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The diversity of intrinsic dynamics observed in neurons may enhance the computations

implemented in the circuit by enriching network-level emergent properties such as

synchronization and phase locking. Large-scale spiking network models of entire

brain regions offer a platform to test theories of neural computation and cognitive

function, providing useful insights on information processing in the nervous system.

However, a systematic in-depth investigation requires network simulations to capture

the biological intrinsic diversity of individual neurons at a sufficient level of accuracy.

The computationally efficient Izhikevich model can reproduce a wide range of neuronal

behaviors qualitatively. Previous studies using optimization techniques, however, were

less successful in quantitatively matching experimentally recorded voltage traces.

In this article, we present an automated pipeline based on evolutionary algorithms

to quantitatively reproduce features of various classes of neuronal spike patterns

using the Izhikevich model. Employing experimental data from Hippocampome.org,

a comprehensive knowledgebase of neuron types in the rodent hippocampus, we

demonstrate that our approach reliably fit Izhikevich models to nine distinct classes

of experimentally recorded spike patterns, including delayed spiking, spiking with

adaptation, stuttering, and bursting. Importantly, by leveraging the parameter-exploration

capabilities of evolutionary algorithms, and by representing qualitative spike pattern class

definitions in the error landscape, our approach creates several suitable models for each

neuron type, exhibiting appropriate feature variabilities among neurons. Moreover, we

demonstrate the flexibility of our methodology by creating multi-compartment Izhikevich

models for each neuron type in addition to single-point versions. Although the results

presented here focus on hippocampal neuron types, the same strategy is broadly

applicable to any neural systems.
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INTRODUCTION

In the last decade, several projects have built large-scale models
of brain regions in an attempt to advance our understanding
of how the nervous system functions (Izhikevich and Edelman,
2008; Eliasmith et al., 2012; Markram et al., 2015; Hendrickson
et al., 2016). The biological realism in these models has been
captured in varying levels of detail. One of the characterizing
features of biological neural networks is the diversity observed in
the intrinsic dynamics of individual neurons. This diversity likely
contributes to the emergent properties of neural networks and,
consequently, plays a major role in the information processing
in the nervous system (Padmanabhan and Urban, 2010; Tripathy
et al., 2013; Pozzorini et al., 2015). Therefore, a biologically
realistic large-scale network model of a brain region should
take into account intrinsic behavioral diversities both within and
between neuron types.

Hippocampome.org is a comprehensive knowledgebase of
122 morphologically identified neuron types in the rodent
hippocampal formation (Wheeler et al., 2015). One of the
motivations behind developing this knowledgebase was to create
a real-scale computational model of the entire hippocampus.
Toward achieving this goal, we aim to create individual
neuronal models using the electrophysiological and spike pattern
properties of neuron types available at Hippocampome.org.
In deciding which modeling system to use, we considered
simulation costs. High simulation costs of biophysically detailed
Hodgkin-Huxley-type neuronal models often impose limits
on the scale of network models. Conversely, simpler models,
such as leaky integrate-and-fire neurons, cannot capture the
wide range of dynamics observed in the hippocampus. Models

such as Izhikevich (Izhikevich, 2003) and Adaptive Exponential
Integrate-and-Fire (AdEx) (Brette and Gerstner, 2005) have

been shown to qualitatively reproduce various firing pattern
classes observed experimentally in real neurons, while still being
computationally efficient. Therefore, these simpler models with
lower simulation costs allow large-scale modeling of biological
neural networks in a computationally efficient manner. In
this work, we create Izhikevich Models (IMs) that reproduce
quantitatively comparable features of various hippocampal spike
pattern classes through parameters optimization.

The dynamics of Izhikevich models are highly non-linear and

error landscapes that are defined over the resulting parameter
spaces typically exhibit properties that make them difficult

to optimize, such as multiple local optima. As such, several
studies have turned to non-convex, derivative-free optimization
methods such as evolutionary algorithms (EAs) to fit a neuronal
model’s responses to experimentally recorded voltage traces.
The models used in these studies range from simple spiking
models such as AdEx (Rossant et al., 2010, 2011; Lynch and
Houghton, 2015) to biophysically detailed Hodgkin-Huxley type
models with multiple compartments (Gerken et al., 2005; Keren
et al., 2005; Druckmann et al., 2007; Van Geit et al., 2007).
Previous studies have also used various techniques such as
a feature-based error function (Druckmann et al., 2007) and
a phase plane trajectory density method (Van Geit et al.,
2008) to create the error landscape for the EA search. Rössert

et al. (2016) created an approach to simplify morphologically
detailed microcircuit models to their point-neuron counterparts
by applying soma-synaptic correction (to account for dendritic
attenuation and delay) and constraining Generalized Integrate-
and-Fire neurons around an in vivo-like working point. Rounds
et al. (2016) used EAs to match firing rates of IMs in a network
to experimental recordings in the retrosplenial cortex. However,
to our knowledge, optimization techniques have not been
successfully used to fit intrinsic IM responses to experimental
data. On benchmark optimization tests, the IM showed poor
performance compared to other simple models (Rossant et al.,
2010, 2011; Lynch and Houghton, 2015). This might be due to
the failure to identify an appropriate EA configuration such as
the choice of error function and variation operators that are
well-suited for the IM parameter space.

Apart from its capability to quantitatively fit IM’s responses
to experimental voltage traces, the novelty of our automated
modeling framework is the integration of spike pattern
classification protocols. Previous work (Komendantov et al., in
review) identified 23 distinct spike pattern classes overall, among
the 89 morphologically distinct hippocampal neuron types in
Hippocampome.org for which experimental recordings were
available. A behavior for a certain neuron type was defined
based on the set of all experimentally recorded spike patterns.
If a neuron type exhibited spike patterns of more than one
class under different experimental conditions (e.g., bursting and
regular spiking for different current stimulation strengths), it was
marked as a multi-behavior type. In contrast, a neuron type was
marked as a single-behavior type, if all spike patterns recorded
from the same neuron under different experimental conditions
fell into the same qualitative class. Neuron types with only a
single experimentally recorded spike pattern were also marked
as single-behavior.

This article presents the modeling approach and results
for single-behavior neuron types. We report at least one
example for each of the nine distinct single-behavior types,
with the goal of illustrating both the approach and the
IM’s ability to quantitatively reproduce a variety of neuronal
behaviors observed in the hippocampus. The single behaviors
reported here include spiking with and without frequency
adaptation, delayed spiking, bursting, and intermittent spiking
or stuttering. In addition to simple point-neuron (single-
compartment) models, multi-compartment IMs were created,
where the number of compartments varied from two to four
depending on the dendritic invasion of a neuron type across
hippocampal layers. For example, the somata of hippocampal
pyramidal cells in the principal layer extend basal dendrites
in the oriens layer and apical trees in the radiatum layer
that reach to the lacunosum-moleculare. Thus, these neurons
can be represented as 4 compartments, one for each layer
(as illustrated in the Methods below). This stratification is
important because it segregates the synaptic inputs: distal
lacunosum-moleculare dendrites, for example, are the targets
of entorhinal projections, while dendrites in radiatum receive
intra-hippocampal connections. Although finer morphological
variability observed across various neuron types may also
contribute to network dynamics, compartmentalized dendritic
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integration of distinct laminar inputs is likely to play a
crucial computational role in cortical circuits. Furthermore,
dendrites located in separate layers typically have different active
and passive properties from each other and from the soma.
A previous large-scale model of the thalamo-cortical system
used multi-compartment IMs (Izhikevich and Edelman, 2008).
However, that model did not capture the signal transmission
properties between the dendrites and soma in a biologically
accurate way. In addition, the dendritic compartments did not
reflect the appropriate balance of active and passive properties.
Another novelty of our automated modeling approach is its
capability to create accurate dendritic representations in the
multi-compartment IMs. Our dendritic compartments exhibit
generally known active and passive properties of the dendrites of
real neurons.

MATERIALS AND METHODS

In this article, a certain spike pattern class will be used to denote a
neuron type’s “behavior,” since all the neuron types discussed here
were examples of single-behavior types. It is worth mentioning
that 14 of the 23 distinct spike pattern classes observed in the
hippocampus are part of the multi-behavior types and, hence, not
reported in this article. Modeling multi-behavior cases requires a
different approach, which we are pursuing but remains beyond
the scope of this article.

Spiking Model
We reproduced spike patterns by using the nine-parameter
variant of the IM (Izhikevich, 2007) because we found that
the EA could reliably find better solutions with this IM than
the originally proposed four-parameter formalism. IMs have
been shown to reproduce qualitatively many spike patterns
observed in biological neurons. The state variables membrane
voltage (V) and membrane recovery variable (U) govern this
two-dimensional system. The recovery variable U approximates
the channel kinetics of Hodgkin-Huxley type models (Hodgkin
and Huxley, 1952), making it computationally much cheaper to
simulate. Parameter “a” is the time constant for the recovery
variable U. Parameter “b” defines the degree of coupling between
the state variables V and U. Parameters “b” and “a” collectively
determine whether the model is an integrator or resonator
(Izhikevich, 2001). Parameters “Vmin” and “d” are after-spike
reset values for V and U, respectively. Parameter “k” defines the
shape of the spike upstroke, and Vpeak defines the spike cutoff
value. Parameters Vr and Vt are resting and threshold voltages,
respectively, and C is cell capacitance.

C ·
dV

dt
= k · (V − Vr) · (V − Vt)− U + I (1)

dU

dt
= a · {b · (V − Vr)− U} (2)

if V = Vpeak then V = Vmin,U = U + d

In addition, we created multi-compartment (MC) models for
each neuron type based on the dendritic invasion across

the hippocampal layers (Figure 1), whereas each compartment
represents the part of the dendritic tree present in a given layer.
Compartments were coupled using an asymmetric mechanism.
For example, the MC layout for the CA2 pyramidal neuron type
depicted in Figure 1 defines the compartment-specific coupling
currents as follows:

ISP = G1 · P1 · (VSP − VSO) + G2 · P2 · (VSP − VSR) (3)

ISO = G1 · (1− P1) · (VSO − VSP) (4)

Here, Stratum Pyramidale (SP) denotes somatic compartment,
and Stratum Oriens (SO), Stratum Radiatum (SR) and Stratum
Lacunosum-Moleculare (SLM) (Figure 1) are dendritic
compartments. ISP is the total coupling current at compartment
SP, which results from the differences in the voltage between
SP (VSP) and SO (VSO), and between SP and SR (VSR).
G1and G2 are coupling constants, and P1 and P2 (with values
between 0.01 and 0.99) determine the degree of asymmetry
in the coupling, where a value of 0.5 denotes symmetric
coupling.

FIGURE 1 | Multi-compartment model layout based on the morphology. (Left)

Digitally reconstructed morphology of a CA2 pyramidal neuron (Wittner and

Miles, 2007), reproduced from Neuromorpho.org (Ascoli et al., 2007). Layer

boundaries are approximate. (Right) Layout of the multi-compartment model

for CA2 Pyramidal neuron type. The number and the layout of compartments

are determined based on the invasion of dendrites across the layers of CA2.

SO, Stratum Oriens; SP, Stratum Pyramidale; SR, Stratum Radiatum; SLM,

Stratum Lacunosum-Moleculare.
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Identification of Spike Pattern Classes
To classify the model behaviors, we used the same protocol
developed for identifying various transient and steady-state
elements of experimentally recorded spike patterns from the
hippocampus (Komendantov et al., in review). Transient
elements include: Delay (D), if the latency to spike is sufficiently
long; Adapting Spiking (ASP), if the spike frequency decreases
over time; Transient Stuttering (TSTUT), if a quiescent period
follows a cluster of high frequency spikes; and Transient Slow-
Wave Bursting (TSWB), if TSTUT is followed by a slow
after-hyperpolarizing potential. Steady-state elements include:
Silence (SLN), if the quiescence following the last spike is
sufficiently long; Non-Adapting Spiking (NASP), if no spike
frequency adaptation is identified in non-interrupted firing;
Persistent Stuttering (PSTUT), if at least one sufficiently long
quiescent period separates two clusters of high frequency spikes;
and Persistent Slow-Wave Bursting (PSWB) if slow after-
hyperpolarizing potential is present in an otherwise PSTUT
pattern.

Given a sufficiently long duration of input current, transients
will always be followed by a steady-state in a spike pattern. For
example, ASP followed by NASP was identified in the spike
pattern experimentally recorded from aCA3 Basket-CCK neuron
(Gulyás et al., 2010) and this pattern is an instance of the class
ASP.NASP (Figure 2A). The identified class of an experimentally
recorded spike pattern represented the target class for model
spike pattern. Thus, the criteria that defined a target class were
used to validate the model behavior under the given input
current. For details on the spike pattern classification criteria, see
Komendantov et al. (in review) and Hippocampome.org1

Evolutionary Optimization of Model
Parameters
Many varieties of EAs exist along with numerous ways of
implementing their specific components (De Jong, 2006). We
employed a non-overlapping generational model of evolution
and used elitism to ensure that the best individuals were always
preserved in the population. In this section, we describe the
specific components of the EA.

EA Configuration
Each individual in the evolutionary population consisted of a
complete configuration of the IM we are seeking to tune. We
represented these configurations as vectors of floating-points.
During the search of the parameter space, we bounded each value
within an allowed range. Choosing a biophysically reasonable
range for each parameter up front has a significant effect
on the efficiency of the optimization procedure, and through
preliminary EA runs, we found that different behavior classes
required slightly different ranges for some parameters.

When tuning a single-compartment model, each parameter
vector contained 9 + nI elements (genes), representing the 9
parameters of the IM (k, a, b, d, C, Vr , Vt , Vpeak, Vmin) and nI
input currents. nI equaled the number of voltage traces (which

1http://hippocampome.org/php/Help_Principles_of_Classification_of_Firing_

Pattern_Elements.php

were recorded for different input currents) a model was fit
to. A small range encompassing each experimentally injected
input current (Iexp.), [Iexp. – 10, Iexp. + 10] pA was included
in the EA search. By allowing the EA to search within a small
range, we boosted the exploration and identified more optimal
points (across multiple EA trials) that are very similar in the
phenotype. This design also helped to achieve more reliable
fitting in cases where a single model was fit to multiple traces (see
section Quantitative Comparison of Spike Pattern Features). In
rare cases, where the experimental input current was unknown,
an unbounded range of [50, 800] pA was included for the
search. The multi-compartment models had a larger number
of parameters: if c is the number of compartments, we require
8c + 1 parameters representing c compartments (the parameter
Vr is the same for all c compartments), plus 2(c−1) parameters
representing coupling parameters for consecutive compartment
pairs, and nI input currents.

We first initialized a population of these vectors by sampling
uniformly from within each parameter’s allowed range. We used
a fixed population size of 120 individuals for single-compartment
IMs and of 400 for multi-compartment IMs. An exception
was the 4-compartment ASP.SLN fast-spiking model, which we
found was easier to optimize with a larger population size (800).
After initializing the population, and at each generational cycle
thereafter, we immediately selected the 10% of the population
with the lowest error to survive to the next generation.

We filled the remainder of the child population by selecting
parents via binary tournament and by applying two-point
crossover and amutation operator. Each gene had a probability of
mutation between 0.1 and 0.3. For the parameters d, C, G, and I,
we applied an integer random-walkmutation: when selecting one
of those genes for mutation, an integer increment or decrement
was applied with equal probability. All remaining parameters
were mutated by reset: a new floating-point value was randomly
chosen out of that gene’s allowed range. The EA was run until
a maximum number of generations was reached. This number
varied between 500 and 5,000 depending on the number of
compartments in the model and the class of behavior the model
was fit to.

Error Function
We employed a feature-based error function to quantitatively
reproduce the spike pattern. Features for more than 250
experimentally recorded spike patterns are available at
Hippocampome.org. These features include first-spike latency
(fsl), post-spike silence (pss), spike frequency adaptation
parameters (sfa), burst width (bw), post-burst interval
(pbi), and rebound voltage amplitude (rbv) (Figure 2). Spike
frequency adaptation (sfa) was quantified as previously detailed
(Komendantov et al., in review) with a piecewise linear regression
on the inter-spike intervals (ISIs) by extracting the parameters
of linear fits such as slopes (m) and Y-intercepts (c) (Figure 2B).
The error in the model sfa was calculated as follows: the two
parameters of linear fit (for NASP and ASP. class) or three
parameters of piecewise linear fits (for ASP.NASP class) obtained
by plotting ISI’s against their latencies to the second spike were
compared between experimental and model spike patterns. In
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FIGURE 2 | Characterizing features of neuronal spike patterns and subthreshold voltage traces. (A) A spike pattern trace recorded from a CA3 Basket-CCK neuron

(Gulyás et al., 2010; Hippocampome.org) exhibiting a transiently adapting spiking (ASP.) behavior followed by a steady-state non-adapting spiking behavior (NASP),

which is an instance of the class “ASP.NASP.” (B) The adapting behavior is quantified by plotting inter-spike intervals (ISI) against their latencies and extracting the

parameters of piecewise linear fits, such as slopes and Y-intercepts. (C) Stuttering behavior of a CA1 Bistratified neuron (Pawelzik et al., 2002; Hippocampome.org).

fsl, first-spike latency; pss, post-spike silence. The features bw (burst width), and pbi (post-burst interval) characterizes the stuttering behavior. (D) A subthreshold

voltage trace recorded from a CA1 OR-LM neuron (Oliva et al., 2000; Hippocampome.org) for a hyperpolarizing current stimulation. The difference between the resting

potential and the peak voltage (rbv) after the current stimulation stops characterizes the rebound behavior of this neuron.

addition, the number of ISIs (nisi) corresponding to a linear fit
was also compared. For a bursting/stuttering class, the number
of bursts (nbs) and the number of spikes (nspikes) within each
burst were included.

Spike pattern classification protocols were also incorporated
into the error function by dynamically assigning different
weight factors to different features. This reduced the number of
generations required for the EA to find an acceptable solution.
In addition, for certain spike pattern classes, this approach more
reliably found solutions across multiple stochastic trials. The
error function was defined as:

error =
∑

f∈S

(

Wf × log
(

1+
∣

∣expf −modelf
∣

∣

))

(5)

S: {fsl, pss, m, c, nisi} for continuous spiking, and S: {fsl, pss, nbs,
bw, pbi, nspikes} for interrupted spiking (Figure 2).

Using the spike pattern classification protocols, the qualitative
class of a candidate model’s spike pattern was first identified.
Then, the weight factor Wf was calculated for each feature
by comparing the target class with the model spike pattern
class. During the EA search, each feature weight changed
based on that feature’s distance from the target class boundary.
These class boundaries are given by the set of criteria that
define that class (see Supplementary Material section 1 for

pseudocode description of feature weight calculation). This
accelerated the search during earlier generations of an EA,
when many candidate solutions were outside the target class
boundary (fast-exploitation toward narrow regions of interest).
Once the population began converging within the target class
boundary, this dynamic weight assignment scheme allowed
slower exploration and ensured heterogeneity among the best
models from within a class (see section Variabilities in the
Intrinsic Properties within a Neuron Type).

In order to identify several possibilities, we ran a total of
one thousand EA instances for each neuron type, yielding
several best models due to the stochastic nature of the EA
(different initial populations, stochasticity in variation operators,
and selection pressure). At the end of an EA search, the
best model was accepted only if its spike pattern class under
the given input current matched the target class. If a single-
compartment IM failed to reproduce a firing pattern class, two
identical compartments were symmetrically coupled. We noticed
that coupling effects enriched IM dynamics and were useful to
reproduce certain subclasses of stuttering behavior (see Results
section for examples).

The parameters of MC models were optimized such
that the somatic compartment reproduced features of the
experimentally recorded voltage traces both qualitatively and
quantitatively using the same techniques discussed previously
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for single-compartment models. Furthermore, four additional
constraints were enforced in order to capture the known
general active and passive properties of dendrites in the
additional compartments. Unlike the somatic compartment
constraints, all MC models shared the same dendritic constraints
because of the lack of sufficient experimental dendritic voltage
recordings. These general constraints include excitability and
input resistance of dendrites relative to the soma as well as
forward propagation of spikes and subthreshold signals.

Firstly, the dendritic compartments in MC models were
constrained to be less excitable than the somatic compartment
when they were decoupled. The minimum depolarizing current
(Irheo) required to elicit a spike at a compartment was used as
the measure of its excitability (Aou et al., 1992). During the EA
search, a ramp current rather than step currents was used to
measure compartment excitabilities. This avoided the need for a
local search for the minimum step current magnitude required to
elicit a spike in each compartment. To reduce capacitive effects in
measuring excitability, the ramp current had minimal slopes and
high resolution of discrete increments (+0.1 pA/1ms). Secondly,
the decoupled dendritic compartments in MC models were
constrained to have higher input resistances than the somatic
compartment. The amplitudes of steady state voltage deflections
from resting voltage (Vdef ) during a strong hyperpolarizing
current input were compared between compartments to measure
their relative input resistances. The spike propagation rate (R)
was defined as the ratio between the number of spikes observed at
the destination compartment and the number of spikes initiated
at the source compartment. A few hundred excitatory synapses
were stimulated at a dendritic compartment for spike initiation.
On the other hand, a single AMPA synapse was stimulated at
a dendritic compartment and the amplitude of the excitatory
post-synaptic potential (EPSP) was measured at the somatic
compartment. A range of (0.1, 0.9) mVwas enforced for the EPSP
amplitude. All synapses used a value of 10 for the weight, and
this value is based on the range used for the multicompartment
models by Izhikevich and Edelman (2008). The following
errors were calculated for each dendritic compartment
and added to the somatic spike pattern error described
earlier:

errorrheo =

{

0, Irheo
dend

≥ Irheosoma

log
(

1+
(

Irheosoma − Irheo
dend

))

, Irheo
dend

< Irheosoma

(6)

errorvdef =

{

0, V
def

dend
≥ V

def
soma

log
(

1+
(

V
def
soma − V

def

dend

))

, V
def

dend
< V

def
soma

(7)

errorR =

{

0, R = 1
log (1+ (1− R)) , R < 1

(8)

errorepsp =







0, 0.1 ≤ EPSP ≤ 0.9
log (1+ (0.1− EPSP)) , EPSP < 0.1
log (1+ (EPSP − 0.9)) , EPSP > 0.9

(9)

Model and Algorithm Implementations
We used the open-source Java-based evolutionary computation
system ECJ (Luke et al., 2015) to tune IM parameters.
Single compartment models were simulated using the Apache

Commons Mathematics Library2. The MC models with up to
39 open parameters were tuned using the parameter tuning
interface of CARLsim, an open-source high performance GPU-
based spiking neural network simulator (Beyeler et al., 2015). The
EA and the single compartment model simulations were run on
distributed CPU nodes, and theMCmodels were run on the GPU
nodes available at the Office of Research Computing at George
Mason University. All scripts necessary to reproduce the results
reported in this article are publicly available3.

RESULTS

Models of Distinct Single Behavior Types
A total of 33 of 122 neuron types in Hippocampome.org version
1.0 (Wheeler et al., 2015) exhibit single behavior. Nine distinct
single-behavior classes exist among these neuron types, and, in
this article, we present at least one model for each of those classes.
It is worth mentioning that different neuron types that exhibit
the same qualitative behavior class typically exhibit different
quantitative features and excitability levels. Figure 3 illustrates
an exemplar neuron type for each of the nine distinct single-
behavior classes and the corresponding best model from all EA
trials. Our simple models were able to reproduce quantitatively
comparable spike pattern features for all these classes (see section
Quantitative Comparison of Spike Pattern Features). While
earlier models reproduced seven qualitatively different classes of
spike patterns (Izhikevich, 2003), our models capture the spike
pattern features of all observed single-behavior spike patterns in
hippocampal neuron types both qualitatively and quantitatively.
Importantly, our systematic and more detailed spike pattern
classification identifies distinct hippocampal spike pattern classes
within general firing behaviors (Komendantov et al., in review).
For instance, among the adapting spike patterns, our approach
distinguishes between the patterns that reach a specific steady
state such as non-adapting or silence (ASP.NASP and ASP.SLN
classes, respectively) and those with experimental recordings
that only allow determination of the transient state (ASP. class).
Our models effectively reproduced the features of these classes
(Figure 3: ASP., ASP.SLN, and ASP.NASP).

All models shown in Figure 3 are single compartment IMs
except for PSTUT and TSTUT.NASP, which were reproduced by
coupling two homogenous compartments. Although stuttering
behavior can be modeled in a single compartment IM,
multiple compartments (coupling effects) were required to
accurately capture various subclasses of stuttering behavior
such as TSTUT.NASP and TSTUT.ASP. However, the number
of compartments for a multi-compartment IM is determined
based on the neuronal morphology (see section Spiking Model)
and CA1 O-LMR and CA1 Oriens-Bistratified neurons have
both their soma and dendrites in the oriens layer. Thus, MC
models were created by symmetrically coupling two identical
compartments, unlike the MC IMs with morphologically defined
layouts (section Constrained Multi-Compartment Models).
These two-compartment IMs were able to capture the classes

2http://commons.apache.org/proper/commons-math/
3https://github.com/Hippocampome-Org/Time
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FIGURE 3 | Models reproducing the diverse hippocampal spike pattern classes. Candidate neuron type models for each spike pattern class are displayed as the best

IM response across several stochastic EA trials (red traces) along with the corresponding experimental recordings (black traces) digitized by Hippocampome.org from

various published sources. The IMs accurately reproduce the features of spike patterns for all classes. Both the experimental and model traces were classified using

the same protocols (Komendantov et al., in review). Source of the experimental traces and their calibrations: (1A) Oliva et al. (2000); 25mV, 350ms. (1B) Armstrong

et al. (2011); 25mV, 450ms. (1C) Savić and Sciancalepore (2001); 25mV, 400ms. (2A) Gulyás et al. (2010); 20mV, 400ms. (2B) Chevaleyre and Siegelbaum (2010);

20mV, 200ms. (2C) Gulyás et al. (2010); 25mV, 300ms. (3A) Buckmaster et al. (1993); 30mV, 80ms. (3B) Chittajallu et al. (2013); 12mV, 300ms. (3C) Ali and

Thomson (1998); 30mV, 350ms. [1] Fast-spiking model with a minimum instantaneous spike frequency of 21Hz. [2] Two-compartment IM with homogeneous

compartments and symmetric coupling. All the other IMs are single-compartment models.

PSTUT and TSTUT.NASP by integrating coupling effects into
the IM dynamics. For the EA search, this simply means inclusion
of an additional parameter (coupling constant). In many cases,
the EA population converged in less than 500 generations,
but certain classes required more generations (Figure 4). As
mentioned in section Error Function, we reject the best solution
found from a single EA run, if its spike pattern features do not
meet the target class criteria (see section Diversity in the Intrinsic
Properties across Neuron Types for discussion on the number of
accepted models for different classes). The IM parameters of the
nine models from Figure 3 are given in Table 1.

Quantitative Comparison of Spike Pattern
Features
Our approach can reliably fit a model’s responses to multiple
experimental voltage traces. As an illustration, the model of a
CA1 OR-LM neuron type (a variant of the O-LM interneuron
superfamily with dendrites in oriens and axons in both radiatum
and lacunosum-moleculare) was created by fitting its responses
to four distinct experimental voltage traces recorded for
different current stimulation strengths (Figure 5A). The model
reproduces features of spike pattern and subthreshold voltage
traces that are quantitatively comparable to the experimental
traces (Table 2). The model spike pattern features are reported
for the input currents that were selected by the EA (see Materials
and Methods). In addition, only the minimum set of features
required to fully capture the temporal properties of spike patterns

were included in the error function. For instance, single spike
traces do not require pss as an objective feature, when fsl and
nspikes are included. By allowing a narrow range for input
current, the EA was able to reliably fit the model responses
to multiple voltage traces. Although the voltage sag is not as
clearly visible as in the hyperpolarized experimental trace, the
corresponding model response nevertheless has a post-inhibitory
rebound potential with a 7mV amplitude. It should be noted that
for multiple voltage trace fitting, we only considered traces that
were recorded under the same experimental conditions (except
for the strength of current stimulation), such as animal species
(rat vs. mouse), electrode type (patch vs. sharp), and temperature
(room vs. body). As mentioned in section Models of Distinct
Single Behavior Types, our approach does not only differentiate
between different classes of frequency adapting spike patterns,
but also reproduces quantitatively comparable parameters of sfa
(Figure 5B). See supplementary material (section Materials and
Methods) for quantitative comparison between experimental and
model traces for all nine classes from Figure 3.

Furthermore, our approach does not simply identify a single
optimal point in the IM parameter space, but instead identifies
several possibilities that correspond to the known behaviors of
a certain neuron type. The size of such region of possibilities
in the parameter space depends on the target behavior class
to which the model is constrained as well as the amount of
experimental data available for each neuron type. For instance,
NASP behavior roughly correspond to the range (0.01, 0.1)
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for the IM parameter “a,” whereas ASP., especially a strongly
adapting behavior, significantly reduces the possibilities to the
range (0, 0.005) for “a.” Similarly, if multiple experimental
voltage traces were recorded for different input current strengths,
the possibilities in the IM parameter space are reduced.

The variability in the quantitative features among all accepted
models is given in Figure 5C. The experimentally observed
feature typically lies within the range of features observed in
the corresponding models, with few exceptions. For instance,
while the IMs for the CA3 Giant neuron type exhibited a range
of sfa slopes that encompassed the experimentally observed

FIGURE 4 | Evolution of best models for different spike pattern classes. EA

was run for 500 generations for the classes ASP. and ASP.NASP, 3,000

generations for NASP and ASP.SLN and 2,000 generations for the remaining

classes. Errors typically improved at higher rates in earlier generations, when

models that satisfy target class criteria were found. Improvements in the error

beyond 500 generations were generally small and not shown here. The

number next to each class label denotes the last generation of error

improvement for that class. Inset zooms-in the first 50 generations.

sfa slope (Figure 5C bottom), its fsl lies outside the model
range (Figure 5C top). These models were nonetheless accepted
because they all satisfy the criteria for the target class (ASP.).

The best model for CA3 Basket (ASP.SLN) showed the highest
error in the sfa slope among all the adapting classes (Figure 5C
bottom). Yet, the accepted models for this neuron type not only
exhibited the desired class (Figure 3, ASP.SLN), but also captured
fast-spiking behavior, which plays an important role in network
synchronization (Traub et al., 1996; Cardin et al., 2009). It should
be emphasized that there is no guarantee that a model fit to
a single experimentally recorded fast-spiking trace is indeed a
fast-spiking model. For example, if the model of a CA3 Basket
fast-spiking neuron type was created by simply fitting to the
only available trace (Figure 3, ASP.SLN), it might still exhibit
non-fast spiking behavior for a lower current input. To avoid
this discrepancy, in fast-spiking models we enforced a minimum
instantaneous frequency of 25Hz for a step current close to the
rheobase (Figure 6). In the end, a neuron type is represented by
a set of heterogeneous models with similar behavioral features.

Constrained Multi-Compartment Models
In addition to the simple point-neuron models described
in previous sections, we create MC Izhikevich models with
heterogeneous compartments for all neuron types with dendrites
spanning multiple hippocampal layers. These models capture
the differences in the active and passive properties between
soma and dendrites as well as coupling mechanisms that allow
biologically realistic signal transmission between compartments.
However, our MC models do not have branching dendritic
arbors, and only consists of up to four compartments. This is
because each additional compartment adds 10 new parameters
for optimization, and tuning hundreds of compartments for
each neuron type is an unrealistic goal. We assume that layer-
level segregation of synaptic inputs is sufficient to significantly
increase the computational power of the models in a network.

As an illustration, we present a four compartment model
of CA2 pyramidal neuron type (Figure 7). The somatic
compartment (SP) reproduced features of experimentally
recorded voltage trace [see Figure 3(2B)] both qualitatively
and quantitatively (Figure 7A). Furthermore, we enforced four
additional constraints for MC models as detailed in section
Error Function. Decoupled dendritic compartments are less

TABLE 1 | IM parameters for the nine models from Figure 3.

Neuron type k A b d C Vr Vt Vpeak Vmin G

CA1 OR-LM (NASP) 0.527 0.00223 6.15 -12 253 −57.25 −42.78 81.81 −44.97 –

DG Neurogliaform (D.NASP) 0.697 0.00107 −30.65 111 242 −74.15 −9.20 17.51 −39.44 –

CA3 Giant (ASP.) 0.609 0.00365 1.84 2 96 −57.58 −37.12 36.42 −49.45 –

CA3 Basket (ASP.SLN) 0.995 0.00385 9.26 -6 45 −57.28 −23.16 18.68 −47.33 –

CA3 Basket-CCK (ASP.NASP) 0.583 0.00574 −1.24 54 135 −59.00 −39.40 18.27 −42.77 –

CA2 Pyramidal (D.ASP.) 5.943 0.00114 −15.89 74 1630 −72.59 −58.78 19.99 −62.65 –

CA1 O-LMR (TSTUT.NASP) 0.326 0.00632 0.40 48 96 −56.44 −27.62 29.48 −51.29 12.00

CA3c Pyramidal (TSWB.SLN) 3.006 0.00189 19.36 104 244 −62.29 −45.27 17.43 −47.37 –

CA1 Oriens-Bistratified (PSTUT) 2.91 0.00168 13.67 35 841 −57.11 −48.50 4.12 −52.94 67.00
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FIGURE 5 | Models quantitatively reproducing the features of experimentally recorded spike pattern traces. (A) Experimental recordings from a CA1 OR-LM neuron

(Oliva et al., 2000) for four different current stimulation strengths (top). The IM reproduces the features quantitatively for similar input currents (bottom). Refer to Table 2

for numerical comparison. (B) The IM sfa is fit to the experimentally observed sfa from a CA3 Giant neuron to generate a spike pattern of class ASP. (left). The IM

quantitatively reproduces the ASP.NASP behavior of a CA3 Basket-CCK neuron (right). The slope(s), Y-intercept(s) and the number of ISI’s extracted from the

experimental linear fit/piecewise linear fits were used as model constraints. (C) The ranges of fsl’s (top) and of sfa slopes (bottom) exhibited by the accepted IMs for

various neuron types.

excitable than the somatic compartment (Figure 7B) and have
higher input resistances (Figure 7C). It should be noted that the
dendritic input resistances and excitabilities were only enforced
qualitatively (the quality of being higher or lower) relative to
the somatic compartment. Neither the absolute values nor the
magnitudes of the differences were enforced in the error function
(see Equations 6 and 7 in section Error Function).

In addition, the dendritic compartments allow forward
propagation of spikes to the adjacent compartments. A few
hundred excitatory synapses were simultaneously stimulated in
order to initiate a spike at a dendritic compartment, and forward
spike propagation (in the direction toward soma) was verified at
the adjacent compartment (Figure 7D). Interestingly, the SLM
compartment required an additional depolarizing current of
1,200 pA in order to initiate a spike, consistent with experimental
observations (Jarsky et al., 2005). Although we enforced a spike
propagation rate of 1 for isolated spikes initiated at a dendritic
compartment (see section Error Function), we noticed that the
rate was less than 1 for high frequency dendritic spike trains.
Finally, the amplitude of unitary EPSP measured at the somatic
compartment was constrained to be in the biologically realistic
range of (0.1, 0.9) mV (Figure 7E).

Even though not directly enforced in the error function,
our MC models qualitatively exhibited the known directional
voltage attenuation properties of hippocampal neurons: voltage
attenuation from a dendritic location to the soma is much
higher than in the opposite direction (Mainen et al., 1996;
Carnevale et al., 1997; Chitwood et al., 1999; Golding et al.,
2005). This behavior was observed in the models because of the
higher input resistances of the dendritic compartments and the
asymmetric coupling between the compartments. The EA always
selected weaker coupling toward the soma than away from it.
Optimization of a 4-compartment model required ∼20 h of total
execution time on the GPU. This is roughly a 15X speedup from
CPU execution. The 39 parameters of the model from Figure 7

are given in Table 3.

Variabilities in the Intrinsic Properties
Within a Neuron Type
Ourmodels of hippocampal neuron types were constrained using
voltage traces digitized from figures in the published literature.
It is thus natural to ask: how faithfully does a representative
recording from a single neuron, which the authors chose to
include in an article, reveal the real intrinsic property of
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TABLE 2 | Quantitative comparison of spike pattern features between

experimental and model traces of the CA1 OR-LM neuron type given in

Figure 5A.

Exp. I 150 pA 100 pA 50 pA −200 pA

fsl 40.1ms 30.39ms 200ms –

pss 18.38ms 7.31ms – –

sfa: c 1.176 1.196 – –

nISI 12 8 – –

rbV – – – 7mV

nSpikes – – 1 –

Model I 156 pA 108 pA 46 pA −195 pA

fsl 58.9ms 79.9ms 268ms –

pss 8.9ms 3.1ms – –

sfa: c 1.176 1.198 – –

nISI 11 8 – –

rbV – – – 7mV

nSpikes – – 1 –

that neuron type? Under the same experimental conditions,
a different neuron of the same type might behave slightly
differently due to experimental noise and biological variability.
A truly accurate model of a neuron type should take into
account (and even represent) such intra-neuron type behavioral
variabilities. For instance, if the experimental data consist of spike
pattern traces recorded from several neurons of the same type
under the same experimental conditions, the error function could
use statistical measures such as z-score to capture the variability
in the models (Druckmann et al., 2007; Markram et al., 2015).
However, we ultimately strive to create spiking models for over
a hundred hippocampal neuron types based on the available
experimental data as gleaned in Hippocampome.org. Except for
a few well-studied neuron types such as CA1 pyramidal neurons,
DG granule neurons, and a handful of GABAergic interneurons,
the vast majority of neuron types identified in the hippocampal
formation to date lack adequate data to represent their behavioral
variabilities. While such a paucity of empirical evidence might
pose the risk of overfitting the model to experimental noise, two
key aspects of our approach synergistically reduce that risk: (i)
inclusion of qualitative class criteria in the error function and (ii)
parameter space exploration using the EA.

Firstly, we dynamically weigh the feature errors during the EA
search with weights determined by comparing the model’s spike
pattern class to the experimental target (see sectionMaterials and
Methods). This ensures that several near-optimal points in the
error landscape represent the appropriate class, even though the
exact feature errors might be higher than the globally optimal
point (Figure 8A). Without such a weight-assignment scheme,
a near-optimal point might not necessarily represent the target
class, because both the feature that defines a boundary between
classes (e.g., fsl between ASP. and D.ASP.) and the feature that
does not (e.g., pss between ASP. and D.ASP.) would equally
contribute to the error. Thus, explicitly integrating qualitative

FIGURE 6 | I-F characteristics of the fast-spiking model of a CA3 Basket

neuron. Instantaneous frequencies, calculated as the inverse of ISI average

(circles) and of the first ISI (crosses), are plotted against the input currents for

the model in Figure 3(2A). A minimum frequency of 25Hz was enforced as a

constraint, where the best model found by the EA exhibits a minimum

frequency of 21Hz.

definitions in the error function sharply distinguishes the near-
optimal points that satisfy class criteria from the ones that do not
(Figure 8B). This increases the EA’s chances of finding themodels
that reproduce the target class.

Secondly, rather than just exploiting the search space to
identify a single optimal point that precisely reproduces the spike
times, our approach explores the search space and identifies
numerous points that elicit a similar behavior. The similarity is
governed by the qualitative class definitions, which are inherent
to the error landscape as described before. The EA exploration
was boosted by a high-rate reset mutation along with a two-point
crossover. The downside of such a configuration is the reduced
EA reliability in finding acceptable models in certain cases. For
instance, only 651 out of 1,000 trials found best models that
satisfy the target class criteria (ASP.) for the CA3 Giant neuron
type (Figure 8B). It is possible to increase this EA reliability by
using a step mutation with a lower rate; however, this will be
achieved at the cost of global exploration, ultimately resulting
in reduced heterogeneity in the accepted models. In the end, a
subset of all best models exhibiting quantitative features with a
certain degree of variability is chosen to represent a neuron type
(section Quantitative Comparison of Spike Pattern Features).
Those features strictly adhere to the criteria for the qualitative
class of the spike pattern recorded from that neuron type.

There is no guarantee to avoid over-fitting the best model
from a single EA trial to the experimental noise. However, by
reducing the acceleration of evolution within the bounds of
target class (dynamic feature weight assignment), and identifying
several near-optimal points within these bounds (parameter
space exploration), we reduce the risk of the best models from
all EA trials converging to a single globally optimal point,
which might or might not represent a noisy feature. It is worth
remembering that a feature threshold of a spike pattern class was
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FIGURE 7 | A four-compartment model of a CA2 Pyramidal neuron. *indicates stimulated compartment (using input current/excitatory synapses) (A) Somatic

compartment reproduces spike pattern of class D.ASP. for I = 401pA with fsl: 188ms, sfa: y = 0.173x + 1.017 [compare with experimental trace in Figure 3(2B) and

features in Figure 5C]. (B) Decoupled dendritic compartments (DC) are less excitable than the somatic compartment (SC). SC spikes before DC’s for ramp current

(ramp slope: 0.1 pA/1ms). (C) Decoupled DC’s have higher input resistance (IR) than the SC. IR is measured by the steady state voltage deflection due to a

hyperpolarizing current application (−500 pA). The amplitudes of voltage deflections are 14.92, 13.66, 14.83, and 14.87mV for SO, SP, SR, and SLM, respectively.

(D) The model and coupling parameters were optimized to enable forward propagation of spikes to the adjacent compartment. A total of 200 excitatory synapses

were stimulated at 40ms to initiate a spike at a DC. The SLM compartment required an additional input current of 1,200 pA to elicit a spike. Only the forward spike

propagation was enforced. (E) The model was constrained to evoke a unitary EPSP with amplitude in the range (0.1, 0.9) mV. Excitatory synapses were stimulated at

SO, SR, and SLM, and the amplitude of the EPSP was measured at SP. EPSP amplitudes at SP were 0.09, 0.24, and 0.1mV by stimulating a single synapse at SO,

SR, and SLM, respectively.

TABLE 3 | IM parameters of the 4-compartment model from Figure 7.

Compartment k A b d C Vr Vt Vpeak Vmin G P

SO 0.875 0.004 9.154 41 1163 −74.633 −61.327 7.440 −66.761 170 0.407

SP 1.029 0.002 11.054 40 1164 −74.633 −62.009 18.314 −65.184 – –

SR 0.840 0.016 10.912 42 1174 −74.633 −62.307 14.142 −63.394 169 0.169

SLM 0.833 0.019 9.471 42 1170 −74.633 −60.468 2.444 −66.223 169 0.348

statistically inferred from the distribution of that feature from all
neuron types (Komendantov et al., in review).

The accepted models for a single behavior showed notable
variation in their parameters, except for TSTUT.NASP
(Figure 9A). Such a variationwasmost prominent for parameters
“a,” “b,” and “d,” but only the dimensions “a” and “b” are shown
in Figure 9A for the nine single-behavior types. Thus, a wide
range of parameters yielded similar behaviors, demonstrating
the robustness of our EA in exploring the parameter space. This
is also consistent with the notion that a given neuron behavior
may result from multiple distinct combinations of ion-channel
conductance densities (Marder and Prinz, 2002).

Diversity in the Intrinsic Properties Across
Neuron Types
In section Variabilities in the Intrinsic Properties within a
Neuron Type, we discussed within-neuron type variabilities,
where several IMs for a single neuron type reveal slightly different
quantitative features for similar input currents. In addition

to this, feature diversities across different neuron types, both
qualitative and quantitative, also likely play a major role in the
emergent properties in a network.

Even different neuron types that exhibit similar qualitative
behavior might reveal substantial diversity in their quantitative
features. For instance, the neuron types that include transient
ASP. in their behavior are CA3 Giant (ASP.), CA3 Basket
CCK (ASP.NASP), CA3 Basket (ASP.SLN), and CA2 Pyramidal
(D.ASP.). The magnitudes of sfa experimentally observed from
these neuron types were ∼0.1 for 100 pA, ∼0.06 for 400 pA,
∼0.02 for 400 pA, and∼0.2 for 400 pA, respectively (Figure 5C).
The IMs constrained using these features reveal considerable
diversity in the magnitudes of sfa among these four models
when the input current is gradually increased, as evidenced by
plotting sfa against a range of input currents “I” (Figure 9B).
For all cases, sfa decreased exponentially with linear increases
of “I.” However, these models showed notable differences in
their excitabilities and their sfa ranges. Most of the variance in
sfa slopes for the fast spiking CA3 Basket PV+ model could
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FIGURE 8 | Parameter space exploration by the EA in a landscape that integrates qualitative class definitions. (A) Error landscape created by the features of a CA3

Giant neuron that exhibits a spike pattern of class “ASP.” [see Figure 3(1C)]. The dotted line denotes the threshold for model acceptance. All models below this line

exhibit quantitative features similar to the experimental ones, while strictly adhering to the definitions of the target class (ASP.). This threshold might not necessarily be

the same for a different spike pattern of class ASP., since the class definitions were weight factors for the quantitative feature errors rather than separate objectives

themselves. The rest of the IM parameters were kept constant to plot this landscape. (B) The best models found by the EA across 1,000 stochastic trials for the same

neuron type. A total of 651 accepted models satisfied the criteria for ASP., while all rejected models exhibited NASP. These two classes show clear separation in the

search space, which is due to the scaling of class-specific feature errors. The EA identified several best models, which are not present in (A), demonstrating

exploration capabilities in a multi-dimensional search space. Notice the difference in the “error” axis scale between the two plots.

be explained by a narrow range of inputs (325–425 pA). This
window is much larger for the regular spiking CA2 pyramidal
model. Figure 9B illustrates the diversity of input-dependent sfa
ranges among these four models. Although experimental data are
too sparse to validate such ranges of sfas in the models, the above
results demonstrate that our approach can create models with
remarkable quantitative diversities, even with limited amounts of
data.

The diverse single behavior classes were most separated along
the dimensions “a” and “b” of the parameter space (Figure 9A).
The four behaviors that include ASP. were restricted to very
small values of “a” (<0.01), whereas the NASP models converged
to a broad range (0.02, 0.1). As mentioned in section Spiking
Model, “a” is the time constant for recovery variable “U,” and
lower values for “a” results in stronger sfa. The region “b” >

“a” correspond to Andronov-Hopf bifurcation (Izhikevich, 2003)
and all the fast-spiking ASP.SLN models were identified in the
range (9, 90) for “b”. Although only 25 best models from 1,000
EA trials satisfied the criteria for ASP.SLN and fast-spiking, these
models encompassed a broad range for “b” (Figure 9A top).

The optimal region for each class is shown in Figure 10.
There is a significant overlap between the regions for the classes
ASP. and ASP.NASP (see also Figure 9A). This is because the
difference between these two classes often depends on the input
conditions rather than the nine parameters of the model. It is
worth mentioning again that in the ASP. class only the transient
element is present in the spike pattern. Given a longer duration of
input, this pattern will most likely show a steady-state of NASP.
The classes NASP and D.NASP encompassed larger regions in
the parameter space (Figures 9A, 10). In the case of D.NASP,
this is likely due to the fact that the experimentally injected input
current was unknown (see Supplementary Table A1), and the EA

identified several possibilities for similar behavior under a broad
range of input currents.

DISCUSSION

A major motivation behind the current work is the intent
to create large-scale network models using IMs with both
biologically realistic within-neuron type behavioral variabilities
and experimentally validated between-neuron type diversity. Our
compact model representations of diverse neuron behaviors
allow the implementation of hippocampal circuit simulations
in a computationally efficient manner. More importantly, our
results offer a sampling range for a neuron group in a network
model (Figures 9A, 10). Several studies have shown that neurons
have intrinsic plasticity and undergo homeostatic regulatory
mechanisms, whichmodify their non-synaptic ion-channels such
as sodium and delayed-rectifier potassium channels, in order to
maintain a certain target activity level in the network (Desai et al.,
1999; Aizenman and Linden, 2000; Desai, 2003). This implies
similar intrinsic properties or behaviors can arise from various
combinations of ion channel conductance densities (Foster and
Ungar, 1993; Marder and Goaillard, 2006; Schulz et al., 2006). In
the mathematically abstracted IM, this is equivalent to various
combinations of parameter interactions. Although it might be
difficult to describe such interactions mathematically, a robust
EA can identify several optimal points in the multi-dimensional
search space that correspond to the known behaviors of a
neuron type (Figure 8B). Thus, our method represents a neuron
type as possibilities in the model parameter space (Figure 9A).
Such a representation is crucial for a thorough and systematic
investigation of the contributions of neuronal intrinsic properties
to network behavior and function. Our multi-compartment
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FIGURE 9 | Model and feature variabilities across neuron types. (A) Accepted models from each of the nine single behavior types are plotted on dimensions “a” and

“b” of the IM. Best models from all 1000 EA trials were accepted for NASP (bottom), whereas only 25 models were accepted for ASP.SLN with fast spiking constraint

(top). All behaviors that include “ASP.” are restricted to the region a < 0.01. Stuttering (PSTUT) and fast spiking (ASP.SLN) behaviors are restricted to the region b > 0

(top). Notice the difference in axes ranges between top and bottom plots. (B) The slope of sfa is plotted as a function of input current (lasting 500ms) for the best IMs

of four neuron types that included “ASP.” in their behavior. The sfa slope decreases exponentially with linearly increasing input step current. These models show

substantial variation in their input dependencies of sfa slopes.

models extend this platform to investigate the effects of dendritic
filtering on the emergent network properties, while still being
reasonably compact.

Furthermore, the diversity captured in our models may
help experimentalists identify and distinguish real neurons in
finer electrophysiological terms. Our models of sfa suggest the
existence of different critical input windows for different neuron
types as explained in section Diversity in the Intrinsic Properties
Across Neuron Types (Figure 9B). Thus, a neuron exhibiting sfa
could be characterized by the range of sfa slopes and its critical
input window. The sfa makes a neuron act as high-pass filter
(Benda and Herz, 2003) and plays a role in emergent network
synchronization (Ermentrout et al., 2001). Two neurons with
different input-dependent sfa ranges will likely have different
filtering properties, and consequently, may contribute to network
synchronization in different ways.

An advantage of using a Pareto-optimal front approach
for model optimization (Druckmann et al., 2007) is that it
avoids the need to weigh different feature errors. However, the
performance of such multi-objective optimization techniques
is affected by the number of objectives (Khare et al., 2003)

and exponentially increasing population sizes are required to
represent high-dimensional Pareto-optimal fronts (Deb, 2014).
A single interrupted spike pattern trace (e.g., TSTUT.NASP in
Figure 3) presents at least eight objectives for optimization (see
Supplementary Table A2, CA1 O-LMR). Moreover, some of
our simple models are constrained using several spike pattern
traces (Figure 5A). With population sizes as small as 120, our
approach can efficiently optimize model parameters for several
objectives.

On the other hand, the approach created by Rössert et al.
(2016) requires a data-driven microcircuit model constructed
from morphologically detailed neuron models (such as the one
in Markram et al., 2015) as a reference, and such reference
models are computationally very expensive. Compared to this
approach, our simple models might be less constrained in some
cases, but they significantly reduce the open parameter space
size to create biologically accurate circuit models. Furthermore,
our simplified multi-compartment models intrinsically capture
the dendritic voltage attenuation properties without a need for
synaptic correction (section Constrained Multi-Compartment
Models).
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FIGURE 10 | Optimal regions of different spike pattern classes. Region for a class was obtained by plotting the convex hull from all the accepted models. The

relationship between parameters “a” and “b” determines the type of bifurcation and it separates several classes. There is significant overlap between the classes ASP.

and ASP.NASP. In general, the EA identified a wide range of optimal points for each class along the dimensions “a,” “b,” and “d”. The classes NASP and D.NASP

encompassed larger regions than other classes. The region for TSTUT.NASP, which lies very close to PSTUT (see Figure 9A–bottom) is the smallest region and is not

visible here.

The precise shape of the spike was not captured in some
of our models (for example, D.NASP in Figure 3). This could
be attributed to the quadratic voltage dependence in the IM
voltage equation. The AdEx model (Brette and Gerstner, 2005),
which replaces the quadratic term in the IM with an exponential
term for the voltage dependence, has been shown to reproduce
more realistic spike shapes (Badel et al., 2008). However, our
selection criteria for the models were entirely based on the
temporal features of the overall spike pattern, and do not include
characteristics of individual spikes. More important for the
information processing in a neural network are the excitability
of neurons, the precise timing of spikes, and the properties
of connections. The shape of the spike is unlikely to play an
equally prominent role in network dynamics. In fact, in the nine-
parameter IM formalism “k” and “Vt” collectively determine the
shape of the spike. It is thus possible to obtain realistic spike shape
by restricting the ranges for these parameters (e.g., Figure 3,
ASP.SLN). However, we did not explore these parameter ranges
and interactions for all the cases for the reasons mentioned
above.

Although only IMs have been presented in this article,
our framework can be easily enhanced to include any
phenomenologically rich model of spiking behavior. The only
part of this framework that is specific to the IM is the
EA configuration presented in section EA Configuration. This
configuration was identified partly based on the topographical
features of error landscape created by the IM parameters. Once
an appropriate EA configuration is identified, our error function
and spike pattern classification procedures are readily applicable
to any alternative model.

In the future, we will enhance our framework to model
multi-behavior neuron types. At least 15 morphological neuron
types in the Hippocampome.org exhibit sharply distinguishable
qualitative features under different experimental conditions.
One of the commonly occurring multi-behavior types in the
hippocampus is stuttering and spiking observed in a single
neuron for different current stimulation strengths. For example, a
CA1 Bistratified neuron exhibited stuttering and regular spiking
behaviors for 400 and 600 pA, respectively (Pawelzik et al., 2002).
Similarly, a CA1 Neurogliaform projecting neuron exhibited
this multi-behavior for 500 and 700 pA (Price et al., 2005).
Our preliminary work with multi-behavior types revealed vast
possibilities for modeling such behaviors using IM, which could
also provide insights into the existence of electrophysiological
subtypes for a given morphological type.

The categorization of neuron type behaviors as either single-
behavior or multi-behavior is solely based on the currently
available experimental data. Consequently, it is possible that
additional qualitative behaviors will be observed in future
experiments from neuron type currently considered to display
a single-behavior based on available data. An advantage of our
modeling approach is that it identifies many possibilities for the
known behaviors of a neuron type in the IM parameter space.
Furthermore, the flexibility of our framework allows easier
addition of newly observed behaviors from a neuron type to
improve the accuracy of its model representations. Eventually,
we plan to create models for over a hundred hippocampal neuron
types and to make them freely available at Hippocampome.org.
Nevertheless, although the modeling framework and the
results presented in this article pertain to the hippocampus,
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our approach could be easily adapted to other brain
regions.
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