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Evaluation of the BreastSimulator software platform for breast 
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Bulgaria 3Dutch reference centre for screening (LRCB), PO Box 6873, 6503 GJ Nijmegen, The 
Netherlands 4Department of Radiology and Nuclear Medicine, Radboud University Medical 
Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands 5Department of Radiology, 
University of California, Davis, Medical Center, Sacramento, California, USA

Abstract

The aim of this work is the evaluation of the software BreastSimulator, a breast X-ray imaging 

simulation software as a tool for the creation of 3D uncompressed breast digital models and for the 

simulation and the optimization of computed tomographic (CT) scanners dedicated to the breast. 

Eight 3D digital breast phantoms were created with glandular fraction in the range 10% to 35%. 

The models are characterised by different sizes and modelled realistic anatomical features. X-ray 

CT projections were simulated for a dedicated cone-beam CT scanner and reconstructed with the 

FDK algorithm. X-ray projection images were simulated for 5 mono-energetic (27, 32, 35, 43 and 

51 keV) and 3 poly-energetic X-ray spectra typically employed in current CT scanners dedicated 

to the breast (49, 60, or 80 kVp). Clinical BCT images acquired from two different clinical breast 

CT scanners were used for comparison purposes. The quantitative evaluation included calculation 

of the power-law exponent, β, from simulated and real breast tomograms, based on the Power 

Spectrum (NPS) fitted with a function S(f) = α/fβ. The breast models were validated by 

comparison against clinical breast CT and published data. The calculated β coefficients are close 

to that of clinical CT data from a dedicated breast CT scanner and reported data in the literature. In 

this paper we evaluated the software package BreastSimulator to generate breast models suitable 

for use with breast CT imaging The breast phantoms produced with the software tool can 

reproduce the anatomical structure of real breasts, as evaluated by calculating the β exponent from 

the power spectral analysis of simulated images. As such, this research tool will contribute 

considerably to the further development, testing and optimisation of breast CT imaging technique.
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1. Introduction

Mammography, and in particular digital mammography (DM), is a fundamental imaging 

technique in breast cancer screening and diagnosis. DM returns a two-dimensional (2D) 

digital representation of a compressed three-dimensional (3D) object. Therefore, tissues 

belonging to different planes are all projected on the same X-ray image plane, making it 

difficult to detect possible abnormalities. This condition may be even worse in dense breasts, 

characterized by a high fraction of glandular tissue. In recent years, digital breast 

tomosynthesis (DBT) has been introduced as a form of 3D imaging for screening and 

clinical diagnosis of the compressed breast in order to overcome this limitation 

(Sechopoulos 2013). On the other hand, cone-beam computed tomography (CT) scanners 

dedicated to the uncompressed breast (breast CT, BCT) are available either experimentally 

or commercially, characterized by the use of quasi-mono-energetic [McKinley et al 2005] or 

poly-energetic X-ray beams [Lindfords et al 2008; O’Connell et al 2010; Kalender et al 
2012; Russo et al 2010; Mettivier et al 2011; Sarno et al 2015, 2016a]. Parallel-beam 

synchrotron radiation mono-energetic BCT is also under investigation [Longo et al 2016; 

Mettivier et al 2016; Sarno et al 2016b]. But before the BCT can become a clinical 

procedure a number of issues should be optimized, such as the source and the detector 

design [Kalender et al 2012], the acquisition strategy [Linfords et al 2008; McKinley et al 
2012], the reconstruction methods. To perform such investigations, there is a strong need of 

large databases of clinical images. Alternatively, images may be simulated from 

computational 3D digital breast models. They can be classified as digital phantoms based on 

patient data or mathematical data. In BCT, simple mathematical breast phantoms, usually in 

the form of cylinder, half-ellipsoid or slabs of homogeneous material with a given glandular 

to adipose breast ratio, are widely used in simulations particularly for dosimetry and 

optimization of acquisition geometry [Boone et al 2004; Mettivier et al 2016; Lanconelli et 
al 2013]. However, when it is necessary to investigate parameters such as the detectability of 

lesions, the performance of image processing algorithms or the reconstruction algorithms, 

the use of a homogeneous background is a limitation, since the anatomical structure is not 

reproduced.

Mathematical breast phantoms for BCT may be produced also with the BreastSimulator 
software tool [Bliznakova et al 2003], which is a software application dedicated for research 

in X-ray breast imaging. This research tool allows to create realistic 3D uncompressed breast 

models. The simulation of the breast compression adopted during DM and DBT, is also 

included (Zyganitidis et al. 2007). With this software, it is possible to simulate 

mammographic, tomosynthesis and fully tomographic breast imaging geometries. The 

BreastSimulator tool was previously validated and evaluated as a reliable tool for the 

simulation of DM systems [Bliznakova et al 2010].

The purpose of this study was to validate this software tool as an appropriate X-ray 

simulator for dedicated BCT imaging. This investigation is based on the quantification of the 

anatomical noise, evaluated by calculating the β exponent deduced from the power spectral 

analysis of the CT simulated images. The closeness of the power spectrum coefficient β 
(calculated from simulated CT images) to that calculated from clinical CT images of the 
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uncompressed breast, was the criterion for validating BreastSimulator for 3D breast imaging 

studies.

2. Materials and methods

2.1 BreastSimulator

The main components of the BreastSimulator [Bliznakova et al 2012] are the module for the 

creation of breast composition models and the module for the simulation of X-ray imaging.

2.1.1 Breast model generation module—This module was used to generate breast 

models of given size and composition. The simulated breast features include the breast 

shape, the duct system, the Cooper’s ligaments, the pectoralis muscle, the 3D 

mammographic texture, the skin, the lymphatic and blood systems and breast abnormalities 

(masses and calcifications). Additionally, a 3D texture matrix was created to simulate breast 

structures not explicitly modelled, such as nerves and blood vessels, as well as to increase 

the realism of the simulated ligaments. The user can increase the complexity of the breast 

model by including any such features and by increasing their number (e.g. simulating a large 

number of Cooper’s ligaments, or of lactiferous ducts) or size (e.g., by simulating short-

sized or long-sized ducts). The aim was to simulate the complexity of the actual breast 

anatomies, as found for samples women with different glandular fraction, breast size and 

shape, and anatomical texture. An example of a simulated breast phantom with and without 

Cooper ligaments is shown in figure 1a,b, respectively.

The duct system is simulated as a network of cylinders (figure 1a), marked as a fibrous 

tissue and probabilistically arranged in the breast in a tree-like arrangement. The duct model 

includes the major ducts and the lactiferous ducts. Cooper ligaments are simulated as thin 

ellipsoidal shells, originating at randomly sampled positions in the breast model (figure 1b). 

Their linear attenuation coefficient (at the given X-ray photon energy) is equal to that of the 

ducts, while the compartments enclosed by them are assigned the attenuation coefficient of 

the breast adipose tissue. A mixture of adipose, fibrous and connective tissues as well as 

other non-glandular tissue types not explicitly modelled, simulate the mammographic 

texture. The algorithm for generating this texture is based on the use of random walk, 

following the concept of the “fractional Brownian motion model”. The pectoralis muscle 

(figure 1a) is approximated as a cone-shaped object. Breast abnormalities are modelled with 

round, ovoid, elongated or irregular shapes.

2.1.2 X-ray imaging module—The X-ray imaging module contains information for the 

acquisition geometry and allows for setting acquisition parameters like source-to-detector 

(SDD) and source-to-isocenter (SID) distances, number of projection images, gantry angles, 

beam energy and detector type. X-ray projection images were obtained by simulating the 

transport of mono-energetic X-ray photons in the breast model. Image formation was based 

on the Lambert-Beer’s law for X-ray attenuation. Figure 2 shows the BCT acquisition 

geometry used in the present simulation study. X-ray tracing was based on the Siddon’s 

algorithm to calculate the exact radiological path through voxels. Poisson quantum noise 

was added to the noise-free projection images, using a Gaussian random number generator, 

with a variance equal to the number of photons incident on each detector pixel. For 
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simulating poly-energetic beams, the images obtained at each spectra energy were subjected 

to weighted sum based on the corresponding photon fluence of the X-ray spectrum adopted 

for the simulation.

2.2 Setup description

For the imaging setup, we simulated a cone-beam irradiation geometry, with SID and SDD 

set to 458 mm and 866 mm, respectively. The detector was modelled with a size of 700 × 

700 pixels, while the pixel size was set to 0.333 mm, in the order of the effective pixel size 

adopted in projection images with clinical BCT scanners (Boone et al 2005). Photon scatter 

in the breast and detector response were not simulated. In particular, scatter in uncompressed 

breasts, though significant, introduces a low-frequency trend on the spatial variation of the 

background signal, at frequencies below the minimum spatial frequency (0.05 mm−1) here 

considered in the analysis of the NPS for evaluation of the power-law exponent, β (Mettivier 

et al 2010).

We note that considering scatter-free views of the simulated breast may introduce a decrease 

of the noise power at low frequencies in CT slices, so producing a decrease of the power-law 

magnitude, α. However, for the purpose of this work, only the power-law exponent, β, will 

be analysed. On the other hand, both α and β will be considered as free parameters in the 

linear fit of the log(PS) curve log[S(f)] = (log α) - β·f in the analysis of the radial PS from 

simulated or measured CT slices.

For each projection and photon energy, a number of 107 photon histories were run. 

Simulated images were generated for all incident mono-energetic beams with energy in the 

range 15–80 keV, with 1-keV increments. In the case of poly-energetic beams, for each 

energy we run a code to produce three projection images from the initial x-ray spectra and 

for each gantry angle. These three projection images have pixel values representing 

distances in mm (dadipose, dgland, dskin) as the travelled distance of the x-ray through (a) the 

adipose tissue, (b) the gland tissue and (c) the skin, respectively. A total of 70200 projections 

were obtained for the 80-kVp poly-energetic spectrum, while for the 49-kVp and 60-kVp 

spectra this number was 36720 and 48600, respectively. Then, the corresponding image per 

gantry angle was obtained as follows:

where wE, μ(E)adipose, μ(E)gland, and μ(E)skin are the weighting coefficient calculated based 

on the incident x-ray spectra and the attenuation coefficient for the corresponding tissue and 

energy, respectively.

CT scans with 360 angular views were simulated, with mono-energetic (27, 32, 35, 43 and 

51 keV) as well as poly-energetic X-ray spectra (49, 60, or 80 kVp). These spectra 

correspond to the spectra used for patient scans performed with the breast CT scanners at 

University of California Davis Medical Center (UCDMC) (Lindfors et al 2008; Gazy and 

Boone 2014), and the commercial scanner of Koning Ltd. (O’Connell et al) also used at 

Mettivier et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2018 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Radboud University Medical Center (RUMC). The spectra were calculated using the spectral 

model by Boone et al 1997. The beam qualities were: (49 kVp, 1.39 mm Al) (Sechopoulos 

et al 2010); (60 kVp, 4.26 mm Al) (80 kVp, 5.74 mm Al) (Boone et al 2005). CT scans for 

mono-energetic beams with photon energies of 32 keV, 43 keV and 51 keV were simulated, 

since these energies correspond to the mean energy of the poly-energetic spectra at 49, 60 

and 80 kVp, respectively. On the other hand, mono-energetic beams at 27 keV and 35 keV 

have a photon energy close to those used in the experimental studies ongoing at the Elettra 

synchrotron radiation facility on phase-contrast BCT [Longo et al 2016].

Image pixel dimensions were 0.333 mm × 0.333 mm. The simulation of 360 X-ray 

projections took 24h for the mono-energetic beams on a dedicated personal computer (see 

below).

2.3 Breast phantoms

For the purpose of this work, we use BreastSimulator to create eight different 3D digital 

breast phantoms with realistic anatomical features (Breast models from #1 to #8, with 

different sizes and compositions). The research tool runs on an Intel Core 2 Quad Processor 

Q8200 2.33 GHz, with 8 GB RAM and 64 bit Linux operating system. The attenuation 

coefficients of the different breast components were derived from the XCOM Program 

(NIST Database). Table I shows the characteristics of each breast phantom (background 

matrix size, voxel dimensions, glandular fraction and breast size) and the corresponding 

simulated tissue features. The size (in pixels) of the 3D breast matrix ranges from (560)3 for 

the Breast #2, to (1000)3 for the breast models #4–#7. The voxel size of these matrices 

ranges from 0.1 mm to 0.25 mm (in each dimension) and the volume from 100 mm3 (#4, #5 

and #6) to 469 mm3 (#1 and #8). As a result of simulating a certain breast anatomy, each 

breast model turns out to have a different glandular fraction by volume which varies from 

10% to 35% (i.e., the glandular fraction is an output datum of the software). The breast 

models were generated free of lesions in order to avoid any bias in the results. Based on the 

breast model complexity, the CPU time for the realization of a digital breast model ranged 

from 15 to 30 min.

2.4 Clinical Data

In order to make a comparison with measured clinical data, the same procedure for the 

evaluation of β was applied on clinical BCT images acquired by the team at UCDMC and at 

RUMC. The data acquired with the UCDMC scanner are relative to a 180 breasts. The 

reconstructed slices have different dimensions with a voxel size of 0.20 × 0.20 × 0.35 mm2. 

Fig. 3 shows clinical CT views and 3D renderings of one of this sample acquired with the 

UCDMC scanner. For comparison, in figure 3 is shown a simulated breast model (#5) with 

the same glandular fraction.

The data acquired with the RUMC scanner include CT scans of eight different real breasts. 

The number of projections is 300 over 360 deg and the tube voltage was 49 kVp. The 

reconstructed slices have different dimensions with a voxel size of 0.27 × 0.27 × 0.27 mm3.
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2.5 Assessment of the β parameter

It has been previously reported [Burgess et al 2001] that the anatomical structure in 

mammograms may represent a major impediment to lesion detectability and that it shows an 

isotropic power law spectrum of the form S(f) = α/(f β). Here, α describes the magnitude of 

fluctuation in the signal power, f represents the radial frequency and β (the log spectrum 

slope) has a critical role in determining the size at which a lesion reaches the threshold for 

detection [Chen et al 2012]. Its value (for natural scenes and for mammography) ranges 

between 1.5 and 3.5 [Burgess and Judy 2007] and its mean value has been reported to be 

approximately 3 for DM [Burgess et al 2001; Heine et al 1999] and approximately 2 for 

BCT [Metheany et al 2008; Chen et al 2012].

For the analysis of the β parameter, the projections of the simulated uncompressed breast 

were reconstructed with a commercial software (COBRA, Exxim Computing Corporation, 

Pleasanton, CA, USA) implementing the Feldkamp-Davis-Kress algorithm, providing axial, 

coronal and sagittal views. In order to evaluate the impact of slice thickness, the dimension 

of the reconstructed voxel was varied from 0.250 × 0.250 × 0.250 mm3 (512 × 512 × 512 

voxels) to 0.250 × 0.250 × 2.00 mm3 (512 × 512 × 64 voxels). The power-law exponent β 
was derived from fitting the NPS functional form S(f) = α/(f β) evaluated on ROIs selected 

randomly in reconstructed slices [Chen et al 2013]. A liner fit was applied to the radial log 

PS. Assuming uniform tissue characteristics in the various regions of the breast volume, one 

thousand ROIs have been selected randomly inside a single coronal slice or in the whole 

breast. A rejection method was used to insure that all ROIs were located within the breast 

anatomy on the image. Following the method of Metheany et al (2008), for each ROI, the 

mean pixel value was subtracted and then a Hanning window was applied. The ROI was 

chosen empirically while ensuring that it was large enough to allow for an accurate estimate 

of β but not too large so as to emphasize non-uniformities in the image. Then, the 2D NPS 

was computed by means of the Fast Fourier Transform for each ROI and the mean 2D PS 

was determined by averaging the PS from the 1000 ROIs. In order to obtain a 1D PS, a 

radial profile was evaluated. Finally, the β coefficient was calculated as the negative slope of 

the fitting line returned by computing a linear fit of log(1D PS) vs. log(f). The optimal 

frequency window (from f1 to f2) was selected for each PS(f), as the one which maximized 

the R2 fit statistic, and the values of α and β were then recorded for each breast data set. We 

tested this method by evaluating the β coefficient of the 180 breast scans provided by 

UCDMC: figure 4a and 4b show the data obtained in this test. Specifically, fig. 4a shows the 

β values for all breasts, with the dashed line and the light grey shaded area showing the 

corresponding mean value (β = 2.11) and the range of data within ± 1 std. dev. (= 0.55), 

respectively. These values are also reported in the Tab. II. Fig. 4b shows the frequency 

distribution of the β values obtained for the UCDMC dataset.

3. Results

3.1 Breast Models

Figure 5 shows sample CT slices and the corresponding 3D renderings of all eight breast 

models created with BreastSimulator for this work, in the case of a simulated 80 kVp 

spectrum. In this figure, the different anatomical complexity explained in the various models 
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reflects into a different appearance of the simulated CT slices. In particular, the inclusions in 

model breasts of the Cooper’s ligaments and of the varying-size duct system are clearly 

distinguishable features of the various breasts. The glandular tissue is well distinguished 

from the flat tissue as well as the skin tissue (when present).

3.2 Analysis of the power spectrum

After CT reconstruction of breast projections created with BreastSimulator, we evaluated the 

β coefficient from the resulting CT coronal slices (figure 6a,b); an example of PS plots and 

corresponding power-law fits is shown in figure 6c, together with PS data evaluated from 

clinical BCT scans at RUMC and UCDMC. The three illustrative cases shown in fig. 6c 

were randomly selected between the simulated phantoms; in the case of real breast from the 

UCDMC set we selected a case with a β parameter equal to the measured mean value. We 

observe that the BreastSimulator data show a different intercept, log(α): indeed, the 

simulated data show a lower power, at all frequencies, than patient data. Measured β values 

for all the simulated and real breasts are reported in table II.

Tab. II reports the β coefficients calculated in the central coronal slice of each breast model 

described in table I, reconstructed with four thicknesses of the tomographic slice and for the 

different beam qualities. For instance, the results for a slice thickness of 0.250 mm and 

0.500 mm are shown in fig. 7, for both mono-energetic (27, 32, 35, 43 and 51 keV) (fig. 

7a,b) and poly-energetic (49, 50 and 80 kVp) spectra (fig. 7c,d).

We observe that the simulated projection images from computer breast models show a 

different value of the β coefficient, but for a given breast model, there is limited variation in 

the β values for varying energy of the X-ray beam. When considering the range of values 

found in UCDMC (β = 2.11 ± 0.55), the data provided by BreastSimulator partially overlap 

this range, with breast models from #2 to #6 falling inside this range. As regards the change 

in β deriving from a different choice of the slice thickness in the CT reconstruction, the 

comparison of figs. 7a,b and 7c,d illustrates that there is a slight increase in β with the slice 

thickness increases. These considerations are confirmed also by the data in fig. 8 where the 

β coefficients are reported for all digital phantoms as a function of the beam energy for 

mono-energetic (fig. 8a) and poly-energetic (fig. 8b) spectra.

Figures 9a,bc,d show the β coefficients for each phantom for the 80 kVp poly-energetic 

spectrum as a function of the phantom glandularity. The continuous and dashed lines in the 

figure show the fitted value and range of ± 1 std. dev. reported in Chen et al. 2013, 

respectively.

Figure 10 shows the β coefficients as a function of slice thickness, calculated in the central 

coronal slice for breast models #1 to #8 for the 80 kVp poly-energetic setup. The area 

shaded in light gray represents the average value (dashed red line, β = 1.86) ± 1 std. dev. of 

the parameter β measured on clinical CT data reported by UCDMC on 44 breast images 

[Chen et al 2012]. It is observed that breast models #1 to #4 are totally outside this area and 

that models #5 to #8 are totally or in part within it. We also note that Chen et al 2013 at 

UCDMC evaluated the β coefficients from coronal CT slices on a cohort of 185 patients and 

they found a mean value β = 1.96 ± 0.46.
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Figure 11a shows the values of β computed in each reconstructed coronal slice from the 

chest-wall to the nipple (for a slice thickness of 0.250 mm), for phantom #5, for all mono-

energetic as well as poly-energetic beams. The case of breast #5 was considered, since it 

shows the values of β (fig. 11) closest to the average value (1.96 ± 0.46) as reported by the 

UCDMC group [Chen et al 2013] and the our calculated mean value (2.11 ± 0.55). In fig. 

11a, the values of β show some fluctuation with the slice position from chest wall to the 

nipple, however, independent parabolic fits to the data point relative to the six different beam 

qualities reveal a common trend, with β decreasing markedly toward the nipple and slightly 

decreasing also toward the chest wall. The simulated data for 80 kVp and for the 

corresponding 51 keV mono-energetic spectrum are replotted in fig. 11b, where it is seen 

that the two datasets of β values share the same mean value and standard deviation, for the 

slices along the longitudinal position from the chest wall to the nipple. A direct comparison 

between the β values within the simulated breast model #5 and a real patient scan (randomly 

selected), acquired with the RUMC scanner is shown in fig. 12. The X-ray spectra utilized 

for the simulation is the same used in the commercial scanner. A good agreement within the 

experimental uncertainty is obtained.

4. Discussion

The power spectrum analysis of simulated and clinical images suggests that the 

BreastSimulator generates breast models with a tomographic characteristic close to the real 

breast tomograms. Eight 3D uncompressed breast models characterized with different 

content, size and voxel resolution were created with the BreastSimulator software package. 

While the agreement between real and simulated β distributions is not to be taken as a 

paradigm for “correctness” of the anatomical structure of the 3D digital breast models, it is 

anyway a positive aspect of BreastSimulator that it is capable of reproducing the range of 

variability of this parameter found in patients’ BCT scans. In this respect, we point out that 

the detailed distribution of the glandular tissue in the breast volume has no influence on the 

evaluation of the β parameter, since in the evaluation procedure (as reported in par. 2.5 and 

shown in fig. 6a,b) a large number of ROIs were selected randomly in the slice for 

computation of the average pixel value. Just for sake of example, the average β value plays 

the same role as the average glandular dose in breast dosimetry, where two different 3D 

distributions of the glandular dose might share the same MGD. It is the fraction of the 

glandular tissue that has an influence on the β value as reported in the literature (e.g. Chen et 
al 2013, Metheani et al 2008) and shown in fig. 9. This is reflected in fig. 3 where the spatial 

distributions of the glandular tissue in real and simulated breasts looks quite different, 

though the average β are comparable.

The creation of fatty, glandular and dense breast models is influenced by the simulated 

breast features: ducts, Cooper ligaments, adipose, fibrous and other connective tissues. For 

each phantom, we have simulated the tomographic acquisition with eight different setups (5 

mono-energetic and 3 poly-energetic setups) and have obtained 64 CT reconstructions (fig. 

5) with four slice thicknesses (0.250, 0.500, 1.000 and 2.000 mm) for a total of 256 CT 

reconstructions. The β coefficient for the slices in each reconstruction was calculated and 

reported in table II. The mean value and the standard deviation of calculated β values of 

simulated images (β ~2 for this 3D imaging modality) are in general in the range of the 
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calculated β values obtained for the clinical CT images from dedicated breast CT scanners. 

Published BCT data from a relatively large cohort of patients indicate an average β exponent 

between 1.86±0.38 and 1.96±0.46 [Metheani et al 2008; Chen et al 2013].

The increase of the thickness of the reconstructed slice results in an increase of the β values 

for each breast model and setup (table II and fig. 8) as expected due to the increase of the 

anatomical structure related to the higher thickness. This results are in agree with the data 

reported in Chen et al 2013 where an increase of the β value from 1.96 to 3.15 was due to 

the increase of the slice thickness (from 0.23 mm to 44 mm) and in Chen et al 2012.

The detailed comparison of β values calculated from simulated and real images (in fig. 7) 

shows that except breast models 1, 7 and 8 all other created breast phantoms have β values 

close to the β value calculated on the real images used in this study and are in the range of 

the β values reported in literature. In particular, we can note that the β value depends on the 

breast matrix size (from about 6003 to 10003) and the voxel resolution (from 0.25 to 0.1 

mm) as well as on the Cooper ligaments. Lower voxel resolution results in averaging of 

adipose and glandular tissues in one voxel. Lower voxel resolution combined with higher 

glandularity leads to slices with highly irregular structures which result in higher β values, 

as in the case of breast 1.

Increasing the voxel resolution has the opposite effect on β. If the parameters breast size and 

resolutions are well chosen and set, β values decrease with the decrease of the breast 

glandularity. These results are in agreement with the results reported also in Metheany et al 
2008 and Chen et al 2013: in particular the data reported in fig. 8 and fig. 2 of these works, 

respectively. It was also observed that the β value depends on the number of simulated 

structures and anatomical details in the breast model. In particular, breast models #5 and #6 

differ only in the number of the Cooper’s ligaments and their initial radius. The increase of 

these ligaments leads to the increased β value. On the contrary, the β value is independent of 

the photon energy value (fig 10a) and tube kilovoltage (fig. 10b) in the mono-energetic and 

poly-energetic setup, respectively. This is expected, since the β value quantifies the 

anatomical structure in images.

Another aspect is highlighted by fig. 11. In the literature, there is no indication about the 

appropriate choice of the slice used for evaluation of the β parameter; in our study we 

assumed to use the central coronal slice, following Boone (Chen et al 2013). Results for β 
values calculated in all the slices are reported in fig 11. It can be observed the good 

agreement between these β values and those obtained for a real breast (fig. 12) as well as 

data reported by Engstrom et al 2009 in the case of tomosynthesis slices. The higher values 

of the β coefficients in the “central” slice in simulated data are due to the natural 

concentration of the glandular breast tissue around the nipple. This slice can be identified by 

a parabolic fit to the β values of each slice and considering the slice were the vertex of the 

parabola is found (see fig. 11a).

In this work, we used eight computer models of the breast with glandularity ranging between 

10% and 35%. In the glandularity calculations, we included the skin. Four of the breasts had 

a glandular fraction of 10%, two had a glandular fraction of 24%, and two other breasts have 
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35% and 30% glandularity. The average glandularity was 23%, comparable to the value 

(19.3%) obtained by Yaffe et al. (2009) for the average glandularity obtained from 191 

patient breast-CT images). Current efforts of our group are towards generating a very large 

number of computer models of the breast with different glandularity, sizes and dimensions, 

to be stored in a dedicated database and to be used for further research.

Regarding the computational time of about 24 hours, it includes a) generation of breast 

models, b) generation of 360 projection images and c) volume reconstruction. The most 

time-consuming part of the algorithm for generation of breast models is the part related to 

the generation of the Cooper ligaments. The locations of the Cooper ligaments are sampled 

randomly within the breast volume; then, a procedure verifies that the generated ligament 

does not have any intersection with other ligaments. At present, this process has not been 

optimised computationally, but we are working for reducing the time needed for their 

generation. Simulation for CT imaging was performed on two 6-core processor 

workstations, having 24-GB RAM. One projection image was simulated in about 4 minutes. 

Image formation simulation may be also optimised if cloud technology is used. On the other 

hand, the time for reconstructing tomograms was comparably negligible.

We are also working on the use of the BreastSimulator to simulate noise in projection 

images. Noise sources to be considered are the photon noise, the noise in the detector as well 

as the scattered X-rays. In these studies, a Monte Carlo code will be exploited to simulate X-

ray interactions in the breast models and in the detectors. It is expected that simulated 

tomographic images with improved noise description will have characteristics closer to those 

from clinical scans. This future work will further establish the practical importance of 

BreastSimulator in carrying out feasibility studies in the field of breast X-ray imaging and in 

particular in advancing research and optimisation studies for breast CT.

5. Conclusions

This paper described the evaluation of a software package called BreastSimulator for 

research purposes in breast CT. Breast models of different size and content were simulated 

and the anatomical structure properties were evaluated by calculating the β exponent from 

the power spectral analysis of the simulated images. The good agreement between simulated 

and measured β in four clinical scans indicates the potential of BreastSimulator in devising 

digital phantom for describing the complex anatomy of the female breast. It is expected that 

the increase in the complexity of the present models (e.g., increase of the number of tissue 

structures) for breast CT with BreastSimulator will produce an even better description of the 

corresponding complexity of the anatomical structure of the breast; this depends also on the 

computing power available for simulation. This would be particularly important for the 

description of dense breasts.
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Figure 1. 
Example of a simulated breast model containing two massive lesions (in red) and ductal 

system (in yellow), generated with the BreastSimulator: (a) model without and (b) with 

Cooper’s ligaments (in green). The conical structure on the top of the breast simulates the 

pectoralis muscle.
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Figure 2. 
Simulation of X-ray imaging with the X-ray imaging module.
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Figure 3. 
CT slices and corresponding 3D renderings of a real breast sample acquired with the 

UCDMC scanner (first raw) and a simulated breast phantom (model #5) (second raw).
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Figure 4. 
a) β values of the 180 breast cases acquired with the UCDMC scanner and calculated with 

the method described in section 2.5. The dashed line and the light grey area represent the 

mean and the range of ± 1 std. dev. of these values. b) Frequency histogram of β values for 

the UCDMC dataset (N = 180).
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Figure 5. 
Example of coronal (a), sagittal (b) axial (c) reconstructed CT slices and a 3D rendering (d) 

for breast models obtained with BreastSimulator software package. These images were 

obtained simulating the 80 kV setup of the UCDMC scanner.
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Figure 6. 
a) Example of the square ROI sampling carried out on an X-ray reconstructed coronal slice 

obtained with BreastSimulator software and b) on a real breast acquired with the RUMC 

scanner (@49 kVp). c) The PS evaluated from a single illustrative simulated CT dataset 

(closed squares) and from a single breast CT scan acquired with the UCDMC scanner (@80 

kVp, open squares) and from the RUMC scanner (closed triangles). The continuous lines 

represent linear fits to the data points in the range 0.05–0.4 mm−1, with the value of 

corresponding slopes indicated as β values for each dataset. The β coefficients were 

calculated on the mid-position (from chest wall to nipple) coronal CT slice. The vertical 

dashed lines indicate the frequency region for calculation of β.
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Figure 7. 
β coefficients calculated in the central (from chest wall to nipple) coronal slice for each 

phantom described in tab. I and for mono-energetic (27, 32, 35, 43, 51 keV) (a,b) and poly-

energetic (49, 60, 80 kVp) (c,d) X-ray spectra. The slice thickness is (a, c) 0.250 mm or (b, 

d) 0.500 mm. Each box in the plots indicates mean, median, min, max, and 10th, 25th, 75th 

and 90th percentile value. The area shaded in light gray represents the mean (dashed red line) 

± 1 std. dev. of the parameter β measured on clinical CT data reported by UCDMC on 185 

breast images [Chen et al 2013]. Breast models from #2 to #7 are considered to match the 

range of values found in CT scans of patients’ breasts.
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Figure 8. 
Coefficients β calculated in the central coronal slice (of thickness 0.250 mm) for breast 

models #1 to #8 described in Tab. I, as a function of photon energy, for (a) mono-energetic 

beams or (b) for poly-energetic beams. The area shaded in light gray represents the mean 

(dashed red line) ± 1 std. dev. of the parameter β measured on clinical CT data reported by 

UCDMC on 185 breast images [Chen et al 2013].
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Figure 9. 
Coefficients β calculated in the central coronal slice of thickness 0.250 mm (a) and 0.500 

mm (b) for breast models #1 to #8 described in Tab. I, as a function of glandularity. The 

continuous and dashed lines in the figure show the fitted value and range of ± 1 std. dev. 

reported in Chen et al. 2013.
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Figure 10. 
Coefficients β calculated in the central coronal slice for breast models #1 to #8 described in 

Tab. I, as a function of slice thickness @80 kVp. The area shaded in light gray represents the 

values (dashed red line) ± std. dev. of the parameter β measured on clinical CT data reported 

by UCDMC on 44 breast images [Chen et al 2012]. The white star indicates the value of the 

parameter β measured on clinical CT data reported by UCDMC on 185 breast images [Chen 

et al 2013].
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Figure 11. 
Power-law exponent β calculated on coronal slices (0.250 mm thick) of simulated CT scans 

for the breast model #5, as a function of the distance from the chest wall, for (a) all six beam 

qualities, and (b) for a mono-energetic (51 keV) and a poly-energetic (80 kVp) spectrum. 

The six quadratic fit lines (in red) in a) show a decreasing trend of β at the sides of the chest 

wall and nipple. The order of the six fitting curves is indicated on the right side of the plot. 

In b), the horizontal dashed line and continuous lines (in red) represent the mean value and 

the (mean±standard deviation) values of the values of β calculated for the two datasets. The 

dashed vertical line (in blue) in the two plots marks the longitudinal position of the central 

slice.
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Figure 12. 
Coefficient β as a function of the chest-wall distance for the simulated breast model #5 with 

a poly-energetic beam (49 kVp) (closed symbols) and for a randomly selected RUMC 

patient’s dataset from a dedicated CT scanner (open symbols). The red and the blue dashed 

lines indicate the average values (2.13 and 1.88 for patient and simulated data, respectively) 

of β calculated from data in the whole range of distances from the chest wall.
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