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Hierarchical Bayesian method for mapping biogeochemical hot
spots using induced polarization imaging
Haruko M. Wainwright1, Adrian Flores Orozco2, Matthias B€ucker2,3, Baptiste Dafflon1, Jinsong Chen1,
Susan S. Hubbard1, and Kenneth H. Williams1

1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA, 2Department of Geodesy and
Geoinformation, Vienna University of Technology, Vienna, Austria, 3Steinmann Institute, Department of Geophysics,
University of Bonn, Bonn, Germany

Abstract In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common bio-
geochemical hot spot, having distinct microbial and geochemical characteristics. Although important for
understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distri-
bution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typi-
cally spatially limited and the distribution of NRZs is heterogeneous. In this study, we present an innovative
methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain
using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist
of surface geophysical surveys and drilling-recovered sediments at the U.S. Department of Energy field site
near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images
of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral
precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore
lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the
other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical
model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to esti-
mate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of
electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially
heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parame-
terize a hydrobiogeochemical model of the floodplain.

1. Introduction

Terrestrial biogeochemical processes represent a significant uncertainty in our understanding of carbon and
nutrient cycling [e.g., Heimann and Reichstein, 2009]. Recent studies have described how small zones in an
environment can display enhanced biogeochemical reaction rates and/or fluxes relative to surrounding
regions. Compared to contributions from neighboring regions, these biogeochemical hot spots can have a
disproportionally large impact on larger-scale biogeochemical cycling [McClain et al., 2002; Vidon et al.,
2010]. Duncan et al. [2013], for example, estimated that riparian-zone hollows (lower topographic regions)
accounted for more than 99% of total denitrification in a catchment (37 ha), even though the hollows repre-
sent only 0.5%–1.0% of the total catchment area. Several other papers have described hot spots associated
with regions where groundwater flow upwells or meets organic-rich sediments [Hedin et al., 1998; Hill et al.,
2000]. Other hot spots include wetlands [Johnston et al., 2001], hyporheric zones [Triska et al., 1984; Holmes
et al., 1996], and vernal pools [Capps et al., 2014].

Identifying and mapping hot spots in sufficient resolution, yet over spatial scales needed to inform model-
ing, is challenging [Vidon et al., 2010]. Duncan et al. [2013] used a topographic wetness index (based on a
digital elevation map from airborne LiDAR) to estimate the distribution of hot spots of intense denitrification
(i.e., riparian-zone hollows). However, Anderson et al. [2015] estimated—using the same index—that drier
upland soils would contribute to a larger portion of whole-catchment denitrification. Such discrepancy
could be attributed to the fact that the subsurface terms (soil thickness and hydraulic conductivity) are often
ignored or approximated in the topographic wetness index. Although the topography and other surface
indicators (e.g., slope) are often strongly correlated with subsurface biological processes, other factors
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(e.g., geology, soil type) may also play a critical role in subsurface biogeochemistry. However, direct meas-
urements of subsurface properties have been mostly limited to drilling wells and sampling cores, which are
often invasive and sparse, failing to identify the exact extent of the hot spots or associated controls.

Recently, Campbell et al. [2012] and Qafoku et al. [2014] reported the presence of naturally reduced zones
(NRZs) within aquifer sediments at a former uranium mill-processing site near Rifle, Colorado (USA). This site
is located on a floodplain adjacent to the Colorado River. The two studies found that NRZ sediments had
elevated concentrations of uranium, organic matter, and geochemically reduced mineral phases, such as
metal sulfides, and were often associated with predominantly fine-grained sediment textures. The historical
monitoring of pore water chemistry also showed that the elevated concentrations were fairly persistent
over time [Zachara et al., 2013]. The conceptual model of NRZ formation is that roots, twigs, and other plant
materials accumulated during the river depositional process, became buried, and formed the reduced sedi-
ments. In addition to these two studies, Mouser et al. [2014] found unique microbial characteristics within
the NRZs, such as the abundance of iron-reducing Geobacteraceae communities. Recent modeling studies
suggested that NRZs have a significant impact on subsurface carbon flux to the atmosphere as well as to
the river [Arora et al., 2015a, 2015b]. NRZs can therefore be considered the biogeochemical ‘‘hot spots’’ of
the Rifle floodplain, having distinct microbial, mineralogical, and geochemical properties.

Floodplain-based NRZs could potentially play an important role in global carbon cycling. Although the
floodplains cover a small portion of the Earth’s surface, overbank sedimentation at river floodplains is con-
sidered to be a significant terrestrial sink of carbon [Walling et al., 2006; Battin et al., 2009; Aufdenkampe
et al., 2011]. Floodplains also constantly exchange water, sediment, and geochemical constituents with riv-
ers [Neff and Asner, 2001; Grimm et al., 2003; Gomez et al., 2012]. Subsurface carbon respiration and surface
water-groundwater exchanges within floodplains contribute significantly to dissolved organic carbon con-
centrations and CO2 outgassing in streams and rivers [Schindler and Krabbenhoft, 1998; Cole et al., 2007; Bat-
tin et al., 2008; Melack, 2011]. To develop a model describing the coupled hydrologic and biogeochemical
behavior of floodplains, we must include the presence and distribution of such hot spots within the subsur-
face. Unfortunately, conventional borehole data (e.g., sediment properties, solid and aqueous phase geo-
chemistry, microbial community composition) are often spatiotemporally sparse and thus insufficient for
resolving subsurface heterogeneity within floodplain deposits [e.g., Scheibe and Freyberg, 1995; Kowalsky
et al., 2011; Yabusaki et al., 2011].

Various geophysical methods have been developed in the past several decades to characterize heterogene-
ous subsurface environments in a noninvasive manner [e.g., Rubin and Hubbard, 2005; Vereecken et al., 2006;
Hubbard and Linde, 2011; Binley et al., 2015]. Surface electrical methods—based on injecting an electrical
current through one pair of electrodes on the ground surface and measuring the electrical potential
between a second pair of electrodes—are amongst the most commonly used near-surface geophysical
techniques. The geometrical distribution of electrical resistivity from such measurements has been used to
delineate geological units, water saturation, and lithological properties [e.g., Bowling et al., 2005; Binley and
Kemna, 2005; Doetsch et al., 2012; Kennedy et al., 2013]. Particularly, electrical resistivity tomography (ERT)
employs tens of electrodes along the profile and measures the electrical potential between them. Tomo-
graphic data are then converted to depth-discrete electrical resistivity values along the profile using suitable
inversion schemes [e.g., Binley and Kemna, 2005]. Electrical resistivity (the inverse of electrical conductivity)
is a bulk property of subsurface material associated with its tendency to resist electrical current flow, and
has long been known to be correlated with water saturation, pore water chemistry and lithological proper-
ties [e.g., Archie, 1942].

Recently, the induced polarization (IP) imaging technique—also referred to as complex conductivity or com-
plex resistivity imaging—has been increasingly used to provide additional information on subsurface condi-
tions. Induced polarization phenomena are of electrochemical origin, depending mainly on the presence of
metallic minerals and the pore structure. In the presence of metallic minerals, the change in the electrical
conduction mechanisms from electrolytic (in the groundwater) to electronic (in the metallic minerals)
results in strong polarization effects [e.g., Pelton et al., 1978]. Previous studies have reported a linear correla-
tion between the size of metallic minerals and the IP effect [Wong, 1979]. In case of porous media without
metallic minerals, the polarization effect is primarily controlled by the total mineral-fluid surface area within
the sample, which can be estimated from the total mineral surface area per unit pore volume [e.g., Weller
and Slater, 2015]. As grain size and surface are inversely related, other workers have found a near-inverse
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linear relation between the IP effect and effective grain [e.g., Titov et al., 2004] and pore size [e.g., Binley
et al., 2005].

The IP method was initially used in the prospecting for metallic and certain sulfide ores [e.g., Pelton et al.,
1978] based upon strong polarization enhanced in the presence of metallic and semiconductive minerals
[Wong, 1979]. More recently, polarization mechanisms occurring in geological materials without metallic
admixtures, such as membrane polarization [e.g., Marshall and Madden, 1959; B€ucker and H€ordt, 2013] or the
polarization of the Stern layer [e.g., Revil and Florsch, 2010], have been found to be sensitive to different
hydrogeological (texture, grain/pre size, saturation, etc.) and geochemical (e.g., salinity, pH) parameters. Par-
ticularly, the membrane polarization model has been proposed for rocks with a dispersed clay fraction [e.g.,
Marshall and Madden, 1959], based on the theory that clay minerals coating the quartz grains or located in
pore-throats produce local concentration gradients under applied external voltage [Titov et al., 2002; Scott
and Barker, 2003]. In addition, the IP measurements have recently been used to detect and map subsurface
(bio)geochemical properties associated with microbe-induced mineral precipitation [e.g., Ntarlagiannis
et al., 2005; Williams et al., 2009; Flores Orozco et al., 2011; Chen et al., 2013; Abdel Aal et al., 2014].

Ground-based tomographic IP measurements are typically acquired using a similar electrode configuration
as ERT. In addition to the resistivity measurements, the time decay of the electric potential is measured after
the current injection is stopped. Recently, multielectrode IP surveys (commonly referred to as tomographic
surveys), in combination with appropriate inversion techniques, have enabled the high spatial resolution
imaging of the complex electrical resistivity in the subsurface [Binley and Kemna, 2005].

Previous studies at the Rifle site reported the application of the IP method for monitoring subsurface micro-
bial processes stimulated through organic carbon addition [Williams et al., 2009]. These field studies
revealed that the IP method is suitable for detecting an increase in the polarization effect accompanying
the precipitation of iron sulfides (e.g., FeS) and changes in the chemical composition of groundwater, partic-
ularly the concentration of electroactive ions, such as Fe (II) [Flores Orozco et al., 2011; Chen et al., 2013]. A
recent study demonstrated that the polarization response in geochemically reduced, biostimulated sedi-
ments remained much higher than for background aquifer materials (i.e., those unimpacted by carbon addi-
tion) at the Rifle site over the broad frequency bandwidth (0.06–120 Hz) used for the IP measurements
[Flores Orozco et al., 2013]. Given the natural enrichment in conductive and semiconductive metal sulfides
in NRZ sediments relative to non-NRZ sediments [Campbell et al., 2012; Qafoku et al., 2014], surface IP meth-
ods are well suited for the noninvasive delineation of NRZs within aquifer sediments.

As with other geophysical methods, interpretation of IP imaging results in terms of biogeochemical proper-
ties is hindered by uncertainties and often site-specific relationships between the electrical parameters (in
this case, the magnitude and phase shift of the complex electrical resistivity) and mineralogical-
geochemical properties. Other mechanisms exist that can engender a measurable polarization response in
the subsurface, which also complicates interpretation of IP data. In particular, the mixture of materials with
different textural properties (e.g., grain size) is related to an increase in the polarization effect due to mem-
brane polarization mechanisms [e.g., Revil and Florsch, 2010; B€ucker and H€ordt, 2013]. Hence, IP measure-
ments collected over the full extent of a floodplain might be sensitive to subsurface properties not solely
limited to the presence of reduced sediments within NRZ’s, but also due to lithological boundaries and cor-
responding changes in mineralogical and textural properties [e.g., B€orner et al., 1996; Slater et al., 2014].

Bayesian methods offer an approach to integrate geophysical data sets and point measurements, including
their uncertainty, in a consistent manner [e.g., Hubbard et al., 2001; Chen et al. 2004, 2006; Sassen et al.,
2012; Wainwright et al., 2014]. In particular, reactive facies or zonation approaches have recently been devel-
oped within the Bayesian framework to identify regions that have unique distribution of physical and geo-
chemical properties using geophysical data [Chen et al., 2006; Sassen et al., 2012; Wainwright et al., 2014].
Instead of estimating hydrological or biogeochemical properties directly, the zonation approaches aim to
delineate zones and their associated property distributions. These methods take advantage of the often-
coupled nature of physical, microbiological, and geochemical properties of subsurface materials and the
sensitivity of geophysical responses to at least one of the properties to identify and characterize reactive
facies or zones.

In this study, we extend the zonation concept to estimate the distribution of NRZs in a three-dimensional
(3-D) domain over the Rifle floodplain using surface time domain-induced polarization (TDIP) measurements.
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The distribution of the complex electrical resistivity properties of the subsurface was obtained after the inver-
sion of the TDIP data. We developed a Bayesian approach to integrate wellbore lithological data and IP inver-
sion results, and estimated the distribution of NRZs in a probabilistic manner. In order to develop a high-
resolution 3-D representation of the subsurface, we used a digital elevation model (DEM) inferred from an aer-
ial landscape imaging survey and structure-from-motion techniques. We estimated hydrostratigraphic interfa-
ces using electrical resistivity images from both the IP data sets and electrical resistivity tomography (ERT)
data available at the site. Such hydrostratigraphic interfaces are important for hydrological and geochemical
modeling at this site, as they control vertical infiltration and lateral groundwater flow. To the authors’ knowl-
edge, this is the first study to apply the IP method for delineating such biogeochemical hot spots in a proba-
bilistic manner and to establish a methodology for integrating multiple spatially extensive above ground and
below ground data sets capable of informing biogeochemical models at the floodplain scale.

2. Site Information and Data

2.1. Site Description
The Rifle site (Figure 1) is located on a floodplain adjacent to the Colorado River in northwestern Colorado
[e.g., Williams et al., 2009]. The site was formerly used as a vanadium and uranium ore processing facility,
which caused soil and groundwater contamination by uranium and other heavy metals. The site is currently a
part of the U.S. Department of Energy’s (DOE) Uranium Mill Tailings Remedial Action program, which includes
long-term monitoring activities following excavation and removal of mill tailings and tailings-contaminated
surface materials. The Rifle site currently serves as a community field laboratory for research in

Figure 1. (a) Rifle floodplain with well locations, and (b) digital elevation model (in meter) with ERT lines (white region) and TDIP lines
(blue lines). In Figure 1a, the black circles are the well locations constructed prior to 2013, and the red circles represent the wells that were
drilled in 2014. The site picture is obtained from Google Earth. The Colorado River bounds the south of the site. In Figure 1b, the black rec-
tangle represents the domain used for the estimation and reactive transport modeling.

Water Resources Research 10.1002/2015WR017763

WAINWRIGHT ET AL. PROBABILISTIC MAPPING OF BIOGEOCHEMICAL HOT POTS 536



biogeochemical characterization, bioremediation, subsurface microbial characterization, and nutrient cycling
[e.g., Williams et al., 2011; Yabusaki et al., 2011; Castelle et al., 2013; Wrighton et al., 2014].

The site hydrostratigraphy consists of three principal units, referred to hereafter from surface to base of the
aquifer as: the fill layer, the Rifle Formation, and the Wasatch Formation. The fill layer—comprised of silt-
rich loess deposits derived from a quarry abutting the site to the northeast—was artificially constructed to
cover the ground surface postreclamation and also to reduce the amount of infiltration reaching the
groundwater. The fill thickness is �1–3 m over the area, although it is thicker in areas where a greater depth
of contaminated soil was excavated due to higher contamination levels. A shallow unconfined aquifer, the
Rifle Formation, is comprised of alluvium deposited by the Colorado River that includes unconsolidated
clays, silts, sands, gravels, and cobbles (DOE, 1999). Primarily composed of weathered clayey siltstone, the
low-permeability Wasatch Formation underlies the Rifle Formation at depths of 5–8 m below ground sur-
face and serves as a local aquitard to the saturated alluvium at the site. Additionally, the Wasatch Formation
includes discontinuous sandstone lenses, a small fraction of which contain visible pyrite grains, with such
materials observed both within drilling-recovered materials and in outcrops adjoining the site.

2.2. Core Data and Lithological Logs
This site has 171 wells with well-documented lithological logs constructed over more than 20 years (in Fig-
ure 1a, the black circles are the well locations constructed prior to 2013). Sixteen new wells were added in
2014 for additional geochemical characterization (red circles in Figure 1a). Through extensive geochemical
and microbiological analysis of Rifle core data, several studies [Campbell et al., 2012; Qafoku et al., 2014;
Janot et al., 2015] identified and characterized two NRZ localities at the site (spatially separated by �65 m).
To identify NRZ locations along each well, we relied on the lithological log constructed for each of those
wells. These log reports have a standard format and include the description of core texture, color (using
Munsell soil color chart), and other features. They also provide the interface depths of the fill, Rifle Forma-
tion, and Wasatch Formation. Those reports are archived, quality controlled, and made publically available
by DOE at URL http://gems.lm.doe.gov/#site5RFO. By comparing the well log reports and the sample loca-
tions in Campbell et al. [2012] and Qafoku et al. [2014], we found that the sediment description of ‘‘dark
color’’ or ‘‘reduced’’ provided an excellent match to the NRZ locations.

2.3. Surface Elevation Data
A high-resolution surface elevation map was provided by a kite-based aerial system, which lifts a consumer-
grade digital camera (Sony Nex-5R) about 40 m above the ground surface [Smith et al., 2009]. The recon-
struction procedure was performed using a commercial computer vision software package (PhotoScan from
Agisoft LLC). The reconstruction involved automatic image feature detection/matching, structure-from-
motion and multiview-stereo techniques for 3-D point-cloud generation, and georeferenced mosaic recon-
struction. High-accuracy georeferencing was enabled by using a network of ground control points surveyed
with a high-precision centimeter-grade RTK DGPS system.

A digital terrain model was inferred from the digital surface model by using a moving average filter to remove
sharp positive variations, which is adequate for this site because of the sparse and low vegetation and the rel-
atively smooth changes in terrain elevation. The comparison to the ground surface elevation at wells surveyed
with high-precision GPS showed excellent agreement. The digital elevation model was used to convert the
depth information of the ERT and IP data to the elevation after the inversion. Since elevation variability is low
along each line (<1.5 m), no formal treatment of elevation effects on data inversion was undertaken.

2.4. Geophysical Data Acquisition and Inversion
The ERT data set was acquired on the eastern side of the site along 17 parallel profiles (white lines in Figure 1b),
each one being 166.5 m long and 5 m distant from the adjacent profile. Resistance measurements were col-
lected using the MPT-DAS-1 system with 112 stainless steel electrodes having an electrode separation of 1.5 m
and using a dipole-dipole configuration involving dipole lengths ranging from 1.5 to 18 m with the distance
between the closest injection and potential electrodes equal to or smaller than 3 times the dipole length. The
survey configuration was chosen to obtain a high signal-to-noise ratio and to image both near-surface features
and the deeper Rifle-Wasatch interface. Ten percent of measurements were collected in a normal and reciprocal
mode to evaluate data quality.
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The IP data set was collected using a time domain-induced polarization (TDIP) method along 65 profiles of
various lengths over the floodplain (Figure 1b). In the TDIP method, the transient decay of voltage is meas-
ured after current shut-off, typically in the form of an integral of decay curves over a predefined time-
window (so-called integral chargeability). TDIP measurements at the site were collected using the Syscal Iris
Pro Switch equipment with a square-wave current injection, 50% duty cycle, and a pulse length of 2 s. The
integral chargeability measurements were carried out using 20 windows during voltage decay between 240
and 1840 ms after current shut-off. Tomographic measurements were collected by deploying stainless steel
electrodes with an electrode separation of 1.8 m and using a dipole-dipole ‘‘skip-2’’ and ‘‘skip-3’’ measuring
protocol (i.e., for a dipoles length of 5.4 and 7.2 m, respectively). The sequence of dipole-dipole measure-
ments was carefully arranged to (1) minimize unwanted electromagnetic coupling effects in the data, avoid-
ing potential measurements with electrodes located inside the current dipole (as suggested in Pelton et al.
[1978] and Flores Orozco et al. [2013]), (2) prevent voltage measurements using electrodes, which might be
polarized due to previous current injection [LaBrecque and Daily, 2008; Williams et al., 2009], and (3) increase
the signal-to-noise ratio for an intended exploration depth of 8 m, i.e., the bottom of the aquifer [e.g., Wil-
liams et al., 2011]. All measurements were collected as normal and reciprocal pairs for estimation of the
data error. The IP measurements were collected with symmetric arrays (i.e., the measuring equipment
placed at the center of the electrode array) with a maximum of 36 electrodes, considering that longer pro-
files revealed a significant increase in the normal-reciprocal misfit for the measurements of the decay curve,
probably due to greater impact of electromagnetic coupling on the data.

Both the ERT and TDIP data sets were inverted in a two-dimensional domain along each transect using
CRTomo, which is a smoothness-constraint inversion code based on a finite element algorithm [Kemna,
2000]. The resistivity and phase shift values at each pixel were then assigned at the corresponding point
within the 3-D floodplain domain (the black rectangle Figure 1b) and used in the 3-D estimation. The TDIP
inversion results provided the distribution of the complex resistivity, expressed in terms of its magnitude
and phase-shift, while the inversion of ERT data was solved for the magnitude of resistivity. For the inversion
of the ERT measurements, data have been cleaned from a very limited number of outliers. In the reciprocal-
versus-normal measurements, the measurements with the highest misfit were related to lowest measured
voltage. The analysis of the normal-reciprocal misfit was used to estimate the relative error. We removed
the measurement with smallest voltage difference (<2 mV), representing about 2% variations in the data.
For the inversion of TDIP measurements, chargeability values were linearly converted to frequency domain
phase values (at the fundamental frequency of 0.125 Hz), by assuming a constant-phase response [Kemna
et al., 1997]. This approach has been demonstrated to provide consistent results in previous studies [Slater
and Binley, 2006; Mwakanyamale et al., 2012; Flores Orozco et al., 2012a, 2012b]. Flores Orozco et al. [2012a]
also showed that the two existing approaches—frequency domain measurements and converted time
domain data sets—did not create a significant difference in the correlation (below 5%) between hydrocar-
bon concentrations and the magnitude and phase shift of the complex electrical resistivity.

The estimation of the data errors was performed on the analysis of the misfit between normal and recipro-
cal measurements, following the methodology developed by Flores Orozco et al. [2012b]. Prior to the inver-
sion, we removed outliers in the data, which were defined as those measurements associated with large
discrepancies between normal and reciprocal phase readings (i.e., the normal-reciprocal misfit of each con-
figuration exceeding 2 times the normal-reciprocal standard deviation of the entire data set). After the
inversion, we removed the low-sensitivity area from the 2-D image of the phase shift and resistivity. We
used a threshold value in the cumulated sensitivity, which is a measure of how much the entire data set
changes due to a changing model value in each cell [Kemna, 2000] and has been previously used to assess
the variable image resolution [Kemna, 2000; Nguyen et al., 2009]. As discussed in the study of Flores Orozco
et al. [2013], the uncertainty in IP imaging results increases with decreasing the cumulated sensitivity.

3. Exploratory Data Analysis of Inverted Geophysical Images

Resistivity images obtained from the inversion of both ERT and TDIP data sets were used to map the depths
of the fill-Rifle and Rifle-Wasatch interfaces, since both the fill layer and Wasatch Formation have lower resis-
tivity (owing to higher clay and/or silt contents) than the Rifle Formation. While the dense ERT measure-
ments were located only in the western part of the floodplain, the TDIP measurements covered most of the
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floodplain. We delineated the
interfaces by setting the threshold
resistivity values and correlated
them to the depths reported for
colocated wells. We determined
the threshold values to maximize
the correlations between the
borehole-determined interface
and the geophysically deter-
mined one. For ERT, the thresh-
old value was 70.0 Ohm m for
both the Wasatch and fill inter-
faces. For TDIP, 66.1 Ohm m
was used for the fill interface.
Figure 2 shows the correspon-
dence between the interfaces

based on the threshold resistivity values and the ones from the wellbore lithology data in one of the ERT
images.

Figures 3a and 3b show the significant correlations between the ERT-derived depths and borehole-derived
depths for the fill-Rifle and Rifle-Wasatch interfaces. The correlation coefficients were 0.75 (p-value: 5.3 3 1022)
for the Rifle-Wasatch interface and 0.85 (p-value: 5.2 3 1025) for the fill-Rifle interface, respectively. Since there is
a shift (or bias) from the one-to-one line, we performed a linear regression, and used the linearly fitted line for
estimating the interface depths. The standard deviation of the linear-fitting residuals was 0.48 m for the Rifle-
Wasatch and 0.25 m for the fill-Rifle, respectively. We consider that the scatters resulted from the variability in
the lithology and texture of each geologic layer over the floodplain. Similarly, Figure 3c shows a correlation
between the TDIP-derived depths and wellbore-derived depths for the fill-Rifle interface (correlation coefficient:
0.83, and p-value: 6.4 3 1026). The standard deviation of the linear-fitting residuals was 0.24 m. Although the
TDIP has a much larger coverage over the floodplain, we did not use the TDIP data for estimating the Rifle-
Wasatch interface, since the TDIP data were focused on the shallower depths within the Rifle Formation, and
had limited sensitivity to the Wasatch Formation.

Previous monitoring studies at the Rifle Site demonstrated an increase in the IP phase shift accompanying
the precipitation of metallic minerals (e.g., FeS) resulting from stimulated microbial activity [Williams et al.,
2009; Flores Orozco et al., 2011; Flores Orozco et al., 2013]. These studies were, however, based on monitoring
data sets collected over the same profile, i.e., with no changes in lithology. A diversity of polarization-
generating mechanisms can underlie an anomalous IP response, with variations in sediment texture,

Figure 2. Two-dimensional Resistivity image from the surface ERT (one of 17 lines). The thresh-
old resistivity value (70.0 Ohm m) is marked by the black curves, representing the two interfa-
ces (Fill-Rifle and Rifle-Wasatch). The vertical black lines are the colocated well locations. The
red portion represents the Rifle Formation, so that the black-red boundary represents the
interface.

Figure 3. Correlations between (a) ERT-derived and well-derived Wasatch depths, (b) ERT-derived and well-derived Fill depths, and (c) IP-derived and well-derived Fill depths. In Figures
3a–3c, the red dots are data values, the black lines are the one-to-one lines, and the blue lines are the regression-based best fit lines. The correlation coefficient (Corr. Coeff.) is included
in each plot.
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mineralogy, and fluid composition all contributing the polarization/resistivity signature of subsurface mate-
rials. Since the current study deals with the change in the electrical responses at a much larger scale (200 3

500 m) than previous studies at the site (30 m), we need to consider the variation in the lithology and other
properties of the aquifer.

By comparing the TDIP images and colocated lithological data, we found that NRZs tend to have a higher
phase shift, although there are some exceptions (Figure 4a). Plotting the phase shift along with the resistiv-
ity at each pixel in Figure 4b shows that the resistivity and phase shift are correlated to each other (the cor-
relation coefficient is 0.72). It is consistent with several studies, in which the higher phase shift is associated
with the higher resistivity [Slater et al., 2005]. Based on the lithological logs, we identified two clusters in the
resistivity-phase shift domain: one for NRZ (the red dots in Figure 4b) and the other for non-NRZ (the green
dots in Figure 4b). The distribution of non-NRZ is much broader, possibly because the spatial extent of non-
NRZ is much larger, and hence non-NRZs have a larger variability in the resistivity and phase shift associated
with lithological properties. Taking into account these two clusters, we used both resistivity and phase shift
data simultaneously to identify the NRZ locations and defined the NRZ response in the resistivity-phase shift
space as bivariate distributions.

In addition, we observed that a small subset of the TDIP profiles revealed the highest phase-shift values
within the Wasatch rather than the Rifle Formation. For example, the inversion results at two lines (in Figure
5) show that a clear IP anomaly associated with an NRZ (confirmed by the colocated wells; Figure 5a) and
one line associated with high polarization effects in the Wasatch Formation (Figure 5b). These deeper
anomalies were inferred to result from pyrite-bearing sandstone lenses reported in lithological data from
colocated drilling locations. Plots in Figure 5 reveal that if the increased phase-shift is associated with an
NRZ, the highest phase shift is located in the aquifer materials (Figure 5a). The high polarization due to
metallic minerals in the Wasatch (but not NRZ) leads to the creation of artifacts with high phase shift values
in the aquifer zone (Figure 5b). Their unintentionally shallow depth in the imaging results is thought to be
an artifact resulting from the smoothness constraint used in the inversion.

To remove such artifacts, we considered polarizable anomalies as NRZs only when the highest phase-shift
value was located within the Rifle Formation. Although different approaches have been suggested to solve
for sharp contrasts in the inversion and improve the resolution of the electrical images [e.g., Blaschek et al.,
2008; Caterina et al., 2014], such strategies require sufficient information about the geometry and character-
istics of the interfaces to avoid the creation of further artifacts. Considering that it is not possible to know a
priori the existence and geometry of NRZ locations, we believe that the smoothness inversion is an
adequate approach to validate the application of the IP imaging method to characterize NRZs.

Figure 4. (a) Boxplot to show the phase shift distributions in Non-NRZs and NRZs, and (b) cross-correlation plot for resistivity and phase shift within the Rifle Formation. In Figure 4a, the
central red line is the median, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to the 99th percentiles. The red crosses are outliers plotted individually.
In Figure 4b, geophysical NRZ and non-NRZ values at wellbore locations are plotted in red and green circles, respectively.
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4. Statistical Method

Bayesian hierarchical models have been used in the past to integrate multitype and multiscale data sets in
a consistent manner, as well as to integrate complex processes [e.g., Wikle et al., 2001; Wainwright et al.,
2014; Hermans et al., 2015]. The goal of this estimation is to determine the posterior distribution of hetero-
geneous properties (or property fields) conditioned on all the given data sets and data model parameters
a, p(field|data, a). In a Bayesian hierarchical model, the posterior distribution can be divided into three statis-
tical submodels represented by conditional distributions: (1) a data model, p(data|field, a), which represents
the data as a function of the property field and parameters a; (2) a process model, p(field|b), which describes
the property field as function of process model parameters b; and (3) a prior model, p(a,b), which defines
the prior information of parameters [Wikle et al., 2001]. In the geological environment, one of commonly
used process models is often a geostatistical model, which describes a subsurface heterogeneous field as a
function of spatial dependence parameters. The hierarchical approach breaks down a complex posterior
distribution into a series of simple models, and hence enables us to capture complex relationships easily.

4.1. Interface Estimation
We define each interface as a two-dimensional (2-D) field (e.g., a surface in the 3-D domain). We denote the
interface at ith pixel by di, where i 5 1, . . ., n. The goal is to estimate the posterior distribution p({di}|zERT, zIP,
zL) of the interface field {di} (i.e., the interface at all the pixels), conditioned on the ERT data (resistivity) zERT,
the IP data zIP, and well log data zL. By applying the Bayes’ rule under the assumption that zERT, zIP, and zL

are conditionally independent given the interface locations {di}, we can write the posterior distribution of
the interface field as p({di}|zERT, zIP, zL) / p(zERT|{di|i � CERT}) p(zIP|{di|i � CIP}) p({di}|zL), where CERT and CIP are
indices of pixels that are colocated either with ERT or IP data, respectively.

The first two conditional distributions p(zERT|{di|i � CERT}) and p(zIP|{di|i � CIP}) represent the data model,
specifically the dependence of the interface depth on data value at each pixel. At the geophysical data loca-
tions (i � CERT and i � CIP), we assume that the data values can be described by zERT,i 5 a1di 1 a2 1 eERT and
zIP,i 5 b1di 1b21 eIP, where eERT and eIP are the error terms associated with the uncertainty and/or variability
of the correlations between the interface depths and ERT/IP imaging results (Figures 3a–3c), and al and bl

(l 5 1, 2) are the linear-fitting terms to fix the bias from the one-to-one line in Figures 3a–3c. We also assume
that eERT and eIP follow the independent normal distribution with zero-mean and the variance rERT and rIP,
determined from the correlation plots (Figures 3a–3c).

Figure 5. Two-dimensional cross section of the inverted phase shift (mrad) from the TDIP data at (a) the line that had a confirmed NRZ
within the Rifle Formation, and at (b) the line that had a confirmed pyrite lens in the Wasatch Formation. The small circle in each figure is
the highest phase shift in the domain, and the thin black line is the estimated Rifle-Wasatch interface. The thick black vertical lines indicate
colocated well locations. The red lines in Figure 5a are the confirmed NRZs.
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Furthermore, we assume that {di} is a multivariate Gaussian random field described by geostatistical param-
eters, we can derive an analytical form of this posterior distribution as a multivariate normal distribution
with mean Q21g and variance Q21, where Q 5 Rc

211AT
ERTD21

ERTAERT 1AT
IPD21

IP AIP and g 5 Rc
21lc 1 AT

ERTD21
ERT

zERT 1 AT
IPD21

IP zIP (Appendix A). In Q and g, lc and Rc are the conditional mean and covariance given the
point (i.e., well) data and geostatistical parameters. DERT and DIP are the data covariance matrices; each of
the diagonal components is rERT and rIP. AERT and AIP are mERT-by-n and mIP-by-n sparse matrices, where
AERT,ji 5 1 if ith pixel has jth data point; otherwise AERT,ji is 0. mERT and mIP are the number of data points of
ERT and IP, respectively.

4.2. Natural Reduced Zone Estimation
To map the NRZ locations, we define a indicator random field {fi} in the 3-D domain (i 5 1, . . ., n3D) such
that

fi5
1; if ith pixel is in NRZs

0; otherwise
:

(
(1)

We consider the resistivity and phase shift as the data vectors for resistivity (r) and phase shift (/). Each
data point has the data values ri and /i at a subset of pixels colocated with the IP data locations (i � CIP,3D).
We also define the depth-discrete well log data vector zW,3D, each element of which is either 0 or 1, since
they are the direct measurements of indicators.

As a data model, we follow previous studies that defined geophysical data values having distinct distribu-
tions, depending on the indicator type [Chen et al., 2004, 2006; Wainwright et al., 2014]. We assume that the
resistivity and phase shift in ith pixel (ri and /i) follow distinct bivariate distributions, depending on whether
ith pixel is in a NRZ (fi 5 1) or not (fi 5 0). Instead of univariate distributions used in previous studies [Chen
et al., 2006; Wainwright et al., 2014], we assume that the bivariate distributions can represent the correlation
coefficients found in the data sets (Figure 4b). We have two sets of distributions:

pðri ; /ijfi50;U0Þ5BiNðl0;U0Þ

pðri; /i jfi51;U1Þ5BiNðl1;U1Þ
(2)

where BiN represents the bivariate normal distribution with the mean vector ll and the two-by-two covari-
ance matrix Ul (l 5 0,1). The mean vector l1, for example, includes the mean resistivity and mean phase shift
at the NRZ locations (fi 5 1). The covariance matrix is a function of the resistivity variance, phase shift var-
iance, and their correlation coefficient (shown in Figure 4b). We assume that the covariance is uncertain
and needs to be estimated, since the variances tend to be underestimated from a limited number of sam-
ples. We estimate the covariance matrices U0 and U1 together in the estimation. The data parameter matrix
is defined as a 5 {U0, U1}.

The goal is to estimate the joint posterior distribution of the indicator field {fi} conditioned on the IP data
(r and /) and well log data (zw,3D), which is the marginal distribution of p({fi}, a|r, /, zW,3D). By assuming resis-
tivity and phase pairs are independent given indicator variable, {fi}, and using the Bayes rule, we can write
this posterior distribution as:

p fif g; ajr;/; zW;3D
� �

/ p r;/j fi; i 2 CIP;3D
� �

; a
� �

p fif gjzW;3D
� �

p að Þ;

5
Y

i2CIP;3D

p ri;/ijfi ; að Þp fif gjzW;3D
� �

p að Þ;

5
Y

i2CIP;3D;fi50

p ri ;/i jfi50;U0ð Þ
Y

i2CIP;3D;fi51

p ri ;/i jfi51;U1ð Þ

p fif gjzW;3D
� �

p að Þ:

(3)

The first conditional distribution p(r, /|{fi|i � CIP,3D},a) is a data model that defines the distribution of the
data values given the occurrence of an NRZ or not, which is defined in equation (2). The latter conditional
distribution p({fi}|zW,3D) represents the indicator field given the depth-discrete well log data as conditional
points. The prior distribution must be defined for the covariances as p(a).
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To define p({fi}|zW,3D), we follow the approach developed by Chen et al. [2006]. Here {fi} is an indicator field
such that the facies at each element fi has a Bernoulli distribution given by:

pðfi51jzW;3D; ffi; k 6¼igÞ5Bernoulli p�i
� �

; (4)

where p�i can be determined by simple indicator kriging:

p�i 5l 1
X

k 6¼ickðfk–lÞ; (5)

where l is the overall mean. Note that pi is truncated within [0, 1]. The kriging coefficients ck’s are a function
of the correlation length and sill, derived from the exponential variogram model, and the distance between
Pixel k and Pixel i. In this study, we assume that they are fixed and determined by the variogram analysis.

We use MCMC methods to sample from the joint posterior distribution p({fi}| r, /, zW,3D), which is the mar-
ginal distribution of p({fi}, a| r, /, zW,3D). The MCMC sampling requires formulation of the probability distribu-
tion of each parameter conditioned on the other parameters and all data sets. We sample the indicator at
each pixel fi.

pðfi jr;/; zW;3D;ffk;k 6¼ig; aÞ / pðri ;/i jfi; aÞpðfi jzW;3D;ffk;k 6¼igÞ: (6)

With a mathematical manipulation similar to that used in Chen et al. [2006], we can arrive at an analytical
form of the distribution. The indicator fi follows a Bernoulli distribution with the probability:

p fi51jri;/i; fk;k 6¼i
� �

; a; zW;3D
� �

5
p1p�i

p1p�i 1p0 12p�i
� � : (7)

where p0 5 p(ri, /i|fi 5 0, U0) and p1 5 p(ri, /i|fi 5 1, U1), both of which are defined in equation (2) and repre-
sent likelihood information from the IP data.

Figure 6. Rifle-Wasatch interface estimation results: (a) the previously estimated elevation in meters, (b) the mean estimate of the elevation in meters, (c) the depth in meters, and
(d) the estimation variance in squared meters. The white circles are the well locations used for the estimation, and the black circles are the well locations used for validation.
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To sample the covariance matri-
ces in a (U0 and U1), we follow a
similar approach to the univari-
ate case developed by Chen
et al. [2006]. While Chen et al.
[2006] used the inverse gamma
distribution as a conjugate
prior, we use the Wishart distri-
bution, which is multidimen-
sional generalization of the
inverse gamma distribution
[Murphy, 2007]. We assume that
the prior distribution for each of
the covariance matrices (U0 and
U1) is an inverse Wishart distri-
bution with the degree of free-
dom m0 and m1, and the
inverse-scale matrices W0 and
W1, respectively. We deter-
mined these parameters from
the colocated data sets shown
in Figure 4b [Chen et al., 2006].
Since the inverse Wishart distri-
bution is a conjugate prior for
the covariance of a multivariate
normal distribution, the poste-
rior of U0 and U1 are defined by
the inverse Wishart distribution
(IW):

p Ulj•ð Þ � IW ml1nl; XT X
� �

; (8)

where X 5 {r – E[r], / – E[/]} (E[�] is the mean), nl is the number of IP data locations where fi 5 l (l 5 0 or 1). In
the MCMC sequence, we sample each pixel of {fi} and a sequentially. Since their conditional distributions are

Figure 7. Fill-Rifle Interface estimation results: (a) the mean estimate of the depth in
meters and (b) the variance in squared meters. The white circles are the well locations
used for the estimation, and the black circles are the well locations used for validation.

Figure 8. Estimated mean and confidence interval compared with the interpretations from the well data not used in the estimation; (a) the Rifle-Wasatch interface depth and (b) Rifle-Fill interface
depth. The red dots represent the interfaces at wells, the blue lines are the confidence intervals based on the standard deviation (STD) multiplied by two, and the black lines are the one-to-one line.
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known analytical distributions, we use
Gibbs sampling, which is quite efficient
compared to the other MCMC sampling
methods.

5. Estimation Results
and Discussions

5.1. Interface Estimation
We estimated the interfaces at each
grid in the domain as needed for input
into a biogeochemical model over the
floodplain. The grid size is 3.8 m by
3.8 m, and the domain size is 400 m by
229 m. For the Rifle-Wasatch interface,
there is a previously estimated inter-
face elevation available, which is based
on well data, outcrop, and geological
observations. We estimated the differ-
ence from these previous estimates, by
honoring the outcrop and geological
observations, as well as wellbore and
geophysical data. For the estimation,
we only computed the mean and var-
iance fields on the interfaces, rather
than random fields, since most reactive
transport models require fixed interfa-
ces. However, it is possible to sample
the random fields of the interfaces for
stochastic simulations to include the
uncertainty in interface estimates.

Figure 6 shows the Rifle-Wasatch inter-
face elevation, including the previously
estimated elevation (Figure 6a), mean
estimation of the elevation (Figure 6b),
and the mean estimation of depths and
variance (Figure 6c). Compared to the
previous estimation (Figure 6a), the new
estimation (Figure 6b) captures more
detailed heterogeneity around the ERT
locations, even between wells. In addi-

tion, ERT identified the connectivity (or channel) between the depressions in the Rifle-Wasatch interface along
the northern part of this floodplain (x 5 250–350 m and y 5 150–200 m). We interpret this channel to represent
a former paleochannel of the Colorado River and a potential local control on groundwater flow direction in this
area. The Wasatch Formation depth (Figure 6c) is highly variable (4–10 m) over the floodplain. The variance in
Figure 6d represents the uncertainty associated with this mean estimate. This variance is smaller around the
wells and ERT locations, since the estimate is better constrained by the data sets in their vicinity.

Figure 7 shows the mean estimate and variance of the Rifle-fill interface depth. In Figure 7a, we find that the fill
layer is thicker in the northern portion of the floodplain, where soil contamination extended over a greater ver-
tical profile. The southern portion near the river has a thinner layer reflecting the minimal need for excavation
and removal of surficial soils in this area. In Figure 7b, the estimation variance is smaller near the ERT and IP
data locations, meaning that there is lower uncertainty in the estimate for this region. Owing to its lower per-
meability, the fill layer is known to control infiltration into groundwater as well as evapotranspiration near the

Figure 9. Probability field of NRZs based on well data only; 2-D horizontal slices
at elevations (a) 1611.6 m, (b) 1613.2 m, and (c) 1613.8 m. The red filled circles are
the wells that were confirmed to have NRZs, and the white circles are the wells
that were confirmed not to have NRZs. These are validation wells, not included in
the estimation. The red triangles were the NRZ sample locations in Campbell et al.
[2012] and Qafoku et al. [2014]. The white region is either outside of the domain
or outside of the Rifle Formation.
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surface. Since there is no record of the
fill-layer thickness postreclamation, this
newly derived, site-wide thickness esti-
mate will be important for hydrobiogeo-
chemical modeling at the site.

To validate the estimation results, Figure
8 shows a comparison of the estimated
interface mean value and confidence
interval, with the colocated (well-deter-
mined) interfaces not used in the esti-
mation procedure. Among the 187
wells, 16 new wells (installed in 2014)
were selected as validation wells (not
used for estimation). We did not use this
subset of wells for our estimation in
order to simulate the situation that
researchers would encounter when they
plan well locations based on geophysi-
cal images and estimation results. The
Wasatch depths (Figure 8a) are closely
estimated at most of the locations (i.e.,
the confidence intervals capture the
true depths), although the confidence
intervals are larger for the wells that are
away from the existing wells or ERT loca-
tions. Figure 8b shows that the true fill
depth at the validation points is close to
the mean estimates and mostly within
the confidence intervals. Confidence
intervals are wider for the validation
wells far away from the conditioning
wells or geophysical data. The compari-
son of the two figures suggests that the
resistivity method is useful—indeed
necessary—to estimate the spatially het-
erogeneous interfaces successfully.

5.2. NRZ Estimation Results
The presence or absence of NRZs was
estimated within a 3-D hydrobiogeo-
chemical modeling domain being
developed in parallel to this study. Only

the cells within the Rifle Formation were considered, based on the interfaces estimated in Figures 6 and 7.
Geostatistical parameters (i.e., mean, variance, and correlation length) were determined based on the litholog-
ical logs. We used the MCMC approach to generate 20,000 samples of the NRZ indicator field, the conver-
gence of which was confirmed by the Geweke’s convergence diagnostic [Geweke, 1992]. Wells installed prior
to 2013 were used as conditioning data in the estimation, with 16 new wells installed in 2014 used as valida-
tion data to evaluate the performance of the estimation.

We compared two cases in the results: (1) well data only (Figure 9) and (2) well and TDIP data (Figure 10). In Fig-
ure 9, we see that the well-only case does not capture any of the major NRZs due to the lack of data. Capturing
the full NRZ extent would require installation of innumerable wells at a cost that is prohibitive or logistically
impossible. In Figure 10, including TDIP data allows us to capture the extent of NRZs, particularly in the western
portion of the floodplain near the river (x 5 50–200 m and y 5 30–100 m). The additional high-probability
regions appeared in Figure 10 (compared to Figure 9) is attributed to the TDIP data set. The results indicate that

Figure 10. Posterior probability field of NRZs based on wells and TDIP data; 2-D
horizontal slices at elevations (a) 1611.6 m, (b) 1613.2 m, and (c) 1613.8 m. The
red filled circles are the wells that were confirmed to have NRZs (based on well-
bore lithology), and the white circles are the wells that were confirmed not to
have NRZs. These are validation wells, not included in the estimation. The red tri-
angles were the NRZ sample locations in Campbell et al. [2012] and Qafoku et al.
[2014]. The white region is either outside of the domain or outside of the Rifle
Formation.
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NRZs are generally located in proximity
to the active river margin and in por-
tions of the aquifer where the depth
to the Wasatch Formation is deeper
(Figure 6).

To evaluate the performance of our esti-
mation, we compared the predicted
NRZ probabilities and observed NRZ
indicators at the validation well loca-
tions. In Figure 11, the probability of
finding an NRZ at each well is shown
and compared with the indicator repre-
senting whether an NRZ was found at
the well. The figure shows that when
we used both wellbore and TDIP data,
the probability is one or close to one at
all the observed NRZ locations and zero

or close to zero at the observed non-NRZ locations. The well-only case does not capture any of the NRZ loca-
tions, since the probability is zero at those locations. These findings support the claim that it is impossible to
characterize the full spatial extent of NRZs with well data only and that IP measurements greatly improve the
mapping of NRZs.

Figure 12 shows the 3-D distribution of the high-probability region of NRZs (with threshold of 0.5) along
with the two estimated interfaces. Both the interfaces and NRZ locations can be directly implemented in
hydrobiogeochemical simulations serving to parameterize the modeling domain with regions inferred to
have an outsized influence on reactions of interest (e.g., hot spot locations). In Figures 10 and 12, we find
that the NRZs are generally parallel to and located 20–50 m from the active margin of the Colorado River
(N.B. Closer access to the active river margin itself is impeded due to the presence of a railway corridor). Pre-
vious studies [Campbell et al., 2012; Qafoku et al., 2014; Janot et al., 2015] found close association between
NRZs and fine and/or organic-rich sediments. In fact, fine-grained and organic-rich sediments are often
found near the river, based on the lithological descriptions. Based on this study, we may assume that those
identified NRZ locations are the regions where fine-grained sediments were deposited.

6. Conclusion

In this study, we developed a methodology to integrate geophysical and wellbore data for mapping natu-
rally reduced zones (NRZs) in a minimally invasive manner and to help biogeochemical model parameteriza-

tion in a three-dimensional domain
over a floodplain. Our study builds
upon previous studies at the site that
identified NRZs using detailed geo-
chemical and microbial characteriza-
tion [Campbell et al., 2012; Qafoku
et al., 2014], as well as studies that
used IP techniques to detect changes
in subsurface redox conditions
[Williams et al., 2009; Flores Orozco
et al., 2011, 2013; Chen et al., 2013].
Our approach took advantage of the
data-defined correlations among colo-
cated geochemical samples, lithologi-
cal log data, and geophysical data. A
Bayesian hierarchical method enabled
us to integrate these data for

Figure 11. Probability of finding NRZs at each validation well. The lines are the
probability computed based on well data only (blue) and bivariate data (phase
shift and resistivity; red). The black dots represent the observations not used in
the estimation; the value is 1 if the well is located within a NRZ, and 0 otherwise.

Figure 12. A three-dimensional modeling domain with the Rifle-Fill interface
(green), Wasatch-Rifle interface (blue), and the high-probability region of naturally
reduced zones (NRZs; red). To create the volume of the high-probability region,
we used the threshold probability of 0.5.
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estimating the hydrostratigraphic interfaces, as well as the probability of NRZ presence or absence over the
dimensions of the floodplain. This is the first study to demonstrate the ability of TDIP imaging surveys for
characterizing hot spots that have unique distributions of subsurface lithological and biogeochemical
properties.

Many recent studies use Bayesian or stochastic joint inversion approaches to estimate hydrological parame-
ters or geological units directly from geophysical data sets by including geophysical forward models in the
estimation framework [e.g., Chen et al., 2004; Chen and Hoversten, 2012; Dafflon and Barrash, 2012; Wain-
wright et al., 2014; Hermans et al., 2015]. Such approaches, however, are computationally intensive and diffi-
cult to deploy in a 3-D setting over a large spatial domain. The two-step approach presented here—
geophysical inversion first and then estimation along with other data sets—is flexible and computationally
frugal enough to integrate multiple types of data sets together in a 3-D domain over a floodplain. Statistical
analyses at colocated wells enabled us to identify correlations between inverted data and borehole data.
This study also showed that it is important to evaluate various polarization-generating mechanisms for
an improved interpretation of IP images particularly where the unambiguous delineation of NRZs is
concerned.

As with the previous studies [Sassen et al., 2012; Wainwright et al., 2014], this study showed that the zona-
tion approach is very powerful in transferring the information and parameters from grain-scale laboratory
measurements to the field scale. Detailed biogeochemical characterization is often prohibitively expensive
and time consuming, such that it is generally impossible to obtain sufficient data to fully constrain many
natural environments owing to their large size and inherent heterogeneity. By exploiting spatially extensive
geophysical data sets and correlations among various data sets, we can capture the subsurface heterogene-
ity required for parameterizing hydrobiogeochemical models.

The approach developed in this study can be transferable to other floodplains or other near-surface terres-
trial environments, advancing the characterization of biogeochemical hot spots in a minimally invasive
manner and distributing critical biogeochemical properties across scales. Future development should
include the use of geophysical monitoring to use a temporal signature for estimating dynamic properties
associated with NRZs and non-NRZs (such as changes in pore water chemistry) and also for further refining
the estimation of hydraulic and geochemical properties (e.g., permeability, porosity, and texture). Another
important refinement will be to couple geophysical methods and remote sensing techniques. While the
denitrification hot spots by Duncan et al. [2013] have been mapped in 2-D as an ‘‘area’’ over the catchment,
geophysical methods could provide more refined estimates of their depth distribution, and hence could
provide the 3-D volume of biogeochemical hot spots. Although the IP measurements presented here are
labor intensive and are unlikely to be taken to the catchment scale, correlating the subsurface signatures
(from geophysical data) and surface structures (from remote sensing data) could help upscaling the subsur-
face properties to a much larger scale [e.g., Wainwright et al., 2015]. Probabilistic mapping—such as the one
presented here—will be essential for such a large-scale characterization due to increased uncertainty and
disparity of scales among data sets.

Appendix A: Analytical Form of p({di}|zERT, zIP, zL)

To estimate the posterior distribution of the interface {di}, we derive the analytical form of p({di}|zERT, zIP, zL)
defined in section 2.1. Following the data model definition, we write the ERT and IP data vector by

zERT � MVNðAERT dif g;DERTÞ;

zIP � MVNðAIP dif g;DIPÞ;
(A1)

where MVN represents the multivariate normal distribution, and DERT and DIP are the data error matrices,
only having the diagonal components of rERT and rIP, respectively. AERT and AIP are sparse matrices to con-
nect the interface depth value at each pixel and the data point such that

AERT;ji5
1 if ith pixel is jth ERT data point

0 otherwise:

(

and
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AIP;ji5
1 if ith pixel is jth IP data point

0 otherwise
:

(
(A2)

We can write the posterior distribution of the interface as:

p fdigjzERT; zIP; zLð Þ / p zERTjfdigð Þp zIPjfdigð Þp fdigjzLð Þ;

/ exp 2
1
2
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� �� �
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1
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� �T

D21
IP zIP2AIPfdig
� �� �

exp 2
1
2
fdig2lcð ÞT R21

c fdig2lcð Þ
� �

:

(A3)

Since both ERT and IP data are linear functions of interface depths according to equations (A1) and (A2), the
resultant posterior distribution has a multivariate Gaussian distribution, which is given below:

p fdigjzERT; zIP; zLð Þ / exp 2
1
2
fdig2Q21g
� �T

Q fdig2Q21g
� �� �

: (A4)

where

Q5R21
c 1AT

ERTD21
ERTAERT1AT

IPD21
IP AIP;

g5R21
c lc1AERTD21

ERTzERT1AIPD21
IP zIP;

(A5)

{di} is the multivariate normal distribution with the mean Q21g and covariance Q21.
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