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ABSTRACT

“The | two-state, one-dimensional, spinless Fermi gas (Falicov-
Kimball model) is studied exactly by numerical calculation and pertur-
bation theory. Rigorous results are presented for small interaction
strength and (restricted) coherent and incoherent phase diagrams are cal-
culated for two specific examples. The numerical calculations are extra-
polated to provide a qualitative picture of the complete sohition. ‘The
result includes a fractal structure in which the ground state changes

discontinuously as a function of the parameters.
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I. Introduction

It is generally accepted that many prdpcrties of heavy-fermion systems and
_intermediate-valencé compounds as well as the phenomena of metal-insulator transi-
tions, itinerant magnetism, metallic crystallization, alloy formation, etc. result from the
~ properties of strongly correlated electrons. There are, however, very few exact results
available for correlated electronic systems and approximaté methods are sorheﬁmcs
contradictory. In 1969, the Falicov—Kimball model! was introduced as a model for
metal-insulator transitions. It remains one of the simplest interacting fermion systems
in which electron correlation effects may be studied exactly. Several rigorous results
have already been obtained for the one-band spinless version of the Falicov-Kimball
model: Brandt and Schmidt? calculated upper and lower bounds for the ground-state
energy in two dimensions; Kennedy and Lieb® proved theorems on long-range order
for arbitrary dimensions; Brandt and Mielsch* obtained an exact solution in infinite
dimensions; and Jedrzejewski et. al.> performed numerical studies in two dimensions.
In this contribution we present additional rigorous results and restricted phase diagrams

for the one-dimensional Falicov-Kimball model at T= 0.

The hamiltonian for the one-dimensional Falicov-Kimball model defined on a lat-

tice of N sites with periodic boundary conditions (PBC) is
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N N
H=-1 2 (CjTCj+1+Cj7;le)+U 2 CjTCj W] , (1)
j=1 Jj=1 '

where ch (cj) are fermionic creation (annihilation) operators for a spinl;ess6 electron at
site j, W; is a classical variable that is 1 (0) if an ion occupies (does not occupy) the
Jjth site of the lattice, ¢ is the hopping integral between nearest neighbors, and U is
the ion-electron on-site interaction..The first teﬁn in (1) is the kinetic energy of the
itinerant electrons and the second term is thé interaction between -electrons and ions.
The total elcctrop number N, = ZJA;I cjfcj and the total ion number N; = Z;N=1 W;
are both conserved quantities.

The hamiltonian (1) for the Falicov-Kimball model has various physical interpre-
tations. It was originally introduced to exarhine the mutual ihtcraction of mobile d-
electrons (our electro_ns) with localized f-electrons (oﬁr ions) in transition-metal
oxides.! It has recéntly been proposéd as a model for crystalline formation> — if the

ion configuration {W;} of the ground-state is periodic, then this model provides a

mechanism for electron-induced crystalline order. It also describes a one-dimensional

binary alloy problem with the following map: occupied site — ion of type A; empty

site = ion of type B; and U— Uy~ Uy the difference in electron-ion site energy

between ions of type A and type B. We finally note that the hamiltonian (1) is identi-
cal to the one-dimensional tight-binding Schrbdinger equation with an on-site potential
that can assume two different values (0 and U). The tight-binding Schrbdinger equa-
tion has been studied for random {W;} by mathematicians and physicists’ and has

been investigated recently for aperiodic deterministic sequences.®

Since the electrons do not interact among themselves, the energy levels of (1) are
determined by the eigenvalues of H and the ground-state energy of a particular ion
configuration I' = {W;} is found by filling in the lowest N, one-electron levels. We
let ET(X, N,) denote the ground-state energy for N; electrons in the ion configuration

I" with X = U/t (the hopping integral ¢ determines the energy scale; all energies are

L =3
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measured in units of ). Many-body effects enter into the problem b;f considering the
ground state for N; ions
EX,N,,N;) =min{ET(X,N,) | N,-=§ W;) , )
j=1 .
determined by comparing the [N!/N;!(N-N;)!] ion configurations with fixed ‘ion
number. The minimizatibn procedure in (2) determines the equivalence class of the
ground-state ion configuration as a function of the interaction strength, the number of

electrons and the number of ions.

The hamiltonian exhibits two kinds of particle-hole symmetriess — an ion
occupied-empty site symmetry and an electron-hole symmetry. In the first case we
consider the conjugate ion configuration I defined by interchanging occupied and
unoccupied sites in thc configuration I" (this corresponds to Wj* = 1-W;). The ground

states for these two configurations are related
ET(X,N,)=ET(X,N,) +X N, , | (3)

for all X and N,. In the second case we use the unitary transformation cj— (-1)/ cj
and ch—-) -1y cjr to relate electron eigenvalues with interaction X to éorresponding

hole eigenvalues with interaction (=X) yielding the result

ETX,N,)=ET(-X,N-N,) +X N, . (4)
These two symmetries are used to reduce the necessary parameter space in the calcula-
tion of the T= 0 phase diagrams.

In the thermodynamic limit the number of lattice sites becomes infinite (N — eo)
but the electron p, = N, /N dnd the ion p; = N;/N concentrations remain finite. The

ground-state energy per lattice site is determined from nT(E) the density of states

(DOS)

_ E
ET(x, pe)=j_: nT(E) E dE . , (5)



where E is the Fermi level and

E
pe = n"(E)dE ©)

-_—C0

for each ion configuration I'. - The DOS is calculated from Green’s function by

n(E) = - L Im lim G (E+i€) , (7a)
T £e—0
1 N
GE) =~ ; G, (E) , (7b)

Jj=1

where the local Green’s function is defined by the matrix element G (E)=

<jl1/(E-H)|j>. A renormalized perturbation expansion (RPE) is used to determine _

the local Green’s function exactly. The result’

1

G;(E)= . , (®)
! E -X W; - Af(E) - AF(E) _
is expressed in terms of continued fractions
+ 1 —
AF(E) = T €)

-
E-XWyn—- -

where the local self-energy is A (E )= AJ-+(E )+ AJ-“(E ).
The continued fractions in (9) are evaluated straightforwardly for any periodic

configuration I'" since the variables W; are then periodic and the fraction may be made

finite. For example, the period-two case is analyzed by

AFE) =- 1

E-XW,-

- . (10)

E-X Wy-AFE)

which yields

v



AFE)=— (E -XW,

1
2
+ [(E-XW)? (E-XW)* - 4E-XWq) (E-XW )] / (E-XW )} ,(1])

and, for the DOS

1 |[E-XW| + |E-XW,| '
n(E) == Re _ . (12)
20 \(E-XW)E-XW DE2=X (W +W )E+X W oW —4]

In addition to the one-phase periodic configurations, we consider one physically
relevant two-phase configuration called the segregated phase. The segregated phase is
an incoherent mixture of the empty and full lattices with weights (1—p;) and p; respec-
tively. The segregated phase has the physical interpretation of the case where the ions

clump together and do not form a periodic arrangement (crystallization model) or of

~ the case where the ions of type A and the ions of type B are immiscible and separate

(alloy model). The DOS is trivial for the segregated phase since it is a weighted linear

combination

ns (E) = (1-p;) n®Y(E) + p; n/™(E) (13)

. of the DOS for the empty and full lattices.

The segregated phase is also important since it .is expected to be the ground state
in the limit |X {— eo. In this limit the potential barrier is so large that the_ electrons
are trapped between ion occupied-empty site boundaries. The dominant contribution to
the ground-state energy is the kinetic energy of the electrons which is minimized by
making the box as large as possible. This favors the segregated phase to be the
ground state. However, at the point where the electrons completely fill the box
(P, = 1-p; for X— + oo ahd p,_, =p; for X— — o) the Pauli exclusion principle
requires the additional electrons to be placed above a large potential barrier. At this
point a periodic arrangement of thé ions may actually lower the ground-state energy.

These physical ideas are summarized in what we may call the segregation principle: In
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the limit X | — oo the segrégated phase is the ground state for all values of the elec-
tron concentration except the specific values p, = 1-p; for X = + o, and p, = p; for
X — —eo. We have found that principle to be true in all calculated cases and we

expect it to hold for all values of p, and p;.

In the following section we use perturbation theory to analyze the structure of the
ground-state phase diagram near X= 0. In Sections III and IV we examine in detail
the cases with ionic densities of p; = 1/2 and p; = 1/3 respectively, and give complete
phase diagrams for the segregated phase and all ionic configurations with periods less

than 10 compatible with those p;. We present our conclusions in the final section.

I1. Perturbative Analysis

In the limit X < 1 We can perform a perturbative analysis of the hamiltonian (1)
and determine the structure of the phase diagrams for small interaction strength. We
only consider periodic structures to avoid the technical difficulties associated with
aperiodic configurations. Suppbsc the configuration I'(r) has period r; that is,

W;,, = W; for all j. The Fourier coefficient W (2ntn /r) is defined

1 N - 2nnj 1 & - 2nnj
WQR2nrnir) = N Y e TW = = Y e "W (14)
j=1 j=1
for n =0,1, ---,r-1. Straightforward Rayleigh-Schrbdinger perturbation theory

through second-order, with the second term in (1) as the pertﬁrbation, yields the

expression
I‘(r) - 2 N
E"TX, pe) = = — sinmp, + X p,p;

2 721 2 lsinrn/r — sinnp, !
L X > |W(.27tn/r)| log I : Pe I+ 03 (15)
8n .= sinmn/r | sin®tn /r + sinmp, |

for the ground-state energy of configuration I'(). The minimization procedure (2)

outlined above considers configurations with the same ion concentraton at fixed
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electron concentration and interaction strength, so that the ground-state energy is
degenerate up to first order. The second-order term has a ldgarithmic singularity at
p, = n/r with relative strength |W2nn/r)l 2. The singularity indicates that perturba-
tion theory fails at these critical electron concentrations; by comparing the strength of
the singularity for different éonﬁgurations, the ground state can be determined in the
region near p, = n/r (and by continuity at p, = n/r).

In fact, if we  restrict thé minimization in (2) to be only over periodic
configurations, then for rational concentrations the ground-state configuration has the
lowest allowed periodicity (this is expected from a Fermi-surface nesting argument: the
state with the largest gap at the Fermi level is the ground state). More rigorously we
prove the foilowing theorem:

Theorem 2.1: Given rational electron and ion concentrations

Pe ' Di :
= —— , . T o . (16)
Pe=s . Pi=, | |

" with p, relétivcly prime to g, and p; relatively prime to g;, then the periodic
configuration with the lowest energy has period Q = LCM (q,, q;), where LCM stands
for least common multiple. The proof is given in the Appendix and includes an

expression for the ion configuration I'(Q ) corresponding to the lowest-energy state.

These lowest-energy cbnﬁgurations satisfy _4certain structural properties.  Let /
denote the length of the largest connected island of occupied sites in the: configuration
'I“(Q) (e.g. the conﬁguration XXXOXOXXO0O0, where X represent_s' an ion and O
represents an empty site, corrésponds to é given I'(10) and has I = 3), then a
configuration in which only islands of length / and (/-1) appear is defined to have the
uniform ion distribution property.. For example, XXOXX0OO has the uniform ion
~ distribution properfy but ‘XXXOOXOO does not. The uniform empty-site distribution
k property is analogously defined. This characterization of the ground-state configuration

in the limit X — O is summarized in the following theorem: |
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Theorem 22: In the limit X— 0 any periodic lowest-energy coriﬁguration with
p; < 1/2 has the uniform ion distribution property and any periodic lowest-energy
configuration with p; 2 1/2 has the uniform empty-site distribution property. The

proof is given in the Appendix.

The ground-state energy of the segregated phase also has a perturbative expansion

about X = 0. A straightforward analysis using the DOS in equation (13) yields

| 2 . x% pi(1-p;) 3
seg - = e e ee——
E* (X ,p,) - sinnp, + X p,.p; 4 sinmp, +0X°) | an

for the ground-state energy of the segregated phase which is valid in the two-phase,
band overlap region 8(X) < p, < 1- 8(X) where

300 = 2L [ox)p; + 000 (-p) . (18)

and 6(X) is the unit step function. This éxpansion has a singularity in thé limitX— 0
and p,— O which indicates the segregated phase should be the | ground state for low

electron concentrations.

The solution for the ground-state configuration of the one-dimensional Falicov-
Kimball model is conveniently summarized in a coherent phasé diagram. The ion con-
cenﬁaﬁdn is fixed at p; .= pi/q; and the ground-state configuration is plotted as a func-
tion of the electron concentration and the interaction strength. We chobsc the segre-
gated phase 'as the zero of the energy scale because of its physical relevance. We limit
ourselves to the case p; < 1/2 and p, < 1/2 since the other cases can be obtained by
application of the symmetries (3) and (4). The two theorems above indicate that in the
limit X — O the coherent phase diagram has a discontinuous, fractal structure, with a
different periodic ground-state configuration at each rational p,. .These configurations
all satisfy the relevant uniform-distribution property and appear to be a regular transi-
tion from the segregated phase at p,— 0 to a period g; (2g;) state at p, = 1/2 if g; is

even (odd). The inclusion of aperiodic configurations is not expected to change this
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general picture. Recent analysis® indicates that some aperiodic configurations have
gaps at rational numbers (where we expect the periodic configurations to be lower in
energy) and at irrational numbers (where the aperiodic configurations may be lower in
energy). Therefore, we conjecture that in the limit X— O the ground-state
configuration changes, point by point, at every value of p, and the coherent phase
diagram has a regular (discontinuous) transition pattern from the segregated phase at
p.— 0 to a periodic phase at p, = 1/2. We also conjecture that the relevant uniform-

distribution property holds for each of the ground-state configurations.

III. The case p; = 1/2

In this section We examine in detail the half-full ion case and present our results
in the form of phase diagrams. We restrict ourselves to the case p, < 1/2 by using the
electron-hole symmetry (4); the phase diagram for the region p, 2 1/2 is determined
by rotating the region p, < 1/2 by 180° about the point X =0, p, = 1/2. We further
restrict ourselves to the case X 2 0 by using the ion occupied-empty site symmetry
(3); the phase diagram for the region X <0 is determined by reflecting the region
X 20 in a mirror plane along the X = 0 axis and applying the conjugation operation
to the ion configurations (each configuration I' with p; = 1/2 is either self-conjugate
I =T or forms a conjugation pair with another p; = 1/2 configuration). We finally
restrict ourselves to consider only the segregated phase, all periodic phases with
p; = 1/2 and periods less than 9, and any incoherent mixture of these phases. These
periodic phases are summarized in Table 1. The ground state energies are calculated

exactly using the Green’s function téchnique outlined in Section I.

The coherent phase diagrams are determined by comparing the energy of each
periodic phase with the energy of the segregated phase and plotting the lowest-energy
state as a function of the electron concentration p, and the interaction strength X. The

results are presented in Figures 1-4 and exhibit the extremely rich structure of the
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solutions of the model. We summarize these results with some observations:

(A) The periodic ground-state theorem and both uniform-distribution properties

hold in the region 1X | <« 1.

(B) The alternating phase XO is the ground state at p, = 1/2 for all values of X

as stated by previous investigations.>3

(C) The phase diagrams tend to simplify as the interaction strength increases
indicating that many-body effects stabilize the system (this is a consequence of the
segregation principle).

(D) There is a trend for phases that disappear from the phase diagram as X
increases to reappear as phase-islands at even larger values of X (e.g. the XXXOO0O

phase in Figs. 3 and 4 and the XXXXOO0OO phase in Fig. 4).

(E) Phase-islands of configurations not present at X = 0 may form at larger

values of X (e.g. the XXOXXOOO phase in Fig. 4).

(F) The uniform-distribution properties may not hold at finite values of X (the
XXOXXOO0O0 phase in Fig. 4 does not satisfy the uniform empty-site distribution pro-

perty and its conjugate does not satisfy the uniform ion distribution property).

(G) Some configurations are not the ground state for any value of X or p, (e.g.

the configurations XXXOXOO0OO0 and XXOXOXOO do not appear in Fig. 4).

The incoherent phase diagrams are determined by choosing the minimal energy
state, allowing for incoherent mixing!® of the p; = 1/2 periodic phases with themselves
and with the segregated phase (which is already an incoherent mixture of the p; =0
and p; ‘= 1 phases). This is accomplished by constructing the convex hull of the
ground-state energy curves for fixed X and assigning an incoherent phase mixture to
each region where the convex hull is lower than the energy curves. The results are
presented in Figures 5-8 where solid lines and shaded regions correspond to single

phases, dashed lines correspond to two-phase mixtures and dotted lines correspond to
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more than two-phase mixtures (the points where vertical dotted lines pass through hor-
izontal solid lines are the points of phase trarisitions). The numbers above the single
phase lines identify the ground state according to the numbers in Table 1 The
unshaded region below the dashed line is the region where the segregated phase is the
ground state. The unshaded regions between a solid (or dashed) line and a solid line
are the regions where an incoherent mixture of the two (or three) phases is the ground

state. We make the following observations:

(H) The incoherent phase diagrams are simpler than their single-phase counter-

parts. The regions enclosing finite areas of single phases are drastically reduced.

(I) The behavior in the limit |X |— O appears to be the same as that predicted

by perturbation theory for the coherent diagrams.

»(j) The secondary phase-islands that sometimes form at X | > O either become
single phase-lines (XXXOOO in Figs. 7 and 8) or vanish altogether (XXXXOOOO in
Fig. 8). '

These incoherent phase diagrams are important to study for two reasons: first,
they determine the ground state of a real systém since any physical system organizes
itself in an incoherent mixture of phases to minimize energy (if possible); second,
they produce a better approximation to the complete phase diagram of the Falicov-
Kimball model. This is because any incoherent mixture of phases can be reinterpreted
as an aperiodic configuration in a coherent phase diagram. By using this reinterpreta-
tion we strengthen the perturbation theory results of Section II to conjecture that the
ground-state . configuration is the segregated phase for a finite region
[0<p, < pl&X)I; above this region the ground-state configuration changes point by
point‘with p., and has a regular (discontinuous)vu'ansition from the segregated phase
to a periodic phase at p, = 1/2. Furthex_'more, for the case p; = 1/2 we must have
pMaxX(X') < 1/2 since the alternating state XO is the ground state>? at p, = 1/2 for all

X.
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- IV. The case p,-’- =173

We examine the one-third-full ion case as a representative of the generai case
because it does not have any extra symmetries. The electron-hole symmetry (4) allows
us to consider only the case p, < 1/2, but we must consider all values of X since the
ion occupied-empty site symmetry (3) produces the phase diagrams for the p; = 2/3
case. We consider only the segregated phase, the period-three, -six, and -nine phases
with p; = 1/3, and any incoherent mixture of these phases.!® The precise ion

- configurations considered are summarized in Table 2.

The results for the coherent phasé diagrams are presented in Figures 9-11 and
they exhibit a marked asymmetry with respect to the X = 0 plane. We make the fol-
lowing observations:

(K) There is no evidence in support of or against the uniform ion distribution
property since this property can only be observed for periods 12 and larger, which are
not studied here. |

(L) The periodic ground-state theorem holds for 1X | <« 1 but the many-body
effects rapidly become more important and change the structure of the phase diagrams.

(M) It appears that the period-three phase XOO is the ground‘ state at p, = 1/3
for all values of X less than zero.

(N) The segregation principle holds; In the limit 1X |— o the segregated phase
is the ground state for all values of p, except for a region about p, = 1/3 -and
X =

(O) There is still a trend for phases present at X = 0 to appear as phase-islands
at larger values of 1X | (e.g. the XXOOOO phase in Figs. 10 and 11; the XOX0O0O

phase in Fig. 10; the XXXO00OO0OO phase in Fig. 11; and the XXO00XOOO phase
in Fig. 11).



-13 -

(P) All studied configurations -are the ground state for some value of the parame-

ters p, and X.

The results for the incoherent phase diagrams are summarized in Figures 12-14.

We present the following observations:
(Q) Observations (H), (I), and (J) of the previous section still hold.

(R) Two phases (XXOOX0O0O00 and XOXOOXOOO) do not 'appcar in the

incoherent phase diagram although they were present in the coherent phase diagram.

The structure for the full Falicov-Kimball model in the general case emerges from
these incoherent phase diagrams. If we reinterpret an incoherent mixture of phases as
an aperiodic phase in the coherent phase diagram, then it ‘appears that at each value of
X there is a finite region where the segregated phase is the ground state. In the rest of
the region the ground state changes from point to point with p, and has a regular
(discontinuous) transition from the segregated phase to a periodic phase (and possibly)

" back to the segregated phase.

V. Conclusion

Since its introduction twenty years ago, the Falicov-Kimball model! is one of the
simplest models of interacting electron systems. We have studied the one-dimensional
spinless version of this model by exact numerical calculation fc;r a restricted number of
phases and by perturbation theory for -small interaction strength. Our rigorous results
include .a periodic ground-state theorem and uniform ion and cmpty-sitc distribution
properties for rational electron and ion concentrations and small interaction strength.
Our numerical calculations indicate that the phase diagram of the complete model is
separated into two distinct regions: In the first region the segregated phase is the
ground state; and in the secohd region the phase diagram has a complex structure with
the ground state apparently changing poiht by point at every value of the electron con-

centration for fixed interaction strength. In this second region the ground state has a
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regular (discontinuous) transition pattern from the segregated phase to a periodic phase

and back to the segregatcd phase.

We also prcscht two unproven conjectures that characterize further the structure
-of the phase diagram as illustrated by our numerical work. The first is called the
segregation principle which states at large interaction strength the segregated phase is
‘the ground state for almost all electron concentrations. The only exceptions are when
the electron concentration matches the ion or the empty-site concentration, where a
periodic phase is the ground state. The second is the uniform ion or empty-site distri-
bution property which states that the ground state configurations satisfy certain struc-
tural characteristics. The properties are true for small interaction strength but appear -

to be violated for moderate interactions.

We mention one final open question. The proper incoherent phase diagram is
plotted as a function of the electron and ion concentrations. We have evaluated the
restricted phase diagrams for only five ion concentrations (p; = 0, 1/3, 1/2, 2/3, 1) and
have no concrete conjeécture for the structure of the incoherent phase diagram. How-
ever, we expect this phase diagram to separate into two regions with simple behavior

in one region and complex behavior in the other.

Appendix. Proof of the Periodic Ground-State Theorems

In this appendix we prove the two theorems stated in Section II. We begin with
the periodic ground-state theorem.

Theorem 2.1: Given rational electron and ion concentrations

Pe p;
p =—_ s [ = ) (A’l)
- ¢ q. Pi q;

with p, relatively prime to g, and p; relatively prime to ¢;, then the periodic
configuration with the lowest energy has period Q = LCM (q,, g;).

Proof: The periodic configuration with the lowest energy is the configuration with the
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largést square Fourier coefficient |W(21tpe)12. The trial configurations that have
non-zero Fourier coefficient and proper ibn concentration must have a periodicity that
is a multiple of Q. Consider all periodic configurations with ion concentration p; and
with period less than or equal to r = mQ. These configurations all lie on a lattice
with PBC and sizez N=MQ where M =LCM(1,2, ---,m). We show the
configuration with the lowest energy in this restricted set has period Q which (since m
is arbitrary) proves the theorem.

The proof proceeds by construction of the largest |W(21tp,_,)lz. Assume, for

simplicity, that g, = Q. Define integers k; by the relation
(pk)mod Q=i , i=0,1 ---,0-1 . (A2)
Then the choice of W; =1 for
Jj=k +IQ , i=0,1, ---,0pi/g;=1 , 1=0,1, ---,M-1 (A3

gives an ion concentration

1 b
Pi= ;0 W, s , . (A9)
J= .

and maximizes the square Fourier coefficient

\W@np,) 12 = -;]1-2- > W, W, cos2np, (i-k)/Q (A.52)
ik |
1 Opilgi-1
= ‘(‘2"2‘ [Qp; +2 3 (Opi/g;—j)cos2mjiQ] (A.5b)
j=1

since the summation in (A.5a) has the maximal allowed number of (j—k) mod Q =0,
(j—k)mod Q@ =1, -+, and (j—k) mod Q = Qp;/q;—1. The minimal configuration
I'(Q) constructed above has period Q which completes the proof. The proof for the
. case g, # Q 1is similar and is omitted here. The only complication of this case is that
the second-order perturbation theory may not fully lift the degeneracy of the lowest-

energy state. These degenerate states all have period Q however, which is sufficient
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to prove the theorem.!!

As an example, we consider the case p, = 3/8 and p; = 1/2. This gives Q =8
with k4 =0, k1 =3, k5 = 6, and k5 = 1, so that the configuration XXOXOOXO is the

lowest energy periodic state in the limit X — 0.

We continue with the proof of the uniform-distribution properties.
Theorem 2.2: In the limit X— 0 any’ peribdic lowest-energy. conﬁguratiph with
p; < 172 has the uniform ion distribution property and any periodic lowest-energy
configuration with p;. 2 1/2 has the uniform empty-site distribution propcny. _
Proof: We restrict ourselves to the case p; < 1/2 and p, < 1/2 since the other cases |
immediately follow upon application of the symmetries (3) and (4). Assume that
g, = Q (the proof of the more general case is similar and is omit_ted). The Q integers'

{k;} can be represented in terms of the first p, integers by

Kepo+j = kj + 5 j=01--,p~1 s=01,---,7-1 , (A6)

p

and

kpsj =kj+r  j=01,--,1-1 : (A.7)

TP +j
where Q =rp, +t and t <p,. Since each integer from 0 to Q-1 éppcars in {k;}
ohce and only once, the hearest neighbors in the first p, integers kg, k{1, -, kp,—l
are separated by_ géps of length r or r—1 (there are ¢ neighbors with separationvr and
p.—t neighbors with separation r—1). As the ions are filled in accordjng 'to the
prescription (A.3) of theorem 2.1,-each configuration will-satisfy the ‘uniform ion-distri-
bution property until the gap between any two nearest-neighbors in the original p, ions
is filled in. This occurs when p,-‘> 1-p, which is not possible.by the hypothesis and

proves the theorem.
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Conﬁguratidn Cohju gate |
1 XO 1
2 XXO0O0 2
3 XXXO000 3
4 XXOXO0OO0 4
5 XXXXO0000 5
6 XXXOXO000 6
7  XXXO00XO00 8
g XXOXXO000 7
9 XXOXOXO0O0 9
10 XXOXO0XO 10

Table 1. Periodic configurations for the p; = 1/2 case
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Configuration

—t

X00
XX0000
X0OX000
XXX000000
XXOXOOOOO
XX00X0000
XX000X000
X0OX0X0000
X0OX00X000

O oo NI O W b WwWN

Table 2. Periodic configurations for the p; = 1/3 case
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Figure Captions

Fig.
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Fig.

Fig.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1

10

11

Calculated coherent phase diagram for the segregated and period-two

phases with p; = 1/2. See Table 1 for the key to the legend.
Calculated coherent phase diagram for the segregated, period-two and

-four phases with p; = 1/2. See Table 1 for the key to the legend.

Calculated coherent phase diagram for the segregated, period-two, -four

and -six phases with p; = 1/2. See Table 1 for the key to the legend.
Calculated coherent phase diagram for the segregated, period-two, -four,
-six and -eight.phases with p; = 1/2. See Table 1 for the key to the
legend. '
Calculated incoherent phase diagram for the segregated and period-two
phases with p; = 1/2. See Table 1 for the key to the legend.

Calculated incoherent phase diagram for the segregated, peﬁod-two and

-four phases with p; = 1/2. See Table 1 for the key to the legend.

Calculated incoherent phase diagram for the segregated, period-two, -four

and -six phases with p; = 1/2. See Table 1 for the key to the legend.

Calculated incoherent phase diagrém for the segregated, period-two, -four,

-six and -eight phases with p; = 1/2. See Table 1 for the key to the
legend.
Calculated coherent phase diagram for the segregated and period-three

phases with p; = 1/3. See Table 2 for the key to the legend.

Calculated coherent phase diagram for the segregated, period-three and
-six phases with p; = 1/3. See Table 2 for the key to the legend.

.Calculated coherent phase diagram for the segregated, period-three, -six

and -nine phases with p; = 1/3. See Table 2 for the key to the legend.
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Fig. 12 Calculated incoherent phase diagram for the segregated and period-three

phases with p; = 1/3. See Table 2 for the key to the legend.

Fig. 13 Calculated incoherent phase diagram for the segregated, period-three and
-six phases thh p; = 1/3. See Table 2 for the key to the legend.

Fig. 14 Calculated incoherent phase diagram for the segregated, period-three, -six

-and -nine phases with p; = 1/3. See Table 2 for the key to the legend.
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