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Abstract

Organized extracellular matrix (ECM), in the form of aligned architectures, is a critical mediator 

of directed cancer cell migration by contact guidance, leading to metastasis in solid tumors. 

Current models suggest anisotropic force generation through the engagement of key adhesion and 

cytoskeletal complexes drive contact guided migration. Likewise, disrupting the balance between 

cell-cell and cell-ECM forces, driven by ECM engagement for cells at the tumor-stromal interface, 

initiate and drive local invasion. Furthermore, processes such as traction forces exerted by cancer 

and stromal cells, spontaneous reorientation of matrix-producing fibroblasts, and direct binding 

of ECM modifying proteins lead to the emergence of collagen alignment in tumors. Thus, as we 

obtain a deeper understanding of the origins of ECM alignment and the mechanisms by which 

it is maintained to direct invasion, we are poised to utilize the new paradigm of stroma-targeted 

therapies to disrupt this vital axis of disease progression in solid tumors.

INTRODUCTION:

In addition to transformed cells, solid tumors are comprised of a complex ensemble of 

cellular and acellular components, collectively known as the tumor stroma. The stroma 

is a critical part of the tumor microenvironment (TME) and often plays a vital role in 
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tumor progression and metastasis. Stromal components may be cellular, including cancer 

associated fibroblasts (CAFs), endothelial cells, tumor associated macrophages (TAMs), 

and various other immune cells, or acellular such as the extracellular matrix (ECM) on 

which the cellular components develop, interact and thrive. Many solid tumors, including 

those of the breast, pancreas and lung, are characterized by a robust desmoplasia - a 

fibroinflammatory response in which a dense, fibrotic ECM drives tumor progression, 

metastasis, and resistance to therapy. Robust deposition of fibrous collagen (mostly type 

I Collagen) is a hallmark of the desmoplastic tumor ECM, which not only contributes to 

elevated stiffness, but also creates discrete structural patterns in the TME. These patterns, 

called Tumor-Associated Collagen Signatures (TACS), have been shown to be important in 

local invasion of cancer cells, promoting directed cell migration into and through the stroma, 

by a process known as contact guidance (1–3).

The process of contact guidance has been experimentally studied for almost half a century 

(1, 4) and until a few of decades ago had been primarily described in the context of 

engineering cell behavior in vitro (2, 5), until imaging studies revealed it to be an important 

mechanism for guiding tumor cell invasion in vivo (3). Since then, along with a burgeoning 

interest in the field of mechanobiology, we have witnessed a plethora of studies seeking to 

better elucidate the prognostic relevance of collagen and more broadly ECM alignment 

in solid tumors and the mechanisms by which they promote invasion and metastasis. 

Here, we review recent advances in our understanding of the origin, diversity, and 

contextual relevance of ECM (mostly collagen) architectures in solid tumors, the molecular 

mechanisms of enhanced directed migration and invasion by contact guidance, and ways of 

targeting these stromal architectures to mitigate tumor progression and metastasis.

TYPES OF ORGANIZED ECM ARCHITECTURES IN TUMORS:

Collagen alignment as a driver of cancer cell invasion and metastasis was first described 

in Wnt-1 and PyMT breast carcinoma models (3), consistent with the role of ECM 

architecture and composition in mammary gland development and function (6, 7). Among 

the collagen patterns described in the TME were TACS-2 and TACS-3, which represent 

straight collagen fibers aligned parallel and perpendicular, respectively, to either the ductal 

or ductal carcinoma in situ boundary, around carcinoma cell clusters within the tumor 

mass, or at the tumor boundary (3), thus defining the relevant architectures dominant 

in early stage and advanced carcinomas. In particular, TACS-3 aligned collagen regions 

throughout the tumor mass provide conduits for carcinoma cell invasion (8–11)(Fig. 1). 

Along these lines, a recent study has presented an additional series of TACS (12), however 

it appears that these designations are the same or perhaps subcategories of the original 

TACS1–3 architectures. In addition, a few studies identify alignment of fibronectin (13, 

14), instead or in addition to collagen, in the periductal space as driving the directed 

migration of cancer and stromal cells, which can also be broadly understood in the realm of 

anisotropic cell-ECM interactions. Indeed, such TACS features have now been identified in 

pancreatic (8, 15–17), lung (18), renal (19), prostate (20, 21) and skin (22) cancer, among 

others. Particularly in breast cancer, studies have demonstrated that collagen architecture, 

either alone or in combination with related stromal properties, is a prognostic for patient 

outcomes (12, 23–25). Notably, in complex, heterogeneous tissues such as carcinomas, 
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collagen and ECM architecture, as it pertains to driving the cell biology of disease, is 

best understood in relation to cellular and tissue organization in the TME. The TACS 

nomenclature exemplifies this approach, wherein the organization of the ECM is classified 

in relation to the transformed epithelium as the basic organizational structure and can be 

utilized as a template to universally classify collagen patterns in malignant tissue.

MECHANISMS OF LOCAL INVASION GUIDED BY ANISOTROPIC ECM:

Dissecting ECM alignment with respect to cellular organization in the TME reveals at least 

two distinct niches in which contact guidance plays a key role in directing cancer cell 

invasion and dissemination:

(a) Dissemination of single cells distal to ductal structures or tumor nests:

These are single cells already delaminated from the core tumor nest or neoplastic epithelium 

and continue to disseminate through the stroma using aligned and organized collagen tracks 

(TACS-3; Fig. 1). Such cancer cells have often undergone an epithelial-to-mesenchymal 

transition (EMT), and have been observed in live breast and pancreas tumors (26, 27). In 

other cases, such cells have also been found to track along blood vessels, using the regular 

structure of the endothelium as tracks instead of aligned collagen (28, 29). Multiple schools 

of thought have emerged to explain how single cells sense and migrate directionally along 

these organized ECM tracks, largely based on in vitro systems to probe the mechanisms 

of this process under controlled conditions. A prevailing theory, one that was proposed 

almost half a century ago (4), is where the cellular cytoskeletal and migratory apparatus 

responds to the discrete pattern and curvature of available adhesion sites, in the form of 

aligned fibers, leading to directional orientation. Recent work indeed demonstrates that the 

primary mechanosensitive sensors of the cell, focal adhesions, are confined by discrete 

substratum architecture resembling aligned ECM fibers in vivo, thereby maturing in an 

anisotropic fashion, leading to the reorganization the actin cytoskeleton and directional 

migration (8, 30, 31) (Fig. 2A). The anisotropic maturation of adhesions leads to traction 

force anisotropy (8) and is likely the result of enhanced local ECM stiffness in the direction 

of fiber alignment (32) and can be largely divorced from the bulk stiffness of the 3D 

tissue (31). Indeed, limitations on the direction of leading-edge protrusions (8, 14, 33–36), 

likely driven by a constraint to actin nucleation and branching at the discrete adhesion 

sites (33), lead to guided spreading and migration along the alignment cues. Regulators of 

leading-edge protrusions such as integrins, Rac1, FAK (14, 33, 37) and cellular contractility 

like myosin phosphorylation (8, 33, 38) are critical factors for directional sensing (Fig. 2A, 

B). The latter appears to be an important determinant of contact guidance on stiffer 2D 

substrates (8, 33, 38) and in generating fiber alignment, either locally (31) or globally (39), 

but can be dispensable for sensing already aligned tracks in softer 3D collagen matrices 

(35, 39). In fact, under low traction conditions, either due to low substrate stiffness or 

cell-intrinsic properties that dictate a more amoeboid migration mode, integrin and myosin­

mediated anisotropic forces play a less significant role (Fig. 2B); rather, actin nucleation 

and branching at the contact site through the activity of Arp2/3 and formins drive the 

attenuated directional sensing under such conditions (8, 38, 40). These aforementioned 

mechanisms hold true when the alignment cues are of micron to sub-micron dimensions, 
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i.e., of the order of individual focal adhesions, as is the case for cancer cells interacting 

with individual collagen fibers or fibrils in the stroma (3, 8, 28). However, cancer cells 

in the stroma may also interact with aligned bundles of collagen fibers (3, 28), which are 

comparable to adhesion areas tens of microns wide, of the order of a cell width. In the latter 

context, theoretical and experimental work suggest that maximization of entropy by either 

non-adhesive gap avoidance at the single cell level or relative positioning and morphological 

state at the population level may play a role in driving contact guidance (41, 42), although 

the molecular players involved in this decision-making is largely unexplored.

While numerous studies have thus indicated the molecular pathways involved in contact 

guidance, many of these rely heavily on in vitro results, largely on 2D substrates, owing to 

the obvious challenges of controlled molecular perturbations in vivo. A further confounding 

factor is the fact that elevated stiffness and increased straightness and alignment of fibers 

often go hand-in-hand and similar molecular pathways are implicated for sensing of both 

of these ECM properties. Nevertheless, it is clear from this body of work that a force 

anisotropy at the single cell level through cell-ECM interactions favors polarization and 

movement in the direction of ECM alignment. An intriguing question is how this force 

anisotropy manifests when tightly connected cell clusters (often, reasonably well-organized 

as in the case of well-differentiated or early-stage carcinomas) encounter ECM alignment in 

the neighboring stroma. Indeed, this is another distinct niche in which contact guidance and 

anisotropic cell-ECM interactions are critical to understanding tumor cell invasion.

(b) Contact guidance of collectives and disruption of organized tissue structure:

Contact guidance in collective cell clusters have been implicated in important homeostatic 

processes like mammary gland development (6, 7, 43), and indeed it has important parallels 

in determining the architecture of tumor nests, comprising of neoplastic epithelium in case 

of carcinomas. For example, TACS-3 (perpendicular alignment of collagen to the epithelial 

boundary or throughout the tumor in later stages) leads to a collective migration front 

in the direction of alignment, with cells “peeling off” the organized epithelial structure 

(3, 9, 11, 17)(Fig. 1, 2C–D). Such epithelial disruption has been extensively observed 

in vitro using mammary acini, spheroids and tumor organoids, when these well-formed 

epithelial structures or cancer cell clusters are exposed to surrounding fibrillar ECM 

(44–47). Indeed, such structural disorganization is often observed in tumors, eventually 

leading to delamination of cancer cells into the stroma in vivo (3, 17, 48–50). While some 

studies propose a more quorum approach to understanding collective contact guidance, 

including an alternate, non-tensional sensing in cell sheets independent of cell-cell junctions 

(51), a sizeable body of work implicates molecules associated with cell-cell and cell­

ECM adhesions including α5-integrin, DDR2, P-cadherin and Dia-1 as critical mediators 

of collective guidance (45, 46, 52, 53)(Fig. 2C). Further, cytoskeletal proteins such as 

cytokeratin-14 appear to be important in determining which cells are most susceptible to 

“break away” and become the leader cell in the invasive front (54, 55). The existence of 

heterotypic adhesions between fibroblasts and epithelial cells at the tumor-stromal interface 

(56) also imply that along with anisotropic cell-ECM interactions from proximal aligned 

ECM, cell-cell interactions (hetero and homotypic) are also critical mediators of this 

process. Indeed, the transition from a jammed (contained) to unjammed (not constrained) 
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state of the epithelium, driven by local density of cells is mediated largely through cell-cell 

adhesion proteins (9, 57) (Fig. 2D).

From this perspective, the contact guidance of collectives can certainly be viewed as a 

balance between cell-cell and cell-ECM forces (Fig. 1). Importantly, the disruptions in 

organized tissue structure created by the anisotropies in force distribution at the tumor­

stromal interface may affect otherwise well-differentiated/early-stage cancers and contribute 

to early and extensive metastasis.

ORIGINS OF ECM ALIGNMENT IN THE TME:

Although it is well established that ECM architecture plays an important role in directing 

invasion and metastasis, the origins of collagen and ECM alignment in tumors are not fully 

established. Several studies implicitly or explicitly point to the role of cancer-associated 

fibroblasts (CAFs) in the deposition and reorganization of stromal collagen fibers mediated 

by DDR2 (52) or PTEN expression (58). This is also supported by in vitro studies where 

FAP-expressing CAFs, but not normal fibroblasts, generate aligned stromal collagen through 

Cav-1 (10) and TGF-beta (59)-dependent processes, and that CAFs from desmoplastic 

tumors can be utilized to generate aligned collagen matrices in vitro (60); Fig. 3A. Indeed, 

collagen organization by fibroblasts into aligned networks is likely a feed forward process 

as fibroblasts themselves are known to be highly responsive to ECM alignment and the 

orientation of matrix-remodeling fibroblasts predicts the orientation of the derived ECM 

(61), with a recent study demonstrating that cell-cell collisions among fibroblasts drive 

this behavior (62)(Fig. 3B). In addition, ECM-linking and cross-linking proteins such as 

HAPLN1(63) and LOXL2 (18) are critical regulators of CAF-mediated remodeling leading 

to aligned ECM. Other stromal cell types such as inflammatory TAMs (64) and adipocytes 

(65) have also been shown to regulate ECM remodeling in the TME through the expression 

of various matrix-remodeling enzymes. In reality, all these stromal cells likely work in 

concert or in a redundant fashion to align and modify the stromal ECM surrounding tumor 

nests, a niche that is often co-localized by these stromal cells.

Another mechanism of ECM organization is that cancer cells themselves, in addition to or 

instead of stromal cells, can align the ECM around them. Recent work in this realm suggests 

that cancer cells secrete a collagen-remodeling protein WISP1 that promotes the formation 

of aligned stromal collagen (66)(Fig. 3C). In addition to this biochemical mechanism, 

biophysical mechanisms play a critical role in aligning ECM in the tumor stroma. Cancer 

cells, particularly those that have undergone EMT have long been known to generate large 

amounts of force and maintain homeostasis in the stiff tumor microenvironment (39, 67). In 

vitro studies in many contexts demonstrate that collections of cancer cells, either in the form 

of spheroids, organoids, plugs or acini can remodel surrounding ECM to generate aligned 

collagen patterns using integrin-actomyosin contractility-dependent pathways, while also 

subsequently migrating along those highways (37, 39, 68)(Fig. 3A). Furthermore, theoretical 

and experimental modeling of the mechanotransduction indicates that pioneer symmetry 

breaking processes (69, 70) can lead to cascading force anisotropy at the epithelial-stromal 

interface and eventual dissemination along aligned ECM. Thus, it seems likely that 

multiple mechanisms may be sufficient to produce TACS-3 perpendicularly aligned collagen 
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architectures, but also that these mechanisms may be at play simultaneously following 

an initiating alignment event, such as contractile reorganization, and then feed forward 

by promoting each other. Indeed, since newly aligned matrices produce mechanical and 

structural cues that incite signaling feedback that is conducive to each of the described 

mechanisms of ECM organization (i.e., anisotropic traction forces, directed migration, 

activation of the cellular secretome), they likely promote or compensate for one another, 

to ultimately produce robustly aligned ECM in the tumor stroma.

TARGETING ECM ALIGNMENT AND CONTACT GUIDED INVASION:

Given that ECM alignment plays such a key role in directing local invasion and metastasis, 

an increasing number of studies in the nascent field of stroma targeted therapies (STT) 

explore the possibility of mitigating these effects by targeting either the ECM architecture 

itself or the cellular recognition and response to the anisotropic ECM. While historically 

STT studies have focused on increased drug delivery to drug-free sanctuaries in solid 

tumors, e.g. (71, 72), these approaches are also being evaluated to disrupt disease 

progression, and more recently improve anti-tumor immunity. Specifically, targeting ECM­

remodeling fibroblasts in desmoplastic tumors such as pancreatic cancer by FAK inhibition 

(48), Halofuginone (72) or Losartan (73) show a reduction in collagen (as well as other 

ECMs), which at sufficient levels of ablation could reduce or eliminate alignment cues and 

thus produce favorable outcomes for invasion and metastasis. This is particularly applicable 

to early disease, prior to recurrent disease or to stop continual disease spread during 

a cytotoxic treatment. Indeed, targeting Rho GTPase-mediated contractility with Fasudil 

alters the ECM in a manner conducive to less aggressive disease while simultaneously 

increasing efficacy of standard-of-care chemotherapy (74) Apart from these compounds, 

specific targeting of LOXL2 (18, 64, 75) in pancreatic, lung, and breast cancers led to 

significant ECM remodeling, decrease in the level and alignment of collagen and decrease 

in invasion and metastasis. Indeed, similar effects were observed by specifically targeting 

molecules that are involved in the active sensing and guidance of cells on these aligned 

ECM patterns such as focal adhesion and actin remodeling proteins (14, 48). Thus, it seems 

clear that STT to re-engineer tumor microenvironments to stop or slow disease progression, 

while also increasing drug delivery and anti-tumor immunity, is likely to be part of rational 

strategies, and perhaps personalized strategies, to combat solid malignancies.

CONCLUSION AND OUTLOOK:

Over the past 15+ years our understanding of ECM architectures and directed migration 

in solid tumors has expanded profoundly. However, while considerable advances have 

been made in our understanding of directed migration from contact guidance, and 

in particular TACS-3 directed contact guidance in solid tumors, many aspects of the 

process remain elusive. For instance, the in-depth signaling mechanisms governing contact 

guidance have yet to be fully described, particularly during in vivo scenarios such as 

simultaneous exposure to complex combinations of different ECMs, the superposition 

of structural alignment cues and mechanical cues, and complex cell-cell interactions. 

Furthermore, the impact of superposed signals that can be additive or competing in tumor 

microenvironments, such as chemical gradients, mechanical gradient, and contact guidance 
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architectures in different directions has remained uncovered. However, as engineered tumor 

microenvironment platforms and murine models of human cancer continue to evolve, 

coordinately with advanced optical imaging technologies (such as increased spatial and 

temporal resolution, optogenetics advances that allow for local spatial control of key 

events, spatial transcriptomics) with quantitative analysis of signaling and cell dynamics 

(i.e. biophysical modeling and systems biology approaches) we are well poised to define the 

fundamental in vivo mechanisms governing this key process influencing tumor progression 

and develop rational therapeutic regimes to halt disease progression.
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Figure 1: Distinct niches and modes of contact-guided cancer cell invasion in the TME:
Schematic showing a solid tumor mass surrounded by TACS-2 (parallel arrangement of 

collagen fibers) along with a small window of TACS-3 (perpendicularly aligned collagen 

fibers), with focal invasion of cancer cells away from the primary cluster. Magnified 
Region 1 shows a typical cancer cell, which has undergone EMT, aligned and migrating 

along the direction of fiber alignment. For such mesenchymal-like migration (involving 

leading edge protrusions, strong adhesion, elongated morphology), current understanding 

points to the role of constrained maturation of focal adhesions and resultant myosin­

dependent anisotropic traction forces along aligned F-actin bundles as the primary driver 

of directed cell migration along aligned ECM; Magnified Region 2 shows, in contrast, 

a low traction migration state (e.g., amoeboid migration involving blebs, low adhesion, 
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rounded morphology), where myosin-mediated force generation is dispensable for directed 

migration; instead competing pools of actin-modifying proteins play a critical role in 

mediating directed migration by contact guidance. In addition to single cells, anisotropic 

cell-ECM forces from aligned ECM at the tumor-stromal interface (Magnified Region 
3) may facilitate the disruption of organized epithelial structures, leading to initiation of 

invasion. The nature (single cell or collective) and extent of the invasive front is largely 

dependent on the balance of cadherin-mediated cell-cell and integrin-mediated cell-ECM 

forces at the tumor-stromal interface.
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Figure 2: Mechanisms of single and collective dissemination on aligned ECM:
(A) Left: Typical lamellipodia of a MDA-MB-231 breast cancer cell on aligned patterned 

ECM (sub-micron dimension parallel ridges and grooves) showing large, aligned (region 

1) and small, non-aligned focal adhesions (FA) connected to similarly aligned F-actin. In 

magnified images, arrows illustrate the magnitude and direction of myosin-mediated traction 

forces at those adhesion sites; Right: The anisotropic FA and F-actin distribution is derived 

from the constrained growth of FAs limited by the discontinuities (individual ridges and 

grooves) of the substrate (Modified from Ray et al., Nat. Comm., 2017 with permission); 

(B) Baseline directional guidance is a function of cell migration mode, specifically the 

magnitude of myosin and integrin-mediated cell-ECM forces. While mesenchymal cells 

display higher directional guidance compared to amoeboid cells on the same stiff substrate 

at baseline (filled squares), the former can be attenuated by blocking integrin or myosin 

function (unfilled triangle and circle respectively); likewise an enhancement of directionality 

is achieved for amoeboid cells with integrin or myosin activation (filled triangle and 

circle respectively). Figure adapted from data in Wang et a., Biomaterials 2017; (C) FA 

confinement on individual collagen fibers is also observed in 3D collagen-based models of 

local invasion, the formin Dia1 is required for initiation of robust collective dissemination 

(Figure reproduced from Fessenden et al., JCB, 2018 with permission); (D) Invasion along 

organized collagen patterns is a function of β-catenin and cadherin-mediated cell-cell 

interactions; while cadherin inhibition produces a higher percentage of disseminated single 

cells, the overall efficiency of invasion is not necessarily enhanced (Figure reproduced from 
Ilina et al., Nature Cell Biology, 2020 with permission).
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Figure 3: Origins of ECM alignment in the TME:
Schematics showing alignment of ECM in the TME by (A) traction forces from clusters 

of cancer cells or neighboring cancer-associated fibroblasts; (B) directional migration and 

alignment of matrix-producing and remodeling CAFs by collision guidance, driven by 

positional feedback from neighboring cells and (C) direct binding of matrix remodeling 

proteins such as WISP1 produced by proximal cancer cells.
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