient (at 0=j
v

) is simply the coefficient of 

TS ∇⋅=
vvε and

F
e
Tk

L
LS B

εε
σ

σ
π )(1
3

22

11

12

∂
∂

−== . The Peltier coefficient is ST
L
L

⋅==Π 11

21

. As 

discussed in section 4.1.2, we have jj q vv
⋅Π= . Hence, we have jSTj q vv

⋅⋅= , which demonstrates 

that the Seebeck coefficient is directly the entropy per charge of carrier transfers.43 From another point 

of view, 
F

e
TkS B

εε
σ

σ
π )(1
3

22

∂
∂

−= , which is the famous Mott’s relation, tells us that the Seebeck 

coefficient is related to the energy derivative of the electric conductivity and it directly probes its 

energy distribution, therefore it is more sensitive in probing the electronic structures of the materials. 

These two aspects bring the Seebeck coefficient to be a very important quantity in electric transport in 

the degenerate limit. 



 73

4.2 Measurements of thermoelectric properties in micron-scale devices 

4.2.1  Introduction 

 Building up a temperature gradient is an important step in the measurement of thermopower. In 

macroscopic samples (at size of several centimeters), the temperature gradient is built up by attaching a 

piece of resistive heater to one end of the sample wafer, while holding the other end of the sample 

substrate to a heat sink. Fig 4.5 demonstrates a typical thermopower measurement setup for a 2DEG 

sample.44 The size of the sample is around 1 cm. With this set up, the sample can be sealed in vacuum 

at low temperature to prevent the loss of the heater power through the environment (He4 gas or He3 

gas). The typical temperature difference that can be built along this macroscopic sample substrate is 

around 1 K / cm (reference) and is distributed linearly along the substrate except the region very close 

to the heater. 

 

Fig 4.5 The setup for the low temperature measurement of the thermopower. This graph is from the 

paper of Tieke, B. et. al., Phys Rev B (1998).44 
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 However, as the small size of the nano devices (~ 10µm typically), if the nano devices are on top 

of the sample substrate of this setup, the temperature difference along the device is only in the range of 

1 mK. Considering a material with the Seebeck coefficient in the level of 10 µV/K, this set up only 

provides a thermo-voltage of around 10 nV. In order to have a larger thermo-voltage signal in 

nano-devices, larger temperature gradient is necessary. 

 Local heater has been used a lot before in the measurement of thermoelectric properties of carbon 

nano-tubes to build up large temperature gradient over small length scale. Fig 4.6 demonstrates device 

geometry for measuring Seebeck coefficient of nano-tube. The bottom image of Fig 4.6 shows that the 

distribution of temperature gradient is not a constant. It becomes larger when the heater is closer to the 

sample. We utilize similar geometry as in our measurements.45-47 

 

Fig 4.6 The device setup for the thermopower measurement of individual carbon nanotube. This 

device is from the paper of Small, J. P. et. al., Solid State Commun 127, 181-186. 
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4.2.2  Design of the micron-scale devices 

Graphene: 

 Fig 4.7 demonstrates a typical graphene devices. The graphene flake is exfoliated on top of 300 

nm SiO2 layer with heavily doped Si as substrate for applying gate voltage. After locating suitable 

graphene sheets, the flake is etched into a cross geometry by O2 plasma etching for the purpose of 

measuring the Nernst signal. We perform standard electron-beam lithography to attach electrodes in the 

Hall-bar geometry (Fig 4.7). The electrodes consist of 7 nm of Cr and 100 nm of Au, and also serve as 

local thermometers. The 300 nm silicon oxide acts as the gate insulator. The substrate is sealed in a 

vacuum can. During the measurement, a heater power is applied using a DC current source, while the 

other end of the sample substrate is inserted into indium ingot as a heat sink to direct the heat flow 

through the sample substrate. Detailed methods for the measurement will be discussed in section 4.2.3 

and 4.2.4. 

 

Fig 4.7 The geometry of our nano-device for the measurement of thermopower in graphene. 

 

 Graphene has been reported to possess very large thermal conductivity ~ 103 W/m·K at room 

temperature.48,49 SiO2 normally has a thermal conductivity of about 1.4 W/m·K at room temperature. 
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Although the thermal conductivity of graphene is very large, its thickness is very small. So the thermal 

conductance of the supporting SiO2 (300nm) + Si substrate is still larger. Fig 4.8 shows an experiment 

data comparing the thermal conductance between graphene and the 300 nm SiO2 supporting layer.48 At 

about 100 K, the graphene thermal conductance is about 1/5 of the thermal conductance of the SiO2 

supporting layer. Fig 4.9 demonstrates a diagram of the heat channels in the graphene device. Most of 

the heat current will pass through the substrate and the temperature distribution profile of graphene will 

follow the distribution of the substrate. 

 

Fig 4.8 The thermal conductance of graphene and the thermal conductance of 300 nm SiO2 

supporting layer. This data is from the paper of Seol, J. H. et. al., J Heat Trans-T Asme (2011).48 
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Fig 4.9 The circuit diagram of the heat flow through graphene and the supporting 300 nm SiO2. 

Although graphene has very large thermal conductivity, its thermal conductance is still smaller than 

that of the 300 nm SiO2. Hence, the temperature profile of the thermopower device is still determined 

by the substrate. 

 

BixTey nano-ribbon device: 

 Similar device can be fabricated on topological insulator related material, such as BixTey 

nano-ribbon. Fig 4.10 demonstrates a typical device. 

 A key issue of the measurement of the BixTey nano-ribbon device is the contact problem between 

the metal electrodes and the nano-ribbon. Unlike in graphene device, where a good electric contact can 

be obtained, the contact problem in BixTey nano-ribbon device always brings in larger voltage noise 

and covers the thermo-voltage signal. Therefore, an AC thermopower measurement with lock-in 

technique is taken here to measure the Seebeck coefficient. The measurement details will be discussed 

in section 4.2.4. 

heater source heat sink 
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Fig 4.10 The optical image of our thermopower device for BixTey nanoribbon. 

 

4.2.3  Design of the device holder for cryogenic environment 

 The measurement is performed in an Oxford VTI (Variable Temperature Insert) system covering 

temperature range from 1.5 to 300 K with a magnetic field up to 8 T. The cooling of the sample is 

achieved by pumping helium gas from the liquid helium dewar. The sample is directly merged inside 

the helium gas environment, which will cause heat leakage from the heater to the environment and is 

not good for building up temperature gradient along the sample. 

 Fig 4.11 shows a typical design for the sample holder. The device substrate is merged into an 

indium block, which is connected to the heat sink of the sample holder. The heat sink is made of a big 

copper block to provide large heat capacitance. An indium ring on the copper heat sink is used to seal 

the copper can. The most distinct feature of our sample holder compared to the one in Fig 4.5 is that 

nano-devices can be mounted onto our sample holder. For nano-device, wire bonding is necessary to 

connect device electrodes to the holder’s bonding pads, because the electrodes of nano-devices are 

usually very small, and furthermore, wire-bonder can provide good electrical ground to the devices to 

 20 µm

BixTey nanoribbon
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prevent electrostatic shock. However, the wire bonding processes exert force onto the substrate and it 

requires the substrate to be supported while bonding. Our holder features these, while the device 

substrate can still be the suspended in the indium heat sink. The thermoelectric measurements of both 

macroscopic sample and nano-device can be measured with this holder in helium gas environment. 
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Fig 4.11 The low temperature setup for our measurement of thermopower of graphene device in the 

VTI chamber. 

 

 Fig 4.12 demonstrates the sample mounting processes. The top figure shows all the parts for the 

sample holder. In Fig 4.12(a), the supporting copper blocks are mounted on the copper heat sink to 

provide support to the sample substrate. The whole heat sink part is then heated by hot plate to the 

melting point of indium (~ 157 ºC). Then the heat sink part is quickly taken away from the hot plate 

and the sample substrate is inserted into the melted indium at once. Tweezers are used to holder the 

sample substrate firmly onto the copper block holder while waiting for the indium to solidify. 

Therefore, after one end of the sample substrate is held by the solid indium (Fig 4.12(b)), the bonding 

pad part of the holder is mounted onto the copper heat sink (Fig 4.12(c)) and wire bonding can be 

performed to the supported device. After wire bonding, the supporting copper blocks can be unscrewed 
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and taken away, as a result, the sample substrate is suspended (Fig 4.12(d)). The top cap of the holder 

is then capped onto the copper heat sink (Fig 4.12(e)). An indium ring is applied between the cap and 

the copper heat sink to provide good vacuum seal. Because the top cap will be connected to the system 

ground and the copper heat sink is connected to the back gate of the device (the device substrate is 

doped silicon), electric insulating is necessary between the cap and the copper heat sink. We normally 

apply a thermo-tape on the rim of the cap before seal the can. After this, a clamp is used to tight the top 

cap onto the indium ring of the copper heat sink. A low temperature epoxy is applied around the slot 

between the cap and the heat sink to mechanically hold them. At cryogenic temperature, the air inside 

the can will be frozen and vacuum can be built inside the sample holder can. 

 

Fig 4.12 The processes of mounting our low temperature thermopower measurement setup. 

 

(a) (b) (c) 

(d) (e)
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4.2.4  Techniques for thermoelectric measurements 

DC measurement: (utilized in graphene device) 

 The patterned electrodes of the graphene devices are usually in good electrical contact with 

graphene flake. The background DC voltage noise of two electrodes bridged by graphene is in the order 

of several 100 nV, while the thermo-voltage signal is in the order of µV. This level of noise ensures 

that DC measurement of thermal power of graphene. 

 Fig 4.13 is the raw data of the thermo-voltage of one of the graphene device (device #11) with 

device geometry similar to the one in Fig 4.7. The blue curve shows the applied heater current. Two 

different directions of the heater current is applied, however, the response of the thermo-voltage is 

exactly the same. This indicates that the voltage signal comes from the thermo-effect induced by the 

heater, not from the leakage of the heater voltage. 
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Fig 4.13 The thermo-voltage signal response upon changing of the thermopower. The response time 

is about 50ms. 

 

 The data in Fig 4.7 is the measurement at 200 K. At lower temperature (~10 K), the 

thermo-voltage will be smaller. Proper average processes need to be taken to extract out the signal. Fig 

4.14 demonstrates the method we do the average. In the cryostat system, the electric signal of the 

device is taken out through many copper electric wires. These wires experience a large temperature 

gradient (from device temperature to room temperature) and contribute a background thermo-voltage. 

This is the reason that the open circuit signal of the device is not zero even the heater power is not 

applied. Because there are temperature fluctuations within the cryostat system, the open circuit voltage 

of the device tends to have small drift with respect to time. If the data taking time is too long, the 

background open circuit voltage drift will be counted in. The magnified graph in Fig 4.13 shows that 
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the response of the thermo-voltage to the heater power change is roughly 50 ms. Therefore, in our 

measurement, we average the data right before and after the heater is turned on/off (Fig 4.14). Thus, 

only the thermo-voltage response due to the sample heater is picked up. We call one heater on/off as 

one heater cycle and we normally take two heater cycles to get one thermo-voltage data point. 

 

Fig 4.14 Our method of averaging sequences in the measurement of small signals of the graphene 

thermo-voltage. 

 

 The measurement of thermo-voltage is straight forward. The measurement of temperature gradient 

is more critical. As demonstrated in Fig 4.7, we measure the four terminal resistance change of two 

Cr/Au (7nm/100nm) metal wires (thermometer) to determine the temperature gradient. The 

temperature dependence of the resistance of the metal wires is shown in Fig 4.15. This data is from 

device #19. It behaves linearly and becomes flat at low temperature (< 10K). 

on 
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Fig 4.15 The temperature dependence of our metal thermometer wire. 

 

 Fig 4.16 demonstrates our method of thermopower measurement. The heater power is quickly 

raised up step by step for four consecutive steps. The resistances of the Cr/Au metal wires 

(thermometers) are measured simultaneously vs. the heater power. In the measurement, a constant 

current is passed through the thermometers, so the voltage in Fig 4.16 is directly proportional to the 

resistance. The time for this heater power ramping sequence needs to be short. We normally use 1 

minute to finish one run. Four different runs are performed with a waiting time of 15 minutes between 

them. The heater is kept off during the waiting time in order to let the temperature of the device to relax 

to the value before applying the heater. From Fig 4.16 we can see that there are some fluctuations of 

the value of the thermometer resistance between each run. The curves of the thermopower, however 

obviously, shift down by a y-axis offset between each run, but their slopes are almost unchanged. This 

indicates a background voltage offset change, but it does not affect the relative thermo-voltage.  



 86

 

Fig 4.16 The method we used in extracting the Seebeck coefficient of graphene. 

 

 The fluctuation of the thermometer resistance and the background offset change of the 

thermo-voltage, although affect the absolute value; they do not affect the slope of these quantities vs. 

heater power. The slope of these curves actually tells us the response of the device to the heater. As 

long as the measurement is taken quickly enough (has to be longer than the response time of the 

thermopower to the heater Fig 4.13), the slope is reliable. From Fig 4.16, we can get the response of the 

two thermometer resistance to the heater power as dPdVh  and dPdVc . We can also get the 

response of the thermo-voltage to the heater power as dPdVTEP . From Fig 4.15, we can get the 
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response of the thermometer resistance to the temperature as dTdVh  and dTdVc . The response 

of the temperature raise of the thermometers to the heater power can be calculated as: 

)/()( dTdVdPdVdPdT hhh =  and )/()( dTdVdPdVdPdT ccc = . Then the response of 

the temperature difference to the heater power is calculated as: dPdTdPdTdPTd ch −=∆ )( . 

Thus, we have the response of the thermo-voltage to the heater power dPdVTEP  and the response of 

the temperature difference to the heater power dPTd )(∆ . The Seebeck coefficient is simply 

])(/[]/[ dPTddPdVS TEPxx ∆= . By using this method, we remove the effect of the unstable offset 

values. 

AC measurement: (utilized in BixTey nano-ribbon device) 

 If the background DC voltage noise is in the order of several µV, which is the case of BixTey 

nano-ribbon device (Fig 4.10), the DC thermo-voltage signal will be covered by the noise and the DC 

measurement is not applicable. We attribute the large noise of the open circuit voltage to the high 

contact resistance between the metallic wire and the BixTey nano-ribbon and perform the AC 

measurement to increase the signal from the noise. 

 In our measurement, a SR-830 lock-in amplifier is used. An AC voltage of 1.6 V amplitude at 

2.971 Hz is applied through the heater on the device. From Fig 4.13, we can know that the response 

time of the thermo-voltage to a step jump of the heater power is at the level of 50 ms. In order to let the 

device thermo-voltage fully relaxed, the period of the AC voltage source needs to be large. However, it 

cannot be chosen arbitrarily large, because it will approach the DC limit and the lock-in can not extract 

the signal with too low frequency. After several tests, we choose the frequency to be around 3 Hz. Fig 

4.17 demonstrates the heater voltage applied by the lock-in amplifier. The heater voltage can be written 
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as )2sin()( 0 tfVtV ⋅⋅= π (blue curve in Fig 4.17) and the heater power is 

)]22cos(1[
2

)2(sin)()(
2

0222 tfVtfVtVtPheater ⋅⋅−=⋅⋅=∝ ππ  (red curve in Fig 4.17). The 

temperature difference and the thermo-voltage are then directly proportional to the heater power. Thus, 

a sine wave of the applied heater power will result in a thermo-voltage of cosine wave with twice of the 

frequency. In the measurement, we use the lock-in to lock the 2nd harmonic of the voltage input, while 

check the lock-in phase to see if the thermo-voltage signal has a π/2 phase shift relative to the applied 

heater voltage. 
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Fig 4.17 The simulated heater voltage and heater power in our AC measurement of thermopower. 

 

 Fig 4.18 demonstrates the AC thermo-voltage data of the device in Fig 4.10. The thermoelectric 

voltage is plotted vs. the applied heater voltage and heater power. A clear linear dependence of the 

thermo-voltage to the heater power can be seen, which indicates that the voltage signal is 
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thermo-voltage. The measurement of the thermometer resistance does not depend on the contact 

resistance. It is just the resistance of a metallic wire. The temperature difference can be determined by 

the similar DC measurement as discussed before. 

 

Fig 4.18 The AC measurement of the thermo-voltage. The signal is linear to the heater power. 

 

4.2.5  Nernst signal under a magnetic field 

 The Nernst voltage can be measured in the similar way to the thermopower. Because the Nernst 

signal is contributed by the local temperature gradient at the position of the two transverse leads (Fig 

4.19, which is the top view of Fig 4.7), which are very close to the heater, the temperature gradient of 

the Nernst signal may not be the same as the temperature gradient of the Seebeck signal. After we 

measured and calibrated the Seebeck coefficient of the device, we measure the thermo-voltage between 

one Nernst lead and the nearest thermometer. Then the temperature difference between the Nernst lead 

and the thermometer can be calculated. By dividing this temperature difference with the distance 

between the Nernst leads and the nearest thermometer, the temperature gradient over this small 

distance can be solved. We use this value as the temperature gradient at the Nernst leads. 
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Fig 4.19 The schematic graph of how we determine the temperature gradient near the Nernst leads. 

 

 For the thermoelectric transport coefficients under magnetic field (Seebeck coefficient and Nernst 

coefficient), we can phenomenologically write equations as (similar as Eq 4.1): 
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 Here the electric field at both x-axis or y-axis directions affect the current at the other direction. 

We only apply a temperature gradient along the x-direction, so only Tx∇ is considered. At steady state, 

there is no net charge current flow, so we have jx = 0 and jy = 0. Because the Seebeck coefficient and 

Nernst coefficient are defined as: 
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By solving Eq 4.4 we can get: 
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Chapter 5 Anomalous thermoelectric transport of Dirac particles in graphene 

 The electrical transport in graphene is carried by Dirac fermions, which have demonstrated many 

exciting properties that cannot be observed in conventional condensed matter materials.4-7,50,51,51 As 

equally fundamental as the electrical conductivity (Chapter 4), the thermoelectric coefficients in 

particular, involve the energy derivatives of the electrical transport counterparts such as the 

conductivity σ  and the Hall angle HΘ . The anomalies in the latter are very often amplified and 

cause markedly distinct features in the former near the Dirac point. Furthermore, in the regime where 

the Mott relation is applicable, the relationship between the measured electrical conductivity and the 

Seebeck coefficient reveals how the chemical potential depends on the gate voltage or carrier density, 

which is dictated by the energy dispersion. Therefore, the thermoelectric transport coefficients can 

offer unique information and are complimentary to the electrical transport coefficients.50,52,53 In this 

chapter, we will demonstrate our experimental studies on the thermoelectric transport properties of 

Dirac fermions. 

5.1 Modulation of the thermopower through electrostatic gate 

 The geometry for the gating is demonstrated in Fig 5.1. Because graphene only consists of a 

single layer of carbon atoms, this geometry of gate tuning can effectively tune the carrier density of the 

whole graphene flakes. 

 The data in Fig 5.1 comes from Device #14. Upon applying the gate voltage, the conductivity of 

the device undergoes a minimum, while the Hall resistance changes sign indicating a carrier type 

change at the Dirac point of graphene. If we calculate the 2D carrier density of the device v.s. gate 

voltage, we can see that it becomes linear in the region away from the Dirac point. The slope of the 
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linear curve gives a carrier density change per gate voltage of about 8.0×1010 cm-2 V-1. This is in a 

good consistence to the value calculated from the capacitance of 300nm SiO2 gate insulator as 7.2×

1010 cm-2 V-1 (115 aF/µm2). 

 

Fig 5.1 The gate tuning of graphene conductivity and Hall resistance. A clear minimum of the 

conductivity can be observed accompanied by the sign change of the Hall resistance. The top image 

demonstrates the geometry for electro static gate tuning. 

 

 The electric back gate acts like a parallel capacitor with graphene as one of its metal plates. The 

change of the voltage across the capacitor directly adds or removes electrons of the graphene flake, 

which causes a carrier density change of graphene.4 The thermopower signal can also be tuned by this 

electron static gate, since it depends on the carrier density of the material. The details about measuring 

thermopower have already been discussed in section 4.2.4. Fig 5.3 shows the thermopower signal for 
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this device at 160K. It changes sign exactly at the Dirac point indicating a change of the carrier type of 

the graphene device. 
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Fig 5.2 The carrier density v.s. gate voltage. The carrier density is calculated from the Hall 

resistance data. The slope of the carrier density change fits very well with the parallel capacitor model 

of the 300 nm SiO2. 
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Fig 5.3 The sign change of the thermopower of the same graphene device as in Fig 5.1. 
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5.2 Diverging behavior of the thermopower vs. carrier density 

 Comparing the Hall resistance data in Fig 5.1 and the thermopower data in Fig 5.3, we can see 

similar behaviors. They both pass zero at the Dirac point and gradually decrease as the gate voltage 

becomes larger. For the Hall resistance, we always have the equation as
D

Hyx ne
BBR

2⋅
=⋅=ρ  (B is 

the magnitude of the magnetic field and e is the electron charge), which doe not depend on the 

dispersion relation of the band structure. However, this expression will give an infinite large Hall 

resistance at the Dirac point, because the carrier density is zero. Actual data shows that the Hall 

resistance starts to decrease in the region near the Dirac point and passes zero at the Dirac point. This 

behavior can only be understood by considering the conductions of both electron channel and hole 

channel in the region near the Dirac point, where the Hall coefficient have to be written as 

2

22

)( eehh

eehh
H nne

nnR
µµ
µµ

+
−

= . The parameters nh and ne are the carrier density of hole and electron. µh and 

µe are the mobility of hole and electron. Hence, the Hall coefficient will vanish when the electron 

density is equal to the hole density. 

 From another point of view, if we estimate the thermal energy kBT at 160K, it has a value of about 

14 meV. Consider a pure graphene with linear dispersion relation as ||)( kvkE F

v
h

v
=  (vF ~ 1×106 

m/s). The total 2D carrier density calculated from the Dirac point can be expressed as 22

2

2
F

D v
En
hπ

= . 

In Fig 5.1, the transition region for the Hall resistance is about ±7 V with respect to the Dirac point. 

Simple estimation will give that the energy scale of the transition region in pure graphene is ±83 meV, 

which is much larger than the thermal energy kBT. This estimation simply tells us that the mix of 

electron conduction and hole conduction in our graphene device can not come from the thermal 
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widening of the Fermi level. It has to come from the imperfectness of graphene near the Dirac point, 

which is related to the impurity density. 

 Similar condition happens for the thermopower. However, because thermopower is related to the 

energy derivative of the conductive, the dispersion relation of the energy band will enter and affect the 

dependence of the thermopower v.s. carrier density. Fig 5.4 shows thermo-voltage Vth as a function of 

Vg for three temperatures. This data is from Device #3, which shows the best electron-hole symmetry 

as well as a narrow transition region near the Dirac point. Vth undergoes a sign change at the Dirac 

point Vg = VD = 10 V, indicating the carrier type changes from hole to electron as Vg - VD is swept from 

negative to positive. Vth has a finite slope near VD over a 20 V range in Vg which corresponds to ~ ±100 

meV change in chemical potential µ measured from the Dirac point. This region coincides with the 

minimum in σ, where charged impurities modify the conductivity. As Vg is further away from VD on 

both sides, the magnitude of Vth decreases, scaling approximately with ||/1 Dg VV −  (dashed line 

in Fig 5.4(a)). This Vg dependence is more noticeable in the linear dependence of 2
1

thV on Vg (Fig 

5.4(b)). The solid lines are the power-law fits with exponent ~ 0.95 and cross zero in the vicinity of the 

Dirac point from both sides, indicating a diverging behavior of Sxx. Note that near the Dirac point, Vth 

crosses zero, and the ||/1 Dg VV − -dependence breaks down, as denoted by the hatched region. For 

comparison, the same Vth data is also plotted as ||
1

thV vs. Vg in Fig 5.4(c) and the straight lines are 

drawn in the linear region. Clearly, the 2
1

thV plot shows a better linear relationship with Vg over the 

whole range. In addition, 2
1

thV  extrapolates to zero at almost the same Vg for different temperatures, 

but ||
1

thV  does not. 
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Fig 5.4 (a) Vth vs. Vg for three different temperatures. The 16K data (red circle) was multiplied by a 

factor of five. The dash lines are the fits described by Dgxx VVS −/1|~| . (b) 1 / Vth
2 vs. Vg plot for 

the same data shown in (a). The shaded area is for |Vg - VD| < 10 V. Red lines are the best power-law 

fits with exponent ~ 0.95. (c) 1 / |Vth| vs. Vg plot for the same data in (a). Red lines are straight lines as 

guides to the eye. 
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expect the Mott relation 
µ

µσπ
∂

∂
−=

)(ln
3

22

e
TkS B

xx to hold, yielding 
µ
1~ −xxS  for highly doped 

regimes. On the other hand, for a 2D system with a linear dispersion relation, then we expect 

DgDF VVnv −±∝= πµ 2h , where the +(-) sign corresponds to the electron- (hole-) doped 

regime, and vF is the Fermi velocity. Combining these relations, we have 
Dg

xx
VV

S
−

− )sgn(~ µ
 . This is 

in contrast to the ordinary 2D electron systems with a quadratic dispersion relation, in which 

Dn2∝µ , and hence 
Dg

xx VV
S

−
−1~ . From this diverging behavior of Sxx, we can conclude that the 

dispersion relation is linear rather than quadratic, as expected for Dirac particles. It is worth noting that 

the exponent α is absorbed in the pre-factor of Sxx and does not affect the functional dependence of Sxx, 

as is the case in σ. This makes the thermoelectric transport uniquely sensitive to the electronic band 

structure. 

5.3 Temperature dependence of the thermopower 

 Not every device shows the electron-hole symmetry shown in Fig 5.4. Fig 5.5(a) displays Sxx vs. 

Vg of a different device with VD ~ 33V for several values of T ranging from 11 to 255 K. Away from VD 

on the hole side, Sxx decreases with decreasing Vg, similar to the behavior of the previous device. In 

contrast, Sxx stays flat on the electron side, indicating a strong electron-hole asymmetry as seen in σ by 

others.54 Near VD, we observe a broad transition region in Sxx connecting the electron- to hole-doped 

regimes. Furthermore, Sxx follows different T-dependence for different Vg (in Fig 5.5(b)). Near VD, the 

magnitude of Sxx is close to zero. Away from VD on the hole side, e.g. at Vg = 0 V or ~33 V left of VD, 

Sxx is nearly a straight line for the whole temperature range. As Vg approaches VD from the hole side, Sxx 

begins to deviate from the linear T-dependence at progressively lower temperatures. On the electron 
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side, however, even at Vg = 60 V (or ~30 V right of VD), Sxx remains non-linear in T except at very low 

temperatures. 

 

Fig 5.5 (a) Vg-dependence of longitudinal Seebeck coefficient Sxx at different temperatures (11K – 

255K) and zero magnetic field. (b) T-dependence of Sxx at different gate-voltages. The inset is the 

T-dependence of || 2Dxx nS=β  at Vg=0 V for low temperatures. The slope of the linear fit is 

proportional to α / vF . 
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 The departure from the linear T-dependence is an indication of the potential breakdown of the 

Mott relation. For this device, when |Vg - VD| = 30 V, |µ| is about 160 meV measured from the Dirac 

point. It is reasonable to expect high-order corrections in the Sommerfeld expansion at relatively high 

temperature where the condition TkB>>µ fails. For graphene, another relevant energy scale is the 

bandwidth γ of impurity states near the Dirac point. The Mott relation only holds if 1>>
TkB

γ
, which 

ensures σ  to be a slow-varying function of energy over this band of impurity states.56 In the impurity 

scattering model, this band can be highly asymmetric due to the finite scattering potential. Here we 

attribute the departure from the linear T-dependence on the electron side to the asymmetric nature of 

the band of impurity states. For this reason we only focus on the relatively low-T region on the hole 

side where the Mott relation apparently holds. Since Sxx is proportional to αT, and inversely 

proportional to µ or DF nv 2 , we plot Dxx nS 2⋅  (called β) vs. T in the inset of Fig 5.5(b). 

Extracted from the slope, vF ranges from 0.8 to 1.6×106 m/s depending on the value of α (from 1 to 2), 

which is in good agreement with the values obtained by others.57,58 In relating Vg to n2D for above 

estimations, we use ( )Dg
ggg

D VV
e

C
n

e
VC

n −=+=2 , where Cg is the capacitance per unit area and 

n  is the induced density by charged impurities at the Dirac point. A value of Cg = 103 aF/µm2 is 

determined from our Hall data. 

 In Fig 5.6, similar temperature dependence data is repeated. This set of data is from Device #19. 

The Dirac point of this device is located very near to the zero gate voltage point. The gate dependence 

of the thermopower shows much clearer divergent behavior at the hole side of the data. However, at the 

electron side, a constant shift of the thermopower value exists in large positive gate voltage range, 
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which shows strong electron-hole asymmetry. The reason of this electron-hole asymmetry still needs 

further investigations. 

 

Fig 5.6 The temperature and gate dependence of the thermopower in Device #19. The gate 

dependence show more obvious divergent behavior. 
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5.4 Thermopower and Nernst signal in the quantum Hall regime 

5.4.1  The effect of the Landau Level 

 One signature of the existence of massless Dirac fermion in graphene is the anomalous integer 

quantum Hall effect. Due to the relativistic nature, the energy of each Landau level in the quantum Hall 

regime can be written as BnveE Fn ||2 2h=  with the Landau level index n (n = 0, 1, 2…). The 

quantized quantum Hall conductance can be expressed as
h
enxy

2

)12(2 +=σ . At the zero filling n = 

0, there still exist edge channels carried by the electron-hole pair near the Dirac point and contribute 

h
e2

2  to the quantum conductance.5,6,51 
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Fig 5.7 The two terminal resistance of the graphene device in quantum Hall regime. Plateau features 

develops exactly at each Landau level with determined filling factor. 

 

 Fig 5.7 demonstrates the gate dependence of the two terminal resistance of Device #14 under 8T 

perpendicular magnetic field. When the Fermi level is tuned in the region between two adjacent 

Landau levels, the conduction of the sample is carried by the edge channels and the transport is ballistic 
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like. The longitudinal resistivity ρxx will be zero, while the transverse resistivity ρxy provides a plateau. 

The two-terminal resistance directly measures the ballistic conductance of the edge channels, which 

has the same value as the Hall conductance in this region. We can clearly see the plateau value in Fig 

5.7. If we scale it to the quantum conductance
h
e2

, the filling sequence ν = 2 and ν = 6 exactly 

demonstrate the filling of the massless Dirac fermions. 
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Fig 5.8 The Hall conductivity σxy ~ 1/ρyx for Device #19. The Laudau level develops better at the 

electron side of this device. 

 

 Fig 5.8 demonstrates the Hall conductance of another sample (Device#19). From Eq 4.5, we can 

see that the Hall conductivity can be expressed as
xyxyxx

xy
xy ρρρ

ρ
σ 1

22 −=
+

−=  exactly at each 

plateau value because of the vanishing ρxx. In this device, the Landau level develops better in the 

electron side. 
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 In this quantum Hall regime, we also observe oscillations in Sxx (Fig 5.9(a) and (b)) that are 

reminiscent of the Shubnikov-de Hass oscillations in ρxx, and the side peaks and dips in Sxy that 

correlate with the oscillatory structures in Sxx. At T = 11 K, Sxx shows peaks (dips) as µ is inside the 

broadened Landau levels (LL) on the hole (electron) side. These peaks (dips) correspond to the LL 

indices n = 1 and n = 2 for holes (electrons). Sxy also changes sign at these fillings. It is also worth 

noting that Sxx crosses zero at the Dirac point (in the lowest LL), accompanied by an additional small 

dip (peak) on the hole (electron) side. In conventional 2D electron systems, the observed Sxx peaks at 

the LL’s are consistent with the calculations in the integer quantum Hall regime. In graphene samples, 

the n =1 and n =2 peaks in Sxx on both electron and hole sides are also expected. However, we do not 

observe vanishing Sxx as µ is located between the two adjacent LL’s. The non-vanishing Sxx was 

previously attributed to the activated behavior in ordinary 2D electron systems. In our samples, the 

relatively large magnitude of Sxx between the LL’s may be caused by the broadened LL’s due to 

disorders. We expect to see Sxx  0 at low temperatures and the predicted activated behavior at high 

temperatures in cleaner samples. 

 As the temperature increases, the oscillations in Sxx and Sxy become weaker, although the overall 

magnitude of both Sxx and the central peak in Sxy increases (Fig. 5.9(b)). As discussed earlier, the 

characteristic width of the Nernst peak is primarily determined by γ which is greater than kBT. The 

Nernst width remains nearly unchanged as a consequence. 

 A more systematic data of how Sxx and Sxy vary vs. magnetic field and gate voltage is 

demonstrated in Fig 5.10. This data is from Device #19. Similar effects are observed in this device. 
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Fig 5.9 (a) Two-terminal conductance G and thermopower Sxx vs. carrier density n2D at T = 11 K and 

B = 8 T. The corresponding Landau level index n is shown on the top axis. (b) Sxx (black triangle) and 

Sxy (red circle) vs. Landau level index n for four different temperatures at B = 8 T. 
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Fig 5.10 2D density plot of the Sxx and Sxy v.s. magnetic field and gate voltage in Device #19. 
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5.4.2  The Nernst peak at low carrier density 

 In a magnetic field, due to temperature gradient, the diffusing carriers experience the Lorentz 

force, resulting in a non-zero transverse voltage Vy. The transverse effect or the Nernst effect is 

measured by 
x

yy
xy T

V
T

E
S

∆
∆

=
∇

−= . In non-magnetic metals, Sxy is negligibly small (~10 nV/K per 

tesla).59,60 In ferromagnets, spin-orbit coupling can lead to a large spontaneous Nernst signal.61,62 Here 

we observe an exceedingly large Nernst peak (~ 50 µV/K at 8 T) at the Dirac point (Fig 5.11(a) in 

Device #14), and we attribute it to the unique band structure of graphene. In classical transport, the 

Mott relation takes the following form:50,63 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
Θ∂

−= )sgn(
*33

2222

µτ
µ

π
ε

π

µ m
TBk

e
TkS BHB

xy . Sxy is directly proportional to the 

energy derivative of the Hall angle HΘ or inversely proportional to the cyclotron mass m*. For 

massless particles, the vanishing cyclotron mass can indeed lead to a diverging behavior in Sxy. In 

graphene devices, however, the anomaly is diminished by the impurity states near the Dirac point. 

Recall that the Mott relation breaks down in this region. Here we estimate the magnitude of Sxy at the 

Dirac point both from HΘ  outside this region where the Mott relation holds and from γ. Since we 

have )sgn(µµ ⋅⋅−=Θ BcH  (µc: carrier mobility), we obtain 2.2~H∆Θ  with an 8T magnetic 

field at 255 K. This change in HΘ  occurs over γ ~204 meV as estimated from the width of the 

conductance minimum, yielding Sxy ~ 68 µV/K. This is in very good agreement with the experimentally 

observed peak value (~ 50 µV/K). Additionally, HΘ is directly proportional to B, which indicates a 

linear B-field dependence in Sxy, with an estimated slope of ~5.4 µV/K·T at 160 K. Indeed, the linear 

B-dependence of Sxy is observed (Fig 5.11(a)), and the slope of the straight line is ~ 6 µV/K·T. 
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Similar to Sxx whose diverging behavior is greatly modified by the disorders, the anomaly in Sxy 

depends on the carrier mobility as well as γ. We expect to see more pronounced anomalous behavior in 

both Sxx and Sxy in cleaner samples. 

(a)                                              (b) 

 

Fig 5.11 (a) The Vg -dependence of Nernst signal Sxy at 160 K with different magnetic fields (1 – 8 T). 

Inset: B-dependence of Sxy at Vg = VD, and the red line is a linear fit. (b) The schematic graph of the sign 

change of the Hall angle at the Dirac point, which is related to the magnitude of the Nernst peak at the 

Dirac point. 
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Chapter 6 Conclusions 

 In conclusion, during my Ph.D. work I have studied the transport properties of two novel 

materials: the electrical transport of topological insulator-Bi2Se3 and the thermoelectric transport of 

graphene. 

 In our work of topological insulators, we have uncovered high-mobility states in the band gap of 

Bi2Se3 thin devices by systematically controlling the chemical potential via post-fabrication electron 

beam irradiation and electrostatic gating. We have designed a unique lithography-free fabrication 

technique to maintain the material properties in Bi2Se3 thin flakes. The high-mobility along with the 

characteristic WAL feature is attributed to the transport of the massless Dirac states in the band gap. 

We have also observed a signature of the Shubnikov-de Haas oscillations which result in a very high 

transport mobility. Our work paves the way of further studies and applications of the topological 

non-trivial surface states. 

 In our work on graphene thermoelectrics, the diverging behavior (|Sxx| ~ 1 / || 2Dn ) of the 

Seebeck coefficient along with the exceedingly large Nernst peak at the Dirac point is characteristic of 

the massless particles in graphene. With disorders, these generic anomalies are somewhat masked near 

the Dirac point. However, the diverging behavior can be retrieved from those quantities as the chemical 

potential approaches the Dirac point. In higher mobility graphene samples, the anomalies are expected 

to be more drastically pronounced. 

 The structure and the symmetries of the condensed matter provide us enormous ways to create 

novel materials with novel properties. It is this process of discovery and study that revolutionize 

people’s understanding of the surrounding world. Just like the discovery of new elements and the 
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understanding of the period table, the discovery and understanding of novel materials will lead us to a 

new era of human history. 
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